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Preface
__________________

 

 Since its foundation 1986, the Italian Society of Remote Sensing (Associazione Italiana di 
Telerilevamento – AIT) has been engaged in the dissemination of knowledge of remote sensing and Earth 
Observation (EO), with a particular effort in fostering scientific and operational consciousness about their 
exploitation.

AIT is specifically committed to:

(i) create a network connecting people from Research, Academia, hi-tech Companies, Administrative 
Institutions and Professionals involved in territory management and involved, or interested, in the 
development of Earth Observation methods, techniques and applications;

(ii) promote and coordinate initiatives to foster the exploitation and the technology transfer of remote 
sensing technologies, like the organization of congresses, conferences, workshops and thematic 
Summer/Winter schools;

(iii) promote the exchange of knowledge and cooperation among its members to “shorten” the 
technology transfer chain;

(iv) serve as the Italian national representative and reference player on matters pertaining to remote 
sensing and Earth observation-related issues for institutions, agencies, and companies, at the national 
and international levels;

(v) maintain an ongoing observation of technological and scientific advances, with particular attention 
to datasets, products and services from open, or commercial archives, to ensure a conscious and 
proper exploitation by users;

(vi) draft guidelines for the definition of possible standards about data quality, data processing, 
validation methods and accuracy metrics related to EO.

As AIT President for 2023-26, I specifically encouraged the Executive Board to focus on points (iv-vi), 
whose inner meaning have to be better specified. 

Concerning point (iv), the 2023 AIT Congress, from which the contributions of this volume were derived, 
made evident the high expectations that Institutional players have in respect of the EO scientific community, 
especially related to the ongoing post-pandemic Italian National Plan for Recovery and Resilience (PNRR). 
The newly programmed Italian IRIDE Program for EO, supported by ASI and ESA, and the various territorial 
needs discussed along the congress sessions, definitely highlighted the strategic role of EO in this framework. 

Discussions at the 2023 AIT Congress also highlighted we are experiencing a too-fast technology advancement, 
paradoxically slowing down the technology transfer. In fact, low-cost and user-friendly tools are continuously 
made available, providing users with the illusion of operational autonomy despite their domain knowledge is 
low or non-existent. This situation makes it extremely difficult to recognize applications based on a solid and 
proved EO-, or more generally, Geomatics-related knowledge, thus introducing a high degree of unreliability 
of results and deductions, especially when quantitative measures are required. 



The EO and Geomatics scientific communities may have reacted too slowly and disjointedly to this 
phenomenon and now need to regain a new role in supporting a proper (reliable) technology transfer. I 
retain that the main reason about this failure relays on the new and reverted relationship linking the Applied 
Sciences with the technological market. Today, more than ever, technology often anticipates applied sciences 
requirements, proposing solutions to problems that have yet to be solved. The feeling is that scientists and 
scholars are currently being asked to go back along the supply chains to obtain proper technical specifications 
needed to consciously experience new devices (or products and services) and test them under the right 
conditions. In most of the cases, they are also called to find a suitable and valuable application that the newly 
proposed low-cost technology can be useful for. 

A further, recent new challenge is coming from the unstoppable introduction of Artificial Intelligence in 
our life, including EO and Geomatic processes. The 2023 AIT Congress proved that the EO context is one 
of the mostly involved sectors from this point of view. But, is this really healthy for Science? Is this safe 
for a sustainable development? AIT opinion is that scientific societies and Academia are called to slow 
down this trend where an immediate exploitation of new continued technological advances has to come. A 
new paradigm has to be introduced   where the ongoing “continuous” technology transfer has to move to a 
“discrete” one. This means that, at the application level, the technological (and algorithmic) level have to be 
fixed at a certain point and reconsidered/updated after a time step consistent with the time of: (i) engineering 
of processes; (ii) definition of controlled (by reference subjects) procedures for both data processing and 
validation of results; (iii) validation of global data/services at the local level. This would permit a proper 
ingestion and exploitation of the technological advances that we are ordinarily stimulated about, and a proper 
development of users’ consciousness needed to prepare a more effective advance in the next evolution step. 
AIT, under my leadership, supports a SLOW, but conscious, SCIENCE.  

In this framework, AIT supports open and wide-ranging actions involving multiple players and scientific 
associations at national and international levels. Among these actions, one deals with the education/formation 
in EO with a special focus on the importance of consciousness of data and methods. In 2020, AIT has 
strongly supported the launch of the Italian National PhD Course in Earth Observation specifically designed 
with the main goal of training professional figures with transversal and integrated skills of Earth Observation 
and Geomatics, and specific application, administrative and legal skills, able to effectively support the wider 
exploitation and use of the EO programs and related services.

AIT, together with Stati Generali dell’Innovazione - SGI and AM/FM GIS, is supporting the Italian National 
Copernicus User Forum in collecting Geomatics-related needs from users and providing proper guidelines for 
conscious exploitation of the available technology and data. The goal is to build a unique solid entity having 
the scientific strength and the political weight of acting like the accredited interlocutor when a Geomatics-
related need arises from institutions (but not only). it is AIT conviction that this would permit an immediate 
and unambiguous recognition from users of their reference speaker, when a geospatial information-related 
problem has to be faced. Additionally, this would trigger a virtuous process for even defining standards for 
data acquisition and processing able to recover a leading role for the Geomatics and EO community in the 
framework of a conscious and sustainable technology transfer process.

To achieve the above-mentioned goals, AIT operates through the following actions:

(i) it is presently a partner of the Italian National Copernicus User Forum;

(i) it is the reference scientific society of the European Journal of Remote Sensing, an open-access 
scholarly journal published by Taylor & Francis;

(ii) it is the reference scientific society of the European Journal of Remote Sensing, an open-access 
scholarly journal published by Taylor & Francis;

(iii) it is one of the 4 confederated scientific societies of ASITA, the Italian Confederation of the 
Scientific Associations for Territorial and Environmental Information, where EO integrates with the 
other branches of Geomatics at Italian national level;



(iv) since 2016 AIT started to propose and give its International thematic summer/winter schools
mainly addressed to support the conscious exploitation of the Copernicus and ASI (Italian Space
Agency) data, products and services;

(v) AIT organizes its Congress every two years. Selected and blinded reviewed contributions from
the Congress are gathered and published in a Scopus and WoS indexed book Series named “Trends in
Earth Observations (TEO)”. These volumes are intended to present a snapshot of the state-of-the-art
in several application fields and advice about potentialities and limits from the ongoing trends of EO
technology transfer.

AIT President (2023-2026)
Enrico Borgogno Mondino
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Introduction
__________________

Earth Observation: current challenges and opportunities for environmental monitoring

It is precisely to achieve the AIT goals highlighted in the President’s “Preface” that this volume was edited 
by AIT, collecting contributions from AIT last Congress held in Bari (Italy) in June 2023. The AIT 2023 
event was the 11th AIT Congress, and it has inaugurated a new trend of cooperation and integration among 
different scientific societies. A whole week was programmed as a unique event, named GEOdaysIT 2023, 
including two congresses from three scientific societies: AIT 2023 from AIT, and FOSS4G from GFOSS.it 
and Wikimedia. 

Given the above-mentioned important and open discussion, the editors believe this volume can proficiently 
support the sharing of mutual knowledge within the community of EO data users. 

This volume collects 34 selected articles presented at the GEOdaysIT 2023 event by authors from universities, 
research centers, public institutions and private companies. The variety of contributing profiles demonstrates 
the significant impact that EO shows at whatever level of civil society. 

The Volume is the 3rd one of the new AIT publication series, inaugurated in 2018 to collect peer-reviewed 
contributions selected from the ones presented at the bi-annual AIT Conference.

The articles, published as extended abstracts, have been grouped into 4 chapters internally organized in thema-
tic clusters. All of them refer to the impacts of human activity on the environment, highlighting the state-of-
the-art potentialities of Earth Observation in the context of environmental analysis, monitoring and protection, 
with particular concerns about climate change-related effects, natural resources and human health.

The first chapter, “Urban & cultural heritage”, includes 7 contributions presenting different perspectives of 
analysis of urban areas and cultural heritage. It focuses on contributions given by EO in the framework of en-
vironmental risks, urban planning, cultural heritage monitoring and documentation, and energetic efficiency. 

The second chapter, “Environment” includes 13 works representing a wide range of studies at the territorial 
scale about different environmental components (air, water, ice, soil) in relationship with the ongoing threads 
that climate change has introduced (e.g. extension and evolution of glaciers). Additionally, contributions from 
this chapter highlight i) the EO contribution to planning; ii) possible roles for the Copernicus Emergency 
Management Service; iii) the added value coming from a multi-sensor and multi-platform approach to envi-
ronmental monitoring.

The third chapter, “Agriculture and Forestry”, includes 8 works showing the increasing role of EO In the agri-
cultural and forest fields, especially related to the multiple roles they are assuming that move from the direct 
economic values of crop/forest production to the environmental sustainability of management, to the carbon 
stocks balances. Most of the works rely on the integration of spatial analysis tools (GIS) with EO data (multi- 
e hyper-spectral, radar, satellite, aerial and drone-based). Applications range from crop classification, waste 
management, circular economy, vegetation monitoring (plant life cycle analysis) and others.

The fourth chapter, “Algorithm & sensors”, includes 7 works presenting and comparing new approaches 
(including some Machine Learning and AI-based ones) and algorithms to support sensitive needs from civil 
society, like photovoltaic plants monitoring and location, oil spills, infrastructures monitoring.

ix
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POINT CLOUD CLASSIFICATION USING MACHINE LEARNING ALGORITHMS: 
APPLICATIONS IN CULTURAL HERITAGE ENVIRONMENT

D. Costantino 1*, V.S. Alfio 1, M. Pepe 2, D. Scaringi 1

1 Department of Civil, Environmental, Land, Construction and Chemistry - DICATECh, Polytechnic University of Bari, Italy - 
(domenica.costantino, vincenzosaverio.alfio, daniele.scaringi)@poliba.it 

2 Department of Engineering and Geology (InGeo), “G. D’Annunzio” University of Chieti-Pescara, Italy  
massimiliano.pepe@unich.it 

KEY WORDS: Random Forest, Machine Learning, Point Cloud Classification, Cultural Heritage, Overall Accuracy, F1-score 

ABSTRACT: 

3D point clouds are a source for generating 3D models of individual objects or cities due to the simplicity of acquiring and managing 
geospatial data. For this reason, 3D point cloud classification represents an interesting area of research due to its many advantages in 
different fields of application. Therefore, the aim of the paper is to identify a suitable methodology for semantic segmentation of the 
point cloud based on a multi-scale approach and machine learning algorithms. This methodology was applied on the following datasets 
belonging to the cultural heritage: Temple of Hera (Italy) and Sacro Monte di Ghiffa (Italy). The validation of the results obtained was 
carried out using appropriate performance indices (Precision, Overall Accuracy, Recall and F1-score) whose values showed the quality 
of the proposed method that is applicable to complex morphologies both at the scale of the individual artefact and at the urban scale. 
In addition, a comparison with approaches in the literature shows encouraging results in terms of both accuracy and speed of point 
cloud classification. 

1. INTRODUCTION

Today the use of sensors, active or passive, for the acquisition of 
3D point clouds destined for the restitution of Cultural Heritage 
(CH) of buildings and urban scenes (urban scenes US), including 
three-dimensional ones (3D city model), is increasingly 
widespread. The purposes are multiple: in the field of CH, the 
construction of semantic 3D models of heritage allows 
morphological analysis, mapping of degradation, digitisation of 
information and the restitution of assets, through a process called 
Heritage Building Information Modelling, (HBIM). This process 
can be realized in several ways and using suitable software, such 
as Autodesk Revit that allows multi-temporal and multilayer 
information management (Croce et al., 2021). Point cloud 
classification can apply to both the individual building and urban 
scale. In the field of US, 3D city modelling is fundamental for 
urban management and planning, for cadastral uses and for the 
restitution of information models such as OpenStreetMap 
(Ozdemir et al., 2018). Already according to (Axelsson, 1998) 
automatic procedures for the interpretation and classification of 
laser data could be successfully used in numerous applications 
through statistical classification methods; the same author 
suggested more general classification approaches based on the 
radiometric characteristics of the laser scanner used. Today, 
given the now widespread use and numerous fields of application 
involving these point clouds, research is pushing towards new 
methodologies for their automatic semantic classification and 
segmentation, in order to better understand the different spatial, 
geometric, multi-spectral and radiometric information that can be 
extracted from the point cloud (Grilli et al., 2017). Generally, 
semantic classification or segmentation refers to the process of 
grouping similar data into subsets (called segments); the latter 
show one or more characteristics (geometric, radiometric, etc.), 
through which it is possible to distinguish and identify different 
parts that make up an image, a point cloud or a polygonal model 
(Grilli, 2019). Machine and Deep learning (ML/DL) are fields of 

* Corresponding author 

application of artificial intelligence (AI), based on the 
development of algorithms that allow computers to make 
decisions based on initial input data, called training data. 
Specifically, DL is considered a branch of ML that is based on 
the use of artificial neural networks (ANNs) with two or more 
layers (hidden layers) to process information in a non-linear 
manner (Grilli, 2019). These learning methodologies are mainly 
distinguished into two approaches (Teruggi et al., 2020): 
Supervised Approach and Unsupervised Approaches. In the 
supervised approach, typical of ML, such as Random Forest, the 
algorithms take as input some manually annotated parts of the 
point cloud together with so-called “features”, attributes of a 
geometric and/or radiometric nature specially selected by the 
operator to facilitate the learning and distinction of the classes 
sought, In the unsupervised approaches, typical of DL 
algorithms, they involve the algorithm automatically generating 
the features it learns during the training phase on a large amount 
of input data. In Grilli et al., 2020, an automatic classification 
method is proposed, based on a multi-level, multi-resolution 
(MLMR) approach combined with an ML algorithm; this latter 
ML method hierarchically classifies 3D data at different 
geometric resolutions to facilitate the learning process and 
optimise classification results. In this latter paper, the test was 
performed on both the Duomo di Milano and the “Abbazia di 
Pomposa”; in this latter case study, the authors once again 
validate and demonstrate how ML approaches are faster in 
classification than an operator, define general rules that can be 
replicated for other cultural heritage assets and emphasise how 
hierarchical segmentation (down to single instances) of 3D data 
is a fundamental tool for H-BIM. Also, in Croce et al., 2021 a 
semi-automatic approach for the transition from unstructured 3D 
point cloud to H-BIM model was proposed; the authors first 
propose an automatic segmentation using the RF classifier, then 
a scan-to-BIM reconstruction in Autodesk Revit software; the 
proposed methodology was applied to the “Certosa di Pisa” and 
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allowed the reconstruction of an H-BIM model starting from the 
unstructured 3D point cloud; in this way, it was possible to obtain 
not only the semantic information coming from the classification 
was preserved but also a rich model was built in a BIM 
environment that is fundamental for the preservation and 
archiving of numerous useful information for restoration and 
conservation purposes. 
In Pierdicca et al., 2020 an innovative DL framework is proposed 
for the semantic segmentation of 3D point clouds, which starting 
from an existing convolutional network, known as DGCNN-
Dynamic Graph Convolutional Neural Network, optimises the 
segmentation process by introducing significant features such as 
normals and radiometric component. To test the approach, some 
point clouds belonging to the dataset provided by PoliTO were 
used: ArCH (Architectural Cultural Heritage). 
In Matrone et al., 2020, different ML and DL approaches are 
compared with the aim not only to compare the algorithms but 
also to understand which is the best for automatic CH 
classification; it is emerges is that RF is certainly the best ML 
classifier in terms of OA (overall accuracy) when compared to all 
other methodologies, however comparable results are also 
obtained with a modified DGCNN that includes the use of both 
geometric and radiometric features called DGCNN-Mod by the 
authors. Tests were conducted on two scenes; in both studies, it 
can be seen that Random Forest performs better (as measured by 
OA) than all other ML approaches, and in general is often even 
more accurate than DL approaches. 

2. DATA

The point clouds used in the experimentation are: Temple of Hera 
(Italy) and Sacro Monte Ghiffa (Italy).  
The temple of Hera, also known as the “Tavole Palatine”, was 
built in the 6th century B.C. next to the Bradano, located in the 
archaeological area of Metapontum (Italy). The dense point cloud 
of the Tavole Palatine was obtained through a UAV 
photogrammetric survey (Pepe et al, 2022) and consists of 
973.125 points (Appendix A).  
The Sacro Monte of Ghiffa stands under Monte Carciago in a 
magnificent position overlooking Lago Maggiore. It is an 
unfinished Baroque complex based on the Borromean conception 
and architectural models of the Sacred Mounts of Orta and 
Varese. It consists of the sanctuary church, three chapels and the 
portico of the Vie Crucis. The dense point cloud of the Sacro 
Monte of Ghiffa was obtained by a UAV photogrammetric 
survey combined with a terrestrial laser scanner (TLS) for a total 
of 17,798,012 points (Appendix B). This latter dataset was 
obtained from a benchmark made available by the Politecnico di 
Torino called “Architectural Cultural Heritage” (Matrone et al., 
2020). 

3. METHOD

3.1 Methodological approach 

Automatic classification using Random Forest requires several 
preliminary steps. This is mainly related to the type of algorithm 
that requires a prior supervised learning phase. The steps 
followed for classification purposes are as follows and were all 
performed in the open-source software CloudCompare (CC) and 
via Anaconda, the world’s most widely used data science 
platform with Python: i) Cloud pre-processing; ii) Manual 
partitioning and annotation; iii) Calculation of geometric 
features; iv) Preparation of input threads for RF; v) Execution of 
the RF model. In order to characterise each point, both 
radiometric features (R, G, B) and geometric features were 
combined. The geometric feature is known as “covariance 

features” because they allow a deep knowledge of the point cloud 
geometry, highlighting the architectural discontinuities present. 
These features are derived from the eigenvalues λ1, λ2, λ3 of the 
covariance matrix, computed in a spherical surround of known 
radius of the point considered. The formula of the several 
geometric features computed and used in the experimentation are 
reported below (Weinmann et al., 2015; Mohamed et al., 2021). 

Linearity Lλ =  
λ1 −  λ2
λ1

(1) 

Planarity Pλ =  
λ2 −  λ3
λ1

(2) 

Sphericity Sλ =  
λ3
λ1

(3) 

Surface Variation Cλ =  
λ3
∑ λ (4) 

Anisotropy Aλ =  
λ1 −  λ3
λ1

(5) 

Verticality 𝑉𝑉 = 1 − 𝑣𝑣𝑧𝑧 (6) 

In addition to these latter features, the RGB radiometric 
components, the Z-coordinate of the points and the verticality V 
(Equation 6), where 𝑣𝑣𝑧𝑧 represents the vertical component of the 
normal vector 𝑣𝑣 ∈ ℝ3, can be taken into account. The 
computation of all features to be provided as input to the 
classifier was performed on CC using the “compute geometric 
features” tool. The choice of the above-mentioned features is 
linked to the identification of the various architectural elements 
by the classifier. In fact, linearity, planarity and sphericity allow 
RF to distinguish linear, planar elements (such as the floor or 
roof) and volumetric elements such as columns. The feature 
verticality and Z-coordinate of the points, on the other hand, are 
essential to allow the classifier to distinguish the elevation 
variations and elevation of the points; in particular, these latter 
features are useful to identify wall and floor, pavement, or ground 
classes.  
For each test, several performance indicator were considered; the 
performance indicators were generated taking into account the 
True Positive (TP), i.e. the number of features that belong to a 
particular class, the True Negative (TN) is the number of features 
that do not belong to a class but were wrongly assigned to a class 
other than theirs, False Positive (FP) occur when the feature do 
not belong to a class but were predicted positively to the class 
and False Negative (FN) are the features that belong to a class 
but were not predicted as any class in the image. In particular, the 
Precision is a very common performer index that represents the 
ratio of the correctly segmented classes that are positive for each 
class which can be measured with TP and FP (Davis et al., 2006; 
Yekeen et al., 2020): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
(6) 

The Overall Accuracy (OA) parameter can be calculated using 
the following formula (Congalton et al., 1991, Pepe et al., 2018): 

OA =  
Number of correct predictions

Total number of predictions (7) 

The Recall is the ratio of the correctly classified positive classes 
(Powers, 2020; Xu et al., 2021; Foody 2023): 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
(8) 
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F1-score is the harmonic mean of the precision and recall 
(Raghavan et al., 1989; Pepe et al., 2021): 

F1 − score = 2
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

(9) 

3.2 Test on datasets 

The first fundamental step involves the cleaning of the point 
cloud and then removing the elements that one did not want to 
classify. For this operation, we made use of the command in the 
CC plugins known as “Cloth Simulation Filter”. This latter tool, 
based on Zhang et al., 2016, makes it possible to automatically 
remove the soil by initially setting a general parameter on the 
type of soil (steep terrain, hilly terrain, flat terrain) and then 3 
detailed parameters, in this case left equal to those predefined by 
the software. In this way it is possible to subdivide the points 
subject to classification, i.e. the colonnade, from those in the 
terrain that will not be used.   
The same operation was carried out manually using the “cross 
section” command available in CC. This terrain removal 
operation was only necessary for the “Tavole Palatine” dataset. 
The only operation performed on this point cloud concerned the 
extraction of only the portico, the subject of the classification. 
Using the “cross section” tool, it was possible to divide the 
entrance to the sanctuary from the portico.  
This operation reduced the number of points to be processed to 
11,303,645. However, for the purposes of visualisation and 
subsequent processing, the point cloud was still extremely dense; 
for these reasons, through the “Cloud sub sampling” command, 
the point cloud was resampled with a minimum distance between 
points of 0.05 m. The operations of terrain removal and 
resampling of the point cloud were useful to reduce the 
computational time and improve the management of the point 
cloud.   
Once this phase has been completed, it is necessary to annotate, 
and thus manually divide the point cloud into homogeneous 
classes. This operation is fundamental since as input to the 
classifier we will have to supply two portions of the point cloud 
already annotated: one portion for the supervised learning phase 
(training) and one portion for evaluating the goodness of the 
model (evaluation); the latter allows us to evaluate the 
performance of the model through the confusion matrix and thus 
the calculation of the precision, recall and F1-score parameters. 
Manual semantic segmentation was conducted on CC. Initially, 
both datasets were divided to distinguish the part of the point 
cloud intended for classifier training and the part to be classified. 
The latter portion of the point cloud always has a much higher 
number of points than its counterpart. As mentioned, the part 
intended for training was further divided and annotated.  
For the Tavole Palatine dataset, two columns were annotated for 
the training phase and the remaining 3 for the evaluation. In total, 
5 classes were identified: architrave, capital, column, stylobate, 
stereobate; the remaining 9 columns were classified by RF 
(Appendix A).  
In the case of the Sacro Monte portico, no manual annotation was 
necessary; in this latter case, 10 classes are identified by the same 
authors (Appendix B).  
In the case of the two CH datasets (Temple of Hera and Porticato) 
the search radii were as follows: 0.2m, 0.4m (equal to the average 
radius of the columns), 0.8m (equal to the average diameter of 
the columns), 1m, 1.2m and 1.4m.  
Once these operations were completed, it was necessary to 
organise the data according to a specific format; this task was 
carried out in MS Excel software.  

X1 Y1 Z1 R1 G1 B1 F11 … F1n class 
X2 Y2 Z2 R2 G2 B2 F21 … F2n class 
. . . . . . . . . . 
. . . . . . . . . . 

Xn Yn Zn Rn Gn Bn Fm1 … Fmn class 
(a) (b) (c) (d) 

Table 1. Data organisation for classification: (a) geometric 
coordinates, (b) radiometric features, (c) geometric features and 

(d) class.

Indeed, the point cloud in “txt” format was imported into the 
programme and the data was organised in a structure 
characterised by the following matrix structure (Table 1).  
The geometric characteristics, from smallest to largest radius, 
are: linearity, flatness, sphericity, surface variation, verticality 
and anisotropy. The resulting datasets are ready to be used as 
input in the predictive model (the cloud fractions for 
classification do not have the last column for “class”). The 
classifier used in this work is the RF algorithm and available on 
the web platform for developers “GitHub” 
(https://github.com/3DOM-FBK/RF4PCC). We need to prepare 
a folder in which, in addition to the Python codes for training 
(“train.py”) and for classification (“classify.py”), there are the 
text files containing the parts of the point cloud intended for 
training, evaluation and classification. In addition, it is necessary 
to have a text file containing on the first line the indices of the 
features that the model will use (indices start at 0) for training 
and on the second line the index of the column defined as “class”. 
The result of executing the code is the generation of a .pkl file 
(relating to the number of random trees generated by the 
classification) and a .txt file containing the dataset for the 
evaluation with a new column for the classes provided.  It will 
also be possible to observe a vector called “feature importance” 
to evaluate the most significant features in the training phase and 
the confusion matrix. 

4. RESULTS

The approach used involves selecting the 8 most significant 
features from the initial 40 (36 geometric features, 3 radiometric 
features and the Z-coordinate).  
A different search and reiterative selection analysis of the input 
features was therefore conducted on the dataset. The selection of 
features to be discarded took place in all tests based on a 
threshold value that was not exceeded. The choice of this value 
depended on the non-linear reduction of the features; in fact, the 
tests were conducted starting with 40 features, then moving on to 
30, 15 and finally 8 significant features. At the end of each test, 
repeated feature selection was performed, and the confusion 
matrix associated with the accuracy, recall and F1-score metric 
parameters, calculated for each class and in average terms, was 
determined. 
Finally, summary graphs were produced on the overall 
performance of the classifier as the number of input features 
varied.  
A total of 7 tests were conducted on this point cloud of Tavole 
Palatine. The first four were conducted on the raw point cloud, 
the further 3 with 30, 15 and 8 features respectively on the 
resampled 0.05 m to lighten the point cloud and reduce the 
computational stress to which the computer was subjected. In this 
way, it is possible to assess the differences in terms of OA. In 
addition, based on the average F1-score values obtained from the 
various confusion matrices, it was possible to diagram both the 
trend of the F1-score parameter and the trend of the computation 
time according to the number of features input to the classifier 
(Appendix A).  
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In the case study of Sacro Monte di Ghiffa, four tests were 
performed on this dataset in a similar manner to the previous case 
study, calculating 36 geometric features to which the RGB 
radiometric components and the Z-coordinate of the points and 
the verticality V were added.  
Once the tests were completed, the parameters considered for an 
analysis of the RF performance are shown in the Table 2. 
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T1 40 72.16 62.89114 89.09 19.08 

T2 30 71.91 63.57512 73.2 13.52 

T3 15 80.31 67.98156 44.99 10.56 

T4 8 82.22 64.91441 35.55 8.49 

Table 2. Performance analysis obtained in Sacro Monte di Ghiffa 

As in the previous case, the OA parameter was calculated for 
each test. In addition, based on the average F1-score values 
obtained from the various confusion matrices, it was possible to 
diagram both the trend of the F1-score parameter and the trend of 
the computational times according to the number of features 
input to the classifier (Appendix B). 

5. DISCUSSION AND CONCLUSIONS

The paper showed a deep learning-based point cloud 
classification method applied in cultural heritage context. To 
validate the method, two datasets of the point cloud were taken 
into consideration. 
The results achieved from the various tests carried out on the 
Temple of Hera dataset underscore how the multiscale reiterative 
approach of searching and selecting input features made it 
possible to select, with 4 repetitions, the best 8 features for 
classification purposes. The choice of removing an increasing 
number of irrelevant features at each iteration made it possible to 
speed up computational times considerably.  
The results obtained in terms of OA of 97.5% and F1-score of 
96.2% show how efficiently the classifier worked, achieving 
excellent results in a very short time. Analyses on the same 
resampled cloud showed how a greater discretisation of the 
points mainly reduces the computational time. However, 
differences emerge in terms of OA and F1-score. It is observed 
that in order to have comparable results in terms of OA and F1-
score between the non-resampled and resampled dataset, it is 
necessary to provide a higher number of features as input: from 
8 to 13. Concerning the dataset related to the case study of the 
Porticato del Sacro Monte di Ghiffa, the results demonstrate the 
quality of the proposed method.  
The proposed method based on a multiscale reiterative search and 
selection of features to an RF classifier proposed in the paper was 
shown to be efficient in reconciling the best results in terms of 
metrics, evaluated by OA and F1-score, computational time and 
manual operations to be performed by the operator. It was also 
possible to note how the density of the resampled cloud positively 
affects the computational time, while negatively affecting, albeit 
by a few percentage fractions, the overall accuracy and F1-score 
parameter. Therefore, by virtue of the number of points in the 
dataset and the classes identified, the effectiveness of the 
approach is demonstrated, and it is deduced that the 6 geometric 

features, calculated in spherical contours of dimensions 
correlated to the architectural dimensions of the elements to be 
classified, the radiometric components and the Z-coordinate of 
the points alone are sufficient to obtain a robust classification of 
the dataset. The overall accuracy achieved was of 80% which is 
comparable with the existing literature.  
For future work, more investigations can be made in relation to 
the density of the point cloud and using multi sensors in order to 
obtain multispectral data that further facilitate classification 
processes. 

REFERENCES 

Axelsson, P. (1999). Processing of laser scanner data—
algorithms and applications. ISPRS Journal of Photogrammetry 
and Remote Sensing, 54(2-3), 138-147. 

Congalton, R. G. (1991). A review of assessing the accuracy of 
classifications of remotely sensed data. Remote sensing of 
environment, 37(1), 35-46. 

Croce, V., Caroti, G., De Luca, L., Jacquot, K., Piemonte, A., & 
Véron, P. (2021). From the Semantic Point Cloud to Heritage-
Building Information Modeling: A Semiautomatic Approach 
Exploiting Machine Learning. Remote Sensing, 13(3), 461. 

Davis, J., & Goadrich, M. (2006, June). The relationship between 
Precision-Recall and ROC curves. In Proceedings of the 23rd 
international conference on Machine learning (pp. 233-240). 

Foody, G. M. (2023). Challenges in the real world use of 
classification accuracy metrics: From recall and precision to the 
Matthews correlation coefficient. Plos one, 18(10), e0291908. 

Grilli, E., Menna, F., & Remondino, F. (2017). A review of point 
clouds segmentation and classification algorithms. The 
International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, 42, 339-344. 

Grilli, E., Farella, E. M., Torresani, A., & Remondino, F. (2019). 
Geometric features analysis for the classification of cultural 
heritage point clouds. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 42, 541-548. 

Grilli, E., Özdemir, E., & Remondino, F. (2019). Application of 
Machine and Deep Learning strategies for the classification of 
heritage point clouds. International Archives of the 
Photogrammetry, Remote Sensing & Spatial Information 
Sciences. 

Matrone, F., Lingua, A., Pierdicca, R., Malinverni, E. S., 
Paolanti, M., Grilli, E., Remondino, F., Murtiyoso, A., &  
Landes, T. (2020). A benchmark for large-scale heritage point 
cloud semantic segmentation. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 43, 1419-1426. 

Mohamed, M., Morsy, S., & El-Shazly, A. (2021). Machine 
learning for mobile LIDAR data classification of 3D road 
environment. The International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 44, 113-117. 

Özdemir, E., & Remondino, F. (2018). Segmentation of 3D 
photogrammetric point cloud for 3D building modeling. The 
International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, 42, 135-142. 

D. Costantino et al.

5



Pepe, M., & Parente, C. (2018). Burned area recognition by 
change detection analysis using images derived from Sentinel-2 
satellite: The case study of Sorrento Peninsula, Italy. Journal of 
Applied Engineering Science, 16(2), 225-232. 

Pepe, M., Costantino, D., Alfio, V. S., Vozza, G., & Cartellino, 
E. (2021). A novel method based on deep learning, GIS and
geomatics software for building a 3D city model from VHR
satellite stereo imagery. ISPRS International Journal of Geo-
Information, 10(10), 697.

Pepe, M., Alfio, V. S., Costantino, D., & Scaringi, D. (2022). 
Data for 3D reconstruction and point cloud classification using 
machine learning in cultural heritage environment. Data in Brief, 
42, 108250. 

Pierdicca, R., Paolanti, M., Matrone, F., Martini, M., Morbidoni, 
C., Malinverni, E. S., ... & Lingua, A. M. (2020). Point cloud 
semantic segmentation using a deep learning framework for 
cultural heritage. Remote Sensing, 12(6), 1005. 

Powers DM. (2020). Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and correlation. 
arXiv preprint arXiv:2010.16061. 2020 Oct 11. 

Raghavan, V., Bollmann, P., & Jung, G. S. (1989). A critical 
investigation of recall and precision as measures of retrieval 
system performance. ACM Transactions on Information Systems 
(TOIS), 7(3), 205-229. 

Teruggi, S., Grilli, E., Russo, M., Fassi, F., & Remondino, F. 
(2020). A hierarchical machine learning approach for multi-level 
and multi-resolution 3D point cloud classification. Remote 
Sensing, 12(16), 2598. 

Xu, X., Chen, Y., Zhang, J., Chen, Y., Anandhan, P., & 
Manickam, A. (2021). A novel approach for scene classification 
from remote sensing images using deep learning methods. 
European Journal of Remote Sensing, 54(sup2), 383-395. 

Yekeen, S. T., Balogun, A. L., & Yusof, K. B. W. (2020). A novel 
deep learning instance segmentation model for automated marine 
oil spill detection. ISPRS Journal of Photogrammetry and 
Remote Sensing, 167, 190-200. 

Weinmann, M., Jutzi, B., Hinz, S., & Mallet, C. (2015). Semantic 
point cloud interpretation based on optimal neighborhoods, 
relevant features and efficient classifiers. ISPRS Journal of 
Photogrammetry and Remote Sensing, 105, 286-304. 

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., & Yan, 
G. (2016). An easy-to-use airborne LiDAR data filtering method
based on cloth simulation. Remote sensing, 8(6), 501.

Point cloud classification using machine learning algorithms: applications in cultural heritage environment

6



APPENDIX A 

APPENDIX B 

This work is licensed under a Creative Commons Attribution-No 
Derivatives 4.0 International License. 

D. Costantino et al.

7



STRUCTURAL MONITORING OF CULTURAL HERITAGE ASSETS AT URBAN AND 
LOCAL SCALE THROUGH MT-INSAR  

A. Caprino *, F. Lorenzoni , F. da Porto 

 Department of Geosciences, University of Padova, Italy  
amedeo.caprino@phd.unipd.it, (filippo.lorenzoni, francesca.daporto)@unipd.it 

KEY WORDS: MT-InSAR, Cultural Heritage, Structural Health Monitoring, Remote Sensing, Multi-scale 

ABSTRACT: 

The preservation and monitoring of cultural heritage are topics of constant interest, leading to the ongoing exploration of new 
methods and techniques, especially in countries rich of assets with high historical and artistic value, such as Italy. Multi-Temporal 
Interferometric Synthetic Aperture Radar (MT-InSAR) has gained popularity for Structural Health Monitoring (SHM), offering 
precise ground deformation measurements via Synthetic Aperture Radar (SAR) imagery from multiple timeframes. Urban 
applications, benefiting from SAR's high reflectivity, have seen the development of tailored interferometric algorithms. The advent 
of high-resolution SAR satellite constellations, such as COSMO-SkyMed, has further enhanced MT-InSAR's capabilities, enabling 
dense Measurement Points (MPs) and detailed structural data collection. MT-InSAR proves valuable for SHM at both urban and 
local scales, identifying critical areas and individual structures. Despite certain limitations, it remains a cost-effective tool for 
monitoring structures, offering insights into their stability and health. In this study, MT-InSAR is applied in Verona, Italy, renowned 
for its Cultural Heritage assets. COSMO-SkyMed imagery from 2011-2022 is analyzed for urban and local deformations. Initial 
interpolation reveals Verona's overall stability, with critical areas in the northern town beltway. Cultural assets like the Roman 
Arena, Lamberti Tower, and Roman Theater are also assessed with multiple MPs, offering insights into their stability and 
deformation trends. Despite relatively low magnitudes of displacements, this research underscores MT-InSAR's potential in 
monitoring Cultural Heritage structures, serving as a powerful, cost-efficient tool for SHM, with anticipated expanded usage owing 
to the increasing availability of high-quality SAR imagery. 

