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Abstract

Many decisions in our daily lives are made within a social context and are often accom-

panied by uncertain outcomes. Crucially, these decisions are often expressed through

actions. A convergence of modeling, behavioral, and neural data shows that the way

people move can provide valuable insights into cognitive states and ongoing decision pro-

cesses. While recent studies have begun to shed light on the underlying brain processes of

social decision-making, knowledge about the kinematics of social decisions and whether

movements can reveal any aspects of them is still limited.

This thesis aims to investigate whether and to what extent social decisions are ex-

pressed in movement kinematics. To this end, we developed a motor version of the Ulti-

matum Game in which participants acted as responders, and we tracked their movement

kinematics using a motion capture system. We analyzed the kinematic data following

two different approaches: (i) a multivariate linear decoding model at the single-subject,

single-trial level and (ii) linear mixed-effects modeling at the group-level.

With the first approach, we were able to map the parameters of social decisions onto

the single-trial kinematics of individual responders. This analysis revealed that movement

kinematics contained predictive information about both the responders’ choice (accept

versus reject) and the fairness (fair versus unfair) of a proposed offer. Upon further

analyses of the responder-specific models, we observed that this information is expressed

in personalized kinematic patterns consistent within a given responder but vary among

them.

With the second approach, we explored whether, at the group-level, kinematic features

related to the vigor of reaching were influenced by the social decision variables. We found

that, for accepted offers, the vigor of reaching increased as a function of the offer level;

i.e., as the amount of the offer increased, responders’ reaction time became shorter and

peak velocity higher. Concerning rejections, we documented the opposite pattern: vigor

of reaching increased as the offer level decreased, meaning that vigor increased the more

unfair the offer was.

Taken together, these findings contribute to the existing literature on the link be-

tween decision-making and sensorimotor control by showing that hand kinematics can

provide information not only about individual decisions but also about more intricate

social decisions.
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1. Introduction

1.1 Motivation

Imagine that you are on your classic Sunday bike ride when you come to a fork in the

road: you know that either road could take you back home, but while you are familiar

with the road on your left, you have never taken the road on the right, which, while

known for its scenic views, is also more physically demanding. As you stand at the fork

in the road, you must decide whether to take the familiar left road or to try the unknown

right road. So, what are you going to do? Your decision depends on many factors, such

as your risk-taking tendencies and your level of fatigue. This scenario well exemplifies

decision-making under uncertainty, as not all potential outcomes are known. Also, in

this situation, any decision will only affect yourself, making it an example of individual

decision-making.

Now, consider the same scenario, but this time you are not alone: you are with an old

friend who is unfamiliar with the roads. This time, you have to choose between two fa-

miliar roads: the first is flatter but longer, and the second is faster but has a steep slope.

As you are in a hurry, you would prefer to take the second road, but your friend is new

to cycling and would be struggling on that steep slope. Again, your decision depends on

various factors, such as how much of a hurry you are in and how much you care about your

friend; his/her well-being, preferences, and opinions become crucial to you characterizing

your decision-making as social (social decision-making).

Despite the differences between individual and social decision-making, the process of

choosing one option among several involves the complex integration of various cognitive,

emotional, and environmental factors. This complexity has led researchers to examine

the issue from different perspectives and levels of analysis.
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1.1. Motivation

A commonly adopted paradigm for studying social decision-making is that of socio-

economic games. These games (e.g., Ultimatum Game, Prisoner’s Dilemma, Trust Game,

etc.) usually involve two or more players and are aimed at understanding people’s social

preferences (i.e., people’s tendency to care not only about themselves but also about the

well-being of others). For example, the Ultimatum Game is an experiment that tests

social norms of fairness by having one participant (i.e., the proposer) receive a sum of

money and then propose to split it with another participant (i.e., the responder). The

responder can either agree to the proposal, resulting in the transfer of money, or decline

it, resulting in neither participant receiving anything.

In almost all experiments that exploit these paradigms, participants are taught to interact

with other partners through key presses or verbally. However, in everyday life, most of

our decisions require physical action. Today, a large body of evidence demonstrates that

internal cognitive states leak into motor outputs (Dotan et al., 2019; Gallivan et al., 2018;

Gordon et al., 2021; Shadmehr et al., 2019; Song & Nakayama, 2009; Wispinski et al.,

2020). Therefore, by leveraging movement kinematics, we should be able to unravel the

flow of social decision processes. Only a few studies have tried to understand whether

the movement of individuals reflects and externalizes aspects of social decision-making.

For example, Kieslich and Hilbig (2014) discovered that in a two-person social dilemma

game, the average trajectories were more curved when individuals defected than when

they cooperated, suggesting that defection entailed more conflict. However, it is yet to

be determined whether social decisions may be predicted from the movement parameters

of individual reaching movements.

To bridge this gap, with this dissertation we propose a motor version of the Ultimatum

Game and conduct rigorous computational analyses, paving the way for a better under-

standing of this matter. The aims of the present research are:

(i) to investigate whether and how movement kinematics contains predictive informa-

tion of social decisions;

(ii) to examine the individuals’ kinematic pattern related to social decisions;

(iii) to explore whether social decision variables influence the vigor of movements.

2



1.2. Thesis outline

1.2 Thesis outline

The thesis is composed of 5 Chapters and is structured as follows.

In the current chapter (Chapter 1), I introduced the rationale and objectives of this work.

In Chapter 2, I provide a general background for the whole research, divided into the

following sections.

• The first section (2.1) begins with an overview of the classical theories of decision-

making and then describes new perspectives that have emerged through the recent

interdisciplinary approach of neuroeconomics.

• The second section (2.2) introduces the Ultimatum Game, the behavioral economics

game at the heart of the works presented in this dissertation, showing the main

behavioral and neural findings.

• The third section (2.3) gives a general overview of decision-making models and

illustrates the crucial role of movement kinematics in elucidating the flow of hidden

cognitive states.

In Chapter 3, I present the experimental study based on a motor version of the Ul-

timatum Game used to test the hypothesis that social decisions may be predicted from

movement kinematics. The acquired data, analyzed at the single-subject, single-trial level,

proved that reaching kinematics encodes social decision variables in an individualized pat-

tern.

In Chapter 4, I present additional analyses of the data acquired from the experimental

study shown in Chapter 3. In particular, a group-level analysis showed that social decision

variables modulated vigor of reaching.

Finally, in Chapter 5, I conclude the thesis with a summary of the obtained results and

provide future research directions built upon the evidence of this work.
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2. Background

2.1 1. The rise of neuroeconomics: integrating multiple

approaches and perspectives

From the moment we wake up to the moment we fall asleep, we are constantly challenged

to make decisions. These can be as trivial as what to eat for breakfast, what to wear

before going to work, or whether to have another cup of coffee before lunch. Or, more

rarely, they can be life-altering, like accepting or rejecting a new job, a marriage pro-

posal, or moving to another country. Whether trivial or not, the process that leads us

to make decisions requires a careful evaluation of alternatives, driven by a complex and

constant integration of various environmental, cognitive, social, and emotional factors.

The outcomes and dynamics of this process have always fascinated and engaged schol-

ars, particularly economists, psychologists, and neuroscientists, who have approached the

subject from different perspectives and using different techniques because of their diverse

backgrounds. Given the interdisciplinary nature of this field, in the following sections, I

briefly review the classical economic theories developed mainly by mathematicians and

economists to more recent theories that have emerged from the efforts of psychologists

and neuroscientists.

2.1.1 Expected utility theory

Expected utility theory is a formal economic framework, developed by John von Neu-

mann and Oskar Morgenstern, for modeling how individuals make decisions under un-

certainty (von Neumann & Morgenstern, 1944). It is based on the assumption that in-

dividuals are rational decision-makers seeking to maximize their expected utility from

a given choice (Savage, 1954). Expected utility is formally defined as the sum of the

4



2.1. 1. The rise of neuroeconomics: integrating multiple approaches and perspectives

probabilities of all possible outcomes multiplied by the utility of each outcome, where

the utility of an outcome represents the subjective value or preference that an individ-

ual assigns to it. In other words, if an individual is faced with the choice between two

options, A and B, with the respective probabilities, p(A) and p(B), and the respective

utilities, u(A) and u(B), the expected utility of each option is calculated as follows:

U(A) = p(A) ∗ u(A);U(B) = p(B) ∗ u(B). The individual will choose the option with the

higher expected utility.

For example, in the decision to take or not take an umbrella (U) when leaving the house,

with a 50% chance of rain (R) inferred from the weather forecast (i.e., p(R) = 0.5), we

can assign a subjective value (0: worst outcome; 100: best outcome) to the four possi-

ble outcomes (resulting from the combinations of ‘umbrella’/‘no umbrella’ and ‘rain’/‘no

rain’). Thus, the expected utility theory would support the following: the decision to

take the umbrella could be associated with a value of 60 in case of rain, u(U + R) = 60,

and 30 in case of no rain, u(U + no R) = 60; the decision to leave it at home it would

be associated with a value of 0 in case of rain, u(no U + R) = 0, and 100 in case of no

rain, u(no U + no R) = 100. According to the calculations predicted by the theory, the

preferred choice should be not to take the umbrella since its utility would be greater than

the decision to take it:

U(no U) = p(R) ∗ u(no U + R) + p(R) ∗ u(no U + no R) = 0.5 ∗ 0 + 0.5 ∗ 100 = 50

U(U) = p(R) ∗ u(U + R) + p(R) ∗ u(U + no R) = 0.5 ∗ 60 + 0.5 ∗ 30 = 45

This would be the reasoning of a rational decision-maker seeking optimality (Sanfey et al.,

2006). However, empirical research has demonstrated how the predictions of the expected

utility theorem do not always match the individuals’ observed choices. Maurice Allais

conducted a famous experiment in which participants were presented with two choices: a

certain outcome or a gamble with a higher expected value but with uncertainty (Allais,

1953). The results showed that participants preferred a certain outcome, which is con-

trary to the predictions of the expected utility theory. This finding, known as the Allais

paradox, was later explained by introducing the concept of risk aversion, which states that

individuals are willing to give up some expected value to reduce uncertainty (Kahneman

& Tversky, 1979).

5



2.1. 1. The rise of neuroeconomics: integrating multiple approaches and perspectives

Expected utility theory has been criticized for its assumptions. One of the main criticisms

is that the theory assumes that individuals are rational and have stable preferences,

which may not always be the case in real-world decision-making (Kahneman & Tversky,

1979). Additionally, the theory does not account for other factors that may influence

decision-making, such as emotions, cognitive biases, and social norms (Rabin, 2000).

However, despite its limits and drawbacks, the theory, as shown below, has proven helpful

in studying and identifying the neural representation of subjective utility computation

(Sanfey, 2007).

2.1.2 Game theory

Game theory is a mathematical tool used to analyze decision-making in situations where

the outcomes depend on the choices of individuals or groups (von Neumann & Morgen-

stern, 1944). The theory originated in the early 20th century and has been widely applied

in various fields, including economics, political science, psychology, and biology (Camerer,

2003).

At the core of game theory is the concept of game, which can be thought of as a set of

rules that dictate the interactions between two or more individuals (i.e., the players) and

affect the outcomes (i.e., the payoffs) of all involved parties. These rules can be formalized

through a mathematical model, including the players, their strategies, and the payoffs as-

sociated with each combination of strategies. To understand the decision-making process

in these situations, game theorists often rely on the concept of homo oeconomicus, which

is the assumption that individuals act rationally and self-interestedly in order to maxi-

mize their utility or profit. Therefore, if all players behave rationally, they will adopt that

set of strategies defined by the Nash equilibrium (Nash, 1950), from which no player can

unilaterally increase his/her gain anymore.

Hence, Nash equilibrium is a set of strategies, one for each player, such that no player has

the incentive to change their strategy given the other players’ strategies. In other words,

each player is playing his/her best possible strategy given the strategies of the others, and

there is no benefit in changing one’s strategy. This concept is essential in understanding

how players will behave in a given game and can be used to predict the game’s outcome.

One example of a game that can exhibit a Nash equilibrium is the prisoner’s dilemma

6



2.1. 1. The rise of neuroeconomics: integrating multiple approaches and perspectives

(Rapoport & Chammah, 1965). In this game, two prisoners (A and B) are each given

the option to confess (defect) or remain silent (cooperate). The set of all possible com-

binations of defection and cooperation is {(C,C), (C,D), (D,C), (D,D)} as expressed in

the payoff matrix (Table 2.1). If both defect, they both receive a sentence of five years

in prison. If both cooperate, they both receive a sentence of two years. If one defects

and the other cooperates, the defector will be set free while the silent prisoner receives a

sentence of ten years. Deriving the utility for each possible combination, for player A it

follows that: (D,C)>(C,C)>(D,D)>(C,D).

At Nash equilibrium, both players choose to defect since this is their best strategy given

the other player’s strategy. Indeed, by cooperating, they maximize their payoff; how-

ever, neither player is motivated to cooperate since unilateral cooperation would move

the player from the third worst payoff (D,D) to the worst of all (C,D). This shows how

Nash equilibrium can result in sub-optimal outcomes for all players.

As with expected utility theory, game theory is based on strong assumptions, and some

of these are not met in real-world situations. For example, contrary to the prediction of

game theory, research has shown that subjects playing the prisoners’ dilemma chose to

cooperate rather than defect about half of the time (Sally, 1995). More generally, it is

quite unusual for individuals to behave according to the predictions of game theory and

adopt the strategies suggested by Nash equilibrium (Camerer, 2003). Actually, people

tend to approximate optimal decision-making strategies through a set of heuristic rou-

tines, which may be driven by emotional processes or experience (Lee, 2006). Individuals

who must make decisions in interactive environments usually favor less selfish solutions,

valuing factors such as equity and reciprocity (Sanfey, 2007).

Another economic game that has challenged the assumptions of expected utility theory

is the Ultimatum Game, in which players’ actual behavior diverges significantly from the

B cooperate B defect

A cooperate Both serves 2 years
A serves 10 years
B is set free

A defect
A is set free
B serves 10 years

Both serves 5 years

Table 2.1: Payoff matrix for prisoners’ dilemma.

7



2.1. 1. The rise of neuroeconomics: integrating multiple approaches and perspectives

equilibrium situation that the theory predicts. This will be explored in more detail ahead

in the chapter.

2.1.3 Prospect theory

Prospect theory, developed by Daniel Kahneman and Amos Tversky, aims to improve

the representativeness of expected utility theory in describing human decision-making

(Kahneman & Tversky, 1979). Despite being generally accepted as a ‘normative’ model

of rational choice and widely applied as a ‘descriptive’ model of economic behavior, ex-

pected utility theory often fails to accurately depict human decision-making in real-world

scenarios. As pointed out by Kahneman and Tversky, one of the phenomena that chal-

lenge the theory is the so-called certainty effect. This effect is manifested on the occasion

of the Allais paradox (Allais, 1953); despite the higher expected utility, people overweight

outcomes considered certain over those merely probable. Their work also highlighted

other significant deviations from the predictions of expected utility theory: the reflection

effect, the framing effect, the isolation effect, the overweighting of small probabilities, and

magnitude perception. The reflection effect is the tendency for people to be risk-averse

when maximizing gains but risk-seeking when minimizing losses. The framing effect shows

that risk preferences can change depending on whether a choice is presented in terms of

gains or losses, even when the options themselves are held constant. The isolation effect

captures the idea that preferences for a choice may change depending on how it is struc-

tured sequentially. Finally, people are sensitive to both relative and absolute magnitude

leading to an overweighting of small probabilities; people find a difference between 1%

and 2% more meaningful than 51% and 52%. Remarkably, a recent study involving about

four thousand participants from nineteen different countries replicated almost all of the

results published in 1979 by Kahneman and Tversky (Ruggeri et al., 2020).

Therefore, the authors propose the prospect theory, which breaks down the decision-

making process into two stages: editing and evaluation. During the editing stage, prelim-

inary operations yield a more straightforward representation of the prospects. However,

these operations can lead to anomalies of preference; the prospects can be edited dif-

ferently depending on the context in which it appears, resulting in different outcomes.

Then, in the evaluation stage, the decision-maker evaluates the edited prospects and is

supposed to choose the highest-value prospect. Nevertheless, the evaluation process can

be biased, leading to the overvaluation of high-probability prospects and the underval-
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uation of low-probability ones. This can lead to irrational decision-making, as people

may make choices that are not in their best interests due to their biases and cognitive

constraints, i.e., bounded rationality (Simon, 1957).

Overall, this model, supported by empirical data, provides a more reliable understanding

of human decision-making than the previous model of expected utility theory. Unsurpris-

ingly, the 1979 article has become one of the most influential and cited in the economic

and psychological sciences.

2.1.4 The heuristics approach

The concept of heuristic in decision-making refers to using mental shortcuts or rules of

thumb to solve everyday life problems (Kahneman, 2011). These mental shortcuts allow

individuals to make decisions quickly and efficiently, often without requiring extensive

analysis or consideration of all available options (Gigerenzer & Gaissmaier, 2011). They

are a crucial aspect of human cognition and are used to reduce the cognitive load in cer-

tain situations, for example, when dealing with many options.

There are several types of heuristics that individuals may use in decision-making. One

commonly studied heuristic is the availability heuristic, which is the tendency to base

judgments on information readily available in memory. For example, suppose an individ-

ual is asked to estimate the likelihood of an event occurring. In that case, the individual

may base his/her decision on the number of times he/she has personally experienced that

event or seen it reported in the media. This heuristic can lead to distorted judgments

and decisions, as individuals may only consider some relevant information or may rely too

heavily on incomplete or biased data.

Another heuristic is the representativeness heuristic, which is the tendency to judge the

probability of an event based on how closely it resembles a prototypical example. This

heuristic can lead to overgeneralization and stereotypes. One example of the representa-

tiveness heuristic is when a person is trying to guess the occupation of a person they just

met. They may make assumptions based on the person’s appearance, such as assuming

that a person with a suit and briefcase is a lawyer, even though many other professions

also involve suits and briefcases. They are basing their assumption on how the person

appears to them, rather than thinking about the probability of the person being a lawyer
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based on actual data.

A third heuristic is the anchoring and adjustment heuristic, which is the tendency to rely

on initial information (i.e., the anchor) as a reference point and make adjustments based

on that. For example, suppose an individual is asked to estimate the price of a car. They

may anchor their decision on a starting point, such as the price of a similar car they

have previously owned, and then adjust their estimate based on additional information

about the car. This heuristic can lead to errors in judgment, as the initial anchor may

not accurately reflect the true value, and individuals may not make sufficient adjustments

based on new information.

These are just a few examples of the many mental shortcuts that people use in decision-

making. While heuristics can be helpful in many situations, Tversky and Kahneman

(1974) showed that these mental shortcuts can also lead individuals to biases and errors

in decision-making, despite encouragement to respond accurately.

2.1.5 The role of emotions

Thanks to the new perspective brought by Tversky and Kahneman, researchers under-

stand that human decision-making is not solely based on rational thinking but can also

be influenced by other factors. Economics, psychology, and neuroscience have contributed

to this idea, highlighting the importance of these non-rational elements in the decision-

making process. The neuroscience approach, characterized by its techniques such as func-

tional magnetic resonance imaging (fMRI), transcranial magnetic stimulation (TMS), and

many others, has opened up new opportunities for understanding the brain mechanisms

behind human behavior. A recent field called neuroeconomics emerged, aiming to com-

bine insights from economics, psychology, and neuroscience to develop a unified theory

of behavior (Glimcher & Rustichini, 2004). This field challenges the long-held belief in

economics that behavior is solely guided by rational thinking. Instead, it suggests that

other factors, such as emotion and context, also play a role in decision-making (Sanfey et

al., 2006).

The two-systems theory was one of the first attempts to define how emotions influence

decision processes (Kahneman, 2003; Stanovich & West, 2000). This theory suggests

that we have two systems for making decisions: System 1 and System 2. System 1 is
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automatic, largely unconscious, and does not require much computational capacity. It

involves heuristic processing and is associated with interactional intelligence (Levinson,

1995), which allows people to understand and respond to the intentions of others quickly.

