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Observers with autism spectrum disorders (ASDs) find it difficult
to read intentions from movements. However, the computational
bases of these difficulties are unknown. Do these difficulties
reflect an intention readout deficit, or are they more likely rooted
in kinematic (dis-)similarities between typical and ASD kinematics?
We combined motion tracking, psychophysics, and computational
analyses to uncover single-trial intention readout computations in
typically developing (TD) children (n = 35) and children with ASD
(n = 35) who observed actions performed by TD children and chil-
dren with ASD. Average intention discrimination performance was
above chance for TD observers but not for ASD observers. How-
ever, single-trial analysis showed that both TD and ASD observers
read single-trial variations in movement kinematics. TD readers
were better able to identify intention-informative kinematic
features during observation of TD actions; conversely, ASD
readers were better able to identify intention-informative fea-
tures during observation of ASD actions. Crucially, while TD
observers were generally able to extract the intention informa-
tion encoded in movement kinematics, those with autism were
unable to do so. These results extend existing conceptions of
mind reading in ASD by suggesting that intention reading diffi-
culties reflect both an interaction failure, rooted in kinematic
dissimilarity between TD and ASD kinematics (at the level of
feature identification), and an individual readout deficit (at the
level of information extraction), accompanied by an overall
reduced sensitivity of intention readout to single-trial variations
in movement kinematics.

autism | kinematics | action observation | intention readout | intersection

he ability to intuit what others are thinking or wanting from

observing their behavior—mind reading—is key to social
interaction. Much like print reading, mind reading involves the
derivation of meaning from signs (1). In print reading, the signs
are marks on paper. In mind reading, the signs are movement
traces (2). Individuals with autism spectrum disorders (ASDs)
have difficulty inferring the mental states of others, including their
intentions, from their body movements (e.g., refs. 3-5). However,
the computational bases of these difficulties are unknown.

One proposal is that such difficulties reflect a specific deficit
in mind reading (1). Typically developing (TD) observers read
intention by extracting and processing subtle intention-related
kinematic variations (about 3% of the total variance) out of
trial-to-trial variations unrelated to intention (6). Individuals
with ASD would have difficulty reading intention, possibly due
to an overall lower sensitivity to single-trial kinematics or to a
deficit in identifying or processing intention-informative varia-
tions in single-trial movement kinematics. This accords with the
view that individuals with ASD have difficulty sampling relevant
and irrelevant variability (7) and therefore, get lost in incidental,
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trial-to-trial variations (8). This hypothesis predicts a general
impairment in intention reading in autism.

Alternatively, difficulties in attributing intentions to actions
could be rooted in kinematic (dis-)similarities between typical
and autistic kinematics (9). This hypothesis is based on the view
that the same internal models used during action execution
serve as the basis for action perception, prediction, and infer-
ence during action observation (10, 11). Because individuals
with ASD move differently compared with TD individuals—in
particular, they differ in the way they prospectively control their
intentional actions (12-14)—this hypothesis makes the distinc-
tive prediction that observers with ASD, with autistic internal
models, should be less accurate in predicting the actions per-
formed by TD individuals relative to those performed by individ-
uals with ASD. Conversely, TD observers, with typical models,
should be less accurate in predicting the actions performed by
individuals with ASD relative to those performed by TD individ-
uals. From this perspective, ASD difficulties would not reflect

Significance

A major challenge in studying intention reading is high motor
variability. Analyses conducted across trials provide insights
into what happens on average; however, they may obscure
how individual observers read intention information in indi-
vidual movements. We combined motion tracking, psycho-
physics, and computational analyses to examine intention
reading in autism spectrum disorders (ASDs) with single-trial
resolution. Results revealed that a sizeable fraction of ASD
observers can identify intention-informative variations in ASD
(but not in typically developing) movement kinematics, but
they are nonetheless unable to extract the encoded intention
information. This approach not only enhances our basic
understanding of mind reading in ASD but also provides
potential avenues for the rational design of training proce-
dures to improve the reading of others’ actions.

Author contributions: A.C., C.A,, S.P., and C.B. designed research; D.A., CA,, F.B., J.P.,
and L.N. performed research; N.M. and S.P. contributed new analytic tools; N.M., A.C.,
and S.P. analyzed data; S.P. and C.B. supervised the project; S.P. and C.B. wrote the
paper with contributions from N.M. and A.C., and all authors revised and approved
the final manuscript.

The authors declare no competing interest.
This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

"To whom correspondence may be addressed. Email: s.panzeri@uke.de or cristina.
becchio@iit.it.

This article contains supporting information online at http://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2114648119/-/DCSupplemental.

Published January 31, 2022.

https://doi.org/10.1073/pnas.2114648119 | 1 of 11

wv
I
]
2
E
(v
wv
w
=
=
2
]
]
O



https://orcid.org/0000-0002-3717-3760
https://orcid.org/0000-0002-8039-5414
https://orcid.org/0000-0002-9327-9148
https://orcid.org/0000-0002-6845-0521
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s.panzeri@uke.de
mailto:cristina.becchio@iit.it
mailto:cristina.becchio@iit.it
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114648119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114648119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2114648119&domain=pdf&date_stamp=2022-01-28

Downloaded from https://www.pnas.org by 37.159.64.59 on October 27, 2022 from |P address 37.159.64.59.

an individual intention reading failure but rather, would arise
from reciprocal difficulties in social interaction (9, 15).

Previous work has shown a TD advantage for TD actions (3, 16)
but no ASD advantage for ASD actions (3). This has been
interpreted as evidence that TD observers’ models are tuned to
typical actions, whereas ASD observers’ models are tuned (or
possibly untuned) comparably with both TD and ASD actions
(3). However, the advantage TD observers show for TD actions
is not necessarily indicative of kinematic similarity and might
instead reflect the higher informativeness of TD kinematics rela-
tive to ASD kinematics: that is, the fact that TD actions encode
more intention information compared with ASD actions (12).
Conversely, the lack of advantage of ASD observers for ASD
actions might reflect the lower informativeness and higher vari-
ability of ASD kinematics relative to TD kinematics (3, 13).
Thus, previous studies cannot rule out the possibility that group
differences in intention reading relate to differences in how
intention information is encoded in TD and ASD kinematics.
Moreover, because intention reading was computed as the aver-
age response across individual trials with variable kinematics,
these studies cannot determine the readout computations that
inform intention inferences in TD and ASD observers: what
information TD and ASD observers read in TD and ASD kine-
matics and how.

