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Abstract
We show that closed, immersed, minimal hypersurfaces in a compact symmetric space satisfy
a lower bound on the index plus nullity, which depends linearly on their first Betti number.
Moreover, if either the minimal hypersurface satisfies a certain genericity condition, or if
the ambient space is a product of two CROSSes, we improve this to a lower bound on the
index alone, which is affine in the first Betti number. To prove these results, we introduce a
generalization of isometric immersions in Euclidean space. Compact symmetric spaces admit
(and in fact are characterized by) such a structure with skew-symmetric second fundamental
form.

Mathematics Subject Classification 49Q05 · 53A10 · 53C35

1 Introduction

Let (M, g) be a Riemannian manifold, and � a minimal immersed submanifold. This means
that the second fundamental form of � is traceless, or, equivalently, that � is a critical point
of the area functional. Then one is naturally led to consider variations up to second order,
and to define the (Morse) index of � as the dimension of the space of negative variations.
When � is closed, the index is finite.

Many authors have developed methods to produce minimal submanifolds, including
Min-Max Theory (see [6,14] for surveys), desingularization (see for example [8,13]), and
equivariant methods (see for example [10–12]). For some of these the index of the minimal
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submanifold is controlled, while for others the topology is controlled. On the other hand, the
set of all minimal submanifolds of bounded index, area, or topology is the object of active
research, in particular compactness results such as [4,7,17] have been obtained. Therefore
it is natural to ask how the topology and the index of minimal submanifolds are related.
One conjecture that fits in this framework is: (see [14, page 16], or [1, page 3] for a slightly
different formulation)

Conjecture (Marques–Neves–Schoen) Let (M, g) be a compact manifold with positive Ricci
curvature, and dimension at least three. Then there exists C > 0 such that, for all closed
embedded orientable minimal hypersurfaces � → M,

ind(�) ≥ Cb1(�)

where b1(�) denotes the first Betti number of � with real coefficients.

Variations of this conjecture include replacing the assumption that the Ricci curvature is
positive with other notions of positivity (or non-negativity) of the curvature; replacing the
index with the extended index ind0, that is, the sum of index and nullity; and replacing the
linear bound with an affine bound of the form ind ≥ C(b1 − D).

Some special cases of the conjecture above (or variations thereof) have been recently
established. For example, Ros has considered the case where (M, g) is a flat 3-torus, and
has found affine bounds on the index—see Theorem 16 in [15] (see also [5]). The authors
of [2] have extended Ros’ work to the case where the ambient space M is a flat torus
of arbitrary dimension. Namely, they provide an affine bound for the index of minimal
hypersurfaces which (if the torus has dimension > 4) are required to have points where all
principal curvatures are distinct. Savo [16] has given linear bounds on the index of minimal
hypersurfaces in round spheres, and [1] have extended these bounds to the other compact rank
one symmetric spaces. Moreover, the methods in [1] sometimes allow for small perturbations
of the ambient metric in certain directions.

Note that the results mentioned above mostly apply to ambient spaces in subclasses of
compact symmetric spaces. Our main result applies uniformly to this whole class:

Theorem A Let (M, g) be a compact symmetric space, G its isometry group, and � ⊂ M a
closed, immersed minimal hypersurface. Then the extended index of � satisfies

ind0(�) ≥
(
dimG

2

)−1

b1(�).

ToproveTheoremA(aswell as the previous resultsmentioned above) oneneeds to produce
enough negative variations, and roughly speaking, these come from coordinates of vector
fields. In [2,15] about flat tori, the tangent bundle is trivial, and a choice of parallelization
leads to such coordinates. In [1,16], such coordinates come from an embedding of the ambient
manifold (M, g) into Euclidean space, an idea that goes back at least to [18] (see also [16,
Corollary 2.2]). Our method of proof generalizes all of these: we consider embeddings of
the tangent bundle of M into a flat trivial bundle M × V over M , such that the natural flat
connection on M × V induces the Levi-Civita connection of M .

Such structures, which we call virtual immersions, exhibit an extrinsic geometry similar
to the classical case. More precisely, one may define the normal bundle, second fundamental
form, and normal connection, and these satisfy identities analogous to the fundamental equa-
tions of Gauss, Codazzi, and Ricci. The important difference is that the second fundamental
form is not necessarily symmetric, and in fact the case where it is symmetric corresponds
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exactly to classical isometric immersions into Euclidean space. In the present article, we
mostly consider the opposite extreme, namely virtual immersions with skew-symmetric sec-
ond fundamental form. We show that every compact symmetric space admits a natural such
virtual immersion, which lies at the heart of the proof of Theorem A.

By the Nash Embedding Theorem, every Riemannian manifold admits an isometric
embedding into Euclidean space. In contrast, virtual immersions with skew-symmetric sec-
ond fundamental form are extremely rigid, and in fact their existence characterizes symmetric
spaces:

Theorem B Let (M, g) be a compact Riemannian manifold. It admits a virtual immersion �

with skew-symmetric second fundamental form if and only if it is a symmetric space. In this
case, � is essentially unique.

Let (M, g) be a compact symmetric space. In some situations, one may “improve” Theo-
rem A to obtain linear or affine bounds on the index, instead of the extended index, of closed
immersed minimal hypersurfaces in M . For example when M is a CROSS, we recover, in
a uniform way, linear bounds for the index, although with worse constants than the ones
obtained in [1]—see Corollary 19. In higher rank, we have:

Theorem C Let M = G/H bea compact symmetric space of rank r ≥ 2, with G = Isom(M),
and � ⊂ M a closed, immersed minimal hypersurface. Then an affine bound of the form

ind(�) ≥
(
dimG

2

)−1

(b1(�) − D)

holds in the following cases:

(a) the hypersurface � contains a point where all principal curvatures are distinct, and
D = 2r − 3 + dim z(h). Here h denotes the Lie algebra of H, and z(h) its center.

(b) M is a product of two CROSSes M = M1 × M2, and D is one plus the number of
two-dimensional factors.

Both Theorem C and Corollary 19 are special cases of a more general, albeit technical,
result—see Theorem 18.

Part (a) of Theorem C generalizes the main result of [2] from tori to compact symmetric
spaces. Part (b) may be compared with [1, Theorems 10,11], which provide a linear bound
for the index of closed minimal hypersurfaces of products of two spheres Sa × Sb with
(a, b) �= (2, 2).

If the hypersurface � is unstable, then an affine bound of the form ind ≥ C(b1 − D)

trivially implies the linear bound ind ≥ C
1+CD b1. One situation where � is necessarily

unstable is when M has positive Ricci curvature and � is two-sided (for example when both
M and � are orientable). In particular, we have:

Corollary D Let M be an orientable compact symmetric space whose universal cover has
no Euclidean factors. Then the conclusion of the Marques–Neves–Schoen Conjecture holds
if M is a product of two CROSSes, or if � has a point where the principal curvatures are
distinct.