System 2, on the other hand, involves controlled processing and is associated with analytic

intelligence, which refers to the computational processes underlying intelligence. System

2 is typically slower and more effortful than System 1.

Another successful perspective was that of Bechara and Damasio, who proposed the so-

matic marker hypothesis (Bechara & Damasio, 2005). According to this hypothesis, so-

matic markers, which are physiological responses to emotional stimuli, guide our decision-

making by providing a gut feeling or intuition about a particular choice. According to

Bechara and Damasio’s model, the impact of emotions on decision-making can be either

positive or negative, depending on whether they are relevant to the task at hand. If emo-

tions are integrated into the task, they can be beneficial, but if they are unrelated, they

can disrupt decision-making. These markers are thought to be stored in the amygdala,

insula, ventromedial prefrontal cortex (VMPFC), and brainstem and can be triggered

by events or experiences that are emotionally charged. Therefore, these markers affect

deliberative reasoning, which is instead found in the anterior and dorsolateral prefrontal

cortex (DLPFC) and posterior parietal cortex (PPC).

2.1.6 New perspectives

Although the role of emotional processes in decision-making is widely recognized as cru-

cial, some recent research perspectives have raised criticisms of this view.

For instance, some scholars have questioned the idea that all emotional processes can be

grouped into a single system (such as System 1), arguing instead that there are multiple

modulatory circuits through which emotions impact decision-making (Phelps et al., 2014).

The use of the term limbic system, which suggests the existence of a single emotional cen-

ter in the brain, has also been criticized. In reality, some regions within the limbic system

are more involved in cognitive tasks (such as the hippocampus), while other areas outside

the limbic system, such as prefrontal regions, play a significant role in emotional processes

(Phelps et al., 2014). This suggests that emotion is not a single entity but a collection of

different affective processes that each influence decision-making through their own neural

circuits.
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Some studies have also shown that the influence of emotional and unconscious processes

on behavior may have been overestimated and that, not infrequently, the decision process

can be interpreted simply as due to conscious, rational processes (Newell & Shanks, 2014).

A reevaluation of human rationality, often considered too corruptible by the activation of

affective systems, emerged. For example, as shown in the review by Gigerenzer and Gaiss-

maier (2011), heuristics, whether rational or irrational, conscious or unconscious, can be

as accurate as or more than complex reasoning, debunking the myth that heuristics lead

to biases and errors.

Moreover, in an extensive review in 2015, Lerner and colleagues reviewed the past 35

years of literature on emotion and decision-making (Lerner et al., 2015). They highlight

the impact that emotions have on our internal decision-making model, which can some-

times be harmful and sometimes helpful, showing the appearance of regularities in how

decision-makers’ emotions influence their choices. To synthesize all the findings, they

proposed the emotion-imbued choice model (Figure 2.1), accounting for both traditional

(rational) and new emotional inputs. The rational part of this model recalls the concepts

of expected utility theory (solid black lines), which require the decision maker to evaluate

the options by assessing the utility of each potential outcome for each option. These out-

come utilities are combined with options characteristics (such as probabilities and time

delays) and decision-maker characteristics (such as risk aversion and discount rate) to

create an overall evaluation of each option. The best option is then chosen based on these

evaluations. Then, emotions influence this process in two ways: (i) rather than stable

preferences, the model allows for constructed preferences so that the expected emotional

response to an outcome influences its utility; (ii) emotions felt at the moment of the deci-

sion (i.e., current emotions), which are outside the scope of conventional rational models.

Sources that can affect current emotions are: characteristics of the decision maker (e.g.,

anxiety or depression), characteristics of the options (e.g., ambiguous information or un-

certain probabilities), the anticipatory effect of predicted emotions on current emotions,

contemplation when options are nearly equivalent, incidental emotions due to unrelated

factors or events (e.g., weather or mood).

One economic game that has challenged traditional economic theories by fueling the idea

that emotional processes influence decision-making is the Ultimatum Game. Since the
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Figure 2.1: Emotion-imbued choice model. Block diagram of the emotion-imbued choice
model. Adapted from Lerner et al. (2015).

following work is based on this game, I now provide a more in-depth discussion by briefly

reviewing the leading behavioral and neural findings.

2.2 The Ultimatum Game

The Ultimatum Game (UG) is a classic experimental paradigm used to study economic

decision-making and is often cited as an example of how classical economic theories do

not accurately predict human behavior. The game’s structure is straightforward in the

first version of the game developed by Güth and colleagues forty years ago (Güth et al.,

1982). One player (i.e., the proposer) is allocated a sum of money that he/she must share

with the other player (i.e., the responder). The proposer will then make an offer to the

responder, who can decide to accept or reject. If the responder accepts, the money will

be divided according to the proposer’s offer; if the responder rejects, neither of the two

players will receive anything.

In accordance with game theory, and particularly Nash equilibrium, proposers, to max-
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imize revenue, should always offer the minimum allowable amount, and a fully rational

responder should accept any non-zero offer. However, behavioral findings systematically

disregard this expectation. On average, proposers usually tend to offer about 40% of the

amount (many offer half), and responders often reject unfair offers of about 20% of the

total (Camerer & Thaler, 1995).

2.2.1 First behavioral investigations and concerns

One concern that the researchers raised is the amount at stake. The prediction was that

as stake increases, the amount that a responder will reject increases but the percentage

decreases. In other words, in terms of amount, people are more likely to reject $5 out of

$50 than out of $10, whereas, in terms of percentage, people are more likely to accept 10%

of a $50 stake than a $10 one. Several studies investigated the effect of stake size (ranging

from $10 to $500); surprisingly, only weak effects were reported. A meta-analysis of 31

studies reported an almost zero effect of the stake size on UG offers, indicating that there

is no evidence that people offer less money in high-stakes UG (Larney et al., 2019). Con-

cerning rejections, in a study with a $100 stake, Hoffman et al. (1996) reported no change

in responders’ behavior: they rejected 10, 20, and in some cases, even $30. Overall, it has

been concluded that stake size does not influence individuals’ behavior.

Another concern raised is the possible influence of cultural and demographical factors,

hypothesizing that different behaviors could be found in populations different from the

Western one. To investigate this, Henrich et al. (2005) recruited participants from 15

small-scale societies (from 4 different countries) which underwent one-shot UG. They re-

ported high variability among groups’ behaviors which reflected the daily habits of these

societies. It is worth naming the two opposites. On the one hand, we have populations in

Papua New Guinea where proposers often offer more than half of what is at stake, many

of which have been rejected. These rejections may result from the fact that in these soci-

eties, accepting gifts implies a stringent obligation to reciprocate, and unpaid debts place

the recipient in a subordinate position. On the other hand, we have the Machiguenga

indigenous population from Peruvian Amazonia, where 75% of proposers’ offers were be-

low the 30% of the stake, and almost none of these were rejected. Indeed, this society

is almost economically independent at the family level, with little cooperation, sharing,

or exchange beyond the family unit. Although Machiguenga’s behavior is reminiscent of

homo oeconomicus, the authors point out that perfect selfish behavior is not present even
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among these societies.

It is important to note that when the same participants play multiple UG rounds, their

behavior may change, and they may adopt more sophisticated strategies, such as using

rejections more frequently, leaning the results toward game theory predictions (Roth &

Erev, 1995). Therefore, to avoid strategic thinking, modified versions of the UG have

been proposed: the one-shot UG, in which the two players interact only once, and the

covered UG, in which the proposer is not informed of the responder’s decision (Civai et

al., 2010).

2.2.2 Beyond self-interest

People playing UG behave irrationally, going against their self-interest. Researchers at-

tempting to explain this phenomenon have come up with several theories.

A first attempt posits that proposers are ‘sophisticated profit maximizers’ (Camerer &

Thaler, 1995): they offer more than Nash equilibrium prediction knowing that responders

are unlikely to accept unfair offers (Weg & Zwick, 1994). This theory is corroborated by

the work of Bolton and Zwick (1995), who tested the anonymity hypothesis, which claims

that proposers offer fair offers and responders reject unfair offers so as not to appear

greedy in the eyes of the experimenters, producing altered UG results. Their experiment

confuted this hypothesis by counterposing the punishment hypothesis, i.e., responders’

willingness to punish proposers who treated them unfairly; proposers knowing this make

fair offers to avoid being punished.

Other approaches are based on the social preferences account: people care not only about

their self-interest but also the interest of others. Several models have been proposed

within this framework (Camerer, 2003).

One is the inequity aversion model, in which players care about their payoffs and the

differences between their payoffs and those of others (Bolton & Ockenfels, 2000; Fehr &

Schmidt, 1999). According to this model, people are motivated by a general dislike for

situations in which resources or outcomes are distributed unfairly. They may be willing

to sacrifice some of their material payoff to achieve more equitable outcomes.
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In contrast to inequity aversion, which focuses on the final distribution of outcomes,

theories of reciprocal fairness or negative reciprocity propose that ‘people do not seek

uniformly to help other people; rather, they do so according to how generous these other

people are being’ (Rabin, 1993). According to these theories (Dufwenberg & Kirchsteiger,

2004; Falk & Fischbacher, 2006; Rabin, 1993), people who are motivated to help those

who have helped them are the same as punishing those who have harmed them. This

means that if one person takes actions that reduce the payoff of another person in order

to benefit themselves, the other person may respond by punishing the first person for

their unfair behavior. However, if the distribution of outcomes is randomly determined,

the second person is less likely to punish the first person for receiving a higher payoff

(Blount, 1995; Falk & Fischbacher, 2006). These results corroborate the idea that people

punish unfairness rather than reject inequity (Camerer & Thaler, 1995). Following these

theories, rejections in the UG paradigm can be seen as a means to punish misbehaving

proposers.

Although punishing someone who has acted unfairly, incurring a self-loss, may seem irra-

tional, researchers pointed out that this behavior has an evolutionary role (Boyd et al.,

2003). This phenomenon took the name of altruistic punishment : they argue that pun-

ishing defectors, even if it comes at a cost to the individual, is a natural part of human

behavior and is an effective way to maintain cooperation in a group over the long term.

2.2.3 Neural correlates of Ultimatum Game

The advent of neuroscience and its methodologies in the study of social decision-making

paved the way for more in-depth investigations into the mechanisms underlying responder

behavior in the UG. The focus of these studies has been on identifying the most involved

brain areas, clarifying the role of specific networks and how they interact during the course

of the game.

The first fMRI study to investigate which brain areas were activated in subjects playing

UG in the role of responders was conducted by Sanfey et al. (2003). Their prediction was

to find activations of neural structures usually involved in both emotional and cognitive

processing and that the magnitude of activation in these structures might predict the

subsequent decision. To verify this hypothesis, participants played rounds of UG against

human agents or a computer while lying inside the scanner. The offers, in both condi-

16



2.2. The Ultimatum Game

tions, followed a predetermined algorithm (half fair, half unfair) ensuring that the same

set of offers was administered to all subjects. The only difference between conditions was

the participants’ belief that they were actually playing with another person or a computer.

Their behavioral results were in line with the previous UG experiment: fair offers were

all accepted with a decreasing acceptance rate as the offer’s value decreased, and the

acceptance rate of unfair offers was significantly higher for the computer condition than

for the human partner condition. Regarding neural structures, in the human partner

condition, they found a greater activation for unfair compared to fair offers of bilateral

anterior insula, dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex

(ACC) (Figure 2.2).

• Activation of the bilateral anterior insula to unfair offers is particularly interesting,

as noted by the authors, since it is usually associated with negative emotions such as

anger and disgust (Calder et al., 2001). It shows its greater activation for rejections

(Figure 2.2B), and the authors hypothesized that its activation reflects the negative

emotions felt at an unfair offer, thus triggering rejection.

• Activation of the DLPFC is usually linked to cognitive processes such as goal mainte-

nance (Miller & Cohen, 2001) and executive control (Wagner et al., 2001). According

to the authors, its activation was associated with the rational aspects of the task,

representing an attempt to maintain the goal of reward maximization by inhibiting

the emotional response.

• Activation of the ACC is associated with cognitive conflicts (Botvinick et al., 1999;

MacDonald et al., 2000) and the authors speculated that it might reflect the cogni-

tive and emotional conflict present in the UG.

However, more recent studies have disagreed with some of the above interpretations. In

particular, negative emotions should not always be considered as a trigger for rejection

of the offer. For example, Civai et al. (2010) submitted the participants, in the role of

responders, to two different conditions of the UG: in one condition, participants played

the traditional UG deciding for themselves (myself condition); in the other condition,

participants played UG on behalf of a third-party (third-party condition). Their behav-

ioral results showed no differences between the two conditions; the participants rejected

unfair offers even when playing on behalf of third parties. Following the reasoning of San-

fey et al. (2003), this should elicit the same negative emotions that subjects experience
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Figure 2.2: Active brain areas in response to unfair offers. (A) Localization of the
activated areas related to the presentation of an unfair offer, showing activation of bilateral
anterior insula, dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC).
(B) Involvement of right anterior insula and right DLPFC in the decision to accept or reject the
offer. Adapted from Sanfey et al. (2006).

when they play for themselves. In contrast, Civai et al. (2010) measured participants’

skin conductance response (SCR), which is known to reflect the arousal component of

experienced emotions, and found emotional activation only in the myself condition. Their

results suggested that rejections can be interpreted primarily as a reaction to perceived

unfairness and that negative emotions play a role only in cases where unfair offers are

aimed directly at the individual.

A follow-up study by Corradi-Dell’Acqua et al. (2013) used the same paradigm proposed

by Civai et al. (2010). It aimed to investigate the neural correlates associated with di-

rect personal involvement in an unfair situation (myself condition) and those associated

with fairness considerations when indirectly involved in an unfair situation (third-party

condition). Their results showed an activation of the anterior insula in both myself and

third-party conditions, and it was more active for rejections. This suggests that this area

plays a role in reacting to unfairness rather than to negative emotion. Regarding the emo-

tional processes elicited by the myself condition, the authors found increased activation of

the ventral medial prefrontal cortex (VMPFC) and right DLPFC, which were also more

active when the unfair offer was rejected. According to the researchers, these areas may

be part of a neural circuitry implicated in monitoring emotional reactions. Other studies
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go in this direction (Baumgartner et al., 2011; Knoch et al., 2008, 2006). Knoch et al.

(2006) applied repetitive transcranial magnetic stimulation (rTMS) to the right DLPFC

of responders, disrupting its functionality. Although participants continued to perceive

offers as unfair, they found an increase in the acceptance rate: the authors suggested that

right DLPFC plays a crucial role in fairness perception, overriding self-interest to maintain

and enforce fairness goals. In a further study, Knoch et al. (2008) replicated this result

by applying transcranial direct current stimulation (tDCS). In summary, following receipt

of an unfair offer, while right DLPFC seems to promote normative behavior (Spitzer et

al., 2007) (contrary to what Sanfey et al. (2003) hypothesized), VMPFC activation over-

comes the motivation to sanction norm violations favoring self-interest (Civai et al., 2012;

Corradi-Dell’Acqua et al., 2013). Hence, the connectivity between DLPFC and VMPFC

may implement the costly, normative decision to reject unfair offers (Gabay et al., 2014).

Additionally, it has been hypothesized that other brain regions besides the insula may

contribute to the emotional reaction observed in first-person play. In particular, some

studies show activation of the cerebellum in response to unfair offers, regardless of the

decision made (Gabay et al., 2014).

While the studies above focused on unfairness and rejections, Tabibnia et al. (2008) in-

vestigated the neural circuitry related to fairness perception and discovered that regions

commonly associated with the reward system, such as the ventral striatum, amygdala,

and VMPFC, were also linked to a preference for fair outcomes. Still regarding the reward

system, in a study using positron emission tomography (PET), de Quervain et al. (2004)

showed that when participants actively punished defectors, activated the dorsal striatum,

which has been implicated in the processing of rewards deriving from goal-directed ac-

tions (Fehr & Camerer, 2007). Notably, the magnitude of activation correlated with the

willingness of the participants to incur a greater loss to achieve a greater punishment.

These findings suggest the idea that punishing social norm violators is satisfactory.

In summary, these neuroscientific studies have helped shed light on the neural underpin-

nings of responder’s behavior in the UG. Both rational and emotional processes influence

decision-making, and the brain structures responsible for mediating these processes have

been identified. Moreover, rejections would occur independently of the influence of neg-

ative emotions but because of rational goal-oriented behavior: punishing social norm
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defectors.

2.3 Decision-making models and movement kinematics

Imagine you are on a hot summer day when a terrible thirst assails you. You head to the

refrigerator, open it, and you are faced with a dilemma: take the pitcher of iced tea on the

left or the bottle of sparkling water with lemon on the right. How do you decide between

these two options, and how do you translate the decision into the movement necessary to

implement it? As with most decisions, it involves reducing many alternatives to a single

goal, and, as is often the case, this requires the effort of physical action.

In this section, I briefly review the central perspective and theories developed in the study

of decisions requiring physical action. I start from good-based models, which assume that

decision-making and action planning are two distinct serial events, to action-based models,

which assume a close link between decision-making and action processing.

2.3.1 Good-based models: a serial perspective

According to good-based models in decision-making, the brain evaluates the potential

outcomes of different options at a level of abstract value representations and makes deci-

sions based on the relative value of those outcomes (Padoa-Schioppa, 2011). Concerning

the relationship between a decision and its associated action, in a good-based model, the

decision-making process is treated as a separate module of a serial process. After the rep-

resentation of the available options has been made available by the perceptual processes

and decision-making processes have used this to choose which action to take, the corre-

sponding movement is then planned (Wispinski et al., 2020). To better understand how

this selection among options occurs, a series of decision-making models based on accumu-

lating evidence up to a threshold has been proposed (Bogacz, 2007; Gold & Shadlen, 2007).

Most decision-making models have been formalized by studying perceptual decisions, i.e.,

very simple decisions that rely only on one’s sensory perceptions. In this way, variables

are minimized so that only the essential features of the decision-making process can be

identified. Among the most commonly used paradigms is the random-dot motion (RDM)

task (Britten et al., 1992). It consists of a cloud of moving dots presented on a computer

screen: a portion of the dots move in a single direction, while the remainder moves ran-
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domly. The task is to indicate the predominant direction of the dots’ movement.

Intracranial recordings of brain activation in monkeys subjected to RDM task, which had

been taught to indicate the dots’ movement direction through saccadic eye movements,

have made it possible to identify circuits fundamental to understanding how decision-

making processes work. The most interesting activations concern the sensory and as-

sociation cortices. These are the medial temporal area, which contains sensory neurons

sensitive to the direction of movement (Britten et al., 1993), and the lateral intraparietal

area, an associative area of the posterior parietal cortex positioned midway in the senso-

rimotor chain, which receives information from the medial temporal area and projects it

to the frontal eye fields and superior colliculus, responsible for eye movements (Shadlen

& Newsome, 2001). The specific activation patterns observed in these regions led to hy-

pothesizing the essential mechanisms of perceptual decision-making. Specifically, sensory

areas would represent the different alternatives in terms of sensory evidence, while pari-

etal neurons would be responsible for the accumulation of this evidence, and their activity

would reflect the formation of the final decision (Gold & Shadlen, 2007). Lately, Donner

et al. (2009), using magnetoencephalography, supported this thesis in a study with hu-

mans.

Inspired by these results, computational models that attempt to mimic this behavior and

exhibit similar characteristics have been devised. A common feature of these models is

that the decision is based on a sequence of observations. With each observation, more

and more evidence is accumulated until a certain level of confidence is reached that al-

lows a decision to be made. This is represented by crossing the decision boundary (Gold

& Shadlen, 2007). Two of the most widely used models are the race (Smith & Vickers,

1988) and drift-diffusion (Ratcliff & Rouder, 1998) models. Race model is defined by

several independent accumulators and the decision is made the first time one of these

accumulators crosses a fixed decision threshold. In contrast, with drift-diffusion model,

decisions are based on relative evidence. The difference in evidence between options is

accumulated until an upper or lower bound is reached corresponding to the two options

under consideration.

A further development of the aforementioned models is the Leaky Competing Accumula-

tor (LCA) model (Usher & McClelland, 2001). In this model, accumulators integrate the
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sensory information by increasing their activation during the presentation of the stimu-

lus. However, the more the activation of one accumulator increases, the more it will exert

inhibition on the other, thus decreasing its activation. As with the other models, the de-

cision is assumed to be final once either accumulator reaches a certain activation threshold.

