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Abstract. Keywords categorization is an essential tool for SEO (Search
Engine Optimization), digital marketers and online advertising. Key-
words represent one of the most valuable pieces of information to in-
fer the users’ intents and interests. An effective keyword categorization
method allows understanding what types of content are in the greatest
demand and can help improve future content strategies or marketing/ad
campaigns.
In this paper, we present a novel deep learning model for multilingual
keyword categorization. The model relies on fastText multilingual word
embeddings, and its architecture is inspired by the DeepSets model.
Moreover, to make use of (training) words not included in the pre-trained
fastText embeddings, we initialize them as the average embedding over-
all the co-occurrent words. Then, we fine-tune these representations by
allowing the network to back-propagate the error to the input.
We assess the quality of our proposal on a real-world dataset provided
by a Spanish company where keywords are categorized upon the Google
Product Taxonomy (GPT). Results on both level three and level six of
the GPT show that our model can achieve high accuracy scores while
being extremely efficient.

Keywords: Keyword Categorization · Word Embeddings · Deep Neural
Networks · Deep Learning

1 Introduction

Online Advertising is a huge market that shows significant growth every year.
Global advertising media owners revenue valued 613.9 billion US Dollars in 2019
and it is expected to grow to 762.76 billions US Dollars in 20243. Many publishers
use online advertising as a mean to keep content free of charge for users. Instead
of a paywall, advertisers pay for their ads to be shown on the publisher’s websites
or apps. In order for such marketing campaigns to be effective and cost efficient,
ads must be shown to people who are the advertiser’s target audience.

3 https://www.statista.com/statistics/236943/global-advertising-spending/
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One of the approaches to targeted advertisement that can be deployed by
companies is to identify user preferences and behaviour on certain products.
Extracting and categorizing keywords from the content consumed by the user
helps companies to find the information that is relevant to the user’s interests
and hobbies. This information is used to segment the publisher’s audience in
order for internet advertisement to be shown to targeted segments selected by
the advertiser. This approach leads to increased effectiveness and reduction of
costs of campaigns, as only relevant advertisement is shown to users. For such
an approach to be deployed, there is the need to classify a substantial amount of
keywords that are continuously generated by users from all over the world (thus
in different languages). Therefore, the classification should be extremely scalable
and efficient, while being able to consider multiple languages. Still, accuracy is a
crucial aspect since too many errors may lead to a miss-specification of a user’s
interests. While on similar problems, simple machine learning approaches, such
as Näıve Bayes, tend to achieve decent results, in the considered problem they
fail to model the similarities among words across different languages, possibly
resulting in not satisfying predictive performance.

Neural networks, instead, are extremely powerful models that, exploiting
word embeddings, can consider intra-language and inter-language relationships
among words. Moreover, they are one of the most efficient machine learning
algorithms at prediction time.

In this paper, we present our deep learning based solution for the prob-
lem of large-scale multilingual keyword categorization on a dataset provided by
[anonymous for double blind submission] in the context of one of the [anony-
mous for double blind submission] challenges. We exploit the recently proposed
fastText [1] word embeddings, that allow to cope with the multi-lingual problem
in an efficient and effective way. We then use set-based neural architectures that,
relieving from the sequentiality of the input, allow for a strong parallelization
on GPUs, being more efficient than sequence-based counterparts. Finally, we
propose to fine-tune the pre-trained word embeddings to further improve the
predictive performance of our model without impacting the final throughput.

2 Problem description

The problem we need to solve is keyword categorization (a.k.a., classification).
Formally, given a labeled training set of keywords {(Ki, ci)}ni=1, we aim at learn-
ing a function f such that it correctly classifies unseen keywords. For simplicity, a
keyword K can be considered as a sequence of words, i.e., K = 〈w1, w2, . . . , wk〉.
In the following sections, we will specify how keywords are divided into words.

The specific task at hand has some peculiar characteristics that make it
particularly challenging:

– the keywords are categorized over the Google Product Taxonomy (GPT)4

which currently has a total of 2454 categories arranged in a hierarchical way.

