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Abstract
Background  Neurofilament light chain (NFL) is a neuroaxonal cytoskeletal protein released into cerebrospinal fluid (CSF) 
and eventually into blood upon neuronal injury. Its detection in serum (sNFL) makes it a promising marker in multiple 
sclerosis (MS).
Objective  To evaluate the usefulness of a single dosage of sNFL in clinical practice.
Methods  626 consecutive relapsing–remitting (RR) MS patients treated with disease modifying treatments (DMTs) for at 
least 12 months underwent a single sNFL dosage. 553 patients had NEDA-3 status (no relapses, no disability progression, no 
new/enlarging or contrast-enhancing lesions on brain magnetic resonance imaging) in the 12 months prior blood sampling. 
sNFL levels were measured by single molecule array (Simoa™). Association between sNFL levels and NEDA-3 status at 12, 
24, and 36 months was evaluated with logistic regression models adjusted for sex, EDSS, disease duration, and type of DMTs.
Results  469 out of the 553 NEDA-3 patients had normal sNFL level, whereas 42 had elevated level. The two groups did 
not differ regarding baseline characteristics. A very strong association between elevated sNFL levels and loss of NEDA-3 
status within 12 months was found, with an odds ratio [OR] of 10.74 (95% CI 4.34–26.57); 15 and 10 patients with normal 
and elevated sNFL, respectively lost NEDA-3 (p < 0.001). The effect was not detected during the subsequent 13–24 and 
25–36 months.
Conclusions  A single elevated sNFL is strongly associated with NEDA-3 loss within 1 year. Elevated sNFL in apparently 
stable patients suggests an ongoing disease activity below the detection threshold of standard parameters.
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Introduction

Multiple sclerosis (MS) is a central nervous system (CNS) 
disorder characterized by acute inflammatory damage, 
chronic compartmentalized inflammation, and neurode-
generation [1].

Early and continuous use of disease-modifying thera-
pies (DMTs) is associated with improved long-term out-
comes. This emphasizes the importance of early diagnosis 
and intervention, as well as rapid identification of non-
responder patients that should switch to other more effica-
cious therapies [2, 3]. In this context, there is a strong need 
of a sensitive indicator of treatment efficacy to be applied 
in clinical practice for patients monitoring.

With the development of high efficacious therapies, 
the concept of “no evidence of disease activity” (NEDA) 
has been introduced in MS [4]. This acronymous has been 
adopted from other diseases such as cancer where treat-
ment is intended to free the patient from the disease.

NEDA-3, referring to no relapses, no increase in EDSS 
(Expanded Disability Status Scale), no new or enlarging 
T2-weighted lesions, and no T1-weighted contrast-enhanc-
ing lesions on brain magnetic resonance imaging (MRI), 
has become the treatment goal for MS and an outcome 
measure in clinical trials [5–9].

Recently, the concept has been even more explored as 
an ever-increasing body of evidence has suggested that 
both focal and chronic diffuse inflammation and neurode-
generation are already present at disease onset [10, 11]. 
Chronic active white matter lesions (slowly expanding 
lesions, SEL), meningeal lymphoid aggregates and more 
in general compartmentalized inflammation are related to 
whole brain and gray matter atrophy [12], are strongly 
predictive of disability progression [13–15] and observed 
since early phase of the disease [16]. For these reasons, 
brain atrophy has lately been added as a fourth component 
of NEDA (NEDA-4).

Therefore, in clinical practice there is a need of bio-
logical parameters able to detect, measure and monitor 
pathological process that underlie and predict irreversible 
disability and better define treatment response to DMTs. 
The inclusion of fluid biomarkers to NEDA-3 has been 
suggested to improve measurement of disability pro-
gression [17]. Literature reports the association between 
chronic inflammation within the CNS and increased levels 
of sNFL [18, 19]. Furthermore, several studies have shown 
that sNFL correlates with inflammatory disease activity 
and therapy response and may predict disability worsening 
[20–26]. However, these important pieces of information 
are at group level, whereas in everyday clinical practice 
is necessary to establish if and when the quantification of 
sNFL in a single patient with MS (pwMS) is informative. 