* Corresponding author 

1. INTRODUCTION

Multi-Temporal Interferometric Synthetic Aperture Radar (MT-
InSAR) has gained popularity as a Structural Health Monitoring 
(SHM) tool in recent years. By utilizing Synthetic Aperture 
Radar (SAR) data from different time periods, the method 
enables the assessment of ground deformation with high 
precision and spatial resolution. Due to the high reflectivity 
offered by structures, making them visible in SAR imaging, 
MT-InSAR has proven particularly useful in urban scenarios 
(Tapete and Cigna, 2012; Cigna et al., 2014). It is now possible 
to extract comprehensive information on structures and 
infrastructure thanks to a number of interferometric techniques 
developed specifically for the urban environment. Moreover, 
the expanding usage of MT-InSAR for SHM applications has 
been facilitated by the growing accessibility of high-resolution 
SAR satellite constellations, such as the Italian COSMO-
SkyMed (Cuca et al., 2023). These constellations provide high-
quality SAR imagery in which a high density of Measurement 
Points (MP) can be detected, allowing for the recording of 
detailed information on individual structures. With MT-InSAR, 
it is feasible to gather data on deformations at the global and 
local scales, identifying the most vulnerable regions within the 
urban environment or concentrating on specific structures 
(Bonaldo et al., 2023). ). Despite its many benefits, MT-InSAR 
has various disadvantages that must be taken into account 
(Caprino et al., 2023). Technical issues, including geocoding 
errors and noise in the time series, can arise throughout the 
analysis. The technique demands expert interpretation of results 
to prevent data misreading. Additionally, the method is 
sensitive to environmental changes, such as alterations in 

vegetation cover or weather, which may impact the accuracy of 
SAR imaging. 
In this study, the MT-InSAR technique is used in the urban area 
of Verona, a city with numerous cultural heritage assets in 
northern Italy. To identify deformations at both the global and 
local scales, the study analyzed images collected by the 
COSMO-SkyMed constellation in Stripmap mode for both 
ascending and descending orbits during the years 2011–2022. In 
the initial phase, spatial interpolation methods were used to 
assess overall urban deformations and define the most 
significant areas. Subsequently, focus shifted to some of the 
city's most important historical sites, notably the Roman Arena, 
Lamberti Tower, and Roman Theatre. Thanks to the data on 
each MP's displacement velocity and displacement time series, 
several MPs emerged for each asset, spread along the height of 
the structures. It is possible to investigate the structural stability 
and the progression of deformations over the monitoring period.  

2. MATERIALS AND METHODS

2.1 Case-studies 

Verona is a city in the Veneto region, north Italy. Its historic 
center, situated on a bend in the Adige River, dates back to 
medieval times, but significant traces of the Roman era still 
exist, solidifying the city's status as an important historical and 
artistic center of the nation (see Figure 1). Among the city's 
prominent cultural assets, three were selected as reference sites 
for this study: 

- Roman Arena: This amphitheater stands as one of the
best preserved and most renowned Roman structures
globally. Constructed around the first century AD, it
continues to serve as a venue for major events to this
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day. The amphitheater's load-bearing structure 
consists of three elliptical rings, with the outer ring 
measuring 150x120m and the inner ring measuring 
77x40m. These rings are interconnected by a series of 
radial walls and vaults, forming the galleries used for 
access. Originally, a fourth outer ring existed but 
collapsed during the 1117 earthquake event, leaving 
only the remaining portion known as the Wing, which 
has become a symbol of the amphitheater and the city 
itself.  

- Roman Theatre: This open-air theater, constructed in
the 1st century B.C. on San Pietro Hill along the left
bank of the Adige River within Verona's Roman
walls, serves as another significant cultural site. After
falling into disuse during the Middle Ages, the
structure gradually deteriorated, and an entire
neighborhood was eventually built upon its remains. It
wasn't until the nineteenth and early twentieth
centuries that archaeological excavations and
restoration efforts began to reveal the remaining
structure. Today, the monument comprises several
free septa, the main staircase, remnants of the scene
structure, and the church of saints Siro and Libera, a
Catholic church built around the tenth century.

- Lamberti Tower: Standing at 84 meters, this medieval
tower is the tallest structure in the city. Located just
steps away from the main square, the tower is
partially integrated into the "Palazzo della Ragione",
which serves as the headquarters of the municipality.
The floor plan measures about 9x9m, making it an
extremely slender structure.

Figure 1. Verona urban center and location of case studies: 
Roman Arena in red, Roman Theatre in blue, Lamberti tower in 

green 
2.2 Dataset and processing 

In this study, a dataset comprising 303 COSMO-SkyMed (CSK) 
images from 2011 to 2022 for both ascending and descending 
orbit was processed (Table 1 and Figure 2), with a pixel 
dimension of 3x3m.  The PS-InSAR technique (Ferretti et al., 
2001, 2007) was employed using SARscape software to process 
the COSMO-SkyMed images. This multi-temporal SAR 
technique mitigates atmospheric influences while enhancing 
displacement accuracy by identifying Permanent Scatterers 

(PS), which are coherent radar signal reflectors such as 
buildings, monuments, infrastructures, antennae, rocky 
outcrops, etc.  

Orbit 
Average 
revisiting 

time 

Monitoring 
period 

Number of 
images 

Ascending 25dd 06/2012 – 09/2022 156 
Descending 26dd 05/2011 – 12/2021 157 

Table 1. Characteristics of the processed dataset 
The interferometric process involved several steps as outlined 
below. The first phase entailed creating a connection graph 
wherein the reference picture is linked to all secondary images 
to form pairs. Subsequently, the secondary images were co-
registered with the reference image to generate interferograms. 
During this stage, the topographic component of each 
interferogram was removed using the Japanese Aerospace 
Exploration Agency's (JAXA) 30m ALOS-DEM. In the first 
inversion step, PSs were identified by considering the 
Amplitude Dispersion Index (ADI), calculated as the ratio 
between the standard deviation and the mean of a pixel's 
amplitude values. Additionally, a linear velocity model was 
utilized to estimate residual height and displacement velocity 
during the first inversion. The atmospheric phase component 
was then estimated and filtered using both high-pass and low-
pass filters in the second inversion. Finally, geocoding was 
performed, involving discarding PSs with coherence less than 
0.70 and geocoding the interferometric products in the WGS 84 
coordinate system. 

Figure 2. Extension of the case study area (red), ascending orbit 
path (orange) and descending orbit path (green) 

3. RESULTS

Figure 3 depicts the displacement velocity detected for both 
ascending and descending orbits. A very low displacement rate 
is observed, with the majority of values falling within the 
considered stable range (1.5 mm/year) (Floris et al., 2019). 
Higher velocity values are evident in some suburban locations, 
particularly on infrastructures like the northern section of the 
beltway. It is plausible to state that the city is not affected by 
any particular large-scale deformation phenomena (such as 
subsidence). However, it's important to note that the analysis of 
deformation velocities alone cannot be the sole tool for data 
interpretation, especially in cases of prolonged monitoring like 
this study, as very slow phenomena could be hidden and 
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difficult to detect. Therefore, a more detailed time series 
analysis would also be beneficial. 

Figure 3. Velocity displacement for ascending orbit (above) and 
descending orbit (below) 

Transitioning to the local-scale analysis, the results for the 
structures of interest are presented below. The following images 
display the MPs identified for both the descending orbit 
(triangles) and ascending orbit (squares), distributed in both 
plan and elevation using a geometric model. 
Regarding the Arena (Figure 4), a total of 330 MPs were 
identified, with some placed in correspondence of the wing, 
likely the most vulnerable element of the structure. As observed 
from the presented time series, the wing demonstrates a 
substantially stable behavior. However, it is crucial to highlight 
a limitation linked to satellite data monitoring. Considering the 
element's conformation, it is conceivable that the most 
vulnerable direction is the one out of plan coinciding with the 
south-north direction. However, due to satellite acquisition 
geometry, movements along this direction are difficult to 
identify, potentially resulting in any out-of-plane movement of 
the wing being improperly recorded by the system.  

Figure 4. MPs detected on the Roman Arena (above) and time 
series of a MP detected on the wing (below) 

In the case of the Roman Theatre (Figure 5), it is possible to 
notice that very few MPs are detected (about 50), all presenting 
displacement velocity values within the stability range. The low 
number of identified points poses a significant drawback to 
InSAR application for structure monitoring, potentially 
compromising result quality. Additionally, peculiar aspects of 
this case study should be considered. Firstly, the in-plane 
dimensions of the walls are smaller than the pixel dimensions in 
Stripmap mode acquisition (3x3m), making it challenging to 
identify the walls as coherent reflective objects. This issue could 
be addressed by using higher resolution images, such as 
spotlights, although their availability is limited. Moreover, as 
the structure is still used for several events, it undergoes 
numerous operations to be prepared for the purpose (stage 
assembly, seating, escape routes, etc...). Thus, the appearance of 
the structure is constantly changing, being covered for a good 
part. Consequently, the technique may not properly identify 
coherent MPs since they are compromised by preparation 
operations, especially during long monitoring periods like in 
this case. This aspect is crucial for the analysis of cultural 
heritage structures, given their frequent modification through 
events and restoration works. The impact of this issue on the 
analysis could be mitigated by shortening the period of interest 
or dividing the entire monitoring period into multiple analyses. 

Figure 5. MPs detected on the Roman Theatre visualized in GIS 
(left) and in a more accurate geometrical model (right) 

Finally, in the case of the Lamberti Tower, the 346 detected 
MPs are presented in Figure 6. Here, all points demonstrate a 
stable displacement trend, with no critical areas observed in 
either the tower or the palace. However, an important 
consideration arises in this application. To properly study the 
behavior of a structure, understanding the precise location of the 
MPs and the structural component to which they relate. Thus, 

Structural monitoring of cultural heritage assets at urban and local scale through MT-INSAR 
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geo-visualization tools are necessary in the post-processing 
phase, often implemented using GIS instruments. However, in 
the case of complex structures, relying solely on GIS 
visualization can make it difficult to understand the actual 
distribution of points. For instance, in the tower's case (Figure 6 
left), assessing whether a point belongs to the tower or the 
palace with sufficient certainty is challenging. Therefore, for 
proper analysis of complex cultural heritage assets, a more 
detailed geometrical model is needed, as presented in Figure 6 
right. Additionally, positioning errors along the three spatial 
coordinates (east–west, south–north, and vertical height) must 
be considered, as they could affect result interpretation. For 
example, in PSI processing with CSK acquisitions, the 
positioning error is approximately 1–3 meters (Wasowski and 
Bovenga, 2014).  

Figure 6. MPs detected on the Lamberti Tower visualized in 
GIS (left) and in a more accurate geometrical model (right) 

4. CONCLUSIONS

The analysis of satellite images through Multi-Temporal InSAR 
methods has become an essential tool for structural monitoring. 
This technique enables the extraction of valuable information 
regarding displacement velocity and time series, both at large 
and local scales. Moreover, it provides insights into past 
deformations of structures, as data have been available since the 
launch of the constellation. These advantages, coupled with the 
fact that physical sensors are not required, make this technique 
particularly suitable for Cultural Heritage applications. 
However, certain drawbacks still exist, primarily concerning the 
intensive post-processing phase required to obtain reliable 
results. Additionally, limitations related to the geometry of 
measurements may render this technique ineffective in some 
cases. 
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ABSTRACT: 

Slope gravitational deformations and landslides are a natural hazard quite commons in young geological countries as Italy, that can 

cause significant damages to infrastructure, including bridges, tunnels, railways and buildings. In particular, slow slope gravitational 

deformations may have a long-term impact on bridges and viaducts as they often occur over extended periods, and the resulting 

deformation can be difficult to detect. Remote sensing technologies have emerged as an effective tool for detecting slow landslides 

and monitoring their impact on bridges. 

This work provides some examples of the interaction between slow and very slow slope gravitative deformations and bridges and their 

analysis using remote sensing techniques. First, the causes and types of slow slope gravitative deformations are discussed, with a focus 

on their impact on bridges. Several factors contribute to slow movements that have been examined by the use of remote sensing for 

analysing the impact of slow movements on bridges. 

The main findings of this study are presented, by highlighting the potential for remote sensing technologies to improve our 

understanding of the interaction between slow slope gravitational deformations and bridges. 

1. MODERN TOOLS TO INVESTIGATE SLOW

GRAVITATIONAL DEFORMATIONS

1.1 Slow Gravitational Deformations and Infrastructure 

Italy is a geologically young territory still undergoing significant 

and continuous geomorphological evolution. This evolution 

manifests through landslides and slow slope deformation 

phenomena, which are sometimes imperceptible but have the 

potential to cause long-term damage to infrastructure, 

particularly roads and railways, including bridges, viaducts, and 

tunnels (Forlati et al., 2001; Barla, 2018; D’Ambrosio et al., 

2023). The progressive accumulation of millimetric deformations 

can exert long-term stress on infrastructure, leading to its damage 

or, in severe cases, collapse. Therefore, it becomes crucial to 

study methods for coexistence between the presence of 

infrastructure networks and instability phenomena. 

In regions with recent tectonics, slow gravitational movements of 

slopes are relatively more common than you might think. These 

movements are challenging to recognize and investigate due to 

their nature, and they began to be studied only in the late 1970s 

(Guerricchio and Melidoro, 1981; Guerricchio, 2000b, Agliardi 

et al., 2001). Gravitational phenomena are not easily 

distinguishable from tectonic movements caused by the regional 

plate movement, combined with the movement of geological 

units with rigid mechanical behaviour situated above other, more 

deformable units at shallow depths (Guerricchio, 2022; 

Galeandro et al., 2013). 

Although these phenomena develop in large areas, inside them it 

could be identified smaller items, which could evolve differently 

and require specific monitoring (Guerricchio, 2000).  

A famous case of a complete collapse of a bridge due the 

interaction between slow landslide and infrastructures is the 

* Corresponding author 

Albiano-Magra bridge, which was indagated with the InSAR 

technique; the investigations show that the landslide has a 

continuous displacement, that compressed the south abutment 

(Simeone, personal communication).  

Southern Italy presents several examples of these phenomena, 

with the most famous being the Serra railway bridge, close to 

Lagonegro, constructed between 1915 and 1929. It was closed in 

1953 due to the excess of deformations of one of its five arches, 

which were caused by deep-seated gravitational slope movement. 

The case studies analysed in this paper are in the area where was 

recognised a deep-seated gravitational slope deformation in the 

Lucanian - Ionian coastal arch; the movement of this landslide is 

a deep rotational, mainly directed from east to west. 

Deformations have originated by a strike-slip fault, that bring the 

disarticulation of the clay masses (Guerricchio and Melidoro, 

1986). 

1.2 MTInSAR technique applications 

Modern technologies have enabled monitoring through satellite 

images of very small deformations that occur on a large scale, 

thanks, for example, to spaceborne radar interferometry 

techniques (Wasowski et al., 2019; Vinielles et al., 2021). 

However, the use of these techniques requires specific and 

professional processing of data. 

In this study, the SPINUA algorithm (Stable Point Interferometry 

even in Unurbanized Areas) (Bovenga et al., 2004) was used. It 

is a Multi-temporal Interferometric SAR algorithm (MTInSAR) 

developed by the spinoff company of the Polytechnic University 

of Bari, GAP (Geophysical Applications Processing - 

http://www.gapsrl.eu). SPINUA was chosen because it has been 

tested on both persistent and distributed scatterers (PS and DS) 

acquired by SAR. It can detect millimetric displacements, even 
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in rural areas with limited PS availability. SPINUA has been 

tested for slope instability phenomena as well as for monitoring 

structures and infrastructure such as bridges, railways, dams, etc.. 

This technique offers several advantages, including the ability to 

obtain measurements over large areas without the need for on-

site equipment installation, daily data acquisition in all weather 

conditions, the ability to analyse mass movements in periods 

preceding the start of investigations, and adaptability to slow 

movements. However, there are limitations, such as the lack of 

information on north-south horizontal displacements, a scarcity 

of measurement points in sparsely urbanized areas, snow cover 

at high altitudes, and the possibility of geometric distortions in 

the presence of slopes and the inability to find measurement 

points once investigations have begun (Wasowski et al., 2014). 

2. CASE STUDIES

The investigation sites are located in Bradanic foredeep, in a vast 

area of outcropping of sub-Apennine clays, with veins of 

regressive terraced marine deposits, and traces of alluvial 

deposits on the bottom. The structure of the area is complex, in 

fact the clays of the middle-upper Pliocene rest on a thin layer of 

sands and then of clays of the Quaternary and then on alternating 

layers of clays and sands of the middle-upper Pleistocene. There 

are several deep narrow valleys which origin is due not only to 

erosive factors but also to the tectonic uplift (Doglioni et al., 

2019). The flanks of the valley are affected by deformations and 

landslides that tend to close these incision valleys.  

2.1 Bridge on SP 154 

The first case study is the bridge on the provincial street 154 in 

Basilicata, between Bernalda (MT) and Ginosa (TA), near the 

border with Puglia.  

Figure 1. Bridge on SP 154: (A) Fissure over the arch, cross the 

keystone. (B) Reconstruction of the bridge in the valley terrain 

profile. (C) Reconstruction of the movement affecting the right 

flank. 

It is a masonry bridge, 115m long and 8m large, crossing a deep 

narrow valley. It is damaged on right part of the first arch (Figure 

1-A), where is evident a deep crack, probably caused, in the

authors interpretations, by the movement of a very slow

deformations of the slope and it is possible to see on the road

pavement cracks and deformation.

On the right slope the inclination change, with a sort of bulging

of the ground, where is the curve right before the abutment of the

bridge; it is assumed that there is a slow gravitational deformation

movement as shown in the Figure 1-C, and that has slowly put

the bridge in compression, leading to the cracks.

Figure 2. Bridge on SP 154: (A) 51 PS in ascending geometry 

(circular dots) and 12 in descending (square dots), with 

evidence of the selected PS. (B) Displacement time series for 

the selected PS. 

The period of Sentinel-1 data acquisition starts on 01/04/2015, 

and end in 05/08/2023, with a total of 409 data, with a range of 

revisitation period between 12 and 6 days.  

In the area of the bridge have been recognized the presence of: 

51 PS in ascending geometry (circular dots) and 12 in descending 

(square dots) (Figure 2-A) The area of interest is delimitated at 

the contact zone between the instability phenomena and the 

abutment of the bridge. So, among the several available PS a 

point in ascending geometry on the bridge has been chosen, close 

to the flank is considered reliable because non affected by local 

surficial deformations. The displacement of this point, even if is 

affected by seasonal effects, shows a trend moving towards the 

satellite. The velocity individuated by the satellite is about 2 

mm/year on the point.  

Satellite finds out a movement that could be directed in uplifting 

or E-W, or a combination of both: in absence of descending 

points, in low number in this case, it is impossible to be sure about 

the real displacement of the bridge, in addiction of the limit of 

the technique about N-S displacement. 

A 

B 
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However, if PS are not available on both the 

ascending/descending geometries, it is possible to infer the 

movement of the area just from one; but this scenario requires 

other signals of the target movement and an expert opinion, that 

could use the InSAR technique to interpret the case studies. 

In this case it is hypothesized that the movement of landslide put 

in compression the abutment that causes an uplifting of the 

bridge, which evidence are cracks on the arch.  

2.2 Partially collapsed bridge on SP 103 

On night of the 23th February 2013 half of a bridge on the SP103 

in Pisticci (MT) collapsed (see Figure 3).  

Figure 3. Bridge on SP 103: picture taken a few day after the 

collapse. 

A few days before the collapse, vehicular traffic was closed due 

the failure and then it has been built up a new bridge in a different 

position. 

Figure 4. Bridge on SP 103: (A) Deformed arch. (B) 

Reconstruction of the bridge on the terrain profile. (C) Ogival 

deformation of the arch and main deformation direction. 

The damage caused an important inconvenience to road traffic, 

because the SP 103 is the only direct connection between Craco 

and Pisticci; indeed after a few years the bridge was replaced by 

a new one, built near the older.  

The bridge is constituted by a single arch in masonry, parallel to 

a railway line in disuse, and long 25m and large 6 m.  

After the analysis of the altimetric profiles, it is supposed that the 

instability phenomena affect the left abutment, as shown in 

Figure 4; so, there were considered a few PSs in this area, on the 

abutment and on the arch, before the collapsed part of the lane.  

The abundance of PS in descending geometry is justified by the 

parallelism between the bridge and the satellite trajectory, indeed 

there are only 6 points in ascending geometry and 66 in 

descending. The period of Sentinel-1 acquisitions begins on 

12/04/2015 and ends on 04/08/2023, with a collection of 398 

images. Unfortunately, the period of acquisition started after the 

collapse, and there are no PS found with the ENVISAT and ERS 

for their lower resolution. Anyway, among the several available 

PSs, it was chosen a group of points on the bridge, near the 

abutment of the bridge involved by the gravitational deformation, 

considered reliable because non affected by local surficial 

deformations. 

It is possible to identify two separate movement: 

− The first one, between the abutment and the terrain

(Figure 5-B), show only moving away from the satellite,

with a well definite displacement trend, so it is supposed

that part of the bridge subsides, following the movement

of the landslide;

− The second one, on the arch, shows a moving towards the

satellite, so this fits the hypothesis of an uplifting of this

area that brought at the collapse of the bridge in 2013.

Figure 5. Bridge on SP103: (A) Circular and square dots refer to 

PS in ascending and descending geometries, respectively. In the 

area circled in orange, PSs have negative velocity. (B) 

Displacement time series of the selected PS which shows a 

well-defined trend, an elevated velocity and a moderate 

coherence. 

A 

A 

B 

A 

C

B 
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3. CONCLUSION

The cases illustrated show how very slow landslide movements 

can cause significant damage to infrastructure and bring to the 

loss of functionality to, with all the direct and indirect 

consequences, and potentially loss of human lives.  

A common mistake is to consider the cracks as a sign of 

infrastructures ageing, considering them detached from the 

geological context. These two cases are representative of huge 

number of similar cases in Italy, poorly investigated, but still 

dangerous. 

Satellite interferometry technique represent an important 

monitoring tool that can help to clarify the ongoing dynamics of 

landslide-infrastructure interaction; but the technique alone can’t 

explain the complexity of the interaction terrain-infrastructure, so 

it is required an expert opinion. In addiction it is needed a deep 

knowledge of the area, in fact, in the bridge on SP 154, some of 

the points near the chosen two, could deceive an inexperienced 

observer, because these points are in an area not affected by the 

landslide. 
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ABSTRACT 

The ability of the Digital Twins (DT) to provide value-added information simplistically has paved a completely new and broader path 
of opportunities in the field of Remote Sensing (RS) and digital 3D modeling. The presence of state-of-the-art RS techniques like 
LiDAR, SLAM, close-range photogrammetry, aerial photogrammetry, and their possible integration have even broadened the horizons 
and scopes for the creation and update of DT. In addition to 3D modelling, DT features the fourth dimension, time, which itself alters 
the data and the associated semantic information. DT enables the end users with a simplistic browsable and interactive web environment 
to analyze the past, present, and future of urban dynamics. Urban DT represents the virtual picture of a complex and dynamic physical 
world with a variety of applications in mobility, planning, energy, and many others.  In this contribution, we focus on the ongoing 
progress and initiative in the project of creating the DT for the city of Turin Italy and deriving products from it. The DT project is 
aimed at the extraction of the built environment features, land use data, road network, and signs along with the update of the model 
with time.  

1. INTRODUCTION

The concept of Digital Twin (DT) has been developed in the 
last years as part of the more general discourse on smart cities, 
with the aim of providing a physical infrastructure, data, 
information and procedures for the management of complex 
anthropogenic systems. The traditional association between 
DT and smart city derives from the ability of the former to 
analyze big data, provide services and applications and 
guarantee continuous monitoring, But Digital Twins are way 
more than just smart cities built in 3D, as they incorporate time 
as a variable that modify data and semantic information. 
There are several applications of urban DT. Representing the 
virtual simulation of a complex dynamic reality, it can be used 
efficiently in various fields, for instance: energy, environment, 
mobility, spatial planning, emergency management and 
security. A DT can be understood as a bridge between physical 
reality and the virtual world i.e., a digital replica of physical 
objects and systems in the virtual world with the inclusion of 
sensors, smart Internet of Things (IoT) technology, Artificial 
Intelligence (AI) and dynamic simulations (Lehtola et al., 
2022; Lu et al., 2020). In the field of Urban Planning, 3D 
models for DT are employed at multiple scales ranging from a 
single building to a regional scale.  
The necessity to analyze urban dynamics and evaluate them 
beforehand in order to maximize the effectiveness and 
influence of new projects is what drives the urbanistic 
application of this instrument. Furthermore, DT can become 
an incredibly useful tools for public administration. In the 
framework of the SDG 11 - Make cities inclusive, safe, 
resilient and sustainable, in fact, developing a city-DT means 
not only adopting the principles of security, sustainability, and 
equity that future urban policies should pursue, but also 
becoming aware of the climate-altering impacts due to the 
increasing anthropic pressure on the city–landscape–
inhabitant system (Shahat et al., 2021). The data sources for a 
DT can be satellite images, RGB images, point clouds, and 
hybrid 3D modelling methods. (Ying et al., 2023). For the 
image-based DT creation, most applications use the stereo-

images based 3D reconstruction providing the detailed 
geoinformation with a larger coverage (Rothermel et al., 
2020). As for point cloud dataset, they can accurately collect 
high-resolution 3D information of the ground features both in 
small and large scale urban scenes. Moreover, point cloud 
provides abundant 3D data and represents the vertical 
dimension straightforwardly i.e., building heights and surface 
occlusions from trees and buildings are represented well. The 
point cloud-based DT are focused on the building 
reconstruction in boundary classification and feature 
extraction as point data is enriched with semantic labels (roof, 
door, window, openings, etc.) (Albano, 2019; dos Santos et al., 
2020; Erener et al., 2018) They provide height information and 
depict the building outline accurately. This adds significant 
value to DT visualization and semantic information input 
(Gevaert et al., 2017). 
Another possibility for the creation of a DT involves hybrid 
data sources like 3D city models, 3D GIS, BIM-GIS and a few 
others. A 3D city DT includes information about the geometry, 
structure and covering data of numerous morphological 
aspects, infrastructure, vegetation, and buildings (Julin et al., 
2018). The applications of the 3D city DT encompass anything 
from energy applications to urban spatio-temporal change 
detection and noise mapping (Zhao et al., 2017; Zięba-
Kulawik et al., 2020; Zirak et al., 2020). For instance, low level 
of Details (LoD) concentrates on extracting large-scale 
building information (such as volume, height, and density), but 
high LoD examines nuanced 3D influence, which may be 
overlooked due to poor data resolution (for example, trees may 
cast shadows on houses on low-store levels). In addition, the 
3D visualization breaks the 2D barrier, which is advantageous 
for various real estate stakeholders (Biljecki et al., 2016) 
Figure 1 illustrates the different applications and use-cases of 
a Digital Twin of a smart city. 
Taking into consideration what stated above, the present paper 
intends to present some first results of the on-going project of 
creation of the Turin Digital Twin by the SDG11Lab in the 
DIST Department of the Politecnico di Torino. In the next lines 
it will be explained in detail the process of acquisition and 
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processing of the city-level data used to create the 3D model 
for the DT. The objective of this contribution is to propose a 
method for data acquisition which enrich the quality of the 
final 3D model, thanks to the combined use of Lidar and image 
data. The proposed outcomes of the Turin DT project are an 
easily accessible and browsable digital ecosystem that 
describes the behavior of the real world and its evolution over 
time as well as the effects of future urban developments.  

Figure 1: Urban Digital Twins for a smart city (Biljecki et 
al., 2016) 

One of the main objectives of this work is to equip the public 
administration with a privileged tool to plan the future of the 
city and to manage past, present and future information at the 
same time.  
First step to achieve these objectives is the construction of a 
digital model, integrating different sources, and the realization 
of a virtual environment where it is possible to visualize and 
to analyze different kind of data. Another goal is represented 
by the extraction of the built environment features, like land 
use data, road network, public infrastructure, buildings and 
green areas. Compared to a static 3D model, this application 
allows to reduce time for simulation and testing and opens the 
way to real time experience. Another end goal of the Turin DT 
project is the update of the model over time, , with a planned 
acquisition plan with different kind of sensors. This is 
necessary for the digital environment to maintain consistency 
over time and, at the same time, to bring the attention to a 
multitemporal and multiscale approach. 

2. PRODUCTION OF DT

To build up this digital environment we analyzed a 3d web 
platforms that reflect an ever greater interest to Open Source 
(OS) software, interoperability and collaboration standard, in 
order to work in openness ecosystem. The next paragraph will 
explain the methodology of acquisition and processing of the 
city-level data that were used to create the 3D model for the 
Turin Digital Twin.  

2.1 Data collection and study site 

Turin is the third-largest city of Italy located in the North of 
Italy and is home to numerous UNESCO heritage structures. 
The location of the city of Turin  is shown below in Figure 2. 
The dataset used to model the Turin DT is acquired on January 
28-29, 2022, using the new Leica City Mapper-2 (Figure 3), a 
hybrid digital sensor onboard an aircraft and is composed by 
optical images as well as LiDAR point cloud. Figure 4 below 
shows one of the captures from the data acquisition phase in 
Turin. 

Figure 2: Location of the city of Turin 

Figure 3: Data acquisition for Turin DT project with Leica 
CityMapper-2

Figure 4: Dataset acquisition systems and acquisition schema 

For the optical imagery data 20.291 images were acquired over 
the city of Turin at a flying altitude of around 1 km. For every 
capture location, one Nadir and four oblique images were 
acquired, as it is shown in the data acquisition schema in 
Figure 3. The photogrammetric takens was characterized by a 
GSD of 5 cm, 60% of lateral images overlapping and 80% of 
longitudinal images overlapping. Moreover, the sensor is 
equipped with two different cameras: the Camera NIR Lens 71 
for nadir and multispectral acquisition and the Camera RGB 
Lens 112/145 for oblique acquisition. The scheme of 
acquisition was based on a traditional grid with nadir and 
oblique taken. The LiDAR data was collected simultaneously 
to the images, with a point density of 30-40 m2. with an 
acquisition angle of 20°. This system is characterized by a 
conical scan pattern that allows vertical surfaces in the 
resulting point cloud in all direction. 

L. la Riccia et al.
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2.2 Data management and data processing 

 

The optical imagery and LiDAR data with initial orientations 
and trajectories were processed with Agisoft Metashape and 
nFrames SURE to derive classified dense point clouds, 3D 
mesh, precise and detailed orthophoto, DTM and DSM for the 
city of Turin. The use of combined dataset aims to improve the 
quality of the final model, as for instance the use of oblique 
images and LiDAR system represent an advantage for the 
modelling of vertical surface or provide additional information 
like the intensity, useful for point classification (Figure 5). In 
fact, while with the image data the classification regards only 
the land-use and land-cover visible on the images, with the 
LiDAR data we can classify the ground, the vegetation and the 
buildings. Furthermore, a complementary benefit of using the 
LiDAR – which is an active sensor – in combination with 
image data is the possibility to compensate the necessity of the 
sunlight with the ability to acquire in the shadows and under 
the vegetation.  
 

 
 

Figure 5:  General Data Processing Methodology 

Moreover, for 3D mesh the combining of LiDAR and image 
it’s essential because one is used during the geometrical 
modelling end the other to texturing the 3D model. 
The processing phase on nFrames Sure (Figure 6) combine 
LiDAR data and image data, this software offers the possibility 
to use LiDAR data to improve the 2.5D and 3D product. The 
LiDAR point clouds is useful where the geometry of the 
surface is difficult to reconstruct only from the images, in 
particular where the density of the city is very high or where 
the images is affected by shadow areas or occlusion. The 
following scheme shows the nFrames workflow. 
 

 
Figure 6:  nFrames Sure workflow 

The integration of the photogrammetric data with a LiDAR 
data, as shown in the figure 4, took place during the processing 
phase, so it is important that the initial data already match. The 
first step is called Dense Image Matching (DIM), and regard 
only the images. In this phase the images and the relative 
orientations were processed in order to obtain a 2.5D output. 

After the DIM, LiDAR data are used only to reach a 3D output, 
like 3D mesh and 3D point cloud, and to enrichment the True 
Ortho.  
Adopting LiDAR point cloud as a complement to the image 
data, the final 3D model result more complete and  
geometrically improved, as it allows to correct typical 
photogrammetric errors, during surface reconstruction phase.  
The following images show the difference between an image-
based model and an integrated model in a zone afflicted by a 
shadow due to trees foliage.  
 
 
 
 
 
  
 
 
                    (a)                                               (b) 
 
Figure 7:  Difference between (a) image-based model and (b) 

integrated model 

The data were georeferred using the initial trajectory of the 
flight. The Leica City Mapper-2 is equipped with a multi-
frequency and multi-constellation GNSS (Global Navigation 
Satellite System) receiver and IMU (Inertial Measurement 
Unit) gyro and accelerometer measurements. The absolutely 
accuracy of GNSS positioning with the stability of IMU 
generate a 3D navigation solution, used to georeferencing the 
data. 
 
2.3 The 3D mesh model 

 
The 3D model developed in the first phase of this work 
represents the base for future application of the Digital Twin.  
Thanks to the synergy and integration of different 
technologies, the previous stages allow to obtain a metrically 
correct model of the city, which will be useful to analyze and 
describe all the different feature of the urban environment. For 
instance, with the 2.5D DSM is possible to establish the high 
of the building and to extract the topography features, while 
the 3D Point cloud is used to classify the points in different 
class, like building and roof shapes, high and low vegetation, 
ground and road infrastructures. Moreover, the 3D model can 
be used for visualization and dissemination application on the 
web. All these applications can be translated into virtual layers 
that describe the city of Turin and that can be enriched by 
semantic content. 
  

 
(a) 
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(c) 

 

 
(d) 

Figure 8: Processed Data Products (a) LiDAR point cloud 
(b) 3D point cloud from Photogrammetry (c) 3D mesh (d) 

DSM for the locality Corso Palermo in Turin 

 
 

3. CHALLENGES AND OPPORTUNITIES 

There are several challenges associated with this research 
project, related both to technical and semantic aspects. As for 
the technical aspect, the challenge consists in   the processing 
of larger datasets or their cost-efficiency factor. Relating to the 
semantic aspects, there are issues concerning the rapid rate of 
growth and development of the city and the complexity of the 
solutions, which support the need for further research in the 
area of multitemporal updating of the model. Many are the 
solution that exist for the integration of 3D models from 
different sources for DT, but the key problem is still to have 
an operational and simplistic product that can be understood 
and implemented by the direct stakeholders. In this way the 3D 
model represents a key product which is at the base, in general, 
of DT.  
Regarding the technical aspects, one of the challenges with 3D 
LiDAR and photogrammetry datasets is the requirement of 
stronger computational hardware for the processing. A 
workstation with moderately high computational strength is 
required for processing and visualization of 3D point cloud 
datasets from LiDAR and Photogrammetry. Also, when using 
airborne data along with ground based Close Range 
Photogrammetry (CRP), Terrestrial Laser Scanning (TLS) and 

SLAM, wide attention must be made to georeferencing errors 
that come from the integration of different data sources. 
Another key challenge with a city level DT is the solution for 
sharing with the stakeholders. An open-source solutions would 
be optimal but it provides a limited storage capacity. 
Not only challenges but also great opportunity come with this 
project. The development of an urban 3D model in an Open-
Source system in fact could represent the chance for public 
administrations to have access to interactive analysis and 
simulation on the urban environment. Furthermore, particular 
attention can be paid to model update with collaborative and 
crowdsourcing solutions, with the perspective to develop a 
community able to use and update the 3D model. 
Further experimentations will regard data integration for 
improvement of the model: not only ground-based Terrestrial 
Laser Scanning (TLS) data with aerial photogrammetry point 
cloud, but also crowdsourced data. 
  

