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a b s t r a c t

Block size and shape depend on the state of fracturing of the rock mass and, consequently, on the
geometrical features of the discontinuity sets (mainly orientation, spacing, and persistence). The
development of non-contact surveying techniques applied to rock mass characterization offers signifi-
cant advantages in terms of data numerosity, precision, and accuracy, allowing for performing a rigorous
statistical analysis of the database. This fact is particularly evident when dealing with rockfall phe-
nomena: uncertainties in spacing and orientation data could significantly amplify the uncertainties
connected with in situ block size distribution (IBSD), which represents a relation between each possible
value of the volume and its probability of not being exceeded. In addition to volume, block shape can be
considered as a derived parameter that suffers from uncertainties. Many attempts to model the possible
trajectories of blocks considering their actual shape have been proposed, aiming to reproduce the effect
on motion. The authors proposed analytical equations for calculating the expected value and variance of
volume distributions, based on the geometrically correct equation for block volume in the case of three
discontinuity sets. They quantify and discuss the effect of both volume and shape variability through a
synthetic case study. Firstly, a fictitious rock mass with three discontinuity sets is assumed as the source
of rockfall. The IBSDs obtained considering different spacing datasets are quantitatively compared, and
the overall uncertainty effect is assessed, proving the correctness of the proposed equations. Then, block
shape distributions are obtained and compared, confirming the variability of shapes within the same
IBSD. Finally, a comparison between trajectory simulations on the synthetic slope is reported, aiming to
highlight the effects of the propagation of uncertainties to block volume and shape estimation. The
benefits of an approach that can quantify the uncertainties are discussed from the perspective of
improving the reliability of simulations.
� 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The recent evolution of non-contact surveying techniques for
rock mass characterization offers significant advantages in many
aspects. In particular, in terms of numerosity, precision, and accu-
racy of the geometrical data of discontinuities (orientation, spacing,
trace length), the non-contact survey has proved to be highly
effective (Riquelme et al., 2017; Kong et al., 2020). However, the
potential benefits of such databases can be lost without rigorous
statistical analysis (Carriero et al., 2021). The variability of the
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
properties of natural complex materials, such as rock masses, de-
fines an initial level of uncertainty that cannot be removed as an
inherent material feature. This uncertainty is usually referred to as
aleatoric (Baecher and Christian, 2003). On the other hand, the
variability of the measures of a given property is influenced by the
level of knowledge; this uncertainty is known as epistemic, and it
can be reduced by increasing the quantity and quality of data
describing the considered property (Ferrero et al., 2016). This pro-
cess, however, cannot be performed without employing a rigorous
statistical approach and treatment of the data. Otherwise, even
more uncertainties could be introduced. In fact, poor treatment of
data could significantly amplify the uncertainties associated with
the assessment of representative results (e.g. mean orientation of
principal discontinuity sets, mean corrected spacing), and ulti-
mately affect derived data (e.g. block volume and shape) and results
of modeling.
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In rockfall analysis, epistemic uncertainty affects the rockfall
source’s location and volume, the topographic data’s scale or res-
olution, the modeling method’s selection, and the parameters used
for modeling. Aleatory uncertainty affects the topography of the
slope and the mechanical properties of the rockfall source areas,
which are dependent on factors such as lithology, random distri-
bution of fractures in the rock, and geological movement experi-
ence (Wang et al., 2014). Statistical tests are strongly encouraged to
evaluate the best-fitting distributions to reduce epistemic errors in
surveyed data (Umili et al., 2020). As the cumulative distribution
function (CDF) of block volume associates each value with a prob-
ability of not being exceeded (Stavropoulou, 2014), building a
reliable and comprehensive distribution is fundamental.

Since volume depends on orientation and spacing variability,
the sampled data of each discontinuity set should contain a sta-
tistically sufficient number of measurements and represent the
variability in the considered rock mass. Therefore, the larger the
maximum spacing, the greater the area that needs to be considered
to collect sufficient measurements (Ferrero et al., 2016; Umili et al.,
2020). In addition to volume, block shape could also be considered
a derived parameter that suffers from uncertainties. Although the
lumped mass method is still the most commonly employed in
rockfall analysis, many attempts to model block trajectories taking
into account their actual shape have been proposed. Thesemethods
aim to reproduce the effect of block shape on motion and provide
more accurate simulations. The level of details can vary, from
methods that can properly model rigid bodies only if dealing with
simplified geometries, where the block shape is reduced to a
sphere, a disc, an ellipsoid, or a prism (Dorren, 2016), to other more
advanced and complex methods where it is possible to employ
even digital models of the actual block to define its geometry (Leine
et al., 2014, 2021; Noël et al., 2016, 2021). These aspects are worth
investigating when dealing with block volume and shape selection
aiming at the design of protection works. If, on the one hand, the
engineering approach to rockfall problems needs to facilitate the
identification of design parameters, on the other hand, a high level
of simplification couldmask the ripple effect of uncertainties on the
reliability of the results (Carriero et al., 2023). Caviezel et al. (2021)
defined rockfall hazard scenarios via both block sizes and shapes,
incorporating a set of site-specific, realistic rock shapes in hazard
assessments.

In this paper, the analytical equations are proposed for calcu-
lating the expected value and the variance of volume distributions
based on the geometrically correct equation for calculating block
volume in the case of three intersecting discontinuity sets. Then, we
quantify and discuss the effect of both volume and shape variability
through a synthetic case study. Essentially, it consists of a rock face
and the underlying slope, fully known in terms of geometrical
features. By assuming different spacing datasets with variable
average values and variances, the block volume CDFs and the shape
distributions are determined, and the overall uncertainty effect is
assessed. Then, rockfall trajectory simulations are reported, aiming
to highlight the possible effect of the involved uncertainties and the
potential benefits of a rigorous approach for improving the reli-
ability of rockfall analysis.