4 https://developers.google.com/adwords/api/docs/appendix/verticals
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However, in our case we get access only to labeled examples from the third
(1026 categories) and sixth level (138 categories) of the taxonomy. Level 3
alone covers more than the 40% of the whole GPT;

– the keywords are in 17 different languages not equally distributed with un-
known distribution;

– the required level of accuracy is high since wrongly classified keywords can
lead to mistakes in the ad campaign by the company;

– the model should be very efficient, especially at prediction time, because the
amount of keywords that has to be handled in production is huge (potentially
millions of keywords every day).

2.1 Dataset

The dataset, provided by [anonymous for double blind submission], contains
users’ generated keywords that have been semi-automatically categorized over
the GPT. Specifically, we have keywords from the 3rd and the 6th level of the
Google taxonomy. Keywords come from 17 different languages namely english,
spanish, italian, swedish, turkish, thai, japanese, korean, norvegian, vietnamise,
dutch, russian, danish, polish, portoguese, french, and german. In the reminder
of the paper, we will refer to the set of all languages with L. The details of the
considered dataset are summarized in Table 1. From Table 1 we can notice that

Name GPT #keywords avg. length #words #categories avg. kw.×cat.
lvl 3 3 2.63 M 3.75± 1.50 382 511 1 026 2 566
lvl 6 6 3.35 M 3.85± 1.58 198 733 138 24 298.19

Table 1: Datasets’ information: number of keywords, average keywords’ length
(± standard deviation), number of different words, number of categories, and
average number of examples per category.

the main difference between lvl 3 and lvl 6 is the average number of keywords
per category which is one order of magnitude less in lvl 3. This difference,
along with the number of classes, makes the classification on lvl 3 particularly
challenging.

All keywords passed through a simple pre-processing phase where they are
lower cased and special characters are removed. With special characters we mean
those characters in between two words that are for sure not part of the syntax
of the word. For instance, in the keyword ‘this+apple’ (or ‘this +apple’) the ‘+’
sign is removed. We make this conservative choice because we handle different
languages that can make use of special characters, e.g., japanese ideograms, or
the thai’s characters.

For experimental purposes, we randomly divided the dataset into training
and test set using a 80-20% proportion. Additionally, we created a validation set
which is 10% of the size of the training set.
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3 Background and Related works

One of the most prominent advances in representation learning for Natural Lan-
guage Processing of the last decade was the introduction of the concept of word
embeddings. In previous-generation machine learning approaches, words were
generally encoded as one-hot vectors, discarding all information about the se-
mantic similarity between them. With word embeddings, each word is repre-
sented by a (relatively small) vector. The mapping between words and their
respective embeddings is generally learned in an unsupervised way. In more de-
tail, the embeddings are initialized at random. Then, a self-supervised loss is
exploited to refine such embeddings [14, 16, 18, 13, 3, 1]. The core advantage of
this approach is that similar words tend to have embeddings that are spatially
close. Word embeddings are usually trained on huge corpora, e.g. Wikipedia
dumps in a specific language.

The training phase of deep learning models can exploit these similarities by
encoding the input words with the corresponding pre-trained embedding (that
is a form of transfer learning), resulting in less data-hungry models compared to
training them from scratch.

Since the training of such word embeddings requires much computational ef-
fort, many pretrained word embeddings have been made available online [18,
16]. Most of the existing embeddings are computed separately for different lan-
guages. When dealing with datasets in multiple languages, the straightforward
approach consists in developing a separate model for each of them. This ap-
proach, however, does not allow to transfer information from one language to
the others, potentially harming the performance of the final system in languages
where few training data is available.

Recently, several methods to learn bi/multilingual word embeddings have
been proposed [5, 4, 21, 11, 10]. The goal is to have embeddings for words denot-
ing similar concepts possibly in different languages that are close in a shared
inter-lingual embedding space. For example, the learnt representation of the En-
glish word “home” should be similar to the one of the Italian word “casa”. To
perform learning, most of these approaches rely on sentence/document aligned
corpora and/or seed parallel lexicon. Given two languages, the main idea is to
jointly learn monolingual embeddings that are “aligned” in a common space via
a regularization that leverages the aligned corpora/lexicon.

Nonetheless, given a new language, most of these techniques require to per-
form an entire new training which is computationally very demanding if the
number of languages is high. For this reason, our solution relies on the approach
proposed by Facebook AI Research [11, 6] in which no parallel data is needed,
allowing to perform the alignment step efficiently starting from the mono-lingual
embeddings alone. We discuss our solution in Section 4.4.