Despite these models’ success and widespread use, recent research shows that decision-

making is more complex than simple evidence accumulation models can describe (Wispin-

ski et al., 2020). One major limitation of these models, and, more in general, of good-based

models, is that they assume that processes related to decision-making are completed be-

fore movement is initiated, suggesting serial processing of perception, decision-making

and, lastly, movement planning.

2.3.2 Action-based models: the interplay between cognition and

action

So far, one might intuitively assume that the decision-making process follows a linear

path of this kind: first, all available information is accumulated; this information is then

processed and integrated with more detail; finally, the integration process leads to a final

choice that is translated into actual behavior. This reasoning is consistent with tradi-

tional cognitive theories, which tend to view perceptual, cognitive, and motor systems

separately: perceptual systems would be devoted to constructing a representation of the

world through sensory information; cognitive systems would use these representations,

along with information accumulated in memory, to construct knowledge, make judgments,

and make choices; finally, motor systems would implement decisions in behavior through

planning and execution of movements (Cisek, 2007).

This subdivision of neural systems is undoubtedly useful for descriptive purposes, as it

provides a straightforward overview of behavior and makes the functional role of specific

brain regions easier to interpret. However, numerous scientists are increasingly promoting

a unified view of internal processes. They argue that perception, cognition, and motor

control actually operate in an integrated manner and are part of a single system (Dotan

et al., 2019; Gallivan et al., 2018; Song & Nakayama, 2009; Wispinski et al., 2020).

Under this view, action-based models of decision-making state that available options

are represented and selected in sensorimotor maps of the environment, where options
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preserve their relative spatial relation to the deciding agent. So, the representation of

every option is sensorimotor, reflecting details of the movement associated with acting on

each alternative. The sensorimotor maps would contain information about the movements

associated with successfully interacting with the object, i.e., object affordance (Cisek,

2007). These affordance competition maps give rise to what has been called attentional

landscapes or desirability density functions, which originate in a unified system involving

the parietal and frontal cortex. According to this theory, this competition is influenced by

inputs from cortical regions (e.g., prefrontal cortex) and subcortical (e.g., basal ganglia),

and it is a continuous process that sometimes occurs even during the execution of the

movement itself. It is argued that the specification of the fundamental parameters of

movement occurs prior to the final selection of motor action, or at least that they are

processes that occur simultaneously and continuously, allowing for the rapid adaptations

necessary for living in a dynamic world (Cisek & Pastor-Bernier, 2014). Essentially, the

nervous system may address the questions of specification (how to do it) before performing

selection (what to do) (Cisek, 2007). Hence, in the action-based models, when one option

is chosen, the focus is on selecting some aspect of an action to perform rather than selecting

an abstract representation and then planning an action, as is the case in goal-based models.

Thus, decision-making within the action-based framework is about evaluating the value

of different possible actions, intending to move the body through the physical world in

a way that navigates a landscape of behavioral relevance represented by a neural map

(Pezzulo & Cisek, 2016).

2.3.3 The key role of movement kinematics

Given what has been discussed in the previous sections, even the simplest decision would

involve a mechanism of competition among possible alternatives or among potential ac-

tions. Moreover, this competition need not necessarily be resolved before the final decision

is made but could also occur during the execution of the selected action. If this reasoning

is correct, the decision-making process would not be viewed as serial and discrete but as

a continuous process.

Experiments in the field of decision-making, and more generally in the psychological do-

main, usually use instruments that we might call discrete. In most cases, participants

are asked to respond through key presses, saccadic eye movements, or verbally. These

methods are useful for limiting the variables involved and for targeting the phenomena of
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2.3. Decision-making models and movement kinematics

interest; however, they are ballistic and enforce that decision-making occurs exclusively

during the response time and therefore do not allow the dynamics of internal processes

to be shown (Song & Nakayama, 2009; Wispinski et al., 2020).

Attempts to unravel the continuous nature of internal processes were made using contin-

uous dependent measures. This was achieved by developing tasks in which participants,

to provide the answer, had to perform an action (e.g., hand or eye movement). Today,

there is a long list of studies that brings evidence of how in-flight movements during mul-

tiple target choice tasks are affected by the evolution of the decision process and how this

enables us to have continuous access to it (for reviews, see (Dotan et al., 2019; Gallivan et

al., 2018; Gordon et al., 2021; Shadmehr et al., 2019; Song & Nakayama, 2009; Wispinski

et al., 2020)).

A notable example of how cognitive and perceptual processes are fluid and continuous

are changes of mind, i.e., the rare but reliable observation that individuals, who have

begun an action toward one option, switch to another option mid-flight before the action

is completed, suggesting that the decision process is continuous throughout the movement

(Resulaj et al., 2009).

Most experiments that fall under this perspective have been primarily concerned with

perceptual phenomena or low-level cognition. A seminal work exploiting this strategy is

the one by Spivey et al. (2005), which aimed to investigate the temporal dynamics of

recognizing spoken words. The task required participants to move a computer mouse to

click on a target picture while a distractor picture was presented on the opposite side

of the screen. The results, shown in Figure 2.3, revealed that mouse-moving trajectories

were more attracted to a distractor when the names of the target and distractor were

phonologically similar, e.g., picture and pickle, than dissimilar, e.g., picture and jacket.

The direction and magnitude of the curved trajectories reveal the activated word and the

level of competition between words over time, indicating a dynamic online competition

between simultaneously activated lexical representations.

Another study used finger tracking to demonstrate that the categorization of numerical

stimuli is not discrete, but that their mental representation places them on a spectrum

from smallest to largest (Song & Nakayama, 2008). This representation influences their
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Figure 2.3: Mouse-moving trajectories reveal the dynamics of spoken word recog-

nition. After hearing a word (e.g., picture), participants clicked on the corresponding target
image. In the control condition, participants heard phonologically dissimilar words (e.g., picture
and jacket); in the cohort condition, the words were phonologically similar (e.g., picture and
pickle). The trajectory revealed a greater curvature towards the distractor in the cohort condi-
tion. Adapted from Spivey et al. (2005).

recognition and it was evident in the movement. In their experiment, participants were

asked to indicate whether the presented number was smaller or larger than five by point-

ing to the left or right of the central point. The numerically close the target number was

to five, the more the trajectory was curved and deflected toward the center; the further

the number was from five, the more direct the trajectory was (Figure 2.4).

Continuous choice-reaching tasks are useful not only for investigating perception, atten-

tion, and language but also for studying higher-level cognitive decisions as they closely

mimic real-world scenarios. In a study, McKinstry et al. (2008) showed the unfolding of

the decision-making process in an experiment where participants had to make decisions

based solely on internal criteria. Their task was to answer questions categorically (‘yes’ or

‘no’) and use the computer mouse to reach the box corresponding to the chosen answer.

The questions were intentionally designed to have different truth values. In fact, they had

previously been presented to a sample of other participants and were ranked according

to how many people on average answered ‘yes’ to them, e.g., ‘Is a thousand more than
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Figure 2.4: Reach trajectories reveal spatial number representation. Participants were
asked to indicate whether the number shown in the central square was equal to, greater, or less
than 5. (A) reports the trajectories for ‘equal to’ and (B-E) reports ‘less than’ 5. Lower panels
show how the trajectories are more curved and less straight towards the left square as the target
number in the central square approaches 5. Adapted from Song and Nakayama (2008).

a billion?’ 0% ‘yes’, or ‘Is murder sometimes justifiable?’ 60% ‘yes’. The results showed

a difference between the two types of answers (‘yes’ versus ‘no’): their trajectories had

different temporal and spatial characteristics. Moreover, a difference was also found de-

pending on the type of question: low-truth questions had more curvature and lower peak

velocity than high-truth questions.

In summary, the above results highlight how movement analysis can provide numerous

insights into decision-making processes. This is confirmed by a growing body of evidence

examining the dynamics of high-level cognitive processes through continuous variables,

which has been successfully used to advance knowledge in a variety of fields and contexts

(e.g., linguistics (Spivey et al., 2005), number representation (Song & Nakayama, 2008),

degree of confidence (Dotan et al., 2018), changes of mind (Barca & Pezzulo, 2015; Resulaj

et al., 2009), and even intention prediction (Cavallo et al., 2016; Patri et al., 2020) and

decision-making (Kieslich & Hilbig, 2014; Turri et al., 2022)).
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2.3.4 The reach-to-grasp movement

Movements that are best suited to capture the continuity of internal processes are those

of the upper limbs. Unlike the gaze, the hand moves in physical space, allowing for easier

detection of its movements, and its movement has various features that can be observed

and measured (Freeman et al., 2011). Indeed, the experiments discussed so far have fo-

cused on the trajectory of hand motion, studying pointing movements either directly,

through a sensor placed on the hand (Song & Nakayama, 2008), or indirectly, through

mouse-tracking (McKinstry et al., 2008; Spivey et al., 2005). However, pointing move-

ments are not the only ones that have been used in the study of cognitive processes.

In everyday life, one of the actions we perform most frequently is to grasp an object in

our surroundings. It is a movement we perform so often that we do not even realize how

complex it is; it requires the perception of the object characteristics, action selection,

movement planning, multi-joint coordination, and force regulation. This movement is re-

ferred to in the literature as reach-to-grasp and is one of the first goal-directed behaviors

to develop during infancy.

For experimental purposes, one might think that reach-to-grasp movement is uninter-

esting since it consistently exhibits the same characteristics in every situation. Instead,

experimental research has revealed numerous characteristics that vary according to differ-

ent factors (Castiello, 2005). Grasping an object is an action that is largely influenced by

the characteristics of the object itself. For example, depending on the object’s size, two

types of grasping can be distinguished: precision and power grips. However, size is not

the only feature that has been shown to exert an influence on movement: it also varies

according to the shape, material, fragility, and weight of the object (Jeannerod, 1981).

Moreover, the surprising thing about reach-to-grasp movement is that its kinematics are

influenced not only by external features but also by the agent’s mental state. Even if

the object to be grasped is exactly the same, the movement differs depending on the

underlying intention. Grasping a bottle, for example, has very different characteristics

depending on whether the agent wants to pour the contents into a glass, place it elsewhere,

throw it, or pass it to someone else (Ansuini et al., 2008). This is coherent with the

concepts of orders of planning proposed by Rosenbaum et al. (2012): first-order planning

for object manipulation involves adapting one’s behavior to the current task, such as
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adjusting the orientation of one’s hand to grasp an object or adjusting grip aperture based

on the object’s size; second-order planning, instead, not only considers the current task

but also anticipates and prepares for the next task to be performed. This is confirmed by

further research showing that the synergy of advanced movement tracking techniques (i.e.,

motion capture systems) and machine learning techniques (e.g., multivariate decoding

methods) enabled the unraveling and quantitative measurement of internal mental states

information hidden in movement kinematics (Ansuini et al., 2015; Becchio et al., 2018;

Cavallo et al., 2016; Montobbio et al., 2022; Patri et al., 2020; Turri et al., 2022). This

research proves how the reach-to-grasp movement is particularly valuable for investigating

the temporal evolution of decision-making. Indeed, unlike the pointing movement, it is

an action that frequently occurs in people’s lives, and most importantly, it is a movement

that is highly affected by internal processes in several of its kinematic variables.

2.3.5 The vigor of a movement

Why do we run toward the people we love, but only walk toward others? Why, in general,

do we move faster toward things we value more? These questions fascinated neuroscien-

tists, who, over the past decade, showed that vigor of eye and hand movement reflects

not only the choice made but also the subjective value associated with that choice (see

Shadmehr et al. (2019) for a review). That is, if we want to know the extent to which

an individual prefers a particular option among several, we can ask the individual to pick

each one at a time. The option with the greatest velocity and shortest reaction time

will be the preferred one. Then, calculating the difference in velocity and reaction time

between options will allow us to quantify the extent to which that option is preferred over

the others.

One of the first attempts to investigate whether the reward modulates saccades is by

Xu-Wilson et al. (2009). In this study, participants maintained their gaze at a fixation

point while a small image appeared at a distance of 15◦ for a brief period. The image

could be a face, an inverted face, an object, or noise. Participants were instructed to keep

their gaze on the fixation point until the image disappeared and then to move their eyes

to a new fixation point. Upon completing the eye movement, they were rewarded with

the image for 1 second. This experiment found that when participants would see a face,

they made faster saccades than when they were shown an unrewarding noise image. This

suggests that the anticipation of a reward can affect saccade velocity. A similar result
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Figure 2.5: Effect of reward on reaction time and reach velocity. (A) Probability
density of reaction time associated with rewarded (RWD) and non-rewarded (NRWD) targets.
Reaction times were shorter in the rewarded condition. (B) Hand reach velocity as a function of
time in rewarded (RWD) and non-rewarded (NRWD) conditions. Reach velocity was faster in
the rewarded condition. Adapted from Summerside et al. (2018).

was previously observed in a study on monkeys (Kawagoe et al., 1998).

More recently, it has been investigated whether this phenomenon also affects upper limb

movements. This was pursued in the study by Summerside et al. (2018), which found

that increased reward affected the vigor of reaching movements. Participants were asked

to perform out-and-back reaching movements to one of four quadrants through a robotic

arm. Visual feedback of the hand was blanked out during reaching. Once the hand crossed

the outer ring within the quadrant, the outer ring changed color, indicating the end of the

trial. Only one quadrant was paired with an abstract reward consisting of a pleasant tone,

a visual animation, and points that accumulated but were not associated with money. The

study found that when a quadrant was paired with reward, the reaching movement to-

ward that quadrant occurred after a shorter reaction time, with a higher peak velocity and

greater amplitude (Figure 2.5). Additionally, movements toward the rewarded quadrant

were performed with less variability. A more ecological version of this study, in which

reward had subjective value, is the study by Sackaloo et al. (2015). Participants were

asked to reach for a candy bar, pick it up, and return it to a starting position. Different

candy bars were presented in random order. After the reaching trials, participants filled

out a survey describing their preference for the bars. The results showed that reach du-

ration was shortest for the most preferred candy bar and longest for the least preferred bar.
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In summary, research demonstrated how vigor can be exploited as a proxy for measuring

individuals’ degree of preference, providing further evidence of the neural link between

decision-making and motor control systems.
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3. Study 1: Decoding social decisions

from movement kinematics

Published paper: Turri et al. (2022)

3.1 Introduction

A convergence of modeling, behavioral, and neural data indicates that the way individuals

move can provide important insights into cognitive states and ongoing decision processes

(Becchio et al., 2018; Dotan et al., 2019; Gallivan et al., 2018; Gordon et al., 2021; Shad-

mehr et al., 2019; Wispinski et al., 2020). For example, in choice paradigms, the trajectory

of reaching movements reveals not only the chosen option, reflected by the reaching di-

rection, but also the degree of confidence with which the choice is made, reflected by

the hand-speed (Dotan et al., 2018; Seideman et al., 2018). Reaching kinematics can be

used to infer intention (Cavallo et al., 2016; Patri et al., 2020), categorization dynamics

(Freeman et al., 2016), and reward associations (Chapman et al., 2015). Moreover, spe-

cific events within reaching trajectories can be used to detect changes of mind (Barca &

Pezzulo, 2015; Resulaj et al., 2009) and changes in confidence (Dotan et al., 2018).

These aforementioned studies examined individual choices, which typically involve clearly

defined probabilities and outcomes. However, many of our most important decisions are

made in the context of social interactions and are based on the concurrent decisions of

others. These social decisions affect not only ourselves but also others, and are there-

fore shaped by both self- and other-regarding motives (Fehr & Camerer, 2007; Rilling &

Sanfey, 2011; Sanfey, 2007). An example of this is when we decide whether or not to

help another person – how we balance our aversion to unequal outcomes with economic

self-interest.
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Only a few studies have considered the possibility that reaching parameters may be useful

in interpreting these kinds of social decisions. For example, Kieslich and Hilbig (2014)

found that in a two-person-social dilemma game, the trial-averaged trajectories were more

curved when individuals defected than when they cooperated, suggesting that defection

entailed more conflict. However, whether social decisions may be predicted from the kine-

matic parameters of individual reaching movements remains an unexplored question.

Here we designed a direct test of this hypothesis by developing a motor version of a widely

used behavioral economic game, the Ultimatum Game (Rilling & Sanfey, 2011). In this

task, two players – a proposer and a responder – are given the opportunity to split a

sum of money in a single interaction. The proposer makes an offer as to how the money

should be split. The responder has the option to either accept or reject this offer. If the

offer is accepted, the sum is divided as proposed. If it is rejected, neither player receives

anything. Game theory predicts that a rational, self-interested, responder will accept any

non-zero offer. However, experimental evidence contradicts this prediction. Responders

accept fair offers close to the equal split but generally reject low offers, considering them

unfair (Camerer, 2003). Of course, punishing the proposer for a low offer is costly for

the responder, and therefore the responder faces a conflict between the decision to either

accept the low offer, and satisfy economic self-interest, or to reject it, based on inequity

aversion (Fehr & Schmidt, 1999), negative reciprocity (Rabin, 1993), or reputational con-

cerns (Yamagishi et al., 2012).

The decision to accept or reject is ultimately communicated through an action. For ex-

ample, participants accept or reject the offer by pressing one of two buttons (Civai et al.,

2012; Corradi-Dell’Acqua et al., 2013). In a classical neuroeconomic setting however, this

action is considered merely a means of reporting the choice, and no study has yet exam-

ined the relationship between movement kinematics and decision parameters. Do accept

and reject preferences influence the way individuals move towards the chosen option? Is

the subjective assessment of the received offer reflected in the responders’ movements?

One difficulty in addressing these questions is the high variability of movement kinematics

across repetitions of the same movement and across individuals - kinematics vary from

one trial to another, and from one individual to another (Ting et al., 2015). A common
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approach is to average kinematics both over trials and individuals to reduce the effect of

movement variability. However, because trial-to-trial and individual-to-individual vari-

ations often exceed decision-predictive variations, averaging can obscure how decisions

map onto movement parameters. An alternative to averaging is to apply multivariate

decoding methods as a tool for investigating information specified in movement kinemat-

ics at the single-subject, single-trial level (Becchio et al., 2018; Becchio & Panzeri, 2019;

Becchio et al., 2021; Panzeri et al., 2017; Patri et al., 2020). Here, we applied multivariate

decoding to explore decision-predictive information encoded in the kinematics of individ-

ual responders in the one-shot Ultimatum Game. This approach enabled us to identify

highly personalized patterns specifying predictive information about both the fairness of

a received offer as well as the choice to either accept or reject that offer.

3.2 Results

We used motion capture to track the arm kinematics of 20 participants while they played

a motor version of the one-shot Ultimatum Game. Participants completed two sessions,

always in the role of responder. They were told that in each session they would partner

with 68 proposers recruited online and play a single iteration of the game with each

proposer via a computer interface (Figure 3.1A and Figure A.1). Offers from a pot of e10

were made according to a predetermined algorithm, which ensured that all participants

received the same set of fair (e5, e4), mid-range (e3), and unfair (e2, e1) offers. On

each trial, participants were instructed to respond by reaching out, grasping, and lifting

one of two cylinders labeled ‘accept’ and ‘reject’, located to the left/right of the body

midline, respectively (Figure 3.1C). We reasoned that if the same object in the same

location is grasped differently depending on a responder’s choice (accept versus reject),

then variations in movement kinematics reflect the choice itself. By the same logic, if the

same object, in the same location, is grasped differently depending on the fairness of the

offer (fair versus unfair), then variations in movement kinematics reflect a response to

the perceived fairness of the offer, independent of the subsequent choice. To ensure that

any effects were not due to the direction of movement, we reversed the positions (left and

right) of ‘accept’ and ‘reject’ cylinders across sessions.
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Figure 3.1: Trial design, experimental design, and behavioral results. (A) Trial design
of the Ultimatum Game task. (B) Average acceptance rates (±SEM) of the 20 responders. (C)
Schematic of experimental design.