4. CONCLUSION AND FUTURE PERSPECTIVE 

The proposed outcomes of the Turin DT project are an easily 
accessible and browsable digital ecosystem that describes the 
behavior of the real world and its evolution over time and an 
environment simulating the effects of future urban 
developments on the digital copy of reality.  
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ABSTRACT: 

Recent policies at the national and international levels showed the need for effective tools supporting policymaking. This study – 

primarily based on energy classification – uses thermographic pictures and GIS technology to define the energy needs of a district in 

Turin, Italy. Potential savings – in terms of primary energy consumption and carbon dioxide emissions – are assessed based on two 

retrofit scenarios and alternative energy supply options. A further element, i.e. the photovoltaic potential, is introduced to assess – 

starting from classified LiDAR data – the possibility to introduce self-production forms for reducing even more the impacts of the 

energy sector. The results show the potential for further studies based on 3D modelling, oriented towards the implementation of a 

thematic layer for the Urban Digital Twin. 

1. INTRODUCTION

1.1 Framing of the study 

With the ongoing urbanization trend, there is a pressing need for 

policies to reduce energy demand and deriving environmental 

problems. In this context, the fit for 55 package – including the 

revision of the Renewable Energy Directive, Energy Efficiency 

Directive and Energy Performance of Buildings Directive – 

targets an 80-95% reduction of GHG emissions (compared to 

1990 levels) by 2050. 

Policymakers require effective tools for supporting their 

decisions, e.g. mapping the current status of energy performance 

according to the EPBD. Geographic Information System is a 

powerful tool to integrate and synthesize multiple datasets – be 

they tables, vectors or imagery. In the energy sector, GIS can be 

used to draft Urban Building Energy Models with a low appeal 

to archetypes thanks to the continuity granted by geographic data. 

Aerial thermography can be used to define a consumption model 

based on the thermal dispersion of buildings. While this method 

is widely validated on a building scale (Martin et al., 2022), its 

potential on district and city scales still has to be unlocked. 

Moreover, it is possible to georeference the information 

contained in Energy Performance Certificates – required since 

2002 before any intervention – to improve the calculation model 

by adding further parameters. 

1.2 Workflow 

The work is structured in two main components: a consumption 

and photovoltaic productivity analyses are carried out 

contextually, thus exploring the possibility to create a Renewable 

Energy Community in the area of interest. 

The demand estimation is conducted by estimating the thermal 

performance of the envelope from thermographic pictures and 

correlating the energy performance class observed in a set of 

Energy Performance Certificates issued for the area of analysis. 

Potential productivity from photovoltaic panels – intended to 

* Corresponding author 

understand the share of renewable energy to meet the total 

demand – is estimated with a GIS-based viewshed algorithm 

from the Digital Surface Model, realised starting from a LiDAR 

point cloud. 

Two renovation scenarios are then explored, considering the 

potential benefits from renovating the building stock and partially 

electrifying the energy systems for heating and cooling. 

1.3 Study area 

The study area is located in the Northern part of Turin, in the 

Barriera di Milano district. It is bounded by relevant mobility 

infrastructures – a former railway in the North and high-capacity 

avenues on the other three sides – with further two principal roads 

crossing it and characterised by problems affecting both its 

physical and social structures. Two main clusters were 

highlighted for this research, with a former industrial plant in the 

North and a functionally mixed area in the South. 

The study area is heterogeneous, with an inner dense residential 

fabric and industrial buildings – partially reconverted for 

commercial purposes – on the borders. Indeed, the district grew 

after the post-war economic boom, with industries along the 

commercial axes and residential buildings to meet the deriving 

housing demand. The quick and serial realisation led to poor-

quality constructions, resulting now in problems such as 

inadequate energy performance. From this it arose the need for a 

wide-scale energy classification, supporting future policies for 

extensive energy renovations and assessing the results of 

refurbishments which already happened. Further details are 

provided in (Anselmo et al., 2023). 

2. CONSUMPTION ANALYSIS

2.1 Thermographic acquisition 

The evaluation of the thermal energy demand started from 

thermographic images acquired on 9/1/2022 with a FLIR A8581 

MWIR HD camera – registering wavelengths of 3-5 µm with 
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±1°C accuracy. They were orthorectified to remove distortions, 

producing thermal orthoimages. Despite the possibility to see the 

roofs only due to the nadiral perspective, the 1.3 MP resolution 

ensures the recognition of disturbing elements – like chimneys 

and dormers – affecting the results. However, the diurnal 

acquisition – around midday – led to shading problems, with 

sunny pitches returning considerably higher values compared to 

the shadowed ones. Due to the exploratory nature of this research, 

it was not possible to have a dedicated acquisition, resorting 

instead to existing datasets with limited availability. 

The thermographic pictures – provided orthorectified but not 

geolocalised – were first georeferenced with ArcGIS Pro. After a 

first adaptation through scaling and rotation, the georeferencing 

tool requires the user to input Ground Control Points by 

comparing the image to be georeferenced with a georeferenced 

one, requiring a higher resolution not to reduce the accuracy. In 

this case, a precision orthophoto – 5 cm accurate – realised in the 

TerraItaly™ Metro HD project for the SDG11 Lab was used. On 

average, the resulting forward error was 0.941, while the inverse 

was 1.412. The five images – one stand-alone and the others 

grouped in couples – cover an area of approximately 0.35 km2. 

2.2 Definition of consumptions 

Thermographic pictures return the outer temperature of 

buildings. Assuming the internal temperature as constant – 

considering that the flight was carried out during the heating 

season, with the temperature set by Presidential Decree 16 April 

2013 n. 74 to be 20°C – and the roofs to be homogeneous – 

realised with the same material, thus resulting in similar thermal 

storage and emissivity – the outer surface temperature can be 

used to quantify the thermal dispersion and therefore the energy 

class. For this step, Energy Performance Certificates – regulated 

in Italy by the Legislative Decree 192/2005 – were gathered, 

defining the distribution of buildings in the classes and the 

reference Global Energy Performance Index (as the median of the 

values registered in the EPCs for that class). Results are 

summarised in Table 1, with differences emerging in the intervals 

between the values. They are minimum for central classes, 

increasing towards lower classes: class G requires approximately 

100 kWh/m2 more than class F, while only 15 kWh/m2 divide 

classes C and E. As for the count, class F is the one with the most 

units, with less performing classes outnumbering the upper ones. 

Energy class Count 

[-] 

Share 

[%] 

Reference 

GEPI 

[kWh/m2] 

B 3 4.65 98.06 

C 3 4.65 118.95 

D 11 16.74 123.15 

E 17 25.58 130.49 

F 20 30.23 176.24 

G 12 18.14 276.22 

Average 11 16.61 153.85 

Table 1 – Energy classes and reference GEPI 

The reference GEPI was multiplied by the gross floor surface – 

defined as the footprint multiplied by the number of floors – and 

divided by the conversion factor of the natural gas to compute the 

thermal energy demand. On the other hand, the electricity 

demand was esteemed as 1113 kWh/inhabitant, based on ISTAT 

data. The total energy demand is shown in Figure 1. 

Figure 1. Total energy demand 

The former industrial plant in the North is composed of the most 

energy-intensive units, due to low performance and big surfaces 

to be heated. The westernmost area – partially renovated – has 

some of the most performing buildings, while there is high 

heterogeneity in the Eastern cluster. As for class characteristics, 

the gross floor surface increases constantly from B to F, while 

class G buildings are smaller compared to the previous class. This 

partially mitigates their impact, resulting from high consumption. 

The total thermal energy demand amount to 42 GWh/year, equal 

to 155 kWh/m2, which makes the average building classifiable in 

class E. As for electricity demand, 37% of the buildings have 

residential units, with a total need of 3 GWh/year (9% of the total 

energy demand), corresponding to 19460 kWh/year per building. 

3. LIDAR POINT CLOUDS

In this work, a DSM produced by Compagnia Generale 

Ripreseaeree was used, but it is relevant to mention how LiDAR 

point clouds are processed to produce a DSM. 

3.1 LiDAR classification 

Light Detection and Ranging (LiDAR) is one of the principal 

technologies for large-scale 3D modelling. It generates a brief 

laser pulse and registers the reflection (Croneborg et al., 2020), 

thus creating a cloud of points with known positions. 

There are two main methods for LiDAR data classification: 

feature extraction and machine learning. The former segments 

the dataset based on spatial and radiometric information, while 

the latter has seen recent evolutions in the field of computer 

vision and deep learning. PointNet is a deep neural network 

processing the 3D point cloud without conversion, unordered. It 

uses transformation matrices and the max pooling method to 

classify the point cloud elements, abstracting the features of the 

original point cloud through subsequent iterations (Zhongyang et 

S. Anselmo et al.

22



al., 2018). The segmented point cloud can be used to return 

different products, according to the required application. 

3.2 DEMs production 

Classified point clouds can be used to produce a 2.5D Digital 

Surface Model (DSM), which describes on a bi-dimensional 

raster map the surface of objects from the real world. For the 

rasterisation, two types of processes can be carried out. Among 

the semi-automated solutions, CloudCompare requires the user 

to input the cell size of the regular grid to be returned, the vertical 

direction (Z) and the interpolation method to be used to fill up the 

spaces with no information. On the other hand, the module DSM 

in OPALS (Orientation and Processing of Airborne Laser 

Scanning data) – developed by TU Wien – is fully automated. It 

is based on the iteration of sub-sampling grids until either the 

neighbour count or the maximum search radius is reached, 

followed by a moving planes interpolation. 

While the DSM takes into account the whole point cloud, pre-

processing is required to derive other Digital Elevation Models 

(DEMs), such as the Digital Terrain Model. In particular, in this 

case, a filtering phase is required to select only the ground points. 

The appropriate DEM is to be selected according to the 

application and the required accuracy, so as to minimise 

elaboration times. 

4. PHOTOVOLTAIC POTENTIAL

Solar energy is the most suitable Renewable Energy Source 

(RES) for being installed in the built environment, due to the 

possibility to integrate solar panels on the roofs. This reduces 

both the investment costs – not requiring the construction of 

further structures – and the visual impact of this technology. The 

photovoltaic potential was calculated based on the solar radiation 

striking the roofs, according to the Suri equation (1): 

PVpotential = Solar energy * PI * η * surface [kWh/year]           (1) 

Where Performance Index PI – quantifying the efficiency of the 

system – was assumed to be 75%, the conversion efficiency η 

depends on the technology to be installed and the surface is 

assumed to be 40% of the unit footprint – a value which includes 

correction factors for inclination and presence of obstacles. 

4.1 Solar radiation evaluation 

Starting from the DSM elaborated from LiDAR data, it was 

possible to evaluate the solar energy using the “Area solar 

radiation” tool of ArcGIS Pro (ESRI). Parameters were set 

according to the need to minimise the elaboration time while 

keeping the calculation accurate. The default sky size – 200 – was 

kept, while the hour interval was increased to 1 hour, analysing 

the radiation with a “whole year” time configuration. Thus, by 

default, the day interval is set to 14 days, using 2022 as the 

reference year. The “slope and aspect input type” was shifted to 

the option which uses the input DSM for calculating the 

exposition, calculation directions were reduced from 32 to 16. 

The crucial aspects were the radiation parameters. As “diffuse 

model type” it was chosen the “standard overcast sky”, with 

which the diffuse radiation flux varies based on the zenith angle. 

Diffuse proportion and transmissivity values – summarised in 

Table 2– make the study site-specific by including weather data 

differentiated depending on the season. Diffuse proportion is 

returned by PVGIS – an online tool by the European Commission 

– while for the latter further calculations are required, crossing

data from the same source with fixed parameters as the LINKE

turbidity factor and the solar constant.

Season Diffuse 

proportion 

Transmissivity 

Winter 0.38 0.56 

Summer 0.38 0.76 

Spring/autumn 0.42 0.67 

Table 2.  Diffuse proportion and transmissivity parameters 

The tool processes on average around 0.7 km2/h, thus requiring 

nearly two hours to process the area of interest for each iteration. 

For this reason, seasonal averages were used, aggregating four 

months for each. 

The “Area solar radiation” tool returns monthly values, making 

therefore possible the comparison of different months. By 

checking the two months for which the radiation is minimal – 

December – and maximal – August – it is possible to observe a 

relevant difference apart from the one in the energy values, that 

is the solar height. In summer the sun rays strike not only the 

roofs but also the roads and open areas. On the contrary, in winter 

months the roofs are the only surfaces with relevant production 

values, thus justifying their selection for the installation of 

photovoltaic modules. Values were then aggregated yearly, as 

shown in Figure 2. 

Figure 2. Yearly solar radiation 

4.2 Producibility of photovoltaic panels 

Once having calculated the solar radiation, it is necessary to refer 

production values to the volumetric units. This can be done in a 

few steps, converting each cell of the raster output to points and 

joining the values of the closest point to the centre of the 

volumetric unit. By choosing this procedure instead of 

calculating zonal statistics based on the volumetric units, the 

portion with the highest radiation is taken, not considering the 

potential errors on the roof edges.  

After that each volumetric unit is assigned a reference radiation 

value, it is possible to compute the potential production. 

Conversion efficiency, according to (Green et al., 2022), was 

esteemed to be 24.2% for crystalline cells, 18.4% for 

polycrystalline and 11% for thin film. When installing the 

second, approximately 8.8 GWh can be produced yearly, with a 

great variability for each volumetric unity, mostly based on the 

exploitable surface. Indeed, all buildings producing more than 

120 MWh/year have 1200 m2 of available roof surface or more. 

Compared to polycrystalline, monocrystalline modules have 

higher productivity, thus being able to produce the same amount 

of energy with a lower surface or produce more with the same 

surface. On the other hand, thin-film modules produce less but 

are also cheaper. 

Comparing the potential polycrystalline production to the 

esteemed consumptions – assumed to be 1000 kWh/person/year, 

it emerges that around half of the volumetric units could produce 

by itself the electricity needs. Moreover, 15% of the units can 
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produce twice their demand, with the ratio between total 

production and consumption being 83.2%. Therefore, 

collaboration forms can be foreseen, dividing benefits and 

burdens within the community. 

5. RENOVATION SCENARIOS

The previous results were integrated to elaborate two alternative 

retrofit scenarios. The first is the optimum, foreseeing a 

reclassification of all buildings in class B, and the second targets 

an improvement by two classes for every unit. They were 

compared by assessing four alternative energy supply options, 

that are District Heating (DH), natural gas (G), a mix of district 

eating and natural gas (M) and heating pumps – partially covering 

the demand through photovoltaic production – (HP+PV). In the 

first three scenarios, electricity is taken from the grid. 

5.1 Energy saving 

The first assessment concerned the savings in terms of primary 

energy. Figure 3 shows the current state – with all buildings 

heated through natural gas boilers – and the comparison of the 

two scenarios with different energy supply options. 

Figure 3. Primary energy Consumption 

The least savings are achieved by renovating the buildings 

without changing the systems servicing them, while the 

installation of photovoltaic panels and heating pumps would lead 

to a doubling of the savings. District heating – likely to be 

introduced in the district in the medium term according to the 

project North East – is the most effective energy supply option 

which does not foresee electrification for maximising the 

savings, reducing consumption 15% more than with natural gas 

boilers. 

The optimum scenario would grant savings of at least 35%, with 

additional 4 GWh of primary energy saved yearly in the case of 

district heating implementation. Self-production and the use of 

heating pumps would cut the consumption by ¾, that are 

48 GWh. 

In the second scenario – the most likely thanks to lower 

investments needed – 26% of the volumetric units would fall into 

class B, decreasing primary energy consumption by 25% to 70%, 

depending on the energy supply. This makes it suitable to use the 

second scenario as an intermediate step towards a full renovation. 

Moving from this scenario to the optimum without changing the 

energy supply would result in savings from 14% to 21%. 

However, an even wider difference – 25% equal to 9.6 GWh/year 

– can be observed between the second configuration with natural

gas boilers and the first with district heating.

5.2 Decarbonisation potential 

An energy retrofit would also help the Municipality to achieve 

climate neutrality, considering that in Turin the residential sector 

causes 37.2% of the total carbon dioxide emissions. 

Figure 4 quantifies the savings in terms of tonnes of equivalent 

CO2 in the two scenarios, with the general outcomes being 

similar to the takeaways of the primary energy analysis. The 

HP+PV solution in the two scenarios would grant – respectively 

– savings equal to 59.53% and 56.59%.

Figure 4. CO2 emissions 

At least 2829 tonnes of CO2 could be saved – improving the 

building stock by two classes and keeping natural gas boilers –, 

with savings reaching 8460 tCO2 in the best option. 

Compared to the previous analysis, with this parameter the 

upgrade from the second to the first scenario is more convenient. 

A transition towards district heating would result in savings 10% 

higher, 6% in case of a mixed scenario. On the other hand, 

savings are 3% lower considering heating pumps. 

6. CONCLUSIONS AND FURTHER DEVELOPMENTS

This article focused on a method to perform an energy assessment 

– for both production and consumption – through the tools of

remote sensing. Two retrofitting scenarios were compared in

terms of primary energy saving and prevented emissions, taking

into account alternative energy vectors. The first scenario grants

the most benefits, but the second requires a lower investment,

being therefore a better trade-off between costs and benefits.

Investments would be needed also for the electrification scenario,

thus requiring additional calculations on the payback period,

based on the relevant savings which would derive.

This method proved to be simple and easy to use so that it can be

attractive for policymakers. On the other hand, there were

problems with data availability and simplification. A first

improvement would derive from the acquisition of a better

thermographic dataset – granting oblique pictures for full 3D

reconstruction and the absence of solar radiation flawing the

results – which can push the automation of the processing.

Another key aspect is the definition of the necessary technologies

for increasing energy efficiency, quantifying the necessary

investments too. Moreover, also the costs relative to the

installation phase should be taken into account.

Finally, this could be a first supporting tool towards the

identification of areas suitable for the creation of Renewable

Energy Communities, based on their potential and limitations –

in terms of dimensioning and potential production. To do so, the

principal aspect to take into account is correlation, defined as the

time shift between the peaks of energy production and

consumption, both during the day and the seasons. The two
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scenarios can be used for the definition of a roadmap towards the 

creation of energy communities, reducing the energy needs for 

taking a step forward in the direction of self-production. 
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ABSTRACT: 

In the last 20 years, satellite technologies have been increasingly used for study, monitoring, conservation and promotion of cultural 
heritage, with a growing trend at both national and international levels. While satellite images collected from optical sensors have 
already become common data exploited by (geo-)archaeologists, researchers and heritage experts, Synthetic Aperture Radar (SAR) 
technologies are increasingly being tested and exploited, also beyond the specialist image analyst community. At European level, the 
Italian ecosystem undoubtedly represents an excellence. First of all, there is long tradition in exploitation of innovative technologies 
for cultural heritage across many countries in Europe. Moreover, several investments were made into not only Earth Observation (EO) 
missions with characteristics of image acquisition that well suit the user needs and requirements for this application domain, but also 
initiatives promoting downstream applications and services development engaging small, medium and large enterprises. The present 
paper therefore illustrates ASI’s contribution for cultural heritage, alongside the current perspectives, in light of the COSMO-SkyMed 
programme (upstream) and “Multi-mission and Multi-Frequency SAR” and “Innovation for Downstream Preparation” (I4DP) 
programmes (downstream), the latter with particular focus on the initiative dedicated to scientific users (I4DP_SCIENCE). 

1. INTRODUCTION

There is a substantial body of literature and developed case 
studies demonstrating how satellite technologies have become 
one of the technological means to address more than one of the 
main phases of cultural heritage management, i.e. discovery, 
study, monitoring, conservation and promotion. This growing 
trend is witnessed at both national and international levels. 
Recent publications critically reviewing the specialist scientific 
literature highlight a significant level of maturity of satellite 
applications in this domain (Luo et al., 2019; Tapete and Cigna, 
2019a), so as satellite images collected from optical sensors have 
already become common data exploited by (geo-)archaeologists, 
researchers and heritage experts. 
At the same time, Synthetic Aperture Radar (SAR) technologies 
are increasingly being tested and exploited, also beyond the 
specialist image analyst community, thanks to multidisciplinary 
collaboration between different professionals (Tapete and Cigna, 
2017) and facilitated SAR data access given the increasing 
provision by e.g. space agencies, data centres and commercial 
providers, also in “ready to use” formats (Tapete and Cigna, 
2019b). 
The Italian ecosystem – composed by scientific and academia 
community developing solutions, small, medium and large 
enterprises able to engineer innovative scientific algorithms and 
prototyping novel services, and heritage bodies that play a pivotal 
role to test such developments based on EO data on real-world 
cases, and thus assess whether they can become solutions – 
undoubtedly represents an excellence, at least at European level. 
Therefore, it is true to state that in Italy there is the full chain 
leading from upstream satellite assets to downstream exploitation 
of EO data. 

* Corresponding author 

The Italian Space Agency (ASI) is at the core of this national 
ecosystem, thanks to its continuous investment in EO data 
exploitation and applications development, as new satellite 
missions are designed and launched. 
The present paper has manifold objectives: to provide an 
overview of current achievements in the application domain of 
satellite technologies for cultural heritage; to outline existing 
trends and future perspectives; in light of the above, to illustrate 
ASI’s contribution to the growth of this field; and to describe 
ongoing initiatives at national level to continue nurture this 
downstream sector. 

2. ACHIEVEMENTS AND TRENDS

Nowadays, the use of satellite technologies for cultural heritage 
is not novel per se, given that it is long time that satellite 
technologies are used for heritage prospection, monitoring and 
conservation. Cuca and Hadjimitsis (2017) already provided an 
overview of the operational period of satellites (both ongoing and 
no longer active) carrying sensors of interest for archaeological 
prospection. That census clearly highlighted that, at different 
levels, several members of the archaeological and cultural 
heritage communities had already identified what existing 
satellites could offer to complement the available means and data 
sources to address cultural heritage applications.  
Such inventory would definitely require to be updated to account 
for not only the most recent launches of satellites of potential 
interest for cultural heritage – e.g. hyperspectral missions like 
PRISMA (Loizzo et al., 2019; Giacomo et al., 2020) and EnMap 
(Storch et al., 2023) or sensors such as DESIS (Alonso et al., 
2019) –, but also the new technologies in sensors and platforms. 
In this respect, mini- and nano-satellite constellations are 
increasingly being launched and enhance the range of (very) high 
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spatial resolution products accessible from the user community. 
These space assets are expected to not only widen the observation 
solutions available to users, but also boost the temporal 
resolution. While first papers on the use of PRISMA (Alicandro 
et al., 2022) and DESIS (Cerra et al., 2021) in archaeology are 
gradually appearing in the literature, the assessment of the impact 
of mini and nano-satellites on cultural heritage applications is yet 
to be unfold, and thus remains an area of further investigation. 
Moreover, although satellite technologies are yet to be embedded 
in operational workflows by various strands of the community, 
review exercises of the specialist literature undertaken separately 
and independently by different research groups on different 
topics show an increasing trend of experimentations and use of 
satellite technologies for cultural heritage (Tapete and Cigna, 
2017, 2019a; Luo et al., 2019; Cuca et al., 2023; Zingaro et al., 
2023). 
During the European Space Agency (ESA) Living Planet 
Symposium (LPS) held in Milan, Italy, in 2019 (LPS 19), ASI 
organised and chaired the session “Sentinels and Copernicus 
Contributing Missions for Cultural & Natural Heritage”, in 
collaboration with Politecnico di Milano and Romanian Space 
Agency (ROSA) (Tapete et al., 2021). After the open call for 
abstracts and a peer-review process involving experts in the field, 
12 presentations and 19 posters were included in the final 
programme. An assorted cross-section of the user community 
was brought together, with a good representation of the remote 
sensing science core regarding EO applications on cultural 
heritage, experts from academia and research institutes, 
companies working with public authorities as well as space 
archaeologists engaging with stakeholders in Middle East, North 
Africa and Asia.  
The following elements were common to all the presentations: 

• Clear identification of user category 
• Type of question(s) to address (e.g. archaeological 

research, condition assessment, operational service) 
• Satellite data type and methods used 
• Lessons learnt, including things that did not work well 

or could have been improved 
• Engagement of further users and stakeholders, and 

their degree of involvement 
• Suggestions for improvements or specific requirements 

Sentinel-1 and Sentinel-2 of the Copernicus fleet were the main 
satellite constellations used. A direct relationship was found 
between satellite data type, application and user expertise. 
Sentinel-1 SAR data were mostly exploited for ground stability 
and condition assessment studies based on interferometric 
methods, by very expert users capable to process these data 
themselves. Thanks to project partnerships, end-users (e.g. public 
authorities and conservators) were directly involved to define 
user requirements and set up the portals and workflows to 
exchange the extracted information, so to inform the decision 
making process. Sentinel-2 multispectral data were, instead, most 
preferred by archaeologists for desk-based studies aiming to 
gather evidence base to verify later in the field.  
It was also evident that processing platforms (e.g. Google Earth 
Engine) were already increasingly exploited by the space 
archaeology community to process Sentinel time series or other 
EO datasets (e.g. Agapiou, 2021; Brandolini et al., 2021), thus 
making the data handling task more sustainable, without the need 
to host and manage in-house expensive hardware and software 
infrastructure. Such exploitation has reached a level of maturity 
across the archaeological community that a debate on proven 
benefits and still open avenues had been already started (Alcover 
Firpi, 2016). 
While no specific needs were expressed to access more or new 
satellite data, or for new science/operational satellites – and this 
was a surprising outcome of the session compared to other 

scientific communities participating in ESA LPS 19 –, a growing 
use of “virtual constellation” data for archaeology & cultural 
heritage was recorded (e.g. Agapiou et al., 2019; Tapete and 
Cigna, 2020). Archaeologists and archaeological remote sensing 
analysts combine multi-sensor data as they were collected 
according to a coordinated observation plan by a virtual 
constellation (see the concept “Virtual constellation” promoted 
by CEOS, 2023). However, such exploitation is typically made 
by expert users who are aware of the various opportunities 
offered by satellite missions. Therefore, one of the key 
conclusions was that more could be done to make the user 
community aware of the value of Copernicus Contributing 
Missions, either optical and SAR, to complement the Sentinel 
data. 
Same comment can be made with regard to the existing 
downstream services tailored to the specific needs of Copernicus 
users, such as the Climate Change service that was not yet 
considered to investigate the spatial and temporal changes of 
meteorological conditions and vegetation cover contributing to 
environmental threats at archaeological sites. Corine and higher 
resolution land cover products released at European scale by the 
Copernicus Land Monitoring Service, are definitely more used. 
However, some issues were found for the implementation at local 
scale in certain geographic contexts, due to the characteristics of 
the crops (e.g. in Poland). 
 

3. ASI’S CONTRIBUTIONS TO THE FIELD 

Cultural heritage is among the R&D topics that ASI has 
supported with a certain continuity over years. Several initiatives 
were put in place, in particular along the following directions: 

• Undertaking scientific research and development, also 
through real-world user-driven use cases, e.g. 
demonstrating the performance achievable using 
national assets such as COSMO-SkyMed data (Tapete 
and Cigna, 2019b, 2020, 2021, 2022); 

• Supporting COSMO-SkyMed data exploitation in 
projects with Italian institutions (e.g. Ministry of 
Culture, Archaeological Park of Colosseum), and 
activities devoted to downstream applications and 
services development (e.g. in Pompeii, Capo Colonna) 
(Virelli et al., 2020); 

• Promoting downstream by scientific, commercial and 
institutional users through the new programme 
“Innovation for Downstream Preparation” (I4DP), 
wherein safeguard of environment, cultural heritage 
and national landscape is among the key application 
domains. 

The most recent account of the above activities can be found in 
Virelli et al. (2023). 
From the technical and scientific research point of view, 
experimentations done in the framework of ASI’s internal 
research demonstrated that, despite the common knowledge that 
X-band SAR sensors cannot penetrate soils to detect buried 
features, backscattering anomalies in bare ground with limited 
vegetation coverage can be detected in COSMO-SkyMed 
images, especially at 1 m spatial resolution in Enhanced Spotlight 
mode (Figure 1). Such evidence further corroborates capabilities 
for archaeological prospection that had been proved by earlier 
research studies (Chen et al., 2015; Monterroso Checa and 
Martínez Reche, 2018) and has stimulated more recent 
applications in vegetated temperate environments (Cigna et al., 
2023). 
Even more developed is the contribution that COSMO-SkyMed 
currently brings to condition assessment and conservation of 
cultural heritage. Data from COSMO-SkyMed constellation are 
well consolidated in R&D activities aiming to monitor structural 
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stability of historical buildings and archaeological ruins and the 
ground beneath them by means of Interferometric SAR (InSAR) 
techniques. Higher spatial and temporal resolutions of input 
imagery result in much denser datasets of deformation estimates 
over the monitored monument or site. There is also an 
improvement in geometric accuracy along the elevation of 
buildings. These technical advantages make monitoring activities 
based on COSMO-SkyMed long time series definitely a 
substantial upgrade compared to an initial wider area screening 
based on Sentinel-1 collections, and a more appropriate means to 
achieve structural health assessment at single building level. 
This type of application represents an Italian success story with 
respect to the development of the so-called satellite-based 
“scientific downstream”, i.e. applications that can serve 
institutional and real-world purposes based on mature and 
validated algorithms that were originally developed to answer 
scientific questions and/or retrieve geophysical parameters, and 
were brought to the stage that they can generate products 
addressing specific user needs beyond scientific and academic 
purposes only (Tapete and Coletta, 2022). 
 

 
Figure 1. (a) Backscattering anomaly related to buried 
archaeological remains in bare ground within an archaeological 
site (precise location undisclosed for security concerns) observed 
in a COSMO-SkyMed Enhanced Spotlight image at 1-m ground 
resolution acquired in the summer with an incidence angle of 39°. 
The soil/damp mark is also visible in very high resolution optical 
satellite imagery (Google Earth © DigitalGlobe) acquired in (b) 
summer, (c) autumn and (d) winter. COSMO-SkyMed® Product 
©ASI—Italian Space Agency—2018. All Rights Reserved 
(reproduced from Tapete and Cigna, 2019b). 
 
In the time span of less than a decade, the COSMO-SkyMed 
technology and the InSAR algorithms to process their long time 
series of imagery moved from earlier scientific studies 
demonstrating the feasibility of multi-temporal monitoring of 
cultural heritage (e.g. Cigna et al., 2014) to more operational 
exploitation (e.g. Raspini et al., 2023) and structural engineering 
and architectural studies (e.g. Caprino et al., 2023). In parallel to 
this scientific consolidation process, COSMO-SkyMed data were 
also part of pilot demonstrations undertaken by the national 
commercial community through projects funded by either ASI or 
ESA or carried out in the framework of institutional 
collaborations promoted by ASI, that engaged final end-users to 
test InSAR technology in support of heritage bodies and site 
managers for their duty tasks of heritage monitoring and 
protection.  

Among the many projects, it is worth mentioning POMERIUM 
(Ferri and Francioni, 2022) and AMOR (Dore et al., 2021) that 
were funded in the framework of ESA “5G for l’ART (L’Aquila, 
Roma, Torino)”, co-funded by ASI, and aimed to demonstrate 
downstream services for the conservation and promotion of 
cultural heritage. Both projects focused on monuments in Rome 
that was a test-bed for many InSAR studies to investigate cultural 
heritage (see Cigna et al., 2014 and references therein).   
With the collaboration of reference users encompassing the 
Capitoline Superintendence of Cultural Heritage of Rome, the 
Colosseum Archaeological Park and the Special Superintendence 
for Archaeology, Arts and Landscapes of Rome of Italian 
Ministry of Culture (MiC), POMERIUM project exploited 
Persistent Scatterers retrieved from InSAR processing of 
COSMO-SkyMed 2010-2020 to address the risk scenario related 
to deformation of the Colosseum, Pyramid of Cestius and 
Aurelian Walls. The 2D/3D AWARE web platform designed and 
implemented by e-GEOS S.p.A. acted as the unique entry point 
to data and analysis services for final users interested in 
understanding and monitoring the threats to the conservation of 
the monuments the users themselves are in charge of. 
With a similar approach, the AMOR project (Advanced 
Multimedia and Observation services for the Rome cultural 
heritage ecosystem) led by NAIS S.r.l. has investigated the 
structural issues and ground motions affecting the Baths of 
Caracalla, the southern portion of the Aurelia Walls using InSAR 
data, alongside weed vegetation analysis and change detection 
techniques, by combining SAR and optical data. In this case the 
St’ART® platform was exploited to let final users access the 
information and help them in planning interventions. 
A common feature of these experiences was therefore the need of 
making information extracted from satellite data accessible to 
users in a way that they can use such information within the daily 
workflow. 
A step forward in user uptake of satellite technologies is achieved 
when the process is entirely managed and driven by the user. An 
exemplar experience in this respect is represented by the 
collaboration with the Colosseum Archaeological Park. A few 
years ago, the Park initiated a dedicated monitoring project 
covering the whole extent of the park. This project was inspired 
by the desire to build a sustainable system of protection and 
conservation, then allowing a proper tourism valorisation. The 
Colosseum Archaeological Park developed a static and dynamic 
monitoring project wherein satellite monitoring (historical 
analysis of the satellite data) were directly embedded into the 
system and analysed in order to monitor possible ground 
deformation, alongside in situ monitoring data from traditional 
geotechnical instruments. Satellite data therefore contribute to a 
multi-parameter system of permanent control of the entire 
archaeological area, with associated indicators of the level of 
risk. More specifically, the interferometric outputs were included 
in the WebAPP system (namely SyPEAH; Della Giovampaola, 
2021) developed by the Archaeological Park itself as the heritage 
body’s tool for an effective activity of programmed conservation 
of cultural heritage with particular regard to archaeological 
structures. COSMO-SkyMed data were ingested into the 
institutional user workflow, instead of remaining a dataset 
interpreted externally to the decision-making process, as 
unfortunately frequently happens in research-focused studies or 
consultancies. Figure 2 shows the implementation of historical 
deformation analysis over the Flavian Amphitheatre. 
Currently, in the framework of the ASI-MiC agreement signed in 
February 2023, ASI is involved in the implementation of the 
work phases of the “Extraordinary Plan of Monitoring and 
Conservation of Immovable Cultural Heritage” (Piano 
Straordinario di Monitoraggio e Conservazione dei Beni 
Culturali Immobili). The Plan defines the criteria to identify the 
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properties that are to be monitored and where conservation 
measures need to be made, alongside the required priority order 
of the inspections and controls, also based on specific indices of 
territorial hazard and the individual vulnerability of each 
property. The Plan also aims to define the systems for 
instrumental control to exploit and the implementation modalities 
of safety, conservation and safeguard measures (MiC, 2023). 
 

 
Figure 2. Implementation of historical deformation analysis over 
the Flavian Amphitheatre, Colosseum Archaeological Park, Italy, 
whose geometric and material characteristics made it particularly 
suitable for structural monitoring with interferometric processing 
and analysis (COSMO-SkyMed data processed by e-GEOS) 
(reproduced from Della Giovampaola, 2021). 
 