2. Material and methods

2.1. Block volume

The number, spacing, and persistence of discontinuity sets
determine block dimensions. The number of sets and their orien-
tation establish the shape of the resulting blocks (ISRM, 1978). The
concept of a block size distribution of the rock mass was hinted in
the ISRM Suggested Method (ISRM, 1978), recalling a similarity
with the classification of soils through particle size distributions.
Despite the simplicity of this concept, the adoption of a statistical
approach capable of putting it into practice has not been imple-
mented for years. The main contributions to the analytical defini-
tion of the in situ block size distribution (IBSD) are by Wang et al.
(1991, 1993), Lu and Latham (1999), based on the Equation
Method. First, a deterministic volume calculated from a geometrical
equation involving spacing and orientation of three intersecting
discontinuity planes is calculated. Then it is multiplied by tabled
coefficients for assessing the IBSD. If, on one hand, this procedure is
simple and feasible based on in situ survey data, on the other side, it
does not allow us to consider the variability of orientation and
spacing data, which is a key feature of real rock masses.

Orientation data are usually described by a Fisher distribution
(Fisher, 1953; Butler, 1992; Priest, 1993):

PdqðqÞ ¼
K

4p sinhðKÞ exp ðK cos qÞ (1)

where K is the precision parameter, called Fisher constant, and q is
the angle from the true mean. This is a symmetric distribution
about the mean orientation, with a maximum at the true mean
(q ¼ 0). A large K value indicates a distribution more strongly
concentrated around the true mean. Typical K values for rock joints
within a set range from 20 to 300 (Kemeny and Post, 2003). The
angle corresponds to the standard deviation of the normal distri-
bution (Butler, 1992):

q ¼ 81�
ffiffiffiffi
K

p (2)

This angle is often called the angular standard deviation or
angular dispersion. For example, an angular dispersion of 30� cor-
responds to K ¼ 7.3. Many authors (e.g. Odonne et al., 2007;
Annavarapu et al., 2012) suggest using a log-normal distribution to
fit discontinuity spacing data since it provides great flexibility.
Gamma and Weibull’s family of distributions can also be used to fit
spacing data (Stavropoulou, 2014). The best distribution for a set of
spacing measurements must be identified through a rigorous
evaluation of the goodness of fit. The one-sample Kolmogorove
Smirnov test quantifies the distance between the empirical CDF
of the sample and the theoretical CDF of the reference distribution.
Therefore, it is advisable to test different distributions to create a
ranking and choose the best one accordingly.

In the literature, there are two approaches to the assessment of
block volume distribution: the first one is based on surveys of rock
faces aiming at identifying potentially detachable blocks (Santana
et al., 2012; Mavrouli et al., 2015; Mavrouli and Corominas, 2017),
and the second one is based on surveys of the fallen blocks (van
Veen et al., 2017; DiFrancesco et al., 2021). The distribution ob-
tained based on the results of the geomechanical survey allows one
to consider the volume as a continuous random variable. Although
the range of variability may appear very widely, it is still a more
reliable assessment than that based on the survey of the blocks to
the slope toe. In fact, several authors have observed that the latter
may be incompatiblewith the real one due to fragmentation, which
depends strongly on the lithology and mechanical strength of the
rock, as well as the presence of weak planes and not fully persistent
discontinuities (Ruiz-Carulla et al., 2015, 2017; Macciotta et al.,
2020; Moos et al., 2022). In highly fractured rock masses, the
fallen rock blocks have a marginal role in determining block size
since their volume could be affected by other processes after
detachment (e.g. fragmentation). Conversely, stratigraphy and
structure play a fundamental role since they mirror the degree of
fracturing of the rock face. However, an accurate field observation,
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i.e. the stratigraphy and structures of the rock face, is imperative for
supporting any approaches to studying rockfall phenomena (Umili
et al., 2020).

In consideration of the simplest case of blocks created by the
intersection of three discontinuity sets Ki, Kj, and Kk, these authors
propose to calculate the block volume as the product of spacings
divided by a coefficient that properly considers the relative orien-
tations among the sets:

V ¼ kmi
!k��mj

!�
�k mk

�!k
�
�sin gij

�
�
�
�
�cos dk�ij

�
�
�
¼ SiSjSk

q
(3)

where mi
!; mj

!; mk
�! are the director vectors of the three discontinuity

sets, and therefore their norms correspond to the spacing Si, Sj, and
Sk of the three sets.

Since the circular shift of the indexes (i, j, k) is valid within the
block formed by the three discontinuity planes, it is true that:

q ¼ sin gij cos dk�ij ¼ sin gjk cos di�jk ¼ sin gki cos dj�ki (4)

where gij, gjk, gki are the angles between pairs of sets, according to
the terminology used by Palmstrøm (1996); dk-ij is the angle be-
tween the director vector mk

�! and the direction of the normal to the
other two director vectors lij

!
.

The structure of this new formula is similar to that of
Palmstrøm’s well-known formula (Palmstrøm, 1996), with the
advantage of being geometrically correct for every orientation
among the three sets. Basically, q is a dimensionless number that
depends only on the shape of the block, namely the angles among
sets. In fact, one must consider that angles gij among sets are
limited between 0� and 180�, while dk-ij ranges between 0� and 90�:
therefore, sine and cosine functions are both limited between 0 and
1. Moreover, q considers a relative orientation among the sets that
physically produces a closed shape. Consequently, q ranges be-
tween 0 and 1with a nonlinear trend. If the block is a regular prism,
whose angles among sets are all equal to 90�, q is equal to 1. Fig. 1
represents the trend of q by varying K1 orientation, while the
orientation of K2 and K3 is kept constant. In particular, the dip of K1
varies between 0� and 90�, the dip direction of K1 varies between
0� and 360�, K2 is 90/090 and K3 is 00/000. As shown, in the cases of
perpendicular sets (K1 equal to 90/000, 90/180, and 90/360), q is
Fig. 1. Values of q by varying dip and dip direction of set K1, while K2 is 90/090 and K3

is 00/000; contour step is 0.1.
equal to 1. It is worth noting that Fig. 1 reports only one of the
possible trends of q. In fact, by varying the orientation of the three
sets, the coefficient behaves differently: in general, the minimum
andmaximumvalues of q change (always in the range [0,1]), as well
as the shape of the trend.