In particular, if the quantification of sNFL added to the 
routinary blood test performed in pwMS during DMTs can 
help in the management of patients.

In a previous study, we established age-dependent refer-
ence values for sNFL to enable the interpretation of sNFL 
dosing at a single-patient level [27] and in clinical practice 
[28, 29].

We quantified sNFL levels in 626 consecutives unse-
lected patients with RRMS according to revised 2017 Mc 
Donald criteria [30], in treatment with different DMTs 
whose blood samples had been collected in occasion of 
treatment monitoring and stored at CReSM (Regional 
Referral MS Centre)—BioBank. We evaluated the useful-
ness and applicability of sNFL quantification as a “routi-
nary test” in a MS Clinic and explored its correlation with 
subsequent clinical outcome.

Methods

Patients and methods

This is a real-life retrospective monocentric study. The 
study was approved by the ethical committee of San 
Luigi Gonzaga University Hospital (approvals number 
7262/2019 and 18,390/2019). All participants provided 
informed consent.

MS patients

Patients’ inclusion criteria were age between 18 and 59 years 
old; diagnosis of RRMS according to revised McDonald 
criteria [30]; availability of at least one sNFL dosage; an 
ongoing DMT treatment for at least 12 months before blood 
sampling for the sNFL dosage; availability of clinical and 
MRI data for at least 12 months before and after blood sam-
pling; written informed consent. Twelve months of therapy 
is a generally accepted period after which we are confident 
that DMTs have become effective [31, 32]. Exclusion crite-
ria were pregnancy and concomitant neurological diseases.

626 patients with RRMS met the inclusion criteria and 
were selected for the study.

Among them, 553 patients had a NEDA-3 status in the 
12 months prior blood sampling for sNFL dosage.

NEDA-3 status was defined, according to literature defini-
tion [33], as the composite of three related measures, namely 
no clinical relapses, no increase in EDSS score, and no activ-
ity seen on MRI (new or enlarging T2 hyperintense lesions 
or gadolinium-enhancing lesions) for 12 months prior sNFL 
dosage. The NEDA-3 status was retrospectively assessed by 
a neurologist blind for sNFL values.
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Methods

sNFL dosage

Blood samples were collected in serum tubes (BD Vacu-
tainer, Becton, Dickinson and Company) and processed 
within 2 h from collection according to CRESM Biobank 
standard procedures [34] and international guidelines [35].

Blood samples were centrifuged at 3000 × g 10 min, and 
serum supernatant stored at  – 80 °C in coded aliquots until 
analysis, to avoid repeated freeze–thaw cycles.

NFL levels were measured by single molecule array 
(Simoa™) on SR-X instrument [36] using NF-light assays 
(Quanterix). In each assay session, samples were run in 
single together with a titration curve and two internal con-
trols provided in the kit, as well as two homemade pooled 
controls (with high- and low-titer). The samples were ana-
lyzed following manufacturer’s instruction.

sNFL levels were interpreted according to previously 
defined age-dependent reference values and inter-assay 
variability (set at 10%) [27]. Particularly, as defined in 
our previous work, we considered as “normal” those 
samples for which sNFL quantification range comprising 
[value ± 10%value] was all below the specific age-depend-
ent cut-off level; “borderline” those samples for which 
sNFL quantification range comprising [value ± 10%value] 
included the specific age-dependent cut-off level; “ele-
vated” those samples for which sNFL quantification range 
comprising [value ± 10%value] was entirely above the spe-
cific age-dependent cut-off level.

Statistical analysis

Statistical analysis was performed using Python version 
3.11.5.

Descriptive statistical analysis of clinical, demo-
graphic, and biological data was carried out using χ2 and 
Mann–Whitney tests accordingly.