Conventions

We will denote by R the curvature tensor, and follow the sign convention in [9, page 89].
Namely,

R(X , Y )Z = ∇Y∇X Z − ∇X∇Y Z + ∇[X ,Y ]Z
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Shape operators will be defined as in [9, page 128], that is,

Sη(X) = −(∇Xη)T

2 Virtual immersions and their fundamental equations

Let (M, g) be a compact Riemannian manifold. We define a generalization of isometric
immersions of (M, g) into Euclidean space. Namely, we consider an isometric embedding
of T M into a trivial bundle M × V , such that the natural (flat) connection D of M × V
induces the Levi-Civita connection ∇ on T M . To make computations more convenient, we
phrase this definition in the following, slightly different way—see Proposition 4 for a proof
that these two definitions coincide.

Definition 1 Let (M, g) be a Riemannian manifold, and V a finite-dimensional real vector
space endowed with an inner product 〈, 〉. Let � be a V -valued one-form on M . We say � is
a virtual immersion if the following two conditions are satisfied:

(a)
〈
�p(X),�p(Y )

〉 = gp(X , Y ) for every p ∈ M , and every X , Y ∈ TpM .
(b)

〈
(d�)p(X , Y ),�p(Z)

〉 = 0 for every p ∈ M , and every X , Y , Z ∈ TpM .

We say two virtual immersions �i : T M → Vi , i = 1, 2 are equivalent if there is a linear
isometry (V1, 〈, 〉1) → (V2, 〈, 〉2) making the obvious diagram commute.

Example 2 Let ψ : (M, g) → V be an isometric immersion. Then � = dψ is a virtual
immersion in the above sense.

Example 3 Let �i : T M → Vi be virtual immersions, for i = 1, 2, and let a1, a2 ∈ C∞(M)

such that a21 +a22 = 1 everywhere on M . Then the map �1 ⊕�2 : T M → V1 ⊕V2 given by
v �→ (a�1(v), b�2(v)) is again a virtual immersion. This follows from a straight-forward
computation.

Given a virtual immersion �, we shall identify T M with the image of the map (p, v) �→
(p,�p(v)) in M × V .

Condition (a) in Definition 1 yields a decomposition of the trivial vector bundle M × V
as a direct sum M × V = T M ⊕ νM of T M ⊂ M × V and its orthogonal complement,
the normal bundle νM . Given (p, X) ∈ M × V , we shall write X = XT + X⊥ for the
decomposition into the tangent and normal parts.

The natural connection D onM×V induces connections DT (respectively D⊥, the normal
connection) on T M (resp. νM), given by DT

XY = (DXY )T (resp. D⊥
X η = (DXη)⊥). Here

X , Y are vector fields on M , while η is a section of the normal bundle.

Proposition 4 Let � be a V -valued one-form on M satisfying condition (a) in Definition 1.
Then, condition (b) is equivalent to DT = ∇.

Proof Recall that

d�(X , Y ) = DXY − DY X − [X , Y ] (1)

so that taking the tangent part yields

d�(X , Y )T = DT
XY − DT

Y X − [X , Y ].
Condition (a) implies that DT is compatible with the metric g, and by the above formula
Condition (b) is equivalent to DT being torsion-free. Since these two properties characterize
the Levi-Civita connection, the result follows. ��

123



Virtual immersions and minimal hypersurfaces in compact… Page 5 of 18 192

Definition 5 Let � be a V -valued virtual immersion, X , Y be smooth vector fields on M ,
and η a smooth section of νM . Define the second fundamental form of � by

II (X , Y ) = (DXY )⊥

and the shape operator in the direction of a normal vector η by

Sη(X) = −(DXη)T .

Note that the second fundamental form and the shape operator are tensors. In view of Propo-
sition 4, we may write

DXY = ∇XY + II (X , Y ) (2)

DXη = −SηX + D⊥
X η (3)

Remark 6 If � is a virtual immersion, then its second fundamental form is symmetric if and
only if d� = 0, or, equivalently, � locally comes from an isometric immersion of M into
Euclidean space. Indeed, by (1), the normal part of d� equals II (X , Y ) − II (Y , X).

The fundamental equations of the extrinsic geometry of submanifolds of Euclidean space
carry over in similar form to virtual immersions. In fact, following almost verbatim the
computations in, for example, [9, Ch. 6.3], one gets the following.

Proposition 7 Let � be a virtual immersion of the Riemannian manifold (M, g) with values
in V . Then the following identities hold:

(a) Weingarten’s equation 〈
Sη(X), Y

〉 = 〈II (X , Y ), η〉
(b) Gauss’ equation

R(X , Y , Z ,W ) = 〈II (Y ,W ), II (X , Z)〉 − 〈II (X ,W ), II (Y , Z)〉
(c) Ricci’s equation 〈

R⊥(X , Y )η, ζ
〉
= −

〈
(StηSζ − Stζ Sη)X , Y

〉

(d) Codazzi’s equation

〈(DX II )(Y , Z), η〉 = 〈(DY II )(X , Z), η〉 .

3 Index of minimal hypersurfaces

In this section we show that the method of proof used in [1,2,16] applies not only to immer-
sions of the ambient manifold M into Euclidean space, but also to virtual immersions. The
statements that we need, along with their proofs, are essentially the same as in the classical
case. We include them here for the sake of completeness and to fix notations.

Let (M, g) be a Riemannian manifold, and � → M be a closed minimal immersed
hypersurface. Recall that the Jacobi operator J� is the self-adjoint operator on the space
�(ν�) of sections of the normal bundle of �, and it is defined by:

J�(X) = 	⊥X + (|A|2 + RicM (N , N )
)
X
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where N is a choice of (locally defined) unit normal vector field to �, 	⊥ is the normal
Laplacian, and A is the second fundamental form of the immersion � → M . The Morse
index of � (resp. the nullity of �) is the index (resp. the dimension of the kernel) of the
quadratic form

Q(X , X) = −
∫

�

J�(X) · X =
∫

�

|∇⊥X |2 − (|A|2 + RicM (N , N )
)|X |2.

The next lemma is equivalent to [1, Proposition 3] (see also [16] and [15, Theorem 16]).

Lemma 8 Suppose H is a vector space of dimension b, and let

X : H → �(ν�)
, X(ω) = (X1(ω), . . . X
(ω))

be a linear map such that for all ω ∈ H,


∑
i=1

Q(Xi (ω), Xi (ω)) ≤ 0 (resp. < 0). (4)

Then ind0(�) ≥ 1


b (resp. ind(�) ≥ 1



b).

Proof Let Em ⊂ �(ν�) be the sum of eigenspaces of J� with non-positive (resp. negative)
eigenvalue, and let

� : H → Hom(E,R
), ω �→
(
Y �→ ( 〈Y , X1(ω)〉L2 , . . . 〈Y , X
(ω)〉L2

))

where 〈X , Y 〉L2 := ∫
�

〈X , Y 〉. Notice that m = ind0(�) (resp. m = ind(�)) and in either
case one must prove b ≤ 
m.