When considering texts from different sources w.r.t. the corpus used for the
pretraining of word embeddings, there is the necessity to deal with novel words,
i.e. words not frequent enough (or at all) in the pre-training data. We discuss
this issue in Section 4.6.
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3.1 Deep Learning architectures

When dealing with short texts such as the considered keywords, many deep
learning approaches are possible to perform predictive tasks.

Considering the input keywors as a sequence of words K = 〈w1, w2, . . . , wk〉,
the mainstream approaches are recurrent neural networks (RNNs) and Trans-
former architectures. In RNNs, the input sequence is presented to the network
and processed sequentially. Each Recurrent Unit (RU) maintains a state (i.e.
a memory), in the form of a hidden vector, that influences the transformation
applied to the input element. After an element is processed, the RU produces
the updated hidden state (to be used for the following element in the sequence)
and an output that depends on all the elements in the sequence that have been
presented to the RU so far (via the memory vector). Usually, when dealing with
classification tasks, only the output produced by the last element is considered.
A well-known version of RU are Long Short-Term memory Networks [8], that
have been successfully applied to a wide range of problems [17, 2]. The main
drawback of RNNs is that to learn the weights of the recurrent neurons, we have
to resort to backpropagation through time [22], that does not allow to parallelize
the processing of the elements in the sequence.

The Transformer architecture [20] leverages on the concept of attention to
allow to process sequential data in a parallel fashion. Attention allows to explic-
itly model the dependencies among the different elements in the input sequence.
Such models have been heavily applied in NLP, with BERT [3] being the best
known example. Even though the approach of fine-tuning a pretrained BERT
model is a common approach for text classification tasks, the model is relatively
big and the necessity to store and run it makes it computationally unattractive
for cases in which the computational efficiency is a key aspect.

4 Methods

In this section, we describe the details about the overall method we propose to
efficiently solve the keyword classification task.

4.1 Classification pipeline overview

Besides accuracy, our main focus is the efficiency of the method, especially at
prediction time. As a consequence, we keep the entire classification pipeline as
simple as possible, including only the essential steps. Figure 1 summarizes the
pipeline. The pre-processing step (see Section 2.1) consists in the removal of spe-
cial characters and in the lower casing of the remaining ones. Then, the keywords
are split (on the space character) into words. For each word, its embedding is
retrieved from a look-up table. The look-up table consists of the pre-computed
fastText’s word embedding for all the 17 languages, with the addition of the
embeddings of the training words for which we do not have a corresponding
fastText embedding. Sections 4.2, 4.3 and 4.4 describe in detail how we con-
struct the look-up table. At test/validation time, if a word is not included in
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Fig. 1: Visual depiction of the classification pipeline.

the look-up table is ignored, i.e., a 0 vector is used as embedding. Finally, the
keyword is fed into the model as a 2D tensor where the rows are the words and
the columns are the latent features of the words. To set the dimension of the
keyword’s 2D tensor, we fixed a maximum number of words per keyword (in our
case 10). If a keyword has less than 10 words, we add 0 padding vectors to fill
the remaining rows.

4.2 Word embeddings

The literature offers a large set of state-of-the-art word embedding techniques.
The most known (and used) ones are: word2vec [16], GloVe [18], fastText [1],
and the more recent BERT [3]. In our model we employ the Facebook’s fastText
embeddings and the motivations of our choice are explained in the following.

FastText [1] takes the idea of word embeddings in word2vec [16] a step ahead
and learns representations for character n-grams, and then represents words as
the sum of the learnt n-gram vectors. fastText improves word2vec on several
aspects, such as learning representation for internal word structures instead of
the entire word, which gives fastText the ability of generating embeddings for
out-of-vocabulary (OOV) words. Similar considerations also applies with respect
to GloVe [18]. However, to generate OOV words there is the need of having the
model of each language (or at least the embedding of all the n-grams) which
is expensive especially in terms of space. Moreover, we only had access to the
pre-computed word embeddings that Facebook released in the MUSE library5.

Nonetheless, the fastText’s strongest suit is its efficiency (hence its name). For
instance, we can train fastText on more than one billion words in few minutes on
a standard multi-core CPU. Additionally, fastText provides pre-computed word
vectors for more than 150 languages, and for many of them Facebook released
their multilingual version that we discuss in the following section.