Association between sNFL levels and NEDA-3 status at 
12, 24, and 36 months was evaluated with logistic regres-
sion models adjusted for sex, EDSS, disease duration and 
type of DMTs. Type of treatment was categorized as mod-
erate including platform therapies, teriflunomide, dimethyl 
fumarate or high efficacious therapy including fingolimod, 
natalizumab, cladribine, alemtuzumab, and rituximab [37].

Logistic regression analysis has been repeated at three-
time intervals stratifying patients according to the cause of 
NEDA-3 loss (“inflammation” when clinical relapse and 
/or radiological activity was registered, or “progression” 
when EDSS increase was reported; p value < 0.05 was con-
sidered statistically significant.

Results

553 out of 626 included patients were in NEDA-3 status. 469 
out of 553 had normal levels of sNFL, and 42 had elevated 
sNFL; the remaining 42 were excluded from the analysis 
because sNFL dosage was borderline, that is within the inter-
assay coefficient of variation of 10% described in our previ-
ous work [27]. Among 42 patients with elevated sNFLs, 1 
was lost at follow up. Overall, 510 NEDA-3 patients were 
evaluated, of whom 469 with normal sNFL (92%) and 41 
with elevated sNFL (8%).

Clinical and demographic characteristics of patients with 
normal and elevated sNFL at baseline and during follow up 
are described in Table 1. The group of patients with nor-
mal sNFL did not differ significantly from the group with 
elevated sNFL regarding sex distribution, age, disease dura-
tion, EDSS, and type of therapy at baseline. At 12 months 
after blood sampling, 25 out of 510 patients lost NEDA-3 
status: the percentage of EDA (Evidence of Disease Activ-
ity) patients with elevated sNFL was significantly higher 
compared to the percentage of EDA patients with normal 
sNFL (24.4% and 3.2%, respectively, p < 0.001). More in 
details, loss of NEDA-3 was due to signs of inflammation 
(both clinical relapse and new or contrast enhancing lesions) 
in 18/25 patients or due to progression (EDSS increase with-
out relapse or MRI change) in 7/25 patients.

On the contrary, at 24 and 36 months after blood sam-
pling, the percentage of EDA patients with normal or 
elevated sNFL did not differ. Clinical, biological, and 
demographic patients’ characteristics according to NEDA 
or EDA status at the three time points are described in 
Table 2. Patients in NEDA or in EDA status did not dif-
fer according to sex distribution, age, EDSS, disease 
duration and type of treatment at 12 months after blood 
sample, the only significant difference being the percent-
age of patients with elevated sNFL in the two groups. At 
24 and 36 months after blood sample, NEDA and EDA 
patients only differed for EDSS, that was significantly 
higher in EDA group compared to the NEDA one. After 
adjusting for sex, age, disease duration, EDSS and type 
of DMTs, we found a very strong association between 
elevated sNFL levels and loss of NEDA-3 status within 
12 months; more in details, patients with elevated sNFL 
had a risk of losing NEDA-3 status 11 time greater than 
patients with normal sNFL (odds ratio [OR] = 10.74, 95% 
CI 4.34–26.57). The effect was not detected during the 
subsequent 13–24 months (OR = 1.4, 95% CI 0.39–4.94) 
and for 25–36 months (OR = 1.8, 95% CI 0.48–6.68). Fig-
ure 1 shows in detail the transition from NEDA to EDA 
status during the follow up. At any time points, logistic 
regression analysis adjusted for the same variables (sex, 
age, disease duration, EDSS and type of treatment), was 
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performed in NEDA-3 patients and in the group of patients 
in EDA status for inflammatory activity (either clinical 
or radiological) or for progression. Within 12 months, 
a strong association was found between elevated sNFL 

and EDA status both for inflammation and for progres-
sion, with an OR greater for progression (OR = 6.6, 95% 
CI 2.13–20.53 and OR = 39.8, 95% CI 6.99–227.35, 
respectively).