As a further proof that satellite technologies are nowadays well 
embedded in the heritage management practice at Italian 
institutional levels, the Plan (MiC, 2023): 
1. matches the requirements expressed by the national users in 

charge of monitoring and conservation of cultural heritage 
in the framework of consultancy activities of users of the 
National Copernicus User Forum (ISPRA, 2024); 

2. contributes to the definition of the technical requirements 
for the national operational services of territorial monitoring 
that will be provided through the implementation of the 
Space Economy – Mirror Copernicus Program (see e.g. 
Taramelli, 2021); 

3. foresees the harmonisation of existing laws concerning 
satellite monitoring, in the framework of the activities of the 
“Earth Observation” Working Group of the Italian 
Government Presidency of the Council of Ministers (PCM). 

The first of the five levels through which the Plan is developed 
focuses on the identification of the data needed for monitoring 
and acquisition/return model. The Plan therefore promotes the 
integration of EO and remote sensing data collected from 
different observation platforms (satellites, airborne, terrestrial) 
with territorial surveys and in situ measurements. Satellite 
products are conceived as the first element of an “observation 
chain”, allowing preliminary identification of critical areas 
(anomalies) where detail investigations are further undertaken. 
In this context, over 2022, ASI provided MiC and its partners 
with access to long time series of COSMO-SkyMed first and 
second generation satellite data that were mostly collected over 
several monumental and archaeological areas in Italy via the Map 
Italy project (ASI, 2023) since 2011 and 2021, respectively. The 
wide portfolio of sites span from Venice, Padua, Verona in the 
north to Pienza, Volterra, Aurelian Walls in Rome in the centre 
to Phlegraean Fields Archaeological Park, Paestum and Velia in 
the south of Italy. COSMO-SkyMed data were then processed 
using Persistent Scatterer Interferometry (PSI) and change 
detection techniques, also in synergy and continuation with 
existing projects and recent initiatives (see for example Caprino 
et al., 2023; Raspini et al., 2023). The results are currently 
analysed by the various research teams involved in the Plan, and 
the perspective is that ASI will support MiC not only with the 
further provision of COSMO-SkyMed data, but also with the 
definition of guidelines and protocols for integration of the 

different monitoring technologies and calibration of satellite 
monitoring techniques, alongside an integrated satellite and in 
situ instrumental monitoring. 
 

4. KEY REMARKS AND PERSPECTIVES 

In the current national and international context by which satellite 
technologies are increasingly exploited in cultural heritage 
applications and the launch of new satellites will continue trigger 
R&D activities to improve existing algorithms and develop novel 
analytical methods and prototype new products, the crucial 
achievement for satellite data to effectively play a role in the 
management cycle of cultural heritage is that users perceive that 
these data are relevant to their activities and thus useful, and are 
part of the information layers to substantiate and address the 
decision making process.  
The continuous investment made by ASI in this field of 
application definitely contributed to generate opportunities for an 
effective downstream that, initially, was purely scientific and 
then encompassed both the commercial and institutional 
perspectives. In order to strengthen this pathway towards 
downstream, protection of cultural heritage is explicitly 
mentioned among the key application domains supported by the 
current ASI programme called “Innovation for Downstream 
Preparation” (I4DP). The programme supports the demonstrative 
development of new technologies, products and services, using 
not only EO data but also Navigation and Telecommunications 
and promoting the integration with other edge technologies (e.g. 
Artificial Intelligence, Data analytics, IoT). I4DP is structured 
around the three main categories of final users (i.e. Commercial, 
Scientific and Public Administrations).  
The initiative dedicated to the Scientific User Community, i.e. 
Italian Universities and Public Research Bodies, is named 
I4DP_SCIENCE and was launched by ASI in early 2022. 
I4DP_SCIENCE is composed of joint demonstration projects 
aiming to “Development of applications based on novel methods 
and algorithms for satellite data analysis and training of medium-
high professional qualification personnel, in different application 
fields and scientific downstream”. The projects are selected by 
means of thematic “calls for ideas” issued on a regular basis on 
selected topics of national relevance, e.g. defined by the National 
Copernicus User Forum, and/or falling within international 
agendas, e.g. the United Nations’ Sustainable Development 
Goals (SDGs). I4DP_SCIENCE allows for algorithms and 
methods at Scientific and/or Technological Readiness Level at 
least equal or higher to 4 i.e. “Proof of concept” to be 
demonstrated in real-world scenarios, thus it offers an open arena 
for innovation in cultural heritage applications. 
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ABSTRACT: 

Multi-temporal SAR Interferometry allows detecting and monitoring millimetric ground displacements occurring on selected point 
targets that exhibit coherent radar backscattering properties over time. The technological maturity of these techniques, as well as the 
wide availability of SAR data, fostered the development of continuous ground motion services that can be used to support systems 
devoted to environmental monitoring and risk management. This paper outlines the main outcomes of SeVaRA (“Environmental 
Risk Assessment Service”), a project aimed at implementing an innovative system for calculating an aggregate environmental risk 
index, derived from several parameters related to hydrogeological instability phenomena and/or weather-related extreme events. In 
particular, the present work is focused on the analysis of the “SeVaRA Deformation Sub-System”, that has been designed for the 
computation of risk indices related to structural and ground instabilities (landslides). 

1. INTRODUCTION

Multi-temporal Synthetic Aperture Radar Interferometry 
(MTInSAR) techniques enable the identification and continuous 
tracking of sub-millimeter-scale displacements occurring in 
specific point targets that maintain consistent radar 
backscattering characteristics over time. Successful applications 
to different geophysical phenomena such as the monitoring of 
landslides (Bovenga et al., 2006; Wasowski et al., 2014) or 
subsidence/uplifts due to groundwater withdrawal/entry or from 
the excavation of mines and tunnels (Wasowski et al., 2009) 
have been already demonstrated in literature. During the last 
several years, new application opportunities have emerged 
thanks to the greater data availability offered by recent launches 
of radar satellites, and the improved capabilities of the new 
space radar sensors in terms of both resolution and revisit time.  
Currently, many space-borne Synthetic Aperture Radar (SAR) 
data are operational for InSAR applications, such as the Italian 
COSMO-SkyMed (CSK) constellation and the Copernicus 
Sentinel-1 (S1) mission. 
Each CSK satellite is equipped with an X-band SAR sensor that 
acquires data with spatial resolution reaching metric values, 
thus leading to a very high spatial density of the measurable 
targets and allowing the monitoring of very local scale events. 
Thanks to the nationwide acquisition plan named MapItaly, 
devised by the Italian Space Agency (ASI) and fully operational 
since 2010 (Milillo et al., 2014), CSK constellation can provide 
X-band images covering the Italian territory with a best effort
revisit time of 16 days, while the follow-on constellation,
namely COSMO-SkyMed Second Generation (CSG), allows to
ensure the full operational continuity of the entire CSK mission.
The MapItaly project was developed by ASI and the
Department of Civil Protection, with eGEOS support. The
project goal is to provide a mapping of the entire Italian
territory with the CSK interferometric mode StripMap
HIMAGE (HH polarization), in either right Ascending or right
Descending orbit. For an HIMAGE coverage at Italian latitude,
four overlapped different beams are needed.
Sentinel-1 mission is instead operational since 2014 and
acquires in C-band at medium resolution (5x20 m2) with a

minimum revisit time of 12 days (only 6 days between 2016 and 
2021, when the full S1 constellation was operational), thus 
allowing to perform ground instability monitoring back in time 
almost all over the Earth. Moreover, all data acquired by the S1 
mission are provided on an open and free basis by the European 
Space Agency (ESA) and the European Commission (EC), for 
promoting full utilization of S1 data, with the aim of increasing 
the scientific research, growing the EO markets and developing 
continuous monitoring services, such as:  

• European Ground Motion Service (EGMS)
• Rheticus® Displacement Geo-information Service.

The European Ground Motion Service is based on the multi-
temporal interferometric analysis of S1 radar images at full 
resolution, updated annually. EGMS provides consistent and 
reliable information regarding natural and anthropogenic ground 
motion over the Copernicus Participating States and across 
national borders, with millimeter accuracy (Costantini et al., 
2021). 
Rheticus® is a cloud-based platform developed by Planetek 
Italia srl and provides continuous monitoring services of the 
Earth's surface (Samarelli et al., 2018). One of the services 
provided by Rheticus® is the Displacement Geo-information 
Service (Figure 1), which offers even monthly updates of the 
millimetric displacements of the ground surface. 

Figure 1. Rheticus® Displacement service: MTInSAR results 
over Arquata del Tronto and surrounding areas (Central Italy). 
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Figure 2. Flowchart of the SPINUA processing chain 

To provide this information, the Rheticus® platform processes a 
large amount of Geospatial Big Data through the MTInSAR 
processing chain based on the SPINUA© algorithm (“Stable 
Point Interferometry even in Un-urbanized Areas”), maintained 
by GAP srl and sketched in Figure 2 (Bovenga et al., 2004). 
SPINUA is capable of processing SAR images acquired by 
space-borne or airborne SAR missions in C, L and X- band, 
including CSK and S1. 
MTInSAR is one of the remote sensing techniques used for 
collecting measurements and information necessary for 
geohazards and landslide risk assessment. Furthermore, 
according to (Van Westen et al., 2008), the exploitation of 
MTInSAR techniques is always significant, regardless of the 
spatial scale of the phenomenon considered (e.g., Regional, 
Medium, Large or Detailed Scale). Thanks to the actual 
technological maturity of MTInSAR techniques as well as to the 
wide availability of SAR data, these ground motion services can 
be used to support systems devoted to environmental 
monitoring and risk management.  

Figure 3. Architecture of the SeVaRA Deformation Sub-System 

This work outlines the main outcomes achieved within the 
SeVaRA project, which stands for “Environmental Risk 
Assessment Service”. The goal of SeVaRA is to develop an 
innovative system for the calculation of a comprehensive 
environmental risk index. This index is derived from numerous 
parameters associated with hydrogeological instability 
phenomena and extreme weather events. More specifically, this 
research focuses on the “SeVaRA Deformation Sub-System”, 
which has been specifically designed computing risk indices 
pertaining to structural and ground instabilities, notably 
landslide events, by exploiting MTInSAR techniques. 
Central Italy has been chosen as applicative example in this 
work, because of the simultaneous presence of weather- and 
earthquake-induces landslides. In particular, the 2016-2017 
seismic swarm that struck the wide epicentral area triggered 
many landslides in the surrounding zones. 

2. OVERVIEW OF THE SEVARA DEFORMATION

SUB-SYSTEM 

The flowchart of the “SeVaRA Deformation Sub-System” is 
outlined in Figure 3. It consists of three main blocks. In the first 
module, SAR data archives are browsed online in order to 
select the interferometric SAR stacks available on the Region 
Of Interest (ROI). 
Then, the selected InSAR dataset is provided in input to the 
second module in Figure 3, with the aim to detect 
Persistent/Distributed Scatterers (PS/DS) and monitor their 
displacements over time. The SeVaRA “Deformation Sub-
System” has been primarily designed to be interfaced with the 
SPINUA algorithm implemented in the Rheticus® 
Displacement Service (because of its high refresh rate in the 
generation of PS/DS maps), but it also supports products 
generated by the EGMS service, as well as by other MTInSAR 
services available on the EO markets.  
Finally, the third module in the workflow of Figure 3 exploits 
the outcomes of the MTInSAR service with the aim to calculate 
landslide risk indices and other risk indices related to single 
infrastructures. The landslide risk index is computed by 
multiplying the hazard with the expected losses for all different 
types of elements at risk (Varnes, 1984, Lee and Jones, 2004): 

𝑅𝑖𝑠𝑘 = ∑(𝐻∑(𝑉𝐴))   (1) 

where H is the hazard expressed as probability of occurrence 
within a reference period, V is the physical vulnerability of a 
particular type of element at risk (from 0 to 1) for a specific 
type of hazard and for a specific element at risk, A is the 
amount (or cost or exposure) of the elements at risk (e.g., 
number of buildings, cost of buildings, number of people, etc.). 

The procedure for calculating risk indices can be very complex 
(Van Westen et al., 2005, 2008). In general, to determine the 
hazard of a landslide event, it is necessary to estimate the 
spatio-temporal probability of triggering a landslide. In the 
calculation of susceptibility, i.e. the spatial probability of 
landslide triggering, a series of environmental parameters are 
involved (land use, geology, lithology, geomorphology, ...), and 
it is necessary to have an inventory of landslides from which to 
derive information on the type of landslide, as well as on the 
magnitude and state of quiescence/activity of the landslide over 
time. The calculation of the temporal probability of triggering a 
landslide is instead strongly conditioned by the trigger factors of 
a landslide which are typically intense rainfalls (weather-
induced landslides) or seismic events (earthquake-induced 
landslides), and in any case are related to the detection of 
accelerations in the ground movement trends. 
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In order to implement a fully automatic and configurable 
processing chain for the Landslide Hazard Map (LHM) 
computation, an algorithmic solution has been proposed and 
implemented in SeVaRA, based on and improved from the main 
achievements of a previous FPV EC Project called LEWIS 
(Landslide Early-Warning Integrated System), coordinated by 
the Remote Sensing Group of the Department of Physics of Bari 
(Guerriero et al., 2005). The proposed approach for the LHM 
computation in SeVaRA requires several EO and geo-spatial 
data as input, as sketched in the flowchart shown in Figure 4. 
The National mosaic of landslide hazard zones provided by 
ISPRA (Luti et al., 2020) is used as reference Landslide Hazard 
Map (Figure 5). This map is updated by considering several 
factors and source data, as follows.  
The first step consists in the import of the susceptibility map, 
i.e. the spatial probability of triggering a landslide.

Figure 4. Schematic approach for the computation of the 
Landslide Hazard Map in the SEVARA project. 

Figure 5. LHM provided by ISPRA (Central Italy) 

Figure 6. European Landslide Susceptibility ELSUSv2 Map 
provided by the ESDAC over Central Italy 

We selected the European Landslide Susceptibility Map 
(ELSUSv2), provided by the European Soil Data Centre (Wilde 
et al., 2018), which covers almost all the European Countries (in 
Figure 6 the ELSUSv2 map over Central Italy).  
In case the region of interest is not covered by the ELSUSv2 
map, the SeVaRA processing chain is capable to independently 
estimate the Susceptibility Map from Lithology, Digital 
Elevation Models and other geological layers, in agreement 
with the algorithmic solutions validated in the framework of the 
previous LEWIS FPV project. 

The second step consists in the calculation of the temporal 
probability of triggering a landslide. 
The first trigger factor is related to intense rainfalls. 
Precipitations can be cumulated in a configurable range time in 
SeVaRA (24H, 72H, or even more), in order to assess and 
monitor the risk of rainfall-induced landslides. These data are 
derived by cumulating ground measurement data collected by 
weather stations, if available in proximity of the region of 
interest, or derived by interpolating hourly rainfall data 
provided by other services, such OpenWeatherMap or the 
Global Satellite Mapping of Precipitation service (Hou et al., 
2014, Kubota et al., 2020), offered by the JAXA Global Rainfall 
Watch (Figure 7). 

Figure 7. Rainfall data provided by the JAXA Global Rainfall 
Watch (URL: https://sharaku.eorc.jaxa.jp/GSMaP/index.htm) 

Another input layer is represented by the Land Cover Map and 
the Land Cover Change Map (Buttner et al., 2004), such as 
those available in the CORINE inventory (Figure 8). As a 
matter of fact, a land cover change can represent an important 
landslide triggering factor, as it is in case of deforestation. 

Figure 8. CORINE Land Cover Change Map 2012-2018. 

The database of seismic events, provided by INGV (Luzi et al., 
2020), is also essential to account for earthquake-induced 
landslides (an example is reported in Figure 9 over Central 
Italy). MTInSAR ground displacement time series are the last 
(but not least) source data for the identification of hazards, as 
mentioned in the introductory section. The post-seismic PS/DS 
map in the Central Italy, covering the areas struck by the 2016-
2017 seismic swarm, is shown in Figure 1. 
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Figure 9. Epicentre positions of earthquakes of magnitude 
greater than 2, occurred in central Italy during September 2023, 
as reported in the database of seismic events provided by INGV 

(URL: https://terremoti.ingv.it/).  

The temporal analysis of the displacement trends is essential to 
detect unstable targets. In the past, the revisit frequency of 
historical SAR sensors was unsatisfactory, and the average 
velocity was the only kinematic parameter to be estimated to 
detect unstable targets. Currently, thanks to the short revisit 
time of the Sentinel-1 constellation, it is at last possible to 
estimate much more kinematic parameters than in the past, like 
last-year velocities, abrupt accelerations, and seasonal trends: 
some examples of linear and non-linear displacement time-
series are shown in Figure 11 (the examples refer to test sites in 
Northern, Central and Southern Italy). Both linear and non-
linear kinematic parameters are fruitfully exploited in the 
SeVARA system to provide early warnings and to detect and 
monitor landslide triggering factors. 
According to the schematic approach depicted in Figure 4, all 
the aforementioned source data are combined in the SeVaRA 
Deformation Sub-System in order to produce the LHM product: 
an example of LHM generated by the SeVaRA system is finally 
shown in Figure 10 over Central Italy and for a specific 
reference date. 
We remark that the input data layers have different update rates, 
that ranges from years (i.e., the susceptibility map and land 
cover), to weeks/months (i.e., interferometric time series) up to 
few hours/days, in case of precipitation data. Currently, the 
SeVaRA system has been designed to provide a landslide 
hazard map over the area of interest with a daily frequency.  
The SeVaRA Deformation Sub-System is highly configurable. 
The parametric configuration can be tuned according to the 
indications of a pool of geologists involved in the development 
team of the SeVaRA project. The validation of the implemented 
algorithmic solution is beyond the scope of the present work 
and it is not discussed here. 

Figure 10. Example of LHM computation over Central Italy (F), 
obtained by combining susceptibility map (A), MTInSAR data 

(B), land use change map (C), rainfall map (D) and seismic data 
(E), according to the approach sketched in Figure 4. 

Figure 11. Examples of PS displacement trends identified by 
processing S1 data through the SPINUA algorithm (Rheticus® 
Displacement service) in Northern, Central and Southern Italy: 

(A) seasonal trend, (B) linear trend, (C) accelerating trend,
(D,E) complex trends with abrupt acceleration/deceleration

cycles 
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3. CONCLUSIONS

The technological maturity of the multi-temporal 
interferometric techniques, as well as the wide availability of 
SAR data, fostered the development of continuous ground 
motion services that can be used to support systems devoted to 
environmental monitoring and risk management, like SeVaRA.  
In the present work we briefly outlined the main components of 
the SeVaRA Deformation Sub-System, designed for the 
computation of risk indices related to structural and ground 
instabilities. 
It should be remarked that, thanks to the low revisit time of the 
Sentinel-1 constellation, it is currently possible to analyse the 
displacement trends for estimating much more kinematic 
parameters than in the past (like acceleration, discontinuities, 
seasonal trends, ...). These parameters can be fruitfully 
exploited for improving the computation of Landslide Hazard 
Maps, to provide early warnings and to detect and monitor 
landslide triggering factors.  
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ABSTRACT: 

Brenva glacier is one of the largest (5.95 km2) glaciers on the southern side of Mont Blanc, in Italy. The glacier is notable as its tongue 
is entirely covered by debris and it is located at the lowest elevation of all glaciers in the Italian Alps (1415 m a.s.l.). Since 2004, the 
glacier tongue is separated from the upper glacier body and is therefore subject to intense ice thinning, which we evaluated in this 
study from a comparison of digital elevation models (DEMs) obtained from two UAV surveys carried out in 2019 and 2020 using 
commercial unmanned aircraft. The DEMs were generated using a structure from motion pipeline. From the comparison, extreme ice 
losses are evident, with an average of 13.22 m over the common survey area of 2019 and 2020 (an area of 0.14 km2), with peaks of 
over 45 m. This exceeds even the high losses of other Alpine glaciers and we postulate it is the result of the high summer temperatures 
found at the low elevation of the tongue and the lack of mass transfer from the upper glacier body. 

1. INTRODUCTION

1.1 The importance of debris covered glaciers 

Debris covered glaciers are a common sight in many mid-latitude 
mountain ranges of the world, particularly in the Himalayas 
(Ojha et al., 2017), dry Andes (Janke et al., 2015), and New 
Zealand Alps (Baumann et al., 2020), and increasingly found in 
the Caucasus (Tielidze and Wheate, 2018) and European Alps 
(Azzoni et al., 2018; Fleischer et al., 2021; Fugazza et al., 2023). 
Runoff from debris covered glaciers is an important freshwater 
source in many areas of the world (Zhang et al., 2019). The input 
of debris to the glaciers often comes from large discrete events 
such as rockfall and avalanches (Kirkbride, 2011). However, 
there is also evidence that supraglacial debris cover is increasing 
as glaciers retreat through an increased input from the valley 
walls, led by rock disaggregation through freeze-thaw cycles, the 
emergence of englacial debris and transport from the lateral 
moraines (Azzoni et al., 2018; Ojha et al., 2017; Xie et al., 2020).  
A large debris mantle causes the decoupling of the glacier area 
from the climate signal, as once a critical debris thickness is 
reached (generally 1-5 cm, Foster et al., 2012), it shields the 
underlying ice, reducing ablation (Foster et al., 2012; Mihalcea 
et al., 2006). Retreat rates of debris covered glaciers are thus 
much lower than those of debris-free glaciers (Xiang et al., 2018), 
and for some, the area can persist almost unchanged for decades; 
however, they continue reducing in volume, with some studies 
suggesting that the thinning rates can be as fast as those of debris-
free glaciers. Thinning is known to occur in the clean ice sections 
and through back wasting of ice cliffs, especially in association 
with supraglacial lakes (Steiner et al., 2019).  
In addition, on some glaciers the debris covered tongue can 
detach from the main glacier trunk. With no transfer of ice 
available to nourish it, the glacier tongue is therefore left 
stagnating and its melt out can accelerate. These detachments 
have become increasingly frequent in the Alps: on the southern, 
Italian side, Lys is a remarkable example (Fugazza et al., 2020). 
The short-term evolution of these detached glacier tongues 
however is poorly documented. 
In this study, we examine the recent (2019-2020) evolution of the 
tongue of Brenva glacier (Mont Blanc range, Italy), through a 
comparison of DEMs obtained from UAV photogrammetry from 

two different epochs. In doing so, we extend the previous study 
of D’Agata et al. (2005) and D’Agata and Zanutta (2007), since 
the separation of the glacier tongue from the upper trunk. 

1.2 1.2 Study Area 

Brenva glacier (45.83° N, 6.90° E) is one of the largest glaciers 
on the southern side of the Mont Blanc massif (see Fig. 1). The 
glacier flows down from the summit of Mont Blanc itself and its 
tongue reaches 1415 m a.s.l., the lowest terminus elevation on the 
Italian side of the Alps (Cerutti, 2005; D’Agata and Zanutta, 
2007), one kilometre away from the village of Entrèves. The 
supply of supraglacial debris has mainly originated from several 
discrete rock avalanche events: the most recent ones occurred in 
1920 and 1997, but several others are known to have occurred 
throughout the Holocene. The glacier tongue has been debris 
covered since at least the end of the Little Ice Age (LIA) and thus 
Brenva has sustained very low retreat rates compared to 
neighbouring glaciers, never retreating by more than 900 m from 
its LIA maximum for most of the 20th century (Deline et al., 
2015).  

Figure 1: The Brenva Glacier tongue, with areas surveyed in 
2019 and 2020. The sub panel shows the location of Brenva 
Glacier within the Mont Blanc Massif. Background images 

from ESRI basemap. 
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The valley tongue was once nourished by a large ice fall which 
descended from the accumulation basin along the steep walls of 
a large rocky crag. Since the end of the 1980s, the ice fall started 
to gradually thin through a period of prolonged high summer 
temperatures; a rockfall in 1997 further accelerated the process 
by causing a number of ice avalanches which deplenished the ice 
cover; in September 2004, ice flow from the seracs to the glacier 
tongue was interrupted, leaving the tongue to stagnate (Cerutti, 
2005). Brenva glacier and its tongue can now be considered two 
separate glacial entities: data from the last Alpine glacier 
inventory report an area of 5.95 km2 (Paul et al., 2020), 
combining the upper part of the glacier and the tongue (5.18 and 
0.77 km2, respectively). In spite of its position close to inhabited 
villages, the glacier has received comparatively little attention: 
D’Agata and Zanutta (2007) estimated thickness changes from 
1959 to 2003 using DEMs derived from maps and aerial 
photogrammetric surveys. Malekian et al. (2023) and Scaioni et 
al. (2023) further explored the potential of historical aerial 
imagery to reconstruct the glacier thickness changes since the 
1960s. Other studies have included Brenva glacier as part of a 
regional investigation of the Mont Blanc area, e.g. Berthier et al. 
(2016, 2014), who also investigated thickness and mass changes 
in the past decade using SPOT, Pleiades and ASTER derived 
DEMs. 

2. DATASETS AND METHODS

2.1 UAV Surveys 

2.1.1 2019: The survey was conducted on 30 April 2019. The 
UAV used for this survey was a DJI Mavic Pro, equipped with a 
20 Mp Hasselblad digital camera, using a CMOS 1” sensor, f/2.8-
f/11 aperture, 10-bit D-Log M color profile with 10-bit HDR 4K. 
Individual flights were performed manually as lateral rock faces 
can be very close to the aircraft; further still, both touristic and 
rescue air traffic is very intense in the Mont Blanc area and needs 
immediate reaction from the pilot in case other aircraft is 
approaching. Photographs were acquired with the camera tilted 
nadir. The flight path was maintained at around 110 m above 
ground, with a grid spacing of 30 metres, giving a forward 
overlap exceeding 60% with shooting intervals of 3 seconds and 
a flight speed of 3 m/s. The resulting average ground sampling 
distance (GSD) was 3.7 cm. Additionally, a Geomax RTK 
GNSS, with a Zenith 25 PRO antenna was used to measure 
absolute positions of 21 targets (see Figure 1) which were marked 
on the lateral moraines, by spraying stable rocks with acrylic 
paint. The GNSS rover was connected to a virtual reference 
station streaming RTK corrections through a 4G data network. 
XY errors of the targets are in the range 2-3 cm while the average 
elevation error is in the 4 cm range. Base station corrections were 
obtained from the SPIN GNSS regional correction network 
(http://www.spingnss.it/spiderweb/frmIndex.aspx).  

2.1.2 2020: On 9 September 2020, a survey of the glacier 
tongue was conducted using two UAVs, namely a DJI Phantom 
4 RTK and a DJI Mavic, to increase coverage compared to the 
previous survey of 2019. The DJI Mavic was the same drone used 
in the previous survey; the DJI Phantom 4 RTK is a commercial 
drone equipped with a 20 Mp digital camera and a gimbal, 
allowing pictures to be acquired in nadir as well as oblique mode 
(Taddia et al., 2020). It features a multi-GNSS antenna and RTK 
module to receive differential corrections from a base station 
through a proprietary protocol or from a network through the 
NTRIP protocol. We operated the DJI Mavic in manual mode, 
while the DJI Phantom 4 RTK was flown in automatic mode, 
conducting 3 flights with a duration of approximately 15 minutes 
at an altitude of 80 m above take-off and 160 m above ground. 
The flight settings allowed for an image overlap of 80% along 
track and 70% across track. The resulting average GSD was 3.6 
cm. The Phantom 4 was connected to a cellular network with a
SIM card and received GNSS corrections in real time from the
SPIN GNSS positional service through a virtual reference station.
To further improve georeferencing of the DJI Mavic survey,
which did not have a RTK module, the same targets used in the
previous surveys (see Figure 1) were used, with the positions
measured in 2019. Images acquired by the two UAVs had a small 
overlap in the central portion; the DJI Phantom 4 mainly covered
the upper part of the tongue, while the DJI Mavic survey covered 
the lower part. Images were acquired with clear sky conditions
during the late morning hours of the day (approximately 10-12
AM), to ensure optimal illumination conditions.

2.2 DEM generation 

The images acquired during the UAV surveys from 2019 and 
2020 were processed separately using Agisoft Metashape version 
1.2.5 following its structure from motion pipeline, including tie 
point extraction and matching, image orientation and generation 
of a sparse point cloud, bundle-adjustment, point cloud 
densification, generation and export of DEMs. Tie point 
extraction was carried out using the “high” quality setting in the 
software, which uses the images without down- or up-sampling; 
the same setting was used for point cloud densification, which 
results in a 2x downsampling of the images, and was chosen as a 
trade-off between accuracy and computation speed. Bundle 
adjustment was carried out by the introduction of the targets in 
the Metashape project and their manual collimation in the UAV 
images. Self-calibration of the cameras was also performed in 
this step. Out of the 21 targets, 17 were used as ground control 
points (GCPs) and 4 as checkpoints (CPs). We thus produced  
DEMs with a final resolution of 0.14 m for the 2019 and 2020 
surveys. Both DEMs were exported in the UTM32N WGS84 
coordinate system. The area of the 2019 DEM is 0.39 km2, 
compared to 0.95 km2 in 2020, which includes all of the area 
surveyed in 2019 (see Figure 1).  

3. RESULTS

3.1 Accuracy of UAV DEMs 

The precision and accuracy of the resulting datasets were 
estimated by first considering the residuals of the 
photogrammetric reconstruction on the GCPs and CPs, which are 
reported in Table 1. 
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2019 XY 
error 
(m) 

Z error 
(m) 

Error (m) 

GCPs 0.04 0.02 0.04 
CPs 0.03 0.05 0.06 
2020 XY 

error 
(m) 

Z error 
(m) 

Error (m) 

GCPs 0.04 0.04 0.05 
CPs 0.02 0.03 0.04 

Table 1. Root mean square error (RMSE) statistics of the 
residuals on images, ground control points (GCPs) and check 

points (CPs) on the 2019 and 2020 surveys 

Additionally, we compared the two UAV DEMs on off-glacier 
areas, including the northernmost and southernmost parts of the 
surveys. These areas (0.11 km2 in total) consist in the slopes of 
the surrounding LIA moraines on the hydrographic left and right 
of the glacier, and are affected by the presence of sparse 
vegetation at different phenological stages in the two surveys. 
Once vegetation areas were manually removed, we found a mean 
difference in elevation of 0.03 m between the two surveys, with 
a standard deviation and root mean square error (RMSE) of 0.33 
m and a normalized median absolute deviation of 0.21 m. 

3.2 Glacier thickness changes 

The map of ice thickness changes between 2019 and 2020 is 
shown in Figure 2. Ice thinning averages 13.22 m on the common 
part of the glacier tongue surveyed in 2019 and 2020 (0.14 km2), 
with a maximum of 45.73 m. The resulting loss in ice volume 
was 1.82x106 m3. The thinning is particularly evident in two areas 
(green to blue in Figure 2) where the ice loss is > 15 m, an almost 
complete melt over the period of investigation. 

Figure 2: thickness changes of Brenva glacier from 2019 to 2020 
from the UAV surveys. The insets show the UAV orthomosaics 
in 2019 and 2020 

While the area of comparison considered in this study is small, 
the changes reported here greatly surpass those of other Alpine 
glaciers, even much less debris-covered such as Forni glacier, 
whose ice tongue underwent an average ice loss of 5.20 m 
between 2014 and 2016 (Scaioni et al., 2017). This is likely the 
result of the combination of two factors: the loss of mass transfer 
from the upper part of the glacier and the low elevation of the 
glacier tongue, which is therefore subject to high temperatures in 

summer. The average daily air temperature at Courmayeur 
Dolonne (1200 m a.s.l., 2.90 km away from the glacier terminus) 
was 17.30 °C in summer 2019 and 17.54°C in summer 2020. The 
thick debris cover of the glacier is thus unable to shield the 
underlying ice. The mechanism of glacier thinning is likely a 
combination of ice cliff back wasting and the development of 
supraglacial lakes, as evident in the comparison of orthomosaics 
in Figure 2. 

4. CONCLUSIONS

In this study, we generated DEMs from two UAV surveys of the 
tongue of Brenva glacier, a debris covered glacier on the southern 
side of Mt. Blanc, Italy, with a tongue lying at low elevation, 
detached from the main glacier body. The comparison between 
the DEMs on areas outside the glacier showed a mean difference 
in elevation of 0.03 m and a normalized median absolute 
deviation of 0.21 m; this residual difference could be caused by 
the presence of vegetation in these areas. Thickness changes on 
the glacier surface showed an average elevation difference of 
13.22 m with maximum change of -45.73 m from 2019 to 2020. 
These values are higher than those reported for other Alpine 
glaciers and testify the down-wasting of the glacier tongue, 
subsequent to the tongue severing from the upper part of the 
glacier and high summer temperatures. Future surveys with 
UAVs using other payload, e.g. thermal cameras or ground 
penetrating radars could be used to infer the thickness of the 
debris layer and the remaining ice. 
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ABSTRACT: 
In the present study, the potential of Sentinel-2 (S-2) multispectral satellite images for Surface Soil Moisture (SSM) estimate is investigated. 
For this purpose, dependency is looked for between S-2 images and an 18-months (from 1st of January 2020 to 30th of June 2021) dataset 
of hourly SSM measurements, acquired at four different depths (-10cm, -35cm, -55cm, -85cm) from each of the nodes of a monitoring 
network in Mendatica (Liguria, Italy). Data acquired by the sensors were previously calibrated, considering the soil-specific characteristics 
of the areas, and the reliability of the dataset was verified. After performing the required preprocessing on satellite images, the performance 
of three nonlinear regression methods, when applied to four different types of inputs (12 spectral channels, NDVI, NDWI and NDMI), was 
quantitatively assessed. 

1. INTRODUCTION

Surface Soil Moisture (SSM) is an Essential Climate Variable 
(ECV) that crucially influences rainfall-triggered landslides, 
where slope stability can be markedly affected by the 
propagation of the saturation front within the unsaturated zone 
(Viaggio et al., 2022). SSM can be monitored using traditional 
methods such as ground-based measurements through contact 
sensors; they provide accurate but single-point measurements, 
require manual placement and intensive maintenance and are 
therefore particularly onerous over wide areas (Nguyen et al., 
2022). Since SSM is a heterogeneous variable in terms of 
space and time, data acquisition with traditional single-point 
measurement methods is limited to the local scale. Remote 
Sensing (RS) offers the possibility to continuously observe the 
land surface and characterize the spatio-temporal variation of 
the SSM (Adab et al., 2020), because it is one of the influential 
factors that control the radiation emitted from the Earth’s 
surface (Gao et al., 2013). All parts of the electromagnetic 
(EM) spectrum normally used for Earth Observation (EO) can 
be analyzed for quantitative SSM estimate. RS-based methods 
for SSM retrieval can be classified into three categories, as a 
function of the type of input data: thermal, microwave, and 
optical. Most globally available SSM products are derived 
from microwave RS, due to the ability of microwave radiation 
to penetrate cloud cover, and their potential to provide all-
weather all-time sensing (Yuana et al., 2020). However, soil 
moisture products obtained from input space-borne passive 
microwave data are sensitive to surface roughness and have 
coarse spatial resolution (in the range of km), making them 
inefficient for studies over small areas (Fang et al., 2019). 
Active microwave data can be used for retrieving soil moisture 
at higher spatial resolution (e.g., 20m), although their potential 
for this retrieval task often decreases in the case of vegetation 
covered areas (Cui et al, 2023, Graldi and Vitti, 2022). 
Thermal RS usually exploits the differences between Land 
Surface Temperature (LST) and air temperature to estimate 
evaporative fraction as a proxy of the SM (Sini et al, 2008). 
Separating LST from canopy temperature is anyway a difficult 
task (Gao et al., 2013). Optical RS, in the visible, near-infrared 
(NIR), and shortwave infrared (SWIR) ranges, measures the 
reflected radiation from the earth surface, which can be 
correlated with soil moisture to provide very high spatial 
resolution data (Adab et al., 2020). Numerous researches 
focused on multi-sensor data fusion, satellite-derived 
vegetation, water and soil indices, and different Machine 
Learning (ML) techniques (Nguyen et al., 2022). Multispectral 
indices, like Normalized Difference Vegetation Index (NDVI) 
and Normalized Difference Water Index (NDWI), have 
demonstrated strong associations with SSM (Ramat et al, 

2022, Hachani et al., 2023, Serrano et al., 2019). Several ML 
techniques, such as Gradient Boosting Regression (GBR), 
Support Vector Regression (SVR), Elastic Net Regression 
(ENR), and Random Forest (RF), showed great potential 
(Adab et al., 2020). In the present study, the potential of 
multispectral satellite images acquired by Sentinel-2 (S-2) for 
SSM extraction at the spatial resolution of 10 meters is 
investigated. For this purpose, an 18-months dataset of hourly 
SSM measurements, acquired by sensors placed at four 
different depths in four nodes of a monitoring network in 
Mendatica (Liguria, Italy), from 1st of January 2020 to 30th of 
June 2021, is used to look for dependency with S-2 images. 
For this purpose, the ML algorithms RF, SVR, and GBR, have 
been trained for each measurement node and at the various 
depth, and the resulting regression performance have been 
evaluated and compared.  

