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Abstract

In order to approximate functions defined on (−1, 1) and having exponential singularities at the
endpoints of the interval, we study the behavior of some modified Fourier Sums in an orthonormal system
related to exponential weights. We give necessary and sufficient conditions for the boundedness of the
related operators in suitable weighted L p-spaces, with 1 < p < ∞. Then, in these spaces, these processes
converge with the order of the best polynomial approximation.
c⃝ 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Letting w(x) = e−(1−x2)−α
, α > 0, x ∈ (−1, 1), a Pollaczek-type weight, we denote by

{pm(w)}m∈N the corresponding sequence of orthonormal polynomials with positive leading
coefficients. Now, let
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Sm(w, f ) =

m−1−
k=0

ck pk(w), ck =

∫ 1

−1
pk(w) f w, (1)

be the mth Fourier sum related to a function f ∈ L p
√

w
, 1 ≤ p < ∞, i.e. f is such that

‖ f
√

w‖
p
p =

 1
−1 | f

√
w|

p < ∞.
Concerning the behavior of Sm(w, f ) in L p

√
w

, we note that for p = 2, since the Weierstrass

theorem holds in L2√
w

(see [6]), the system {pm(w)}m∈N is complete. While, for p ≠ 2,

setting ‖Sm(w)‖p = sup‖ f
√

w‖p=1 ‖Sm(w, f )
√

w‖p, it is easy to prove (see Proposition 3.1)
that the uniform boundedness of ‖Sm(w)‖p implies a strong restriction on the parameter p, i.e.
p ∈ (4/3, 4). Furthermore, the assumption p ∈ (4/3, 4) seems to be not sufficient in order to get
supm∈N ‖Sm(w)‖p < ∞ (see the proof of Lemma 4.1 with σ = w, u =

√
w and 4/3 < p < 4).

This is concordant with a classical result of Nevai (see [12, Cor.14, p. 155]), who proved that if

w(x) = e
−

1
4√

1−x2 , then supm∈N ‖Sm(w)‖p < ∞ implies p = 2. Therefore, at the moment only
the functions belonging to L2√

w
can be represented by a Fourier series in the system {pm(w)}m∈N.

On the other hand, the polynomial approximation of functions defined on (−1, 1) and
increasing exponentially at the endpoints ±1 is required in various contexts, for instance in
numerical quadrature and derivation or in the numerical treatment of functional equations. To
overcome this gap, we are going to modify the Fourier operator Sm(w), in order to obtain another
operator which has a wider application. To this aim we introduce the weights

σ(x) = vλ(x)w(x) = (1 − x2)λe−(1−x2)−α

and

u(x) = vµ(x)


w(x) = (1 − x2)µe−
1
2 (1−x2)−α

with α > 0 and λ, µ ≥ 0. We are going to prove some properties of these weights and, also
applying an idea used in [5,8], for any function f ∈ L p

u , we define the sum Sm(σ, fB), where
fB is the function f , “truncated” in B = Bm (i.e. fB(x) = 0 if x ∉ B) and B is a suitable subset
of the Mhaskar–Saff interval. Under necessary and sufficient assumptions, we are going to show
that, for a wide class of functions, the sequence

{χB Sm(σ, fB)}m∈N ,

with χB denoting the characteristic function of B, converges to f ∈ L p
u , 1 < p < ∞, with the

order of the best polynomial approximation.

2. Preliminary results

Let us first introduce some notation. In the sequel C will stand for a positive constant that
could assume different values in each formula and we shall write C ≠ C(a, b, . . .) when
C is independent of a, b, . . . . Furthermore A ∼ B will mean that if A and B are positive
quantities depending on some parameters, then there exists a positive constant C independent
of these parameters such that (A/B)±1

≤ C. Moreover, we denote by Pm the set of all algebraic
polynomials of degree at most m.

With ϱ a weight function in (−1, 1), we denote by {pm(ϱ)}m∈N the corresponding sequence of
orthonormal polynomials with leading coefficients γm(ϱ) > 0. Let us define a class of weights.
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Following Levin and Lubinsky in [2, p. 5], we will say that the weight ϱ(x) = e−q(x), |x | < 1,
belongs to the class Ŵ , and write ϱ ∈ Ŵ , if and only if the function q : (−1, 1) → R fulfills the
following conditions:

(i) q is even and twice continuously differentiable, with limx→1 q(x) = +∞;
(ii) q ′(x) ≥ 0, q ′′(x) ≥ 0 for x ∈ (0, 1);

(iii) the function

T (x) = 1 +
xq ′′(x)

q ′(x)

is increasing in [0, 1) with T (0) > 1;
(iv) for some A ∈ (0, 1), the function T satisfies T (x) ∼

q ′(x)
q(x)

for x ∈ [A, 1).