The efficiency is the key aspect that made us prefer fastText over BERT
which is arguably the current standard.

5 https://github.com/facebookresearch/MUSE
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4.3 Multilingual alignment

As introduced in Section 3, to deal with the multilingual nature of the dataset,
we rely on the idea of word embeddings alignment. Specifically, we employ the
(supervised) iterative Procrustes [19] alignment [15, 11]. The core concept of this
technique is to align the embedding space of a source language with the one of
a target language (used as the reference space). This alignment is made possible
by the use of the so called anchor words, i.e., pairs of words that are semantically
the same in the source and in the target language.

Formally, suppose we are given a set of m word pairs and their associated
embeddings P ≡ {xi, zi}mi=1, where xi ∈ Rd1 is the representation of word i
in the source language, and zi ∈ Rd2 is the vector representation of the the
corresponding word in the target language. The goal is to find a transformation
matrix W∗ such that W∗xi ≈ zi by solving

W∗ = arg min
W∈Rd2×d1

‖Wxi − zi‖2.

There exists also an unsupervised version of this approach [11], where the
matrix W is initially estimated using an adversarial approach, and then the set
P is constructed using as anchor points the words that are the best matches
according to W. However, we employ the supervised approach because (i) for
14 out of 17 languages the aligned embeddings were already available, and (ii)
for the remaining 3 languages (namely, japanese, thai and korean) the bi-lingual
dictionaries (i.e., english-japanase, english-thai, and english-korean) of 5k words
were also available. For these three languages we performed the aligned by using
the MUSE library. Every language has been aligned using the English as the
target language.

4.4 Inferring the language of a keyword

To select the correct embedding for a word, we need to recognize which language
the keyword belongs to. A common approach to infer the language of a keyword
is to identify the language(s) of each word in it and then take a consensus, e.g. a
majority vote. The identification of the language of a word can be performed us-
ing dictionaries: if a word w is contained in the dictionary of the language l than
w belongs to l. Note that with this procedure a specific word may be associated
to more than one language. Notwithstanding its simplicity, this technique is nei-
ther perfect (e.g., a single keyword can contain words from multiple languages)
nor very efficient because many dictionary look-ups have to be performed for
each word in a keyword. Since we mainly focus on the efficiency, we propose a
similar yet different approach that can be pre-computed only once before the
training (Algorithm 1).

The idea is to build a single multi-language dictionary (D) that associates
to each word the embedding coming from the language in which the word is
more frequent (relatively speaking). Formally, given a word w, the language l∗
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Algorithm 1: Multilingual dictionary construction

Input: D = [D1, . . . ,DL]: list of embedding dictionaries, one per language
Output: D: multilingual embedding dictionary

1 D ← {}
2 for Di ∈ D do
3 for w ∈ Di do
4 if w /∈ D then
5 lang ← i
6 for Dj ∈ D \ Di do
7 if w ∈ Dj ∧ rel freq(w, j) > rel freq(w, i) then
8 lang ← j

9 D[w]← Dlang[w]

10 return D

associated to w is defined as

l∗ = arg max
l∈L

P(w|l)P(l).

Clearly, the exact P(w|l) and P(l) are unknown, thus we approximate it by using
dictionaries extracted from OpenSubtitles.org6. In Algorithm 1, rel freq(w, l) is
the function that estimates P(w|l)P(l). The dictionary D represents the embed-
dings look-up table. The look-up table can be computed once, or every time the
embeddings are updated. The overall complexity of Algorithm 1 is linear with
respect to the number of unique words in all the dictionaries, i.e., |

⋃L
i=1Di|.

4.5 The learning models

To solve the keyword classification problem, we propose a series of neural network
architectures with increasing complexity. All the proposed models take as input
keywords represented as a 2D tensor in Rm×d, where m is the maximum number
of words per keyword and d is the size of the embedding. In our case, m = 10
and d = 300.