By contradiction, if b > 
m = dimHom(E,R
), then by dimension reasons ker� �= 0
and, given ω ∈ ker� nonzero, it follows that Xi (ω) ⊥ E for all i = 1, . . . 
. Therefore
Q(Xi (ω), Xi (ω)) > 0 (resp. Q(Xi (ω), Xi (ω)) ≥ 0) and, taking the sum over all i = 1, . . . 

one gets the desired contradiction with equation (4). ��

SupposeM is endowedwith a virtual immersion� : T M → V , with second fundamental
form II . For any point p ∈ M and vectors x, y ∈ TpM , define

ACS(x, y) := |y|2 tr
(
|II (· , x)|2 − R(· , x, · , x)

)
+ |x |2 tr

(
|II (· , y)|2 − R(· , y, · , y)

)

−
(
|II (x, y)|2 − R(x, y, x, y)

)
− |x |2|II (y, y)|2 (5)

This quantity appears naturally in the proof of Proposition 9, more specifically in equation
(7).

The next result is equivalent (in the case of classical immersions) to Proposition 2 in [1]:

Proposition 9 Suppose M admits a virtual immersion � : T M → V , dim V = d, such that,
for every point p ∈ M and every x, y ∈ TpM orthonormal vectors, ACS(x, y) ≤ 0 (resp.
< 0).

Then, for every closed minimal immersed hypersurface � → M,

ind0(�) ≥
(
d

2

)−1

b1(�)

(
resp. ind(�) ≥

(
d

2

)−1

b1(�)

)
.
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Proof Let � → M be a closed, immersed, minimal hypersurface. Also, let θ1, . . . θd denote
an orthonormal basis of V .

Locally around every point of �, it is possible to choose a unit normal vector N , which
is unique up to sign. Given indices 1 ≤ i < j ≤ d and a harmonic 1-form ω on �, let ω#

denote the vector field on� such that 〈ω#, Y 〉 = ω(Y ) for any vector field Y in�, and define

Xi j (ω) := 〈
ω# ∧ N , θi ∧ θ j

〉
N . (6)

Notice that the definition of Xi j (ω) does not depend on the specific choice of unit normal
vector N , and therefore it defines a global section of ν�, even when � is 1-sided and there
is no global unit vector field N defined on the whole of �.

Letting H denote the space of harmonic 1-forms on � and letting 
 = (d
2

)
, this defines a

linear map

X : H → �(ν�)
, X(ω) = (
Xi j (ω)

)
i, j .

The idea is to apply Lemma 8 to get the result. In order to do this, we must compute∑
i< j Q(Xi j (ω), Xi j (ω)):

Q(Xi j (ω), Xi j (ω)) =
∫

�

|∇⊥Xi j (ω)|2 − (|A|2 + RicM (N , N )
)|Xi j (ω)|2

=
n−1∑
k=1

∫
�

〈
Dek (ω

# ∧ N ), θi ∧ θ j
〉2

−
∫

�

(|A|2 + RicM (N , N )
) 〈

ω# ∧ N , θi ∧ θ j
〉2

where e1, . . . en−1 denotes a (local) orthonormal frame of T�. Summing over all indices
i, j , one obtains

∑
i< j

Q(Xi j (ω), Xi j (ω)) =
n−1∑
k=1

∫
�

|Dek (ω
# ∧ N )|2 − (|A|2 + RicM (N , N )

)|ω# ∧ N |2.

Using the equality Dei (ω
# ∧ N ) = (Dei ω

#) ∧ N + ω# ∧ (Dei N ) and Dei = ∇ei + II (ei , · ),
the computations from this point on follow verbatim those in Proposition 2 of [1]. These
show that

∑
i< j

Q(Xi j (ω), Xi j (ω)) =
∫

�

ACS(ω#, N ) (7)

which is non-positive (resp. negative) by assumption, and the result now follows from
Lemma 8. ��

When the ACS quantity (5) is non-positive, Proposition 9 yields a linear bound on the
extended index. Sometimes one may also obtain a lower bound on the index, which is in
general affine in b1 instead of linear. This is described in the following “rigidity” statement:
(compare with the proof of Theorem 1.1 in [2, page 8]).

Proposition 10 Suppose M admits a virtual immersion � : T M → V , dim V = d, such
that for every point p ∈ M and every x, y ∈ TpM orthonormal vectors, ACS(x, y) ≤ 0. Let
� → M be a closed minimal immersed hypersurface, and let D denote the dimension of the
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space of harmonic one-forms ω on � such that J�(Xi j (ω)) = 0 for all i, j , where Xi j (ω)

is defined in (6). Then

ind(�) ≥
(
d

2

)−1

(b1(�) − D).

Proof This proof is similar to the proofs of Lemma 8 and Proposition 9, so we use the same
notations and only indicate the necessary modifications.

Let H be the space of harmonic 1-forms on �, and H′ ⊂ H the orthogonal complement
to the space of harmonic 1-forms ω such that J�(Xi j (ω)) = 0 for all i, j . Thus dim(H′) =
b1 − D.

Let m = ind(�), 
 = (d
2

)
and consider the restriction of � : H → Hom(E,R
) to

H′, where E denotes the space spanned by the eigenfunctions of J� associated to negative
eigenvalues. Assuming for a contradiction that b1 − D > 
m yields a non-zero ω ∈ H′
such that �(ω) = 0. Then Q(Xi j (ω), Xi j (ω)) ≥ 0 for all i, j , and, since ACS ≤ 0, we have
Q(Xi j (ω), Xi j (ω)) = 0 for all i, j . But Xi j (ω) is a linear combination of eigenfunctionswith
non-negative eigenvalues, so J�(Xi j (ω)) vanishes identically for all i, j , a contradiction. ��

4 Skew-symmetric second fundamental form

In this section we define a natural virtual immersion with skew-symmetric second fundamen-
tal form associated to any compact symmetric space, and use it to prove Theorem A. Then
we show that this is in fact the unique example of a virtual immersion with skew-symmetric
second fundamental form, thus proving Theorem B.

We start by fixing some notations (see for example [3, Chapter 7] for general information
about symmetric spaces). Let (M, g) be a compact symmetric space, and p0 ∈ M . Choose a
closed transitive subgroupG of the isometry group ofM such that (G, H) is a symmetric pair,
where H = Gp0 . Denote by π : G → G/H = M the natural projection g �→ �g� = gp0.
Choose an AdG -invariant metric 〈, 〉 on the Lie algebra g such that π is a Riemannian
submersion, and let m ⊂ g be the orthogonal complement of h with respect to this metric.
Then m is isometric to Tp0M via the differential of π at the identity e ∈ G; h and m are
AdH -invariant; and they satisfy [m,m] = h.