The Mhaskar–Rahmanov–Saff number am = am(ϱ), related to the weight ϱ, is implicitly
defined as the positive root of the equation

m =
2
π

∫ 1

0
am tq ′(am t)

dt
√

1 − t2
. (2)

Also the equivalence (see [4])

q ′(am) ∼ m


T (am) (3)

can lead to an approximation of am .
By a slight abuse of notation, we denote by L∞ the space of all continuous function f

on (−1, 1), with the norm ‖ f ‖∞ = supx∈(−1,1) | f (x)|. Then, with regards to the number

am = am(ϱ), where ϱ ∈ Ŵ , for any polynomial Pm ∈ Pm , we have

‖Pmϱ‖∞ = ‖Pmϱ‖L∞[−am ,am ]. (4)

Moreover, for 1 ≤ p ≤ ∞, the restricted range inequality

‖Pmϱ‖p ≤ C‖Pmϱ‖L p[−am ,am ] (5)

and also the inequality

‖Pmϱ‖L p{|x |≥asm } ≤ Ce−AmT (am )−1/2
‖Pmϱ‖L p[−am ,am ], s > 1, (6)

hold with C and A positive constants independent of Pm (see [2, Th. 1.7, p. 12] and [4, Lemma
2.3]).

The following remark is sometimes useful. Letting ϱ be a weight belonging to Ŵ , consider
another weight ϱ̄(x) = vγ (x)ϱ(x), with vγ (x) = (1 − x2)γ , γ > 0. Denote by am = am(ϱ) and
ām = am(ϱ̄) the related Mhaskar–Rahmanov–Saff numbers. If the parameter γ of ϱ̄ is a positive
integer number, then, using the equality (4), for any polynomial Pm ∈ Pm , we have

‖Pm ϱ̄‖∞ = ‖Pmvγ ϱ‖∞ = ‖Pmvγ ϱ‖L∞[−am+2γ ,am+2γ ]. (7)

In the general case γ ∈ R, the following proposition holds.

Proposition 2.1. Let 1 ≤ p ≤ ∞, ϱ ∈ Ŵ and vγ (x) = (1 − x2)γ , γ > 0. Then, for any
Pm ∈ Pm , we havePmvγ ϱ


p ≤ C

Pmvγ ϱ


L p[−am ,am ]
(8)

where am = am(ϱ) and C is independent of m and Pm .
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In the particular case ϱ(x) = τ(x) = (1 − x2)νe−(1−x2)−α
, ν, α > 0, setting v−γ (x) =

(1 − x2)−γ , γ > 0, for any Pm ∈ Pm , we getPmv−γ τ


p ≤ C
Pmv−γ τ


L p[−asm ,asm ]

(9)

for some s > 1, where asm = asm(τ ) and C is independent of m and Pm .

Proof. We first prove inequality (8). By the restricted range inequality (5), with am = am(ϱ), we
have ∫

am<|x |<1
|Pm(x)vγ (x)ϱ(x)|p dx

 1
p

≤ vγ (am)

∫
am<|x |<1

|Pm(x)ϱ(x)|p dx

 1
p

≤ Cvγ (am)

∫ am

−am

|Pm(x)ϱ(x)|p dx

 1
p

≤ C
∫ am

−am

|Pm(x)ϱ̄(x)|p dx

 1
p

,

and (8) follows, since vγ is decreasing on (0, 1).
Now, in order to prove (9), sincePmv−γ τ


p ≤

Pmv−γ τ


L p[−asm ,asm ]
+
Pmv−γ τ


L p{|x |≥asm }

, asm = asm(τ ),

it suffices to show that the second norm at the right-hand side is bounded by
C
Pmv−γ τ


L p[−asm ,asm ]

, s > 1.

Let us assume γ > (α+ν)(1−1/s). Then the function v−γ τ 1−1/s , which is even on (−1, 1), is
nonincreasing on [asm, 1) for a sufficiently large m. Hence, using the restricted range inequality
(5), with am(τ 1/s) = asm(τ ), we getPmv−γ τ


L p{|x |≥asm }

=

Pmv−γ τ 1/sτ 1−1/s


L p{|x |≥asm }

≤ v−γ (asm)τ 1−1/s(asm)

Pmτ 1/s


L p{|x |≥asm }

≤ Cv−γ (asm)τ 1−1/s(asm)

Pmτ 1/s


L p[−asm ,asm ]

.

Now, taking into account that, for m sufficiently large, the function v−γ τ 1−1/s
: [−asm, asm] →

R attains its absolute minimum at asm , we havePmv−γ τ


L p{|x |≥asm }
≤ C

Pmv−γ τ 1−1/sτ 1/s


L p[−asm ,asm ]

,

which was our claim.
We omit the proof for γ ≤ (α + ν)(1 − 1/s), which is simpler than the previous case, being

v−γ τ 1−1/s a nonincreasing function on (0, 1). �

Let us consider the weights ϱ ∈ Ŵ and ϕ2ϱ, ϕ2(x) = 1 − x2, and the corresponding systems
{pm(ϱ)}m∈N and {pm(ϕ2ϱ)}m∈N of orthonormal polynomials with positive leading coefficients
{γm(ϱ)}m∈N and {γm(ϕ2ϱ)}m∈N, respectively. The following proposition is useful in different
contexts, concerning Lagrange interpolation and Fourier sums.
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Proposition 2.2. If the weights ϱ and ϕ2ϱ belong to the class Ŵ , then the equivalence

γm(ϱ)

γm+1(ϕ2ϱ)
∼ 1 (10)

holds with the constants in “ ∼ ” independent of m.

We observe that equivalence (10) is well-known if ϱ satisfies the Szegő condition, i.e. 1
−1

log ϱ(x)
√

1−x2
dx > −∞, but in general the weights of the class Ŵ violate this condition.

