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Abstract

In order to approximate functions defined on (—1, 1) and having exponential singularities at the
endpoints of the interval, we study the behavior of some modified Fourier Sums in an orthonormal system
related to exponential weights. We give necessary and sufficient conditions for the boundedness of the
related operators in suitable weighted LP”-spaces, with 1 < p < 0o. Then, in these spaces, these processes
converge with the order of the best polynomial approximation.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Letting w(x) = e_(l_)‘z)_a, a > 0,x € (—1,1), a Pollaczek-type weight, we denote by
{pm(w)}nen the corresponding sequence of orthonormal polynomials with positive leading
coefficients. Now, let
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m—1 1
Sw(w, £) =Y apw), =/1pk(w)fw, e))
k=0 -

be the mth Fourier sum related to a function f € L” - 1 = p < oo, ie. f is such that

Ifvwllh = J 1wl < .

Concerning the behavior of S,,(w, f) in L” —» We note that for p = 2, since the Weierstrass
theorem holds in Lf/w (see [6]), the system {p,(w)},eN is complete. While, for p # 2,

setting || S, (W), = SUp| ¢ /| ,=1 1S (w, f)ﬂnp, it is easy to prove (see Proposition 3.1)
that the uniform boundedness of || S, (w)||, implies a strong restriction on the parameter p, i.e.
p € (4/3, 4). Furthermore, the assumption p € (4/3, 4) seems to be not sufficient in order to get
Sup,,en I1Sm(w)ll, < oo (see the proof of Lemma 4.1 witho = w, u = /w and4/3 < p < 4).
This is concordant with a classical result of Nevai (see [12, Cor.14, p. 155]), who proved that if

R
wkx) =e Vi , then sup,, .y [|1Sm (W) ||, < oo implies p = 2. Therefore, at the moment only
the functions belonging to Lf/E can be represented by a Fourier series in the system { p,, (w)},,eN-

On the other hand, the polynomial approximation of functions defined on (—1, 1) and
increasing exponentially at the endpoints £1 is required in various contexts, for instance in
numerical quadrature and derivation or in the numerical treatment of functional equations. To
overcome this gap, we are going to modify the Fourier operator S,, (w), in order to obtain another
operator which has a wider application. To this aim we introduce the weights

o) = v (O w(x) = (1 — x2)re= 1=
and

u(x) = U”(x)\/m =(1— xz)ue_%(l—xz)""

with @ > 0 and A, u > 0. We are going to prove some properties of these weights and, also
applying an idea used in [5,8], for any function f € Lg , we define the sum S, (o, fB), where
fn is the function f, “truncated” in B = B,, (i.e. fg(x) = 0if x € B) and B is a suitable subset
of the Mhaskar—Saff interval. Under necessary and sufficient assumptions, we are going to show
that, for a wide class of functions, the sequence

{xBSn (o, fB)}meN s

with x5 denoting the characteristic function of B, converges to f € LY, 1 < p < oo, with the
order of the best polynomial approximation.

2. Preliminary results

Let us first introduce some notation. In the sequel C will stand for a positive constant that
could assume different values in each formula and we shall write C # C(a, b,...) when
C is independent of a, b, . ... Furthermore A ~ B will mean that if A and B are positive
quantities depending on some parameters, then there exists a positive constant C independent
of these parameters such that (A/B)*! < C. Moreover, we denote by IP,, the set of all algebraic
polynomials of degree at most m.

With g a weight function in (—1, 1), we denote by {p;; (0) };neN the corresponding sequence of
orthonormal polynomials with leading coefficients y,, (0) > 0. Let us define a class of weights.
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Following Levin and Lubinsky in [2, p. 5], we will say that the weight o(x) = e~ @ x| < 1,
belongs to the class WV, and write ¢ € W, if and only if the function g : (—1, 1) — R fulfills the
following conditions:
(1) ¢ is even and twice continuously differentiable, with lim,_,| g(x) = +00;
(i) ¢'(x) = 0,4"(x) = 0 forx € (0, 1);
(iii) the function
xq" (x)
q'(x)
is increasing in [0, 1) with 7(0) > 1;

(iv) for some A € (0, 1), the function 7T satisfies T (x) ~ 2/((;?)) for x € [A, 1).