Define G ×H m as the quotient of G × m by the action of H given by h.(g, X) =
(gh−1,Adh X), and denote by �g, X� the image of (g, X) ∈ G × m under the quotient
map. G ×H m comes with a natural action by G, defined by g′.�g, X� = �g′g, X�. Identify
the tangent bundle T M with G ×H m by extending the isomorphism m → Tp0M to the
G-equivariant isomorphism

�g, X� �→ dg(X).

With this identification, we define a g-valued one-form �0 on M by

�0(�g, X�) = Adg X . (8)

Lemma 11 The g-valued one-form �0 defined in Eq. (8) is a virtual immersion. At �g� ∈ M,
the tangent and normal spaces are Adg m and Adg h, respectively. The second fundamental
form is given by

II
(
�g, X�, �g, Y �

) = Adg([X , Y ])
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and the curvature of the normal connection is given by

R⊥(X , Y )η = [[X , Y ], η].
Proof It is clear from (8) that the tangent and normal spaces are Adg m and Adg h.

Let X ∈ g. Under the identification of T M with G ×H m that we are using, the action
field X∗ is given by

X∗�g� = �g, (Adg−1 X)m�.

Indeed,

dg−1
(

d

dt

∣∣∣∣
t=0

�et X g�

)
= d

dt

∣∣∣∣
t=0

�g−1et X g� = dπe(Adg−1 X) = (Adg−1 X)m.

Given X , Y ∈ g, we then have

DX∗�0(Y
∗) = d

dt

∣∣∣∣
t=0

Adet X g((Adg−1e−t X Y )m)

= Adg
([Adg−1 X , (Adg−1 Y )m] − (Adg−1 [X , Y ])m

)
By G-equivariance, it is enough to show that, for every X , Y ∈ m, we have

d�0(X∗, Y ∗)Tp0 = 0 and II (X , Y )p0 = [X , Y ]. Plugging g = e in the equation above,
and using the fact that [m,m] = h, we have

DX∗�0(Y
∗) = [X , Y ].

The tangent part of this is zero, so that

d�0(X
∗, Y ∗)Tp0 = DX∗�0(Y

∗)Tp0 − DY ∗�0(X
∗)Tp0 − �0([X∗, Y ∗])p0 = 0 − 0 − 0 = 0

which means that �0 is a virtual immersion.
Moreover, II (X , Y )p0 = DX∗�0(Y ∗)⊥p0 = [X , Y ].
Finally, we compute the curvature of the normal connection using Ricci’s equation [see

Proposition 7(c)]. From the equation for the second fundamental form above, we see that the
shape operator is given by Sη(X) = −[X , η]. Therefore〈

R⊥(X , Y )η, ξ
〉
= 〈[Sη, Sξ ]X , Y

〉 = 〈[[X , ξ ], η] − [[X , η], ξ ], Y 〉
= 〈−[[ξ, η], X ], Y 〉 = 〈[Y , X ], [ξ, η]〉
= 〈[[X , Y ], η], ξ 〉

where we have used the Jacobi identity in the third equal sign, and bi-invariance of 〈, 〉 in the
last two equal signs. ��
Example 12 Let M = Sn−1, the unit (n − 1)-sphere. Its isometry group is O(n), with Lie
algebra so(n). The latter may be identified with ∧2

R
n via the formula x ∧ y �→ xyt − yxt ,

where x, y are viewed as column n-vectors. Take the base point p0 to be the first standard
basis vector (1, 0, . . . , 0)t ∈ R

n . Then the virtual immersion �0 : T M → so(n) defined in
(8) is simply given by (p, v) �→ p ∧ v. To prove this, one notes that the map given by this
formula and �0 are both O(n)-equivariant, and that they coincide at the point p0 ∈ M .

Remark 13 Geometrically, we may think of the Lie algebra g as the space of Killing fields
on M . Then, the map �0 defined in (8) sends the tangent vector �g, X� ∈ T�g�M to the
unique Killing field with this value at �g� ∈ M , and zero covariant derivative at this point.
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Equivalently, �0(�g, X�) is the Killing field of smallest norm (as an element of g) that has
the value �g, X� at �g�. Indeed, this follows from the formula X∗�g� = �g, (Adg−1 X)m�.

Proof of Theorem A Let (M, g) be a compact symmetric space, and consider �0 defined in
Eq. (8). By Lemma 11, this is a virtual immersion with skew-symmetric second fundamental
form. By the Gauss equation [Proposition 7(b)], R(X , Y , X , Y ) = |II (X , Y )|2, so that in
particular the ACS quantity defined in Eq. (7) vanishes identically. Now the result follows
from Proposition 9. ��

Next we proceed to the proof of Theorem B. We need the following two lemmas.

Lemma 14 Let (M, g) be a compact Riemannian manifold, and� a V -valued virtual immer-
sion with skew-symmetric second fundamental form II . Then:

(a) 〈R(X , Y )Z ,W 〉 = 〈II (X , Y ), II (Z ,W )〉.
(b) (DX II )(Y , Z) = −R(Y , Z)X.
(c) ∇R = 0. In particular, (M, g) is a locally symmetric space.

Proof (a) Start with Gauss’ equation (see Proposition 7(b)),

R(X , Y , Z ,W ) = 〈II (Y ,W ), II (X , Z)〉 − 〈II (X ,W ), II (Y , Z)〉
Applying the first Bianchi identity yields

0 = −2
( 〈II (X , Y ), II (Z ,W )〉 + 〈II (Y , Z), II (X ,W )〉 + 〈II (Z , X), II (Y ,W )〉 )

so that using Gauss’ equation one more time we arrive at

〈R(X , Y )Z ,W 〉 = 〈II (X , Y ), II (Z ,W )〉 .

(b) First we argue that (DX II )(Y , Z) is tangent. Indeed, for any normal vector η, Codazzi’s
equation (Proposition 7(d)) says that

〈(DX II )(Y , Z), η〉 = 〈(DY II )(X , Z), η〉 .

Thus the trilinear map (X , Y , Z) �→ 〈(DX II )(Y , Z), η〉 is symmetric in the first two
entries and skew-symmetric in the last two entries, which forces it to vanish.
Next we let W be any tangent vector and compute

〈(DX II )(Y , Z),W 〉 = 〈DX (II (Y , Z)),W 〉 = − 〈II (Y , Z), DXW 〉
= − 〈II (Y , Z), II (X ,W )〉 = − 〈R(Y , Z)X ,W 〉

where in the last equality follows we have used part (a).
(c) Since the natural connection D on M × V is flat, it follows that for any vector fields

X , Y , Z ,W , we have

0 = DX (DY (II (Z ,W ))) − DY (DX (II (Z ,W ))) − D[X ,Y ](II (Z ,W )).

