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We investigate the statistics of turbulence in emulsions of two-immiscible fluids of same

density. We compute for the first time velocity increments between points conditioned to

be located in the same phase or in different phases and examine their probability density

functions (PDF) and the associated structure functions (SF). This enables us to demonstrate

that the the presence of the interface reduces the skewness of the PDF at scales below

the Kolmogorov-Hinze scale and therefore the magnitude of the energy flux towards the

dissipative scales, which is quantified by the third-order SF. The analysis of the higher order

SFs shows that multiphase turbulence is more intermittent than single-phase turbulence. In

particular, the local scaling exponents of the SFs display a saturation about the Kolmogorov-

Hinze scale and below, which indicates the presence of large velocity gradients across the

interface. Interestingly, the statistics approach of classic homogeneous isotropic turbulence

when significantly increasing the viscosity of the dispersed phase.
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1. Introduction

Emulsions, i.e. mixtures composed of two immiscible (totally or partially) liquids with

similar densities, are extremely common in industrial applications environment such as

pharmaceuticals (Nielloud 2000; Spernath & Aserin 2006), food processing (McClements

2015) and oil production (Kokal & Others 2005; Mandal et al. 2010; Kilpatrick 2012).

Emulsions are also important in geophysical applications: as example, when oil or industrial

wastes spill into water streams (from rivers to oceans), the oil droplet distribution becomes

fundamental for quantifying the environmental damage (Li & Garrett 1998; French-McCay

2004; Gopalan & Katz 2010).

http://arxiv.org/abs/2301.01537v1
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At very low-volume-fraction, turbulent emulsions are mainly characterized by the breakup

of droplets. The droplet size distribution is produced by the turbulent stresses and the feedback

of the dispersed phase on the carrier flow is small, and often neglected. The dynamics of

droplet breakup, for a dilute emulsion in a homogeneous and isotropic turbulent flow was

initially investigated by Kolmogorov (1949) and Hinze (1955), who derived an expression

for the maximum size of droplets resisting breakup as a function of the flow characteristics

and the fluid properties. This is usually referred to as the Kolmogorov-Hinze (KH) scale.

Recent numerical investigations of droplets, bubbles and emulsions confirmed the general

validity of the KH theory, both in isotropic and homogeneous turbulence (Perlekar et al.

2014; Mukherjee et al. 2019; Rivière et al. 2021; Crialesi-Esposito et al. 2022b; Girotto et al.

2022; Begemann et al. 2022), and in anisotropic flows (Soligo et al. 2019; Rosti et al. 2020;

Pandey et al. 2022), while some theoretical corrections were lately proposed to account for

scale-local nature of the process (Crialesi-Esposito et al. 2022a; Qi et al. 2022).

At finite volume fraction of the dispersed phase, the distribution of the droplet sizes results

from the interplay between breakup and coalescence. In this regime, the presence of droplets

also modulates the underlying turbulence, affecting the flow statistics both at large (Yi et al.

2021; Wang et al. 2022) and small scales (Mukherjee et al. 2019; Freund & Ferrante 2019;

Vela-Martín & Avila 2021; Crialesi-Esposito et al. 2022b). In particular, the presence of a

dispersed phase alters significantly the statistics at the small scales, producing large deviations

from the average values of dissipation and vorticity (Crialesi-Esposito et al. 2022b).

In this work, we address the effects of the dispersed phase on the velocity increments of

the turbulent flow at moderate (10%) and high (50%) volume fractions. We study the role

of the interface separating the two phases by examining the statistics of velocity increments

between two points which are conditioned to be either in the same phase or in different

phases. We find that the most important deviations from the statistics of single-phase flows,

quantified by the PDFs of the velocity increments, are concentrated in regions around the

interface, i.e. when the two points belongs to different phases. Moreover, we show that the

amplitude of the third-order structure function (SF) is reduced because of the contribution

of the points located around the interface. This is associated with a reduction of the flux of

kinetic energy in the turbulent cascade, which, in combination with the surface tension term,

alters significantly the energy transport across scales. Finally, we discuss the effects of the

droplets on the local scaling exponents of the high-order structure functions, which display

a striking saturation at small scales.