Multi-Layer Perceptron The first model we propose, i.e., Multi-Layer Per-
ceptron (MLP), is a simple yet effective baseline. The core assumption is that
most of the complexity of the learning task has been already taken care of by the
fastText model that computed the word embeddings. Moreover, being a simple
model, the MLP is fast to train and it is also very efficient at prediction time.
Formally, given a vectorial representation for a keyword x, the MLP model with
a single hidden layer can be defined by the following parametric function:

fMLP(x;θ) = σ(W2(W1x + b1)+ + b2),

6 https://github.com/hermitdave/FrequencyWords
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where θ ≡ {W1,W2,b1,b2} are the trainable parameters of the network, (·)+
is the rectified linear unit (i.e., the ReLU activation function), and σ is the
softmax function. The MLP model accepts as input a one dimensional vector,
thus we need an aggregation function that transform the 2D input keyword
representation into a 1D vector. To avoid losing much information, we opt for
the sum as aggregation function and hence a keyword is represented as the sum of
the embeddings of its words. Note that, differently from the average aggregation,
using the sum allows to keep the padding as it is without adding any in-between
operations (e.g., masking) since the 0 padding does not affect the sum.

The network parameters θ are optimized using a Stochastic Gradient Descent
(SGD) approach aiming at minimizing the cross entropy loss.

DeepSets Given the short nature of keywords, we argue that the sequential
order of the words does not play a crucial role in learning a suitable keyword
representation. This assumption allows to avoid the use of recurrent models that
would harm the efficiency of both the training and prediction phase. However,
using a simple aggregation function like the sum (see Section 4.5) may not be
the best choice. For this reason, we propose to improve upon the MLP model
by adding a further network that learns a word transformation that allows to
better represent the keywords as sum of their words.

Specifically, we implemented a DeepSets [23] model. DeepSets are adapt in
this context because we treat keywords as set of words and hence we need a
network that is permutation invariant. Given a keyword X represented as a 2D
tensor with word embeddings on the rows, the DeepSets can be formalized as:

fDS(X;θ′,θ) = ρ

(∑
x∈X

φ(x;θ′);θ

)
,

where φ and ρ are two neural networks parametrized by θ′ and θ, respectively.
In our model, we fixed ρ(·;θ) := fMLP(·;θ), while

φ(x;θ) = Wl+1(. . . (W1x + b1)+ . . . )+ + bl+1

is an l-layers feed forward network with a linear activation function in the output
layer and with θ′ ≡ {Wi,bi}l+1

i=1. The DeepSets model has been optimized in the
same way as the MLP. Figure 2 provides a visual depiction of the architecture.

4.6 Learning representations for missing words

Not all the words appearing in a keyword have associated a pre-computed embed-
ding and hence they must be handled differently. The most common approach is
to simply ignore such words. However, in cases in which the text snippets for the
considered prediction task are short, this approach may lead to an information
loss that can negatively impact the overall predictive performance of the model.
Unfortunately, this is the setting we consider in this paper, where the average
length of keywords is 3.8 words (see Table 1).
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Fig. 2: The overall architecture of our model. The input keyword is represented
as a 2D tensor including the embeddings of the known words (i.e. included in
the pre-trained embeddings), the emebedding of the unknown/missing words
(if any), and a 0 padding (if any). The 2D keyword representation is then fed
into the φ network of the DeepSets model whose output (i.e., transformed word
embeddings) is summed up and fed ρ network (i.e., Multi-Layer Perceptron) that
performs the classification.

In such setting, it is important to maintain as much information as possible
from the input, that is to discard as few words as possible. An approach that
can be pursued is to recompute the word embeddings, augmenting the original
corpus with the dataset at hand. This approach requires, in general, a huge
computational effort, and since we deal with very short sentences there is no
guarantees that the learned representation would be satisfactory.

For these reasons, we propose to approximate the embedding of the missing
words using a two-step approach: (i) initialization, and (ii) fine-tuning.

Initialization In the first step, given a missing word w′, we include it in D by
initializing its embedding with:

w′ =
1

N

∑
K∈K
w′∈K

∑
w∈K\{w′}

D[w],

where K is the set of keywords in the training set, and N is the number of
keywords in which w′ appears. In other words, the embedding of w′ is initialized
as the average embedding of all the words that co-occur with w′ in the keywords.
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Note that this approach does not require any supervision (similarly to most
methods computing word embeddings). For this reason, if additional unlabeled
data coming from the same input distribution is available, it is possible to exploit
it to build a better initialization for missing words.