It is evident that Eq. (1) is intended as a deterministic formula
that requires individual values of spacing and shape factor and
returns a unique value of the volume. However, a unique value of
the volume is not sufficient to describe the aleatory nature of the
potential blocks created by the intersection of different disconti-
nuity sets in a rock mass.

The spacing of a discontinuity set can be considered a contin-
uous random variable; therefore, its CDF, denoted as F(s) ¼ P(S � s),
defines the probability that a given spacing value S is less than s
(Stavropoulou, 2014). The transition from the deterministic to the
probabilistic approach for the IBSD analytical assessment is
possible by assuming that the spacing distributions of the three
discontinuity sets are independent. Therefore, the CDF of the
product of the three spacings can be written as

FS1S2S3ðs1; s2; s3Þ ¼ PðS1 � s1; S2 � s2; S3 � s3Þ (5)

Then, it is simply the product of their CDF:

FS1S2S3ðs1; s2; s3Þ ¼ FS1ðs1ÞFS2ðs2ÞFS3ðs3Þ (6)

In terms of probability, this corresponds to:

PðS1 ¼ s1; S2 ¼ s2; S3 ¼ s3Þ ¼ PðS1 ¼ s1ÞPðS2 ¼ s2ÞPðS3 ¼ s3Þ
(7)

Therefore, considering Eq. (3) proposed by these authors and
assuming q as a constant, the CDF of the block volume can be
written as

FV ðvÞ ¼
FS1ðs1ÞFS2ðs2ÞFS3ðs3Þ

q
(8)

It represents the analytical definition of the IBSD based on the
correct geometrical equation for calculating block volume. The
assumption of a constant value of q while changing the spacing
values neglects the effect of orientation variability. While this is a
simplification of the problem, it has been observed that uncertainty
in spacing values amplifies block volume uncertainty in a more
significant way than that of orientation (Ferrero et al., 2015). The
variance of a random variable can express its uncertainty, since it is
a measure of its dispersion. Therefore, since both spacing and
volume can be considered continuous random variables, the in-
fluence of the uncertainty related to input spacing values can be
quantified and associated with the output volume values.

Based on Eqs. (3) and (8), it is possible to calculate the volume
expected value E[V] and variance Var[V] based on the spacing ex-
pected value E[S] and variance Var[S] of the three sets. Considering
only the numerator of Eq. (8) under the hypotheses that:

(1) Spacing Si of a generic ith discontinuity set is a continuous
random variable, whose E[S] and Var[S] are mi and si

2,
respectively;

(2) Spacing Si and Sj of two different discontinuity sets are in-
dependent, therefore their covariance Cov[Si, Sj] ¼ 0. This
hypothesis corresponds to the most general case of discon-
tinuity planes belonging to a set, whose location in a rock
mass is independent of the location of planes belonging to a
different set.
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It is possible to calculate the expected value and the variance of
the product of spacing S1 and S2 by (Baecher and Christian, 2003)

E½S1S2� ¼ m1m2 (9)

Var½S1S2� ¼ m21s
2
2 þm22s

2
1 þ s21s

2
2 (10)

By extension, it is possible to calculate the expected value and
the variance of the product of spacing S1, S2, and S3 as follows:

E½S1S2S3� ¼ m1m2m3 (11)

Var½S1S2S3� ¼ ðE½S1S2�Þ2s23 þm23Var½S1S2� þ Var½S1S2�s23 (12)

By replacing Eqs. (9) and (10) in Eq. (12), we have

Var½S1S2S3� ¼ m21m
2
2s

2
3 þm21m

2
3s

2
2 þm22m

2
3s

2
1 þm23s

2
1s

2
2 þm21s

2
2s

2
3

þm22s
2
1s

2
3 þ s21s

2
2s

2
3

(13)

Based on Eqs. (3), (11) and (13), under the assumption of con-
stant q (E[q] ¼ q, Var[q] ¼ 0), it is possible to explicitly calculate the
expected value and variance of the volume as follows:

E½V � ¼ m1m2m3
q

(14)

Var½V � ¼ m21m
2
2s

2
3 þ m21m

2
3s

2
2 þ m22m

2
3s

2
1 þ m23s

2
1s

2
2 þ m21s

2
2s

2
3

þ m22s
2
1s

2
3 þ s21s

2
2s

2
3

(15)

Eq. (14) provides an average value of the volume, while Eq. (15)
provides the variance of the volume, considering the combined
effects of spacings variability, both in terms of mean and variance.
2.2. Block shape

The shape of blocks can vary significantly within a rock mass.
Regular geometric shapes are the exception rather than the rule
since the joints in any one set are seldom consistently parallel
(ISRM, 1978). Palmstrøm (1995) introduced a shape factor b to
quantify the equivalent block volume for rock masses with few
Fig. 2. (a) Shape classification triangular diagram proposed by Kalenchuk et al. (200
joint sets. There are two similar definitions of this shape factor, but
in any case, the variables are the longest and shortest dimensions of
the block. Palmstrøm (2001) also provided a diagram for the clas-
sification of the block shape as a function of the ratio of the longest
edge (Lo) of the block over the shortest one (Sh), versus the ratio of
the intermediate edge (In) over Sh. In this logarithmic diagram
(Fig. 2), blocks can be classified as:

(1) Equidimensional or compact prisms, with In/Sh < 2 and Lo/
Sh < 2;

(2) Long prisms (rods), with In/Sh < 2 and Lo/Sh > 2;
(3) Long flat prisms (blades), with 2 < In/Sh < 1þ(Lo/Sh e 1)0.5;

and
(4) Flat prisms (slabs), In/Sh > 1þ(Lo/Sh e 1)0.5.