The Mhaskar—Rahmanov-Saff number a,, = a,,(0), related to the weight o, is implicitly
defined as the positive root of the equation

T(x)=1+

2 1
m= —/ amtq’ (amt) ()
T Jo

dr
Vi—12
Also the equivalence (see [4])

q'(am) ~ m/T (am) 3)

can lead to an approximation of ay,.
By a slight abuse of notation, we denote by L°° the space of all continuous function f
on (=1, 1), with the norm | fllooc = supye—1,1)|f(x)]. Then, with regards to the number

am = ayu(0), where g € W, for any polynomial P,, € P,,, we have

I Pnollco = 1Pl L[—ap.am]- S

Moreover, for 1 < p < oo, the restricted range inequality

”PmQ”p =< C”PmQ”LP[—am,am] (5)
and also the inequality
_ —-1/2
1PnellLr(xizam) < Ce™ @ ProllLr-apan, s > 1, 6)

hold with C and A positive constants independent of P, (see [2, Th. 1.7, p. 12] and [4, Lemma
2.3]).

The following remark is sometimes useful. Letting o be a weight belonging to WV, consider
another weight o(x) = v¥ (x)o(x), with v¥ (x) = (1 — x2)Y,y > 0. Denote by a, = a,,(0) and
am = an (o) the related Mhaskar—Rahmanov—Saff numbers. If the parameter y of o is a positive
integer number, then, using the equality (4), for any polynomial P,, € P,,, we have

| Pmolloc = 1Pnv” 0lloc = [1Pnv” 0l Loo[=ay 2y ami2y1- (7
In the general case y € R, the following proposition holds.

Proposition 2.1. Let 1 < p < 00,0 € W and v (x) = (1 — x2)Y, y > 0. Then, for any
P, € P, we have

|Pavvel, =C el , "’

2am]

where a, = am(0) and C is independent of m and Py,.
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In the particular case o(x) = t(x) = (1 — xz)”ef(lfxz)fa, v, > 0, setting vV (x) =
(1 —x>77,y > 0, forany P, € P, we get

[Pno™ 7|, < CUPnv™ 7] Lo aond ©)
for some s > 1, where ag;, = agy(t) and C is independent of m and P,.

Proof. We first prove inequality (8). By the restricted range inequality (5), with a,, = a,,(0), we
have

1

(/ i 1|Pm<x)vy<x)g<x)|l’dx)p

IA

1
v (am) (/ . |Pm(x)g(x)|1’dx)’

1
Co” (am) ( / |Pm<x>g<x)|f’dx)"

—ap

IA

<c (/ |Pm(x>@(x>|"dx>”,

and (8) follows, since v” is decreasing on (0, 1).
Now, in order to prove (9), since

H Pnv77t ”p = ” Ppv7t ” LP[—agm,asm] + ” Ppv’T “LP{|x\Zam} s dsm = Asm (7),
it suffices to show that the second norm at the right-hand side is bounded by
C || va’VrHLp[_asm’asm] ;s > 1.

Let us assume y > (a+v)(1—1/s). Then the function v™7t ,whichisevenon (—1, 1),is
nonincreasing on [ag,,, 1) for a sufficiently large m. Hence, using the restricted range inequality
(5), with a,, (t1/%) = ag, (1), we get

1-1/s

P.ov~ = ||P vfyl_l/stlfl/s
m m

14
T
||Lp{|x|2“.rm} LP{|x|>agm}

v’ (asm)fl_l/s (asm) mel/s

IA

LP{|x|>agm}

IA

Cv_y(asm)fl_l/s(asm) H mel/s

LP[—asm,asm] '
Now, taking into account that, for m sufficiently large, the function v=7 ¢! =1/
R attains its absolute minimum at ay,,, we have

C=asm, asm] —

| Pv CHva_th_l/‘le/s

Y

T <
P = s

|| LP{|x|=asm} LP[—agy,asm]

which was our claim.

We omit the proof for y < (« + v)(1 — 1/s), which is simpler than the previous case, being
v~Y71=1/$ a nonincreasing function on (0, 1). [

Let us consider the weights o € W and @20, 9*(x) = 1 — x2, and the corresponding systems
{Pm(0)}men and {pm (9%0)}men of orthonormal polynomials with positive leading coefficients
(¥ (©)}men and {¥,, (©*0)}men, respectively. The following proposition is useful in different
contexts, concerning Lagrange interpolation and Fourier sums.
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Proposition 2.2. If the weights o and ¢*o belong to the class W, then the equivalence

Ym(Q)
Ym+1(@%0)

holds with the constants in “ ~

(10)

s

" independent of m.