Fix p ∈ M , and take vector fields such that [X , Y ] = 0 and ∇Z = ∇W = 0 at p ∈ M .
Then, evaluating the equation above at p ∈ M , we have

0 =DX
(
(DY II )(Z ,W ) + II (∇Y Z ,W ) + II (Z ,∇YW )

)
− DY

(
(DX II )(Z ,W ) + II (∇X Z ,W ) + II (Z ,∇XW )

)
=DX (−R(Z ,W )Y ) + II (∇X∇Y Z ,W ) + II (Z ,∇X∇YW )
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− DY (−R(Z ,W )X) − II (∇Y∇X Z ,W ) − II (Z ,∇Y∇XW )

= − (DX R)(Z ,W )Y + (DY R)(Z ,W )X − II (R(X , Y )Z ,W ) − II (Z , R(X , Y )W )

Taking the tangent part yields (∇X R)(Z ,W )Y = (∇Y R)(Z ,W )X . Taking inner product
with T ∈ TpM we have

(∇R)(Z ,W , Y , T , X) = (∇R)(Z ,W , X , T , Y ),

that is, ∇R is symmetric in the third and fifth entries. But ∇R is also skew-symmetric
in the third and fourth entries, so that ∇R = 0.

��
Lemma 15 Let (M, g) be a connected Riemannian manifold, and let � j : T M → Vj , for
j = 1, 2 be virtual immersions with skew-symmetric second fundamental forms II j . Assume
V1, V2 are minimal in the sense that Vj = span(� j (T M)). Then �1,�2 are equivalent in
the sense that there is a linear isometry L : V1 → V2 such that �2 = L ◦ �1.

Proof Define a connection D̂ on the vector bundle T M ⊕ ∧2T M by

D̂W

(
Z ,

∑
i

Xi ∧ Yi
)

=
(
∇W Z −

∑
i

R(Xi , Yi )W , W ∧ Z + ∇W

∑
i

Xi ∧ Yi
)

Define bundle homomorphisms �̂ j : T M ⊕ ∧2T M → M × Vj , for j = 1, 2, by

�̂ j

(
Z ,

∑
i

Xi ∧ Yi
)

=
(
p, � j (Z) +

∑
i

II j (Xi , Yi )
)

for Z , Xi , Yi ∈ TpM . By Lemma 14(b), given vector fields Xi , Yi , Z ,W , we have

(Dj )W

(
�̂i

(
Z ,

∑
i

Xi ∧ Yi
))

= �̂ j

(
D̂W

(
Z ,

∑
i

Xi ∧ Yi
))

(9)

where Dj denotes the natural flat connection on M × Vj . This implies that the image of �̂ j

is Dj -parallel, and hence, by minimality of Vj , that �̂ j is onto M × Vj .
Define a bundle isomorphism L : M × V1 → M × V2 by

L
(
�̂1

(
Z ,

∑
i

Xi ∧ Yi
))

= �̂2

(
Z ,

∑
i

Xi ∧ Yi
)

for Z , Xi , Yi ∈ TpM . This is well-defined because, by Lemma 14(a), ker �̂1 = ker �̂2.
Indeed, they are both equal to{(

0,
∑
i

Xi ∧ Yi
) ∣∣∣ Xi , Yi ∈ TpM,

∑
a,b

R(Xa, Ya, Xb, Yb) = 0
}

We claim the linear map L p : V1 → V2 is independent of p ∈ M . Indeed, given two
points p, q ∈ M , choose a curve γ (t) in M joining p to q . Choose smooth vector fields
Z , Xi , Yi along γ (t) such that �̂1(Z ,

∑
Xi ∧ Yi ) is constant equal to v ∈ V1. Then, by (9),

D̂γ̇ (Z ,
∑

Xi ∧ Yi ) ⊂ ker �̂1. But by Lemma 14(a), ker �̂1 = ker �̂2. Therefore, again by
(9), we see that L(v) is constant along γ , so that L p = Lq . Calling this one linear map L ,
we have �̂2 = L ◦ �̂1 by construction. In particular, �2 = L ◦ �1, finishing the proof that
�1 and �2 are equivalent. ��
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Proof of Theorem B Let (M, g) be a compact Riemannian manifold. If M is symmetric, then
it admits a virtual immersion with skew-symmetric second fundamental form by Lemma
11. Conversely, let � : T M → V be a virtual immersion with skew-symmetric second
fundamental form. We may assume that V is minimal, and then uniqueness of � follows
from Lemma 15. What remains to be proved is that M is symmetric.

ByLemma14(c),M is locally symmetric, and therefore its universal cover M̃ is symmetric.
By Lemma 14(a), M̃ has non-negative curvature, so that M̃ splits isometrically as M̃ =
N × R

l , where N is a compact, simply-connected symmetric space.
Denoting byG the isometry group of N , we claim that Isom(M̃) = G×Isom(Rl). Indeed,

tangent vectors of the form (v, 0) are characterized by the fact that the associated geodesic has
bounded image. Thus, any isometryγ of N×R

l preserves the splitting T (N×R
l) = T N⊕R

l .
In particular, fixing p ∈ N , the maps g : N → N and B : Rl → R

l given by composing the
obvious maps

g : N → N × {0} ↪→ N × R
l γ→ N × R

l → N

B : Rl → {p} × R
l ↪→ N × R

l γ→ N × R
l → R

l

are isometries. Since γ and g× B are isometries of N ×R
l whose values and first derivatives

coincide at (p, 0), it follows that γ = g × B.
Denote by � ⊂ Isom(M̃) = G × Isom(Rl) the group of deck transformations for the

covering ρ : M̃ → M (so that � is isomorphic to π1(M)). Let (p, ξ) ∈ N × R
l , and

consider the symmetry s = sp × sξ at (p, ξ). We need to show that s normalizes �, so that s
descends to a well-defined symmetry of M . We will in fact show that sγ s = γ −1 for every
γ = g × B ∈ �.

Note that �0 × Id : T M̃ → g × R
l is a virtual immersion with skew-symmetric second

fundamental form, where �0 is defined as in (8). Since the pull-back ρ∗� is again such a
virtual immersion, Lemma 15 implies that �0 × Id is fixed by �. Therefore, B must be a
translation. As for g ∈ G, we have Adg X = X for every X ∈ m, and, since [m,m] = h, the
same equation holds for every X ∈ g. In particular, g commutes with the identity component
G0 of G.

Since G0 acts transitively on N , this implies that the displacement function q ∈ N �→
d(q, g(q)) has a constant value d (in other words, it is a Clifford-Wolf translation).Moreover,
the isometries spgsp and gspgsp also commute with G0, so that they are Clifford-Wolf
translations as well. Thus it suffices to show that gspgsp has a fixed point, for this would
imply that gspgsp = Id, and hence that γ sγ s = Id.