Another approach to relate a single block or a compartment of
the rockmass to its volume through a shape factor was proposed by
Hantz (2011). In a general formulation, the relationship between
the volume (V) and the width (w) of the fallen compartments may
bewritten as V¼ kw3, where k is a shape factor, which equals 0.5 for
the calcareous cliffs of the Grenoble area. However, the k factor can
range between 0.4 and 2. If k is unknown, the author recommends
using the value of 1. This simplified approach could be helpful in
back analyses of rockfall phenomena for attributing a probability of
not being exceeded to the actual detached volume.

Other authors employed discrete fracture network (DFN) gen-
erators to create more complex and accurate descriptions of the
block shape, as in the case of Kalenchuk et al. (2006, 2008). These
authors introduced a pair of a dimensional parameters (a and b) to
be used in a triangular diagram to describe the geometry of the rock
blocks. The parameter a is defined as a function of the volume,
surface area, and average edge length, while b is a function of the
length of the longest and shortest edges of the block. In the case of
prismatic blocks, as in almost every possible natural scenario, both
a and b have a maximum value of 10. Both parameters are used to
define a triangular chart, similar to the diagram in Palmstrøm
(2001). In this case, the area of the diagram is divided into sec-
tors with which a specific shape is associated (Fig. 2). The authors of
these studies also noted a relationship between the size of the block
and its shape: in general, the larger the volume, the less variable the
shape. The principal limitation of this approach lies in the fact that
6, 2008), and (b) Shape classification diagram proposed by Palmstrøm (2001).
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calculating a and b requires knowing the coordinates of every
vertex of all the blocks in the considered rock mass, which is a
relatively simple task only when employing DFN software.

3. Calculation

3.1. Case study

A fictitious rock face and the slope underneath were considered
as the case study. This choice was dictated by the need to have
complete control over the variables to assess the effects of the
uncertainties quantitatively. Three perpendicular discontinuity
sets, K1, K2, and K3 were assumed to be surveyed in the rock face.
For each discontinuity set, the distribution of spacing values was
assigned, while orientation dispersion was considered null within
each set, consistent with the assumption of constant q made for
defining Eq. (8); in this case, q is equal to 1.

A digital terrain model (DTM) describing a real slope was used
for this study. The test area is morphologically quite simple, with an
upper portion characterized by a quasi-regular surface that tran-
sitions to a system of gullies and, lastly, to a deep incision. The slope
was chosen with the help of a geomorphologist to avoid local or
improbable effects on the expected trajectories. In this way, it was
possible to appreciate the effect of block size and shape both on a
regular surface and where the morphology has a more prominent
influence. The DTM employed is freely provided by the regional
authorities (Regione Piemonte, 2011) in GeoTIFF format, with a
pixel size of 5 m � 5 m and a vertical resolution of approximately
0.5 m. The slope is 2450 m long and the source area is 1475 mwide,
with an elevation difference from the top to the toe of 1000 m. The
slope length allows us to visualize the difference in terms of energy
and runout distance produced by different block volumes and
shapes. The average slope angle is only 22�, but locally this value
increases up to 70�. It was assumed that all the slope is made up of
the same material, while the source area, located close to the up-
permost border of the slope, was defined by a 20 mwide band that
crosses almost the entire slope. The choice of not completely
covering the slope was made to avoid miscalculations near the
boundaries of the DTM. Rockyfor3D software (Dorren, 2016) was
chosen for performing the simulations of trajectories of single,
individually falling rocks, in three dimensions. In this study, the
characteristics and features of the slope were kept as simple as
possible. All the parameters required by the software, such as
surface asperities, soil type, or vegetation, have been set for all the
Fig. 3. Slope used for simulations, with the indication of the source area.
simulations to the same values, with reference to those provided by
Dorren (2016). In this way, it was possible to assess the effect of
block shape on the simulated trajectories while the interference of
all the other parameters related to the slope was kept at constant.
For this, a soil type corresponding to medium compact soil with
small rock fragments (d < 0.1 m) was chosen, having a normal
restitution coefficient (Rn) with a range of 0.3e0.36 and an average
value of 0.33. At the lowest positions of the DTM, a small band of
water has been modeled so that any block reaching it would be
stopped, and its propagation would not continue outside the DTM
itself. Lastly, all the parameters describing the vegetation have been
ignored, and their effects have been set to null. The slope is visible
in Fig. 3.

3.2. IBSD and related uncertainties

The spacing distribution was set to behave as a Gamma distri-
bution; moreover, the same Gamma distribution was assumed for
the three discontinuity sets. It is useful to recall that the Gamma
distribution is a continuous probability distribution described by
two parameters: a shape parameter a and a scale parameter b. Its
PDF can be expressed as

f ðxÞ ¼ 1
baGðaÞx

a�1e
�x
b (16)

The mean and variance can be calculated as

m ¼ ab (17)

s2 ¼ ab2 (18)

In order to assess the influence of the spacing uncertainty on the
volume CDF, m was considered equal to 1 m, while s2 varied from
10�6 to 0.49. A total of 9 spacing PDFs was generated (Fig. 4), and
assumed as a reasonable approximation (Table 1). Fig. 5 shows the
corresponding CDFs: the larger the variance, the wider the range of
possible spacing values. It is also worth noting that the spacing
value with a cumulative frequency equal to 50%, in general, is not
equal to m.