We observe that equivalence (10) is well-known if o satisfies the Szegd condition, i.e.

/ _]1 I:J/géx; dx > —oo, but in general the weights of the class W violate this condition.

1—x
Moreover, we remark that Proposition 2.2 holds also with ¢?(x) = 1 — x? replaced by
VY (x) = (1—x2)7, where y > 01is an integer number or with y,41 ((ng) replaced by y,—1 ((ng)
(see the proof in Section 4).
Let us introduce now the weight

o(x) = v @)wx) = (1 —x>) e <1—12)~, (11)

with x| < I,a > 0,4 > 0 and the corresponding orthonormal system {p (6)}nen. It is well-
known that the weight w belongs to the class ¥V, while ¢ can be considered as a logarithmic
perturbation of w.

Proposition 2.3. The weight o, defined by (11), belongs to the class W and Sulfills the further
condition:

)C>l

s 12

for some A > 2 and for x close enough to 1.

From Propositions 2.2 and 2.3 it follows that ¢’c € W and then

Ym(0) -
Ym+1 (QDZO')

For a function f € L},, ie. f_ll |fo| < oo, we consider the mth Fourier sum in the system
{pm (0)}meN’ given by

1

m—1
Su(a, /)= cpi(@), =/1pk<a>fo.
k=0

In Section 3 we will state some results concerning the behavior of S, (o, f) in some suitable
function spaces. To this aim, we introduce the weight function

u(x) = v*(x)vwkx) = (1 — xz)“e_z(l—lxz)"‘, (13)

where # > 0, > Oand |x| < 1,and denote by L/, 1 < p < oo, the collection of all measurable
functions f such that

1 1/p
Iflle =1l fullp, = (/l|f(x)u(x)|pdx) < oo0.
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Letting o and u be the weights in (11) and (13), since u = v*~*/2, /&, from Proposition 2.1
we deduce

| Pt Loicaganr - $> 1 i p—2/2<0
< smsYsm
| Pull, <C {”Pmu””[_am’am] ., otherwise (4

where a,, = a,,(,/0) satisfies

1
1 —ay ~m oF172, (15)

by (3).
3. Main results

First of all we prove the following

Proposition 3.1. With the previous notation, if

I1Sm(w, Hvwll, < ClfVwllp, C#Clm, f), (16)
then p € (4/3,4).
Proof. The bound (16) implies

1 1
sup [ ()], [pm)vul, <c S o=t

Since w € W, the estimates
1, 1<r <4,
||pm(w)ﬁ||r ) dogm)'/4, Fa
(mT(am))%(%_'l‘) L 4<r<oo,

1
hold (see [2, Th. 1.8, p. 12]), where a,, = a,, (v/w) and T (a,,) ~ (1 — arzn)_1 ~ metl/2 by (12)
and (15). The proposition is completely proved. [

Therefore, as already mentioned in the Section 1, taking also into account the mentioned
result of Nevai, the polynomial approximation by means of the sum S, (w, f) concerns only a
restricted class of functions.

To overcome this drawback, we are going to modify the operator S, (w). In Section 2, we have
introduced the weight o = v*w, the related orthonormal system { p,, (') },nen., and, for a function
f e L},, the mth Fourier sum S, (o, f). Now, let 8 € (0, 1) and x¢9 = x¢,m be the characteristic
function of the interval [—agm, dgm], am = am(/0). Setting fy = xof, we consider the
sequence { x9S (0, fo)},en in the function space L%, where u(x) = v*\/w, u > 0.

Denoting by Ey, (f)u,p = infpep,, [I(f — P)ull, the error of best polynomial approximation
in LY, we can state the following theorems.

Theorem 3.2. Let | < p < o0o. Then, for any function f € LY and fixed 6 € (0, 1), the bound
o Sm (o, fo)ullp < Coll foullp, (17)
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with Cy # Co(m, f) and Co = O (logfl/z(l/é)), holds if and only if

" 1o 11
Y c1? and — T ert, 4=l (18)
Vvt vy g P q

Moreover, under the assumption (18), we have

ILF = xoSuto. fodlul, < Co [ EnFrup+e M 1 full, ) (19)
where M = L%J v = 520, A # AM, f),Calm, f) # Ca = O (log™"/2(1/6)).