3.2.1 Acceptance rates

Acceptance rates, computed as the number of accepted offers divided by the number of

proposed offers across each offer level, were similar to those previously reported in the

Ultimatum Game literature (Sanfey, 2007). Participants accepted almost all fair offers

(e5: 98.4 ± 1.1%, e4: 96.13 ± 1.3%, mean ± SEM), with decreasing acceptance rates as

the offers became less fair (e3: 64.6 ± 7.9%; Figure 3.1B). Unfair offers (e2, e1) were

accepted only 36.3 ± 8.6% and 13.4 ± 6.3% of the time, respectively.

3.2.2 Clustered single-responder representations

Kinematic traces revealed large variability across trials and individuals. Figure 3.2A-

C shows representative movement traces towards right targets clustered by responder’s

identity, choice, and fairness. Each line is a reach-to-grasp action. To examine whether

there was structure in this behavioral variability, as an exploratory step, we applied a
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Figure 3.2: Single-trial movement kinematics. (A-C) Representative kinematic traces
of wrist height (Wz) graphed by responder’s identity (A), choice (B), and fairness (C). Each
line is an individual reach-to-grasp movement. (D-F) Application of t-SNE to movement traces.
Each point represents an individual reach-to-grasp movement embedded into a two-dimensional
space using t-SNE. Points are color-coded based on the responder’s identity (D), choice (E), and
fairness (F).

non-linear dimensionality reduction technique, namely the t-distributed stochastic neigh-

bor embedding (t-SNE) (van der Maaten & Hinton, 2008) (Figure 3.2D-F), to reduce

the dimensionality of kinematic data to two dimensions. The proximity of traces in this

reduced space reflects the similarity of traces in the high-dimensional kinematic space.

t-SNE revealed a reliable segmentation of the 1000 traces into 20 isolated clusters. Color

coding traces based on responders’ identities revealed that each cluster almost perfectly

identified an individual responder (Figure 3.2D). Within each cluster, traces showed fur-

ther separation between accepted and rejected offers (Figure 3.2E), as well as between

fair and unfair offers (Figure 3.2F). This suggests that social decision parameters are

expressed in individualized motor patterns.
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3.2.3 Decoding choice and fairness from movement kinematics of

individual responders

To determine the relationship between social decision parameters and trial-to-trial varia-

tions in each responder’s kinematics, we trained, separately for each responder, a logistic

regression classifier to predict the responder’s upcoming choice (accept versus reject) based

on the unfolding of movement parameters during individual trials. By the same logic, we

trained a logistic regression classifier to predict, for each responder, the fairness of the pro-

posed offer (fair versus unfair). The training set comprised, for each responder, fair (e4,

e5) and unfair (e1, e2) offers. Logistic regression classifiers find a set of linear weights on

kinematic features that maximize the cross-validated probability of correctly decoding the

decision parameter for the individual responder. To ensure that these weights reflected

true kinematic profiles (and not mixtures of movements towards left and right targets), we

trained separate logistic regression classifiers for the left and right targets. We compared

responder-specific logistic regression models with a set of alternative responder-specific

classifiers of varying form and complexity. We verified that logistic regression classifiers

performed better than or comparable to the alternative classifiers (see Figure A.2; Ta-

ble A.2).

Figure 3.3A shows the balanced prediction accuracies of individual responder classifiers

trained on rightward movements. For both choice and fairness classifications, prediction

accuracies were significantly higher than those expected for trial-shuffled data (in which

the association between kinematic data and choice/fairness labels had been removed by

shuffling) or random guesses (Figure 3.3A and Table A.1). The balanced prediction accu-

racies of individual responder classifiers trained on leftward movements were qualitatively

similar (Figure A.3 and Table A.1).

The above results were obtained by training and testing separate logistic regression clas-

sifiers for each responder. In a control analysis, to test the individuality of motor pat-

terns, we trained a logistic regression classifier using data from all but one responder

and then tested them on the left-out responder. If patterns are idiosyncratic, we would

not expect classifiers to generalize to the unseen responder. In line with this prediction,

classifiers trained with this leave-one-subject-out cross-validation scheme showed chance

performance (Figure A.4 and Table A.1), indicating that the relationship between kine-

matics and social decision parameters learned in one responder was not generalizable to
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Figure 3.3: Performance of logistic regression classifiers trained with rightward

movements. (A) Boxplots of balanced prediction accuracies of responder-specific logistic re-
gression classifiers trained on rightward movements to predict choice and fairness. Prediction ac-
curacies were significantly higher for actual data than for trial-shuffled data and random guesses.
(B) Boxplots of balanced prediction accuracies for choice classification on unfair trials only (UO),
and fairness classification on accept trials only (AO). (C) Boxplot of balanced prediction accura-
cies for choice classification on mid-range offers (MO). * indicates p < 0.05, ** indicates p < 0.01,
and *** indicates p < 0.001. N indicates the number of responders included in each analysis.

other responders.

3.2.4 Disentangling choice and fairness information

The above results suggest that both the fairness of a proposed offer as well as the decision

to accept or reject that offer can be predicted from single-trial kinematics of individual

responders. However, given the dependence between fairness and choice – the probability

of accepting a fair offer being three times the probability of accepting an unfair offer across

trials – the above analysis cannot rule out the possibility that choice-related variations

contribute to ‘fairness’ predictions, and by the same logic, fairness-related variations in

movement kinematics contribute to ‘choice’ predictions.

To decouple the contribution of choice-predictive and fairness-predictive information, we

examined the possibility of predicting choice from the kinematics of unfair trials only,

and conversely, the possibility of predicting fairness from the kinematics of accepted trials

only (because of the few rejected fair trials, predicting choice from fair trials only and
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predicting fairness from rejected trials only was not possible). Conditioning the prediction

of one class (e.g., choice) on a particular value of the other (e.g., fairness) discounts the

effect of the latter on the prediction of the former. As shown in Figure 3.3B, for both

classes, the conditional predictions were still consistently superior to those of both trial-

shuffled data and random guesses (Table A.1). Taken together, these analyses suggest

that movement kinematics contain information about both choice and fairness.

3.2.5 Kinematic choice patterns trained on fair and unfair offers

generalize to mid-range offers

The above-described responder-specific choice predictions were trained and tested on fair

(e5, e4) and unfair offers (e2, e1), excluding mid-range offers (e3). As a way of assessing

the generalizability of kinematic patterns that discriminate between accept and reject

choices across offer levels, we tested the ability of responder-specific choice classifiers,

trained on fair (e5, e4) and unfair offers (e2, e1) of a given responder, to predict

the responder’s choice for mid-range offers (e3), not used for training. As shown in

Figure 3.3C, the median balanced prediction accuracy across responders was again close

to 90% (Table A.1). We, therefore, conclude that, within an individual responder, single-

trial kinematics reflect choice information above and beyond the monetary value of the

proposed offer.

3.2.6 Kinematic codes for fairness and choice

Having validated the capability of logistic classifiers to predict choice and fairness, we next

used them to investigate how information about social decision parameters is specified in

the kinematics of individual responders. Figure 3.4 visualizes the contribution (weight)

over time of each kinematic feature for both choice predictions (Figure 3.4A) and fair-

ness predictions (Figure 3.4B) for the rightward movements of an individual responder.

A positive (negative) logistic regression weight is assigned to a feature that, over trials,

is distributed with higher (lower) values for accept compared to reject choices, and for

fair compared to unfair offers. For example, at 30% of movement duration, grip aperture

(GA) is larger for reject choices and thus is assigned a negative value (Figure 3.4C). This

pattern reverses around 70% movement duration when GA is assigned a positive weight.

Similarly, GA is larger for fair compared to unfair trials around the time of the maximum

hand aperture and is thus assigned a positive weight at 60% and 70% of movement dura-
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tion for fairness predictions (Figure 3.4D).

To quantify the degree of (dis-)similarity of kinematic patterns across responders, we

computed, separately for choice and fairness, the correlation between the weights of each

responder and those of all other responders, separately for rightward movements (Fig-

ure 3.5A,B) and leftward movements (Figure A.5A,B). As expected, regression weights

correlated weakly across responders, corroborating the idea that the encoding of social

decision parameters is idiosyncratic. Nonetheless, it remains possible that across respon-

ders some features were used more than others. As an attempt to identify features used

more often across responders, we plotted, for each feature, the number of responders for

which the feature carried significant choice or fairness information (Figure 3.5C,D). This

revealed a widely distributed use of features to encode information. Next, we individu-

ated those features (marked with stars in Figure 3.5C,D) that were used for encoding by

a number of responders higher than expected if encoding was distributed randomly across

the kinematic space (Table A.3). As shown in Figure 3.5C,D, this analysis produced

sparse maps, with few common features expressed, mainly observed at 10% and 100% of

movement duration (Table A.3). This is expected because the start position (hand resting

on the table) and the final position (hand on the cylinder) are relatively constrained, and

inter-individual variability is lower at these time epochs (see Figure A.6). Individualized

patterns are thus more likely to overlap at these epochs (Ting et al., 2015). The most used

feature (Wx at 10% of movement duration) was employed by 9 out of 18 participants.

Similar results were obtained when considering leftward movements (Figure A.5C,D).

Viewed collectively, these results suggest that movement traces encode choice and fair-

ness information, and that this information is expressed in highly personalized kinematic

patterns, with only a few features common to sub-populations of responders.

3.3 Discussion

Social decisions have been almost exclusively studied in disembodied economic settings,

in which the action component is somewhat of an afterthought, reduced to a stereotyped

button press (Gordon et al., 2021). In the real world, however, social decisions are embod-

ied into actions that require forward planning (i.e., what am I going to do next) (Becchio

et al., 2018), that have associated costs (Kieslich & Hilbig, 2014; Shadmehr et al., 2019),

and that can be observed by others (Gordon et al., 2021). This raises the question of
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Figure 3.4: Encoding of choice and fairness in the kinematics of an individual respon-

der. (A and B) Average logistic regression weights for choice (A) and fairness (B) classifications
of rightward movements of an individual responder. (C and D) Time course of grip aperture
(GA) of the same responder graphed by choice (C) and fairness (D). Each line is an individual
reach-to-grasp movement. Time bins corresponding to significant positive and negative weights
are highlighted. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001.

whether, and to what extent, social decision parameters might be reflected in action pa-

rameters.

To answer this question, we used a multivariate single-subject, single-trial approach to

decode key social decision parameters from the kinematics of responders playing a novel

motor version of the Ultimatum Game. In this game, the responder faces a conflict be-

tween the decision to accept any non-zero offer, and thus maximize self-economic benefit,

and the decision to reject non-equitable proposals, and thus punish unfairness (Camerer,

2003). Our approach revealed that movement contains predictive information about both

the fairness of a proposed offer and the decision to either accept or reject that offer. These
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Figure 3.5: Overlap of choice and fairness weights across responders of rightward

movements. (A and B) Pearson correlation of the average logistic regression weights between
each pair of responders for rightward movements for choice (A) and fairness (B) classification. (C
and D) Number of responders, for each feature, for which the feature was statistically significant
for choice (C) and fairness (D) classification. * indicates p < 0.05, ** indicates p < 0.01, and
*** indicates p < 0.001.

results suggest that how individuals move toward a choice option reflects social decision

parameters and provides an ongoing readout of social decision dynamics.

3.3.1 Individuality in motor coding of social decisions

Each responder embodied a parametrization of choice and fairness information that was

both consistent within a given responder and varied from one responder to another. This

observation adds to the growing body of evidence documenting the individuality of motor

solutions (Ting et al., 2015). Consistent with the suggestions that individual variability is

high where the effect of motor output is low (Ting et al., 2015), we found that individual

differences were most expressed while the hand was mid-air en route to the object.

It is tempting to speculate that above and beyond biomechanics, these differences may

reflect differences in how the brain computes social decision parameters. Evidence from
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brain imaging studies using the Ultimatum Game (Gabay et al., 2014) indicates that

both choice and fairness information are represented in a distributed brain network that

prominently includes the anterior insula, anterior cingulate cortex, dorsolateral and dor-

somedial prefrontal cortex, supplementary motor area, cerebellum, and putamen. Future

studies could examine whether and to what extent variations in fMRI signal within this

network covary with movement kinematics.

Leveraging inter-responder differences in activation, covariance analyses between fMRI

and kinematic data could then be conducted to identify the motion signatures of differ-

ent decision strategies. Using fMRI while participants played the Trust Game, a task

closely related to the Ultimatum Game, van Baar et al. (2019) found markedly different

individual neural substrates for different decision strategies, even under conditions where

the two strategies produce the same behavioral output. For example, inequity-averse

subjects, motivated by a principled egalitarian rule, shared a distinctive activity pattern

in ventromedial prefrontal cortex, dorsal anterior cingulate cortex, supplementary motor

area, and bilateral superior occipital cortex. In contrast, guilt-averse subjects, this time

motivated by an aversion to harming others, shared a particular activity pattern encom-

passing bilateral anterior insula, bilateral putamen, dorsomedial prefrontal cortex, and

left dorsolateral prefrontal cortex. This demonstrates the utility of considering individual

differences in motivations across social choice. Future empirical and modeling studies

could usefully examine how kinematics covaries with activity in networks of regions asso-

ciated with different individual strategies.

Finally, having learned how different strategies are reflected in differences in movement

kinematics, future studies could reverse the inference and use kinematics to infer which

strategy responders are using and when they are switching to another strategy. Individual

decision strategies tend to be consistent across different contexts (Poncela-Casasnovas

et al., 2016). However, individuals may apply strategic variability and switch between

strategies. Movement kinematics may provide a means to discriminate between strategies

and detect changes in strategy.

3.3.2 Readout of decision process during social interactions

In authentic social situations, people interact with others. An implication of our findings

is that movement parameters expressing social decisions can be potentially exploited by
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other people. In support of this notion, human perceivers can use subtle differences in

movement kinematics to predict intention (Cavallo et al., 2016; Patri et al., 2020), discern

deception (Sebanz & Shiffrar, 2009), and even infer the value of a poker hand from sub-

tle variations in movement kinematics (Slepian et al., 2013). This suggests that human

perceivers are sensitive to information encoded in movement kinematics (Becchio et al.,

2018). However, further work is needed to explore the intriguing possibility of whether

this sensitivity could extend to understanding motivational strategy and choice informa-

tion from movement kinematics.

One potential challenge here is related to inter-responder variability of kinematic traces.

Under these varying conditions, it might be difficult, if not impossible, for human per-

ceivers to identify common features diagnostic of choice across responders. A strategy

to deal with this variability might be to combine different sources of information, for

example, kinematics and gaze behavior (Fiedler & Glöckner, 2012; Fiedler et al., 2013;

Ghaffari & Fiedler, 2018). In sequential-presentation paradigms, final fixations on alterna-

tives have been shown to be predictive of the subsequent other-regarding choices (Ghaffari

& Fiedler, 2018). Future studies could test whether human perceivers are able to integrate

information transmitted by gaze and hand behavior to predict social decisions.

3.3.3 Linking social decisions and sensorimotor control

By tracking fairness and choice in reach-to-grasp kinematics, we examined the possibility

that parameters of social decisions influence sensorimotor control. Our single-subject,

single-trial findings document a specific influence of fairness and choice on the kinematics

of reach-to-grasp movements, above and beyond a target motor representation. These

results provide a critical addition to the literature linking decision-making and sensori-

motor control by suggesting that hand kinematics can reveal hidden parameters not only

of individual decisions but also of more complex social decisions.

3.4 Limitations of the study

Here, we emphasize the individuality in motor coding of social decisions. However, our

results do not exclude that individual motor signatures cluster into a limited number of

motor phenotypes. Much larger sample sizes would be needed to test this hypothesis

using unsupervised clustering procedures (Poncela-Casasnovas et al., 2016).
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Further investigation is also required to establish the consistency of individual patterns

across different strategic settings. Our results show that individual choice patterns for

fair/unfair offers generalize to mid-range offers. If individuals exhibit similar kinematic

patterns in different experimental settings, this would provide a more robust empirical

case for the idea of an individual choice (and fairness) signature.

3.5 Methods

3.5.1 Experimental model and subject details

Based on previous work using logistic regression to decode intention from movement

kinematics (e.g., Patri et al. (2020)), we aimed at testing 20 participants. Twenty-one

participants completed the task. One participant was excluded from the data analysis

because of extremely low acceptance rates of fair offers (acceptance rates were about 3.6

standard deviations below the group mean for both offers of 4 and e5). The remaining

20 participants (10 females; mean age 23; range 20-27) were right-handed with normal or

corrected-to-normal vision. None of the participants reported neurological or psychiatric

disorders. Written informed consent was obtained from each participant. The research was

approved by a local ethical committee (ASL 3 Genovese) and was carried out in accordance

with the principles of the revised Helsinki Declaration (World Medical Association General

Assembly, 2008). All participants received monetary compensation proportional to the

amount of money gained during the experiment (for details, see below). The dataset was

collected before any analysis began, and no data was added subsequent to the beginning

of analysis.

3.5.2 Method details

Task

Participants played a motor version of the Ultimatum Game as a one-shot game. The

Ultimatum Game can also be played with the same two partners interacting repeatedly,

see for example Cooper and Dutcher (2011). However, under these circumstances, the

game morphs into a reputation game (Kreps et al., 1982), changing both the optimal

and actual game strategies. We used the one-shot Ultimatum Game because this version

minimizes strategic motives and is thus best suited for studying fairness responses (Rilling

& Sanfey, 2011). Participants completed two sessions, always in the role of responder.
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They were told that in each session they would play each iteration of the game in real-time

with a proposer selected from a pool of 68 different players from the Istituto Italiano di

Tecnologia, with whom they would connect via a computer interface. To minimize the

use of strategic considerations, they were informed that the same pool of players would

participate in both sessions (so that each responder would receive two offers from each

proposer) but that proposers would not be informed of responder decisions until the end

of the game. The offer could be 1, 2, 3, 4, or 5 out of e10. Participants were informed

that if they accepted the offer, the money would be split as proposed; if they rejected the

offer, neither player would receive anything. Unbeknownst to participants, the responder

was, in fact, computer-simulated, and all participants received the same set of offers.

Apparatus

Each participant sat on a height-adjustable chair, with their right hand and wrist resting

on a table. The hand, wrist, and right forearm were oriented on the parasagittal plane

passing through the shoulder, and the right hand was in a semi-prone position, with the

tips of the thumb and index finger on a tape-marked point, placed on the working space.

The workspace (width = 100 cm; length = 110 cm) was covered with black fabric. Two

upright cylinders (height = 11 cm; diameter = 7.5 cm; weight = 104 g) were placed in

front of the hand position at a comfortable reaching distance (44 cm from the table edge

to object), 18 cm to the left and right from body midline. The cylinders were labeled

‘accept’ and ‘reject’. The proposed offer was displayed on each trial on a screen placed on

the table together with the silhouette of the randomly selected proposer (see Figure 3.1C

for a schematic representation of the experimental setup).

Procedures

Each trial started with a green fixation cross for 1 s presented at the center of the screen,

followed by a silhouette of the proposer with the message ‘[Name of proposer] is think-

ing...’ (e.g., ‘Laura is thinking...’). This screen could last 2, 3, 4, or 5 s. The offer

then appeared (e.g., ‘Laura’s offer is e4’), remaining visible for 3 s. Participants were

instructed to make their choice within this time window by reaching out, grasping, and

moving one of the two cylinders to a target platform (height = 3 cm; length = 27 cm;

width = 50 cm). Two marked locations indicated where the cylinder should be placed.

After placing the object, participants returned their hands to the starting position. After

a tone, the money earned by each participant was displayed for 2 s (e.g., if the participant
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accepted the offer: ‘Laura gets e6, you get e4’, otherwise, if the participant rejected the

offer: ‘Laura gets e0, you get e0’). Finally, a red fixation cross instructed participants

to return, using their left hand, the cylinder to the home position. The trial design is

depicted in Figure 3.1A.