Moreover, we remark that Proposition 2.2 holds also with ϕ2(x) = 1 − x2 replaced by
vγ (x) = (1−x2)γ , where γ > 0 is an integer number or with γm+1(ϕ

2ϱ) replaced by γm−1(ϕ
2ϱ)

(see the proof in Section 4).
Let us introduce now the weight

σ(x) = vλ(x)w(x) = (1 − x2)λe
−

1
(1−x2)α , (11)

with |x | < 1, α > 0, λ ≥ 0 and the corresponding orthonormal system {pm(σ )}m∈N. It is well-
known that the weight w belongs to the class Ŵ , while σ can be considered as a logarithmic
perturbation of w.

Proposition 2.3. The weight σ , defined by (11), belongs to the class Ŵ and fulfills the further
condition:

T (x) >
A

1 − x2 , (12)

for some A > 2 and for x close enough to 1.

From Propositions 2.2 and 2.3 it follows that ϕ2σ ∈ Ŵ and then

γm(σ )

γm+1(ϕ2σ)
∼ 1.

For a function f ∈ L1
σ , i.e.

 1
−1 | f σ | < ∞, we consider the mth Fourier sum in the system

{pm(σ )}m∈N, given by

Sm(σ, f ) =

m−1−
k=0

ck pk(σ ), ck =

∫ 1

−1
pk(σ ) f σ.

In Section 3 we will state some results concerning the behavior of Sm(σ, f ) in some suitable
function spaces. To this aim, we introduce the weight function

u(x) = vµ(x)


w(x) = (1 − x2)µe
−

1
2(1−x2)α , (13)

where µ ≥ 0, α > 0 and |x | < 1, and denote by L p
u , 1 < p < ∞, the collection of all measurable

functions f such that

‖ f ‖L p
u

= ‖ f u‖p =

∫ 1

−1
| f (x)u(x)|p dx

1/p

< ∞.
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Letting σ and u be the weights in (11) and (13), since u = vµ−λ/2√σ , from Proposition 2.1
we deduce

‖Pmu‖p ≤ C

‖Pmu‖L p[−asm ,asm ] , s > 1, if µ − λ/2 < 0
‖Pmu‖L p[−am ,am ] , otherwise

(14)

where am = am(
√

σ) satisfies

1 − am ∼ m−
1

α+1/2 , (15)

by (3).

3. Main results

First of all we prove the following

Proposition 3.1. With the previous notation, if

‖Sm(w, f )
√

w‖p ≤ C‖ f
√

w‖p, C ≠ C(m, f ), (16)

then p ∈ (4/3, 4).

Proof. The bound (16) implies

sup
m

pm(w)
√

w


p

pm(w)
√

w


q ≤ C,
1
p

+
1
q

= 1.

Since w ∈ Ŵ , the estimates

pm(w)
√

w


r ∼


1, 1 ≤ r < 4,

(log m)1/4, r = 4,

(mT (am))
2
3


1
4 −

1
r


, 4 < r < ∞,

hold (see [2, Th. 1.8, p. 12]), where am = am(
√

w) and T (am) ∼ (1 − a2
m)−1

∼ m
1

α+1/2 , by (12)
and (15). The proposition is completely proved. �

Therefore, as already mentioned in the Section 1, taking also into account the mentioned
result of Nevai, the polynomial approximation by means of the sum Sm(w, f ) concerns only a
restricted class of functions.

To overcome this drawback, we are going to modify the operator Sm(w). In Section 2, we have
introduced the weight σ = vλw, the related orthonormal system {pm(σ )}m∈N, and, for a function
f ∈ L1

σ , the mth Fourier sum Sm(σ, f ). Now, let θ ∈ (0, 1) and χθ = χθ,m be the characteristic
function of the interval [−aθm, aθm], am = am(

√
σ). Setting fθ = χθ f , we consider the

sequence {χθ Sm(σ, fθ )}m∈N in the function space L p
u , where u(x) = vµ

√
w, µ ≥ 0.

Denoting by Em( f )u,p = infP∈Pm ‖( f − P) u‖p the error of best polynomial approximation
in L p

u , we can state the following theorems.

Theorem 3.2. Let 1 < p < ∞. Then, for any function f ∈ L p
u and fixed θ ∈ (0, 1), the bound

‖χθ Sm(σ, fθ )u‖p ≤ Cθ‖ fθ u‖p, (17)
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with Cθ ≠ Cθ (m, f ) and Cθ = O

log−1/2(1/θ)


, holds if and only if

vµ
vλϕ

∈ L p and
1
vµ


vλ

ϕ
∈ Lq ,

1
p

+
1
q

= 1. (18)

Moreover, under the assumption (18), we have

‖[ f − χθ Sm(σ, fθ )] u‖p ≤ Cθ


EM ( f )u,p + e−AMγ

‖ f u‖p


, (19)

where M =


θm

2(θ+1)


, γ =

2α
2α+1 , A ≠ A(M, f ), Cθ (m, f ) ≠ Cθ = O


log−1/2(1/θ)


.