2. SOIL MOISTURE MONITORING NETWORK: 
CHARACTERISTICS, CALIBRATION AND 

RELIABILITY ANALYSIS 

Capacitive sensors are the most versatile and economically 
sustainable soil moisture sensors. They are relatively easy to 
install and replace and can be installed in the soil at different 
depths and locations in the study area, thus creating a 
monitoring network (Bovolenta et al., 2020). Such monitoring 
network was installed in Mendatica (Liguria, Italy), using the 
WaterScout SM100 (Spectrum Tec.). The network consists of 
five measurement nodes (M1, M2, M3, M4, M5) and a 
retriever node, that collects and sends data. Each node is 
connected with four sensors placed at different depths (-10cm, 
-35cm, -55cm, -85cm), providing information on soil water
content along a vertical measuring line (Viaggio et al., 2022).
However, the M2 node was not considered in the further
analysis, because unrepresentative of the study area. The
adopted soil moisture sensors need to be site-specifically
calibrated considering the characteristics of the soil samples
taken from the study area at the measuring points. The results
of the soil-specific calibration are shown in Table 1, in which
θ defines the volumetric water content of the soil while the
ratio between output and input voltage (Vout/Vin) represents the
raw data from the soil moisture sensors.
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Figure 1. Mendatica soil moisture monitoring network 
(Regione Liguria orthophoto on the background) 

Equation 
Number 
of data 
samples 

a b R2 RMSE 
[%] 

𝜃𝜃 =  𝛼𝛼
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝐼𝐼𝐼𝐼

+ 𝑏𝑏 64 286.8 -89.3 0.95 3.1 

Table 1. Calibration function for SM100 in Mendatica. R2: 
coefficient of determination; RMSE: root mean square error. 

The reliability verification of the acquisitions obtained through 
the SM monitoring network was conducted through the 
analysis of the correlation between rainfall and volumetric 
water content θ variations recorded by the four sensors along 
the vertical of each measurement node. As expected, a higher 
correlation between rainfall and SM is evident in the shallower 
sensors, with maximum values positioned at short lags. A 
decrease in correlation is evident for the deepest sensors, with 
a progressive delay of the peaks (Figure 2). In Figure 3 an 
example of SM acquisition performed by M1 node is 
presented.  

Figure 2. Rainfall-θ cross-covariance referred to May 2021. 

Figure 3. SM data measured by M1 measurement node at 
different depth, and rainfall data during the study period. 

3. SATELLITE REMOTE SENSING DATA

S-2 provides systematic global acquisition of high-resolution
multispectral images (MSI) with 12 spectral bands at spatial

resolutions of 10m, 20m and 60m. The availability of cloud-
based platforms for acquiring and processing satellite images 
has significantly simplified the implementation of large-scale 
RS applications like time series analysis (Duan et al., 2020). 
In this study, we used the Harmonized S-2 MSI Level 2A 
(“COPERNICUS/S2-SR-HARMONIZED”) image collection 
in Google Earth Engine over the considered study period. This 
image collection contains Surface Reflectance (SR) values of 
12 spectral bands. SR values for all bands of S-2 were used in 
this study to train regression models.  SR was exported for all 
bands from the image collection with 10 meter spatial 
resolution on each measurement node in the monitoring 
network through the study period. Accordingly, a dataset 
containing values of SR of each band based on the specific 
geometry for the whole study period was generated.  

3.1. Machine Learning for Supervised Regression 

In order to train the model, all bands of S-2 were set as input 
observations and the field-measured SSM at each node (M1, 
M3, M4 and M5) was considered as the target variable. 
Separate regression models were trained with measurement 
data at distinct depths. In the following, working SM sensors 
(11 in total) connected to measurement nodes are identified 
with a notation that defines their measurement depth XX in cm 
(SSMXX). Optical reflectance can serve as an indirect 
measure of root-zone SM. Most vegetation indices, related to 
biomass and leaf area index like Normalized Different 
Vegetation Index (NDVI), or canopy water-based indices like 
Normalized Different Water Index (NDWI) and Normalized 
Difference Moisture Index (NDMI), are associated with root-
zone SM (Liu et al, 2018). Subsequently, each regression 
method was trained using three indices in input: the NDVI, the 
NDWI, and the NDMI. Each site was considered independent 
because of the different land-use types at the various locations. 
Hence, soil moisture content has been estimated at four sites 
and the available depths, by developing eleven individual 
models for each regression algorithm used, i.e. RF, SVR, and 
GBR. The following model selection settings were chosen: for 
RF, the maximum number of features to be used in each split 
was set using the well-known rule of thumb of the square root, 
while the number of trees in the ensemble was fixed to 10.000. 
For SVR, four different kernels, i.e., linear, sigmoidal, 
polynomial, and Gaussian radial basis function (RBF) were 
used. The regularization parameters C and ɛ were set to 1 and 
0.1, respectively. For GBR, the number of estimators, the 
learning rate (shrinkage), the minimum number of 
observations at each node and the maximum depth were 100, 
0.1, 10 and 3, respectively. In this study, the dataset was split 
as 80% for training the models and 20% for testing their 
performances. The total number of acquisitions for sites M1 
(land use: agriculture), M3 (land use: woods and brambles), 
M4 (land use: agriculture close to houses) and M5 (land use: 
agriculture close to woods) were 106, 113, 108, and 108, 
respectively. Discrepancies in acquisition numbers arose due 
to the cloud cover or shadow obscuring the desired pixels. 
External tests help to ensure the robustness of the model. 
Accuracy assessment was done using the root mean squared 
error (RMSE) to evaluate the difference between the observed 
values of SSM and the retrieved values computed by the 
different regression algorithms on the test samples. 

4. RESULTS AND CONCLUSIONS

The main goal of this study was to explore the relationship 
between S-2 MSI data and ground-based SSM measurements. 
Initially, 12 different spectral channels (B1 to B12) were 
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considered as potential variables for model training. 
Subsequently, common vegetation indices were examinated, 
due to the significant impact of vegetation cover on the 
received surface reflectance from earth surface. Table 2 shows 
that the accuracy of the results is considerably dependent on 
the training dataset, hence the land-use types at each location 
and the analysed depth. The highest dependency between the 
measured soil moisture and the inputs of the regression models 
was observed at the deepest measurement depth across all 
monitoring nodes (M1, M3, M4, and M5). Except for the M4 
sensor, which operates in areas characterized by high 
heterogeneity in land use, both NDVI and NDMI exhibited a 

more pronounced dependency on soil moisture for the 
remaining measurement nodes. This highlights the substantial 
impact of vegetation dynamics on soil moisture assessment, 
particularly as measurement depth increases. Previous studies 
(Liu et al, 2018) have emphasized the effectiveness of  
vegetation indices such as NDVI in elucidating the 
relationship between SSM, root-zone SM, and crop water 
content. Root-zone SM significantly influences vegetation 
cover and alters the surface energy balance.  

M1 Node M3 Node M4 Node M5 Node 

Method kernel SSM
10 

SSM
30 

SSM
50 

SSM
80 

SSM
10 

SSM
85 

SSM
10 

SSM
35 

SSM
55 

SSM
10 

SSM
50 

12 Channels 

RF 4.21 5.12 3.42 2.62 3.64 2.13 6.43 6.43 2.55 2.89 1.87 

SVR 

Linear 3.39 3.67 3.11 3.26 2.69 1.76 6.71 5.31 5.80 4.90 2.62 

Sigmoid 4.18 4.46 3.08 3.11 2.99 2.43 8.40 4.82 4.71 4.97 2.84 

RBF 4.34 4.72 3.16 2.62 3.33 2.27 8.54 4.51 5.00 4.77 1.78 

Polynomial 4.58 5.05 3.46 3.36 2.87 2.05 13.82 21.99 16.1 6.00 2.89 

GBR 5.47 5.35 4.04 3.29 3.35 2.39 6.74 3.02 2.25 3.16 1.68 

NDVI 

RF 2.93 3.64 1.81 1.76 2.15 1.38 7.63 6.12 6.59 2.15 1.42 

SVR 

Linear 5.71 6.76 3.64 3.43 3.94 2.79 7.61 7.61 7.66 4.60 3.15 

Sigmoid 5.71 6.85 5.47 5.69 5.47 4.72 7.86 8.06 8.20 6.12 5.82 

RBF 5.66 6.68 3.54 3.37 3.85 2.75   7.32 7.56 7.60 4.52 2.91 

Polynomial 5.72 6.78 3.61 3.46 3.95 2.78 8.03 8.12 8.05 4.68 3.20 

GBR 4.63 6.03 3.96 5.09 3.27 2.27 8.65 5.02 5.22 3.70 2.41 

NDWI 

RF 2.50 3.09 1.82 1.93 2.15 1.29 4.52 3.05 3.12  2.17 1.45 

SVR 

Linear 4.91  6.09 3.21 3.49 3.99 2.85 8.12 5.54 5.82 4.58 2.99 

Sigmoid 4.93 6.14 3.23 3.51 5.92 5.86 8.58 7.19 7.40 4.68 4.65 

RBF 4.97 6.15 3.21 3.46 3.85 2.66 8.17 5.33 5.63 4.48 2.87 

Polynomial 4.89 6.07 3.26 3.49 3.96 2.79 8.26 5.77 6.22 4.61 3.09 

GBR 3.69 4.64 2.47 2.73 3.28 2.15 6.51 4.34 4.38 3.64 2.29 

RF 2.78 3.29 1.74 1.86 1.88 1.27 4.52 3.05 3.12 2.31 1.61 

SVR 

Linear 5.59 6.53 3.51 3.51 3.81 2.82 8.79 6.19 6.62 4.60 3.24 

NDMI Sigmoid 5.62 6.49 3.74 5.51 5.18 4.00 8.85 6.15 7.18 5.00 3.41 

RBF 5.51 6.33 3.35 3.26 3.68 2.71 8.39 5.92 6.02 4.46 2.96 

Polynomial 5.64 6.77 3.65 3.47 3.88 2.89 8.92 6.12 6.59 4.53 3.35 

GBR 4.46 5.13 2.73 2.77 3.03 2.07 7.14 4.77 4.75 3.57 4.72 

Table 2. RMSE of Volumetric Water Content data (expressed as percentage) using different ML algorithms. The lowest values for 
each sensor and each training are highlighted in bold. 
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The findings of this study indicate that the greenness-based 
vegetation index (NDVI) is more reliant on variations in soil 
moisture in the root-zone area in agricultural land use cases 
(M1 and M5), compared to canopy water content indices like 
NDWI and NDMI, particularly evident in M3 with denser 
vegetation cover. Among the three algorithms used to estimate 
soil moisture, the RF method demonstrated the highest 
proficiency in soil moisture retrieval, particularly when 
combined with NDVI, consistent with findings from other 
studies (Wang and Fu, 2023). For future works, it is suggested 
to consider the homogeneity of land use within each pixel and 
verify that the selected pixel accurately represents the area 
surrounding the sensor. 
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ABSTRACT: 

Satellite imagery from the Sentinel-2 MSI platforms provides systematic global acquisitions of high-resolution imagery of the Earth’s 
surface with a 5-day revisit time at the equator, having a great potential for monitoring and mapping regions where the land cover is 
particularly sensitive to the dynamics of climate change, such as the glaciers environments.  
Although several attempts at automatic procedures have been tested by the scientific community in recent years, very often the remote 
sensing mapping of the glaciers requires the use of personnel with expertise in the photo-interpretation of the glacial morphology, for 
the detection of the landform features. The strategy of this project can be divided in two main goals: i) Developing a new methodology 
to map the glaciers in the region of Hindu-Kush Karakorum ranges in Pakistan, where a number of more than 10,000, with a large 
number of them debris-covered, has been reported; ii) Involving the Pakistani and Italian students into the process of recognition of 
the glacier’s boundaries and their mapping. In order to reduce the subjectivity of the human interpretation, a new proposal of a semi-
automated process for the classification of glacial landform features from Sentinel-2 data was implemented. 

1. INTRODUCTION 

Optical satellite data has been widely used for the glacier 
mapping, starting from the first Landsat imagery in the ’70s 
years. The revisit time and the availability of these data can be 
considered the most important characteristics the researchers 
employed to create the first existing glaciers inventories based on 
the satellite imagery interpretation. Multispectral data allowed to 
propose algorithms, like the spectral indexes, for the masking of 
the cloud cover and the recognition of snow and ice and then map 
the glacier extent (Paul et al., 2005). The resulting new images 
can support the mapping, but two main concerns can be 
measured: i) a unique threshold of the adopted spectral index is 
inclined to give a good result only locally with homogeneous 
geomorphological, slope and aspect conditions; ii) multispectral 
indexes based on optical data cannot clearly identify the debris-
covered or partially covered glaciers confused with the 
surroundings moraines or rock outcrops. This last is one of the 
primary and well-known challenge, especially when it comes to 
identifying glacier terminus points (snouts). Researchers propose 
different methods based on thermal data or the integration of high 
spatial resolution optical and topographic data, to compare the 
landform due to the presence of debris (Kraaijenbrink et al., 
2016; Mölg et al., 2020).  
Moreover, the application of automatic classification of spectral 
data, supported by high performance of digital processing 
systems has been applied in limited glacier areas (Paul et al., 
2016), suggesting that when analysing a very large area, a 
systematic step-by-step approach must be implemented, with a 
thorough examination of the results. For this reason, in this 
project the automatic extraction of the glacier’s boundaries using 
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a pattern recognition technique has been controlled by human 
interpretation. 
This study is designed to describe and discuss a new 
methodology to map the glaciers from satellite data. The research 
has been developed in the framework of the UNDP (United 
Nations Development Programme) and EvK2CNR-Italy Project 
“Glaciers and Students - A scientific based approach to monitor 
climate and glaciers in Pakistan Mountain Regions to support 
hydrogeological risk prevention”. The main expected result of 
this project will be the updated glaciers inventory of Pakistan. 
The region of Hindu-Kush Karakorum ranges in Pakistan hosts a 
number of more than 10,000 glaciers, and a large number of them 
are debris-covered.  
Starting from these expected outputs, and considering the new 
technical performance that can be activated in the using by 
satellite data, the strategy of this project can be divided in two 
main goals: 

- Developing a new methodological approach to map the
glaciers;

- Involving the Pakistani and Italian students into the
process of recognition of the glacier’s boundaries.

Based on these objectives, the results presented in this research 
primarily centre around detailing the newly discussed glacier 
inventory methodology.  

2. DATA AND METHODS

2.1 Satellite data and software environment 

The new inventory of Pakistan's glaciers has been developed 
using optical data obtained from the European Space Agency's 
Sentinel-2 twin satellites. This choice is dictated by the need to 
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respond to the requirement to have homogeneous coverage of the 
entire territory under examination in terms of image acquisition 
dates, cloud cover and good spatial resolution, that allow the 
recognition of glaciers and their mapping. 
Furthermore, particular attention in the selection of the data 
processing and mapping methods was given for the expected 
prospect activity of updating the glaciers perimeters and 
monitoring changes in the future. 
Sentinel-2 twin satellites acquire data through an optical 
multispectral sensor with 10 meters of spatial resolution in the 
visible and Near-Infrared and 20 meters in the Short-Wave 
Infrared, allows to apply the useful algorithms for the spectral 
recognition of the glaciers (Kääb et al., 2016; Paul et al., 2016). 
Several software can be used for image processing and editing in 
GIS environment, either free or commercial.  
Moreover, the available DEM has been used to divide the Gilgit-
Baltistan region in hydrographic basins allowing the recognition 
of glaciers in each of them separately, and to let each user to 
concentrate the analysis and the glaciers classification in a 
bordered area.  
IMPACT Toolbox has been chosen for the pre-processing and the 
semi-automatic classification of the satellite data 
(http://forobs.jrc.ec.europa.eu/products/software). GIS  
 
2.2 Methodology 

The applied methods can be divided in two main sections, as in 
Figure 1: 

- Satellite data arrangement 
- Glaciers recognition (classification) and mapping 

The first section was dedicated to the preparation of the base data 
used by the researchers and students for the classification: 
recognition and mapping of the glacier’s boundaries. The second 
part of the methodology includes the activities of mapping, 
recognizing the polygons of the segmentation belonging to the 
glacier surface. 
The applied classification of satellite data is based on the 
Segmentation function of the composite image. In the next 
paragraph, the specific steps to create the composite image used 
to spectrally discriminate the glacial bodies and extract their 
limits is described. The output of these functions is a file in 
polygonal vector format (shapefile), where each feature can 
belong to a glacier. 
 

 
Figure 1. Schema of the approach with the steps of the 

adopted methodology 
 
From the synthetic image of Sentinel 2, spectral indexes referred 
to snow and ice-cover, and the image segmentation to 
partitioning of the composite into relatively homogeneous 
regions were applied. The resulting regions (polygons) can 
belong or not to a glacier, and the interpretation by the users is 
supported by their boundaries.  

2.3 Image Segmentation 

The workflow in the applied procedure is constituted of three 
main steps: 

- Satellite data acquisition and composite; 
- Spectral Index extraction; 
- Data classification and segmentation. 

Satellite data acquisition and composite 
The first step aims at the production of a single/mosaic multi-
spectral dataset reproducing the mountain range in northern 
Pakistan free of clouds, cloud-shadows and haze. A large number 
of Sentinel-2 data are needed to cover this area and to guarantee 
the cloud-free observations. Considering the swath of each image 
and the temporal resolution of these data, the possibility to use 
the cloud platform Google Earth Engine has been adopted for the 
creation of a unique multispectral data for the whole region. It is 
generally known, finding all cloud-free images covering the 
whole is highly challenging. So, the approach in this project has 
been based on the creation of a single multi-band composite 
cloud-free image, starting from the selection of acquisitions 
during the summer season.  
The cloud-cleaning technique applied in this project is based on 
the PINO cloud mask image processing procedure, applied in 
JavaScript code through the Google Earth Engine platform to 
create multi-temporal data composites (Simonetti et al., 2021).  
The PINO function returns the same Sentinel-2 image received 
as input after replacing every pixel, classified as clouds or 
shadows, with no-data. Filtering the annual image collection 
before extracting the median value of each pixel, increases the 
probability of obtaining a cloud-free composite in cloud-prone 
areas or whenever the atmospheric contaminations affect more 
than 50% of the acquisitions. For each pixel of the resulting 
image, and for each band, the most frequent pixel value (median) 
at the correspondent position in the given time series is assigned. 
For the computation of median digital numbers, pixel values 
recognized as belonging to clouds, cloud-shadows or haze by the 
PINO cloud mask algorithm, are automatically skipped, resulting 
in a data composite clean from atmospheric contaminants. The 
time series of Sentinel-2 L1C data in the acquisition period from 
"2022-07-31" to "2022-10-01” was processed. The resulting 
image composite is a cloud free Sentinel-2 multiband dataset, 
time-centred at the end of August (Figure 2) 
 

 
Figure 2. Sentinel-2 RGB composite image of the Pakistan 
region used in this inventory. This image is the synthesis of all 
the images acquired by the Sentinel-2 satellites in the period 
“2022-07-31" -"2022-10-01. In the Red, Green and Blue 
channels the SWIR, NIR and Red bands are represented. The 
main land cover types can be identified: in bright blue the 
snow, in dark blue the ice, in bright and dark tones of red the 
bare soils and rocks, and in green the vegetated areas. 

 
Spectral Index extraction 
The second step of the approach is focused on the enhancement 
of the spectral differences among objects composing the scene, 
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and the spectral investigation was concentrated on the distinction 
of glaciers ice/snow, glaciers debris and rocky slopes.  The 
normalized-difference snow index (NDSI) was adopted (Dozier, 
1989):  

NDSI = (B3(green) – B11(SWIR1)) / 
(B3(green) + B11(SWIR1)) 

In order to distinguish the glaciers debris (not covered by ice or 
snow) from rocky slopes, it is hypothesized that the vegetation 
has a discriminating role, being present in the second (especially 
during the summer, such as the acquisition period chosen for the 
synthetic composite), even if sparse and low, and is almost absent 
in the first, because of the slow but constant friction, movement 
and tilling of sediments in the dynamism of the glaciers. 
According to this hypothesis, the normalized-difference 
vegetation index (NDVI) was calculated: 

NDVI = (B8(NIR) – B4(Red)) / (B8(NIR) + B4(Red)) 
Since, the best contrast strategy to distinguishing the landforms 
of interest is based on the spectral indices mentioned above, a 
new dataset was prepared using NDSI, NDVI and Band4 (red), 
creating a new multiband image stack. Then, the segmentation 
classification algorithm was applied to this new multiband 
dataset, in order to aggregate pixels on the base of the proximity 
and of the similarity in the response in the NDSI, NDVI and Red 
reflectance. 
Data classification and segmentation 
The third step in the workflow regards the data classification. In 
this project we adopted image segmentation technique, aimed at 
the partitioning of the dataset into multiple polygons (segments) 
based on spectral, geometric or texture properties, calculated in 
conjunction with user-defined parameters describing size, shape 
and similarity to adjacent segments.  
The following parameters have to be considered in the 
classification process: 
• bands and weights: raster bands and associated weight values to 
use; 
• scale factor: factor that controls the spectral heterogeneity of the 
objects in the image and is therefore related to their average size, 
the low value of which allows obtaining a high number of objects 
and vice versa; 
• colour: spectral component of the Baatz algorithm [0,0; 1.0] 
(Baatz et al., 2000); 
• compactness: morphological component of the Baatz algorithm 
[0,0; 1.0]; 
• Euclidean distance: minimum distance (expressed in DN 
values) to set for the process union of the segments that cross two 
adjacent links; high values will allow the aggregation of 
heterogeneous objects between the meshes, while low values will 
preserve the sharp boundaries of the meshes; 
• MMU: minimum map unit, i.e. the spatial resolution in meters 
per pixel of the segmentation layer; for the images collected by 
Sentinel-2, 1 MMU corresponds to an area of 100 m2, i.e. a 
surface of 10 x 10 m on each side, the spatial resolution of 
Sentinel-2 being 10 m (Simonetti et al., 2015). 
In this project, the segmentation process was applied through the 
functionality available in the JRC IMPACT free software, which 
is based on the Baatz-Schape open source segmenter libraries 
(Inpe's TerraAIDA Operators). The NDSI-NDVI-B4 multiband 
dataset was processed adopting the setting, as proposed by the 
application as optimal (“majority” as aggregation rule, 0.8 as 
compactness, 0.9 as similarity in a scale 0-1, 0.9 as colour). The 
minimum map unit (MMU) parameter was empirically tested by 
setting two different values: 250 and 100. Applying the first 
value, the segmentation process produces a reduced number of 
aggregations, distinguishing landforms quite correctly. However, 
in some cases (e.g. where the slope shadow affects the scene) the 
detail of the output is not enough accurate to precisely perimeter 
the landforms as efficiently as the MMU parameter 100 does. On 

the other end, the output of the segmentation achieved setting 100 
as MMU parameter, returns a number of aggregations blocks 
considerably higher, less easy to analyse for a photo-interpreter 
(Figure 3). 
 

 

 
Figure 3. Comparison of the subsets of the image in true 
colour representing a central region of Hispar glacier. The area 
covered by the glacier is in blue, and is delineated merging the 
segmented polygons belonging to the glacier. In the upper 
image, the polygons with MMU of 250 are represented in 
white, and in the lower image, the polygons with MMU 100 
are in green. 

 
3. RESULTS AND DISCUSSION 

3.1 Glaciers recognition (classification) and mapping 

The methodology has been implemented in a Geographic 
Information System (GIS) environment. Subsets of the 
composite have been created for each basin. In a dedicated cloud 
server all the data has been uploaded, allowing each researcher 
and student to access to an assigned basin in a folder. For each 
basin, four thematic data were available, as shown in Figure 4: 
 

- The composite multiband image with the bands 
- The spectral indexes 
- The shapefile with the polygons of the segmentation 

with the MMU of 250 
- The shapefile with the polygons of the segmentation 

with the MMU of 100. 
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Figure 4. Contents of the working folders for each basin. 

 
As in Figure 1, starting from these data, the steps of mapping 
were driven by an initial training activity and periodic online 
meetings which allowed the working group to discuss and share 
the procedures for assigning each polygon to a glacier or not. The 
first results of this activity can be seen in the Figure 3: the 
polygons created with the segmentation follow the limit of the 
glacial tongues with a good accuracy, allowing them to be 
identified very precisely. The process of identification of the 
polygons has been supported by accessible datasets, like the 
existing glaciers inventories, the very high-resolution satellite 
data of Google Earth and Google maps, and the base map 
available in the GIS software. However, the final decision and 
the final limit was drawn based on the Sentinel image, thus 
ensuring a homogeneity of the detection date.  
A specific activity of comparison of each glacier with the 
available high-resolution imagery has been done in the final 
phase of validation, considering their acquisition date. 
 

4. CONCLUSIONS 

The improvement of knowledge of the cryosphere processes and 
the impacts of the climate changes can generate a new awareness 
in the local communities in formulating long term strategies for 
disaster risk reduction and for the environment sustainability. As 
resulting effects, better decisions and actions in these sectors will 
have positive impacts on the management of water and land 
resources, ultimately enabling to establish better responses to 
climate change and contribute in poverty reduction (Sustainable 
Development Goals No. 1, 6, 13 and 15). The use of remote 
sensing confirms their potential as monitoring system in the areas 
data particularly sensitive to climate change and capable of rapid 
geomorphic responses to perturbation (Melis et al., 2023). 
The final product of the research project described in this study 
is a map in vector format (shapefile), where each glacier results 
from the merging of the polygons inside its boundary. The 
proposed method, and the software infrastructure planned for this 
study, has been considered suited to familiarize with the mapping 
process using satellite images by the students from the Italian and 
Pakistan universities involved in the project with a basic 
knowledge of remote sensing, GIS, and glacier’s mapping. For 
these topics, training activities have been organized and guidance 
materials in form of videos have been shared. 
Although in the proposed method the assignment of a "Glacier 
label" is based on visual recognition, each interpreter is guided 
by a vector basis automatically extracted from the Sentinel-2 
spectral products.  
The outcomes of this study allow to plan the updating of the 
inventory annually, according to a procedure that guarantees the 
replicability and comparability of the results. Furthermore, in this 
way, the method can be adopted to guarantee the necessary 
monitoring action of these immense water reservoirs which 
constitute the primary resource for the life of millions of people 
living in the Asian region. 
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ABSTRACT: 

In this study, the presence of Bartonella spp. in 114 red foxes (Vulpes vulpes L.) of Piedmont (province of Cuneo and Biella) and Aosta 
Valley (Italy) was investigated. Spleen samples of hunted foxes were collected for Bartonella spp. DNA detection, and qPCR assay of 
ssrA locus detection was used as initial screening. The samples positive for Bartonella spp. DNA were subjected to end-point PCR to 
detect ssrA, gltA and rpoB loci. Based on qPCR results, the prevalence of infection with Bartonella spp. was 7.9% (9/114). After 
sequencing, Bartonella schoenbuchensis R1 was found to be the most isolated Bartonella species (5/8, 62,5%). Candidatus “Bartonella 
gerbillinarum” was found in two samples (2/8, 25%). In conclusion, this work can contribute to the study of Bartonella infection in fox 
populations in Italy, allowing for a more comprehensive epidemiological picture on a national scale. Concerning remote sensing 
contribution, data from NASA USGS Landsat 4-9 missions (TOA collection), ranging from 2011 to 2022, were processed in Google 
Earth Engine. Assuming that pathogens, especially in rangelands, can be influenced by humidity, the Tasseled Cap Wetness index 
(TCW) was computed for each date temporal profile consisting of composite images for each meteorological season. Seasonal TCW 
was positively associated to Bartonella spp. infection in foxes as infection was always associated to TCW >0.7. Moreover, Canonical 
Cor-responding Analysis between pathogen prevalence and municipal-based TCW show a strong link between positivity and TCW, 
demonstrating the possible use of TCW as a parameter to facilitate disease management and control. 

1. INTRODUCTION

The recent exponential development of science and technologies 
applied to GIS has contributed to the enhancement of 
epidemiological data analysis capabilities and has provided new 
and powerful tools for animal disease surveillance. GIS, spatial 
analysis techniques and the use of satellites provide useful 
methods for collecting and managing the information necessary 
for epidemiological studies. Still little explored in the veterinary 
field is the use and development of applications and 
methodologies based on "Earth Observation Data"(Orusa, Viani, 
e Borgogno-Mondino 2024). In this regard, within the European 
space program "Copernicus" and other historical programs such 
as the NASA Landsat missions, geospatial data with medium-
high geometric and temporal resolution would make it possible 
to exploit and expand ordinary risk analysis techniques, 
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translating them into a transfer technology for the veterinary 
sector. To date, in fact, only a few application ns have been 
explored with the use of medium-low resolution data in the 
context of the NASA MODIS Terra and Aqua missions (Carella 
et al. 2022; Viani, Orusa, Borgogno-Mondino, et al. 2023; Orusa 
et al. 2020). Bartonella infection in foxes has been described 
worldwide  (Álvarez-Fernández, Breitschwerdt, e Solano-
Gallego 2018; Bai et al. 2016; Birtles et al. 2002; Breitschwerdt 
e Kordick 2000; Henn et al. 2009; Kosoy e Goodrich 2019), 
while it has been rarely reported in wolves in Spain 
(Gerrikagoitia et al. 2012). Since both the wolf and the red fox 
can have contact with domesticated animals, especially dogs, 
they may play a crucial role in the ecology and spread of 
Bartonella (Alsarraf et al. 2017; Brenner et al. 1993; Chomel et 
al. 2012; de Paiva Diniz et al. 2009; Foil et al. 1998; Maggi et al. 
2011; Gutiérrez et al. 2015; Minnick e Anderson 2015). In Italy, 
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B. bovis and B. chomelii are the only species reported in wildlife, 
starting from deer tick (Millán et al. 2016).  In particular, there is 
a lack of data on infection in wild canids, although B. vinsonii 
subsp. berkhoffii and Candidatus B. merieuxii have been reported 
in hunting dogs in southern Italy. It is worth to note that B. 
vinsonii subsp. berkhofii genotype III can be highly pathogenic 
to dogs (Greco et al. 2021). In scientific literature there are not 
many reports about Bartonella spp. in Italy, especially in wild 
canids. In this study, the prevalence of Bartonella spp. was 
investigated with reference to fox populations (Vulpes Vulpes L.) 
living in the provinces of Cuneo and Biella (Piedmont) and Aosta 
Valley (NW Italy).  
The study represent a collaboration between scientific 
institutions (Reference Center for Wild Animal Diseases of Aosta 
(CeRMAS), Department of Veterinary Sciences of the University 
of Turin, Department of Agricultural and Forestry Sciences of the 
University of Turin), and among these and the pool of research 
collaborators, such as hunters and public agencies responsible for 
wildlife management (Forestry Corps and Agriculture 
Department, Natural Resources of the Autonomous Region of 
Valle d'Aosta). The analysis was achieved at municipality level 
by coupling molecular diagnostic techniques and satellite remote 
sensing with the aim of testing possible relationships between 
pathogen presence and environmental conditions. The DNA 
extracted from the spleen of 114 sampled animals was initially 
subjected to the qPCR for the ssrA locus and then to the end-point 
PCR for the ssrA, gltA and rpoB loci. 

2. MATERIALS AND METHODS 

Foxes examined belong to Vulpes vulpes L. species. The study 
involved the collection of a spleen sample from each fox hunted 
during the hunting seasons in the Piedmont districts of the 
province of Cuneo (CACN) and from each fox found dead in the 
province of Biella (BI), from 2011 to 2022, for a total of 101 
samples. The samples were stored and kept in a freezer (-20°C) 
at the Parasitic Diseases laboratories of the Department of 
Veterinary Sciences, University of Turin. Regarding samples 
from Valle d'Aosta, CeRMAS has made directly available to the 
Pathological Anatomy laboratory of the Department of 
Veterinary Sciences spleens from 13 foxes found dead in the 
Valle d'Aosta area and stored at -20 °C. Spleen samples (about 
30 mg) were thawed and subjected to DNA extraction using 
“E.Z.N.A. Tissue DNA kit” (Omega Bio-Tek, Norcross, USA). 
qPCR (quantitative PCR) allows the observation of amplification 
products during the progression of the PCR reaction and the 
quantification of the DNA present in the sample. Briefly, the 
amplification product can be detected using fluorescent dyes that 
emit light by intercalating themselves in the DNA double strand 
(for example, Sybr Green I) or using fluorescent probes. In the 
present work was used a Dual-Labeled probe also known by the 
name "TaqMan". The CFX Connect Real-Time System (BioRad, 
Hercules, USA) was used for qPCR and the locus taken into 
consideration is transfer-messenger RNA (ssrA) (Sigma-Aldrich 
2014). The protocol includes an initial denaturation at 95°C for 3 
minutes, followed by 45 cycles of denaturation (at 95°C for 15 
seconds), hybridization and extension (at 60°C for 1 minute). The 
genomic DNA of Bartonella spp. FG4-1 was used as a positive 
control (Divari et al. 2021). Samples with a Cq value lower than 

32 were considered positive and were subjected to subsequent 
analyses. 