As part of the cover story, participants were told that the selection of a proposer required

at least 10 players to be connected at the beginning of the trial. If less than 10 players

were connected, the computer would automatically generate the instruction to grasp one

of the two cylinders (control trials). Each participant completed two sessions, separated

by a short break. Each experimental session comprised 80 trials: 68 Ultimatum Game

trials and 12 control trials (6 rightward, 6 leftward). In Ultimatum Game trials, each par-

ticipant saw 12 e1 offers, 12 e2 offers, 12 e3 offers, 16 e4 offers, and 16 e5 offers. The

number of offers was chosen based on previous studies (Sanfey et al., 2003) to mimic the

offer pattern of a human proposer. Participants were informed that the financial compen-

sation would be proportional to the money gained during the experiment. We debriefed

participants at the end of the experiments. Post-experimental interviews confirmed that

participants were unaware of the purpose of the study and had believed the cover story.

One participant (participant 8) expressed the doubt that proposers were not real players.

We verified that excluding the participant did not affect any of the results.

The order of trials was fully randomized across participants. The ‘accept’ and ‘reject’

labels assigned to cylinders were counterbalanced across sessions. The silhouette was

female (male) in half of the trials (34 Ultimatum Game trials). Using logistic mixed

effects models, we verified that neither the gender of the silhouette (proposer) nor that

of the responder had any effect on the decision to accept or reject the offer (Table A.6).

The E-Prime software (v.2.0.10.242) was used for the randomization of the trials and the

synchronization with the kinematic acquisition. The experiment lasted for a total of 70

minutes.

Kinematic data acquisition

We recorded movement kinematics using a near-infrared motion capture system with eight

cameras (acquisition frequency = 100 Hz; Motion Capture Vicon system). Cameras were

positioned in a semicircle at about 1.5 m from the participant’s location. Each participant

was outfitted with 30 retro-reflective markers (Ø = 4 mm) placed on the dorsal surface of
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the wrist (wrist) and hand (palm), radial and ulnar region of the wrist (radio and ulna),

trapezoid bone of the thumb (thu0 ), tip, interphalangeal and metacarpophalangeal joints

of the thumb (thu3, thu2, and thu1 respectively), index (ind3, ind2, and ind1 ), middle

(mid3, mid2, and mid1 ), ring (rin3, rin2, and rin1 ) and little finger (lit3, lit2, and lit1 ),

lateral face of the elbow and arm, acromial process of right and left shoulder, sternal fork,

xiphoid process of the sternum, and head (two frontal and two posterior, right and left).

Three markers were also placed on the top of each cylinder. See Figure A.1A for a layout

of marker placement.

Kinematic data preprocessing and computation of kinematic variables

Each trial was individually inspected for correct marker identification and then run

through a low-pass Butterworth filter with a 6Hz cutoff. Kinematic variables were chosen

to provide a complete description of arm and hand kinematics during reaching and grasp-

ing. Specifically, we used custom software (Matlab; MathWorks, Natick, MA) to compute

two sets of kinematic variables of interest: FGlobal variables and FLocal variables. FGlobal

variables, expressed with respect to the global frame of reference (the frame of reference

of the motion capture system), included the following variables:

• wrist velocity, defined as the module of the three-dimensional velocity vector of the

radio marker (in mm/s);

• x-, y-, and z-wrist, defined as the x-, y-, and z-component of the radio marker (in

mm);

• grip aperture, defined as the Euclidean distance between the markers that were

placed on the tips of the thumb (thu3 ) and the index finger (ind3 ; in mm); These

variables served to characterize the arm kinematics. To characterize hand joint

movements, we computed a second set of variables expressed with respect to a local

frame of reference centered on the hand (i.e., FLocal). Within FLocal, we computed

the following variables:

• x-, y-, and z-index, defined as the x-, y-, and z-component of the ind3 marker (in

mm);

• x-, y-, and z-thumb, defined as the x-, y-, and z-component of the thu3 marker (in

mm);
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• x-, y-, and z-finger plane, defined as the x-, y-, and z-components of the thumb-

index plane (defined by the markers thu3, ind3, and ind1 ). These components

provide information about the abduction/adduction movement of the thumb and

index finger irrespective of the effects of wrist rotation and of finger flexion/extension

(Figure A.1A);

• x-, y-, and z-dorsum plane, defined as the x-, y-, and z-components of the radius-

phalanx plane projection (defined by the markers ind1, lit3, and wrist). These

components provide information about the abduction, adduction, and rotation of

the hand dorsum irrespective of the effects of wrist rotation (Figure A.1A).

We have previously shown that these two sets of variables can be used to capture subtle

differences between kinematics associated with different internal states (Cavallo et al.,

2016, 2018; Koul et al., 2018; Montobbio et al., 2022; Patri et al., 2020). All variables

were calculated only considering the reach-to-grasp phase of the movement, from reach

onset (the first time at which the wrist velocity crossed a 20 mm/s threshold) to reach

offset (the time at which the wrist velocity dropped below a 20 mm/s threshold). Having

verified that movement duration did not vary as a function of choice or fairness (p >

0.1 for both parameters and movement directions), kinematic variables were normalized

into a percentage of movement duration and analyzed as a continuous series of 10 epochs

(0%-10%, 10%-20%, . . . , 90%-100%), resulting into 170 kinematic features.

3.5.3 Quantification and Statistical Analysis

Single-trial kinematic vector

We summarized the kinematics of each reach (i.e., trial) as a vector in the 170-dimensional

kinematic space spanning the 17 kinematic variables over 10-time epochs.

t-SNE

For visualization, we mapped the 170-dimensional single-trial vector of each trial onto

a low-dimensional subspace with t-distributed stochastic neighbor embedding (t-SNE)

(Figure 3.2). The perplexity parameter was set to 15 (similar results were obtained

with a wide variety of parameters). Traces were then color-coded based on the identity of

responders (Figure 3.2D), the choice to accept and reject the proposed offer (Figure 3.2E),

and the fairness of the proposed offer (Figure 3.2F). We chose t-SNE because of its ability
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to work even in the presence of non-linear relationships between features and outliers

(van der Maaten & Hinton, 2008).

Decoding of choice and fairness with responder-specific logistic regression

We used logistic regression, similar to (Patri et al., 2020), to classify choice (accept versus

reject) and fairness (fair versus unfair) from the multivariate single-trial kinematic vector,

defined as above. The logistic regression choice classifier estimated the probability that a

reach expressed the decision to accept the proposed offer as a sigmoid transformation of

the kinematic vector in that trial. The equation of the logistic regression model was as

follows:

P (y = 1|K) = σ(β0 + βTK) =
1

1 + e−(β0+βTK)
(3.1)

P (y = 0|K) = 1− P (y = 1|K) (3.2)

where σ is the sigmoid function, K is the kinematic vector, y is the binary response vari-

able (y = 1, if the offer is accepted; y = 0, if the offer is rejected), β is the vector of the

regression coefficients (weights), and β0 is a bias term.

Similarly, the logistic regression fairness classifier estimated the probability that a reach

responded to a fair offer as a sigmoid transformation of the kinematic vector in that trial.

The regression model equation was the same as that of the choice regression model, except

that the regression was performed using a binary response variable for fairness (y = 1, if

the proposed offer is fair; y = 0, if the proposed offer is unfair). See Figure A.1B for a

block diagram of the model.

Both choice and fairness regression classifiers were trained separately for each responder.

To be included in the analysis, each responder had to contribute a minimum of four trials

in each class in each classification task. The number of trials available for individual

responders is reported in Table A.4 and Table A.5.

Training of logistic regression models

To avoid penalizing predictors with larger value ranges, we z-scored the single-trial kine-

matic vectors within each responder. With the response variable encoded as 0 or 1, a

penalized version of the logistic regression classifier was trained by minimizing the nega-

49



3.5. Methods

tive binomial log-likelihood LLR with an elastic net regularization (Friedman et al., 2010)

defined as:

min
β,β0

LLR(β, β0) = min
β,β0

{

−

[

1

n

n
∑

i

wi(β0 + βTKi)− log(1 + eβ0+βTKi)

]

+λ

[

(1− α)||β||22
2

+ α||β||1

]

} (3.3)

where n is the total number of trials, λ is the regularization parameter, α is a value be-

tween 0 and 1 weighing the relative contribution of the L1 and L2 penalty, and wi is the

rescaling weight assigned to the i-th trial that is inversely proportional to class frequen-

cies of training data. The hyperparameter λ was tuned using a nested leave-one-trial-out

cross-validation (LOTO-CV) procedure. We used all data available for each responder.

An evaluation of how model performance scales with the amount of data is provided in

Figure A.7, in which we repeated the responder-specific LR classifications as described

here but using only 50% or 75% of the data available for each responder, rather than the

full dataset. A grid search procedure was used to find the best λ value within the range

logspace(1, -3, 5). To obtain sparser, and thus more interpretable solutions, α was

fixed at 0.95. We used α = 0.95 because using this value, as shown in Friedman et al.

(2010), provides numerical stability. To investigate the robustness and the stability of the

solutions as α varied, for each responder, we computed the Pearson correlation between

regression weights between each pair of α values in the set [0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1].

For each classification task, the average across responders of this correlation was always

higher than 0.75.

The regression weights β and the bias β0 were estimated minimizing the loss function

LLR(β, β0) via coordinate descent (Friedman et al., 2010). The logistic regression models

were trained using the Python version (http://hastie.su.domains/glmnet_python) of

the Glmnet package (Friedman et al., 2010).

Classifying the choice of the responder

For choice classification, the outcome variable was 0 for rejected offers and 1 for accepted

offers. We considered only unfair offers (e1, e2) and fair offers (e4, e5) for this analysis.

Mid-range offers (e3) were excluded from this analysis. This analysis was conducted over
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18 responders for each direction of movement (leftwards and rightwards). The number of

trials available for individual responders is reported in Table A.4.

Classifying the fairness of the offer

For fairness classification, the outcome variable was 0 for unfair offers (e1, e2) and 1 for

fair offers (e4, e5). The e3 offers were excluded from this analysis. The analysis was

conducted over 18 responders for each direction of movement (leftwards and rightwards).

The number of trials available for individual responders is reported in Table A.4.

Classifying the choice of the responder using unfair trials only

In this analysis, we classified choice using only the subset of unfair trials. The analysis

was conducted over 8 responders for rightward movements and 7 responders for leftward

movements. The number of trials available for individual responders is reported in Ta-

ble A.4.

Classifying the fairness of the offer using accepted trials only

In this analysis, we classified fairness using only the subset of accepted trials. The analysis

was conducted over 8 responders for rightward movements and 7 responders for leftward

movements. The number of trials available for individual responders is reported in Ta-

ble A.4.

Generalization of responder’s choices to over mid-range offers

In this analysis, the classifiers were trained to classify choice using all but mid-range offers

(e3), which were used for testing. This analysis was conducted over 18 responders for

each direction of movement (leftwards and rightwards). The number of trials available for

individual responders is reported in Table A.5.

Control analysis using leave-one-subject-out cross-validation

In this control analysis, the logistic regression classifiers were trained to classify choice and

fairness using data from all but one responder, and then tested it on the left-out responder.

This analysis was conducted over 18 responders for each direction of movement (leftwards

and rightwards). The hyperparameter λ was tuned using a nested leave-one-subject-out

cross-validation procedure. The best λ value was found within the range logspace(1,
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-3, 5) using a grid search procedure, and α was fixed at 0.95. As a test of the robustness

of results, we repeated the analysis with values of α ranging from 0.5 to 1 and using k-fold

cross-validation instead of leave-one-subject-out cross-validation. In all cases, prediction

performance remained at chance for both choice and fairness.

Alternative classification approaches used for comparison

We compared logistic regression (LR in Figure A.2 and Table A.2) models with a set

of alternative models in terms of how well they could predict choice and fairness. The

results are shown in (Figure A.2 and Table A.2). Below, we briefly describe the alternative

models used for comparison.

Multi-Task Logistic Regression classifier. Multi-task learning classifiers leverage

useful information contained in related tasks to improve classification performance (Ev-

geniou et al., 2005). Here, we used multi-task learning (MTLR in Figure A.2 and Ta-

ble A.2) to simultaneously classify choice (accept versus reject) and fairness (fair versus

unfair) from the z-scored multivariate single-trial kinematic vector. The MTLR model

was trained by minimizing the negative log-likelihood LMTLR with L2-penalty defined as:

min
β,β0

LMTLR(β, β0) = min
β,β0

{

2
∑

r=1

1

n

n
∑

i=1

wi,rlog
(

1 + e−yi,r(β0,r+βT
r Ki,r)

)

+λ1

[

(1− α)||β||2F + α||β||2,1
]

+
1− λ2

λ2

2
∑

r=1

∥

∥

∥

∥

∥

βr −
1

2

2
∑

s=1

βs

∥

∥

∥

∥

∥

2} (3.4)

where λ1 is the elastic net regularization parameter, λ2 is the task-coupling parameter,

r and s are indexes that denote the task (r, s = 1 choice classification, r, s = 2 fairness

classification), n is the number of trials, βt is the regression weight, β0,r is the bias term,

wi,r is the rescaling weight, yi,r is the response variable for the given task r in the i-th

trial, and Ki,r is kinematic vector in the i-th trial. The hyperparameters λ1 and λ2 were

tuned using a nested LOTO-CV procedure and α was set to 0.95, using a grid search

within the range logspace(-3, 3, 7) for λ1, and linspace(0.1, 1, 19) for λ2. The

loss function was minimized using the L-BFGS method (Byrd et al., 1995). The MTLR

models were implemented using PyTorch (Paszke et al., 2019).
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Static Weights Logistic Regression classifier with time-integration. This ver-

sion of the logistic regression classifier used static (that is, time independent) weights and

time integration of evidence, similar to Montobbio et al. (2022). Specifically, the Static

Weights Logistic Regression (SWLR in Figure A.2 and Table A.2) model estimated the

single-trial cumulative probability P (y(t)|[K(1), . . . , K(t)]) (i.e., the cumulative evidence)

in favor of an accepted offer and a fair offer as a function of the time-dependent kinematic

vector in that trial up to time t, as follows:

P ([y(0) = 1]) = P ([y(0) = 0]) = 1/2 (3.5)

P ([y(t) = 0]|K(1), . . . , K(t)) = σ(β0 +K(t)β + w(y(t− 1)− 1/2)) (3.6)

P ([y(t) = 1]|K(1), . . . , K(t)) = 1− P ([y(t) = 0]|K(1), . . . , K(t)) (3.7)

where σ is the sigmoid function, β0 is a bias term, K(t) is the kinematic vector at time

epoch t, β is the vector of the regression coefficients (weights), and w is a coefficient

weighting the cumulation of evidence over time. In each trial, classification was performed

integrating evidence until the end of the movement (100% of movement time). The

model was trained by minimizing the negative binomial log-likelihood with L2-penalty

via stochastic gradient descent with adaptive moment estimation (Adam) (Kingma & Ba,

2014). The hyperparameter λ, controlling the strength of the L2 regularization, was tuned

using a nested 5-fold CV procedure. The best hyperparameter λ was found with a grid

search within the range logspace(1, -3, 5).

Encoding-Decoding classifier. This classifier was similar to that used in Runyan et

al. (2017). The Encoding-Decoding (ED in Figure A.2 and Table A.2) classifier includes

an encoding part, which modeled each kinematic feature as a function of the choice of the

responder, the fairness of the proposed offer, and their interaction, and a decoding part,

which uses the encoding model to compute (using Bayes’ theorem) the posterior probabil-

ities of each responder’s outcome given the kinematic parameter. Classification was then

made by choosing the response class with the higher posterior probability. The encoding

models were linear regression models fitted with the package scikit-learn (Pedregosa et al.,

2011). In building response probabilities from the linear regression model, we assumed

that noise was Gaussian and, similar to Runyan et al. (2017), that the kinematic features

were conditionally independent given the responder’s choice and the offer’s fairness.
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Gaussian Process Regression classifier. We finally classified responses using a Bayesian

non-linear regression implemented as a Gaussian process regression (GPR in Figure A.2

and Table A.2) model (Rasmussen & Williams, 2005). The kinematic vectors were consid-

ered as noisy observations of a 170-dimensional latent function f(K) defined as a Gaussian

process:

f(K) ∼ GP (m(K), c(K,K ′)) (3.8)

where K,K ′ are any two vectors in kinematic space. The Gaussian process is specified

by the analytical form and hyperparameters of a mean function m(K) (in our case set to

zero as kinematic vectors were z-scored for this analysis) and covariance function c(K,K ′)

that specifies the similarity of values between any two vectors in the kinematic space. As

a covariance function c(K,K ′), we chose a squared exponential with automatic relevance

determination (SE-ARD) defined as:

cSE−ARD(K,K ′) = σ2
f exp

(

−
1

2

170
∑

d=1

(K(d) −K ′

(d))
2

l2d

)

(3.9)

where the signal variance σ2
f and the length-scales ld are hyperparameters, and d denotes

the feature. Unlike the commonly used squared exponential covariance function, which

has a single length-scale for all features, this more complex covariance allows for a different

length-scale ld for each kinematic feature (Rasmussen & Williams, 2005).

We used a Gaussian likelihood function with hyperparameter σ2
n to model the level of the

response variability, such that any samples of latent function f and observed response y

at location K and any new samples (that is, the samples in the test set not used to train

the model) of predicted values f∗ at the unseen kinematic trials K∗, has the following

expression:

[

y

f∗

]

∼ N

(

0,

[

C(K,K) + σ2
nI C(K,K∗)

C(K∗,K) C(K∗,K∗)

])

(3.10)

By conditioning on a set of observed (training) data points K, we obtained a posterior

distribution over function values at any unobserved data point, including those in the test

set K∗. To binarily classify the response in each test set data point, we passed the mean

of the predictive function f̄(K∗) through a Heaviside function that returned 0 if f̄(K∗)

was less than 0.5, +1 if it was greater than 0.5, and performs a random prediction if it

was equal to 0.5.
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The model hyperparameters θ = [σ2
f , ld, σ

2
n] were randomly initialized and optimized dur-

ing training by minimizing the negative log marginal likelihood (NLML) (Murphy, 2012),

defined as:

−log p(y|K,θ) =
1

2
yTC−1

y y +
1

2
log|Cy|+

n

2
log2π (3.11)

where Cy = C(K,K) + σ2
nI, and |Cy| is the determinant of the covariance matrix Cy.

The NLML was minimized through the Polak-Ribière conjugate gradient (CG) method

(Nocedal & Wright, 1999), over a maximum of 1000 iterations. Since the NLML could

suffer from local optima (Rasmussen & Williams, 2005), 10 random restarts of the op-

timizer were performed and the hyperparameters θ associated with the smaller NLML

were selected. The GPR model was fitted using the GPflow (Matthews et al., 2017).

Performance was evaluated using LOTO-CV.

Quantification of classification performance

Classification performance was quantified as balanced classification accuracy. The bal-

anced accuracy is the average of true positive and true negative classification rates. The

true positive rate is the fraction of positives that are correctly classified as positives, and

the true negative rate is the fraction of negatives that are correctly classified as negatives.

Balanced accuracy, because it balances accuracies of positive and negative classification

groups by their respective sample size, is useful in datasets like ours in which classification

outcomes are unbalanced. To avoid overfitting, we computed balanced accuracies on test

data using a LOTO-CV for all classifications.

Computation of the statistical significance of classification performance

To test whether classification performance was significantly above chance, we obtained an

overall index of task performance by taking the median of the balanced accuracies across

all responders. To create a null hypothesis distribution of median balanced accuracies

under the assumption that there is no relationship between the kinematic data and the

choice or fairness in the same trials, we trained the logistic regression models on trial-

shuffled data with the choice/fairness labels randomly shuffled across trials (100 random

shuffles without replacement per responder). We then computed an empirical p-value as

p = r/nc, where nc was the number of samples of the null distribution (100 in this case),

and r was the number of times where an element of the null distribution was greater than
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or equal to that of the logistic regression models. To verify the ability of nonparametric

permutation tests to maintain a low False Positive Rate (FPR) that matched the threshold

set for significance across all sample sizes used in the analyses of Figure 3.3, following (Ince

et al., 2012), we repeated 50 times the analyses in Figure 3.3 using permuted data with

null information (rather than from the real data as in Figure 3.3). We found that using

a threshold of p = 0.05 for significance, the FPR was stable and close to 0.05 in all the

analyses (on average, overall all analyses and permutations, FPR was 0.03%). We also

obtained an additional, less conservative, random-guess null-hypothesis distribution of

1000 median balanced accuracies using a random classifier with a prior random guess,

i.e., a model that generates predictions by respecting the training set’s class distribution.