Fine-tuning The just described initialization allows to not discard any word
appearing in the training set, independently from the dictionary size of the pre-
trained word embeddings. However, this initialization may be noisy and may not
reflect well the information content of the words with respect to the task at hand.
We thus propose to fine-tune the representations of missing words. In particular,
we allow the error of the network to be back-propagated to the input embeddings
of missing words during training. In this way, the word embeddings of missing
words are specialized according to the considered classification task. Notice that,
while a strongly non-linear transformation of the input should allow the network
to learn appropriate representations without changing the input, in practice such
transformations may lead to overfitting. In our experiments, we explored both
solutions and find the fine-tuning approach to be the most effective.

Given the effectiveness of fine-tuning the word embeddings of missing words,
we also explore the fine-tuning of all the word embeddings, not just the ones
of missing words. We show in the experimental section that this step further
improves the predictive results.

5 Experimental results

In this section we describe the performed experiments using the just described
methodology.

5.1 Experimental setting

All the experiments reported in this section have been performed on the dataset
described in Section 2.1. As stated before, we split the dataset into training,
validation and test set having the following relative sizes 72%, 8%, 20%, re-
spectively. We measured the models’ performance in terms of accuracy that was
expressively required in the challenge. The model hyper-parameters, e.g., num-
ber of layers and number of nodes per layer, have been selected according to the
performance on the validation set. Each model has been trained for at most 20
epochs and the best performing model on the validation set has been retained
for testing. Empirically, in both lvl 3 and lvl 6, 20 epochs have shown of be-
ing a reasonable number of epochs since, on average, the models achieve their
performance peak on the validation set around epoch 15.

The optimization was carried out using the Adam optimizer with learning
rate η = 10−3, ε = 10−8, β1 = 0.9, β2 = 0.999, and 512 as batch size.

All the experiments have been performed using the Google Cloud Platform
on a machine with 56GB of RAM, 8x Intel® Xeon® CPU @ 2.30GHz, and a
single GPU Tesla P100 with 16GB of memory.
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5.2 Evaluated models

We evaluated many different hyper-parametrization of the architectures de-
scribed in Section 4.5. In the following we summarize the architectural details
of each model:

– mlp only: this model follows the MLP architecture described in Section 4.5.
Missing words are only initialized (see Section 4.6) but not fine-tuned. When
not differently stated, on lvl 3 the size of the hidden layer is 2000, while on
lvl 6 is 500. We consider this model as our baseline.

– ds1, ds2: this is the DeepSets model. ds1 means single hidden layer and
ds2 two hidden layers. Missing words are only initialized but not fine-tuned.
When not differently stated the hidden layers of the DeepSets have size 300.

– bMiss mlp: the same as mlp only but with embedding fine-tuning (see Sec-
tion 4.6) for the missing words.

– bAll mlp: the same as bMiss mlp but with embedding fine-tuning for all
the words.

– bMiss ds1, bMiss ds2: this is the DeepSets model with the embedding
fine-tuning for the missing words.

– bAll ds1, bAll ds2: same as the previous model but with embedding fine-
tuning for all the words.

For each architecture we have empirically validated the size of the hidden
layers on the validation set. We compare our models with a Näıve Bayes (NB)
baseline, in which keywords are represented as Tf-Idf vectors.

5.3 Results on lvl 6

We evaluated several different architecture on lvl 6, and the achieved accuracy
results on the test set are reported in Table 2. The table shows the performance of
the models divided into three different groups: (i) models without the embedding
fine-tuning, (ii) models with the embedding fine-tuning for the missing words,
and (iii) models with the fine-tuning on all words. It is worth to underline that
we omit from the table the results achieved by models with no missing words
initialization nor fine-tuning because clearly inferior to all the other methods.
For instance, the MLP architecture reaches 87.2% of accuracy.

As evident from the table, on each group the DeepSets model achieves higher
accuracy than MLP (and NB) even though the performance with the fine-tuning
on all words are comparable. We argue that most of the useful information to
perform the task are directly encoded in the embedding during the training,
leading to a kind of “good” overfitting. This is further noticeable by the fact
that deeper DeepSets seem to not provide any significant gain in performance.
In case of no embeddings fine-tuning, the DeepSets model outperform the MLP.
Overall, the best accuracy has been achieved by the DeepSet model with a single
hidden layer in the φ network and an hidden layer of size 2000 in the ρ network.
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Model name BP known BP miss. DS1 DS2 MLP Accuracy

NB 84.2 %

mlp only X 89.5 %
ds1 X 91.8 %
ds2 X X 93.9 %

bMiss mlp X X 91.8 %
bMiss ds1 X X 94.4 %
bMiss ds2 X X X 94.8 %

bAll mlp X X X 96.0 %
bAll ds1∗ X X X 96.1 %
bAll ds2 X X X X 95.7 %

Table 2: Accuracy results on lvl 6. Results are divided into three groups w.r.t.
the use of the embedding fine-tuning during training. The best results are high-
lighted in bold, while the overall best is underlined. (∗) the ρ network has an
hidden layer of size 2000.