If we consider the sequence {S,, (0, fo)},,en 1N L% then Theorem 3.2 holds with 1 < p < 4,
namely we state

Theorem 3.3. With the notation of Theorem 3.2, forany f € LE, 1 < p < 4, and 6 € (0, 1),
we have

1S (o, fo)ullp < Coll foullp, (20)
with Co(m, f) # Co = O (log="/*(1/6)), if and only if

1 1 A3 1

- L2 21
N T S 2D

Moreover, the conditions (18) imply the estimate

ILf = Sw(o. fo)lull, =< Co { Ert(Plup +e~* I full,p} 22)
where M and y are as in Theorem 3.2, A # A(M, f), Co # Co(m, f) and Cy is as above.

Therefore, under the assumptions on the weights and the parameter p, the two proposed
sequences converge in L/ to the function f with the same order of the best polynomial
approximation. The parameter 0 is crucial for the convergence and it cannot assume the value 1;
in other words, the “truncation of the function” seems to be essential.

We also remark that, denoting by S,, (v*, f) the mth Fourier sum with respect to the Jacobi
weight v*(x) = (1 — x2)*, for any f € Lﬁﬂ, it is well-known (see [13,14,9]) that the bound

IS W, V™l < Cllfo™ll,,  C#Cm, f),

is equivalent to the conditions

v# v 1 vt 1 1
el? and —,— |— € L9, —+—-=1,
Vvte vl ook e P q
which are the assumption (18), if we exclude the condition l'j—; € LY (see the proof of

Theorem 3.2). Then, the behavior of the sequence {xgSn (o, fo)},en IN LY is reduced to that
of the sequence {S,,(v*, f)} _\inLJ..
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4. Proofs
Proof of Proposition22 Having set o(x) = e 9™ we have o(x) = ¢@*(x¥)o(x) =
(q(x)—HOg ) Since g, 0 € W, the following asymptotic estimates hold for m sufficiently

large (see [3, p. 25])

ym(e>=#(i>m+l/2exp 2" 49 4} 11001
V2 \am 7o JaZ —s?

and

_ 1 2\ 2 [an+1 q(s) + log —
Vm+1(Q)=—<_ ) exp —/0 —F—————ds | (1 +0o(1))

V2w \dm+1 s =2 2
aerl S

with @, = au (/@) and @p41 = am+1(1/0). Taking into account that, by (7), am+1(v/0) =
am2(0) = arm44(0) = am+2(\/§) = ap42 and Setting

ant2 log s2
Cm = €xp /

v m+2

it follows that

ex i ds)
Vm(@) _ (am+2>m+l/2 am+2i p( 0 a2 73 (1 +0(1))

Ym+1(0) am 2 cp

exp %f(;lerZ a;](s)isz ds

m+-2
m+1/2 1
— (a’”+2> Gmt2 " R (14 0(1)).

am 2 ¢

Concerning R,,, we have:

R exp( 2 fl q(amy28) — q(ams) dS)
m = -
T Jo V1 —s2

- /lq’<rs)s(am+2—am) ds
A N T ’

with a,;,s < Tg < a42s. Since ¢’ is an increasing function, we get

am am+2

(am+2 - 1) (ams)q/(ams) = q/(":s)s(am+2 —apy) < (1 - = > (am+25)q/(am+2s)

and then, by (2), we obtain

e—(l— ) -+2) —(m2 1 )m

<R, =<e (am

Since the following estimates hold (see [3, formula (3.5.3), p. 81] and [2, p. 27])

T R log (1+ 2 0 (23)
- - 5 c >0,
12 T(am) B\ T
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2
(am_ﬂ_gzm,

am T(am+2)
and
2 2 2 2
——— <log|l+—)<—,
m m m m
we deduce

2c I S
e Tam) < R, <e Tlmi2)

Being 1/ T (a,;) = o(1) for m — oo, it follows that R,, ~ 1.
Let us now consider (a2 /ay,)™ /2. By (23)—(25), we have
1 < Am+2 C

= <l4+-——7
mT (am+2) am mT (a;)

631

(24)

(25)

and then (cz,,1+2/am)"’+l/2 ~ 1, taking into account again that 1/ T (a;;,42) ~ 1 — a2 = o(1)

form — oo.
Finally, we get

1
1/2 a2 log 1 L 1log i—m—5
/ L ds < f g5 = / B
0 s2 0 V1-—1s?