Let c(t) : [0, 1] → N be a minimal geodesic between c(0) = p and c(1) = g(p), and
let m = c(1/2) denote the midpoint. Then, the concatenation of c with g−1c must be a
geodesic, because d(g−1m,m) = d = d(g−1m, p)+d(p,m). Thus, extending the geodesic
segment c to a complete geodesic c : R → N , we see that c(−1) = g−1(p). In particular,
spgsp(p) = spg(p) = sp(c(1)) = c(−1) = g−1(p), and hence gspgsp fixes the point
p ∈ N , finishing the proof. ��

5 Affine bounds on the index

Let� → M = G/H be a compact, immersed,minimal hypersurface in a compact symmetric
space. This section addresses the question of when the linear bound in b1(�) on the extended
index of � given in Theorem A can be “improved” to an affine bound on the index. To find
such affine bounds, we consider the unique virtual immersion � : T M → g with skew-
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symmetric second fundamental form, defined in (8). In view of Proposition 10, it suffices to
find an upper bound on the dimension of the space of harmonic 1-forms ω on � such that
Xi j (ω) lies in the kernel of the Jacobi operator J� for all i, j , where Xi j is defined in (6).

To compute J�(Xi j (ω)) at p ∈ �, choose an orthonormal frame E1, . . . En−1 of �, such
that (∇�

Ei
E j )p = 0, and an orthonormal basis θi of g. Then

J�(Xi j (ω)) =∇⊥
Ek

∇⊥
Ek

(〈N ∧ ω#, θi ∧ θ j 〉N
)

+ (|A|2 + RicM (N , N ))〈N ∧ ω#, θi ∧ θ j 〉N
= 〈

DEk DEk (N ∧ ω#) + (|A|2 + RicM (N , N ))(N ∧ ω#), θi ∧ θ j
〉
N .

Here and in the rest of the sectionwe adopt the convention that, when repeated indices appear,
we are summing over them. From the previous equation J�(Xi j (ω)) = 0 for all i, j if and
only if

DEk DEk (N ∧ ω#) + (|A|2 + RicM (N , N ))(N ∧ ω#) = 0. (10)

We proceed now to compute Eq. (10). For this, let ∇ denote the Levi Civita connection
of �. We have:

DEk DEk (N ∧ ω#) = DEk

(
− SN Ek ∧ ω# + II (Ek , N ) ∧ ω#

+ N ∧ ∇Ekω
# + N ∧ II (Ek, ω

#)
)

(11)

We compute the derivatives of each of the four summands on the right hand side of the
equation above, in (a)–(d) below. For the sake of clarity, when computing terms of the type
DEk (X ∧ Y ), we display the result in the form ((DEk X) ∧ Y ) + (X ∧ (DEkY )), that is, we
write the two parts separately inside parentheses.

DEk (−SN Ek ∧ ω#) =
(

− ∇Ek (SN Ek) ∧ ω# − |SN |2N ∧ ω# (a)

− II (Ek , SN Ek) ∧ ω#
)

+
(

− SN Ek ∧ ∇Ekω
#

− SN Ek ∧ 〈
SNω#, Ek

〉
N − SN Ek ∧ II (Ek , ω

#)
)

DEk (II (Ek, N ) ∧ ω#) =
(

− R(Ek, N )Ek ∧ ω# − II (Ek , SN Ek) ∧ ω#
)

(b)

+
(
II (Ek , N )∧∇Ekω

# + II (Ek, N )∧〈
SN Ek, ω

#〉N
+ II (Ek, N ) ∧ II (Ek , ω

#)
)

In the equation above, it was used the fact that (DZ II )(X , Y ) = −R(X , Y )Z , and that by
assumption ∇Ek E j = 0 at p.

DEk (N ∧ ∇Ekω
#) =

(
− SN Ek ∧ ∇Ekω

# + II (Ek , N ) ∧ ∇Ekω
#
)

(c)

+
(
N ∧ ∇Ek∇Ekω

# + N ∧ II (Ek ,∇Ekω
#)

)

DEk (N ∧ II (Ek , ω
#)) =

(
− SN Ek ∧ II (Ek, ω

#) + II (Ek, N ) ∧ II (Ek , ω
#)

)
(d)

+
(

− N ∧ R(Ek, ω
#)Ek + N ∧ II (Ek ,∇Ekω

#)
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+ N ∧ II (Ek,
〈
SNω#, Ek

〉
N )

)

Lemma 16 Let M = G/H be a compact symmetric space and let � → M a closed,
immersed, minimal hypersurface. Suppose ω is a harmonic one-form on � such that
J�(Xi j (ω)) = 0 for all 1 ≤ i < j ≤ d. Then

(a) The operators ∇ω# and SN commute.
(b) At any point p = �g� ∈ G/H, Ad−1

g II (ω#, N ) is contained in the center of h, z(h) =
{x ∈ h | [x, y] = 0 ∀y ∈ h}.

(c) For any vector x tangent to �, ∇x
(
II (ω#, N )

) = −R(ω#, N )x. In particular,
‖II (ω#, N )‖ is constant.

For example, when the symmetric spaceM is a torus, parts (b) and (c) are trivially satisfied,
and part (a) is equivalent to Proposition 3 in [2].

Remark 17 In fact, J�(Xi j (ω)) = 0 for all 1 ≤ i < j ≤ d if and only if conditions (a),
(b), (c) are satisfied. We omit the proof of the reverse implication since it is not used in the
remainder of this article.

Proof Notice that Eq. (10) is a vector-valued equation in ∧2V . Fixing a point p in � and
identifying TpM with its image under�p inV , we can split orthogonallyV = TpM⊕νpM =
R · N ⊕ Tp� ⊕ νpM and this induces a splitting of ∧2V . The different parts of the lemma
follow from projecting Eq. (10) on the different subspaces.

(a) Projecting Eq. (10) onto the subspace∧2Tp� ⊂ ∧2V and using the computations above,
we obtain

0 = − ∇Ek (SN Ek) ∧ ω# − 2SN Ek ∧ ∇Ekω
# − π�(R(Ek, N )Ek) ∧ ω#. (12)

Here π� denotes orthogonal projection onto Tp�. Applying Codazzi equation to the
first term we get

∇Ek (SN Ek) = 〈∇Ek (SN E j ), Ek
〉
E j

= (〈∇E j (SN Ek), Ek
〉 + 〈

R(E j , Ek)Ek, N
〉)
E j

= (
E j 〈SN Ek, Ek〉 − 〈

R(Ek, N )Ek, E j
〉)
E j

= − π�(R(Ek, N )Ek)

The last equation holds because, since � is minimal, the first summand in the second
equation vanishes. Equation (12) thus becomes

0 =π�(R(Ek , N )Ek) ∧ ω# − 2SN Ek ∧ ∇Ekω
# − π�(R(Ek, N )Ek) ∧ ω#

⇒ 0 = SN Ek ∧ ∇Ekω
#

For any x, y ∈ Tp�, we thus have

0 = 〈
SN Ek ∧ ∇Ekω

#, x ∧ y
〉

= 〈SN Ek, x〉
〈∇Ekω

#, y
〉 − 〈SN Ek, y〉

〈∇Ekω
#, x

〉
Clearly SN is symmetric. Since ω is harmonic, ∇ω# is symmetric as well, and the
equation above becomes