Table 1   Patients’ clinical and 
demographic characteristics 
according to sNFL level, at 
baseline and during follow up

* HET (High Efficacy Therapy): fingolimod, natalizumab, cladribine, alemtuzumab, rituximab

Normal level of sNFL Elevated level of sNFL p value

N 469 42
Female /male, n 319/150 31/11 0,548
Age at sample, years, median (range) 42 (18–59) 43 (20–57) 0,973
Disease duration at sampling, years, 

median (range)
10 (1–38) 13 (1–32) 0,306

EDSS at sampling, median (range) 1.8 (0–7.5) 2.0 (0–7.0) 0,365
HET*, n (%) 246 (52.5) 20 (47.6) 0,773
EDA at 12 months, n° (%) 15 (3.2) 10 (24.4)  < 0.001
Inflammation, n (%) 13 (86.7) 5 (50) 0,122
Progression, n (%) 2 (13.3) 5 (50)
EDA at 24 months, n° (%) 33 (7.0) 3 (7.3) 1,000
Inflammation, n (%) 22 (66.6) 0 (0) 0,099
Progression, n (%) 11 (33.3) 3 (100)
EDA at 36 months, n° (%) 24 (5.1) 3 (7.3) 0,810
Inflammation, n (%) 17 (70.8) 1 (33.3) 0,516
Progression, n (%) 7 (29.2) 2 (66.6)

Table 2   Clinical, biological and demographic characteristics according to NEDA-3 status at 12, 24 and 36 months

* HET (High Efficacy Therapy): fingolimod, natalizumab, cladribine, alemtuzumab, rituximab

NEDA-3 at 
12 m

EDA-3 at 
12 m

P valuve NEDA-3 at 
12 m

EDA-3 at 
12 m

P valuve NEDA-3 at 
12 m

EDA-3 at 
12 m

P valuve

N 485 25 449 36 422 27
Elevated sN 

FL, n° (%)
31 (6.4) 10 (40) < 0.001 28 (6.2) 3 (8.3) 0.888 25 (5.9) 3 (11.1) 0.503

Female, n° 330 19 0.539 303 27 0.456 286 17 0.760
Age at sam-

ple, years, 
median 
(range)

42 40 0.237 42 46 0.241 42 42 0.331

Disease dura-
tion at sam-
pling, years, 
median 
(range)

10 10 0.687 10 7 0.513 10 12 0.473

EDSS at 
sampling, 
median 
(range)

1.5 1.5 0.362 1.5 2 0.031 1.5 2 0.010

HET, n (%) 254 11 0.541 239 15 0.245 228 11 0.253
Type of EDA
 Inflamma-

tion, n (%)
NA 18 (72) NA 22 (61.1) – NA 18 (66.7) –

 Progression, 
n (%)

NA 7 (28) NA 14 (389) – NA 9 (33.3) –
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Discussion

This is a real life, retrospective single Centre study on a 
selected cohort of RRMS patients with no evidence of clini-
cal and radiological disease activity according to NEDA-3 
definition [31]. The aim of the study was to explore if a sin-
gle sNFL dosage could be useful as a supplementary tool for 
the monitoring of MS patients in the clinical setting. Many 
changes have occurred in patients’ management in recent 
years: the increase of treatment options, with the availability 
of high efficacious drugs, the acquisition of new imaging and 
biological fluid biomarkers, a better knowledge of pathoge-
netic mechanisms underlying disability and the subsequent 
change of treatment goal. With the almost complete suppres-
sion of relapses and MRI activity thanks to the availability 
of HET, the goal of any treatment aimed to reach freedom 
from any disease activity or NEDA. NEDA has first been 
used as an endpoint in clinical trials, but now it became 
a target in the clinical setting to navigate among clinical 
decisions. Neurologists feel the need to intercept promptly, 
measure and monitor the subclinical diffuse brain damage 
that manifests clinically as disease progression. The use of 