1 log —
</ —]_SQ ds
0 1 —s2

and then ¢, ~ 1. Since a,, ~ 1, the proof is completed.

We observe that if y,,.1(0) is replaced by ¥,,—1(2), the proof is simpler, since a,,—1(/0) =

am (/@) by (7).

Finally, we remark that the proof still works with 2o replaced by v o, where v¥ (x) =
(1 — x?y, y > 0 is an integer number, if we take into account that, by (7), a;+1(/vY0) =

amty+1(/0). U

Proof of Proposition 2.3. Let us set O(x) = (1 — x>)™%, Q(x) =

o(x) =e 2™ Since
, 2Ax o -
0'() = = (1+70w)
and

0" (x ) =1

(1 —x2)?2

we get that Q is an even function with Q" and Q” positive on (0, 1) and lim,_, ;- Q(x) =

Moreover, calculation leads to

x Q" (x) 2x2 2 0(x)
T =1 =2 14+ L
W= T 1—x2< i +%Q(X))

2
2 (145 00) + o (14 2 o),

Q(x) + Alog 1_17 and

+00.
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whence T is increasing on [0, 1), with T(0) = 2 and

5. xe D),

T(x) ~ 5

where the constants in “~” are independent of x. In particular, if x € [+ 1), since

V402 /0ta)’

o? 5
<1 + TOoW ) > (1 + %), we conclude that

1+40(x)
2(0+/0+@)x®  2J/1+a2/(+a)

T
*x) > 1 —x2 - 1 —x2

whence (12) follows.
Finally, for x € [1/2, 1), we have

Q' (x) 1 [ZA(H%)xQ(x) 1} A
= + 5| =

0(x) 1—x2 0(x) *og

Since
Ao
I+
we deduce
g 1 TG). x>
o) 1—x?
which completes the proof. [J

SA<20+a),

1
2’

We recall that, if f belongs to L},, its mth Fourier sum Sy, (o, f) is defined as

m—1

1
Sm(o, f,x) = Z ci(o, fHpk(o,x) = / 1 Kp(o,x,t)f(t)o(t)de,

k=0

where ci (o, f) = fil pr(o,t) f(t)o(t) dt is the kth Fourier coefficient of f in the system
{Pm (0)}mEN and

m—1
Kn(0,x,1) = ) pi(0, x)pi(o, 1)

k=0
_ Ym=1(0) Pm (0, X)Pm—1(0, 1) = Pm-1(0, X) Pm (0, 1) 26)
Ym(0) x —1t

is the Christoffel-Darboux kernel. By using the Pollard formula, this kernel can be written as
Km(av X, t) = —UmPm (67 x)pm (Ua t)

2 2 _ 2 2
+ B P (0, X) pm—1(p-0, 1)@ (tl _I;m—l(‘P 0, X)) (X) pm (0, 1) 27

where (pz(t) =1-12

oy = (1 + Vm+1<¢zo)yml(¢zo>)‘l Y 1(§P0)
" Y (0)? Y (0)
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and

—1
)/m+1(<p20)7/m—1(¢20)> Yim+1(@20) Ym—1(9%0)

=1
P ( * Vm(g)z Vm(a)z

By Proposition 2.2 we have y,—1(¢0%0)/Ym(0) ~ 1 ~ Ymi1(9>0)/ym(c) and then the terms
 and By, fulfill @y, ~ 1~ B
Concerning the polynomials { p,, (0)},, <N, the equivalences

m (@, )30 ()] lag, — x| ~ 1 28
P (0, X)v 0o (X)y/ la, — x*| (28)
and

sup | p (@, )/ ()] ~ (T (@), 29)

xe(=1,1)

have been proved in [2, formulae (1.38) and (1.39), p. 10], where a,, = an, (ﬁ) and T (a;,) ~

(1 — ay)~! ~ m# 172 by Proposition 2.3 and (15).
Let 6 € (0, 1). Then for any x € [—ag,, agmn] We have
Co(l —x?) <a? —x> <1—x?% (30)
where the constant Cy depends only on 6. In fact, by (24), we get
1 —x2 1 —d? (1 —a2)T (am)