This study aimed to move beyond these limitations by com-
bining accurate recording of movement kinematics and psycho-
physical measures of intention discrimination with a specifically
designed analytic framework. This framework allowed us to
link kinematic encoding—how intention information is
encoded in TD and ASD movement kinematics during action
execution—and kinematic readout—how TD and ASD observ-
ers read intention information encoded in TD and ASD visual
kinematics during action observation—at the single-subject, sin-
gle-trial level. In a two-by-two factorial design, TD and ASD chil-
dren observed actions performed by TD and ASD children. Using
a kinematic encoding model, we first quantified the intention
information in TD and ASD single-movement kinematics and
determined the set of kinematic features that encode this informa-
tion in TD and ASD actions. Then, we developed a kinematic
readout model to quantify how and how well TD and ASD observ-
ers read the intention information encoded in TD and ASD
actions. Finally, adapting methods developed in refs. 6 and 17, we
examined how kinematic encoding and readout intersect at the
single-trial level across observer groups and observed actions. This
approach allowed us to move beyond representations averaged
over trials and participants and test alternative hypotheses regard-
ing the origin of difficulties in intention reading in ASD.

Results

Eight- to 13-y-old ASD children (n = 35) and age- and intelli-
gence quotient (IQ)-matched TD children (n = 35) watched a
hand reaching for a bottle and judged on the intention of the
observed grasp (Materials and Methods). To capture natural move-
ment variability, we selected 100 representative reach-to-grasp
actions (50 ASD actions and 50 TD actions) from a large action
dataset obtained by tracking and simultaneously filming TD and
ASD children reaching for a bottle with the intent to place or
pour (12). In a within-subjects counterbalanced order, participants
watched videos of reach-to-grasp actions performed by TD chil-
dren and ASD children (Fig. 1 A-C and SI Appendix, Fig. S14).
P values of all statistical comparisons are reported graphically in
Figs. 1-6 and numerically in SI Appendix, Tables S1-S5. Effect
sizes are reported in SI Appendix, Tables S1-S5.

Trial-Averaged Intention Discrimination in TD and ASD Observers.
We used logistic mixed effects models to test statistically whether
average intention discrimination performance, computed as the
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fraction of correct intention choices, differed from chance and
across observer groups (TD, ASD) and observed actions (TD,
ASD). We found a significant main effect of observer group,
indicating that ASD observers were poorer at discriminating
intention than TD observers (Fig. 1D and SI Appendix, Table S2).
Neither the main effect of observed action nor the interaction
between observer group and observed action reached significance
(SI Appendix, Table S1). Intention discrimination performance
was above chance for TD observers but not for ASD observers
(Fig. 1D and SI Appendix, Table S4). Additional analyses con-
ducted to explore the relationship between intention discrimina-
tion performance and autistic traits (in a subset of participants
for whom autistic trait quantification was available) (Materials
and Methods) revealed that TD observers with higher Social
Responsiveness Scale (SRS) scores were poorer at discrimi-
nating intention than TD observers with lower SRS scores
(SI Appendix, Fig. S3). For both TD and ASD observers, con-
trol analyses revealed no effect of IQ on trial-averaged per-
formance (SI Appendix, Table S3).

Kinematic Encoding and Readout of Intention Information at the
Single-Subject, Single-Trial Level. The above results capture trial-
averaged differences between groups. However, they do not
quantify what information individual TD and ASD observers
read in TD and ASD kinematics and how. To do so, we devel-
oped an analytic framework to directly model how information
encoded in movement kinematics is read out with single-
subject, single-trial resolution. Our formalism was inspired by
recent mathematical advances in linking information encoding
and readout in a neural population to inform single-trial
behavior choices (17, 18). Here we adapted this formalism to
investigate how information is coded in movement kinematics
(rather than in a neural population).

Kinematic Encoding of Intention Information in TD and ASD Actions.
The first step was to determine kinematic encoding: that is, how
intention information is encoded in trial-to-trial variations in move-
ment kinematics of TD and ASD actions. Fig. 24 shows the tem-
poral profile of two kinematic variables, wrist height (WH) and
grip aperture (GA), under the intention “to pour” and “to place”
during TD and ASD reach-to-grasp movements. Each line repre-
sents a single reach-to-grasp act. Consistent with previous reports
(6, 19), individual movement traces showed a large variability
across trials and individuals. To isolate the variability that conveys
intention information from the trial-to-trial variability unrelated to
intention, we developed a single-trial kinematic encoding model
based on logistic regression. We represented single-trial kinematics
as a time-dependent vector in the multidimensional space of values
of 15 intention-sensitive kinematic variables (Materials and Meth-
ods). The kinematic encoding model computed, separately for TD
and ASD actions, the probability that a reach-to-grasp movement
was performed with a given intention (to pour) as a logistic regres-
sion of the time-dependent kinematic vector, with a drift term for
modeling the accumulation of evidence over time (Fig. 2B and
Materials and Methods). Across trials, model performance for TD
actions, measured as the fraction of action intentions correctly pre-
dicted by the model, was above 95%. For ASD action, model per-
formance was lower but still above 90% (Fig. 2C and SI Appendix,
Table S4). This suggests that, despite the large variability across tri-
als and individuals, both TD and ASD actions exhibited a consis-
tent pattern of intention modulation.