The remaining of this paper is organized as follows. In Section 2we introduce the numerical

method adopted for the simulations, Section 3 is devoted to the presentation of the results

and Section 4 summarises the main conclusions.

2. Methodology

We consider the velocity field u(x, C) obeying the Navier-Stokes equations

d (mCu + u · ∇D) = −∇? + ∇ ·
[

`
(

∇D + ∇D)
)]

+ f f + f (2.1)

and the incompressibility condition ∇ · u = 0. In Equation (2.1) ? is the pressure and d

is the density and `(x, C) is the local viscosity. The surface tension force is represented by

the term f f = fbX(n where f is the surface tension coefficient, b is the local interface

curvature, n the surface normal unit vector and X( represents a delta function which ensures

that the surface force is applied at the interface only (Tryggvason et al. 2011). The last

term f is a constant in time body force which sustains turbulence by injecting energy at

large scales. Here, we adopt the so-called ABC forcing (Mininni et al. 2006) which reads
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f = (� sin(: 5 I) + � cos(: 5 H), � sin(: 5 G) + � cos(: 5 I), � sin(: 5 H) + � cos(: 5 G)). The

forcing scale is given by ! 5 = 2c/: 5 .

We solve Equation (2.1) in a triply-periodic, cubic domanin of size ! = 2c, discertized

on a staggered uniform Cartesian grid. Spatial derivative are discretised with a second-order

centered finite difference scheme and time integration performed by means of a second-order

Adam-Bashford scheme. To reconstruct the interface, we use the algebraic Volume of Fluid

method, MTHINC, introduced by Ii et al. (2012). A constant-coefficient Poisson equation is

obtained using the pressure splitting method (Dodd & Ferrante 2014), which is solved using

a Fast Fourier Transform direct solver. All the simulations have been performed with the code

FluTAS, described in Crialesi-Esposito et al. (2023), where further details on the numerical

methods employed in this study can be found.

We consider four different cases, all using a fixed ABC forcing with � = � = � = 1

and : 5 = 2c/! 5 = 2. The reference single phase (SP) simulation assumes viscosity ` =

0.006, corresponding to a Taylor-scale Reynolds number '4_ = 15:2/(aY)1/2 ≈ 137, with

Y = a〈(∇u)2〉 the energy dissipation rate, : the turbulent kinetic energy and a the kinematic

viscosity. We vary the volume fraction U = +3/+ , defined as the ratio between the volume of

the dispersed phase +3 and the total volume + = !3, and the viscosity ratio W = `3/`2. As

regards different volume fractions, we analyze the two cases with U = 0.1 (hereafter MP10)

and U = 0.5 (hereafter MP50), while keeping W = 1 for both cases. Finally, we study the case

U = 0.1 and W = 100 (hereafter MPM). For all multiphase (MP) simulations the density ratio

among the two phases is kept equal to 1 and the Weber number ,4 = d! 5 D
2
A<B/f=42.6.

All the simulations are performed at a resolution # = 512 which is sufficient to resolve all

the scales (see Crialesi-Esposito et al. 2022b); statistics are accumulated over several large

eddy turnover times ) = ! 5 /DA<B once statistical stationary conditions have been reached.

For further details on the simulation setup, we refer the reader to Crialesi-Esposito et al.

(2022b).

3. Statistics of the multiphase flow

In turbulent multiphase flows, part of the kinetic energy of the carrier phase is absorbed at

large scales by the deformation and breakup of the interface of the dispersed phase, while

the coalescence of small droplets, their surface oscillations and relaxation from high local

curvature re-inject energy in the carrier phase at scales smaller than the Kolmogorov-Hinze

scale (Crialesi-Esposito et al. 2022a). The consequences of this complex exchange of energy

between the two phases are evident in the kinetic energy spectrum shown in Figure 1.

Comparing the spectra of a multiphase flow with that of a single-phase flow sustained by the

same forcing, we observe a suppression of energy at low wavenumbers (i.e. large scales) and

an enhancement at high wavenumbers. This effect increases with the volume fraction U of

the dispersed phase (Mukherjee et al. 2019; Crialesi-Esposito et al. 2022b).