The citrate synthase gene (gltA), RNA polymerase gene (rpoB), 
and ssrA loci were amplified using end-point PCR. For the gltA 
locus, two PCR end-point assays were applied, generating 700 bp 
(Birtles et al. 2002) and 380 bp (Norman et al. 1995) amplicons. 
Amplification was performed using a T100 Thermal Cycler 
(BioRad, Hercules, USA). The protocols applied in the end-point 
PCR were the following:  
- gltA (380 bp): an initial denaturation at 95°C for 15 minutes 
followed by 35 cycles at 95°C for 20 seconds, at 51°C for 30 
seconds and at 72°C for 2 minutes;  
- gltA (700 bp): an initial denaturation at 95°C for 15 minutes 
followed by 40 cycles at 95°C for 30 seconds, at 48°C for 1 
minute, at 72°C for 1 minute; finally, an extension at 72°C for 7 
minutes;  
- rpoB: an initial denaturation at 95°C for 15 minutes followed 
by 35 cycles at 95°C for 30 seconds, at 53°C 78 for 30 seconds, 
at 72°C for 1 minute; finally, an extension at 72°C for 2 minutes; 
 - ssrA: an initial denaturation at 95°C for 30 seconds followed 
by 40 cycles at 95°C for 15 seconds, at 60°C for 1 minute, at 
72°C for 30 seconds; finally, an extension at 72°C for 3 minutes. 
End-point PCR products were separated on 1.5% agarose gel in 
Tris-Acetate-EDTA (TAE) buffer. For DNA visualization, 
MIDORI Green Advance DNA stain (Nippon Genetics, Düren, 
Germany) was spiked into the gel. The MWD100 FastGene DNA 
Ladder (Nippon Genetics, Düren, Germany) was used as a 
reference marker for band length. The electrophoretic run was set 
at 100V for the duration of 35 or 60 minutes. The results were 
visualized and photographed with FastGene® UV 
Transilluminator (Nippon Genetics, Düren, Germany), 
considering positive the samples having bands that presented a 
length like the positive control. The amplicons obtained for ssrA 
and gltA were purified with MinElute PCR Purification Kit 
(Qiagen, Hilden, Germany). Briefly, 5 volumes of Buffer PB 
were added to one volume of amplification product and 
transferred to a MinElute column. 750 µl of Buffer PE, 
containing ethanol (96-100%) were then added. After 
centrifugation, the DNA was eluted from the column with 10 µl 
of nuclease-free water. The purified amplification products were 
sent for bidirectional sequencing (DNA Sanger sequencing) 
(BMR Genomics, Padua, Italy). According to the company's 
indications, before shipment, the samples were prepared in a 
concentration between 12 and 24 ng. Each purified amplification 
product was dispensed into two 0.2 ml microtubes to which 6.4 
pmol of forward and reverse primers relating to the gltA loci (380 
and 700 bp) and ssrA were added separately. The solutions were 
dehydrated at 65°C. Once the sequencing was done, the obtained 
chromatograms were corrected manually using the Geneious 
Prime 2020.1 program. The corrected sequences were aligned 
with the sequences deposited in GenBank, by BLAST. For each 
sequence aligned with the sequences deposited in the database, 
the following were considered: (a) ID% identity percentage (the 
percentage of identity of the sequences aligned with the deposited 
sequences); (b) expected (E) value (the probability that the 
alignment of the correct sequence with the deposited sequences 
is random); (c) percentage of Query Coverage (the percentage of 
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the sequence that has been considered in alignment with the 
deposited sequences). The results obtained were analysed using 
the GraphPad Prism 8.4.2 software (GraphPad Software, 
California, USA). Fisher's test was used to evaluate the 
association between the presence of Bartonella spp. and gender, 
age, season, and period of catching foxes. The Chi square test 
was used to evaluate the association between the presence of 
Bartonella spp. and the place of capture of animals. A 95% 
confidence interval was set and results with p-value<0.05 were 
considered statistically significant. 
The GIS analyses were carried out using the software QGIS vers 
3.16.4 Hannover. For the geospatial analyses, we used 
multispectral optical remote sensing data from the NASA USGS 
Landsat missions with 16-day time resolution starting from 1972 
for the whole globe and spatial resolution as a function of the 
considered spectral band of 30 m for the most part of the spectral 
bands used. For this work, data from the USGS Landsat 5 and 
USGS Landsat 8 missions were used, respectively from the 
Multispectral Scanner (MSS) and Operational Land Imager 
(OLI) sensors. In particular, the cloud-based platform Google 
Earth Engine (hereinafter called as GEE) was adopted for the 
processing of remote sensing data (Orusa e Borgogno Mondino 
2021; Orusa e Mondino 2019; Orusa, Viani, Cammareri, et al. 
2023; Orusa, Cammareri, e Borgogno Mondino 2022b), which 
allows large-scale processing of satellite images to detect 
changes, map trends and quantify differences on the Earth's 
surface (Orusa, Cammareri, e Borgogno Mondino 2022a; Orusa, 
Viani, Moyo, et al. 2023; Viani, Orusa, Mandola, et al. 2023; 
Latini, Bagliani, e Orusa 2021; Bagliani et al. 2019; Caimotto et 
al. 2020; Tartaglino e Orusa 2020) by accessing petabytes of 
various satellite missions from different global space agencies. 
In particular, the following GEE collections were used: (a) 
LANDSAT/LT05/C02/T1_TOA: Landsat 5 MSS TM with 
reflectance calibrated at the level of the upper part of the 
atmosphere (TOA). Calibration coefficients are extracted from 
each scene's metadata for TOA calculation based on (DeVries et 
al. 2016); (b) LANDSAT/LC08/C02/T1_TOA: Landsat 8 OLI 
TIRS with reflectance calibrated at the level of the upper part of 
the atmosphere (TOA). Calibration coefficients are extracted 
from each scene's metadata for TOA calculation based on 
(DeVries et al. 2016). Below are the characteristics of the sensors 
of the missions with the adopted bands and relative masks. 
Starting from the sample collection data of the entire population 
of foxes considered aggregated by meteorological season and 
related year using a GEO4Agri DISAFA Lab script, average 
composite images were created for each meteorological season 
starting from the year 2011 until summer 2022. From the 
empirical evidence reported in the literature (Jameson et al., 
1995; Rothenburger et al., 2018) in which the pathogen appears 
to be influenced by humidity, we computed for each scene from 
which the composites were obtained the multispectral Tasseled 
Cap Wetness (TCW) index. The Tasseled Cap was generated 
based on spectral information from the Landsat satellite. The 
Tasseled Cap coefficients used in the linear equation of the 
Tasseled Cap transformation are sensor specific and therefore 
have been derived for each sensor system. The index is related to 
principal component analysis and vegetation indices. In this 
casereference was made only to the TCW, a multispectral index 

of humidity. A measured value for soil and canopy moisture 
interactions(Sarvia et al. 2021; De Marinis et al. 2021; Samuele 
et al. 2021; Farbo et al. 2022; Borgogno-Mondino et al. 2022). 

 
where: ρ = TOA reflectance corresponding to the regions of   the 
electromagnetic spectrum of interest; α = coefficient for the 
specific TCW transformation for each Landsat band 5 and 8 
respectively. 

3. RESULTS AND DISCUSSIONS 

All 114 selected animals were analyzed by qPCR for the presence 
of the ssrA locus. Nine out of one hundred fourteen (7.9 %) 
samples were positive by qPCR analysis and in particular 7/102 
(6.9%) and 2/13 (15.4%) in red foxes collected in Piedmont and 
Aosta Valley respectively. The positive samples further analyzed 
with end-point PCR yielded 7/9 samples positive for the ssrA 
locus, of which 3/9 positive for the gltA locus (380 bp and 700 
bp) and none for the rpoB locus. Two sequences were not 
evaluable due to low quality. Based on the sequencing of the 
amplicons related to the ssrA locus, the most represented 
Bartonella species was B. schoenbuchensis R1 (5/9, 55.6%); 
Candidatus “Bartonella gerbillinarum” was identified in two 
animals (2/9, 22.2%). B. schoenbuchensis R1 was also confirmed 
by sequencing the gltA locus in 3/9 animals. No statistically 
significant associations were observed between the presence of 
Bartonella spp. and the sex, age of the foxes, season, time and 
place of capture of the foxes. In order to analyse a possible 
relationship between TCW and the presence of Bartonella spp. 
for the composite timeseries on a seasonal basis for the years of 
interest, zonal statics were created: in this case Spatial Join on a 
municipal basis for the provinces of Aosta, Biella and Cuneo 
respectively. The municipal-based and non-punctual analysis 
was dictated by the fact that the samples were not punctually 
georeferenced and starting from the assumption that the place 
where the animal was found (the municipality and neighbouring 
area) is its vital habitat (moreover since we are dealing with 
foxes, the assumption finds correspondence in the ecology and 
ethology of this species) [41]. From the geostatistical analyses it 
emerges that in the years in which positive animals are found 
there is an average value of TCW>0.7. That observation is 
repeated spatially and temporally throughout areas of thoughtful 
study. This threshold seems to be an important parameter for 
analysing the risk and potential transmissibility of the pathogen. 
To this end, to demonstrate a possible relationship between the 
environ-mental components TCW mappable by remote sensing 
and municipal-based positivity, Moran's index I was calculated 
to test the existence of a spatial problem, which in all cases was 
higher than Moran I>0.90, consequently significant: 

 
where: N = is the number of geographical units; xi= is the variable 
that describes the phenomenon under study in region i;μ = 
represents the sample mean and therefore (xi-μ) is the deviation 
from the mean of the variable of interest; Wij = is the weight 
matrix (where “i” is different from “j”); I = varies between -1.0 
and +1.0 and its numerator is interpreted as the covariance 
between contiguous units. Correspondence analyses on positive 
samples appear to show a strong link be-tween positivity and 

TCW = (ƿblue ∗ α1) + �ƿgreen ∗ α2�+ (ƿred ∗ α3) + (ƿNIR ∗ α4) + (ƿSWIR1 ∗ α5) + (ƿSWIR2 ∗ α6)  

I =  
N

Σ𝑖𝑖Σ𝑗𝑗W𝑖𝑖𝑗𝑗
 
ΣyΣjWij(x𝑖𝑖 − µ)

Σi(x𝑖𝑖 − µ)
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TCW; therefore, in order to map the risk of diffusion based on 
the geo-statistics obtained, LISA maps (Local Spatial 
Autocorrelation Indicators) were created on a municipal scale for 
the periods of interest. It can be observed that in the years of 
identification of the positives, the maps report on average a high 
average value of TCW for each municipality. In Figure 1 is 
reported an example of LISA map of the province of Cuneo in 
the winter season 2020 (Figure 1). 

 
Fig.1 LISA maps of Bartonella spp. on foxes and TCW in the 
winter season 2020 in the province of Cuneo (Piedmont).  
 

4. CONCLUSIONS 

This study provided a better understanding of the prevalence and 
genetic diversity of Bartonella species in the fox populations of 
Piedmont and Valle d'Aosta. Two species of Bartonella have 
been detected in foxes, including B. schoenbuchensis R1, capable 
of causing infection in humans. The results found raise the 
potential threats to public health from the Bartonella species: for 
these reasons, its surveillance in animals and investigations into 
suspected clinical cases in humans must be strengthened not only 
in the provinces of the Regions studied, but also to the rest of the 
Italian territory, as already demonstrated by the recent study by 
(Greco et al. 2021). Moreover, the present study highlights the 
added value of satellite data and geospatial analysis in scientific 
field (Orusa, et al. 2023) and the potentiality offered not only in 
term of data archiving but also for understand the possible 
relationship between environmental conditions and disease 
spreading (Floris et al. 2024; Viani, Orusa, Mandola, et al. 2023; 
Viani, Divari, Lovisolo, et al. 2023). 
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ABSTRACT: 

The setting up of a general framework for the environmental and landscape planning of a protected area requires a basic detailed survey 
of this area and its vegetation, accompanied by a constant monitoring of the latter, so that a specific maintenance plan can be 
implemented accordingly. With reference to an area of high environmental, landscape and archaeological value, such as the 'Pulo di 
Molfetta' (Municipality of Molfetta – Southern Italy), some georeferenced floristic surveys have been carried out, with relative mapping 
and monitoring of vegetation growth. In this way, it has been possible to draw up some specific management measures for the 
vegetation, as well as to plan suitable interventions of ecological engineering, aimed at determining the most appropriate conditions 
for the recovery, use and sustainable management of this area, even for tourism purposes. These activities have been conducted through 
the construction of a basic model implemented in a Geographical Information System (GIS), structured on the basis of some Free and 
Open-Source geographic data, integrated with a geo-localized 3D survey of the geomorphology, architectural structures and the flora-
vegetation habitat. The metric analyses have been conducted with commercial instruments, such as UAVs systems, GNSS and 
photogrammetric processing software. The obtained results have allowed the inclusion of the geo-localized 3D model in a GIS base 
for the knowledge of the flora-vegetation habitat, thanks to which it would be possible to provide support for the decision-making from 
local politicians and landscape planners. 

1. INTRODUCTION

Planning technical interventions in areas of high landscape and 
environmental importance requires the convergence of multiple 
skills, which must be mutually integrated, in order to identify the 
most appropriate option for their management. Particularly when 
these areas, as it increasingly happens, find significant 
opportunities for tourist valorization (Statuto & Picuno, 2017), 
this planning activity is extremely important and requires an 
appropriate technical approach, which must be based on surveys 
- geomatic, geological, floristic, physiognomic-structural, etc. -
of the whole area (Picuno P., 2022; Statuto et al., 2013).
The management of smart cities or particular zones, need to start
from an accurate geometric survey, generating highly detailed 3D
models (Adami et al., 2023). The topic of the photogrammetric
survey of urban or natural areas is of great interest, both for the
selected most suitable technical solutions and for the purposes
and uses of the generated point cloud. The size of the surveyed
area and the goals of the survey, drive the choice of the most
appropriate technical tools for the survey, like the type of drone,
the camera and its resolution, the quality and mode of image
acquisition, the photogrammetric processing parameters, and the
georeferencing approach. Although several advanced
technologies have been used by surveyors and engineers for
generating the structural 3D models, Unmanned Aerial Vehicle
(UAV)-based photogrammetry and Terrestrial Laser Scanning
(TLS) are among the most common methods used in this regard
(Mohammadi et al., 2021). The resulting Unmanned Aerial
System (UAS) photogrammetry point cloud can have a higher or
lower density of points, according to the flight altitude and the
resolution of the camera used. The recent developments in
automated image processing for 3D reconstruction purposes have
led to the diffusion of low-cost and open-source solutions, which
can be used by everyone to produce 3D models. The level of
automation is so high that many solutions are black-boxes, with
poor repeatability and low reliability (Remondino et al., 2012).

In the present paper, the realization of a geolocalized3D model is 
described. This tool has been realized, in order to address and 
initiate its insertion into a Geographical Information System 
(GIS) base, constructed for checking the formal consistency of 
the cartographic and photogrammetric layers and for knowledge, 
and preliminary decision aid, of the floristic-vegetational habitat 
in an area of particular environmental, landscape and 
archaeological importance, the “Pulo di Molfetta”. In this area, 
located in the Municipality of Molfetta (Apulia Region – 
Southern Italy - 41°12′N 16°36′E), the GIS that has been 
implemented, has been aimed to constantly enable, plan and 
schedule the best decisions for the management of this particular 
site. The construction of a georeferenced, explorable, editable 
and queryable database was carried out in a GIS O.S. (Open 
Source, QGIS) software, to facilitate rapid data interchange, into 
a widely used development environment.

2. MAIN BODY

2.1 Instrument selection: survey methodology 

The photogrammetric analysis was carried out with low-altitude 
aerial photography taken by UAV with Max Take Off Weight 
(MTOW) < 5 Kg. The EASA (European Aviation Safety Agency) 
requires to fly over an area free of people overhead and, in our 
case, it was necessary to solve the problems regarding both the 
visibility, covered by tall vegetation, and the side walls of the 
cliffs, rich in karst phenomena of both archaeological and 
geological interest. The digital photo sensor used has a 
mechanical shutter to eliminate, during the flight path, 
deformation caused by electronic shutters (“rolling shutter”, 
present on most of the cheaper sensors). The georeferenced 
network, preliminary to the execution of flights, was materialized 
on the ground, to distribute vertices on the entire area affected by 
the 3D model. Both photographic points (such as edges of 
artifacts, horizontal markings on asphalt, etc.) and high-contrast 
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targets, of appropriate size for both flight altitude and pixel size 
on the ground (GSD - Ground Sampling Distance), were used. 

2.2 Case study description 

The “Pulo di Molfetta” is a doline extending over an area of about 
3 Ha and about 35 m deep, characterized by peculiar 
archaeological and naturalistic features (Figure 1). This type of 
surface karst formations originated as a result of the collapse of 
the vault of underground cavities, excavated by the erosive and 
corrosive action of water infiltrating the limestone substrata.  

Figure 1. Localization of the City of Molfetta (Apulia Region – 
Italy) and the “Pulo di Molfetta” area (encapsulated photo). 

In the flat bottom of this doline there are vestiges of an old 
saltpeter factory, used in the 19th century by the Bourbons for the 
production of gunpowder. 
This area has an extraordinary natural, archaeological and 
anthropological value. From a naturalistic point of view, it 
constitutes a treasure trove of biological diversity, due to the 
millennial interaction between man and a unique natural 
environment in terms of both microclimate and vegetation. 
A geo-localized 3D survey of the geomorphology, architectural 
structures and floro-vegetational habitat has been performed. The 
surveying, georeferencing and formation of a 3D model, has 
referred to a planimetric extension of approximately 30,000 m2 
with an altimetric difference in height of 30-34 m. 
Moreover, also mapping and monitoring of vegetation and 
georeferenced floristic surveys have been performed, with the 
aim to implement an ordinary and extraordinary maintenance 
plan, enabling the calculation of forest biomass as well.  
The implemented methodology has also enabled a context 
analysis and planning of some integrated interventions, based on 
the investigation of the naturalistic/environmental conditions 
(biodiversity, ecosystems, etc.) of the site, also supported by the 
implementation of a GIS. These interventions would also include 
the forecast of appropriate naturalistic/ecological engineering 
works (Cillis et al., 2021/a), like the construction of 
retaining/consolidation structures (e.g.: dry-stone retaining walls; 
gabion walls; cliffs; etc.), and/or rockfall protection works, as 
well as works with a fencing/perimeter function, e.g.: dry-stone 
walls; wooden fences; etc. Indeed, this kind of works, may 
contribute to a mitigation of wetland loss, thanks to the designing 
and executing specific targeted technical interventions, i.e., 
building or restoring existing constructions, able to create local 
micro-environment favourable for some amphibian and reptile 
species, restoring existing wetlands or constructing new artificial 
ones, etc. Several studies have anyway demonstrated the 
difficulty of replicating natural habitats when attempting to create 
the suitable environment for these species (Picuno P., 2017). 

2.3 Data acquisition and implementation of a GIS 

For the image acquisition phases related to the photogrammetric 
survey, two surveys were carried out, during which the areas 
covered by the aerial coverage were chosen.  
The geo-localized 3D model has been included in a GIS for 
knowledge and decision support of the flora-vegetation habitat. 
Indeed, a GIS-based approach may enable – mostly when 
including both historical cartographies and remotely-sensed data, 
freely available online (Cillis et al., 2021/b) - the evaluation of 
spatial and statistical variations of the forest landscape, assessing 
how much, where and how the forest landscape has changed, in 
order to provide a methodology to support more detailed and 
targeted studies. Given the characteristics of the geodata and the 
fact that the tools are fully open-source, the techniques can be 
replicated and even partly improved in relation to specific needs. 
This GIS, would therefore also include future trans-disciplinary 
contributions from experts in other disciplines, e.g.: geologists; 
hydrogeologists; speleologists; geo-technicians; archaeologists; 
etc. 
The survey, georeferencing and 3D model formation operations 
have been conducted by means of: 
1) photogrammetric aerial images at low and ultra-low relative
flight height, according to the orography, to obtain a 3D digital
modelling with a ground resolution of at least 2 cm/pixel;
2) image coverages with nadiral and sub-horizontal shooting axes
orientation for optimize the analysis of both the geomorphology 
and the existing vegetation; 
3) creation of a framing and support network, materialized with
high-contrast photographic targets, measured with RTK (Real 
Time Kinematics) methodologies of GNSS (Global Navigation 
Satellite System) satellite positioning and accuracy ≤ 3 cm, 
georeferenced in the RDN2008 Reference Coordinate System - 
as per the Italian regulations; 
4) construction of a 3D digital model, obtained with digital
photogrammetric restitution, formed by point clouds and then
triangular mesh and photographic texture;
5) formation of a very-high resolution ortho-photomosaic, with
GSD (Ground Sampling Distance) ≤ 15 mm, and of an adequate
number of radial sections, with two views, each one orthogonal
to the section plane;
6) georeferenced identification of the individual floristic-
vegetational elements and help for the construction of a database
containing the agreed attributes defined and aimed at planning
the vegetation layers present;
7) provision of digital bases, of the indicated products, in the
most popular formats and of hardcopy prints, having a layout as
for the Municipality needs.
Following the selection and materialization of the points, a
topographic campaign of absolute coordinate acquisition was
carried out with a GNSS employed in RTK technology.
The differential correction of coordinates (included in RTK 
technology) was carried out inside the Network of Permanent
GNSS stations managed by the Apulia Region. The acquisition
of the points, reprojected in the Absolute Coordinate System
RDN2008 UTM - Fuse 33 N, was possible for all the targets on
the boundary of the imaged area, but not for others identified on
the bottom of the sinkhole. In fact, in such areas there is
unfortunately both poor reception of the signal from the Satellites
(GPS and GLONASS series), as well as the correction signals
transmitted through telephone operators (shadow of the cell
phone signal). However, even with this limitation, the
distribution of points was optimal and allowed for all acquisitions
to contain the plano-altimetric tolerance within ± 2 cm, thus
largely within the design limits and for the purposes of the survey.
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2.4 Photogrammetric process 

The photogrammetric restitution stages were performed in the 
Metashape environment (Agisoft ver.2.0.1 and later) with 
modern SfM techniques, in which the simultaneous orientation 
of the frames, along with the associated self-calibration, are 
performed en-bloc with Bundle Block Aero-triangulation (aero-
triangulation by projective stars) methodologies (Pepe et al., 
2019). 
The results were very good and exceeded the design target data 
at the end of compensation (Figure 2). The final plano-altimetric 
deviations of the GSDs used were less than ±7 mm as shown in 
the following table. 

Figure 2. Final plano-altimetric deviations of the GSDs used 
were less than ±7 mm.  

Subsequent to the refinement of the guidelines, the same 
development environment was used to produce: 
1) a dense point cloud (about 50,000,000 points) that represents
a product of wide interoperability for subsequent processing also
in the O.S. (Open Source) environment (Figure 3);

Figure 3. Representation of a dense point cloud 

2) a triangular mesh formed by about 4,200,000 triangles for
materializing the elementary surfaces constituting the 3D model;
3) a photo texture obtained by projecting image pixels onto the
faces of triangles produced in the mesh (Figure 4);
4) an ortho-photo-plane obtained by digital projection, on a
reference plane of elementary portions of the orthorectified
images, with a resolution equal to 1x1 cm GSD, georeferenced in
consistent way with all previous orientations, in the Reference
System RDN2008. In this way, the product – i.e., a georeferenced
image at very high resolution - can be easily used as a base map
in a GIS, where there are numerous other map layers in the
respective Reference System (Figure 5 and 6).

5) the realization of 4 sections, in the vertical plane, obtained on
radial orientations most significant for reading the sinkhole.

Figure 4. Image of the obtained photo texture. 

Figure 5. Orthophoto (GSD = 1 cm) produced as an overlay to 
Apulia orthophoto (GSD (50x50 cm) year 2006. 

Figure 6. Overlay of Orthophoto (GSD = 1 cm) produced on the 
Apulia orthophoto (GSD (50x50 cm) year 2006 - detail. 

2.5 Results and Discussions 

In order to address and initiate the insertion of the geolocated 3D 
model, an initial GIS base was constructed for checking the 
formal consistency of the cartographic and photogrammetric 
layers and for knowledge, and preliminary decision aid, of the 
floristic-vegetational habitat. The construction of a 
georeferenced, explorable, editable database, that can be queried 
by its user, was carried out in a O.S. (Open Source, QGIS) GIS, 
to facilitate rapid data interchange, within a widely used 
development environment. 
The first frame acquisition campaign consisted of a (high) cross-
swipe flight and nadiral axes (for photographic shadow 
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optimization) consisting of about 1050 images. In addition, a 
series of flights were performed at lower absolute altitudes, 
aimed at very-high resolution coverage of the lower area and 
some stripes with pseudo-horizontal camera axes, for multiple 
coverage of cliff faces. The total number of frames was thus 1050 
(nadiral) and about 400 with variously tilted axes, for a grand 
total of 1447 calibrated digital images. 
Based on the geolocated 3D model, some Immersive Virtual 
Tours (IVR) of the geomorphology, the structures architecture 
and floristic-vegetational habitat (Figure 7), were performed as 
well: 
1. No. 12 terrestrial shots: (19/04/2023) with 360° camera
RICOH THETA Z1 for spherical images 6720x3360 pix used on
dedicated stand, positioning of station points with GNSS Leica
G14 connected in RTK to the Permanent Stations Network of the
Apulia Region;
2. No. 180 aerial shots: (17/5/2023) flights with non-
photogrammetric purposes but aimed at producing 360°
"spherical" photos taken from no.7 points aerial shots taken by
the same technique with a scheduled specific.
In this way, the aircraft maintains, at the chosen altitude, its
coordinates acquired by the GPS/GLONASS System, by taking
n.25 shots distributed over a solid angle of 360°. Figure 7 is the
initial page of a Digital Virtual Route (DVR) that allows, with
on-line and/or Wlan network interrogation, an access to the
visibility of about 20 spherical images, both terrestrial and aerial,
useful in the observation of vegetation details, not visible from
the ortho-photo-projection.

Figure 7. Digital Virtual Route (VR) 

CONCLUSIONS 

The photogrammetric survey of the area of high environmental, 
landscape and archaeological value “Pulo di Molfetta” has 
enabled the construction of a basic model implemented in a 
Geographical Information System, which has revealed very 
useful to study this particular area. The photos taken on-site were 
exploited through a photogrammetric process, to generate an 
orthophoto of the area with a pixel size of 1 cm.  
The presented approach is suitable for the generation of high 
resolution orthophoto and highly detailed point cloud, to be used 
for further environmental studies, which will enable policy 
makers to implement the right and proper planning and 
management strategies for this area. It would contribute to plan 
also appropriate actions mitigating anthropic interventions, so 
incorporating into the rural landscape suitable elements able to 
protect natural components, enabling the development of a more 
sustainable tourism as well.  
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ABSTRACT: 

In recent years, the global effects of climate change are also affecting Europe, leading to a greater frequency of extreme events, in 
terms of heat waves, droughts and high-intensity precipitations. In 2022, the Veneto Region -as well as most of Italy- was affected by 
a severe and prolonged drought, caused by low cumulative rainfall and extraordinarily high temperatures. As a consequence, a 
significant decrease in the flow of the main hydrographic networks was recorded during the summer period. These effects were 
particularly evident for the Italian main river, the Po River, where numerous sandy islands emerged due to the low flow. This work 
aimed to define an operational methodology to perform a quantitative analysis of the areas occupied by water surfaces and sandy islands 
in an area of the Po River basin, using satellite data through a supervised classification algorithm (Random Forest). The supervised 
classification was therefore performed on Sentinel-2 images acquired for three consecutive years 2020-2021-2022 in the month of July, 
in order to monitor the evolution of the river surface in dry conditions. The results of the supervised classification showed a high 
accuracy (90%), suggesting this methodology can offer trustful results in drought monitoring, with a relatively simple procedure. 

1. INTRODUCTION

In 2022, Northern Italy and Veneto Region had to face the 
consequences of dry climatic conditions, which led to heavy 
impacts on agriculture and water reservoirs management for 
electricity production. The estimated economic damage on 
agricultural production at a national scale amounted to 
approximately 6 billion €, equal to 10% of the value of national 
agricultural food production (Coldiretti, 2022). Drought resulted 
from a combination of positive thermal anomalies, lack of rainfall 
and a decrease in snow precipitation affected the water resources 
availability. 
According to “Climate in Italy in 2022” report (SNPA, 2023), the 
average temperature in Italy recorded an anomaly of +1.23°C 
compared to average 1991-2020 period, resulting in the warmest 
year since 1961.      
Autumn, but even more so summer, were the hottest seasons: 
during the latter the difference compared to the thirty-year 
average was almost everywhere in Veneto Region above 2°C 
(ARPAV, 2023).      
On the other hand, during the year 2022 an average of 774 mm of 
precipitation fell on the Veneto Region; the average annual 
precipitation, referring to the period 1993-2021, is 1,128 mm: this 
indicates that precipitation was 31% lower than the average 
(ARPAV, 2023). Comparing the trend of monthly rainfall in 2022 
with that of the period 1993-2021, the precipitations were well 
below average during most of the summer period, leading to dry 
conditions: June (-44%), July (- 40%). 
An anomaly on the snow precipitation during the winter  affected 
natural water reservoirs for Italian catchments and hydrological 
conditions. In fact, relevant deficits of snow-covered area in the 
Alps district were recorded (Koehler at al., 2022): up to 83% in 
the Western Alps (catchment of Sesia, March 2022) and up to 
61% in the Eastern Alps (catchment of Brenta, March 2022). 

This period of hydrological drought caused negative effects on 
the environment. Some rivers, canals and waterbodies showed 
significant reduction in water-flows or hydrometric height. This 
effect was particularly visible for the largest Italian river, the Po, 
heavily  affected by drought in its basin, especially during the 
summer months. The Permanent Observatory on water uses in the 
Po River hydrographic district highlighted a scenario of severe 
water deficit (Ranzi et al., 2022). In July, the various flow 
measurement stations along the river (from Piacenza to 
Pontelagoscuro) recorded significant reductions in flow and 
hydrometric level, below the monthly minimum (ADBPO, 2022). 
This followed the dry conditions occurred during the month of 
March, where a discharge deficit of 66% (264 m3/s instead of the 
expected 819 m3/s) has been reported at the station in Piacenza, 
and even higher deficits of around 75% have been observed in the 
Po’s Alpine tributaries Dora Baltea, Adda, and Ticino (Koehler 
et al., 2022). 
The low flows of the river have also determined the rise of the 
salt wedge intrusion for several kilometres (36) from the river 
mouth (CNR Drought Observatory, 2022).  
All these combined factors resulted in an evident change in the 
river morphology; sand islands were observed emerging from the 
Po riverbed and increasing their area, while the water surface 
decreased. The aim of this study is to quantify, through remote 
sensing techniques and the use of machine learning algorithms, 
the extent of these sand islands and analyse their evolution 
through the years 2020-2022, in order to assess with a simplified 
procedure, the impact of drought on the morphology and 
ecosystem of the Po river. 
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2. STUDY AREA

The study site is a 118 km2 area located between the 
municipalities of Occhiobello (RO), Canaro (RO) and Ferrara 
(FE), where the Po River flows on the borders between Veneto 
and Emilia Romagna Regions (Figure 1). It is an agricultural 
area, with some urban settlements along the river. Being the most 
important river in Italy, Po is strategic to satisfy the water needs 
of the agricultural sector. Furthermore, it is also valuable from an 
environmental point of view, hosting habitats for different 
species of plants and animals. 

Figure 1. Study area area in Veneto and Emilia Romagna 
regions. Reference frame: Sentinel L2A in true colour 

visualization. Acquisition date: 22-07-2022 

In July 2022 - the month selected for the analysis - this area was 
affected by a severe drought with high temperatures. The mean 
monthly Land Surface Temperature (LST) retrieved by Terra 
MODIS satellite data (Wan et al., 2021) is reported in figure 2.  

Figure 2. Processed values of the mean monthly LST for the 
study area (July 2022).  

Heat stress on the local agricultural ecosystems (Gori, 2023) was 
assessed by combining the “severely dry” conditions - of the SPI-
3 (Standardized Precipitation Index) drought index which 
measures precipitation anomalies compared to a long-term series 
of rainfall data (McKee Doesken, Kleist,1993; WMO, 2012) - 
and the mean monthly LST. The heat stress on agricultural 

1 Agenzia Regionale per la Prevenzione e Protezione Ambientale del 
Veneto 

ecosystems is shown in figure 3; all the study area suffered from 
LST > 35°C and severe drought condition. 

 Figure 3. Heat stress on agricultural ecosystems in the study 
area. 

3. MATERIALS AND METHODS

Materials 

For the purpose of this work, Sentinel-2 multispectral images 
acquired in July 2020, 2021 and 2022 were analysed. Data were 
downloaded from the cloud service Sentinel-hub EO Browser 
(https://apps.sentinel-hub.com/eo-browser/, Sinergise Ltd.). 
Images have the same spatial resolution (10 m x 10 m), are co-
registered (i.e., pixels’ arrays coincide, therefore they perfectly 
overlap) and clipped to identify the same amount of surface. 
To estimate the LST in the study area, data from the Land Surface 
product Terra MODIS Temperature/Emissivity 8-Day 
(MOD11A2) Version 6.1 were used, which offers LST data 
averaged over 8 days (average of averages), with a spatial 
resolution of 1km (Gori, 2023). The SPI index was calculated 
based on the monthly precipitation data provided by ARPAV1 
meteorological stations for the years 1994-2022. 

Methods 

Given the aim to distinguish the water and sand classes, the 
analysis focused on Sentinel-2 bands: B02 (blue), B03 (green) 
and B04 (red), corresponding to the wavelengths of the visible, 
and B08 (NIR - Near Infra-Red). The band B08 was included in 
the analysis since the different reflectance values for soil/sand 
class and water; in fact, waterbodies have very poor reflection in 
this wavelength interval. 
This predictive model applied to remote sensing classifies image 
pixels based on different user-specified classes. To perform the 
classification, the model is provided of selected groups of pixels 
which have specific values, named 'ground truth' or ROI (Region 
of Interest). This process has been performed selecting regions of 
interest both for water and sand classes and observing the clear, 
regular pattern in the original image. The model classifies the 
images by randomly selecting some of these training polygons, 
while the rest are used to evaluate the accuracy of the result. . All 
the tasks and operations described in this section were performed 
using the software QGIS, version 3.22 – Bialowieza. Instead, 
only the Semi-Automatic Classification Plugin (SCP) was 
performed using the version 7.10.8. 
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The classes identified for this study area the following, each one 
representing a different land cover type:  
 

4. Class 1: Sand;   
5. Class 2: Water;   
6. Class 3: Bare Soil;   
7. Class 4: Vegetation;   
8. Class 5: Urban.   

 
Such a number of classes aimed to distinguish sand and water as 
effectively as possible (Classes 1 and 2, respectively). Being 
them the target of the analysis, they are highlighted with a 
specific colour in Figures 4, 5 and 6, while the other classes are 
in grey scale. 
Accuracy of the classification was assessed considering the error 
matrix. The evaluation of accuracy was also made using Semi-
Automatic Classification Plugin (SCP). The error matrix is the 
result of a comparison between pixels from ROIs selected as 
reference (that can be considered “ground truth”) and the result 
of supervised classification (Congedo, 2014). 

 
 

4. RESULTS & DISCUSSION 

Images’ observation provides a rather clear idea of the gravity of 
the situation for year 2022 (Figure 3, 4, 5), confirming the 
consequences of the severity of the drought. The number of sand 
islands has clearly increased compared to the previous two years, 
and the greater extension of those already present is evident. 
These preliminary conclusions are confirmed by data analysis, 
whose results are summarized in the following tables.   
 
 

 2020 
Class Area (m2) Percentage 
1 - Sand 532.300 0,45% 
2 - Water 8.127.100 6,88% 
3 -  Bare Soil 15.149.500 12,83% 
4 - Vegetation 50.260.700 42,57% 
5 - Urban 43.984.600 37,26% 

Table 1. Surface (in m2 and %) of each class of the Supervised 
Classification performed on Sentinel-2 images of July 2020. 

 
 

 2021 
Class Area (m2) Percentage 
1 - Sand 908.600 0,77% 
2 - Water 6.919.300 5,86% 
3 - Bare Soil 25.592.700 21,68% 
4 - Vegetation 45.307.100 38,38% 
5 - Urban 39.326.500 33,31% 

Table 2. Surface (in m2 and %) of each class of the Supervised 
Classification performed on Sentinel-2 images of July 2021. 