Samples consisting of different numbers of spacing values
(N ¼ 100 or 50) were then extracted from the true population by
inverting each true PDF in correspondence with N randomly
generated values from the uniform distribution in the interval (0,
1). Then, the samples were fitted by a Gamma distribution, and the
two parameters (a, b) were estimated. In Table 1, the estimated m
Fig. 4. True spacing PDFs (values of s2 in Table 1).



Table 1
Summary of the synthetic spacing PDFs (constant m, 9 values of s2) and the corre-
sponding best fitting Gamma PDFs, considering 2 different values of N.

True PDF N ¼ 100 N ¼ 50

Assigned Assigned Eq. (17) Eq. (18) Eq. (17) Eq. (18)
m (m) S2 (m2) M (m) s2 (m2) M (m) s2 (m2)

1 1 � 10�6 1 1.16 � 10�6 1 1.09 � 10�6

1 1 � 10�4 1 1.06 � 10�4 0.99 1.05 � 10�4

1 0.01 0.99 0.012 0.97 0.011
1 0.04 0.99 0.041 0.95 0.049
1 0.09 0.99 0.094 1.07 0.106
1 0.16 0.96 0.125 0.99 0.159
1 0.25 1.06 0.271 0.91 0.178
1 0.36 0.87 0.283 0.98 0.414
1 0.49 0.98 0.501 0.94 0.328

Fig. 5. True spacing CDFs generated from true PDFs (Fig. 4).

Fig. 6. Var[V] (Eq. (20)) as a function of s2, considering different values of m. [m should
be in italic type].
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and s2 (Eq. (17) and (18)) of the fitted PDFs are compared with the
true ones. As expected, a decrease in N leads to a general increase in
the difference between the estimated m and the true one. The same
effect, which is also amplified by the rise of the true s2, can be
observed on the estimated s2.

E[V] and Var[V] can be estimated from Eqs (14) and (15). For the
case study considered, equal mean spacing m1¼ m2 ¼ m3 ¼ m,
equal variance s21 ¼ s22 ¼ s23 ¼ s2, and q ¼ 1 are assumed.
Therefore, Eqs. (14) and (15) can be reduced as follows:

E½V � ¼ m3 (19)

Var½V � ¼ 3m4s2 þ 3m2s4 þ s6 (20)

In the special case of unit mean spacing m1¼ m2 ¼ m3 ¼ m ¼ 1 Eqs.
(19) and (20) can be further reduced as

E½V � ¼ 1 (21)

Var½V � ¼ 3s2 þ 3s4 þ s6 (22)

Fig. 6 shows Var[V], calculated with Eq. (20), as a function of s2,
considering different values of m. One can observe that Var[V] in-
creases by some order of magnitude by increasing s2: this effect is
wider for smaller values of m.
3.3. Block shape and related uncertainties

The most common approach to block shape consists of defini-
tion a reference shape, which is usually considered as the most
frequent shape associated with fallen blocks or measurable in the
rockmass itself using themethods described in Section 2.2. It is also
often assumed that this reference shape is a constant feature
related to every block size. However, there is evidence in the
literature that this is not the case. For example, Kalenchuk et al.
(2006, 2008) produced a chart in which the size of the blocks,
measured through a DFN, is plotted against the shape. These dia-
grams show that shape is anything but constant and has a rela-
tionship with block size.

If we consider a block of prismatic shape where all the sides are
orthogonal to each other, q ¼ 1, and the length of the sides corre-
sponds to the spacings of the three joint sets generating the block,
which are assumed to be known. Then, the block, whose volume
corresponds to E[V] calculated with Eq. (14), can be plotted on the
shape classification diagram provided by Palmstrøm (2001). By
iterating the process for every value in the range covered by the
volume CDF, we can map all the possible shapes assumed by the
blocks. It is, therefore, possible to assess the variation by quanti-
fying the relative frequency of each shape in a given volume CDF. It
is also possible to observe any relationship between the shape and
size of the block, which would appear as a degree of organization in
the shape diagram. For example, in the simplest case, one could
observe that for larger volumes, the shape tends to fall in a specific
portion of the graph. Lastly, this approach also allows us to visualize
that an assigned reference shape does not represent the entire
volume CDF.
3.4. Simulation of block trajectories

Two sets of numerical simulations were carried out using the
software Rockyfor3D (Dorren, 2016) to compute the trajectories
and visualize the effect of uncertainties on block volume and shape.
This software was chosen because of its ability to account for the
shape of the simulated block. Although only simple shapes can be
assumed in the simulations, this is sufficient to assess the influence
of block shape on the trajectories. The software considers a sig-
nificant number of parameters, such as the block volume, block
shape, slope, and source areas or points. To describe each of these
features, Rockyfor3D employs raster maps in ASCII format, easily
obtainable using any geographic information system (GIS). The
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raster files can describe the analyzed problem in detail, considering
that up to fourteen different parameters can be considered.

The shape of the simulated block is defined using four param-
eters: a block shape number and three main diameters (d1, d2, and
d3). The block shape number defines the family of shapes the block
belongs to, which directly translates into the formula used to
calculate the associated volume. In this study, the block was always
assumed to have a regular shape and was treated as an orthogonal
prism. Here, the d1, d2, and d3 values correspond to the mean
spacing of the three joint sets, given the orthogonal configuration of
the block shape. The volume of the block is therefore calculated as

V ¼ d1d2d3 ¼ m1m2m3 (23)
Table 2
E[V] and Var[V] calculated with Eqs. (21) and (22) for the spacing distributions in
Table 1.