Then, an empirical p-value was computed as above.

Computation of the statistical significance of the values of individual logistic

regression weights

With LOTO-CV, one set of regression weights is obtained for each left-out trial. For each

responder, there are as many sets of regression weights as the number of available trials.

To obtain a single set of regression weights from these data, we computed the median of

the coefficients across all regression models for a given responder, after removing outliers

outside the median * 2.5 times the median absolute deviation. The same procedure (but

without removing the outliers) was also applied to regression models trained on trial-

shuffled data (100 random shuffles without replacement of the trial labels) to generate

a null hypothesis distribution of the values of weights of features under the assumption

that there is no relationship between the kinematic data and the choice or fairness in

the same trial. The removal of the outliers only in the data distribution but not in the

null-hypothesis distribution ensures an ultra-conservative determination of features with

significant weights. We then computed from this distribution a two-tailed empirical p-

value of the hypothesis that the value of the coefficient (positive or negative) reflected

only a random relationship between kinematics and choice or fairness. The p-values of

the non-zero coefficients were FDR corrected (α = 0.05) for multiple comparisons across

all non-zero coefficients.
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Computation of cross-correlations of logistic regression coefficients across par-

ticipants

For each pair of responders, we quantified the similarity of choice or fairness encoding as

the Pearson correlation (across kinematic variables and time epochs) between the median

across all LOTO-CV models of the absolute value of the encoding weights of the first

responder and the same quantity of the second responder.

Computation of the statistical significance of features concentration across

participants

For each feature, we quantified x, the number of responders who had a significant weight

for that feature. If significant weights were distributed randomly across the kinematic

feature space, then x would follow a null-hypothesis binomial distribution with probability

p = M/(170·n), where M is the number of significant weights found over the n responders.

To test the hypothesis that the concentration of responders with significant weights of a

feature was higher than expected if significant weights were distributed randomly across

the kinematic feature space, we thus used a one-tailed binomial test with parameters x,

n, and p listed above.
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4. Study 2: Social decision-making

from a vigor perspective

4.1 Introduction

Every day we face situations that require us to make a decision, from the most trivial

(e.g., what to eat for lunch) to the most crucial (e.g., accepting or rejecting a job offer).

To better understand how we make decisions, economists introduced the concept of util-

ity (von Neumann & Morgenstern, 1944), i.e., how much one values a particular option.

This concept lies at the core of economic decisions and has been used by neuroscientists

and psychologists to study the neural basis of decision-making. However, most of these

studies merely focus on people’s behavior, i.e., their choices, indicating only the order

of preference among options (e.g., people chose option A over option B), neglecting the

degree of preference that drives people’s decisions (e.g., people preferred option A 70%

more than option B) (Shadmehr & Ahmed, 2021).

Recent studies have examined how to measure the degree of preference and found that

when deliberating among possible options, factors that influence subjective utility (e.g.,

reward and effort) influence the vigor of movements (Shadmehr et al., 2019). For exam-

ple, Korbisch et al. (2022); Milstein and Dorris (2007); Xu-Wilson et al. (2009); Yoon et

al. (2018, 2020) found that people’s eye movements reflect decision variables, showing a

higher peak saccade velocity and shorter reaction time when they direct their gaze toward

the targets they value most. Utility also modulates reaction time and velocity of reaching

acts: Summerside et al. (2018) and Sackaloo et al. (2015) found that the vigor of reaching

movements was higher when directed toward rewarded or more valuable targets. Taken

together, these findings suggest that vigor can be viewed as a continuous, real-time metric

to measure the degree of preference and thus serve as a window into subjective utility,
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enabling deeper insights into decision-making processes.

The aforementioned studies adopted paradigms with defined outcomes and probabilities,

focusing on studying movement vigor in individual decisions. In contrast, most of our de-

cisions occur during social interactions and are taken by considering the impact they will

have on us and others (Fehr & Camerer, 2007; Rilling & Sanfey, 2011; Sanfey, 2007). A

better understanding of whether and how vigor movement is expressed in a social context

is needed.

Recently in Turri et al. (2022), we found that movement kinematics encodes social deci-

sions using a motor version of an experimental economics game, the Ultimatum Game.

There, a proposer receives a sum of money and must propose a split to the responder,

who can accept or reject. If the responder accepts, the split is carried out; if the responder

rejects, both get nothing. A fully rational responder, guided solely by self-interest, will

accept any non-zero offer, as predicted by normative standards in game theory (i.e., Nash

equilibrium) (Camerer & Thaler, 1995). Contrary to this prediction, responders behave

irrationally and, despite implying a loss of money, reject the low offers perceived as unfair,

thus punishing the proposer (Camerer, 2003). Our findings showed that reach-to-grasp

movements encode information about both the responders’ choice and the fairness of the

proposers’ offers.

With this in mind, we asked ourselves whether the relationship between the vigor of

reaching movements and the subjective expected utility of proposers’ offers is still intact

in the case of this complex social interaction. If so, we should see a modulation of

movement vigor driven by social decision variables, which in this case are the responder’s

choice and offer level. Therefore, we formulate the hypotheses as follows:

(i) for accepted offers, we hypothesized that vigor of reaching movements would increase

with offer level;

(ii) for rejected offers, we contrasted three alternative hypotheses:

(a) vigor decreases with offer level showing opposite behavior to that of accepted

offers;

(b) vigor increases with offer level and thus is not influenced by responders’ choice;

(c) vigor is unrelated to offer level and remains constant.
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4.2. Results

Here, we tested these hypotheses by analyzing previously collected data (Turri et al.,

2022) focusing on some kinematic features: reaction time, movement time, peak velocity,

and time-to-peak velocity.

We observed that responders, when accepting, reacted and moved faster as the offer level

increased. Interestingly, the opposite behavior was found for rejected offers, where respon-

ders’ vigor increased as the offer value decreased. Our findings suggest that movement

vigor is influenced by decision variables even in social interactions.

4.2 Results

To test the relationship between vigor and offer level, and how this relationship is modu-

lated by the choice to accept or reject the proposed offer, we analyzed the data collected

in Turri et al. (2022).

Briefly, twenty-one participants played a motor version of the Ultimatum Game (UG),

acting as responders, and as they played, we tracked their arm kinematics through a

motion capture system. Participants underwent two sessions and were told that, in each

session, they would be paired with 68 proposers and would play, via a computer interface,

a single iteration of the game with each of them (see Figure 4.1A for the trial design).

The delivered offers followed a predetermined scheme ensuring that all participants re-

ceived the same offers. After the offer was presented, to make their choice, participants

were instructed to reach, grasp, and lift one of two cylinders labeled ‘accept’ and ‘reject’,

placed to the left/right of the body midline (Figure 4.1B). To avoid any effect due to the

direction of movement, we swapped the cylinders’ labels across sessions. Note that the

starting and cylinder positions were always the same throughout the experiment, main-

taining the effort of the reach-to-grasp acts fixed.

The acceptance rate of UG offers, computed as the number of accepted offers divided by

the number of proposals for each offer level, was in line with those reported in previous

studies (Gabay et al., 2014). Almost all fair offers were accepted (97.09% and 94.66%

for e5 and e4 offers, respectively), while as offers became less fair, the acceptance rate

decreased (63.40%, 37.08%, and 15.29% for e3, e2, and e1 offers, respectively).
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Reach-to-Grasp Object LiftingStarting Position

B

A

1 s 2-5 s

Laura is

thinking...

3 s

Laura offers

4€

Offer

accepted

Offer

rejected

3 s

3 s

Laura gets 6€

You get 4€

Laura gets 0€

You get 0€

Figure 4.1: Trial and experimental design. (A) Trial design of the UG task. (B) Outline
of experimental design. Adapted from Turri et al. (2022)

4.2.1 Social decision variables affect movement vigor

Based on previous works (Sackaloo et al., 2015; Summerside et al., 2018), we describe

vigor of reaching in terms of reaction time (RT), movement time (MT), peak velocity

(PV), and time-to-peak velocity (TPV). For example, Summerside et al. (2018) showed

that subjects’ peak velocities were faster and reaction times were shorter when faced

with a rewarded target, indicating a more vigorous act compared to unrewarded targets.

Another example is provided by Sackaloo et al. (2015), where the authors showed that

subjects’ movement time and movement units were significantly smaller when reaching for

a candy associated with greater preference. In summary, an increase in vigor is reflected

by shorter reaction and movement times, higher peak velocity, and earlier time-to-peak

velocity.

We used linear mixed-effects models to statistically test whether responders’ vigor, de-

scribed by the kinematic variables mentioned above, was affected by social decision vari-

ables, i.e., offer level and choice. We found a significant effect of interaction between offer
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level and responders’ choice for RT, MT, PV, and TPV, suggesting that movement vigor

is expressed differently between accepted and rejected offers (Figure 4.2, Table B.1, B.2,

B.3, B.4, B.6). Specifically, in line with our hypothesis, we observed a positive relationship

between vigor and offer level for accepted offers, meaning that participants reacted and

moved faster as offer level increased (significant positive slopes for all the dependent vari-

ables, Figure 4.2, Table B.6). Concerning rejections, the trend is reversed; participants

rejected low-level (unfair) offers more vigorously than higher offers (significant negative

slopes for RT, PV, and TPV, Figure 4.2, Table B.6). Furthermore, we computed the

difference between the slopes of accepted and rejected offers and observed that the two

trends were significantly different for all the dependent variables (Figure 4.2, Table B.6).

As a control analysis, to test that vigor is not expressed by all the kinematic variables,

we trained linear mixed-effects models with peak grip aperture (PGA) as the dependent

variable, since it should not be modulated by vigor. Indeed, it is well established that grip

aperture encodes information about the dimension of the object to be grasped (Ansuini

et al., 2015). For example, when grasping a large object, PGA is greater and occurs

later than for smaller objects. In our experimental setup (Figure 4.1B), the objects

grasped to communicate the decision were identical. Thus, as expected, we did not find

a significant main effect of responders’ choice or offer level or the interaction between the

two (Table B.5, B.6).

4.3 Discussion

Vigor of reaching was primarily investigated by measuring individuals’ behavior with

paradigms whose goal was to understand whether the degree of preference (Sackaloo et

al., 2015) or increased reward (Summerside et al., 2018) was expressed via reaching kine-

matics. However, the modulation of vigor in the social domain is still under-explored.

In this work, participants played a motor version of UG in the role of responders, and

we investigated whether social decision variables influenced the vigor of reach-to-grasp

movements. We found that vigor increases according to the offer level for accepted offers,

whereas the opposite was found for rejected offers.

Moreover, we noticed that the ‘accept’ and ‘reject’ vigor slopes cross at the offer level
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Figure 4.2: Reaction time, movement time, peak, and time-to-peak velocity as a

function of decision variables. (A-D) Slopes of reaction time (A), movement time (B),
peak velocity (C), and time-to-peak velocity (D) relative to the significant interaction between
responders’ choice and offer level (offer:choice) obtained with linear mixed effects modeling.
Shaded areas represent the 95% bootstrap confidence interval of the slopes and intercepts. The
p-values indicate whether the slopes were significantly different from zero. The asterisks indicate
the significance level of the comparison between the ‘accept slope’ and the ‘reject slope’ (*: p <
.05, **: p < .01, ***: p < .001)

of about e2-3. Referring to the behavioral results, we see that at these offer levels the

average acceptance rate drops from about 63% for e3 to about 37% for e2 offers, passing

through to the indifference point (i.e., 50%). This suggests that the intersection point of

vigor slopes could be used to establish the indifference point at which responders switch

from accepting to rejecting an offer. This is consistent with the findings of Krajbich et al.

(2014), who show that RTs can be used to measure the strength of responders’ preferences,

with the longest RTs associated with the offer level closest to the indifference point.

63



4.3. Discussion

4.3.1 Self-loss or other-punishment?

Our research and other studies showed that when presented with two options, individuals’

actions tend to be more vigorous toward the most valuable options (Korbisch et al., 2022;

Milstein & Dorris, 2007; Sackaloo et al., 2015; Summerside et al., 2018; Xu-Wilson et

al., 2009; Yoon et al., 2018, 2020). We encounter this behavior with accepted offers. In

fact, responders’ representation of offer value in terms of utility is straightforward, and

as expected, vigor increases as a function of the offer level.

However, it is intriguing what happens with rejections; as the offer becomes more unfair,

the responders’ vigor increases. What are the determinants of this behavior? Rejections

in the UG are a means to punish the proposer and are exploited by responders who seek

to restore balance and promote cooperation (Camerer, 2003; Fehr & Schmidt, 1999; Ya-

magishi et al., 2012). They can be thought of as characterized by two factors: self-loss,

which is how much responder is losing, and other-punishment, which is the amount of

inflicted punishment. Therefore, there are at least three possible explanations for this

pattern of behavior.

First, we may assume that responders assign more utility to harsher punishments. This

would translate into increased vigor as the offer level decreases, thus, reflecting other-

punishment. A PET study by de Quervain et al. (2004) provides evidence for this hy-

pothesis. They discovered that punishing defectors who violate social norms activates the

dorsal striatum, which is involved in processing the rewards that result from goal-directed

actions (Fehr & Camerer, 2007). Notably, the activation magnitude positively correlated

with the severity of the punishment. This behavior falls within the framework of altruistic

punishment, where individuals, even in one-shot interactions, are willing to bear a cost

to themselves in order to encourage cooperation in human societies (Boyd et al., 2003).

Second, from a utilitarian perspective, we may reason for responders’ willingness to punish

unfairness as being related to their personal loss. Hence, vigor will decrease as a function

of self-loss. In support of this, Civai et al. (2010) found that individuals who rejected

unfair offers experienced increased emotional arousal only when the offers were directed

against themselves (myself condition), and not against a third-party (third-party condi-

tion). This suggests that the increased arousal in the myself condition could be because

individuals were incurring a self-loss, whereas this did not occur in the third-party con-
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dition. Moreover, if an effect of altruistic punishment was present, we would also expect

an arousal activation in the third-party condition.

Finally, the observed pattern of vigor could reflect a combination of both self-loss and

other-punishment: for example, vigor would be highest under circumstances of low self-

loss and high other-punishment and lowest in the opposite case.

The present experiments based on the UG were not designed to decide among these

possibilities. Unfortunately, the UG does not allow disentangling the two factors (self-

loss and other-punishment) since they are mutually coupled: rejecting an offer of ex

always results in a self-loss of ex and an other-punishment of e(10-x), where x is the

value of the offer. Therefore, they vary hand in hand and in opposite directions by

proposing scenarios defined by low self-loss and high other-punishment (e.g., rejection

of e1 offers) to scenarios with high self-loss and low other-punishment (e.g., rejection

of e3 offers), without admitting situations where both self-loss and other-punishment

are simultaneously low or high. With this paradigm, we cannot determine whether the

observed inverse relationship between vigor and offer level for rejected offers depends

on either an increase in self-loss, a decrease in other-punishment, or a combination of

both. We then need to find an alternative socio-economical game that allows us to better

understand this relationship.

4.3.2 Does emotional arousal modulate vigor?

The emotions that humans experience are reflected in their movements (Noroozi et al.,

2018), and it could be that the vigor level of a movement is a reflection of emotional

arousal. Studies reported that eye movements can provide valuable insights into cognitive

functions and affective states, showing that eye-related features (e.g., saccadic velocity,

time to first fixation, fixation duration, etc.) were influenced by the emotional content

of stimuli (Skaramagkas et al., 2021). Our findings show the highest levels of vigor when

responders accepted e5 and rejected e1 offers, which are the offer levels for which respon-

ders reported feeling stronger positive/negative emotions (Civai et al., 2010). However,

we did not assess people’s affective state in this study, and future research could include

questionnaires and measurements of skin conductance responses to further explore the

relationship between emotional state and movement vigor.

65



4.4. Methods

4.3.3 Is vigor read out by others?

Humans are social beings endowed with a unique ability: we can read out information

encoded in the movement of others. This skill allows us to predict in advance the future

actions of other people and be able to respond accordingly (Becchio et al., 2018). For

example, external observers can take advantage of subtle variations in movement kine-

matics and deduce others’ intentions (Cavallo et al., 2016; Patri et al., 2020). Our findings

demonstrate that social factors influence movement vigor, but is this information visible

to an external observer? Can an observer read out movement vigor and infer the utility

information that we assign to it? Further work is required to address these questions

which could be pursued as proposed by Becchio et al. (2021), where the authors provide

an operational guide to test this hypothesis.

4.4 Methods

4.4.1 Experimental model and subject details

The results discussed in this work were obtained by analyzing previously acquired data.

In the following, we report a brief description of the task and procedures. For detailed

information, see Turri et al. (2022).

Twenty-one right-handed participants (10 females; mean age 23; range 20-27) with nor-

mal or corrected-to-normal vision completed the task. None of the participants reported

neurological or psychiatric disorders. Written informed consent was obtained from each

participant. The research was approved by a local ethical committee (ASL 3 Genovese)

and was carried out in accordance with the principles of the revised Helsinki Declaration

(World Medical Association General Assembly, 2008). All participants received monetary

compensation proportional to the amount of money gained during the experiment.

4.4.2 Method details

Task

Participants played a motor version of the Ultimatum Game (UG) as a one-shot game

completing two sessions in the responder role. They were told that in each session, via a

computer interface, they would play each UG trial with a different proposer selected from
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a pool of 68 players at the Italian Institute of Technology. To avoid the occurrence of

strategic considerations, they were informed that the proposers would be notified of their

choices only at the end of the game. Participants were explained the UG rules: if they

accepted the proposer’s offer, the money would be divided as proposed; if they rejected

it, none of the two players would receive anything. Unknown to the participants, the

proposer was computer-simulated and all participants received the same set of offers (1,

2, 3, 4, or 5 euros out of 10), which mimicked the bidding pattern of a human proposer.

Apparatus

Participants sat in a height-adjustable chair, with their right hand and wrist resting on

a table. Two vertical cylinders were placed in front of the hand position, one on his right

and one on his left, at a comfortable distance to reach it. One cylinder was labeled as

‘accept’ and the other as ‘reject’. The proposed offer was displayed together with the

silhouette of the randomly chosen proposer on a screen placed in front of the participants

(see Figure 4.1A for a schematic representation of the experimental setup).

Procedures

At the beginning of each trial, a green fixation cross was shown in the center of the screen

for 1 s. This was followed by a screen showing a silhouette of the proposer with the

message ‘[proposer’s name] is thinking...’ lasting 2, 3, 4, or 5 s. Then, the offer appeared

(‘[proposer’s name] offer of e4’) and remained visible for 3 seconds. Participants had

to choose within this time window by reaching, grabbing, and moving one of the two

cylinders to destination points placed on a platform. Following the decision, feedback on

the money earned by the players was displayed for 2 s. For example, if the participant

accepted: ‘[proposer’s name] receives e6, you e4’; if the participant rejected: ‘[proposer’s

name] receives e0, you e0.’ Finally, upon the appearance of a red fixation cross, partic-

ipants were to return the cylinder to its initial position and prepare for a new UG trial.

A schematic of the experimental design is shown in Figure 4.1B.

Participants underwent two sessions. Each session consisted of 80 trials: 68 UG trials

and 12 control trials (6 movements to the right and 6 to the left). The offer set was the

same for each participant and consisted of 12 e1 offers, 12 e2 offers, 12 e3 offers, 16 e4

offers, and 16 e5 offers. This set of offers mimics the bidding pattern of a human proposer

(Sanfey et al., 2003). Participants were informed that monetary compensation would be
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proportional to the money earned during the experiment. At the end of the experiment,

we debriefed the participants. Post-experimental interviews confirmed that participants

were unaware of the purpose of the study and believed the cover story.

The trial order was randomized among participants, and cylinder labels (‘accept’ and

‘reject’) were counterbalanced between sessions. The silhouette was female (male) in

half of the trials. E-Prime software (v.2.0.10.242) was used for trial randomization and

synchronization with the motion capture system.