If we consider the sequence {Sm(σ, fθ )}m∈N in L p
u , then Theorem 3.2 holds with 1 < p < 4,

namely we state

Theorem 3.3. With the notation of Theorem 3.2, for any f ∈ L p
u , 1 < p < 4, and θ ∈ (0, 1),

we have

‖Sm(σ, fθ )u‖p ≤ Cθ‖ fθ u‖p, (20)

with Cθ (m, f ) ≠ Cθ = O

log−1/4(1/θ)


, if and only if

1
4

−
1
p

< µ −
λ

2
<

3
4

−
1
p
. (21)

Moreover, the conditions (18) imply the estimate

‖[ f − Sm(σ, fθ )] u‖p ≤ Cθ


EM ( f )u,p + e−AMγ

‖ f u‖p


, (22)

where M and γ are as in Theorem 3.2, A ≠ A(M, f ), Cθ ≠ Cθ (m, f ) and Cθ is as above.

Therefore, under the assumptions on the weights and the parameter p, the two proposed
sequences converge in L p

u to the function f with the same order of the best polynomial
approximation. The parameter θ is crucial for the convergence and it cannot assume the value 1;
in other words, the “truncation of the function” seems to be essential.

We also remark that, denoting by Sm(vλ, f ) the mth Fourier sum with respect to the Jacobi
weight vλ(x) = (1 − x2)λ, for any f ∈ L p

vµ , it is well-known (see [13,14,9]) that the bound

‖Sm(vλ, f )vµ
‖p ≤ C‖ f vµ

‖p, C ≠ C(m, f ),

is equivalent to the conditions

vµ
vλϕ

∈ L p and
vλ

vµ
,

1
vµ


vλ

ϕ
∈ Lq ,

1
p

+
1
q

= 1,

which are the assumption (18), if we exclude the condition vλ

vµ ∈ Lq (see the proof of
Theorem 3.2). Then, the behavior of the sequence {χθ Sm(σ, fθ )}m∈N in L p

u is reduced to that
of the sequence


Sm(vλ, f )


m∈N in L p

vµ .
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4. Proofs

Proof of Proposition 2.2. Having set ϱ(x) = e−q(x), we have ϱ̄(x) := ϕ2(x)ϱ(x) =

e
−


q(x)+log 1

1−x2


. Since ϱ, ϱ̄ ∈ Ŵ , the following asymptotic estimates hold for m sufficiently

large (see [3, p. 25])

γm(ϱ) =
1

√
2π


2

am

m+1/2

exp


2
π

∫ am

0

q(s)
a2

m − s2
ds


(1 + o(1))

and

γm+1(ϱ̄) =
1

√
2π


2

ām+1

m+3/2

exp

 2
π

∫ ām+1

0

q(s) + log 1
1−s2

ā2
m+1 − s2

ds

 (1 + o(1))

with am = am(
√

ϱ) and ām+1 = am+1(
√

ϱ̄). Taking into account that, by (7), am+1(
√

ϱ̄) =

a2m+2(ϱ̄) = a2m+4(ϱ) = am+2(
√

ϱ) = am+2 and setting

cm = exp

 2
π

∫ am+2

0

log 1
1−s2

a2
m+2 − s2

ds

 ,

it follows that

γm(ϱ)

γm+1(ϱ̄)
=


am+2

am

m+1/2 am+2

2
1

cm

exp


2
π

 am
0

q(s)
√

a2
m−s2

ds


exp


2
π

 am+2
0

q(s)
a2

m+2−s2
ds

 (1 + o(1))

=:


am+2

am

m+1/2 am+2

2
1

cm
Rm (1 + o(1)) .

Concerning Rm , we have:

Rm = exp


−

2
π

∫ 1

0

q(am+2s) − q(ams)
√

1 − s2
ds



=: exp


−

2
π

∫ 1

0

q ′(τs)s(am+2 − am)
√

1 − s2
ds


,

with ams < τs < am+2s. Since q ′ is an increasing function, we get
am+2

am
− 1


(ams)q ′(ams) ≤ q ′(τs)s(am+2 − am) ≤


1 −

am

am+2


(am+2s)q ′(am+2s)

and then, by (2), we obtain

e
−


1−

am
am+2


(m+2)

≤ Rm ≤ e
−


am+2

am
−1


m
.

Since the following estimates hold (see [3, formula (3.5.3), p. 81] and [2, p. 27])
1 −

am

am+2


≤

c

T (am)
log


1 +

2
m


, c > 0, (23)
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
am+2

am
− 1


≥

log


1 +
2
m


T (am+2)

, (24)

and

2
m

−
2

m2 < log


1 +
2
m


<

2
m

, (25)

we deduce

e−
2c

T (am ) ≤ Rm ≤ e
−

1
T (am+2) .

Being 1/T (am) = o(1) for m → ∞, it follows that Rm ∼ 1.
Let us now consider (am+2/am)m+1/2. By (23)–(25), we have

1 +
1

mT (am+2)
≤

am+2

am
≤ 1 +

C
mT (am)

,

and then (am+2/am)m+1/2
∼ 1, taking into account again that 1/T (am+2) ∼ 1 − am+2 = o(1)

for m → ∞.
Finally, we get∫ 1/2

0
log

1

1 − s2 ds <

∫ am+2

0

log 1
1−s2

a2
m+2 − s2

ds =

∫ 1

0

log 1
1−a2

m+2s2

√
1 − s2

ds

<

∫ 1

0

log 1
1−s2

√
1 − s2

ds

and then cm ∼ 1. Since am ∼ 1, the proof is completed.
We observe that if γm+1(ϱ̄) is replaced by γm−1(ϱ̄), the proof is simpler, since am−1(

√
ϱ̄) =

am(
√

ϱ), by (7).
Finally, we remark that the proof still works with ϕ2ϱ replaced by vγ ϱ, where vγ (x) =