Fig. 2D visualizes the contribution (weight) of each kinematic
variable to the encoding of intention information in TD and ASD
kinematics, as measured by the regression coefficient of the vari-
able in the logistic regression. A positive (negative) encoding
weight is assigned to a variable distributed across trials, with
higher (lower) values for grasp-to-pour actions compared with
grasp-to-place actions. For example, WH is generally higher for
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Experimental design and results of intention discrimination. (A) Example video frames of grasp-to-pour and grasp-to-place actions produced by

TD and ASD children. Each video began with reach onset and ended with the contact between the hand and the bottle. (B) Trial design of the intention
discrimination task. (C) Schematic representation of the experimental design. (D) Trial-averaged intention discrimination performance (fraction correct)
for each observer group and observed action. Histograms represent mean + SEM across participants. ns indicates P > 0.05. *P < 0.05.

the grasp-to-place action and is, therefore, negatively weighted
for both TD and ASD actions (Fig. 24). TD and ASD actions
exhibited partially different patterns of intention encoding. For
TD actions, intention information was encoded in WH and in
the displacement of the thumb (z thumb [TZ]) and index finger
(z index [IZ]) along the z axis (SI Appendix, Fig. S2). For ASD
actions, intention information was distributed across a larger
set of variables. Some variables carrying intention information
in ASD kinematics also carried intention information in TD
kinematics (WH, TZ). Other variables informative in ASD
kinematics (wrist velocity [WV], GA, y thumb [TY], and x dor-
sum plane [DPX]) did not carry intention information in TD
kinematics. Consistent with previous work demonstrating dif-
ferences in the way that TD and ASD prospectively control
their actions (13), these results demonstrate differences in the
kinematic encoding of to pour and to place intentions in TD
and ASD actions.

Kinematic Readout of Intention Information in TD and ASD Observers.
Having determined how intention information is encoded in the
single-trial kinematics of TD and ASD actions, we next fitted
single-trial intention choices to a kinematic readout model to
investigate how TD and ASD observers read such information
from observing TD and ASD actions. The kinematic readout
model computed the probability of intention choice (to pour) in
each trial as a logistic regression of the time-dependent kine-
matic vector for that trial (Fig. 34).

Across trials and conditions, kinematic readout model per-
formance, measured as the fraction of intention choices cor-
rectly predicted by the model, was significantly above chance
(Fig. 3B and SI Appendix, Table S4). The strong correlation
between observed intention discrimination performance and per-
formance predicted by the readout model confirmed that our
kinematic readout model was able to capture intention discrimi-
nation performance at the individual level (Fig. 3C). Although
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reaction times were not used to fit the model parameters, we
also found weak, but significant, negative trial-to-trial relationship
between reaction time and model prediction confidence (Fig. 3D).
This suggests that observers were slightly faster to judge inten-
tion on trials that were classified with greater confidence by the
model. Taken together, these analyses suggest that our kinematic
readout model provided a plausible description of how well
observers discriminated intention from single-trial kinematics.

Sensitivity of Intention Readout to Movement Kinematics. Having
verified the ability of the kinematic readout model to capture
statistical dependencies between intention choices and single-
trial variations in movement kinematics, we used it to test the
hypothesis that poor intention discrimination in ASD (Fig. 1D)
reflects an overall reduced sensitivity of intention readout to
single-trial variations in visual kinematics. One concrete way to
assess this is to measure how well the kinematic readout model
predicts single-trial intention choices (regardless of whether the
predicted intention choices are correct or incorrect). If intention
readout in ASD is not sensitive to single-trial variations in move-
ment kinematics, the kinematic readout model should be at
chance in predicting ASD intention choices. As shown in Fig.
3B, this was not the case. Sensitivity of intention readout as
measured by kinematic readout model performance was lower
in ASD compared with TD (SI Appendix, Table S2) but still
significantly above chance for both observer groups and
observed actions (SI Appendix, Table S4). This suggests that
lower sensitivity of the intention readout to the single-trial
kinematics cannot fully account for ASD failure to discrimi-
nate intention apparent in Fig. 1D.

Identifying Readers. Readout patterns are variable across observers.
We next used the kinematic readout model to parse this heteroge-
neity and identify, at the individual level, observers whose inten-
tion readout was sensitive to single-trial variations in movement
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Fig. 2. Encoding of intention information in movement kinematics. (A) Time course of WH and GA for reach-to-grasp actions performed by TD and ASD
children with the intention to pour or to place. Colored curves show representative trajectories for each intention, and colored areas show one SD across
executed trials. (B) Block diagram and equation of the kinematic encoding model used to quantify intention information in movement kinematics. & is
the sigmoid function, g is the vector containing the values of the regression coefficients of each kinematic variable, and w is a coefficient weighting the
accumulation of information over time. (C) Cross-validated (CV) performance of kinematic encoding models trained on TD actions and ASD actions quan-
tified as the fraction of trial correctly predicted. Histograms represent mean + SEM across folds. *P < 0.05; ***P < 0.001. (D) Contribution (weight) of
each kinematic variable to the kinematic encoding of intention in TD and ASD movement kinematics as measured by the regression coefficient of the var-
iable in the logistic regression. A positive (negative) weight is assigned to a variable distributed across trials with higher (lower) values for grasp-to-pour
actions compared with grasp-to-place actions. Dark bars indicate variables carrying intention information. Error bars indicate 95% Cls computed by boot-
strapping. DPY, y dorsum plane; DPZ, z dorsum plane; FPX, x finger plane; FPY, y finger plane; FPZ, z finger plane; IX, x index; IY, y index; TX, x thumb.

kinematics (hereinafter readers). To this end, for each observer,
we computed the intention choices predicted by the kinematic
readout model (regardless of whether the predicted choices were
correct or incorrect) and compared the obtained value with a
null distribution of randomly permuted choices. The distribution
of readers and nonreaders in each group is shown in Fig. 4 as a
function of intention discrimination performance and readout
strength (defined as individual model performance, z scored with
the null hypothesis accuracy on randomly permuted choices).
For both TD and ASD observed actions, the proportion of read-
ers was higher in the TD group (20 of 35) than in the ASD group
(11 of 35). In both groups, the proportion of readers exceeded
the proportion expected by chance for both TD actions and ASD
actions, with no significant difference between observed actions
(81 Appendix, Table S5).

Readers Good (and Bad) at Reading TD and ASD Actions. The notion
of “reader” is agnostic with respect to intention discrimination
performance—observers might read movement kinematics (as
measured by kinematic readout model performance) and still
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perform at chance or even below chance. For example, readers
would perform at chance if they read variations that do not
encode intention information; they would perform below chance
if they read variations that encode intention information but do
not read the encoded information correctly: for instance, they
interpret a decrease in WH, encoding the intention to pour, as
indicative of to place. To look at the relationship between readout
and intention discrimination performance, we used a binomial
test to stratify readers on the basis of their ability to discriminate
intention (SI Appendix, Table S5).