0 = 〈Ek, SN x〉
〈∇yω

#, Ek
〉 − 〈Ek, SN y〉

〈∇xω
#, Ek

〉
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= 〈
SN x, (∇ω#)y

〉 − 〈
SN y, (∇ω#)x

〉
= 〈[SN ,∇ω#]x, y〉

Since this holds for every x and y, the result follows.
(b) Projecting Eq. (10) onto the subspace ∧2νpM ⊂ ∧2V one gets

II (N , Ek) ∧ II (ω#Ek) = 0. (13)

Taking inner product with elements II (x, y) ∧ II (u, v) (such elements span ∧2νpM),
one gets

0 = 〈II (x, y), II (N , Ek)〉
〈
II (u, v), II (ω#, Ek)

〉
− 〈

II (x, y), II (ω#, Ek)
〉 〈II (u, v), II (N , Ek)〉

= 〈R(x, y)N , Ek〉
〈
R(u, v)ω#, Ek

〉 − 〈
R(x, y)ω#, Ek

〉 〈R(u, v)N , Ek〉
= 〈

R(x, y)N , R(u, v)ω#〉 − 〈
R(x, y)ω#, R(u, v)N

〉

It is easy to check that, given η = II (x, y), then Sη = R(x, y). The equation above then
becomes

0 = 〈[Sη1 , Sη2 ]N , ω#〉 , η1 = II (x, y), η2 = II (u, v)

Since �(T M) = g, equation above holds for any η1, η2 normal vectors. Using Ricci
equation, this implies that 〈

R⊥(ω#, N )η1, η2

〉
= 0

and in particular R⊥(ω#, N )η = 0 for all η in νpM . From Lemma 11, letting p = �g�,
then νpM = Adgh and, letting η = Adgv for v ∈ h, one has

[II (ω#, N ), η] = 0 ∀η ∈ Adgh ⇒ [Ad−1
g II (ω#, N ), v] = 0 ∀v ∈ h

Therefore Ad−1
g II (ω#, N ) belongs to the center of h.

(c) Projecting Eq. (10) onto the subspace Tp� ⊗ νpM ⊂ ∧2V we get

0 = −2(II (Ek , SN Ek) ∧ ω# + SN Ek ∧ II (Ek, ω
#) − II (Ek , N ) ∧ ∇Ekω

#). (14)

The first term can be rewritten as II (Ek , E j )
〈
SN Ek, E j

〉 ∧ ω#. However, the left factor
of the exterior product is skew symmetric in i, k and therefore the ( j, k)-term in the sum
cancels with the (k, j)-term. This term thus vanishes, and Eq. (14) is equivalent to

SN Ek ∧ II (Ek, ω
#) + ∇Ekω

# ∧ II (Ek , N ) = 0.

Taking the inner product with an element of the form x ∧ II (y, z) for x ∈ Tp� and
y, z ∈ TpM (these elements span the whole of Tp� ⊗ νpM) one gets

0 = 〈
SN Ek ∧ II (Ek , ω

#) + ∇Ekω
# ∧ II (Ek, N ), x ∧ II (y, z)

〉
= 〈SN Ek, x〉

〈
II (Ek, ω

#), II (y, z)
〉 + 〈∇Ekω

#, x
〉 〈II (Ek, N ), II (y, z)〉

= − 〈SN x, Ek〉
〈
R(y, z)ω#, Ek

〉 − 〈∇xω
#, Ek

〉 〈R(y, z)N , Ek〉
= − 〈

SN x, R(y, z)ω#〉 − 〈∇xω
#, R(y, z)N

〉
= − 〈

R(ω#, SN x)y, z
〉 + 〈

R(∇xω
#, N )y, z

〉
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= 〈
R(ω#,∇x N )y + R(∇xω

#, N )y, z
〉

= 〈
II (ω#,∇x N ) + II (∇xω

#, N ), II (y, z)
〉

Therefore it follows that

0 = II (ω#,∇x N ) + II (∇xω
#, N ) = ∇x (II (ω

#, N )) − R(ω#, N )x .

��
Theorem 18 Let M = G/H be a compact symmetric space, � → M a closed, immersed,
minimal hypersurface, and letH1 denote the space of harmonic one-forms ω on� satisfying
the following two conditions at all points p ∈ �.

(a) The operators ∇ω# and SN commute.
(b) R(ω#, N , ω#, N ) = 0.

Then

ind(�) ≥
(
d

2

)−1(
b1(�) − dimH1 − dim z(h)

)

where z(h) denotes the center z(h) = {x ∈ h | [x, y] = 0 ∀y ∈ h}.
Proof LetH0 be the space of harmonic one-forms on� that satisfy the three conditions listed
in Lemma 16. ThenH1 is a subspace ofH0. More precisely, letting p0 = [e] ∈ M = G/H ,
we may assume p0 ∈ � and define the linear map Z : H0 → z(h) by Z(ω) = IIp0(ω

#, N ).
By condition (c) in Lemma 16, H1 equals the kernel of Z . Therefore its codimension is at
most dim z(h), and the result follows from Lemma 16 and Proposition 10. ��
Corollary 19 Let Mn = G/H, n > 2, be a CROSS, and � → M a compact, immersed,
minimal hypersurface. Then

ind(�) ≥
(
dimG

2

)−1

b1(�).

Proof The CROSSes M = G/H are Sn = SO(n + 1)/SO(n), RPn = O(n + 1)/O(n),
CP

n = SU(n + 1)/SU(n), HP
n = Sp(n + 1)/Sp(n) and CaP2 = F4/Spin(9). In all these

cases, h is semisimple and hence centerless. Now the result follows from the fact that M has
positive sectional curvature, together with Theorem 18. ��
Remark 20 The only 2-dimensional CROSSes are S2 and RP

2. In these cases, a minimal
hypersurface � is a closed geodesic, so that b1(�) = 1. Since the index is non-negative, in
particular one has ind(�) ≥ b1(�) − 1.

Proof of Theorem C(b) Define δi for i = 1, 2 by: δi = 1 if dim Mi = 2, and δi = 0 otherwise.
Note that D = 1 + δ1 + δ2, and that δ1 + δ2 is the dimension of the center of h.

Suppose first that � is of the form M1 × �2, where �2 is a minimal, compact hyper-
surface in M2. By Corollary 19 and Remark 20, the index of �2 is bounded below by(dimG2

2

)−1
(b1(�) − δ2), In this case we have b1(�) = b1(�2), and

ind(�) ≥ ind(�2) ≥
(
dimG1

2

)−1

(b1(�2) − δ2)

≥
(
dimG1 × G2

2

)−1

(b1(�) − 1 − δ1 − δ2)
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thus the proposition is proved in this case. Clearly the same argument would work in the case
� = �1 × M2, where �1 is a minimal compact immersed hypersurface in M1.