< <14 —-—" <
T a2 —x% " s log(1/6)

aom

c
<1 _
=1+ log(1/6)

where c is a constant independent of 6.
Hence, by (28) and (30), we deduce the inequality

|pm (0. )| Vo ()p(x) < Co. x| < agm. 31)
Above,
1 1/4
Co=C (1 + m) (32)

with C independent of m and 6.
In the sequel, we will denote by H(f) the Hilbert transform of a function f in (—1, 1), i.e.
the Cauchy principal value integral

1
H(f,x)zf AU dx, xe(=1,1).
-1

r—x
It is well-known that, letting v be a weight function and 1 < p < oo, the bound

ROVl = Cllfollp, € #C, (33)
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holds if and only if v € A,(—1, 1), (see [10,1,11]), namely for any interval / C (-1, 1) and
with 1 < p < oo, v satisfies

1 I/p /1 1/q 1 1
<— f vP(x) dx> <— / v 4(x) dx) <C#C), —4+-=1, (34)
1] J; 1] J; P q

where |I| is the measure of /. If v is a generalized Jacobi weight of the form
N
H"x—xl|ylv Vi>_1,x1xi€[_171]7
i=1

the conditions v € LP(—1,1) and v=' € LY(—1,1),1/p + 1/q = 1, imply v € Ap(—=1,1). As
a consequence, for v(x) = (1 — x2)v,if L cv<1-—1Llthenve Ap(—1,1) (see [7]).
Moreover, in the proofs, the following lemma will be useful.

Lemma 4.1. Let o and u be the weights in (11) and (13). Then for any f € L, 1 < p < oo,
we have

I1Sm (o, full, < Cm"| fullp, (35)
for some v > 0, where C is independent of m and f.

Proof. Taking into account that u = v*~*/2, /o, let us first assume u — A/2 < 0. So, using the
restricted range inequality (14), with ay,, = agn(V/0), s > 1, we get

|50 @ 1y HP < sn @0, o2 0e

Then, using the Pollard formula (27) and the restricted range inequality (14), with ag, =
asm(\/0), s > 1, we have

LP[—asm,asm]

1 @, Srully = C{IPm (@l ri-agraunt | Pn (@) fo

+ | pn@H (pu-1(Po)e2f o) u

LP[—asm,asm]

+ | 1 @20 H (o) o) u I

:C{LH + L+ I3}, (36)

For the first term, using the Holder inequality, with 1/p 4+ 1/g = 1, and inequality (14), by
(29), we obtain

o
Iy = Cllpn@ulLri-aum.an | P (@)= I fully
u"Li[—ay,am
1 1
Ll NG N Y ‘
< C(mT (am))? V2P (x)dx V2 (ydx ) fullp
—dsm —dm
< Cm'BT (@) P21 full,, (37)

since T (a,;) ~ (1 — afm)_l.
Now, consider the term /. By using (29) and (33), and then inequality (14), since T (a,,) ~
(1—a?,) Vand u — 1/2 < 0, we get

12 = T (@) 120 1t (pr (60 f o )

LP[—asm,asm]
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1/6 1/6+A/2— 2 2
<Cm / T (am) /641/ 2 HPm—l(SD o) fJH

p
1/6 1/64+1/2— 2 29
< Cm" o7 (@) VT | g1 (P )2 |

]”f””p

< Cm'PT (@)1 full . (38)

[—am.am

Finally, in order to estimate the term /3, we can proceed as was done for I;. We obtain
I3 < Cm'"PT (@) P20 full,. (39)

Combining (37)-(39) in (36), and taking into account that 7' (a;) ~ (1 — am)~t ~ mTlJrl our
claim follows for © — A/2 < 0. We omit the proof for © — A/2 > 0, which is similar to the
previous one. [

The next proposition can be useful in different contexts.

Proposition 4.2. Let 0 < a < 1,u be the weight in (13), with parameter @« > 0, and
1 < p < oc. There exists an integer M > 1 such that, for any function f € LY, we have

_ —1/2
L fullLoisiza) < C{En (P p M@0 pu ) (40)

2a
where C, A are positive constants independent of M and f, and MT (ap)~'/? ~ M2+,

To complete Proposition 4.2, if fy = xpf, with xg the characteristic function of
[—aom(5/0), agm(x/o)], where o is the weight in (11), for m sufficiently large we can

estimate the L% -distance between f and f, by (40) with M = L%J, taking into account
Proposition 2.1.