conventional brain MRI generally does not allow monitor-
ing of smoldering lesions. Furthermore, in routinary clinical 
setting often no standardized image acquisition protocols 
are used, neither unconventional MRI or precise atrophy 
measurement are available and cognitive evaluation is not 
always performed. Due to these reasons, the identification 
of suboptimal responders is often retrospective, delayed 
and related on patients’ report. In this complex scenario, we 
aimed at evaluating whether sNFL dosage is informative 
in detecting subclinical activity that can prelude both acute 
inflammation and progression in the real word. We focused 
the attention on RRMS patients on active treatment for at 
least 12 months and in NEDA-3 status for more than 1 year 
followed in our Centre. This study shows two interesting 
findings: (1) the strong association of a single elevated sNFL 
with the risk of losing NEDA-3 status in the following year 
and (2) the presence of elevated sNFL in a percentage of 
apparently stable patients. In our work, elevated sNFL was 
associated with an 11 times greater risk of acquiring EDA 
status both for disability progression and for clinical and/or 
radiological reactivation during the subsequent 12 months 
compared to having normal sNFL levels. It is known from 

Fig. 1   Transition from NEDA to EDA status during the follow up (Created in BioRender. Bertolotto, a. (2024)  BioRender.com/x28y635")
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literature that higher sNFL levels correlate with patient’s 
risk for developing Gd + lesions, new T2 lesions on MRI in 
the following year, and predict disease worsening and pro-
gression independent of relapse activity [24–38]. A recent 
work from Basel University [39] assessed the applicability 
of sNfL for identification of people at risk for future disease 
activity and showed that sNfL percentiles and Z scores indi-
cate a gradually increased risk for future acute and chronic 
disease activity, and that they can be used to compare the 
long-term effectiveness of disease-modifying therapies.

On the basis of these data, a recent work by Freedman 
and Colleagues propose the use of serum and CSF NFL in 
conjunction with other measures in clinical decision-mak-
ing for patients with multiple sclerosis [40]. This result has 
important implications; first of all neurologists may have an 
easily repeatable, minimally invasive and low-cost monitor-
ing tools in clinical practice; second, sNFL may help MS cli-
nicians with therapeutic decision-making, as elevated sNFL 
may indicate the need to perform closer monitoring and/or 
consider a change of therapy. In the present work we found 
that a single randomly performed elevated sNFL is strongly 
associated with NEDA-3 loss; but an open question is when 
to and how often measure sNFL.

According to Freedman et al. [40], it is suggested to 
measure sNFL at baseline, 3 to 6 months after starting 
DMTs (rebaseline), 3 to 6 months after clinical relapse 
o MRI activity. Future fields of application of sNFL can 
be the monitoring after immunoreconstitutive DMTs, and 
during de-escalation strategies. Regarding the presence of 
elevated sNFL in apparently stable patients, we suggest that 
elevated sNFL levels should represent a red flag for clini-
cians, as sNFL may identify ongoing disease activity that is 
below the detection threshold of standard clinical and MRI 
parameters. They could denote the presence of a cognitive 
relapse, or spinal radiological activity that is rarely moni-
tored in routinary follow up, or modifications in brain MRI 
undetectable with conventional imaging. It is known that 
sNfL levels increase already at the presymptomatic stage of 
MS, capturing an ongoing neuroaxonal degeneration [41]. 
Therefore, detection of increased sNFL level suggests neu-
rologists to strictly monitor those patients to early identify 
any transition to a progressive phenotype. Furthermore, we 
found that sNFL levels can be increased also in patients who 
had been clinically and radiologically stable for a long time. 
This result should lead to caution in suspending therapy in 
NEDA patients and should encourage neurologists to take 
advantage of the sNFL dosage to better characterize disease-
free patients.

The study has some limitations due to its retrospective 
and monocentric nature; besides, clinical evaluation was 
based exclusively on EDSS increase and MRI data were 
obtained yearly but at different time interval from blood 
sampling; nevertheless, it represents the starting point for 

future studies aimed at personalizing patient’s management. 
In conclusion we believe sNFL dosage is an informative 
instrument in the routinary management of patients and can 
offer the neurologist an additional simple and minimally 
invasive tool to perform a better patient profiling.
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