True PDF N ¼ 100 N ¼ 50

Eq. (21) Eq. (22) Eq. (21) Eq. (22) Eq. (21) Eq. (22)
E[V] (m3) Var[V] (m6) E[V] (m3) Var[V] (m6) E[V] (m3) Var[V] (m6)

1 3 � 10�6 1 3.5 � 10�6 1 3.3 � 10�6

1 3 � 10�4 1 3.2 � 10�4 0.99 3.1 � 10�4

1 0.03 0.98 0.03 0.91 0.03
1 0.12 0.97 0.12 0.85 0.12
1 0.3 0.98 0.3 1.21 0.45
1 0.56 0.89 0.37 0.97 0.54
1 0.95 1.2 1.3 0.75 0.45
1 1.52 0.65 0.68 0.93 1.69
1 2.31 0.95 2.25 0.82 1.07

Table 3
E[V] and Var[V] estimated from the Monte Carlo simulations performed for the
spacing distributions in Table 1.

True PDF N ¼ 100 N ¼ 50

E[V] (m3) Var[V] (m6) E[V] (m3) Var[V] (m6) E[V] (m3) Var[V] (m6)

1 3.23 � 10�6 1 3.23 � 10�6 1 2.85 � 10�6

1 3.24 � 10�4 1 2.98 � 10�4 1 2.23 � 10�4

1.01 0.03 1.05 0.03 1 0.03
1.02 0.14 0.92 0.1 1.09 0.15
1.03 0.34 1.09 0.28 0.91 0.22
1.05 0.67 1.01 0.55 1.06 0.71
1.06 1.21 0.96 1.23 0.68 0.46
1.08 2.07 1.35 2.29 1 1.5
1.1 3.46 1.17 3.63 1.26 3.27

Fig. 7. E[V] as a function of s2 (Eq. (21)).

Fig. 8. Var[V] as a function of s2.

Fig. 9. Volume PDFs generated from synthetic distributions in Table 1 for different
values of s2.

Fig. 10. Volume CDFs generated from synthetic distributions in Table 1 for different
values of s2.
The density considered in this study is 2700 kg/m3, roughly
equivalent to that of limestone.



Table 4
Input parameters to describe the spacing and volume CDFs for the expected cubic
and prismatic block shapes.

Expected
Shape

Spacing Volume

K1 K2 K3 Eq.
(14)

Eq. (15) Sample

m1
(m)

s1
2

(m2)
m2
(m)

s2
2

(m2)
m3
(m)

s3
2

(m2)
E[V]
(m3)

Var[V]
(m6)

E[V]
(m3)

Var[V]
(m6)

Cube 1.71 0.25 1.71 0.25 1.71 0.25 5 6.98 4.91 6.46
Prism 1 0.25 2 0.25 2.5 0.25 5 9.53 5.01 10.68

Fig. 11. Spacing CDFs (Table 4).

Fig. 12. Volume CDFs (Table 4).

Fig. 13. Shape distribution for
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4. Results and discussion

4.1. IBSD construction

Based on the spacing distributions in Table 1, E[V] and Var[V] can
be calculated with Eqs. (21) and (22) proposed by these authors,
without the need to generate the volume CDF. In detail, the values
of m and s2 in the first and second columns of Table 1 were used to
calculate E[V] and Var[V] reported in the first and second columns
of Table 2. The same process was carried out for the columns
regarding N ¼ 100 and N ¼ 50.

To demonstrate the validity of Eqs. (21) and (22), the volume
samples were generated throughMonte Carlo simulations based on
spacing distributions in Table 1. Eq. (8) was used to calculate the
volume. Consistent with the assumptions made for deriving Eqs.
(21) and (22), the same spacing distribution, with a unit mean
spacing, was assumed for all three discontinuity sets from which
the blocks originate. E[V] and Var[V] of the volume samples were
calculated (see Table 3) and compared with those assessed with
Eqs. (21) and (22) (see Table 2). Figs. 7 and 8 show the comparison
between values in Tables 2 and 3 in terms of E[V] and Var[V],
respectively. The first remark is that E[V] and Var[V] calculated for
the sample generated from the true distribution tend to gradually
diverge from the ones calculated with Eqs. (21) and (22), due to the
increasing of s2. This fact can also be observed in the E[V] and Var
[V] calculated with Eqs. (21) and (22) and from the samples, but the
values do not showa clear increasing trend: the combined variation
of m and s2 from the true ones, considered three times (corre-
sponding to the three discontinuity sets), does not produce a direct
proportionality in the increase of E[V] and Var[V]. In general, the
comparison shows a good agreement of the results, making the
proposed equations suitable for being used as estimators of E[V]
and Var[V] given m and s2 from in situ surveys.

The obtained volume PDFs and CDFs generated from synthetic
distributions in Table 1 are shown in Figs. 9 and 10, respectively.
The larger the s2, the wider the range of possible volume values.
This visually corresponds to a tendency towards an almost hori-
zontal CDF for increasing s2. It is also worth noting that volume
value with a cumulative frequency equal to 50% generally is not
equal to E[V].
4.2. Shape assessment

Based on the considerations in Section 3.3, two cases were
analyzed to highlight the importance of proper block shape
assessment: the first considers three coincident spacing distribu-
tions to produce a cubic expected shape, while the second con-
siders three different spacing distributions to create a prismatic
the cubic expected shape.