As shown in Fig. 4, readers with intention discrimination
above chance (“good readers”) in the TD group outnumbered
good readers in the ASD group. In the TD group, the propor-
tion of good readers was significantly higher for TD actions
(10 observers of 14) compared with ASD actions (4 observers
of 17). This increase was partially offset by the presence of three
TD bad readers for TD actions. For both TD and ASD actions,
the proportion of good readers was higher than expected by
chance. In the ASD group, the proportion of good readers for
both TD (one observer of five) and ASD actions (two observers
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trial-level reaction times and model prediction confidence computed as the
correlation coefficients (p) and their significance values (P) are reported.

of nine) did not differ from that expected by chance, with no
difference between observed actions (SI Appendix, Table SS5).
Although the small sample of subgroups urges caution in inter-
pretation, these results suggest a predominance of good readers
among TD observing TD actions.

Intersecting Kinematic Encoding and Readout. Our results so far
reveal differences in the ability to read out intention information
across observers and observed actions. However, these analyses
do not identify the specific features that are read out, whether
readers read informative variables or noninformative variables,
and how well they read the encoded information. To address this
issue, we examined how specific features were read by TD and
ASD readers during observation of TD and ASD actions.

We computed the contribution (weight) of each kinematic
variable to the intention readout as the variable regression
coefficient in the readout logistic regression. A positive (nega-
tive) weight is assigned to a variable distributed across trials
with higher (lower) values for the intention choice to pour com-
pared with to place. We examined, separately for each observer
group and observed action, the overlap in the distribution of
readout weights relative to encoding weights: whether readout
weights were assigned to intention-informative variables. For
variables carrying intention information, we also examined
whether the signs of the readout weights correctly aligned with
the signs of the encoding weights. A positive (negative) readout
weight assigned to a variable with a positive (negative) encoding
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deviation of the estimated probability of to pour from chance. Spearman’s

weight would indicate correct alignment; a positive (negative)
readout weight assigned to a variable with a negative (positive)
encoding weight would indicate incorrect alignment. For exam-
ple, an increase in WH encodes to place, and thus, WH is
assigned a negative encoding weight (Fig. 2.4 and D). An incor-
rectly aligned positive readout weight would incorrectly inter-
pret an increase in WH as signaling to pour.

Fig. 54 visualizes the overlap and alignment of readout weights
relative to encoding weights across kinematic variables (averaged
across observers). To provide a complementary visualization of
the interindividual reproducibility of readout, Fig. 5B shows the
number of readers who read a given variable in each condition.
For TDs observing TD actions, comparison of the distribution of
readout weights relative to encoding weights revealed a near-
perfect overlap—the three variables that are read out more and
by more observers (WH, TZ, and IZ) are also the three variables
that encode intention information in TD kinematics (Fig. 54).
Filled bars indicate that the readout weights mostly aligned to the
encoding weight correctly. Also, as shown in Fig. 5B, most observ-
ers correctly interpreted the intention information encoded in
these variables. Although IZ does not carry intention information
in ASD kinematics (Fig. 2D), WH, TZ, and IZ were also the
three variables most frequently read by TD observers in ASD
actions. Variables such as GA and WYV, which encode intention
information in ASD kinematics but not in TD kinematics, were
only read out—mostly incorrectly—by a limited fraction of TD
observers who observed ASD actions.
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Fig. 4. Distribution of readers and nonreaders as a function of intention
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out to movement kinematics. Readers (observers whose intention readout
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readers (intention discrimination accuracy at chance level) are represented
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For ASD readers, the readout weights showed greater (although
not perfect) overlap with the encoding weights during observa-
tion of ASD actions compared with TD actions. Specifically,
ASD observers consistently read out two variables—WH and
TZ—of the six variables encoding intention information in ASD
actions. While WH and TZ also carry intention information in
TD kinematics, ASD observers assigned little readout weight to
these variables (or other informative variables) when observing
TD actions. Diagonal striped bars indicate that, regardless of
the observed actions (TD vs. ASD), information was misread in
most variables.

We computed two indices that quantitatively summarized the
above results across all variables. The first index quantified the
overlap in the distribution of readout and encoding weights as
the normalized scalar product between the absolute values of
the encoding and readout vectors. The second index quantified
the alignment of the readout weights relative to the encoding
weights as the normalized scalar product between the encoding
and readout vectors (Fig. 64). A reader good who is good at
both identifying informative features and interpreting their infor-
mation would have both high overlap and high alignment. A
reader good who is good at identifying informative features but
not good at interpreting their information would have high over-
lap but low alignment. Consistent with the intuition conveyed by
Fig. 5, the results showed a significant overlap in the distribution
of readout and encoding weights for TD readers observing TD
actions (but not ASD actions) and for ASD readers observing
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ASD actions (but not TD actions). TD readers showed signifi-
cant alignment across both TD and ASD actions. In contrast,
alignment was not significant for ASD readers for either action
(Fig. 6B and SI Appendix, Table S4).

Fig. 6C illustrates the correlation of overlap and alignment
with individual intention discrimination performance separately
for TD and ASD readers. Overlap did not correlate with indi-
vidual intention discrimination. However, we found a significant
positive correlation between overlap and deviation of individual
intention discrimination performance from chance (defined as
the absolute value of the difference between task performance
and the 0.5-chance level). Alignment correlated positively with
individual intention discrimination for both TD and ASD readers.
This indicates that, in readers, individual intention discrimination
depended not only on the selection of informative features
but also, on their correct interpretation. In other words, the
(in-)ability of readers to discriminate intentions was related
to their (in-)ability to correctly interpret the intention information
extracted from informative features.

Discussion

Many current perspectives on action reading in autism are based
on the quantification of average intention discrimination across
repeats of observed actions (3, 16). However, kinematics are vari-
able across trials and individuals (20). Trial-averaged analyses
may obscure how intention information is encoded in and read
out in single-trial kinematics. Here, we have developed an ana-
lytic approach that enabled us to reveal intention readout compu-
tations with single-trial resolution.