 
 

 2022 
Class Area (m2) Percentage 
1 - Sand 2.027.800 1,72% 
2 - Water 5.361.500 4,54% 
3 - Bare Soil 31.613.000 26,78% 
4 - Vegetation 36.133.100 30,61% 
5 - Urban 42.918.800 36,36% 

Table 3. Surface (in m2 and %) of each class of the Supervised 
Classification performed on Sentinel-2 images of July 2022. 

 
 

 
Figure 4. Supervised classification (Random Forest model) of the 
study area. Reference frame: Sentinel L2A in true colour 
visualization. Acquisition date: 22-07-2020. 

 

 
Figure 5. Supervised classification (Random Forest model) of the 
study area. Reference frame: Sentinel L2A in true colour 
visualization. Acquisition date: 12-07-2021. 
 

 
Figure 6. Supervised classification (Random Forest model) of the 
study area. Reference frame: Sentinel L2A in true colour 
visualization. Acquisition date: 22-07-2022. 

 
 

Class 1 (Sand) constantly increased in the years being analysed, 
while Class 2 (Water) decreased both in 2021 and in 2022. 
Similar considerations can be applied to Classes 3 and 4: Bare 
Soil increased in 2020-2022, while Vegetation decreased. Class 
5 (Urban) is lower in 2021 and 2022 than in 2020, due to the 
different training polygons used for each image. The urban 
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territory, in fact, has extremely various pixel values. The use of 
different polygons for every image provided dissimilar data to the 
classifiers, which therefore could recognize some portions of 
land as Class 5 in an image, while belonging to Classes 3 or 4 in 
the others, or vice versa. However, this does not invalidate the 
analysis focused on Classes 1 and 2, which are both correctly 
distinguished.   
The resulting classifications show high accuracy, equal to 
approx. 98% for 2020, 96% for 2021 and 98% for 2022.   
The percentage of the study area covered by sand islands 
increased from 0.45% to 0.77% between 2020 and 2021, reaching 
1.72% in 2022. Apparently small variations in terms of % values 
actually corresponded to alarming data if considered in terms of 
surface (m2): sand surface increased from 532.300 m2 to 908.600 
m2 between 2020 and 2021 (approx. + 70%); the further increase 
to 2.027.800 m2 in 2022 was equal to + 123% of the area if 
compared to the previous year, and + 280% approx. if compared 
to 2020 (Plot 1).   
The same analysis was done for the water surface of the Po River. 
Other water bodies – Laghi Al Chiaro di Luna (RO) and Laghi 
Dorati (FE) - were also present in the study area’s images, 
therefore their surfaces (around 20.000 m2) were subtracted from 
the overall values shown in the tables. 
  

 
Plot 1. Sand and Water development in the last three years. 

 
According to the results from the classification, Po River covered 
an area of 8.020.600 m2 in 2020 (6.80% of the study area), which 
dropped to 6.813.000 m2 in 2021 (5.78% of the study area), 
meaning its water surface decreased by approximately -17%. 
This value dropped further to 5.262.200 m2 in 2022 (4.46% of the 
study area), meaning the river surface area decreased by -23% 
(2021) and -35% (2020) (Plot 1).  
 

5. CONCLUSIONS 

The results of the supervised classification and its high accuracy 
remarked the importance of remote sensing and classification 
tools application in measuring, monitoring and understanding the 
effects of extra-ordinary natural events, such as the severe 
drought of 2022, which affected the Po River basin. 

It was here shown and quantified the extent of the constant 
decrease of its water surface due to the low water levels in 2020-
2021-2022, and the parallel growth of sand island surfaces. The 
analysis of the areas classified as Bare Soil and Vegetation 
showed how green areas steadily shrank as well, leaving space to 
bare soil - another very likely consequence of drought conditions. 
This study allowed us to better understand the severity of the 
situation in 2022 and some of the heavy consequences that 
drought had on the environment. The high accuracy of the 
performed analysis proves relevant and reliable for monitoring 
the negative effects of drought, with a relatively simple 
quantitative procedure, based just on remote-sensing data.  
 
It is important to underline that this analysis, however, cannot be 
used for a quantitative assessment of the impact of drought on 

water resources in terms of volumes and flow rates, if it is not 
integrated with data relating to hydrometric heights, flow rates 
and with an adequate hydraulic system model, which however 
was not the aim of this work. 
 
Furthermore, the study only covered a three-year period and 
therefore no trend could be clearly identified, as the data was not 
statistically significant. It would be desirable to replicate the 
analysis with longer time series on a multi-year scale, in order to 
verify any trends. 
 
Therefore, a possible development of such work is to combine 
multi-year scale data of the areal extent of Sand, Water, Bare Soil 
and Vegetation classes. This could in fact provide valuable 
indications on the desirable adaptation of the agricultural cultures 
as an answer to climate change.  
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ABSTRACT: 

Liquefied natural gas regasification plants can use seawater as a fluid in the process of converting gas from liquid to gas. In some 
cases, in correspondence with the discharge into the sea of the water used in the regasification process, "foams" may develop. In 
order to assist the overall evaluation of the phenomenon, an initiative was launched aimed at identifying foams with the use of 
satellite Earth observation data. Satellite optical multispectral imagery acquired by MSI sensor aboard Copernicus Sentinel-2 satellite 
constellation have been used to map areal distribution of sea foam generated from offshore platform and dispersed over sea. A sea 
foam detection procedure has been developed, including the following processing steps: i) cloud masking; ii) cloud mask refinement; 
iii) sea foam detection; iv) spatial filtering.
Sea foam spatial patterns, identified from Sentinel-2 MSI satellite acquisitions in the period 2015-2022, have been complemented
with information related to dispersal direction and maximum distance from platform discharge point, and related to sea state and
weather conditions, specifically, wind, waves, currents, and rainfall data. Results showed that the proposed procedure is effective in
sea foam dispersal patterns identification and can be extended to other high-resolution remote sensing imagery.

* Corresponding author 

1. INTRODUCTION

The phenomenon of foam formation at the regasification plant, 
in some cases, appears to be related to the breakdown of 
microorganisms naturally present in the sea water, subjected to 
mechanical stress and thermal shock along the water flow 
circuit in the vaporization systems and in relation to local 
weather and climatic conditions. 
An example of this phenomenon can be seen in northern 
Adriatic Sea, where the Adriatic LNG offshore regasification 
terminal (Figure 1) is located 15 nautical miles from the coast of 
Porto Viro (RO), a platform 375 meters long and 115 meters 
wide, resting on the seabed at 29 meters deep approximately. 
For this installation, the formation of foams was observed from 
the early stages of operation of the plant, also in consideration 
of the trophic state of these marine systems and the 
configuration of the discharge, which releases water in free fall 
inside a basin during regasification plant activities, trapping air 
and contributing to the amplification of the phenomenon. 
To control and mitigate foams dispersal, initiatives have been 
launched aimed at the mechanical abatement of foams by 
nebulized sea water, for which the Italian Institute for the 
Environmental Protection and Research (ISPRA) and the 
regional environmental agency (ARPAV), monitors its 
operation. To assist the overall evaluation of the phenomenon, 
the Institute has launched a study phase aimed at identifying 
foams with the use of satellite Earth observation data. 
Experimental radiometric samplings demonstrated that sea foam 
reflectance decreases substantially with wavelength in the near-
infrared, with values in the visible (0.44 μm) reduced by 
typically 40% at 0.85 μm, 50% at 1.02 μm, and 85% at 1.65 μm 
(Frouin and Deschamps, 1996). The spectral effect can be 
explained by the nature of the foam, which is composed of large 
bubbles of air separated by a thin layer of water and of bubbles 
of air injected in the underlayer. The presence of bubbles in the 

underlayer enhances water absorption and thus reduces 
reflectance in the near-infrared (Frouin and Deschamps, 1996). 
Use of multispectral satellite observations to investigate marine 
debris characteristics, highlighted that spectral discrimination 
from other sea surface features (e.g., ships, foam) is not 
straightforward (Acuña-Ruz et al., 2018). Indeed, differentiating 
floating plastic debris from bright features, such as sea foam, 
sun-glint, clouds, is currently considered very challenging 
(Martínez-Vicente et al., 2019). Sea foam recorded at river 
fronts or coastal wave breaking area resulted in lower 
evaluation scores than other spectral targets when using 
classification models trained with the machine learning 
algorithms (Kikaki et al., 2022). Shoreline detection methods 
using very-high spatial resolution satellite images can be 
hampered by sea foam spectral target and require sea foam to be 
taken into account when discriminating between land and ocean 
pixels in coastal waters (Minghelli et al., 2020).  

Figure 1. Adriatic LNG 
This research study aims at proposing an approach to identify 
sea foam injected by regasification plants using satellite optical 
multispectral imagery, in order to provide an operational system 
to monitor spatial distribution over time, to support practitioners 
environmental control and to verify the effectiveness of 
mitigation strategies. Statistical analysis on detected sea foam 
allowed to identify typical dispersal patterns and to further 
analyse physical forcings role for selected cases resulting in 
broader distribution. 
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2. MATERIALS AND METHODS 

Satellite optical multispectral imagery acquired by MSI sensor 
aboard Copernicus Sentinel-2 satellite constellation have been 
used to map areal distribution of sea foam generated from 
offshore platform and dispersed over sea. The high spatial 
resolution (10 m, 20 m and 60 m), the high revisit time (5 days 
with two satellites), and the 13 spectral bands (from the visible 
to shortwave infrared) are the characteristics of the S2 Multi-
Spectral Instrument (MSI) sensor. All Sentinel-2 MSI 
acquisitions (top of atmosphere reflectance – L1C) acquired in 
the period 2015-2021, with cloud cover lower than 90%, were 
collected for the area of interest (about 700 images).  
 

 
Figure 2. Detection procedure flowchart. 

A sea foam detection procedure (Figure 2) has been developed, 
including the following processing steps: i) cloud masking; ii) 
cloud mask refinement; iii) sea foam detection; iv) spatial 
filtering. 

Figure 3. Spectral signatures from in-situ radiometric sampling. 

In situ spectral measurements, acquired using a portable 
spectroradiometer, allowed to identify sea foam spectral 
signatures (Figure 3) in radiometric interval 400-900 nm. 
Measured sea foam reflectance showed significantly higher 
values than background seawater reflectance.  
Taking under consideration sea foam spectral characteristics, 
and its similarity with cloud spectral signature in the visible and 
near-infrared radiometric interval, MSI SWIR spectral bands 
have been used to refine detected cloud pixels identified using 
‘fmask’ cloud masking algorithm (Frantz et al., 2018), while all 
available spectral bands at 10 m spatial resolution have been 
used to locate pixels corresponding to floating sea foam. 
The detection processing step consists of an adaptive 
thresholding method, to find brighter pixels than the 
background ones within a 0.5 km spatial buffer. Sum of 
reflectance value of all the available spectral bands at 10 m 
spatial resolution in the visible and near infrared radiometric 
interval has been used for the analysis. Threshold value has 
been set to value 0.25, which has been selected from the 
inspection by expert operators of sum of reflectance values over 
seafoam pixels, performed on 5% of the acquisitions. Spatial 
filtering of detected bright pixels is finally applied, in order to 
remove small patches corresponding to false positives (i.e. 
whitecaps, sun-glint, ship-generated sea foam, etc.). As a result, 
sea foam raster binary mask is generated from each satellite 
acquisition date. 
Validation exercise, through supervision of the produced binary 
masks superimposed on true-color RGB images in GIS software 
run expert technicians, allowed to evaluate detection 
performances, providing information related to false negative 
pixels, typically in areas with thin clouds removed during cloud 
masking step, and false positive pixels, remaining after spatial 
filtering.  
Sea foam spatial patterns identified from Sentinel-2 MSI 
satellite acquisition in the period 2015-2022, have been 
complemented with information related to dispersal direction 
and maximum distance from platform discharge point, and 
related to sea state and weather conditions. Specifically, wind, 
waves, currents and rainfall data, collected on the offshore 
platform or by a nearby buoy, have been compared with sea 
foam spatial distribution, in order to find typical dispersal 
patterns and identify physical forcings that could contribute 
broader distribution.  
All the analysis was done using software SNAP, QGIS and R-
cran. 
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3. RESULTS AND DISCUSSION 

Detection approach allowed to reach a classification accuracy of 
0.774. A total of 204 acquisitions (29.19 %) do not show any 
sea foam generated from regasification plant. 
Most cases examined show a dispersion that typically 

concentrates within the distance of 1.5 nautical miles from the 
point of discharge the regasification water on sea. Maximum 
detected distance is 4.71 nautical miles.  Typically, the direction 
and position of the dispersion area is in a southerly direction 
with respect to the terminal, due to the location of the emission 
point (Figure 4).  

 
Figure 4. Sea foam dispersal patterns  

for the period July 2015 – November 2022. 
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Figure 5. Sea foam false negatives and false positives cases. Detected sea foam is shown in orange color. 

 
The selection of top of atmosphere reflectance in place of 
bottom of atmosphere reflectance for sea foam identification it 
is due to two reasons: i) in situ radiometric sampling show a 
significant difference between seafoam and seawater spectral 
signatures; ii) atmospheric correction algorithms can alter 
reflectance values so as to reduce detection capability. 
Atmospheric correction algorithm used to process Sentinel-2 
MSI data distributed to the users, namely Sen2Cor, performs 
relatively poorly in the coastal waters due to the land-based 
methodology, which generates scene parameters requiring a 
distribution of pixels containing land (Warren et al. 2019). On 
the other side, atmospheric correction algorithms specifically 
designed for water applications, used to retrieve bottom of 
atmosphere water-leaving reflectance, may use a correction for 
whitecaps, dampening seafoam reflectance. Considering that the 
objective of the research study is not concerning robust retrieval 
of optically active water constituents, that requires accurate 
atmospheric correction over seawater, top of atmosphere 
reflectance has been used to identify sea foams. 
Only spectral bands at 10 m spatial resolution have been used 
for the sea foam detection, considering the scale of the 
investigated phenomenon. Same spectral bands set is available 
on many other very-high spatial resolution sensor onboard 
satellites and Unmanned Aircraft Systems (UAS), opening the 
way for extending the proposed detection approach to other 
optical multispectral acquisitions. 
False negatives generated by the proposed detection procedure, 
corresponding to 22.5%, are mainly related to pixels with sea 
foam still observable under thin clouds (Figure 5), that are 
masked out by cloud masking processing step. False positives, 
partly deleted by spatial filtering for small features removal, are 
represented by bright pixels whose high reflectance values can 
be related to the presence of: whitecaps, especially during 
windy conditions; boat wakes; sun-glint, especially during 
summer months; algal blooms, like Noctiluca scintillans 
blooms; and windrows. Windrow is a long-established term for 
the aggregations of sea foam, seaweeds, plankton and natural 
debris that appear on the ocean surface, it usually forms stripes 
from tens up to thousands of meters long (Cózar et al, 2021). 
The analysis was deepened on a set of cases selected on the 
basis of relevant events (significant distance of the foams from 
the terminal) and clear identification of the foams via algorithm 
(i.e. in the absence of those phenomena that disturb the 

identification of the area occupied by the foams). A selection of 
satellite acquisitions for which the identified seafoam dispersal 
exceeded 1.66 nautical miles from the emission point allowed to 
identify 30 cases. 
Spatially explicit database of detected sea foam was 
complemented with the meteorological conditions (waves, 
currents, winds) observed by measuring instruments positioned 
near the terminal. 
Assuming that the area occupied by the foams develops due to 
the meteorological conditions occurring in the last few hours, 
each parameter analysed is evaluated in average terms 
considering the average of the six hours preceding each satellite 
acquisition time. Two cases among the identified ones are 
showed, being marine physical forcings perfectly describing the 
development of foam in the area. The analysis of the first 
selected case (Table 1) highlighted that the applied algorithm, 
given the good visibility conditions at satellite acquisition time, 
was able to clearly identify the imprint taken by the formation 
of the foams (Figure 6). From the analysis of the foam 
dispersion during the case, it was possible to verify how much 
the marine physical forcings active on that day correspond to 
the direction of propagation that the foams assumed. 
 

 
Figure 6. Sea foam dispersal pattern (in yellow) as seen by 

Sentinel-2 MSI acquired on 30/01/2022. 
 
The platform position is often decisive in influencing the 
prevailing direction towards a south-south-east direction. 
meteorological conditions may correspond to a prevailing 
direction of distribution of the foams. 
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Sea foam dispersion: South (first 
branch), south-east (second branch), 
138° (from North, clockwise) 

Satellite acquisition date 30/01/2022 
Maximum distance 4543 m 
Total area of the sea foam 54100 m2 
Current speed (last 3 hours) 0.25 m/s 
Current direction (last 3 hours) 132° 
Current speed (last 6 hours) 0.25 m/s 
Current direction (last 6 hours) 123° 
Wave height (last 3 hours) 0.21 m 
Wave direction (last 3 hours) 133° 
Wave height (last 6 hours) 0.18 m 
Wave direction (last 6 hours) 118° 
Wind speed (last 3 hours) 3.1 m/s 
Wind direction (last 3 hours) 144° 
Wind speed (last 6 hours) 2.5 m/s 
Wind direction (last 6 hours) 133° 

Table 1. Information related to selected case identified from 
Sentinel-2 MSI acquired on 30/01/2022. 

 
In the other case shown, relating to the satellite acquisition of 
24/05/2019 (Figure 7), it can be clearly highlighted how the 
direction taken by the foams was conditioned by the current and 
wind forcing (Table 2), which on that specific day showed a 
prevalent component towards the west. The height of the waves 
and their direction, given the mild intensity, do not affect the 
direction of propagation of the foams originating from the 
terminal.  
 

 
Figure 7. Sea foam dispersal pattern (in yellow) as seen by 

Sentinel-2 MSI acquired on 24/05/2019. 
 

Sea foam dispersion: West -87° 
(from North, anti-clockwise) 

Satellite acquisition date 24/05/2019 
Maximum distance 3522 m 
Total area of the sea foam 49800 m2 
Current speed (last 3 hours) 0.33 m/s 
Current direction (last 3 hours) -135° 
Current speed (last 6 hours) 0.37 m/s 
Current direction (last 6 hours) -119° 
Wave height (last 3 hours) 0.12 m 
Wave direction (last 3 hours) 104° 
Wave height (last 6 hours) 0.13 m 
Wave direction (last 6 hours) 108° 
Wind speed (last 3 hours) 2.0 m/s 
Wind direction (last 3 hours) -108° 
Wind speed (last 6 hours) 2.3 m/s 
Wind direction (last 6 hours) -100° 

Table 2. Information related to selected case identified from 
Sentinel-2 MSI acquired on 24/05/2019. 

 
4. CONCLUSION 

The proposed approach showed a good capacity in identifying 
sea foam injected by regasification plants from satellite optical 
multispectral acquisitions, as well as monitoring the dispersal 
patterns. It was possible to verify, for selected cases examined, 
that certain marine weather conditions affect the development 
and the areal propagation of foams. The analysis also tried to 

explain what are the physical forcings that determine the 
broader dispersal, representing cases that need special attention. 
Further development should test the proposed approach for the 
analysis very-high spatial resolution optical multispectral data 
and identify strategies to reduce the detection of false positives. 
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ABSTRACT: 

In recent years, EO data has played a key role in land cover mapping and land cover change monitoring. This study describes the 

methodology adopted for the land cover mapping of the Sardinian island (IT) using the IMPACT Toolbox, a free and open source 

framework for EO image processing, analysis and classification. Moreover, IMPACT provides a user-friendly interface to facilitate 

the visual inspection, interpretation and accuracy assessment of land cover maps.The first release of Sardinia Land Cover Map has 

been produced through three subsequent steps, including i) pixel-based multi-temporal classification of Sentinel-1 and 2 and ancillary 

data performed in GEE, ii) image segmentation of a Sentinel-1 and 2 annual synthesis and objects pre-labeling using the Baatz algorithm 

available in IMPACT, iii) visual inspection and refinement of the preliminary object-based land cover map. Despite the 5x106 polygons 

over an area of 2,4x104 km2, the use of object-based map reduces the amount of isolated pixels and the ‘salt&pepper’ effect, facilitating 

the visual inspection and relabelling of individual objects or entire categories. In addition, to enhance user collaboration and speed up 

the assessment process, IMPACT operates as a one-stop-shop on a server platform, enabling multi-user verification and validation. 

The obtained results give the input to propose a system of semi-automatic update of the land cover map using new data acquisition, 

with the creation of new spectral indices for change analysis and sub-segmentation of entire classes, in order to subsequently improve 

or update the map over time. 

1. INTRODUCTION

Over the past decade, Land Use and Land Cover (LULC) 

mapping has witnessed remarkable progress driven by 

technological advancements and the increasing availability of 

Earth Observation data. One of the most significant 

developments has been the proliferation of multispectral high-

resolution satellite imagery, such as Landsat 9 and Sentinel-2, 

allowing more accurate land cover classification using time series 

analysis in combination with machine learning algorithms, with 

both pixel-based and object-based approaches. Further, satellite 

data represent a valuable resource for monitoring of land cover 

changes through change detection techniques (Chughtai A. H. et 

al., 2021).  

However, the main challenges in land cover mapping at regional 

scale are related to the difficulty of extracting LULC information 

entirely from multispectral imagery, thus several remotely sensed 

datasets and ancillary data are requested (Zhang C. et al, 2022). 

Therefore, LULC classification requires processing a significant 

number of orbital images for multitemporal analysis and several 

datasets that involve complex computational infrastructure for 

data storage, management and processing capacity. 

In addition, visual inspection and validation of resulting land 

cover maps, especially in large and heterogeneous landscapes, 

involve adequate ground-truthing to assess misclassifications and 

the accuracy of the map. Thus, land cover mapping requires 

various processing tools and platforms, considerable resources 

and often licensing costs.  

1*  Corresponding author 

This study aims to introduce the IMPACT Toolbox, a  free and 

open source tool to access, storing, organising and processing 

Earth Observation data for land cover mapping production 

Originally developed by the European Commission (Simonetti 

D. et al, 2015a) as a portable GIS desktop application , it has been

further improved to support multi-user and server execution to

produce the 2020 Land Cover Map of Sardinia (Collu C. et al,

2022), Italy (Figure 1).

Figure 1. Location of the island of Sardinia (Italy). 

2. IMPACT TOOLBOX

Originally designed as a stand-alone and portable Windows 

application for EO image processing and LULC mapping, 
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IMPACT Toolbox has been further developed to match the 

project requirements such as the possibility of storing, 

processing, and rendering large volume of raster and vector data 

in a centralised infrastructure accessible online by the different 

actors involved in the mapping and validation activities (Figure 

2). The server version of IMPACT has been developed and 

deployed using a Docker image containing Ubuntu OS, NGINx 

and Tornado as load balancer and web server as well as Python 

and ExtJs for the backend and frontend respectively.  

Image processing modules (Python) and the rendering engine 

(Mapserver) are mainly relying on the Geospatial Data 

Abstraction Library (GDAL).  

 

      
 

Figure 2. IMPACT Toolbox architecture  

 

Through a user-friendly web interface, it is possible to carry out 

EO data processing such as image conversion, clipping, 

classification, segmentation as well as visual interpretation of 

LCLU map, ground-truthing and accuracy assessment by 

multiple operators simultaneously. Moreover, any modification 

done on the LCLU map during the visual inspection is 

immediately saved on the server, ensuring the rendering of the 

latest version on the web pages of connected operators.  

 

3. MATERIALS AND METHODS 

The Land Cover Map of Sardinia for the 2020 reference year, was 

produced using multi-source data: Sentinel-2 multispectral and 

Sentinel-1 radar data from 2019 to 2020, and a series of ancillary 

data and existing thematic maps from Sardinian Geoportal, Open 

Street Map and Joint Research Centre (JRC), including:  

a) Land Use map of Sardinia (2008), the latest LULC map of 

Sardinia at a scale of 1:25 000; 

b) Geo-Topographic Database (DBGT-2020) at a scale of 1: 

10 000, from which viability, construction, hydrography and 

vegetation information were extracted;   

c) Open Street Map features available in January 2021, i.e., 

water feature, roads, infrastructures and build up; 

b) Phenological Based Synthesis, a multi-temporal land cover 

classification of Sentinel-2 images spanning from 2019 to 

2020 developed at JRC (Simonetti D. et al., 2015b) 

Furthermore, 2016 and 2020 orthophotos of the Sardinia Island, 

with a spatial resolution of 0.20m/pixel in R, G, B, NIR bands, 

have been integrated in IMPACT Toolbox via WMS services as 

provided by the AGEA (https://www.agea.gov.it/) (Collu C. et al, 

2022).  

The methodology adopted for the LCLU map generation involves 

three subsequent steps: 1) preliminary pixel-based classification, 

performed in Google Earth Engine platform, 2) image 

segmentation and pre-labeling of the obtained segments, 3) visual 

inspection and refinement of the resulting map; both step 2 and 3 

are performed in IMPACT (Figure 3).  

 

 
 

Figure 3. Key image processing step  

 

3.1 Pixel-based classification 

 

Pixel-based classification following CORINE schema (third or 

fourth level) was based on ancillary data and satellite data 

products, obtained from processing of Sentinel-1 (VV and VH 

polarizations, Level-1 GRD) and Sentinel-2 level-2A imagery 

(for further comprehensive details, consult the work of Collu C. 

et al., 2022).  

 

3.2 Image segmentation and object pre-labeling 

 

Image segmentation is an object-oriented analysis that involves 

image partitioning into a set of objects or segments, containing 

groups of pixels with similar spectral characteristics and mutual 

relations (Rejaur Rahman M. et al., 2008). In particular, Baatz 

multiresolution segmentation algorithm is widely used in land 

cover mapping and object-based image analysis, and operates 

with a multi-resolution approach, with bottom-up region merging 

strategy.  Initially, individual pixels are treated as distinct objects, 

and then pairs of image objects are combined to create larger 

segments (Baatz M. and Schape A., 2000). The merging decision 

is based on a local homogeneity criterion, represented by user-

defined thresholds, i.e. a) scale, that determines the average size 

of the image objects produced during segmentation, as it serves 

as a threshold that controls the permitted change in homogeneity 

throughout the segmentation process, thus a higher scale 

parameter results in larger merged objects, as it allows more 

merging of image segments., b) colour, that refers to the spectral 

homogeneity criterion used in the segmentation process, 

measures the similarity in spectral values between adjacent image 

objects,  adjusting the colour parameter, users can control the 

relative influence of colour (spectral homogeneity) versus shape 

properties (shape homogeneity) on the generation of image 

objects, c) compactness, a component of the shape homogeneity 

criterion, it affects the shape properties of the generated image 

objects, thus users can use it to determine whether the segmented 

objects should be more compact (i.e., closely packed or fringed) 

or more smooth (with less irregularities). The IMPACT Toolbox 

segmentation algorithm (Simonetti et al., 2015a) is based on 

Baatz strategy and has been developed by Brazil's National 

Institute for Space Research (INPE), and involves similarity 

parameter in addition to Baatz components, that is related to the 

minimum grade of homogeneity within objects during segments 

merging.  

This segmentation algorithm implemented in IMPACT was 

performed on an image composed by three bands: a) GREEN and 

NIR bands from an annual composite of Sentinel-2 images 

collected in 2020, produced by computing the median value of 

each band, 2) and a band derived from the computed mean value 

of VV and VH polarisation bands of a Sentinel-1 annual 

composite of 2020’s acquisitions, created by calculating the 

mean value of VV and VH bands. A scale factor of 4 pixels 
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(400m2), a color of 0.9, a compactness of 0.7 and a similarity of 

0.82 were used.  

Finally, land cover classes derived from pixel-based 

classification map have been assigned to the objects resulting 

from the segmentation process, based on the majority occurrence 

rule, thus the class assigned to each object was the one that was 

most frequently observed within it.  

The resulting preliminary map has been overlaid with a) the 

build-up information from DBGT-2020, b) the 1m-buffered road 

and railway network shapefile derived from OSM downloaded in 

December 2022, and labelled with relative CORINE code (class 

122), to enhance the detail of the map. 

 

3.3 Visual inspection and refinement  

 

The visual inspection of the preliminary map is a semi-manual 

process that evaluates the classifier's performance, confirming or 

reassigning legend codes. Despite time and resource demanding, 

this is a crucial phase in the map production workflow and allows 

the recoding of objects or entire CORINE classes that couldn't be 

automatically extracted due to their spectral similarity or lack 

appropriate information.  

IMPACT Toolbox comes with an optimized and user friendly 

map editor environment that speeds up the editing of the map by 

multiple operators in a non-conventional way by facilitating the 

selection of objects on the base of i) ancillary information stored 

in the attribute table, ii) the assigned LCLU classes or iii)  

punctual selection, giving the possibility of recoding them by 

clicking on the most appropriate class from a popup menu 

(instead of the traditional manual editing of the DBF file). 

Moreover, the possibility of enabling or disabling classes, both in 

rendering and selection mode, eases the identification and 

reclassification of omission and commission errors respectively. 

The customised rendering engine and libraries as well as the file 

optimizations (pyramids, spatial indexing) guarantee a smooth 

editing experience even when dealing with millions of polygons 

and vector data of several Gb.  

 

3.1 3.4 Ground reference data collection for accuracy 

assessment   

In order to assess the accuracy of the land cover map, the ongoing 

validation process involves the collection of about 10000 ground 

reference points, using a stratified random approach over the 

Sardinian territory and in the various land cover classes. Ground 

truthing is carried out in IMPACT Toolbox by a detailed photo-

interpretation of data coming from Google Earth imagery, AGEA 

orthophotos, ancillary datasets and time series analysis through 

Landsat and Sentinel-2 time series visualizer powered by GEE 

and implemented in IMPACT, a valuable tool especially 

concerning seasonality analysis for crop identification.   

ADD 1 line about field data and the fact that this is an ongoing 

activity. 

4. RESULTS 

The preliminary map, resulting from segmentation and pre-

labelling processes, consists of 12 million segments covering the 

entire Sardinian territory, an area of 24,000 square kilometres, 

with more fragmented areas corresponding to urban 

environments and larger polygons in natural territories,  

confirming the robustness of the Baatz segmenter available in 

IMPACT. Furthermore, thanks to the appropriate selection of the 

input image and bads as well as the segmentation parameters 

(scale factor, colour, compactness and similarity), we do not 

observe under or over-segmentation in spectral homogeneous or 

heterogeneous areas (Figure 4). In addition, segmentation and 

pre-labelling of segments have improved the quality and the 

visual clarity of the pixel-based classification map, reducing 

isolated pixels and the well-known “salt&pepper” effect 

(Blaschke et al., 2000), a noise typically caused by random 

variations in pixel-values, as it is shown in Figure 4.  

The visual inspection of the preliminary map has highlighted 

advantages and disadvantages of both pixel-based classification 

and segmentation, and has permitted the refinement of the 

preliminary map, by re-coding i) macro classification errors 

derived from incorrect pixel-based classification, ii) small 

isolated polygons (Figure 5) making use of automatic object 

selection based on spatial extent, thematic filter as well as a more 

accurate manual selection (Figure 6).  

Figure 5. LCLU map before (left) and after (right) the recoding 

of small polygon along the road network  

Figure 4. An example of segmented map (basemap: Red: GREEN Sentinel-2 annual composite, Green: NIR Sentinel-2 annual 

composite, Blue: average VV-VH of Sentinel-1 annual composite) on the left, pixel-based classification map (centre), and preliminary 

land cover map (right) of an agricultural area  near Oristano city. The preliminary land cover map shows the reduction of salt&pepper 

noise, resulting in higher visual clarity.  

Open source technologies for mapping: impact toolbox and the land cover map of Sardinia
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To date, visual inspection has resulted in manual and automatic 

adjustment of 1 million segments. Most segments have been 

recoded to natural classes (65%), mainly from artificial surfaces 

and agricultural areas (trees among crop fields), and from other 

natural categories (39%), less vegetated areas were recoded to 

pastures, forests, and sclerophyllous vegetation. Approximately 

27% of the altered segments were reclassified to agricultural 

land, especially from sclerophyllous vegetation and artificial 

land. 

5. CONCLUSIONS

Precise land cover mapping represents a crucial point in 

environmental monitoring and land management. However, the 

necessity of multi-source data and the use of several processing 

tools and software solutions can be time-consuming and often 

can lead to licensing costs. These challenges are being addressed 

in a remarkable way by IMPACT Toolbox, offering  a free and 

portable solution with centralised data management on a unified 

infrastructure, simplifying data organisation and accessibility for 

multiple users.  

The results of land cover mapping in the Sardinia region obtained 

from segmentation, visual inspection, and validation processes, 

all conducted within the IMPACT Toolbox, have enhanced the 

potential of this application for land cover map production. In 

particular, the IMPACT segmentation algorithm has shown the 

efficiency of object-based classification, overcoming the 

salt&pepper effect, and thus improving the visual clarity of the 

map, making it easier to distinguish larger, meaningful and more 

coherent regions, simplifying also the subsequent visual 

inspection. This procedure is further facilitated by specific 

analysis and editing tools implemented in IMPACT, e.g. 

automatic selection of objects with the possibility to adopt 

statistical approach to detect and recode class outliers.  

Moreover, IMPACT allows for continuous updates of the land 

cover map directly on the server, eliminating the need for local 

operations and ensuring that the most current information is 

readily available. 

A new module has been developed for semi-automatic update of 

land cover maps over time using up-to-date remote sensing 

imagery. Existing vector map objects are dissolved by class, and 

sub-segmented on the basis of the spectral properties of the new 

image as well as new processing parameters. The resulting map 

maintains existing outmost class boundaries while allowing for 

the selection of changed areas based on spectral information or 

visual methods. This procedure enables the reconstruction of the 

change trajectory for each object (polygon) over time without the 

need for traditional GIS attribute table operations like 

intersections or spatial joins.  

In conclusion, the IMPACT toolbox introduces a new era of land 

cover mapping. It addresses long standing challenges, making 

land cover and land cover change mapping more accessible and 

efficient.  
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ABSTRACT: 

Climate change heightens the frequency of natural disasters, including forest fires and floods, causing severe problems such as fatalities 

and economic losses. The OVERWATCH project, leveraging the latest technologies of AI, drones, and Earth observation data, aims 
at developing an integrated system to manage disaster events. Among its objectives, the projects proposes to improve some data 

processing steps within the workflow of the CEMS Rapid Mapping service, by using machine learning for automatic burned and 

flooded area delineation. This work outlines current progresses in Earth Observation and AI components of the OVERWATCH system, 

focusing on automated burned area assessment. In this context, we exploit several data sources, including Copernicus EMS and EFFIS, 
to train a delineation model on historical wildfires, validating the results on recent large-scale CEMS RM activations. 

1. INTRODUCTION

Climate change is expected to lead to an increase in frequency of 
significant natural hazards, which in turn will contribute to 

fatalities, displacement, devastation, and strong economic 

repercussions. Forest fires and floods prominently stand out 

among the risks faced by countries worldwide. The European 
Union (EU) boasts extensive forested areas, covering nearly 160 

million hectares or 37.7% of the EU's territory (Milicevic, 2023). 