(1 − x2)γ , γ > 0 is an integer number, if we take into account that, by (7), am+1(
√

vγ ϱ) =

am+γ+1(
√

ϱ). �

Proof of Proposition 2.3. Let us set Q̄(x) = (1 − x2)−α, Q(x) = Q̄(x) + λ log 1
1−x2 and

σ(x) = e−Q(x). Since

Q′(x) =
2λx

1 − x2


1 +

α

λ
Q̄(x)


and

Q′′(x) =
2λ

1 − x2


1 +

α

λ
Q̄(x)


+

4λx2

(1 − x2)2


1 +

α(α + 1)

λ
Q̄(x)


,

we get that Q is an even function with Q′ and Q′′ positive on (0, 1) and limx→1− Q(x) = +∞.
Moreover, calculation leads to

T (x) = 1 +
x Q′′(x)

Q′(x)
= 2 +

2x2

1 − x2


1 +

α2

λ
Q̄(x)

1 +
α
λ

Q̄(x)


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whence T is increasing on [0, 1), with T (0) = 2 and

T (x) ∼
1

1 − x2 , x ∈ (0, 1),

where the constants in “∼” are independent of x . In particular, if x ∈

[
1

4
√

1+α2/(λ+α)
, 1


, since
1 +

α2
λ

Q̄(x)

1+
α
λ

Q̄(x)


≥


1 +

α2

λ+α


, we conclude that

T (x) >
2

1 + α2/(λ + α)


x2

1 − x2 ≥
2


1 + α2/(λ + α)

1 − x2

whence (12) follows.
Finally, for x ∈ [1/2, 1), we have

Q′(x)

Q(x)
=

1

1 − x2


2λ

1 +

α
λ


x Q̄(x)

Q̄(x)
+ λ log

1

1 − x2


=:

A

1 − x2 .

Since
λ + α

1 + λ
≤ A ≤ 2(λ + α),

we deduce

Q′(x)

Q(x)
∼

1

1 − x2 ∼ T (x), x ≥
1
2
,

which completes the proof. �

We recall that, if f belongs to L1
σ , its mth Fourier sum Sm(σ, f ) is defined as

Sm(σ, f, x) =

m−1−
k=0

ck(σ, f )pk(σ, x) =

∫ 1

−1
Km(σ, x, t) f (t)σ (t) dt,

where ck(σ, f ) =
 1
−1 pk(σ, t) f (t)σ (t) dt is the kth Fourier coefficient of f in the system

{pm (σ )}m∈N and

Km(σ, x, t) =

m−1−
k=0

pk(σ, x)pk(σ, t)

=
γm−1(σ )

γm(σ )

pm(σ, x)pm−1(σ, t) − pm−1(σ, x)pm(σ, t)

x − t
(26)

is the Christoffel–Darboux kernel. By using the Pollard formula, this kernel can be written as

Km(σ, x, t) = −αm pm(σ, x)pm(σ, t)

+ βm
pm(σ, x)pm−1(ϕ

2σ, t)ϕ2(t) − pm−1(ϕ
2σ, x)ϕ2(x)pm(σ, t)

x − t
(27)

where ϕ2(t) = 1 − t2,

αm =


1 +

γm+1(ϕ
2σ)γm−1(ϕ

2σ)

γm(σ )2

−1
γm−1(ϕ

2σ)

γm(σ )
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and

βm =


1 +

γm+1(ϕ
2σ)γm−1(ϕ

2σ)

γm(σ )2

−1
γm+1(ϕ

2σ)γm−1(ϕ
2σ)

γm(σ )2 .

By Proposition 2.2 we have γm−1(ϕ
2σ)/γm(σ ) ∼ 1 ∼ γm+1(ϕ

2σ)/γm(σ ) and then the terms
αm and βm fulfill αm ∼ 1 ∼ βm .

Concerning the polynomials {pm(σ )}m∈N, the equivalences

sup
x∈(−1,1)

pm(σ, x)


σ(x)
4


|a2
m − x2|

 ∼ 1 (28)

and

sup
x∈(−1,1)

pm(σ, x)


σ(x)

 ∼ (mT (am))1/6, (29)

have been proved in [2, formulae (1.38) and (1.39), p. 10], where am = am
√

σ


and T (am) ∼

(1 − am)−1
∼ m

1
α+1/2 , by Proposition 2.3 and (15).

Let θ ∈ (0, 1). Then for any x ∈ [−aθm, aθm] we have

Cθ (1 − x2) ≤ a2
m − x2

≤ 1 − x2, (30)

where the constant Cθ depends only on θ . In fact, by (24), we get

1 ≤
1 − x2

a2
m − x2 ≤ 1 +

1 − a2
m

am
aθm

− 1
≤ 1 +

(1 − a2
m)T (am)

log(1/θ)

≤ 1 +
c

log(1/θ)
,

where c is a constant independent of θ .
Hence, by (28) and (30), we deduce the inequality

|pm(σ, x)|


σ(x)ϕ(x) ≤ Cθ , |x | ≤ aθm . (31)

Above,

Cθ = C


1 +
1

log(1/θ)

1/4

(32)

with C independent of m and θ .
In the sequel, we will denote by H( f ) the Hilbert transform of a function f in (−1, 1), i.e.

the Cauchy principal value integral

H( f, x) =

∫ 1

−1

f (t)

t − x
dx, x ∈ (−1, 1).