By applying this approach, we were able to uncover that single-
trial intention choices in ASD systematically reflected trial-to-trial
variations in visual kinematics. This is demonstrated by the finding
of a lower but still significant sensitivity of intention readout to
single-trial kinematics (as measured by kinematic readout model
performance) in ASD compared with TD. Corroborating this
finding, the proportion of ASD observers who read trial-to-trial
variations in movement kinematics (ASD readers, about one-third
of ASD observers), although lower than the proportion of TD
readers (about two-thirds of TD observers), exceeded the propor-
tion of readers expected by chance for both TD and ASD actions.
These findings indicate that while the average intention discrimi-
nation in ASD was at chance, single-trial intention choices by a
sizeable proportion of individual observers were not random.

A second implication of our results is that for both TD and
ASD readers kinematic similarity was important for identifying
variations that carry intention-related information. Unlike in
print reading, where all marks on paper encode meaning, in
mind reading, readers must first extract, from trial-to-trial varia-
tions, those variations that encode intention information. Our
single-trial results show that TD readers were able to extract
such variations during observation of TD actions but not ASD
actions. Conversely, ASD readers were able to extract intention-
informative variations during the observation of ASD actions but
not TD actions. This “same group” advantage is consistent with
the principle that internal readout models (or codes) of TD
observers are tuned to typical actions and internal readout mod-
els of ASD observers are tuned to autistic actions (9).

What are the exact tuning properties of typical and autistic
models? Are internal readout models “feature based,” such
that TD (ASD) readers assign more weight to those individual
features that encode intention information in TD (ASD) move-
ment kinematics? Or is visual kinematics more likely to be proc-
essed as a perceived whole, such that similar to face processing
(21), changes in configural information (i.e., relationship between
individual features) influence the identification of individual
features?
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Distribution and sign of readout weights across kinematic variables. (A) Bar graphs of the average fraction of kinematic readout weights across

readers for each observer group and observed action. Kinematic variables are ordered from left to right from most informative to least informative. Vari-
ables carrying intention information are shown as dark bars. Filled bars indicate correct alignment of kinematic readout weights relative to encoding
weights. Striped bars indicate incorrect alignment. (B) Bar plots of the number of readers who read each kinematic variable. A given variable is read by a
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sum plane; DPZ, z dorsum plane; FPX, x finger plane; FPY, y finger plane; FPZ, z finger plane; IX, x index; 1Y, y index; TX, x thumb.

Our kinematic readout model results provide an initial
opportunity to answer these questions. If feature identification
is integrated into the overall kinematic configuration, then TD
intention-informative features should be weighted less when
presented in the context of ASD visual kinematics than in TD
visual kinematics. Conversely, ASD intention-informative fea-
tures should be weighted less when presented in the context of
TD visual kinematics compared with ASD visual kinematics.
Consistent with this prediction, ASD readers weighted less
ASD intention-informative features when observing TD actions
compared with ASD actions. Configural effects in the TD read-
out were less clear. In contrast to ASD readers, TD readers
appeared to weight TD intention-informative features equally
in TD and ASD visual kinematics. In particular, [Z—a feature
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that carries intention information in TD visual kinematics but
not in ASD visual kinematics—was weighted similarly during
observation of TD and ASD actions. Combined, these data may
indicate a difference in the properties of TD and ASD internal
readout models, with ASD internal models being more sensitive
to the overall visual kinematics in which informative features
are embedded.

A third implication of our results is that, unlike TD readers,
ASD readers lacked the ability to link kinematic variations to
the correct intention. Interestingly, in both TD and ASD read-
ers, (mis-)alignment of kinematic readout relative to kinematic
encoding was comparable for TD and ASD visual kinematic,
suggesting that, unlike overlap, alignment was little, if at all,
affected by kinematic similarity. These data point to a selective
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impairment of ASD readers in interpreting informative varia-
tions in movement kinematics.

These results expand existing conceptions of mind reading in
autism by pointing to distinct profiles of intention discrimination
impairment in ASD observers. Some observers with ASD cannot
read trial-to-trial variations in visual kinematics. Other observers
with ASD, while reading trial-to-trial variations in movement
kinematics, fail nevertheless to discriminate intention. Our single-
trial results suggest that in this subtype of ASD readers, difficul-
ties in mapping visual kinematics to intention may reflect both an
interaction failure and an individual failure. The interaction fail-
ure manifests in poor identification of intention-informative fea-
tures in TD visual kinematics by ASD readers and conversely, in
poor identification of intention-informative features in ASD kine-
matics by TD readers, as measured by overlap. The individual
failure manifests in poor interpretation of the extracted informa-
tion specific to ASD readers. That is, while TD readers are gen-
erally able to link intention-informative variations in movement
kinematics to the correct intention, ASD readers are unable to
do so, regardless of whether the information is extracted from
TD or from ASD visual kinematics.

In this study, we developed an experimental and analytic
framework to decompose the process components of intention
to action attribution and to investigate how intention encoding
and readout intersect in TD and ASD observers who observe
TD and ASD actions. This framework forms a powerful, general
approach to test how information is encoded and read out in
movement kinematics at the single-trial, single-subject level.
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In the present study, we asked participants to simply judge the
intention of the observed actions. An important direction for
future research will be to investigate intention readout during
active participation in social interaction: specifically, whether dif-
ferent patterns of readout emerge when individuals are asked
not only to observe but also, to respond to the actions of others
(15, 22). Moreover, by decomposing the component process of
intention reading, our approach could be useful for identifying
targets for intervention. There is evidence that TD observers
can be explicitly guided to attend to potentially diagnostic fea-
tures in visual kinematics (23). Based on the findings of the cur-
rent study, a promising direction will be to investigate whether
tutoring (either explicit or implicit) can promote alignment in
observers with autism.

Materials and Methods

The research protocol was approved by the local ethics committee (ASL3 Gen-
ovese) and complied with the principles of the revised Helsinki Declaration
(24). Written informed consent was obtained from the parents of the children
prior to participation in the experiment.