Fig. 14. Shape distribution for the prismatic expected shape.
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expected shape. Table 4 reports the parameters describing the
input data for the two cases: they are characterized by equal E[V]
and s2 but different values of m. Spacing samples were then
extracted from the true population by inverting each true distri-
bution in correspondence with 1000 randomly generated values
from the uniform distribution in the interval (0, 1). The volume
sample (1000 data) was obtained by multiplying each triplet of
spacing values. Eqs. (14) and (15) were applied to calculate E[V] and
Var[V] and compare the results with those estimated from the
volume sample. The good agreement among the results confirms
the validity of the proposed equations and the method in general.
Spacing CDFs and volume CDFs are shown in Figs. 11 and 12,
Fig. 15. Shape distribution with respect to block size (V) for the cubic expected shape.
respectively. The spacing samples relative to the cubic expected
shape were processed to calculate the Lo/Sh and In/Sh ratios. The
obtained values were plotted on the shape diagram (Fig. 13) and
classified. The equidimensional type is indeed predominant (77%),
but the rod shape is well represented (19%) too. The same process
was performed considering the spacing samples relative to the
prismatic expected shape (Fig. 14). In this case, the distribution of
the shape types is more balanced, with a predominance of slabs
(37%).

Lastly, Figs. 15 and 16 illustrate the effect of block size over block
shape for the same two cases considered above. In the cubic case,
an increase in volume does not produce a clear impact on the block
Fig. 16. Shape distribution with respect to block size (V) for the prismatic expected
shape.



Fig. 17. (a) Trajectories and runout, and (b) Maximum kinetic energy of the 3 m3 cubic block.

Table 5
Geometrical features and classification parameters of the five shapes considered in
the simulations.

ID Sh (m) In (m) Lo (m) V (m3) Lo/Sh In/Sh

B1 1.71 1.71 1.71 5 1.1 1.1
B2 0.77 0.85 7.69 5 10 1.1
B3 0.64 1.61 4.83 5 7.5 2.5
B4 0.58 2.92 2.92 5 5 5
B5 1.08 2.15 2.15 5 2 2

Fig. 18. (a) Trajectories and runout and (b) Maxim
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shape, and this is distributed independently across the diagram. In
the case of the prismatic expected block, however, a global trend
exists, associating larger volumes with more equidimensional
shapes. This confirmswhat was observed by Kalenchuk et al. (2006,
2008) and highlights the effect of the different spacing CDFs.

These analyses support the importance of carrying out Monte
Carlo simulations to have an overall view of the case and make
assumptions about block shape that can be quantitatively associ-
ated with a probability of occurrence.
um kinetic energy of the 5 m3 cubic block.



Fig. 20. The five block shapes considered in the second set of numerical simulations,
plotted on the classification diagram proposed by Palmstrøm (2001).

Fig. 19. (a) Trajectories and runout and (b) Maximum kinetic energy of the 9 m3 cubic block.
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4.3. Effect of the uncertainties on block trajectories

Two sets of numerical simulations were performed to assess the
effect of block size and shape on the dynamic of rockfall phenom-
ena. For the first set of simulations, the block shape was kept
constant (cubic or equidimensional), while the volume of the
simulated block was varied by changing the parameter d1 (where
d1 ¼ d2 ¼ d3). Specifically, blocks with volumes of 3 m3, 5 m3, and
9 m3 were considered. These values were chosen on the CDF of
cubic blocks in Fig. 12 and correspond to a cumulative frequency of
40%, 70%, and 96%, respectively. The simulations considered the
entire source area releasing blocks of constant volume. As expected,
volume change influences the runout of the simulated phenomena
and the energies involved. The simulations are portrayed in
Figs. 17�19, where both runout trajectories and kinetic energy are
shown for each of the three cases.
As can be seen, an increase in volume results in longer runouts
and significantly higher kinetic energy. The runout of the 3 m3

block barely reaches the first gully in the middle section of the
slope, while both the 5 m3 and the 9 m3 blocks reach the lower
portion of the slope. It should also be noted the effect of
morphology is less significant at higher block volumes, especially in
the upper part of the slope. In terms of the amount of energy
involved in the phenomenon, the 3 m3 and the 5 m3 blocks have a
similar level of kinetic energy, while the 9 m3 block involves en-
ergies one order of magnitude higher. Similarly, the kinetic energy
distribution along the slope is comparable for the 3m3 and the 5m3

blocks, where the highest energies were recorded in the upper part
of the slope, just below the source area, and in the gullies in the
middle sector of the slope. For the 9 m3 block, the highest energy
levels were found in the lower portion of the slope, where the
morphology of the test slope forces the trajectories to converge in
the main gully (see Fig. 19).

The second set of simulations was performed to visualize the
difference produced by the shape of the block, while keeping the
volume constant. In particular, the volume was set equal to 5 m3,
and the output trajectories obtained previously for the cubic block
(Fig.17) were used as a reference (B1 in Table 5). Three different test
block shapes (B3, B4, B5) were assumed, as described in Table 5 and
plotted on the diagram provided by Palmstrøm (2001) (see Fig. 20),
so that each of the other shape categories (rod-like, blade-like, and
slab-like) was represented. The special case described by the
intersection of the boundaries of the different sectors was also
considered and modeled (B2). The effect of shape is portrayed in
Figs. 21 and 22, where one can appreciate a significant change in
runout distance and trajectories.

As can be observed, the difference between the reference cubic
block and the other shapes is substantial: the runout increases
significantly, and the way the trajectories concentrate varies for the
different shapes. The blade-like block (Case B3) is the one that
manifests the more widespread trajectories, while the rod-like
block (Case B5) shows a tendency towards concentration on the
left side of the slope. Conversely, the slab-like block (B4) shows a



Fig. 21. Trajectories of the simulated: (a) Slab-like block B4, and (b) Special case B2.

Fig. 22. Trajectories of the simulated: (a) Rod-like block B5, and (b) Blade-like block B3.

Table 6
Some practical examples of uncertainty effect assessment.