Because of the injection of energy at small scales, due to the droplet dynamics, we expect

higher intermittency of the velocity fluctuations in the MP flow than in the SP flow at fixed

amplitude of the external forcing. In order to quantify this effect we compute the probability

density functions (PDF) of the longitudinal velocity increments XℓD = (u(x2)−u(x1)) · (x2−
x1)/ℓ at distance ℓ = |x2 − x1 |. The comparison of the PDFs at two scales within the inertial

range, shown in Figure 2, confirms that the velocity increments have larger fluctuations in

the case of MP flows, in particular at smaller values of ℓ. This effect increases with the

concentration U of the dispersed phase. We also observe that in the case W = 100 (i.e. when

the dispersed phase is much more viscous than the carrier phase) the effect of the droplets on

the velocity increments vanishes due to the damping of fluctuations in the dispersed phase,

and we recover the statistics of the SP flow.
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Figure 1: Kinetic energy spectra of SP flow (black continuous line), and MP flows at
U = 0.1 (red dashed line) and U = 0.5 (blue dash-dotted line)
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Figure 2: PDF of velocity increments at distance ℓ = 0.03! 5 (left panel) and ℓ = 0.12! 5
(right panel), normalized by the standard deviation of the SP case. The single-phase

Kolmogorov scale is at ℓ ≈ 0.008! 5

Note that the PDF shown in Figure 2 are computed over the full simulation domain, i.e.

the velocity increments are computed among points x1,2 which can belong to both phases

unconditionally. To understand the role of the interface in the turbulent statistics, we therefore

compute the PDF of the velocity increments conditioned to points belonging to the same

or to different phases. Hence, we introduce three different PDFs of the velocity increments

depending on which phase the two points x1 and x2 belong to. We denote by %22 , %33 and

%23 the PDFs relative to points belonging only to the carrier phase 2, only to the dilute phase

3 and to both phases, respectively. We remark that, for small values of U, the statistics in the

two phases are different. For U = 0.5 and W = 1 the two phases are equivalent and therefore

%33 = %22 .

Figure 3 (panels a, b) shows the conditional PDF (normalized with the corresponding

variance of the SP case) pertaining the simulation with volume fraction U = 0.1. First, we

note that the PDF of the carrier phase is not too far from that of the SP case (and this is the case
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Figure 3: PDFs of velocity increments conditioned to the phases on which the two
velocities are measured: 22 (both points in the carrier phase, red line), 33 (both points in
the dispersed phase, orange line), 23 (one point in each phase, blue line). Upper panel:
Simulation MP10 with U = 0.1 and W = 1. Lower panel: Simulation MP50 with U = 0.5
and W = 1. Black line: PDF of velocity increments for a single-phase simulation with the
same parameters of the MP simulation. Dashed black line: Gaussian distribution. All the

PDFs are rescaled with the variance of the SP case.

also for the variance). In the dispersed phase, on the contrary, velocity increments develop

relatively larger tails at small separations. Remarkably, the PDF %23 develops the largest

tails at small scale (panel a), a clear indication of the role of the interface for small-scale

intermittency in MP flows.

Similar observations can be made for the emulsion with U = 0.5, shown in Figure 3

(panels c, d). As expected %22 = %33, and also in this case the data show that the leading

contribution to the increased intermittency at small scales comes from velocity increments

across the interface, %23 . Note that, although the shapes of %23 are similar for MP10 and

MP50, their contribution to the overall flow statistics is different because of the different

statistical weight (i.e. the different extension of the total interface).