Proof of Proposition 4.2. Let Py; € Py, be the polynomial of best approximation of f in L%-
metric. Since for any a € (0, 1) we can choose M such that a5y < a, for some s > 1. Then, by
(6), we get

ICF = Pa) ull Lo gx)za) + 1PMullLrfxi=a)

Ev(u,p + 1 PrullLr(x|>a;m)

_ —1/2
< Ep(f)u.p + CeAMT@O™ 5Py,

I fullrqxi=a) <
=

from which our claim follows. [

Proof of Theorem 3.2. Let us first prove that assumptions (18) imply inequality (17). By using
the Pollard formula (27), with a;; ~ 1 ~ B,,, we have

16 @, fo)ull, < C{lxopm(@ully (@) foo

+ wam(o)H <Pm—1(§020)¢72f9(7) ull

+ HXGmel (@20’)(/’27_{ (Pm(0) foo) u Hp}

:C{A] + Ay + A3} (41)



636 G. Mastroianni, 1. Notarangelo / Journal of Approximation Theory 163 (2011) 623-639

By using (31), with Cg = O (log~"/#(1/6)), and the Holder inequality, with 1/p + 1/q = 1,
the first term can be estimated as

Xov*

N »

A <Cy

ouly [xopm@) |

- B R 1,/”A
= ou i
e, Y e
q
< C2ll foull p, (42)

recalling (18).
Concerning the term A;, we note that, holding (18), we can use (33) with the weight
v#~4/2=1/% and, by (31), we obtain

vﬂ
Ay < Cp H ( pm—1 (9% foo
e )
< Cy M17;4171(@20)(/’2]”0
N0 »
< C3ll foull . (43)

(We have used again (31) with o replaced by (pza.)
For the term A3, proceeding as done for A, using (33) with the weight v*~*/2+1/4 we get

Az < C3ll foullp, (44)

and combining (42)—(44) in (41), inequality (17) follows.
Now we prove that (17) implies (18). From (17), we deduce

1X6 St (@ fo)ull, = Coll foullp, Calm, f) #Ca = O (log™2(1/0))

where xg9 = x¢.m is the characteristic function of [—ag, agm], agm = apm(V/o), and fy = xo f.
Hence we get

| X0 [Sm+1 (@, fo) = Sm (0, fo)]u], < 2Coll foullp.

ie.
agm
l2m (@) ull Lr(—ag.apm] / pm(o, ) f (D)o (1) dt| < 2Cq|| foullp,
—Aaom
and then
o
sup ”Pm (0) u”LP[—aem’aHm] Pm (0) - S 2C(97
m U "L[—agm,aom]

with1/p+1/g = 1.
Now, let xx, k = 1,...,m, be the zeros of p,(0) and Axy = xp+1 — x¢. If x €
[—aom, agm] N Iy, where

Axy A(xg)
1k=[Xk+T,Xk+1— A ,
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since Axg ~ ¢(xx)/m and (1 — x2) ~ (1 —x?) ~ (a2, — x?), from [2, formula (12.7), p. 134],
i.e.

2 2
Ay — X

9

‘—1/4

m
|pm (0, X)| Vo (x) ~ A—Ix — Xkl
Xk
we deduce

|Pm(0, x)| V oX)ex)~1, x € lxN[—agm, asm]l.
Hence, denoting by Z,, = U Ix N [—agm. apm] we get

P
1P @) Ul E ooy = € LI
om-Som [—agm-aom NI | VO ()P (X)
>c{/ &”dx_/ &pdx}
B [—aom,aom] 1 V U(X)go(x) Im \Y a(x)‘P(x)

= C{S51 — S}.