Kinematic data acquisition

Movement kinematics were recorded using a motion capture system with eight near-

infrared cameras (sampling frequency = 100 Hz; Vicon Motion Capture system). Partic-

ipants were outfitted with 30 retroreflective markers. To track the reach-to-grasp move-

ment, most of the markers (22) were placed on the right hand, wrist, arm, and elbow.

The remaining markers were placed on the trunk and head to track the participants’

posture. Also, the cylinders were outfitted with three markers each. For a more detailed

description of the arrangement of the markers, see Turri et al. (2022).

Kinematic data preprocessing and computation of kinematic features. A visual inspection

was performed on each kinematic trial to verify correct marker identification. The move-

ment kinematics were filtered with a Butterworth low-pass filter (cutoff frequency of 6 Hz).

Based on previous research (Sackaloo et al., 2015; Summerside et al., 2018), as a set

of features describing the vigor of movement, we chose to analyze the reaction time,

movement time, peak, and time-to-peak velocity. In addition to this set of features, as

a control, we decided to analyze also peak grip aperture, which we did not expect to be

affected by the vigor of the movement.

These features, computed using custom software (Matlab; MathWorks, Natick, MA), were

defined as:

• Reaction time (RT, in ms), i.e., the time elapsing between the stimulus onset (de-

livering of the offer) and the participant’s reach onset (the first time at which the

wrist velocity crossed a 20 mm/s threshold);

• Movement time (MT, in ms), i.e., the time elapsing between the participant’s reach
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onset and the reach offset (the time at which the wrist velocity dropped below a 20

mm/s threshold);

• Peak velocity (PV, in mm/s), i.e., the maximum of the module of the three-dimensional

velocity vector of the radio marker;

• Time-to-peak velocity (TPV, in ms), i.e., the time from movement onset to the

occurrence of PV;

• Peak grip aperture (PGA, in mm), i.e., the maximum Euclidean distance between

the markers that were placed on the tips of the thumb and the index finger.

All features were computed considering the reach-to-grasp phase of the movement, from

reach onset to reach offset.

4.4.3 Quantification and statistical analysis

Data preprocessing

Trials for which participants responded within the first 100 ms or after 3000 ms were

excluded (<0.01% of the trials, 5 trials out of 2775). To normalize the positively skewed

distributions of RT, MT, and TPV, we performed an inverse transformation defined as

invX = -1000*(1/X) where X is the variable to be normalized, and we denoted the trans-

formed variable as invRT, invMT, and invTPV. We multiplied by the factor -1000 to

preserve the direction of effects, e.g., larger invRT meant a slower response, and to avoid

too small values (Brysbaert & Stevens, 2018).

Outlier removal

For each kinematic feature, we excluded the points lying outside the range [Q1-1.5*IQR,

Q3+1.5*IQR], where Q1 and Q3 are the first and third quartiles, respectively, and IQR

is the interquartile range defined as Q3-Q1. For each analysis, 0.91 ± 0.73% (mean ±

standard deviation) trials have been excluded.

Linear mixed-effects models to assess the effect of offer level and responders’

choice on reach-to-grasp kinematics

We used linear mixed-effects models (LMEMs) to assess the effect of responders’ choice,

offer value, and their interaction, separately on each kinematic feature, with random ef-
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fects at the subject level. Hence, we considered invRT, invMT, PV, invTPV, and PGA

as dependent variables (DV), and the offer value (continuous variable), responders’ choice

(Accept, Reject), their interaction, session number (1, 2), and movements’ direction (Left,

Right) as fixed factors. DVs were z-scored before to LMEM fitting.

To determine the fixed and random effects to be included in the model, we first defined

the most complex model as:

DV ∼ Offer + Choice + Offer:Choice + Session + Direction

+ (Offer + Choice + Session + Direction | Subject)

We then followed a model selection procedure (Zuur et al., 2009) consisting of two phases:

1. Finding the optimal random effects structure by keeping the full fixed effects struc-

ture and selecting the nested model with the lowest Bayesian Information Criterion

(BIC) (Schwarz, 1978) value, thus rewarding model fit and penalizing model com-

plexity;

2. Finding the optimal fixed effects structure by keeping fixed the optimal random

structure (found in phase 1) and conducting likelihood ratio tests (LRT) differing

only by the presence or absence of one predictor.

For each model, the results of the model selection procedure, the estimate and confidence

intervals (CI) of the model coefficients and statistical comparison for significant effects

are reported in Appendix B.

The models were fitted using R and the function lmer from lme4 package (Bates et

al., 2015). To test significant interactions between categorical factors (e.g., responders’

choice) and continuous variables (e.g., offer level), we assessed the statistical significance

of linear trends (i.e., if a trend is significantly different from zero) and of contrasts between

linear trends (i.e., if the trends are significantly different from each other) via emtrends

and contrast functions from emmeans package (Searle et al., 1980). For any trend or

contrast, we reported CIs and p-values (two-tailed) obtained from 104 bootstrap samples.

The bootstrap distribution was obtained by fitting the models to data randomly sampled

with replacement from the original dataset. The two-tailed empirical p-values are obtained

from the bootstrap distribution and defined as 2 ∗min (P [X ≤ 0] , P [X ≥ 0]).
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In this thesis, we discussed how movement kinematics plays a crucial role in elucidating

hidden cognitive states, focusing in particular on social decision-making processes. Our

findings, in accordance with the existing literature, corroborate the idea of an intimate

connection between cognitive states and the sensorimotor system.

Specifically, with the first study (Chapter 3), we presented a motor version of the Ultima-

tum Game. This allowed us to track movement kinematics as participants played several

game trials, yielding data with a very rich and detailed characterization of reach-to-grasp

acts. Applying a well-known technique of unsupervised dimensionality reduction (i.e.,

t-SNE), we performed an initial inspection of the data, which reported that kinematic

traces separate into clusters, each representing a single individual. This emphasizes how

individuals are uniquely marked by their motor style. In light of this result, we applied

a multivariate decoding model (i.e., logistic regression) at the single-subject, single-trial

level to quantify whether and to what extent information of social decisions (i.e., choice

and fairness) leaked into the motor outputs. After having verified that reach-to-grasp acts

effectively encode a representation of participants’ choice and offer’ fairness, we looked

into the weights characterizing each responder-specific model to understand how such

representations are specified in the movement kinematics. In line with the result ob-

tained using t-SNE, we observed that the embodiment of the social decision parameters

is idiosyncratic, with only a few kinematic features consistently encoding this information

across participants.

The second study (Chapter 4) focuses on a different aspect of movement kinematics and

social decision-making. Building on recent research about movement vigor (Shadmehr &

Ahmed, 2020), we examined whether social decisions influence the vigor of the reach-to-

grasp acts. We directed our attention to specific kinematic variables related to movement
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vigor: reaction time, movement time, wrist peak velocity, and time-to-peak velocity. Us-

ing linear mixed-effects modeling, we analyzed the effects of responders’ choice and offer

level on these kinematic variables at the group-level. As expected, we found a positive

relationship between vigor and offer level when the offers were accepted. However, the

fascinating novelty concerns rejections; we observed that responders’ vigor increased as

the unfairness of the offer increased.

These findings have raised intriguing new questions for future research. Below, I outline

the most promising areas for future developments and provide some details on how these

studies can be implemented to address these new questions.

1. With the first study, we speculate about individuality in motor solutions of social

decisions, suggesting that each participant endows a unique kinematic signature.

However, we cannot exclude the existence of motor phenotypes. To test this hy-

pothesis, we would need a larger sample size and perform an unsupervised clustering

analysis. Additionally, recent research demonstrated how neural substrates cluster

as a function of the decision-making strategy adopted (van Baar et al., 2019). It

would be worth exploring whether and how these networks covary with kinemat-

ics, and whether kinematics can be used as a marker for different decision-making

strategies.

2. Studies from our lab demonstrated the innate ability of humans to read others’

intentions from subtle variations in movement kinematics (Becchio et al., 2018;

Cavallo et al., 2016; Patri et al., 2020). Given our results, the following question

arises: do human observers detect changes in movement kinematics to infer social

decision variables? Are they sensitive to both the responders’ choice and the fairness

of an offer, only one of the two aspects, or neither? One potential challenge is the

high intra-trial and inter-responder variability that would make the observers’ task

very difficult, if not impossible. This could be mitigated by exposing the observers

to additional sources of information (e.g., gaze and postural behavior).

3. It might be intriguing to extend our findings to different strategic decision-making

settings. For example, as outlined in Chapter 3, we only showed that the kine-

matic patterns encoding choice generalize to mid-range offers. A possible solution

to strengthen our findings on the consistency of kinematic patterns would be to have

participants perform the Ultimatum Game, acting as responders, in both the my-
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self (classical Ultimatum Game) and the third-party (on behalf of another player)

condition, as in Civai et al. (2010). By doing so, we would obtain two separate

datasets (one for the myself and one for the third-party condition) and we could

test whether the individual kinematic pattern for choice/fairness obtained with the

myself condition generalizes over the third-party data. The alternative hypothesis

would be that the kinematics is also affected by the Ultimatum Game condition,

showing different patterns when playing on behalf of another player.

4. The findings related to the second study left us with an open question: does

rejection-related vigor reflect self-loss, other-punishment, or a combination of the

two? In other words, does vigor decrease as the amount of money lost increases

or as the punishment inflicted on defectors decreases? However, the experiment

was not designed for discerning among these possibilities, and the Ultimatum Game

paradigm is not an appropriate means to address this question. What we would need

is a socio-economic game in which participants are given the opportunity to actively

inflict different levels of other-punishment on defectors by incurring different levels

of self-loss.

A possible experimental design implementing the above features is the one devised

by de Quervain et al. (2004) in which participants played a variant of the Trust

Game. The first phase of the game adheres mainly to the classical Trust Game

scheme and can be summarized as follows. Two players, the investor (player A) and

the trustee (player B), are endowed with some monetary units (e.g., 10 MUs) and

interact anonymously. Player A can decide whether to send (case 1) or not (case

2) his endowment to player B. If A does not trust B (case 2), both players remain

with their endowment and the game ends. If A trusts B (case 1), the amount sent

is quadrupled and B receives 40 MUs. Now, player B has a total of 50 MUs and

player A has nothing. Player B has two options: (i) to act trustworthily, splitting

the income equally (25 MUs each) and ending the game, or (ii) to keep all the MUs.

The latter will begin the second phase of the game: the punishment phase. Player A

is endowed with 5 extra MUs and can decide to keep the 5 MUs or to punish player

B incurring a self-cost, according to a predetermined scheme (e.g., self-cost=2/4

and other-punishment=10/20/40).

A motor version of this game would lead us to have kinematics associated with

various pairs of self-loss/other-punishment, thus enabling us to understand whether
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the kinematics reflect the self-loss, the other-punishment, or a combination of the

two that could be represented by the ratio between other-punishment and self-loss

(i.e., other−punishment

self−loss
= 10

2
= 20

4
= 5 and 20

2
= 40

4
= 10).

In conclusion, we demonstrated that adapting traditional behavioral economic games to

incorporate actions involving participants’ movement is feasible and relatively straightfor-

ward. By combining this approach with advanced and rigorous machine learning analysis,

we were able to quantitatively assess the information that flows from cognition to mo-

tor behavior. This ensemble of methodological aspects not only allowed us to study

participants’ behavior but also, more importantly, provided insight into the underlying

decision-making processes.
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Figure A.1: Marker layout and block-diagram of the responder-specific logistic regression

model. (A) Marker layout used to reconstruct hand/arm movements. Markers are represented as grey
semi-spheres. Blu areas indicate the finger plane (left) and dorsum plane (right). The red, green, and
blue arrows refer to the x-, y-, and z-coordinates of the finger/dorsum plane. (B) Block- diagram
and equation of the responder-specific logistic regression model used to estimate choice and fairness
information encoded in movement kinematics.
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Figure A.2: Comparison of logistic regression with alternative classification approaches.

(A) Boxplots of balanced prediction accuracies of choice and fairness obtained using Logistic Re-
gression (LR), Multi-Task Logistic Regression (MTLR), Static Weights Logistic Regression (SWLR),
Encoding-Decoding (ED), and Gaussian Process Regression (GPR). Classifiers were trained on right-
ward movements. (B) Boxplots of balanced prediction accuracies of choice on unfair trials only (UO),
and fairness on accept trials only (AO) obtained using LR, SWLR, ED, and GPR. These analyses
corroborate our choice of using the LR classifier for the main analyses of this article, because the LR
performed at least as well as any other alternative classifier and was simple to interpret. N indicates
the number of responders included in each analysis.
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Figure A.3: Performance of logistic regression classifiers trained with leftward movements.

(A) Boxplots of balanced prediction accuracies of responder-specific logistic regression classifiers trained
on leftward movements to predict choice and fairness. Prediction accuracies were significantly higher
for actual data than trial-shuffled data and random guesses. (B) Boxplots of balanced prediction
accuracies of choice on unfair trials only (UO) and fairness on accept trials only (AO). (C) Boxplot of
balanced prediction accuracies of choice on mid-range offers (MO). * indicates p < 0.05, ** indicates p
< 0.01, and *** indicates p < 0.001. N indicates the number of responders included in each analysis.
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Figure A.4: Performance of logistic regression classifiers trained using a leave-one-subject-

out testing approach. (A) Boxplots of balanced prediction accuracies of leave-one-subject-out
(LOSO) logistic regression classifiers trained on rightward movements to predict choice and fairness.
(B) Boxplots of balanced prediction accuracies of LOSO logistic regression classifiers trained on leftward
movements to predict choice and fairness. For both rightward and leftward movements, prediction
accuracies of LOSO classifiers trained with actual data were not significantly different from trial-
shuffled data and random guesses. N indicates the number of responders included in each analysis.
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Figure A.5: Overlap of choice and fairness weights across responders of leftward move-

ments. (A and B) Pearson correlation of the average logistic regression weights between each pair of
responders for leftward movements for choice (A) and fairness (B) classification. (C and D) Number
of responders, for each feature, for which the feature was statistically significant for choice (C) and
fairness (D) classification. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001.
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Figure A.6: Inter-individual variability of rightward movements. (A) Average (± SEM) of
the normalized inter-individual variability across kinematic variables for the rightward movements.
(B-R) Inter-individual variability for each kinematic variable for the rightward movements.
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Figure A.7: Performance of logistic regression models as a function of the amount of
responder-specific data. (A) Boxplots of balanced prediction accuracies of choice and fairness
using 50%, 75% and 100% of rightward movements available for each responder. (B) Boxplots of
balanced prediction accuracies of choice on unfair trials only (UO) and fairness on accept trials only
(AO) using 50%, 75% and 100% of the rightward movements available for each responder. N indicates
the number of responders included in each analysis.
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Responder-specific logistic regression models

Rightward movements

Trial-shuffled Random guess

Median Q1 Q3 std z p std z p

Choice .832 .791 .860 .027 11.600 <.001 .037 8.758 <.001

Fairness .697 .659 .824 .028 7.986 <.001 .037 6.409 <.001

Choice (unfair only) .766 .604 .860 .057 5.072 <.001 .032 8.182 <.001

Fairness (accepted only) .597 .468 .777 .044 3.310 <.001 .026 4.734 <.001

Choice (mid-range) .900 .800 .989 .047 7.200 <.001 .073 3.342 <.001

Leftward movements

Trial-shuffled Random guess

Median Q1 Q3 std z p std z p

Choice .806 .758 .892 .034 9.070 <.001 .043 7.576 <.001

Fairness .783 .713 .807 .029 9.284 <.001 .030 9.217 <.001

Choice (unfair only) .836 .801 .861 .066 5.483 <.001 .048 7.114 <.001

Fairness (accepted only) .559 .501 .659 .045 1.770 .070 .032 2.321 <.05

Choice (mid-range) .860 .687 .940 .040 7.485 <.001 .074 3.890 <.001

Leave-one-subject-out logistic regression models

Rightward movements

Trial-shuffled Random guess

Median Q1 Q3 std z p std z p

Choice .500 .433 .539 .015 -.427 .550 .020 -.385 .505

Fairness .474 .422 .530 .015 -1.168 .960 .020 -.898 .903

Leftward movements

Trial-shuffled Random guess

Median Q1 Q3 std z p std z p

Choice .498 .458 .551 .015 -.414 .510 .019 -.346 .519

Fairness .488 .443 .529 .014 -.797 .820 .019 -.471 .719

Table A.1: Performance of single-subject and leave-one-subject-out logistic regression
models against trial-shuffled data and random guesses. We report the median, Q1, and Q3.
All p-values are computed by comparing the median value to the null-hypothesis distribution computed
on trial-shuffled data and random guesses. For reference only, we also report (without using them to
compute the p-value) the z-scores of the tested values with respect to the mean and standard deviation
(std) of the null-hypothesis distributions.
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Comparison of logistic regression with alternative classification approaches

Choice

df t p (two-sided)

LR vs MTLR 17 -0.28 .962

LR vs SWLR 17 8.04 <.001

LR vs ED 17 0.72 .962

LR vs GPR 17 3.30 <.05

Fairness

df t p (two-sided)

LR vs MTLR 17 -1.25 .680

LR vs SWLR 17 4.38 <.01

LR vs ED 17 0.22 .827

LR vs GPR 17 0.98 .682

Choice (unfair only)

df t p (two-sided)

LR vs SWLR 7 3.81 <.05

LR vs ED 7 1.75 .124

LR vs GPR 7 3.16 <.05

Fairness (accepted only)

df t p (two-sided)

LR vs SWLR 7 0.97 .613

LR vs ED 7 1.45 .573

LR vs GPR 7 1.10 .613

Table A.2: Comparison of logistic regression with alternative approaches. We report degrees
of freedom, t statistics, and p-values of two-sided paired t-tests conducted to compare the performance
of logistic regression (LR) with alternative models (MTLR, SWLR, ED, and GPR) for choice, fairness,
choice (unfair only), and fairness (accepted only) classification of rightward movements. All p-values
are Holm-Bonferroni corrected for the number of comparisons listed for each entry.
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Overlap of choice and fairness weights across responders

Rightward movements

Responders (N ) Test probability p (one-sided)

Choice 5 (18) 246/(170*18) <.05

6 (18) 246/(170*18) <.01

7 (18) 246/(170*18) <.001

Fairness 5 (18) 290/(170*18) <.05

6 (18) 290/(170*18) <.01

7 (18) 290/(170*18) <.001

Leftward movements

Responders (N ) Test probability p (one-sided)

Choice 4 (18) 239/(170*18) <.05

6 (18) 239/(170*18) <.01

7 (18) 239/(170*18) <.001

Fairness 5 (18) 272/(170*18) <.05

6 (18) 272/(170*18) <.01

7 (18) 272/(170*18) <.001

Table A.3: Summary of binomial tests for overlap of choice and fairness weights across
responders. We report the number of responders who had a significant weight for a given feature, and
in brackets, the total number of responders, the test probability, computed as the number of significant
weights over the total number of responders divided by the number of the possible significant weights
(number of features * total number of responders), and the p-value of the one-sided binomial test
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Number of trials for choice and fairness classification
Rightward movements

ID Choice Fairness
Choice

(unfair only)
Fairness

(accepted only)
R A total UF F total R A total UF F total

1 12 38 50 19 31 50 12 7 19 7 31 38
2 0 55 55 24 31 55 0 24 24 24 31 55
3 12 38 50 19 31 50 12 7 19 7 31 38
4 25 32 57 25 32 57 25 0 25 0 32 32
5 19 30 49 19 30 49 19 0 19 0 30 30
6 7 35 42 13 29 42 7 6 13 6 29 35
7 12 42 54 24 30 54 12 12 24 12 30 42
8 27 32 59 27 32 59 25 2 27 2 30 32
9 16 29 45 16 29 45 16 0 16 0 29 29
10 1 51 52 21 31 52 1 20 21 20 31 51
11 21 32 53 21 32 53 21 0 21 0 32 32
12 22 32 54 24 30 54 21 3 24 3 29 32
13 29 29 58 27 31 58 23 4 27 4 25 29
14 23 29 52 23 29 52 23 0 23 0 29 29
15 22 31 53 22 31 53 22 0 22 0 31 31
16 18 41 59 26 33 59 17 9 26 9 32 41
17 21 39 60 27 33 60 20 7 27 7 32 39
18 24 32 56 24 32 56 24 0 24 0 32 32
19 26 33 59 25 34 59 24 1 25 1 32 33
20 27 32 59 27 32 59 23 4 27 4 28 32