A remarkable feature shown in Figure 3 is that the skewness of %23 at small scales is

opposite (i.e. positive) to that of %22. We remind that the sign of the skweness is linked to

the direction of the turbulent energy cascade via the third-order velocity structure function

(SF) defined as (3(ℓ) = 〈(XℓD)
3〉. In the case of SP flows, under the assumption of statistical
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Figure 4: Third-order stucture function (3 (ℓ) averaged on the whole domain (violet line)
or conditioned on the two phases of the flows. Simulation with U = 0.1 (left panel)

U = 0.5 (right panel) and W = 1. The black line represents the SP case.

stationariety, homogeneity and isotropy, the Kolmogorov 4/5 law gives (3(ℓ) = −(4/5)Yℓ,
where the viscous energy dissipation rate Y is equal to the flux of the turbulent cascade

(Frisch 1995). The negative skewness of the PDF of the longitudinal velocity increments is

therefore related to the direction of the energy transfer and the negative amplitude of (3(ℓ)
is proportional to the energy flux.

In MP flows, because of the opposite sign of the skewness of %23 with respect to %22, we

expect that the presence of the interface reduces the energy flux associated to the turbulent

cascade. This can be quantified by looking at the third-order velocity structure function

(3(ℓ) = 〈(XℓD)
3〉, whose average can be unconditioned, or conditioned to two points

belonging either to the carrier phase (22
3
(ℓ), or to the dispersed phase (33

3
(ℓ), or points

located on different sides of the interface (32
3
(ℓ). These are shown in Figure 4.

We see in the figure that the third-order SF of the MP turbulent flows is qualitatively

similar to the SP flow when averaged over the whole domain, yet with a smaller amplitude.

This is due the fact that part of the turbulence energy is used to break the interface and the

direct transfer of energy to small scales is reduced (Crialesi-Esposito et al. 2022b). If we

consider the same quantity averaged over one of the two phases only: (22
3
(ℓ) and (33

3
(ℓ),

which are equivalent in a binary flow, the magnitude of the flux increases and approaches the

SP limit, indicating that the turbulent cascade is not significantly affected when considering

flow structures living in one of the two phases. On the contrary, the flux across two points

belonging to different phases is strongly suppressed: the associated (32
3
(ℓ) is closer to zero

and even changes sign at intermediate scales for U = 0.5 (consistently with what suggested

in Figure 3). The physical interpretation is that the interface “decouples” the velocity fields

in the two phases which become less correlated and therefore with a reduced energy flux,

signaled by the reduction of (3(ℓ). The precise behavior of (32
3
(ℓ) depends on the value of

U, as shown by the comparison with the case U = 0.1 (see Figure 4, left panel). Positive

values of (32
3
(ℓ), hint however to the possibility of scale-local backscatter, which becomes

more relevant at increasing volume fractions. Nevertheless, the reduction of the energy flux

at intermediate scales is a general feature, independent on U.

The effects of the presence of a dispersed phase on the statistics of the velocity fluctuations

affects also the scaling behavior of the structure functions of the absolute values of the

longitudinal velocity increments defined as (0? (ℓ) = 〈|XℓD |
?〉. It is well known that in SP
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Figure 5: Local scaling exponents Z? of the structure functions, for the single phase
(Upper left panel), case MP10 at U = 0.1 (Upper right panel), case MP50 at U = 0.5

(Lower left panel), case MPM at W = 100 (Lower right panel). In each figure, the
exponents of different order ? assume increasing values. Vertical black dashed lines
represent the Kolmogorov-Hinze scale, computed in Crialesi-Esposito et al. (2022a).

Curves for ? = 3 is omitted.

flows the SFs display a power-law behavior (0? (ℓ) ∼ ℓZ
?

at scales ℓ in the inertial range

(Frisch 1995). In this context, intermittency manifests in the non-linear behavior of the scaling

exponents: Z ? ≠ ?/3. In the MP flows, because of the different physical processes which

occur at scales larger and smaller than the Kolmogorov-Hinze scale (dominated by brak-

up and coalescence respectively), we expect to observe a more complex scaling behavior.

To address this issue, we compute the local scaling exponents defined as the logarithmic

derivative of the SFs Z
?

ℓ
= d log((0? (ℓ))/d log(ℓ) and here applied to multiphase flows for

the first time.

The local scaling exponents Z
?

ℓ
are displayed for ? 6 8 in figure 5, where they are divided

by the reference scaling exponent Z3
ℓ

of the third order SF. In the SP case, panel a, we find

that the ratios Z
?