Since the measure of the subset Z,, is less than C/m, by the absolute continuity of the integral,
for m sufficiently large, So < %S 1. Whence we get

” ©) ”p e /<a9m u(x) P
su o)uly, > Csu e
mp Pm LP[—agm,agm] mp —dom ’U(x)(p(x)
B C/] M(X) P
—1 [v/o(xX)p(x)
So we obtain \/% € L?. Analogously
q
aom 1
sup Hpm (0)g ! > Csup/ 1 jew)
m u W Li[—agm,aom] m J—agy, ux)\ ox)
L Joox) !
ce 'L foof
—1 [u(x) | @(x)

whence %\/g e L1,
Finally, to prove inequality (19), let Py; € Py; the polynomial of best approximation of f in

L% -metric. By inequality (17), Lemma 4.1 and Proposition 4.2, for m sufficiently large, we have

ILf = xoSm(o, f)lull, < ICF — Panull, + x0Sm (. fo — xo Pr) ul,
+ 11w (0, Pyt — xo Par) ull, + 1Pyt — xo Pa) el
< CoEm(flup+Cm* + 1) 1Py — xo Pa) ull,

_ —1/2

= Co {Em(Prup+e 7@ Py |
_ —1)2

< Co [En(Pup +e M@0 fu

1
which was our claim, taking into account 7 (ay) ~ (1 —apy)~' ~ Me+72. [0

Proof of Theorem 3.3. To prove that, for 1 < p < 4, assumptions (18) imply inequality (20),
we can proceed similarly to the proof of Theorem 3.2, but with some more details. First of all,
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since u = v*~*/2, /o, we use inequality (14) with ay,, = ay,(v/o), s > 1. Then, by the Pollard
formula, we get

150 @, o) ully < 1Sn @, fo) ] Loy
< c{Ipn@ulLri-apan 1Pn (@ foo

L Hp’" ()M (pm_1(<p2o)<p2feo) M‘

LP[—asm,asm]

+ Hpm_l(qoza)wzH (Pm (@) f90) u‘ }
LP[—asm,asm]
=: C{B| + B + B3}. (45)
For the term By, by (28), (31) and the Holder inequality, with 1/p + 1/g = 1, we have

v o
B < C| I foullp |20 pm(@) > |
o> |a2 _,2| ullq

mn LP[—asm,asm]

q

" 1 [v*
< G |——r I foully | ===
A 2 _ 2 v @
vhy/la |
m LP[—asm,asml

with Cp = O (log_l/ ‘a /9)). Now, consider the first norm at the right-hand side. For u — A/2 >
0, the assumption p < 4 implies that this norm is bounded. While, for © — 1/2 < 0, we have

Hvu—,\/zmrzn 2l

LP[—asm,asm]

< ”v“_“2|ai 2 |—1/4’

i HUM_M2|“31 2l

LP[—ap,am] LP{am <|x|<asm}
< ” |ar2n ) |M—A/2—1/4’ 4 |a31 _ 2 /214 ’
LP[—ap,am] LP{ay <|x|<asm}
since, for a,, < |x| < dgm,
1—x> l—af,n’VT(asm)_l ~a3m— ,%l ZCIa,%l—sz
Hence, recalling also (21), it follows that
Bi = Call foullp,  Co =0 (log™"(1/6)). (46)

In order to estimate the term Bs, in analogy with (43), we use the boundedness of the Hilbert
transform related to the interval [—ay,,, as,] With the weight pH—A 2|am -2 |’1/ 4 Note that
the assumptions (21) and 1 < p < 4 imply v“_k/2|am -2 |_1/4 € Apl—agm, asm]. In fact,
we have already seen that v"_”2|am —.2 |_1/4 € LP[—agy, asy], and similar arguments apply
to show that v*/2~#|a,, — -2|'/* € Li[—ayy, asm]. Hence, using (33), by (28) and (31), we
obtain

P
By = C | et (P10 fi0 )
vh/laZ — 2|
LP[—agm,asm]
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Xov"
< C|———=rn-1¢’0)¢’ fo @7
A lg2 — 2
v \/|a}’n—| LP[—agm,asm]
< Coll foullp, @

with Cg = O (log™/4(1/0)).

Proceeding as above, distinguishing the two cases 4 —A/24+1/2>0and u—1/2+1/2 <0,
one can show that assumptions (21) and 1 < p < 4 imply A2 2 2714 ¢
Apl—agm, agm] and then the boundedness (33) of the Hilbert transform in [—ayg, asy,] holds
with the weight v*~*/2+1/2|q, — .2 |~1/4 Hence, by (28) and (31), we get

Bs < Coll foullp,  Co = O (log™4(1/0)). (49)

and, combining this estimate with (46), (48) and (45), inequality (20) follows.
We omit the proofs of (21) and (22), since they follow from (20) proceeding as was done in
the proofs of (18) and (19), respectively. [
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