It is well-known that, letting v be a weight function and 1 < p < ∞, the bound

‖H( f )v‖p ≤ C‖ f v‖p, C ≠ C( f ), (33)
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holds if and only if v ∈ Ap(−1, 1), (see [10,1,11]), namely for any interval I ⊂ (−1, 1) and
with 1 < p < ∞, v satisfies

1
|I |

∫
I
v p(x) dx

1/p  1
|I |

∫
I
v−q(x) dx

1/q

≤ C ≠ C(I ),
1
p

+
1
q

= 1, (34)

where |I | is the measure of I . If v is a generalized Jacobi weight of the form

N∏
i=1

|x − xi |
γi , γi > −1, x, xi ∈ [−1, 1],

the conditions v ∈ L p(−1, 1) and v−1
∈ Lq(−1, 1), 1/p + 1/q = 1, imply v ∈ Ap(−1, 1). As

a consequence, for v(x) = (1 − x2)ν , if −
1
p < ν < 1 −

1
p then v ∈ Ap(−1, 1) (see [7]).

Moreover, in the proofs, the following lemma will be useful.

Lemma 4.1. Let σ and u be the weights in (11) and (13). Then for any f ∈ L p
u , 1 < p < ∞,

we have

‖Sm (σ, f ) u‖p ≤ Cmν
‖ f u‖p, (35)

for some ν > 0, where C is independent of m and f .

Proof. Taking into account that u = vµ−λ/2√σ , let us first assume µ − λ/2 < 0. So, using the
restricted range inequality (14), with asm = asm(

√
σ), s > 1, we getSm (σ, f ) vµ−λ/2√σ


p

≤

Sm (σ, f ) vµ−λ/2√σ


L p[−asm ,asm ]

.

Then, using the Pollard formula (27) and the restricted range inequality (14), with asm =

asm(
√

σ), s > 1, we have

‖Sm (σ, f ) u‖p ≤ C

‖pm(σ )u‖L p[−asm ,asm ] ‖pm(σ ) f σ‖1

+

pm(σ )H


pm−1(ϕ
2σ)ϕ2 f σ


u


L p[−asm ,asm ]

+

pm−1(ϕ
2σ)ϕ2 H (pm(σ ) f σ) u


L p[−asm ,asm ]


=: C {I1 + I2 + I3} . (36)

For the first term, using the Hölder inequality, with 1/p + 1/q = 1, and inequality (14), by
(29), we obtain

I1 ≤ C‖pm(σ )u‖L p[−asm ,asm ]

pm(σ )
σ

u


Lq [−am ,am ]

‖ f u‖p

≤ C (mT (am))
1
3

∫ asm

−asm

v(µ−λ/2)p(x)dx

 1
p
∫ am

−am

v(λ/2−µ)q(x)dx

 1
q

‖ f u‖p

≤ C m1/3T (am)1/3+λ/2−µ
‖ f u‖p, (37)

since T (am) ∼ (1 − a2
sm)−1.

Now, consider the term I2. By using (29) and (33), and then inequality (14), since T (am) ∼

(1 − a2
sm)−1 and µ − λ/2 < 0, we get

I2 ≤ Cm1/6T (am)1/6+λ/2−µ
H


pm−1(ϕ

2σ)ϕ2 f σ


L p[−asm ,asm ]



G. Mastroianni, I. Notarangelo / Journal of Approximation Theory 163 (2011) 623–639 635

≤ Cm1/6T (am)1/6+λ/2−µ
pm−1(ϕ

2σ)ϕ2 f σ


p

≤ Cm1/6T (am)1/6+λ/2−µ
pm−1(ϕ

2σ)ϕ2 σ

u


L∞[−am ,am ]

‖ f u‖p

≤ Cm1/3T (am)1/3+λ/2−µ
‖ f u‖p. (38)

Finally, in order to estimate the term I3, we can proceed as was done for I2. We obtain

I3 ≤ Cm1/3T (am)1/3+λ/2−µ+1
‖ f u‖p. (39)

Combining (37)–(39) in (36), and taking into account that T (am) ∼ (1 − am)−1
∼ m

1
2α+1 , our

claim follows for µ − λ/2 < 0. We omit the proof for µ − λ/2 ≥ 0, which is similar to the
previous one. �

The next proposition can be useful in different contexts.

Proposition 4.2. Let 0 < a < 1, u be the weight in (13), with parameter α > 0, and
1 ≤ p ≤ ∞. There exists an integer M ≥ 1 such that, for any function f ∈ L p

u , we have

‖ f u‖L p{|x |≥a} ≤ C


EM ( f )u,p + e−AMT (aM )−1/2
‖ f u‖p


, (40)

where C, A are positive constants independent of M and f , and MT (aM )−1/2
∼ M

2α
2α+1 .

To complete Proposition 4.2, if fθ = χθ f , with χθ the characteristic function of
[−aθm(

√
σ), aθm(

√
σ)], where σ is the weight in (11), for m sufficiently large we can

estimate the L p
u -distance between f and fθ by (40) with M =


θm

2(θ+1)


, taking into account

Proposition 2.1.