Leftward movements

ID Choice Fairness
Choice

(unfair only)
Fairness

(accepted only)
R A total UF F total R A total UF F total

1 17 43 60 28 32 60 16 12 28 12 31 43
2 0 56 56 24 32 56 0 24 24 24 32 56
3 16 45 61 29 32 61 16 13 29 13 32 45
4 24 30 54 24 30 54 24 0 24 0 30 30
5 23 38 61 28 33 61 22 6 28 6 32 38
6 16 50 66 34 32 66 16 18 34 18 32 50
7 12 45 57 25 32 57 12 13 25 13 32 45
8 21 30 51 20 31 51 20 0 20 0 30 30
9 24 40 64 32 32 64 23 9 32 9 31 40
10 2 55 57 25 32 57 2 23 25 23 32 55
11 24 31 55 25 30 55 24 1 25 1 30 31
12 23 30 53 22 31 53 21 1 22 1 29 30
13 27 28 55 22 33 55 20 2 22 2 26 28
14 25 33 58 25 33 58 24 1 25 1 32 33
15 23 32 55 23 32 55 22 1 23 1 31 32
16 15 37 52 22 30 52 15 7 22 7 30 37
17 18 31 49 19 30 49 18 1 19 1 30 31
18 24 32 56 24 32 56 24 0 24 0 32 32
19 23 30 53 23 30 53 23 0 23 0 30 30
20 22 28 50 21 29 50 20 1 21 1 27 28

Table A.4: Number of trials for individual responders. For each responder (ID), we report
the number of trials available for choice and fairness classification and the distribution among classes
(R=rejected, A=accepted, UF=unfair, F=fair).
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Number of trials for choice classification of mid-range offers

Rightward movements Leftward movements

ID Training set Test set (3e) Training set Test set (3e)

R A total R A total R A total R A total

1 12 38 50 0 8 8 17 43 60 4 10 14

2 0 55 55 0 11 11 0 56 56 0 11 11

3 12 38 50 0 10 10 16 45 61 1 11 12

4 25 32 57 4 10 14 24 30 54 2 7 9

5 19 30 49 0 11 11 23 38 61 1 11 12

6 7 35 42 0 12 12 16 50 66 0 11 11

7 12 42 54 0 10 10 12 45 57 1 11 12

8 27 32 59 0 1 1 21 30 51 11 11 22

9 16 29 45 0 1 1 24 40 64 10 11 21

10 1 51 52 0 12 12 2 55 57 0 11 11

11 21 32 53 9 1 10 24 31 55 10 1 11

12 22 32 54 10 7 17 23 30 53 5 1 6

13 29 29 58 4 6 10 27 28 55 6 7 13

14 23 29 52 10 0 10 25 33 58 12 0 12

15 22 31 53 7 2 9 23 32 55 10 3 13

16 18 41 59 2 11 13 15 37 52 0 9 9

17 21 39 60 4 11 15 18 31 49 0 8 8

18 24 32 56 12 0 12 24 32 56 10 0 10

19 26 33 59 0 11 11 23 30 53 0 12 12

20 27 32 59 8 6 14 22 28 50 4 4 8

Table A.5: Number of trials for choice classification of mid-range offers for individual
responders. For each responder (ID), we report the number of trials available for the training and
test set (R=rejected, A=accepted).
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Random effects structure selection (Fixed effects: Gender × Proposer Gender)

Model Random effects BIC Deviance

m0 Subject (intercept and Proposer Gender slope) 3364.4 3308.9 (singular fit)

m1 Subject (intercept) 3348.5 3308.9

m2 null 3599.2 3567.5

Fixed effects structure selection (Random effects: Subject intercept)

Model Random effects BIC Deviance

m1 Responder Gender × Proposer Gender 3348.5 3308.9

m2 Responder Gender + Proposer Gender 3341.5 3309.8 vs. m1: p>.05

m3 Responder Gender 3333.8 3310.0 vs. m3: p>.05

m4 Proposer Gender 3333.6 3309.9 vs. m3: p>.05

m5 null 3325.9 3310.0 vs. m4, m5:

p>.05

Table A.6: Mixed Effects Model selection. We used Logistic Mixed Effects Models Effects to
assess the effect of Responder Gender and Proposer Gender (silhouette). The notation Gender ×

Proposer Gender indicates both main effects of Responder Gender and Proposer Gender, and their
interaction were included in the model. Retained models are highlighted in bold.

102



B. Supplementary materials for

Chapter 4: Study 2: Social

decision-making from a vigor perspective

103



Chapter B. Supplementary materials for Chapter 4: Study 2: Social decision-making from a

vigor perspective

Reaction time (invRT)

Random effects structure selection

Fixed effects: Offer + Choice + Offer:Choice + Direction + Session

Model Random effects at subject-level BIC Deviance

m0 Intercept, and Offer, Choice, Direction, Session slopes 5223.5 5049.2

m1 Intercept, and Offer, Choice, Direction slopes 5278.4 5143.8

m2 Intercept, and Offer, Choice, Session slopes 5196.3 5061.6

m3 Intercept, and Offer, Direction, Session slopes 5240.5 5105.9

m4 Intercept, and Choice, Direction, Session slopes 5225.9 5091.3

m5 Intercept, and Offer, Choice slopes 5266.4 5163.5

m6 Intercept, and Offer, Session slopes 5216.3 5113.3

m7 Intercept, and Choice, Session slopes 5204.7 5101.7

Fixed effects structure selection

Random effects at subject-level: Intercept, and Offer, Choice, Session slopes

Model Random effects BIC Deviance LRT

m2 Offer + Choice + Offer:Choice + Direction + Session 5170.5 5035.8

m8 Offer + Choice + Offer:Choice + Direction 5178.4 5051.6 vs. m2: p<.05

m9 Offer + Choice + Offer:Choice + Session 5165.9 5039.1 vs. m2: p>.05

m10 Offer + Choice + Offer:Choice 5174.6 5055.8
vs. m8: p>.05

vs. m9: p<.05

m11 Offer + Choice + Session 5297.4 5178.6 vs. m9: p<.05

m12 Offer + Offer:Choice + Session 5168.1 5049.3 vs. m9: p<.05

m13 Choice + Offer:Choice + Session 5165.9 5039.1 vs. m9: R

m14 Choice + Offer:Choice 5174.6 5055.8 vs. m13: p<.05

m15 Choice + Session 5301.9 5191.0 vs. m13: p<.05

m16 Offer:Choice + Session 5168.1 5049.3 vs. m13: p<.05

Main effects and interaction of m13

χ2 df p

Main effect of Choice 10.18 1 <.01

Main effect of Session 16.19 1 <.001

Interaction of Offer and Choice 141.85 2 <.001

Table B.1: Mixed effects model selection for reaction time. We used linear mixed effects
models to assess the effects of Offer, Choice, Offer:Choice, Direction, and Session on reaction time
(invRT). Retained models are highlighted in bold. Reparameterized models are denoted by R; s.f.
stands for ‘singular fit’.
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Movement time (invMT)

Random effects structure selection

Fixed effects: Offer + Choice + Offer:Choice + Direction + Session

Model Random effects at subject-level BIC Deviance

m0 Intercept, and Offer, Choice, Direction, Session slopes 4285.3 4110.9 (s.f.)

m1 Intercept, and Offer, Choice, Direction slopes 4475.4 4340.6 (s.f.)

m2 Intercept, and Offer, Choice, Session slopes 4306.1 4171.3

m3 Intercept, and Offer, Direction, Session slopes 4264.5 4129.7

m4 Intercept, and Choice, Direction, Session slopes 4245.8 4111.0

m5 Intercept, and Offer, Choice slopes 4443.9 4340.9

m6 Intercept, and Offer, Session slopes 4275.5 4172.5

m7 Intercept, and Choice, Session slopes 4239.9 4136.8

m8 Intercept, and Choice slope 4448.3 4369.0

m9 Intercept, and Session slope 4270.1 4190.8

m10 Intercept 4512.6 4449.2

Fixed effects structure selection

Random effects at subject-level: Intercept, and Offer, Choice, Session slopes

Model Random effects BIC Deviance LRT

m7 Offer + Choice + Offer:Choice + Direction + Session 4211.5 4108.4

m11 Offer + Choice + Offer:Choice + Direction 4204.7 4109.6 vs. m7: p>.05

m12 Offer + Choice + Offer:Choice + Session 4226.3 4131.2 vs. m7: p<.05

m13 Offer + Choice + Offer:Choice 4220.3 4133.1
vs. m11: p<.05

vs. m12: p>.05

m14 Offer + Choice + Direction 4205.7 4118.5 vs. m11: p<.05

m15 Offer + Offer:Choice + Direction 4204.0 4116.8 vs. m11: p<.05

m16 Choice + Offer:Choice + Direction 4204.7 4109.6 vs. m11: R

m17 Choice + Offer:Choice 4220.3 4133.1 vs. m16: p<.05

m18 Choice + Direction 4202.0 4122.8 vs. m16: p<.05

m19 Offer:Choice + Direction 4204.0 4116.8 vs. m16: p<.05

Main effects and interaction of m16

χ2 df p

Main effect of Choice 7.23 1 <.01

Main effect of Direction 23.55 1 <.001

Interaction of Offer and Choice 13.21 2 <.01

Table B.2: Mixed effects model selection for movement time. We used linear mixed effects
models to assess the effects of Offer, Choice, Offer:Choice, Direction, and Session on movement time
(invMT). Retained models are highlighted in bold. Reparameterized models are denoted by R; s.f.
stands for ‘singular fit’.
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Peak velocity (PV)

Random effects structure selection

Fixed effects: Offer + Choice + Offer:Choice + Direction + Session

Model Random effects at subject-level BIC Deviance

m0 Intercept, and Offer, Choice, Direction, Session slopes 4555.6 4381.4 (s.f.)

m1 Intercept, and Offer, Choice, Direction slopes 4677.9 4543.3

m2 Intercept, and Offer, Choice, Session slopes 4671.3 4536.7

m3 Intercept, and Offer, Direction, Session slopes 4519.3 4384.6

m4 Intercept, and Choice, Direction, Session slopes 4516.2 4381.5

m5 Intercept, and Offer, Choice slopes 4651.9 4549.0

m6 Intercept, and Offer, Session slopes 4644.3 4541.3

m7 Intercept, and Choice, Session slopes 4489.2 4386.2

m8 Intercept, and Choice slope 4631.7 4552.5

m9 Intercept, and Session slope 4622.9 4543.7

m10 Intercept 4809.5 4746.1

Fixed effects structure selection

Random effects at subject-level: Intercept, and Offer, Choice, Session slopes

Model Random effects BIC Deviance LRT

m7 Offer + Choice + Offer:Choice + Direction + Session 4461.2 4358.3

m11 Offer + Choice + Offer:Choice + Direction 4454.3 4359.2 vs. m7: p>.05

m12 Offer + Choice + Offer:Choice + Session 4472.9 4377.9 vs. m7: p<.05

m13 Offer + Choice + Offer:Choice 4468.0 4380.9
vs. m11: p<.05

vs. m12: p>.05

m14 Offer + Choice + Direction 4461.3 4374.2 vs. m11: p<.05

m15 Offer + Offer:Choice + Direction 4455.4 4368.2 vs. m11: p<.05

m16 Choice + Offer:Choice + Direction 4454.3 4359.2 vs. m11: R

m17 Choice + Offer:Choice 4468.0 4380.9 vs. m16: p<.05

m18 Choice + Direction 4456.8 4377.6 vs. m16: p<.05

m19 Offer:Choice + Direction 4455.4 4368.2 vs. m16: p<.05

Main effects and interaction of m16

χ2 df p

Main effect of Choice 9.03 1 <.01

Main effect of Direction 21.66 1 <.001

Interaction of Offer and Choice 18.37 2 <.001

Table B.3: Mixed effects model selection for peak velocity. We used linear mixed effects
models to assess the effects of Offer, Choice, Offer:Choice, Direction, and Session on peak velocity
(PV). Retained models are highlighted in bold. Reparameterized models are denoted by R; s.f. stands
for ‘singular fit’.
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Time-to-peak velocity (invTPV)

Random effects structure selection

Fixed effects: Offer + Choice + Offer:Choice + Direction + Session

Model Random effects at subject-level BIC Deviance

m0 Intercept, and Offer, Choice, Direction, Session slopes 4964.4 4790.3 (s.f.)

m1 Intercept, and Offer, Choice, Direction slopes 5023.5 4889.0 (s.f.)

m2 Intercept, and Offer, Choice, Session slopes 5003.2 4868.6

m3 Intercept, and Offer, Direction, Session slopes 4938.1 4803.6

m4 Intercept, and Choice, Direction, Session slopes 4930.2 4795.7

m5 Intercept, and Offer, Choice slopes 4997.6 4894.7

m6 Intercept, and Offer, Session slopes 4975.2 4872.3

m7 Intercept, and Choice, Session slopes 4916.8 4813.9

m8 Intercept, and Choice slope 4991.1 4912.0

m9 Intercept, and Session slope 4965.3 4886.1

m10 Intercept 5039.1 4975.8

Fixed effects structure selection

Random effects at subject-level: Intercept, and Offer, Choice, Session slopes

Model Random effects BIC Deviance LRT

m7 Offer + Choice + Offer:Choice + Direction + Session 4889.0 4786.1

m11 Offer + Choice + Offer:Choice + Direction 4882.0 4787.0 vs. m7: p>.05

m12 Offer + Choice + Offer:Choice + Session 4883.4 4788.5 vs. m7: p>.05

m13 Offer + Choice + Offer:Choice 4875.6 4788.6
vs. m11: p>.05

vs. m12: p>.05

m14 Offer + Choice 4889.2 4810.1 vs. m13: p<.05

m15 Offer + Offer:Choice 4879.6 4800.4 vs. m13: p<.05

m16 Choice + Offer:Choice 4875.6 4788.6 vs. m13: R

m17 Choice 4888.3 4817.1 vs. m16: p<.05

m18 Offer:Choice 4879.6 4800.4 vs. m16: p<.05

m19 null 4885.5 4822.2
vs. m17: p<.05

vs. m18: p<.05

Main effects and interaction of m13

χ2 df p

Main effect of Choice 11.83 1 <.001

Interaction of Offer and Choice 28.46 2 <.001

Table B.4: Mixed effects model selection for time-to-peak velocity. We used linear mixed
effects models to assess the effects of Offer, Choice, Offer:Choice, Direction, and Session on time-to-
peak velocity (invTPV). Retained models are highlighted in bold. Reparameterized models are denoted
by R; s.f. stands for ‘singular fit’.
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Peak grip aperture (PGA)

Random effects structure selection

Fixed effects: Offer + Choice + Offer:Choice + Direction + Session

Model Random effects at subject-level BIC Deviance

m0 Intercept, and Offer, Choice, Direction, Session slopes 4722.6 4548.6

m1 Intercept, and Offer, Choice, Direction slopes 4956.8 4822.3

m2 Intercept, and Offer, Choice, Session slopes 4742.7 4608.3

m3 Intercept, and Offer, Direction, Session slopes 4690.5 4556.0

m4 Intercept, and Choice, Direction, Session slopes 4688.0 4553.5

m5 Intercept, and Offer, Choice slopes 4936.1 4833.3

m6 Intercept, and Offer, Session slopes 4713.8 4611.0

m7 Intercept, and Choice, Session slopes 4667.4 4564.6

m8 Intercept, and Choice slope 4923.4 4844.3

m9 Intercept, and Session slope 4701.0 4622.0

m10 Intercept 4955.8 4892.5

Fixed effects structure selection

Random effects at subject-level: Intercept, and Offer, Choice, Session slopes

Model Random effects BIC Deviance LRT

m7 Offer + Choice + Offer:Choice + Direction + Session 4640.1 4537.3

m11 Offer + Choice + Offer:Choice + Direction 4632.2 4537.3 vs. m7: p>.05

m12 Offer + Choice + Offer:Choice + Session 4636.4 4541.5 vs. m7: p<.05

m13 Offer + Choice + Offer:Choice 4628.5 4541.5
vs. m11: p<.05

vs. m12: p>.05

m14 Offer + Choice + Direction 4624.6 4537.6 vs. m11: p>.05

m15 Offer + Offer:Choice + Direction 4625.1 4538.1 vs. m11: p>.05

m16 Choice + Offer:Choice + Direction 4632.2 4537.3 vs. m11: R

m17 Offer + Choice 4620.8 4541.7 vs. m14: p<.05

m18 Offer + Direction 4617.2 4538.2 vs. m14: p>.05

m19 Choice + Direction 4624.6 4537.6 vs. m14: p>.05

m20 Offer 4613.5 4542.3
vs. m17: p>.05

vs. m18: p<.05

m21 Choice 4614.3 4543.1
vs. m17: p>.05

vs. m19: p<.05

m22 Direction 4610.1 4538.9
vs. m18: p>.05

vs. m19: p>.05

m23 null 4606.4 4543.1
vs. m21: p>.05

vs. m22: p<.05

Main effects and interaction of m22

χ2 df p

Main effect of Direction 4.17 1 <.05

Table B.5: Mixed effects model selection for peak grip aperture. We used linear mixed
effects models to assess the effects of Offer, Choice, Offer:Choice, Direction, and Session on peak grip
aperture (PGA). Retained models are highlighted in bold. Reparameterized models are denoted by R;
s.f. stands for ‘singular fit’.
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Reaction time (invRT, retained model: m13)

Slope comparison Coefficient values (effect size)

estimate 95% CI p estimate 95% CI p

Accept - Reject -.346 [-.400, -.289] <.001 Intercept .344 [.094, .595] <.01

Choice (accept) .308 [.152, .570] <.01

Session (2) -.318 [-.443, -.190] <.001

Offer:Choice (reject) .133 [.073, 0.192] <.001

Offer:Choice (accept) -.212 [-.261, -.162] <.001

Movement time (invMT, retained model: m16)

Slope comparison Coefficient values (effect size)

estimate 95% CI p estimate 95% CI p

Accept - Reject -.060 [-.101, -.020] <.01 Intercept .167 [-.212, .566] .384

Choice (accept) .111 [.031, .191] <.01

Direction (left) -.334 [-.439, -.233] <.001

Offer:Choice (reject) .025 [-.009, 0.059] .150

Offer:Choice (accept) -.036 [-.057, -.014] <.001

Peak velocity (PV, retained model: m16)

Slope comparison Coefficient values (effect size)

estimate 95% CI p estimate 95% CI p

Accept - Reject .083 [.041, .126] <.001 Intercept .300 [-.096, .698] .129

Choice (accept) -.131 [.218, .044] <.01

Direction (left) -.441 [-.586, -.298] <.001

Offer:Choice (reject) -.042 [-.078, .007] <.05

Offer:Choice (accept) .041 [.019, .063] <.001

Time-to-peak velocity (invTPV, retained model: m16)

Slope comparison Coefficient values (effect size)

estimate 95% CI p estimate 95% CI p

Accept - Reject -.087 [-.150, -.025] <.01 Intercept .116 [-.238, .471] .519

Choice (accept) .163 [.070, .254] <.01

Offer:Choice (reject) .050 [.010, .089] <.05

Offer:Choice (accept) -.058 [-.082, -.033] <.001

Peak grip aperture (PGA, retained model: m22)

Slope comparison Coefficient values (effect size)

n/a → Offer:Choice not significant estimate 95% CI p

Intercept -.052 [-.412, .328] .794

Direction (left) .114 [.003, .225] <.05

Table B.6: Significance of slopes comparison and coefficient values for retained models
of reaction time, movement time, peak velocity, time-to-peak velocity, and peak grip
aperture. We report the estimate, 95% bootstrap confidence interval (CI), and two-tailed bootstrap
p-value for both slope comparison and coefficient values. Slope comparison was performed only for
models with a significant interaction between offer and choice. Significant comparisons and effect sizes
are highlighted in bold.
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