Suppose now that� is not as before. Then, byTheorem18, it suffices to show that the space
of harmonic one-forms ω on � such that R(ω#, N , ω#, N ) = 0 is at most one-dimensional.

Let ω1, ω2 be two such harmonic one-forms. Since � is neither of the form �1 × M2 nor
of the form M1 × �2, there exists an open setU ⊂ � such that for every p = (p1, p2) ∈ U ,
the normal vector Np ∈ Tp1M1 ⊕ Tp2M2 is not tangent to neither Tp1M1 nor Tp2M2. In
particular, for every p ∈ U there exists a unique zero curvature plane πp through Np , and in
particular a unique direction in πp , perpendicular to Np . It thus follows that ω#

1 and ω#
2 are

collinear in U : ω1 = f ω2 for some function f : U → R. However, since ω1, ω2 are both
closed and co-closed, it is easy to check that d f must be both parallel and normal to ω2 inU ,
and in particular d f = 0. Thus f is constant, and ω1, ω2 are linearly dependent in U , hence
linearly dependent on the whole of �, a contradiction. ��

Proof of Theorem C(a) By Theorem 18, it suffices to show that dimH1 ≤ 2r−3. Letω ∈ H1.
The fact that ∇ω# and S commute is equivalent to condition (2.3) in [2, Proposition 5], and
from that proposition it follows thatω is determined by its value and the value of its covariant
derivative at any point p.

Let p ∈ � where all the principal curvatures are distinct. We may assume that
N (p) ∈ TpM belongs to a regular (that is, principal or exceptional) orbit under the isotropy
representation of Gp on TpM . Indeed, the set of singular vectors has codimension at least
two, and, since the shape operator has distinct eigenvalues, its image has codimension at
most one. This means that if N (p) is singular, then there is a nearby p′ ∈ � such that N (p′)
is regular.

Define

V = {X ∈ T� | II (X , N ) = 0} = {X ∈ T� | R(X , N , X , N ) = 0}.

Since N (p) is regular, V is a smooth distribution of rank r − 1 on an open subset of �

containing p. Moreover, for any ω ∈ H1, we have ω# ∈ V .
Let {e1, . . . , en} be an orthonormal frame of eigenvectors for the shape operator, defined

on an open neighbourhood of p, with S(ei ) = ai ei . Since ∇ω# commutes with S, there are
functionsλi definednear p, such that∇ei ω

# = λi ei .Differentiating the equation II (ω#, N ) =
0 and using Lemma 14, we obtain

λi II (ei , N ) = −ai II (ω
#, ei ).

Since N is regular, there are k ≤ r − 1 values of i such that II (ei , N ) = 0. Assume without
loss of generality that II (ei , N ) �= 0 for any i > k. From the equation above, λi is completely
determined by ω# for any i > k. The values (λ1(p), . . . λk(p)) are free, up to the further
constraint that

∑n
i=1 λi (p) = 0.

Therefore, the pair (ω#(p),∇ω#(p)) is determined by (ω#(p), λ1(p), . . . λk−1(p)) ∈
V × R

k−1. In particular dimH1 ≤ r + k − 2 ≤ 2r − 3. ��
Acknowledgements It is a pleasure to thank Lucas Ambrozio for many enlightening discussions during this
project, especially regarding Lemma 14 and Theorem C(b). The final part of this project was carried out
while the second-named author visited the University of Cologne. The second-named author wishes to thank
Alexander Lytchak for his hospitality during the visit.

123



192 Page 18 of 18 R. A. E. Mendes, M. Radeschi

References

1. Ambrozio, L., Carlotto, A., Sharp, B.: Comparing the Morse index and the first Betti number of minimal
hypersurfaces. J. Differ. Geom. 108(3), 379–410 (2018)

2. Ambrozio, L., Carlotto, A., Sharp, B.: A note on the index of closed minimal hypersurfaces of flat tori.
Proc. Am. Math. Soc. 146(1), 335–344 (2018)

3. Besse, A.L.: Einstein Manifolds. Classics in Mathematics. Springer, Berlin (2008)
4. Chodosh, O., Ketover, D.,Maximo, D.:Minimal hypersurfaces with bounded index. Invent.Math. 209(3),

617–664 (2017)
5. Chodosh, O., Maximo, D.: On the topology and index of minimal surfaces. J. Differ. Geom. 104(3),

399–418 (2016)
6. Codá Marques, F.: Minimal surfaces—variational theory and applications, preprint arXiv:1409.7648

(2014)
7. Choi, H.I., Schoen, R.: The space of minimal embeddings of a surface into a three-dimensional manifold

of positive Ricci curvature. Invent. Math. 81(3), 387–394 (1985)
8. Choe, J., Soret, M.: New minimal surfaces in S

3 desingularizing the Clifford tori. Math. Ann. 364(3–4),
763–776 (2016)

9. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser Boston Inc.,
Boston (1992)

10. Hsiang, W.-Y., Lawson Jr., H.B.: Minimal submanifolds of low cohomogeneity. J. Diff. Geom. 5, 1–38
(1971)

11. Hsiang, W.-Y.: Minimal cones and the spherical Bernstein problem. I. Ann. Math. 118(1), 61–73 (1983)
12. Hsiang, W.-Y.: On the construction of infinitely many congruence classes of imbedded closed minimal

hypersurfaces in Sn(1) for all n ≥ 3. Duke Math. J. 55(2), 361–367 (1987)
13. Kapouleas, N.: Doubling and desingularization constructions for minimal surfaces. In: Bray, H.L., Mini-

cozzi, W.P., Schoen, R.M. (eds.) Surveys in geometric analysis and relativity. Advanced Lectures in
Mathematics (ALM), vol. 20, pp. 281–325. International Press, Somerville (2011)

14. Neves, A.: New applications of min–max theory. In: Proceedings of the International Congress of Math-
ematicians, Seoul (2014)

15. Ros, A.: One-sided complete stable minimal surfaces. J. Differ. Geom. 74(1), 69–92 (2006)
16. Savo, A.: Index bounds for minimal hypersurfaces of the sphere. Indiana Univ. Math. J. 59(3), 823–837

(2010)
17. Sharp, B.: Compactness of minimal hypersurfaces with bounded index. J. Differ. Geom. 106(2), 317–339

(2017)
18. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62–105 (1968)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1409.7648

	Virtual immersions and minimal hypersurfaces in compact symmetric spaces
	Abstract
	1 Introduction
	Conventions

	2 Virtual immersions and their fundamental equations
	3 Index of minimal hypersurfaces
	4 Skew-symmetric second fundamental form
	5 Affine bounds on the index
	Acknowledgements
	References