Proof of Proposition 4.2. Let PM ∈ PM be the polynomial of best approximation of f in L p
u -

metric. Since for any a ∈ (0, 1) we can choose M such that as M ≤ a, for some s > 1. Then, by
(6), we get

‖ f u‖L p{|x |≥a} ≤ ‖( f − PM ) u‖L p{|x |≥a} + ‖PM u‖L p{|x |≥a}

≤ EM ( f )u,p + ‖PM u‖L p{|x |≥as M }

≤ EM ( f )u,p + Ce−AMT (aM )−1/2
‖PM u‖p,

from which our claim follows. �

Proof of Theorem 3.2. Let us first prove that assumptions (18) imply inequality (17). By using
the Pollard formula (27), with αm ∼ 1 ∼ βm , we have

‖χθ Sm (σ, fθ ) u‖p ≤ C

‖χθ pm(σ )u‖p ‖pm(σ ) fθσ‖1

+

χθ pm(σ )H


pm−1(ϕ
2σ)ϕ2 fθσ


u


p

+

χθ pm−1(ϕ
2σ)ϕ2 H (pm(σ ) fθσ) u


p


=: C {A1 + A2 + A3} . (41)
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By using (31), with Cθ = O

log−1/4(1/θ)


, and the Hölder inequality, with 1/p + 1/q = 1,

the first term can be estimated as

A1 ≤ Cθ

 χθv
µ

vλϕ


p

‖ fθ u‖p

χθ pm(σ )
σ

u


q

≤ C 2
θ

 vµ
vλϕ


p

‖ fθ u‖p

 1
vµ


vλ

ϕ


q

≤ C 2
θ ‖ fθ u‖p, (42)

recalling (18).
Concerning the term A2, we note that, holding (18), we can use (33) with the weight

vµ−λ/2−1/4 and, by (31), we obtain

A2 ≤ Cθ

 vµ
vλϕ

H


pm−1(ϕ
2σ)ϕ2 fθσ


p

≤ Cθ

 χθv
µ

vλϕ
pm−1(ϕ

2σ)ϕ2 f σ


p

≤ C 2
θ ‖ fθ u‖p. (43)

(We have used again (31) with σ replaced by ϕ2σ .)
For the term A3, proceeding as done for A2, using (33) with the weight vµ−λ/2+1/4, we get

A3 ≤ C 2
θ ‖ fθ u‖p, (44)

and combining (42)–(44) in (41), inequality (17) follows.
Now we prove that (17) implies (18). From (17), we deduce

‖χθ Sm+1 (σ, fθ ) u‖p ≤ Cθ‖ fθ u‖p, Cθ (m, f ) ≠ Cθ = O


log−1/2(1/θ)


,

where χθ = χθ,m is the characteristic function of [−aθm, aθm], aθm = aθm(
√

σ), and fθ = χθ f .
Hence we getχθ


Sm+1 (σ, fθ ) − Sm (σ, fθ )


u


p ≤ 2Cθ‖ fθ u‖p,

i.e.

‖pm (σ ) u‖L p[−aθm ,aθm ]

∫ aθm

−aθm

pm(σ, t) f (t)σ (t) dt

 ≤ 2Cθ‖ fθ u‖p,

and then

sup
m

‖pm (σ ) u‖L p[−aθm ,aθm ]

pm (σ )
σ

u


Lq [−aθm ,aθm ]

≤ 2Cθ ,

with 1/p + 1/q = 1.
Now, let xk, k = 1, . . . , m, be the zeros of pm(σ ) and 1xk = xk+1 − xk . If x ∈

[−aθm, aθm] ∩ Ik , where

Ik =

[
xk +

1xk

8
, xk+1 −

∆(xk)

8

]
,
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since 1xk ∼ ϕ(xk)/m and (1 − x2) ∼ (1 − x2
k ) ∼ (a2

m − x2
k ), from [2, formula (12.7), p. 134],

i.e.

|pm(σ, x)|


σ(x) ∼
m

1xk
|x − xk |

a2
m − x2

k

−1/4
,

we deduce

|pm(σ, x)|


σ(x)ϕ(x) ∼ 1, x ∈ Ik ∩ [−aθm, aθm].

Hence, denoting by Im =


k Ik ∩ [−aθm, aθm] we get

‖pm (σ ) u‖
p
L p[−aθm ,aθm ]

≥ C
∫

[−aθm ,aθm ]\Im

 u(x)
√

σ(x)ϕ(x)

p

dx

≥ C
∫

[−aθm ,aθm ]

 u(x)
√

σ(x)ϕ(x)

p

dx −

∫
Im

 u(x)
√

σ(x)ϕ(x)

p

dx


=: C {S1 − S2} .

Since the measure of the subset Im is less than C/m, by the absolute continuity of the integral,
for m sufficiently large, S2 ≤

1
2 S1. Whence we get

sup
m

‖pm (σ ) u‖
p
L p[−aθm ,aθm ]

≥ C sup
m

∫ aθm

−aθm

 u(x)
√

σ(x)ϕ(x)

p

dx

= C
∫ 1

−1

 u(x)
√

σ(x)ϕ(x)

p

dx .

So we obtain u
√

σϕ
∈ L p. Analogously

sup
m

pm (σ )
σ

u

q

Lq [−aθm ,aθm ]

≥ C sup
m

∫ aθm

−aθm

 1
u(x)


σ(x)

ϕ(x)


q

dx

= C
∫ 1

−1

 1
u(x)


σ(x)

ϕ(x)


q

dx,

whence 1
u


σ
ϕ

∈ Lq .