Participants. We report the results of 35 ASD children (29 males) without
accompanying intellectual impairment and 35 TD children (29 males). Groups
were matched for gender, age [TD mean + SD =9.8 + 1.1 y; ASD mean + SD =
10.2 + 1.4y; tes = —1.345, P = 0.183], and full-scale 1Q as measured by the
Wechsler Scale of Intelligence (25) [TD mean + SD = 103.9 + 10.2; ASD mean +
SD =99.5 + 11.1; t(gg) = 1.749, P = 0.085]. Children with ASD were diagnosed
according to the criteria of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) (26). The Autism Diagnostic Observation Scale (27) and the
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Autism Diagnostic Interview-Revised (28) were administered by two experi-
enced professionals. Autistic traits were assessed in 19 ASD children and 16 TD
children using the SRS (29) and were more prevalent in ASD compared with
TD children (TD mean + SD = 50.0 + 10.1; ASD mean + SD = 83.0 + 15.6;
P < 0.001), with some overlap between the two groups in the moderate-range
score (SI Appendix, Fig. S3A). All children had normal or corrected-to-normal
vision and were screened for exclusion criteria (pharmacological treatment,
epilepsy, and any other neurological and psychiatric conditions). All but three
of the children (two in the ASD group and one in the TD group) were right
handed according to the Edinburgh Handedness Inventory (30).

Experimental Design and Procedures.

Stimuli. Stimuli were selected from a dataset of 940 grasping actions obtained
by recording 20 TD and 20 ASD children performing grasp-to-pour and grasp-
to-place actions. For grasp-to-pour trials, a glass (height = 10 cm; diameter =
6.5 cm) was placed 19 cm from the bottle. Participants were instructed
to reach for the bottle, lift it, and pour some water into the glass. A coex-
perimenter refilled the bottle on each trial. For grasp-to-place trials, a box
(height = 6 cm; diameter = 10 cm) was placed 19 cm from the bottle. Par-
ticipants were instructed to reach for the bottle, lift it, and place it in the
box. Detailed procedures and the apparatus are described in ref. 13. Briefly,
reach-to-grasp movements were tracked using a near-infrared camera
motion capture system with six optical cameras (frame rate, 100 Hz; Vicon
System) and simultaneously filmed from a lateral viewpoint using a video
camera fully synchronized with the optical cameras (Vicon Vue; 100 frames/s,
resolution 1,280 x 720). As previously described (13), the child’s right hand
was outfitted with retroreflective hemispheric markers (6.5 mm in diameter)
placed on the metacarpal joint and the tip of the index and the little finger,
the trapezium bone and the tip of the thumb, the radial aspect of the wrist,
and the hand dorsum. This marker set allowed us to finely track both the dis-
tal (hand shape) and proximal (transport) components of the motions. The
kinematic data were run through a 6-Hz low-pass Butterworth filter. Based
on previous studies investigating prospective action control in TD and ASD
children (12, 13), we extracted 15 kinematic variables (S/ Appendix, Fig. S2):

e WV defined as the module of the velocity of the wrist marker (millimeters
per second);

e WH defined as the zcomponent of the wrist marker (millimeters);

o GA defined as the distance between the marker placed on the thumb tip
and the one placed on the tip of the index finger (millimeters);

e x thumb, TY, and TZ defined as x, y, and z coordinates of the tip of the
thumb (millimeters);

e xindex, y index, and 1Z defined as x, y, and z coordinates of the tip of the
index (millimeters);

e x, ¥, and z finger plane defined as x, y, and z components of the
thumb-index plane (i.e., the three-dimensional components of the vector
that is orthogonal to the plane; this plane provides information about the
abduction/adduction movement of the thumb and index finger indepen-
dent of the effects of wrist rotation and of finger flexion/extension); and

e DPX, y, and z dorsum plane defined as x, y, and z components of the
radius—phalanx plane (this plane provides information about the abduc-
tion, adduction, and rotation of the hand dorsum independent of the
effects of wrist rotation).

Custom software (MATLAB; MathWorks Inc.) was used to extract the
selected variables. Each variable was calculated at intervals of 10% of the
movement duration from reach onset to reach offset.

Selection of action stimuli. From the dataset of grasping actions, we
selected, for each group, 50 grasping actions (grasp to place, n = 25; grasp to
pour, n = 25) according to the following criteria: 1) minimized within-
intention distance (using the metric reported in ref. 19) and 2) mean duration
of movements not significantly different between intentions. Video clips that
corresponded to the selected reach-to-grasp actions were used as stimuli for
the intention discrimination task. Each video clip began with reach onset and
ended with the contact between the hand and the bottle. To allow partici-
pants sufficient time to focus on the reach onset, static frames ranging in
duration from 160 to 800 ms (in 160-ms increments) were randomly added to
the beginning of each video.

Intention discrimination task. Participants were seated in front of a 24-inch
computer monitor (resolution 1,280 x 720; 100 Hz) at a viewing distance of
50 cm. The task structure conformed to a one-interval forced choice task with
binary choice (to place vs. to pour). Each trial began with the presentation of
a white central fixation cross for 1,000 ms. Then, a video clip showing the
reach-to-grasp action was presented. After the video (followed by a waiting
window of 80 ms), a screen prompted participants to indicate the action (to
place or to pour) that would follow the observed grasp (5,000 ms). For half of
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the participants, the Italian word “mettere” (to place) on the left prompted
a button press with the index finger of the left hand, and the word
“versare” (to pour) on the right prompted a button press with the index
finger of the right hand. The position of the two words was counterbal-
anced across participants. Participants completed two sessions in which
they observed reach-to-grasp actions performed by TD children and ASD
children in counterbalanced order. Each session consisted of 50 experi-
mental trials performed in three blocks (10, 20, and 20 trials), with a
2-min break between each block. Participants received no feedback
either during the experimental blocks or during the practice block.