ℓ
/Z3
ℓ

are almost constant in the inertial range 0.09 6 ℓ/! 5 6 0.32. In the

MP flows, the value of the exponents are a little smaller but comparable to that of the SP

case only at large scales; we observe a dramatic decrease of the scaling exponents at scales ℓ

smaller than the KH scale ! � ≈ 0.14! 5 for the case MP10 (panel b) and ! � ≈ 0.19! 5



8

for the case MP50 (panel b) (see vertical line in figure). In particular, we observe a striking

saturation of the scaling exponents of the high-order SF with ? > 5 at scales ℓ ≃ 0.02! 5 for

the MP50 case and ℓ ≃ 0.04! 5 for the MP10 case. The saturation of the scaling exponents

of the high order SFs reveals the presence of strong velocity differences across the interface

between the two phases, which originates from the pressure jump at the interface caused by

the surface tension forces.

Note also that the saturation of the exponents is not observed when the dispersed phase

presents higher viscosity, case MPM in panel d. This is consistent with the previous

observations in Figure 2, showing that when velocity gradients across the interface are

significantly reduced (e.g. by higher viscosity) no exponent saturation is observed.

4. Conclusions

We have discussed intermittency and scaling exponent obtained from direct numerical

simulations (DNS) of turbulent emulsions at moderate (10%) and high (50%) volume

fractions and two different values of the viscosity contrast. As observed in previous

works (Perlekar 2019; Pandey et al. 2020; Crialesi-Esposito et al. 2022b), the presence of

a deformable interface increases the intermittency in the flow and the energy content at small

scales, when the surface tension offers an alternative path for energy transport across scales.

By investigating the statistics of the velocity increments conditioned to points belonging

to a single phase or to different phases, we demonstrate that the increased intermittency is

mostly due to the presence of strong velocity differences across the interface between the

carrier and the dispersed phase.

We also show that the presence of the dispersed phase causes a decrease of the negative

skewness of the PDF of the longitudinal velocity increments. This is associated with a

reduction of the flux of the kinetic energy from the forcing scale to the viscous scales. In

other words, the presence of a deformable interface affects the vortex stretching and tilting

associated to the classic turbulent energy cascade of single-phase flows.

This effect becomes remarkable at the highest volume fraction considered here, when the

flux related to points lying on either side of the interface gives a positive contribution to

the distribution skewness. This suggests a not-negligible backscatter in multiphase flows,

expected in proximity of the interface separating the two fluids. We interpret this reduced

flux as due to the absorption and dissipation of part of the kinetic energy of the turbulent

flow by the deformation and break-up of drops of the dispersed phase.

Finally, to understand the local properties of turbulence, we have analysed the longitudinal

Structure Functions at higher orders. Interestingly, at scales larger than the Kolmogorov-

Hinze, the exponents are only slightly smaller than in the single-phase flow, which implies

increased intermittency, yet a similar anomalous scaling. More importantly, we report a neat

saturation of the exponents for structure functions higher than 3 at scales smaller than the

Kolmogorov-Hinze length. This is typically related to a strongly intermittent dynamics and

to the presence of jumps, here due to the pressure differences across the interface induced by

the surface tension.

A further demonstration that the interface is responsible of the increased intermittency

is given by the results for the flow at viscosity ratio W = 100. In this case, small-scale

fluctuations are damped, especially in the more viscous dispersed phase, and the statistics

approach those of the single-phase turbulence with no exponent saturation.

These observations may prove fundamental for understanding small scale dynamics in

multiphase flows and for their future sub-grid modelling. Indeed, our results indicate that a

correct model would need to account for the reduction of the energy fluxes near an interface.

Moreover, we have shown that the turbulence statistics approach those of the single-phase
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flow when the droplets consist of a highly viscous fluid. This suggests that, despite several

global measures seem to indicate a similar dynamics (Olivieri et al. 2022; Yousefi 2022), the

turbulence modulation is significantly different in the case of rigid particles and deformable

intrusions.
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