Finally, to prove inequality (19), let PM ∈ PM the polynomial of best approximation of f in
L p

u -metric. By inequality (17), Lemma 4.1 and Proposition 4.2, for m sufficiently large, we have

‖[ f − χθ Sm(σ, fθ )] u‖p ≤ ‖( f − PM ) u‖p + ‖χθ Sm (σ, fθ − χθ PM ) u‖p

+ ‖Sm (σ, PM − χθ PM ) u‖p + ‖(PM − χθ PM ) u‖p

≤ Cθ EM ( f )u,p + C(mν
+ 1) ‖(PM − χθ PM ) u‖p

≤ Cθ


EM ( f )u,p + e−AMT (aM )−1/2

‖PM u‖p


≤ Cθ


EM ( f )u,p + e−AMT (aM )−1/2

‖ f u‖p


,

which was our claim, taking into account T (aM ) ∼ (1 − aM )−1
∼ M

1
α+1/2 . �

Proof of Theorem 3.3. To prove that, for 1 < p < 4, assumptions (18) imply inequality (20),
we can proceed similarly to the proof of Theorem 3.2, but with some more details. First of all,
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since u = vµ−λ/2√σ , we use inequality (14) with asm = asm(
√

σ), s > 1. Then, by the Pollard
formula, we get

‖Sm (σ, fθ ) u‖p ≤ ‖Sm (σ, fθ ) u‖L p[−asm ,asm ]

≤ C

‖pm(σ )u‖L p[−asm ,asm ] ‖pm(σ ) fθσ‖1

+

pm(σ )H


pm−1(ϕ
2σ)ϕ2 fθσ


u


L p[−asm ,asm ]

+

pm−1(ϕ
2σ)ϕ2 H (pm(σ ) fθσ) u


L p[−asm ,asm ]


=: C {B1 + B2 + B3} . (45)

For the term B1, by (28), (31) and the Hölder inequality, with 1/p + 1/q = 1, we have

B1 ≤ C

 vµ
vλ


|a2
m − ·2 |


L p[−asm ,asm ]

‖ fθ u‖p

χθ pm(σ )
σ

u


q

≤ Cθ

 vµ
vλ


|a2
m − ·2 |


L p[−asm ,asm ]

‖ fθ u‖p

 1
vµ


vλ

ϕ


q

,

with Cθ = O

log−1/4(1/θ)


. Now, consider the first norm at the right-hand side. For µ − λ/2 ≥

0, the assumption p < 4 implies that this norm is bounded. While, for µ − λ/2 < 0, we havevµ−λ/2
|a2

m − ·
2
|
−1/4


L p[−asm ,asm ]

≤

vµ−λ/2
|a2

m − ·
2
|
−1/4


L p[−am ,am ]

+

vµ−λ/2
|a2

m − ·
2
|
−1/4


L p{am<|x |<asm }

≤

 |a2
m − ·

2
|
µ−λ/2−1/4


L p[−am ,am ]

+

 |a2
m − ·

2
|
µ−λ/2−1/4


L p{am<|x |<asm }

,

since, for am < |x | < asm ,

1 − x2
≥ 1 − a2

sm ∼ T (asm)−1
∼ a2

sm − a2
m ≥ C|a2

m − x2
|.

Hence, recalling also (21), it follows that

B1 ≤ Cθ‖ fθ u‖p, Cθ = O


log−1/4(1/θ)


. (46)

In order to estimate the term B2, in analogy with (43), we use the boundedness of the Hilbert
transform related to the interval [−asm, asm] with the weight vµ−λ/2

|am − ·
2
|
−1/4. Note that

the assumptions (21) and 1 < p < 4 imply vµ−λ/2
|am − ·

2
|
−1/4

∈ Ap[−asm, asm]. In fact,
we have already seen that vµ−λ/2

|am − ·
2
|
−1/4

∈ L p
[−asm, asm], and similar arguments apply

to show that vλ/2−µ
|am − ·

2
|
1/4

∈ Lq
[−asm, asm]. Hence, using (33), by (28) and (31), we

obtain

B2 ≤ C

 vµ
vλ


|a2
m − ·2 |

H


pm−1(ϕ
2σ)ϕ2 fθσ


L p[−asm ,asm ]
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≤ C

 χθv
µ

vλ


|a2
m − ·2 |

pm−1(ϕ
2σ)ϕ2 f σ


L p[−asm ,asm ]

(47)

≤ Cθ‖ fθ u‖p, (48)

with Cθ = O

log−1/4(1/θ)


.

Proceeding as above, distinguishing the two cases µ−λ/2+1/2 ≥ 0 and µ−λ/2+1/2 < 0,
one can show that assumptions (21) and 1 < p < 4 imply vµ−λ/2+1/2

|am − ·
2
|
−1/4

∈

Ap[−asm, asm] and then the boundedness (33) of the Hilbert transform in [−asm, asm] holds
with the weight vµ−λ/2+1/2

|am − ·
2
|
−1/4. Hence, by (28) and (31), we get

B3 ≤ Cθ‖ fθ u‖p, Cθ = O


log−1/4(1/θ)


, (49)

and, combining this estimate with (46), (48) and (45), inequality (20) follows.
We omit the proofs of (21) and (22), since they follow from (20) proceeding as was done in

the proofs of (18) and (19), respectively. �
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