Expected
Shape

Spacing Volume

K1 K2 K3 Eq.
(14)

Eq. (15) IBSD

m1
(m)

s1
2

(m2)
m2
(m)

s2
2

(m2)
m3
(m)

s3
2

(m2)
E[V]
(m3)

Var[V]
(m6)

F(E[V])
(%)

V99%

(m3)

Cube 1 0.25 1 0.25 1 0.25 1 0.95 79 4.54
1 0.36 1 0.36 1 0.36 1 2.31 86 5.49
1.71 0.25 1.71 0.25 1.71 0.25 5 6.98 71 12.86

Prism 1 0.25 2 0.25 2.5 0.25 5 9.53 72 16.06
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tendency towards concentration on the right side. As expected, the
special case representative of the convergence point of the shape
domains in the classification diagram (B2) shows behavior in be-
tween the blade-like (B3) and the slab-like block (B4).

Regarding kinetic energy, themaximumvalue depicted in Fig.18
for the 5 m3 cube reference is 5000 kJ. The kinetic energies for the
different blocks simulated in the second set of numerical simula-
tions show that, in general, the reference value is one order of
magnitude higher. In particular, block B2 has a reference maximum
value twice the cubic block (1 �104 kJ), while for both B5 and B3, it
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is four times (2 � 104 kJ). Block B4 has a reference maximum value
three times the cube (1.5 � 105 kJ). This shows that the shape also
influences the kinetic energy of the block. In general, block shape
influences significantly block motion, both in its geometric aspects,
such as trajectories and runout, and in its energetic aspect.
4.4. Discussion on the effect of the uncertainties

Table 6 reports some practical examples quantifying the effect of
uncertainty. The first example concerns a cubic block generated by
three discontinuity sets with the same spacing PDF (seventh row in
Table 1). E[V] and Var[V] are calculated with Eqs. (14) and (15)
(seventh row in Table 2), and the volume CDF, namely IBSD, is
calculated. Two descriptors of the IBSD are defined and used for
comparing the cases: cumulative frequency corresponding to E[V],
called F(E[V]), and volume corresponding to 99% cumulative fre-
quency, called V99%. They are both obtained directly from the IBSD.
F(E[V]) represents the probability of not exceeding E[V]. V99% is a
parameter describing the amplitude of the IBSD, truncated at 99% of
cumulative frequency.

The second case in Table 6 differs from the first one only in s2,
which is larger. This causes an increase in Var[V], F(E[V]), and V99%,
which means that volume distribution is more dispersed, and the
amplitude of the IBSD increases.

The third case is still a cube, with a bigger value of m (1.71 times
larger) and therefore of E[V] (5 times larger) and Var[V] (7.3 times
larger), with respect to the first case. F(E[V]) is lower, meaning that
the probability of not exceeding E[V] is lower, and V99% is 2.8 times
larger.

The fourth case is a prismatic block, with the same E[V] as the
third case: F(E[V]) is similar, while V99% is 1.2 times larger.
5. Conclusions

The assessment of the volumes of potentially detachable blocks
from a rock slope is fundamental for a rigorous approach of rockfall
phenomena, especially considering that most of the design
methods available for countermeasures are based on energetic
approaches.

(1) The evolution of non-contact measuring techniques allows
the acquisition of increasingly large datasets of the rock
discontinuity geometrical features. The use of statistical tests
for the evaluation of the best-fitting distributions is strongly
encouraged to reduce epistemic errors in surveyed data (i.e.
orientation and spacing) and, therefore, the propagated er-
rors on derived data (i.e. volume).

(2) The determination of the IBSD enables researchers to over-
come the former concept of a so-called “characteristic block”,
which is a deterministic value not able to consider the vari-
ability of the involved parameters. Specific equations have
been developed in this study to compute the expected value
and variance of the block volume for the case of a block
generated by three discontinuity sets. The IBSD and the
associated block shape distribution have been constructed
through Monte Carlo simulations, considering different
levels of uncertainty on spacing data. Moreover, the vari-
ability of block shape within the same IBSD was demon-
strated. However, the equations proposed in this paper
cannot be used directly in cases where the number of
discontinuity sets is more than three. A reasonable solution
would be to select combinations of three sets and evaluate
their effects one at a time, assessing the global effect as a sort
of sum of the contributions.
(3) The design of countermeasures for rockfall phenomena can
be supported by the developed methods in evaluating the
kinetic energy distribution (as a direct consequence of the
IBSD knowledge) and optimizing their location, taking into
account the estimation of block shape.
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List of symbols

S Spacing, intended for both a deterministic value and a
continuous random variable

m Expected value (mean) of spacing (coincident with E[S])
s2 Variance of spacing (coincident with Var[S])
N Number of data in the spacing sample
V Volume
E[V] Expected value (mean) of volume
Var[V] Variance of volume
f(x) Probability density function (PDF) of a continuous

random variable x
F(x) ¼ P(X � x) Cumulative distribution function (CDF) of a

continuous random variable x
K Fisher constant, the precision parameter of the Fisher

distribution
q Angle from the true mean, in the Fisher distribution
Ki, Kj, Kk Discontinuity sets
mi
!; mj

!; mk
�!Director vectors of the three discontinuity sets generating

the block
Si, Sj, Sk Spacing of the three discontinuity sets generating the

block
gij, gjk, gki Angles between pairs of discontinuity sets generating

the block
dk-ij Angle between mk

�! and lij
!

lij
!

Direction of the normal to mi
! and mj

!
q Dimensionless number that depends only on the shape of

the block
Lo Length of the longest edge of the block
In Length of the intermediate edge of the block
Sh Length of the shortest edge of the block
k Shape factor
w Width of the fallen compartments
a First dimensional parameter describing shape
b Second dimensional parameter describing shape
a Shape parameter of the Gamma distribution
b Scale parameter of the Gamma distribution
d Fragment maximum dimension
Rn Normal restitution coefficient
d1, d2, d3 Main diameters of the simulated block
F(E[V]) Cumulative frequency corresponding to E[V]
V99% Volume corresponding to 99% cumulative frequency in

IBSD
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