The task was revised and administered by a clinically experienced experi-

menter. During the experiment, the experimenter positioned herself behind
the child. The experimenter was the same for all participants. Participants
were introduced to the stimuli and were given both written and verbal
instructions. Practice trials (n = 20) were included before the experimental
session to familiarize the child with the task and ensure that they had
understood the task. Participants were instructed to respond as accurately
and quickly as possible during the presentation of the prompt screen. If
they did not comply with the instructions (e.g., they responded during video
presentation), the experimenter would ask them to repeat practice trials.
We verified that the number of participants who repeated the practice did
not differ between groups (six in the ASD group and six in the TD group).
The proportion of responses during video presentation or within the first
100 ms of the response window was generally low (TD observers, mean +
SEM = 0.021 + 0.007; ASD observers, mean + SEM = 0.015 + 0.004) and did
not differ between groups [tes = 0.752, P = 0.455]. Stimuli presentation,
timing, and randomization were controlled using E-prime V2.0 software
(Psychology Software Tools).
Eye movement data. Gaze direction was measured with an infrared eye
tracker (SMI RED500; SensoMotoric Instruments). The eye tracker suffered a
fatal technical failure before testing was completed; moreover, calibration of
the eye tracker was unsuccessful in some participants. Therefore, eye-tracking
data are available for 35 TD participants and 23 ASD participants. For each
observer and each trial, we extracted the sequence of spatial position coordi-
nates (scan path). We computed the fraction of time in which the scan path
was within the screen in each trial and then, averaged this value across trials
for each observer. This fraction was overall high (TD observers, mean + SEM =
0.91 + 0.01; ASD observers, mean + SEM = 0.88 + 0.03) and did not differ
between groups [t(se) = 0.860, P=0.393].

Quantification and Statistical Analysis.

Data preprocessing. Trials for which participants provided a response during
the waiting window or within the first 100 ms of the response window were
discarded from analyses (<2% of trials). We verified that the pattern of results
and their significance remained similar even when all trials were included.
Mixed effects models to assess statistical differences in intention discrimi-
nation performance, response bias, and model performance. We used
mixed effects models to assess the significance of differences in intention dis-
crimination performance (Fig. 1D), response bias (S/ Appendix, Fig. S1B), and
encoding and readout model performance (Figs. 2C and 3B, respectively) com-
pared with chance and across observer groups and observed actions. We used
logistic regression with single-trial accuracy and response as the dependent
variable to assess differences in intention discrimination performance and
response bias and linear regression, with the fraction of correct predictions of
each video across cross-validation repetitions as the dependent variable, to
assess differences in encoding and readout model performance. The chance-
level null hypothesis distribution for encoding and readout model perfor-
mance was created by fitting the model after randomly permuting across trials
the observer’s choice labels.

To determine the fixed and random effects to include in the model, we
applied a model selection procedure that started from the model with the
most complex structure to arrive at a model that included only the significant
predictors. We first selected the random effects structure of the model by
keeping the full fixed effects structure and using the Bayesian Information
Criterion (BIC) (31). The BIC rewards model fit and penalizes model complex-
ity. We then retained the optimal random effects structure and selected the
best fixed effects structure by conducting likelihood ratio tests between mod-
els differing only by the presence or absence of one predictor (32). Model
selection results are reported in S/ Appendix, Table S1. Cls for model coeffi-
cients and statistical comparisons for the effects are reported in S/ Appendix,
Table S2. We performed model fitting using the R package Ime4 (33). We per-
formed comparisons across levels of the selected models using the glht com-
mand from the R package multcomp (34). The multcomp package estimates
the value and SE of each effect, from which a z value (to calculate two-sided
Pvalues) is computed. The results are reported in S/ Appendix, Table S2 along
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with Cls for the estimates of the regression coefficients and for the SD of ran-
dom effects of the selected models, computed using the bootstrap option in
the R function confint.

Quantifying and assessing the significance of individual task performance.
Because there was no significant response bias, we quantified individual
performance on the intention discrimination task as the fraction of correct
intention choices. For each participant, we assessed the significance of dis-
crimination performance against chance using a binomial test separately
for TD observed actions and ASD observed actions (S/ Appendix, Table S5).
Single-trial kinematic vector. To quantify single-trial kinematics, the 15 kine-
matic variables of interest were averaged, for each grasping action, over 10
epochs (t), each spanning 10% of the normalized movement time (0 to 10, 10
to 20%, etc., of the movement duration from reach onset to reach offset).
Next, for each trial and epoch, we created a 15-dimensional, single-trial time-
dependent kinematic vector, K (t), whose entries, for each trial, were the
15 kinematic variables averaged over that time epoch. We used this kinematic
vector for all logistic regressions (see below). We verified that increasing the
number of kinematic features by considering the x, y, and z component of all
the markers used to compute the kinematic variables of interest (3 x 6 retrore-
flective markers) did not improve the performance of the kinematic encoding
model. This observation held true for both TD and ASD actions and even
when using a finer time windowing (25 or 50 movement epochs rather 10
movement epochs, as in the analyses reported in the main text; P < 0.02 for all
movement epochs number). These control analyses suggest that our kinematic
encoding model provided adequate spatial and temporal resolution to cap-
ture intention-related variations in TD and ASD kinematics.

Logistic regression models of kinematic encoding and readout. To deter-
mine the dependence of intention (kinematic encoding model) and intention
choice (kinematic readout model) on kinematics over time, we used a logistic
regression to estimate the single-trial cumulative probability y(t) (i.e., the
cumulative evidence) in favor of the intention to place as function of the
time-dependent kinematic vector in that trial up to time t. Specifically, we
modeled y(t) as a sigmoid transformation of the sum of two terms: a linear
transformation of the kinematic vector K (t), describing the evidence provided
by the single-trial kinematic vector at the current time epoch (t), and a drift
term, describing the contribution of the cumulated evidence y(t—1) pro-
vided by the kinematic vectors up to the previous time epoch (t — 1). More
precisely, the equation of the logistic model was as follows:

P([y(0)="to pour| ) = P([y(0)="to place ) = 1

P([y(t):’topour’] \ K(1),...,K(t)) :G(K(t)»ﬁ tw. (y(t71)7 %) + ﬁo)
P([y(t):’to place’] | K (1), ...K (t)) =1 —P([y(t):’to pour'] | K (1), ....K (t)),

where o is the sigmoid function, p is the vector containing the values of the
regression coefficients of each kinematic variable, w is a coefficient weighting
the accumulation of information over time, and f, is a kinematic-independent
bias term. The value of y(t) computed at reach offset provides the final prob-
ability of intention (kinematic encoding model) or intention choice (kinematic
readout model) associated with the kinematics of the whole trial. In this
model, a single regression coefficient is assigned to each variable, meaning
that the contribution of each kinematic variable is weighted equally across all
time epochs. More complex models with different regression weights assigned
to each variable at different epochs as in ref. 6 yielded no better performance
(P > 0.09 for all observer groups and observed actions), confirming that,
despite its simplicity, our model fit well both intention encoding and readout.
Training logistic regression models. Training and evaluation were performed
in a similar manner for encoding and readout models. Each model was trained
on a set of 50 trials. We z scored the single-trial kinematic vectors within each
model to avoid penalizing predictors with larger value ranges. We trained the
models by minimizing the negative binomial log likelihood with L? penalty via
stochastic gradient descent with adaptive moment estimation (Adam) (35).
The training was marginally improved by a data augmentation scheme based
on small random deformations over the time dimension (S/ Appendix, Data
Augmentation Procedure for Training the Logistic Regressions has full details).
The parameter 1, which controls the strength of the L? regularization term,
was set to 0.05 for all models. A cross-validation approach for tuning this
hyperparameter was also tested and yielded similar results. The kinematic
encoding and readout models were implemented using Python/PyTorch (36).

Kinematic encoding model. The kinematic encoding model expressed the
probability that a grasping action was performed with the intent to pour as a
function of the kinematic vector of that action. We trained separate encoding
models for TD and ASD actions. We used the encoding model to quantify the
intention information encoded in movement kinematics (Fig. 2C) and to
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identify the kinematic variables that carry intention information in TD and
ASD movement kinematics (Fig. 2D).

Kinematic readout model. The kinematic readout model expressed the prob-
ability of intention choice in each trial as a function of the kinematic vector
measured in that trial. We trained the readout model separately for each
observer in each session.

Evaluation of model performance. \We evaluated the performance of the
encoding and readout models by repeated fivefold cross-validation (50 random
splits) (37). We computed the most likely value of Y for each trial by taking the
argmax over Y of P(Y|K) in the equation of the logistic model. Model perfor-
mance was computed as the fraction of correct trials averaged over folds and
random splits.

Statistics on the proportion of readers. \We used a binomial test to establish
whether the number of readers and the fraction of good readers were statisti-
cally significant in each group. To assess the significance of differences between
observer groups and observed actions in the proportion of readers and in the
proportion of good readers, we used a nonparametric permutation test.
Estimate of Cls of model coefficients. For all kinematic encoding and readout
models, we obtained estimates and 95% Cls for the regression coefficients
from a bootstrap distribution obtained by fitting the models to data randomly
sampled with replacement from the original training data.

Classification of individual kinematic variables as informative for encoding
or readout. \We assessed the informativeness of individual variables (Fig. 2D)
by testing whether the corresponding encoding coefficients were signifi-
cantly different from zero. We retained as informative those variables whose
encoding coefficients (absolute value) were greater than the 95th percentile
of the null hypothesis values obtained when training the kinematic encoding
models with permuted trial labels. A similar procedure was used to deter-
mine the number of observers who read each variable during action observa-
tion (shown in Fig. 5B).

Computation of discrimination performance and confidence predicted by
the kinematic readout model. In Fig. 3C, we used the kinematic readout
model to estimate the intention discrimination performance of individual par-
ticipants. Using the equation of the logistic model, the intention choice pre-
dicted as most likely by the readout model was computed for each trial and
compared with the actual intention choice. The individual intention discrimi-
nation performance was obtained by averaging the probability of correct
choice across all trials for a given participant. For the analysis in Fig. 3D, we
computed the confidence of the single-trial model prediction as the deviation
of the estimated probability of to pour from chance (0.5).

Computation of overlap and alignment. \We computed two indices of inter-
section between encoding and readout: overlap and alignment. The index
quantifying the overlap in kinematic space between encoding and readout
was computed by taking the elementwise absolute value of ., and f,.,4 and
computing the normalized scalar product of the resulting vectors:

(@bs(Benc), abs(Breaq))
Benc Il 11Breaqll
The overlap index measures the amount of weight common to the two vec-

tors, regardless of the sign of the coefficients.

The index quantifying the alignment of encoding and readout in kinematic
space was computed as the normalized scalar product between the encoding
and readout vectors:

overlap(Benc Breaq) = €[0,1].

alignment (Benc, Bread) = M e-11].
”ﬁenc” ”ﬁread”

Note that the absolute value of the alignment index is bounded from above
by the value of overlap. Alignment values close to zero can be found either
with low overlap values (when the variables with nonzero weights differ
between encoding and readout) or with high overlap values (when the two
models select the same variables with nonzero weights but the signs of the
weights are inconsistent).

In Fig. 6 and in S/ Appendlix, Table S4, the statistics of the overlap index and
the alignment index were computed over the set of observers who were classi-
fied as readers when observing either TD or ASD actions.

Permutation test to assess the significance of overlap and alignment. To
assess the significance of the overlap and alignment indices, we compared
them with a null hypothesis distribution obtained by recomputing their values
after random permutation (n = 10° random permutations) of the entries of
the encoding vectors.

Conventions for P values. S/ Appendix, Tables S1-S3 report details of logistic
mixed effects models statistical tests, linear mixed effects models statistical tests,
and nonparametric permutation tests. Reported P values are two sided and
Holm-Bonferroni corrected. In the figures, *P < 0.05, **P < 0.01, ***P < 0.001,
and ns indicates P> 0.05. Following standard notation, asterisks above bars
indicate significance of difference from chance of an individual quantity,
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and asterisks above brackets indicate significance of difference between
two quantities.

Statistical significance of correlations. The significance of correlation values
was assessed using the scipy.stats Python module, with two-sided parametric
Student statistics for Pearson correlation and two-sided permutation distribu-
tion for Spearman correlation (38). We used the SciPy package (39). Signifi-
cance values are shown in Fig. 3D.

Data Availability. The code supporting the main results of this study is
described in Materials and Methods and has been deposited in GitHub
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