5.4 Results on lvl 3

In order to save training time, we decided to use the results on lvl 6 as a
reference to select the architectures to evaluate on lvl 3. However, we also report
the accuracy using the MLP, that is our baseline approach. The results on lvl 3

are summarized in Table 5.4.

Model name BP known BP miss. DS1 DS2 MLP Accuracy

NB 75.1 %

mlp only X 65.1 %
ds2 X X 73.7%

bMiss mlp X X 78.6 %
bMiss ds2 X X X 76.6 %

bAll mlp X X X 82.3 %
bAll ds1 X X X 81.6 %

Table 3: Accuracy results on lvl 3. Results are divided into three groups w.r.t.
the use of the embedding fine-tuning during training. The best results are high-
lighted in bold, while the overall best is underlined.

Likewise the experiments on lvl 6, when the fine-tuning is not used, the
DeepSets model outperforms (+10%) the MLP model. However, when the em-
bedding fine-tuning is considered (both on missing words and all words), the per-
formance of the DeepSets model are inferior or comparable to the MLP model.
We argue that this is due to overfitting caused by the smaller number of examples
per class (see Table 1). Surprisingly, Näıve Bayes showed comparable or superior
performance w.r.t. the not fine-tuned models, while it is significantly worse than
the fine-tuned ones. It is also worth to notice that overall the accuracy is lower
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on level three w.r.t. level six and this is reasonable given the number of classes
which is 8 times more.

5.5 Time complexity

Efficiency-wise the proposed models are more than satisfactory from training to
prediction. Clearly, the training phase is the most demanding one in terms of
time and space. Time-wise the training process took at most 12 hours on a single
GPU. The pre-processing phase, preformed on 8xCPU, takes around 8 seconds
for 1M keywords, i.e., ∼125k keywords/sec. The inference times, performed us-
ing a single GPU, are summarized in Figure 3. Reasonably, the more complex
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Fig. 3: Throughput of different architectures on lvl 6.

models are slower than the less complex ones. However all of them are capable
of classifying more than 60k keywords per second. This means that one million
keywords can be classified in at most 20 seconds, which is, efficiency-wise, an
outstanding result. The same experiment has also been performed without the
use of GPU. The relative efficiency is the same as the one in Figure 3, and in
general the inference time is about 30% slower. The time complexity of the mod-
els on lvl 3 are roughly the same as in lvl 6. Results are not reported for space
reasons.

6 Conclusions and future work

In this paper, we proposed an efficient and effective keyword categorization sys-
tem based on neural networks and word embeddings. The core computational
advantage of our approach is that we consider the words in a keyword as a set
and not a sequence of words. In this way, our models discard the sequentiality
between words that with very short keywords (less than 4 words on average in
both datsasets) is not much informative. This choice allows to obtain very fast
models that, however, show good predictive performances.
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In the future, we aim to further improve the classification model, for instance
by considering attention-based models, such as set transformers [12] or other
attention-based aggregation mechanism for sets [9]. Moreover, we will explore
techniques to combine the predictions of the models at different levels of the
taxonomy. The problem is not trivial since the probability estimates provided as
output by neural networks (e.g., by the softmax function) are not representative
of the true correctness likelihood [7]. A simple solution would be to identify a
confidence threshold (on the validation set) that is used to decide if the con-
sidered keyword belongs to the current level or should be analyzed by models
at deeper levels of the taxonomy. Although the output of the softmax function
is not calibrated, it is consistent among different examples. Thus finding such
threshold is a viable approach. A better approach would be to calibrate all the
models at different taxonomy levels, still exploiting the validation set. This would
enable to simply select the most probable prediction considering all taxonomy
levels at the same time.
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