Just in in 2022 alone, wildfires have scorched over 1.6 million 

hectares of land, leading to significant economic losses (Joint 
Research Center, 2023). While wildfires have historically been a 

concern in the Mediterranean region, they now pose a significant 

risk in other parts of the EU, including northern Europe and the 

Arctic. Similarly, floods can cause significant loss of life and 
property damage, both in direct losses and in the context of 

impacting the economy by disrupting transportation, damaging 

businesses, and causing losses in agriculture and other industries. 
European countries have been implementing flood management 

strategies to mitigate these risks, such as early warning systems, 

floodplain mapping, and infrastructure improvements such as 

dams and levees, as floods cause the largest share of disaster 
losses in Europe (World Bank, 2021). However, despite these 

efforts, floods remain a significant hazard. Consequently, 

effective disaster management and control will be imperative to 

mitigate the impacts of these events.  
In this context, the Copernicus EU program aims at developing 

information services at European level based on satellite Earth 

Observation and in situ (non-space) data. Among the provided 

services, the Copernicus Emergency Management Service 

(CEMS) of mapping uses satellite imagery and other geospatial 

data to provide free of charge mapping service in cases of natural 

disasters, human-made emergency situations and humanitarian 

crises throughout the world (Copernicus Emergency 
Management Service, 2023a). Notably, the Rapid Mapping (RM) 

service delivers standardized mapping products to authorized 

users within hours or days of service activation, providing 

immediate support in the aftermath of a disaster.  As an example 

of RM products, the Delineation (DEL) products must be 

finalized within 7 hours from the activation's initiation.  
The OVERWATCH project here introduced, funded in the 

Horizon Europe Program (CALL:HORIZON-EUSPA-2021-

SPACE under Grant Agreement 101082320) 

(https://overwatchproject.eu/en/) fits into this context. 
OVERWATCH aims, in fact, to develop an integrated 

holographic crisis management system, boosted by the European 

Global Navigation Satellite System (EGNSS) and Copernicus 

Emergency Management Service (CEMS). The main goal is to 
address the complexity of disaster management and control and 

enhance communication, information collection, and 

coordination among disaster response teams and, in general, 

stakeholders. The system will make use of innovative digital 
technologies and components, including an artificial intelligence-

based backend management system (AIMS), a fallback 

communication system (FCS), VTOL (Vertical Take Off and 
Landing) and quadcopter drones (DR), augmented reality (AR) 

and earth observation data (EO), to deliver precise information 

and to enhance operational efficiency. The project will also 

develop a reliable and efficient communication infrastructure to 
gather and disseminate information for improved situational 

awareness.  

Among its objectives, the OVERWATCH project looks forward 

to improve and speed up the EO data processing workflow that is 
ordinarily addressed by the PS (Production Sites) within the 

Rapid Mapping service to deliver the requested mapping 

products related to wildfires and floods delineation.  

The expected improvements involve expediting labor-intensive 
manual tasks and data processing methods, through the 

application of machine learning algorithms, particularly in the 

context of delineating and grading flooded and burned areas. 

Moreover, the outputs produced are anticipated to require 
minimal post-processing, thereby reducing the time operators 

spend on output verification and refinement. 

In this paper, authors presents some preliminary results about the 

progress made in the EO and AI components of the 
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OVERWATCH system, with specific reference to the wildfire 
event type, i.e. delineation of the burned area. 

2. MATERIALS AND METHODS

The task at hand involves creating a machine learning model for 
burned area segmentation, robust to different geographical areas 

and conditions. The objective is to train the model exploiting 

manually delineated affected areas with reference to some CEMS 

RM activations from past wildfire events. To this end, we employ 
a multitask framework (Arnaudo et al., 2023), where the 

architecture consists of a standard segmentation network, but the 

decoder representations are simultaneously shared among two 

tasks, namely burn scar and land cover segmentation. 
The adopted methodology consists of different subsequent and 

necessary steps: 1) creation of the annotated dataset necessary for 

the machine learning process, 2) training of the algorithm, 3) 

validation of the outputs. 

2.1 Data Preparation: creation of the annotated dataset for 

the machine learning process 

The two ground truths adopted for the joint training, and 
displayed in Figure 1, are derived from CEMS and ESA World 

Cover dataset. The input consists of Sentinel-2 satellite images 

(Copernicus Sentinel-2, 2021) based on coordinates and times of 

each event, capturing data across 12 spectral bands at resolutions 
ranging from 10 to 60 meters. Our focus is on the L2A product, 

which corrects reflectance to Bottom-of-Atmosphere (BoA) 

values. In addition to satellite imagery and burned area 

delineation maps, we retrieve the land cover data from the ESA 
World Cover on the same area to exploit it as auxiliary output 

and improve the generalization capabilities of the model. The 

resulting CEMS dataset comprises a total of 433 samples, 

spanning from 2017 to Q1 2023, thus providing a substantial 
amount of data for a full training. 

Figure 1. Some samples extracted from the multitask training 

dataset. From left to right: Sentinel-2 image, land cover map 

(ESA WorldCover), delineation map. 

After this first phase, the delineation algorithm undergoes an 

additional finetuning using a dataset generated from pre- and 

post-event images derived from EFFIS fire activations. All the 

following steps and relative computations were run using Phyton 
programming language. 

The post and pre -event images were employed to automatically 

generate initial approximations of the burned area delineation, 

utilizing a procedure based on the computation of the difference 
Normalized Burn Ratio (dNBR) index.  

The dNBR is dependent on the previous Normalized Burned 

Ratio (NBR) indexes computation, for both the pre and post event 

situations, accordingly to the following ratio: 

𝑁𝐵𝑅 =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 (1) 

where NIR and SWIR are the Near Infrared and Shortwave 

Infrared bands of the Sentinel-2 images (B8 and B12, 

respectively). 
As above mentioned, the availability of NBR for pre-event and 

of NBR for post-event situations, permit to retrieve the dNBR, 

calculated as:  

𝑑𝑁𝐵𝑅 =  𝑁𝐵𝑅𝑝𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡  (2) 

The output is a raster file that is then subjected to a thresholding 

analysis based on pixel values, in order to assess the fire severity 

and thus identify burned areas. The pixel dNBR value considered 
for thresholding was +0.3, which, accordingly to current 

researches, generally corresponds to moderate-low severity 

burned areas (Keeley, 2009) (Key, 2006). By applying such 

thresholding value, all pixels presenting dNBR values ≥ +0.3 

were selected and considered in the analysis. The obtained grid 

files were then converted into shapefiles.  

Finally, the shapefiles underwent manual verification and 
refinement by operators in QGIS v.3.28.11 LTR environment 

(QGIS.org, 2023), resulting in an annotated dataset that includes 

ground truth data along with the corresponding post-event 

images. Although the dNBR procedure often yielded accurate 
results, several challenges were encountered during the dataset 

preparation. In particular, areas that were already burned in the 

pre-event images were often missed and had to be manually 

included (false negatives). Additionally, in some instances, water 
bodies and terrains undergoing substantial changes between the 

pre and post-event phases, were erroneously categorized as 

burned areas (false positives). 
The final training dataset for the machine learning process was 

constituted by 236 shapefiles representing burned areas. 

2.2 Training of the algorithm: Multitask learning 

framework 

The training of the adopted model comprises two subsequent 

steps: first, a full multitask training using the CEMS dataset to 

learn robust features, followed by a finetuning based on the 
previously created dataset of 236 shapefiles representing burned 

areas, that were subsequently rasterized to get a binary 

classification of reference for the model: pixel value 1, burned 

area; pixel value 0, non-burned area.  
With regard to the learning model type, we adopted a standard 

multitask learning framework, as illustrated in Figure 2.  

We train the complete model, denoted as fθ, by simultaneously 

performing burned area delineation and land cover segmentation. 
This is accomplished using shared representations from the 

decoder stage, denoted as φθ. By sharing the features, the model 

can capture and leverage common patterns between these two 

tasks, potentially leading to improved segmentation results. 
During the training process, we utilize standard Cross Entropy 

loss, both in its binary and multi-class variants. The gradients 
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from both tasks are jointly propagated back to update the model's 
parameters. 

Figure 2. Training framework adopted in this work. The model is 

jointly trained on both burned area delineation, and land cover 
segmentation as auxiliary output. 

At finetuning and testing phase, we focus solely on burned area 

delineation performance, omitting the auxiliary head and 
performing standard binary segmentation. Following previous 

works, we adopt a Unified Perceptual Parsing network (UPerNet) 

(Xiao et al., 2018) paired with a ResNet50 encoder as our 
architecture. We train the complete framework for 30 epochs, 

using AdamW with a learning rate of   as optimizer.  

2.3 Validation of the model outputs 

The resulting model was then validated using two recent CEMS 

RM wildfire activations, namely EMSR675 and EMSR674, 

which were not included in the machine learning process. 

EMSR674 pertains a fire which broke out near Kallithea village 
on the afternoon of July 17, 2023. The fire, classified as Extreme 

Danger according to the Fire Danger Forecast (EFFIS), caused 

significant damage to residences in nearby villages. Around 

1,200 ha of land burned, and 500 people were potentially 
affected. (Copernicus Emergency Management Service, 2023b). 

Similarly, EMSR675 concerns a wildfire that started on the 

afternoon of July 18, 2023, in a forested area on the island of 

Rhodes. The fire also classified as Extreme Danger, spiraled out 
of control, resulting in the destruction of dense pine tree and 

cypress forests, along with wildlife habitats. Around 17,774 ha of 

land burned, and 750 people were potentially affected. 

(Copernicus Emergency Management Service, 2023c).   
To carry out our validation tests, we retrieved the Sentinel-2 

images of the selected RM activations using the SentinelHub 

service (SentinelHub, 2023). We exploited the ground truth 

polygon bounds as spatial delimiter, extracting the satellite 
acquisition with the least amount of cloud coverage in the weeks 

following the event. We then generate a full-size prediction by 

tiling with fixed overlap in smaller crops with size 512x512 

pixels and recomposing the original shape via interpolation 
across tiles. 

We tested the algorithm on the selected areas using macro-

averaged F1 score and Intersection over Union (IoU), also known 

as Jaccard index, computed as: 

where, A and B represent the predicted mask and the ground truth 
delineation respectively. Intuitively, a good degree of overlap 

between them will produce a high IoU score. Given the focus on 

rapid and effective delineation, we also evaluate the total amount 

of time required to provide the complete delineation. This 
includes the preparation of the inputs, subdividing the input 

image in overlapping tiles, the inference time itself, and the 

reconstruction time to recompose the full inference from the tile 
prediction, as detailed in the following section. 

3. RESULTS AND DISCUSSIONS

Table 1 displays the results of the validation tests: F1 and IoU 

scores, computed over the final predictions with respect to the 

original EMS activation, as well as the total number of seconds 
required to generate the complete inference.  

Considering the EMSR674 activation, we achieve a  F1 score of 

94.50 and 89.57 of IoU, showing a high degree of agreement 

between human annotation and automated output. Additionally, 
the inference time for this activation was relatively low at 13.92 

seconds.  

In the case of EMSR675, the results were even higher in terms of 

accuracy, with an F1 score of 96.57. This reflects the model's 
precision in identifying burned areas, as well as its robustness to 

different geographical conditions. The inference time was 

relatively higher, at 221.04 seconds, probably due to the larger 

area that was interested by the fire, i.e. around 20,000 ha. While 
the algorithm demonstrates good performance, providing high-

quality delineations in different settings, it’s important to note 

that it may not yet match the precision of a human annotator. 

Nevertheless, the notable advantage of the machine learning 
approach lies in its automated processing and significantly faster 

processing capabilities. This trade-off between precision and 

speed makes it a valuable tool, especially in scenarios where 

timely responses are critical. 

Activation F1 IoU 
Inference Time 

(s) 

EMSR674 94.50 89.57 13.92 

EMSR675 96.57 93.37 221.04 

Table 1. Results obtained on the selected activations in terms of 

F1 and IoU scores, and the required inference time in seconds. 

Figure 3. Qualitative results obtained from the model 

validation on the selected areas. From left to right: Sentinel-2 

RGB composite, model prediction, CEMS RM reference data. 
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4. CONCLUSIONS

This work presents current progresses in Earth Observation and 

AI components of the OVERWATCH system, focusing on 

automated burned area assessment. By exploiting several data 

sources such as Copernicus EMS and EFFIS, we generated a 
training dataset from Sentinel-2 images to train a delineation 

model on historical wildfire events and validating the results with 

respect to two recent CEMS RM wildfires activations. The 

performed validation tests were run to assess 1) the model’ 
precision in identifying burned areas, i.e. the degree of agreement 

between human-made annotation and automated model, and 2) 

the time required to provide the complete delineation of the two 

events.  
Preliminary obtained results showed high values of both F1 and 

IoU scores, representative for model’ precision in burned area 

delineation, as well as for the inference time (13.92 seconds for 

EMSR674 and 221.04 for EMSR675) that the model spent to 
generate the automated outputs. With reference to the specific 

context of CEMS RM data processing, where timing is a pivotal 

element, these first results are very promising. 

Next steps of the work will be to provide the same AI-based 
approach also for flood events assessment, as foreseen by the 

OVERWATCH project proposition. Moreover, different kind of 

EO optical data (e.g. VHR data) will be used to train the machine 

learning model, accordingly adapted depending on the type of 
data to be used as input data for the training process.  
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ABSTRACT: 

Glaciers are critical elements in the Earth’s climate system. Understanding and monitoring glacier extent changes is critical to 
informing climate policies, assessing natural hazards, and safeguarding global water resources. Remote sensing technologies are 
proven and widely adopted sources of information in this sense. The proposed study aims to develop a forecasting model able to 
predict future changes in glacier and snow extent, using supervised machine learning algorithms applied to open access data, 
including HR satellite data of the EU Copernicus program. Two machine learning models are developed. The first model is a 
segmentation model that employs a U-Net architecture to digitalize glacier features from satellite images. The purpose of the 
segmentation model is to expand the dataset required by the forecasting model, in terms of glacier surface values. This dataset is 
generated using the segmentation model previously trained, applied to multiple glaciers, spanning a 30-year period and a consistent 
seasonal interval. The second model is a multivariate forecasting model that seeks to identify the relationships between Land Surface 
Temperature (LST) and glacier/snow extent. Both models are validated on testing data to assess their generalization capabilities and 
their performance on real-world cases. A subset of the segmentation dataset is kept aside to extrapolate metrics such as the 
Intersection-Over-Union (IoU). For the forecasting model, error metrics such as the Root-Mean Squared Error (RMSE) are 
considered to assess the model performance. 

1. INTRODUCTION

Glaciers are a crucial component of the Earth's cryosphere, 
covering approximately 11% of the planet's land surface and 
holding around 69% of its total freshwater (Gleick, 1996). 
They are sensitive indicators of climate change, and the 
significant increase in global temperatures resulting from 
human-induced climate change has profoundly affected glaciers 
worldwide (Li et al., 2023). Melting glaciers, a result of human-
induced climate change, have far-reaching consequences. They 
disrupt water availability, affecting downstream ecosystems and 
communities dependent on glacial meltwater for drinking water, 
agriculture, and hydropower (Kaser et al. 2010). Changes in 
water flow patterns and nutrient availability lead to biodiversity 
loss, resource conflicts, community displacement, and 
ecological disturbances (Losapio et al. 2021). The European 
Alps stands out as one of the regions experiencing the most 
significant glacier shrinkage. Seasonal observations conducted 
by Glacier Monitoring Switzerland (GLAMOS) reveal that 
Alpine glaciers began the year 2018 with a snow cover up to 
50% thicker compared to the period from 1961 to 1990. 
However, the exceptionally long, warm, and sunny summer 
transformed the year into yet another one characterized by 
extreme loss of glacier mass in this region (Copernicus Climate 
Change Service, 2018). Accurately monitoring changes in 
glacier extent is of utmost importance for informing climate 
policies, assessing natural hazards, and safeguarding global 
water resources. Remote sensing technologies have emerged as 
a proven and widely embraced source of information. Satellite 
imagery and other techniques offer scientists the means to 
acquire detailed data on glacier extents. With the ability to 
gather data over vast and inaccessible regions, remote sensing 
enables a more comprehensive understanding of glacial 

processes. It provides a continuous and long-term monitoring 
capability, facilitating the detection of subtle changes and trends 
in glacier behaviour. Moreover, the integration of artificial 
intelligence methodologies has immense potential to enhance 
and automate knowledge extraction from large datasets, 
allowing for the extraction of valuable insights from Earth 
Observation data. Within this context, the objective of this study 
is to formulate and apply a preliminary methodology employing 
two machine learning models: an image segmentation model 
and a multivariate block recurrent neural network model 
(RNN). The aim is to predict changes in glacier extents and 
snow coverage in the coming years by leveraging publicly 
available data, specifically optical satellite imagery and land 
surface temperature (LST) measurements. By harnessing these 
readily accessible data sources, this research seeks to establish a 
preliminary framework that can contribute to improving our 
understanding of the impacts of climate change on glaciers. 

2. MATERIALS AND METHODS

2.1 Study area and data collection 

The European Alps were chosen as the study area due to the 
significant shrinkage observed in the recent decades. The study 
focused on 13 alpine glaciers: Dei Forni, Adamello, 
Morteratsch, Tschierva, Del Forno, Ventina, Aletsch, Gorner, 
Findel, Geant, Corbassiere, and Trient glaciers, as shown in 
Figure 1. These regions were defined using the Global Land Ice 
Measurements from Space (GLIMS) database, which provides 
georeferenced extents of glaciers worldwide across different 
measurement dates (Raup et al., 2007). These extents served as 
references for collecting publicly available satellite data. To 
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cover a time span of at least 30 years, from 1990 to 2022, data 
from Landsat-5 (TM), Landsat-7 (ETM+), Landsat-8 (OLI) 
Level 2 collections, and Sentinel-2 collection 1 were gathered. 
This data was collected using the open-access Copernicus HUB 
portal for Sentinel-2 and the USGS EarthExplorer portal for 
Landsat (European Space Agency, 2023)(United States 
Geological Survey, 2023). Glacier images were acquired during 
the summer period, primarily in August and September to   
minimize snow coverage. In cases of limited image availability 
due to excessive cloud cover, July and June were also 
considered. Additionally, data on Land Surface Temperature 
(LST) spanning from 1995 to 2022 was collected, with the 
primary source being the ESA Land Surface Temperature 
Climate Change Initiative (LST_CCI) (Ghent et al., 2022). To 
train the segmentation model, the Hindu Kush Himalayas 
glacier mapping dataset was employed, which includes imagery 
and glacier location polygons for the Hindu Kush Himalayas 
region, serving as ground truth (Baraka et al., 2020). 
 
2.2 Automatic classification of glaciers 

In the field of digital image processing, image segmentation 
refers to the task of dividing a digital image into distinct 
regions, comprising sets of pixels (Shih, 2009). The primary 
objective of segmentation is to assign a label to each pixel based 
on shared characteristics among pixels with the same label. In 
this study, we focus on automating the digitization of a specific 
class of interest: glaciers and areas covered by snow and ice as 
well. This enables swift computation of the extents, facilitating 
the creation of multiple time series, which serve as input for the 
forecasting multivariate block RNN model. To achieve this 
objective, the adopted approach was to use a U-Net architecture 
(Ronneberger et al., 2015). The U-Net was trained on the Hindu 
Kush Himalayas dataset, which is based on Landsat 7 images, 
employing a composite of bands consisting of Shortwave 
Infrared (1.55-1.75 µm), Near-Infrared (0.77-0.90 µm), and Red 
(0.63-0.69 µm). This combination of bands facilitates more 
accurate segmentation of icy and snowy features. Additionally, 
we also developed an automatic procedure based on two 
spectral indices, defined as follows: 
 

         (1) 

 
 Empirical thresholds, denoted as t1 and t2, were established 
individually for each satellite. Specifically, for Landsat, the 
values selected were 0.021 for t1 and -0.24 for t2, while for 
Sentinel-2, the chosen thresholds were 0.065 for t1 and -0.35 for 
t2. The selection process for these thresholds was suboptimal, 
relying on empirical methods. Therefore, it would be 
advantageous in future research to devise an automated 

procedure for optimizing threshold definitions. The AI-based 
and the spectral indices solutions were implemented together, to 
improve the overall effectiveness of the classification. The 
procedure was implemented into a QGis plugin, which was 
extensively used to compute the extent of glaciers and snowy 
areas on the satellite images which were previously collected 
for the study area. The same composition of bands, namely 
SWIR-NIR-RED, was considered, to ensure consistency 
throughout the analysis process. An example of a classification 
output, for the Aletsch glacier, is displayed in figure 2. The 
model seems to be able to accurately detect regions heavily 
covered by snow as well as regions covered by mixtures of 
debris and ices. 
 
2.3 Multivariate Block Recurrent Neural Network Model 

In addition to generating the time series of ice and snow extents 
through the automatic classification tool, time series for the LST 
of each region were also computed. These LST values were 
calculated as averages over the four summer months (June, July, 
August, September) of each year, as well as the spatial average 
within each respective region. To streamline this process, 
another dedicated QGIS plugin was developed specifically for 
this task. As there was no available data prior to 1995, values up 
to 1990 were linearly extrapolated. The resulting time series of 
LST served as the past covariate in the forecasting model. Both 
the extents of glaciers/snow and LST time series were 
normalized with respect to the 1990 values, for each considered 
region. 
The forecasting model employed is based on a Block Recurrent 

Figure 1. Localization in the Alpine region of the glaciers considered in this study.  

Figure 2. Output example of the classification model, for the 
Aletsch glacier (image acquired the 30/08/2015)  
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Neural Network architecture. This neural network model 
utilizes an RNN encoder to encode fixed-length input chunks 
and a fully connected network to generate fixed-length outputs, 
while also incorporating past covariates. Considering the 
relatively limited time considered (approximately 30 years), the 
model was designed with an input chunk length of 20 and an 
output chunk length of 10. Two recurrent layers were utilized, 
and the model was trained for 550 epochs using a stochastic 
approach. A key distinction between probabilistic models and 
their deterministic counterparts lies in their approach to future 
predictions. Instead of directly predicting future values, 
probabilistic models estimate parameters of a given distribution 
that describe the likelihood of observing future values. In this 
study, a normal distribution was considered. Consequently, our 
model's predictions include a confidence interval defined by the  
0.05 and 0.95 quantiles of the sampled time series in addition to 
the median, which represents the most likely observed time 
series. 
 

3. RESULTS 

3.1 Classification model validation 

The U-net model was defined with a resnet101 backbone and 
trained for 300 epochs, minimizing a Binary Cross Entropy 
(BCE) loss function and a Dice loss function. The resulting 
mean value of Intersection-over-Union (IoU) on the training test 
was around 83.9%, which is an reasonable result considering 
the state of the art (Minaee et al., 2022). The IoU metric 
evaluates the overlap of the Ground Truth and Prediction 
regions, as defined as follows: 
 

                                  (2) 
 
Where TP, FP and FN stand for true positive, false positive and 
false negative respectively. To improve the results, different and 
more modern architectures with different backbones are 
expected to be employed in future studies. 
 
 
3.2 Forecasting model validation 

The forecasting model was trained using 70% of the generated 
dataset, while the remaining portion was reserved as the 
validation dataset. To assess the model's performance, backtests 
were conducted on both the training and testing samples, and 
the root-mean-squared error (RMSE) metric was computed. 

RMSE is a measure of the differences between the model's 
predicted values and the observed values. It is always positive 
and dependent on the scale of the data, but it provides valuable 
insights into the accuracy of trained models. The RMSE is 
defined as follows: 
 

                        (3) 

 

The RMSE was computed for each region with and without 
implementing the LST time series as past covariate. The results 
are collected in Table 1. 
While the inclusion of the LST time series as a past covariate 
resulted in a slight improvement in the RMSE values for most 
regions, this improvement was relatively modest. It may be 
worth exploring, in the future, the potential effectiveness of 
other covariates, such as precipitations and elevation, which 
may yield more significant improvements in forecasting 
accuracy. Furthermore, it is important to note that the RMSE 
values obtained are only approximately one order of magnitude 
smaller than the actual relative changes in glacier and snow 
extent. This suggests that further improvements are needed to 
enhance the accuracy of the model. These improvements could 

Region RMSE (no LST) RMSE (with LST) 
Training sample 

Dei Forni 0.090 0.089 
Morteratsch 0.057 0.047 
Tschierva 0.029 0.071 
Del Forno 0.083 0.134 
Ventina 0.088 0.066 
Aletsch 0.087 0.058 
Gorner 0.052 0.043 
Findel 0.061 0.039 
Corbassière 0.078 0.045 
Trient 0.158 0.143 
Average 0.078 0.073 

Validation sample 
Adamello 0.035 0.041 
Argentiere 0.144 0.090 
Geant 0.137 0.081 
Average 0.105 0.071 

Table 1. Root-mean-squared error (RMSE) computed for each 
region, with and without using the LST time series as past 

covariate. 

Figure 3. Comparative changes in glacier and snow extent relative to 1990, along with a 10-year projection for the Dei Forni glacier 
(left) and the Aletsch glacier (right). 
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be achieved by incorporating additional and more effective 
covariates, as well as expanding the dataset to include a broader 
range of regions and longer time periods. 

3.3 Forecasts 

Finally, the trained block RNN model was used to predict the 
evolution of the relative extent changes compared to 1990 for 
the next 10 years. Most glaciers follow, with some oscillations, 
an overall decreasing trend, which is in line with the 
expectations. Some significant examples are reported in this 
document. Figure 3 shows the forecast obtained for both the Dei 
Forni glacier and the Aletsch glacier. The Dei Forni glacier has 
seen significant and continuous shrinkage in the last decades, 
and the model predicts that the trend will steadily continue in 
the next 10 years. On the other hand, the Aletsch glacier is the 
region, among the studied ones, displaying the least amount of 
retreat in the last 30 years. Also in this case, the prediction 
obtained appears consistent with the observed past trend. 

4. CONCLUSIONS

This study aimed to develop a preliminary methodology for 
predicting glacier extent changes using remote sensing and 
machine learning techniques. The methodology was applied to 
glaciers in the European Alps. The study involved the 
development of an image segmentation U-Net model, enhanced 
by the analysis of two spectral indices, for classifying glaciers 
and snow-covered areas. The classifier performed well, but in 
the future, exploring more modern and improved architectures 
could result in even better segmentation results.  Additionally, a 
multivariate block recurrent neural network (RNN) model was 
developed to forecast glacier extent changes, with land surface 
temperature as a covariate. The RNN model's performance was 
evaluated using the root-mean-squared error (RMSE) metric, 
while the U-Net model was evaluated using the Intersection-
over-Union (IoU) metric. The results indicated that including 
land surface temperature as a covariate very slightly improved 
the RNN model's performance, but further enhancements are 
necessary for higher accuracy. Exploring other covariates, such 
as precipitations for each year, and elevation, may lead to better 
forecasts. The trained RNN model predicted the relative extent 
changes of glaciers compared to 1990 for the next 10 years, 
revealing a decreasing trend consistent with historical 
observations. However, more research is needed to enhance the 
models by incorporating additional covariates and expanding 
the dataset both spatially and temporally Thankfully, expanding 
the dataset spatially will be straightforward, as the biggest 
strength of this methodology resides in the capability of 
expanding the forecasting dataset very rapidly, thanks to the 
automatic classifier. On the other hand, obtaining data for 
earlier years presents more challenges, but temporal expansion 
can still be achieved by broadening the dataset to include data 
points beyond the summer period. 
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ABSTRACT: 

The Alpine Region, spanning across several European countries, holds great significance due to its diverse natural, historical, and 
cultural aspects. Recognizing the Alpine Region's importance, it's crucial to manage and preserve its heritage. Digital Twin (DT) 
technology is utilized for monitoring and managing complex systems, which encompass aspects such as biodiversity, climate, and land 
use. DTs create high-precision digital replicas of Earth's systems, which can be continuously updated with Earth Observation (EO) 
data and in-situ measurements. This work aims to present some preliminary considerations about a DT prototype of Italian Alps, and 
to create one of the basic element for such a DT: the 3D model of the Italian Alps, only relying on open-access high-resolution satellite 
data and freely available DEMs. With specific reference to 3D model generation, the goal was to create two 3D models for different 
seasons (one for autumn/winter and one for spring/summer seasons) while minimizing seasonality effects and cloud cover issues, 
incorporating multi-spectral Sentinel-2 optical images and 10m spatial resolution DEMs from INGV (Istituto Nazionale di Geofisica 
e Vulcanologia). Multi-spectral images allow for thematic 3D models characterizing of vegetation, water bodies, lithotypes, etc. The 
data were processed by using open source software (e.g. QGIS for raster handling and CloudCompare for the generation of the point 
clouds). Some considerations about the limits and potentialities of the adopted open source data, and about the enabled applications 
coming from the seasonal models, are also presented. Despite some identified limitations, these 3D models offer interesting approaches 
for the monitoring of natural ecosystems and for potential innovative analysis. 

1. INTRODUCTION

The Alpine Region holds significant importance in the European 
context because of its distinctive and diverse natural, historical, 
and cultural attributes. Spanning several countries, including 
France, Italy, Switzerland, Liechtenstein, Austria, Germany, and 
Slovenia, its central location has fostered cultural diversity and 
richness. In fact, human-nature coexistence in the Alps traces its 
origins back to around 7800 BC (Kutschera et al., 2014).  This 
region also features natural attractions like glaciers, lakes, 
waterfalls, and mountain peaks. Recognizing the significance of 
the Alpine Region, it becomes imperative to effectively manage 
and safeguard its natural and cultural heritage. To accomplish this 
objective, harnessing innovative technologies becomes essential. 
Specifically, leveraging Digital Twin (DT) technology can 
facilitate the monitoring and management of natural processes, 
encompassing biodiversity, climate, and land use.  In the digital 
space, a DT is a virtual representation of a complex physical 
asset, created with the aim of closely characterizing the 
operations of the original physical process or system (Grieves, 
2014). The advantages of DT technology, which enables the 
execution of what-if analyses in the digital realm, are already 
manifesting in various applications, encompassing high-value 
manufacturing industries, personalized medicine, oil refinery 
management, as well as risk identification and urban planning 
(Thelen et al., 2022). 
Within the realm of earth science, DT represents an approach to 
constructing a precise digital replica of the Earth's systems and 
processes. A further definition considers the DT as a combination 
of three different parts: the physical entities, the digital 
representation, and the connection between the physical and 
digital entities (El Saddik, 2018).  Thus, the DT is not just a 

mathematical 3D model of a complex environment, but it is 
strictly connected to it by specific relationships. To support the 
realization of these innovative models, the European 
Commission introduced the Destination Earth (DestinE) 
initiative to create, by year 2030, a very high precision digital 
model of the whole Earth, to interactively explore the various 
natural processes and human activities that ordinarily take place 
on our planet (European Commission, 2020). The initiative 
should contribute to achieving the objectives of the twin 
transition, as part of the European Commission’s Green Deal and 
Digital Strategy. On the wave of DestinE, the scientific 
community started to delineate theoretical frameworks of 
reference for digital replicas (DTs) related to different earth 
science applications. This is a necessary starting point because, 
depending on the selected application/earth science domain, the 
information provided by the relative DT changes. A DT, in fact, 
is use case driven (EC, 2020) and consequently it is fed by diverse 
input data. These theoretical frameworks, which refer to potential 
prototypes of DTs, provide the identification and definition of the 
needed elements that a DT must contain to provide a reliable 
digital representation of the selected physical entity to be 
replicated. Specifically, such framework delineations were 
proposed for a forest digital twin (Buonocore L. et al. 2022), and 
for a DT prototype for Alpine glaciers monitoring (Fissore V. et 
al. 2023). 
Given the considerable focus on these themes, this work aims to 
establish initial considerations as a step toward accomplishing the 
wider goal of developing a model at Italian Alpine level. This 
model will aim to pave the way for new opportunities in 
supporting continuous monitoring of Alpine natural ecosystems 
and generating innovative analyses and assessments. Since 
DestinE should be built upon already existing data and 
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capabilities provided by the EU and national and international 
institutions (e.g., European in-situ data coordination by EEA), 
and upon European excellence programmes (e.g., Copernicus 
services and data) (ESA, 2022), the here proposed model is based 
on open-source HR satellite data, open-source elevation data and 
open-source software for data processing. Moreover, the 
adoption of open-source data as input data to feed the proposed 
Italian Alpine DT, guarantees that the data can be easily reviewed 
and implemented by any user.  
Finally, this approach permitted to focus on and to underline the 
limits and potentialities deriving from the adoption of current 
available open source data. 

2. MATERIALS AND METHODS

2.1 Data collection 

The study area for the current research pertains to the Italian 
Alpine Region, encompassing the entire mountainous northern 
region of Italy. To define the borders of the interested area, the 
SOUISA (Suddivisione Orografica Internazionale Unificata del 
Sistema Alpino - International Standardized Mountain 
Subdivision of the Alps) was consulted. The classification was 
formulated by Italian researcher Sergio Marazzi with the aim of 
standardizing and normalizing the original classification of the 
Alpine Region, which was established in the early 19th century 
(Marazzi, 2005).  By consulting the SOUISA, it became feasible 
to delineate the portion of the Alpine Region classified under 
Italian administration. However, it's important to note that this 
entails considering only a segment of the mountainous terrain 
that extends across various territorial boundaries. 
The study focused on employing two distinct products, namely 
the Digital Elevation Models (DEM) and HR optical satellite 
imagery. 
Regarding the DEMs, the study utilized the most recent and 
updated dataset released in January 2023 by the INGV (Istituto 
Nazionale di Geofisica e Vulcanologia) (Tarquini et al., 2023). 
This dataset comprises a mosaic of DEMs with a spatial 
resolution of 10 meters, encompassing the entirety of Italy. The 
model was generated through the integration of different data, i.e. 
Technical Cartography, GPS, and Airborne laser-scanner 
altimetry data available on the Italian territory. This data was 
collected by the Italian Ministry of the Environment, the Italian 
Regions and Provinces, the River Basin Authorities and IGM 
(Tarquini et al., 2007). For the analysis, the DEMs specific to the 
Italian Alpine Region were chosen, adhering to the borders 
delineated by the SOUISA. These altimetric data were employed 
directly, as they had already undergone pre-processing 
procedures, including filtering, classification, and regularization. 
Concerning the optical satellite images, multi-spectral Sentinel-2 
(S2) (L2A products) optical images sourced from the open-access 
Copernicus HUB were employed (ESA, 2023). These images 
were chosen to cover distinct time periods, considering that, as 
an initial prototype, the primary objective was to construct 3D 
models for both the winter and summer seasons of 2022. 
Consequently, the selected images corresponded to the following 
timeframes: December 31, 2021, to February 28, 2022, for the 
winter season, and June 1, 2022, to September 16, 2022, for the 
summer season. 
Furthermore, the choice of S2 images prioritized those with 
minimal cloud cover, aiming for less than 5%. Despite these 
efforts, variations in weather and lighting conditions introduced 
some discrepancies among the images, impacting the uniform 
resolution of the final model. 

Figure 1. Example of adopted S-2 image (10m GSD) over 
the Alpine Region, RGB composite bands. 

2.2 3D models generation 

The entire 3D models creation process can be divided into three 
main steps.  
First, an essential dataset organization phase was undertaken. 
Given that the model covered the entire Italian Alpine Region, a 
huge amount of S2 images needed to be selected. To effectively 
manage this data, it became necessary to sort the images into 
various folders. This approach was adopted to facilitate the 
creation of both real-color and false-color models, capitalizing on 
the extensive band options offered by the Sentinel-2 images. 
The dataset was structured to first incorporate the bands 
associated with the natural color combination: red (B4), green 
(B3), and blue (B2). Subsequently, it was organized to utilize 
another combination comprising Short Wave Infrared - SWIR 
(B11), Visible and Near Infrared - VNIR (B8A), and red (B4). 
This strategic arrangement allowed for detailed recognition of 
natural systems such as glaciers and various types of vegetation. 
It's worth noting that when downloading images from the 
Copernicus HUB, it is often required to request the selected 
products since they were frequently offline from the catalogue. 
This introduced variable delays in accessing the images. As for 
the altimetric data, the INGV DEMs were obtained as individual 
small raster files, each covering a specific area of interest. To 
create a unified model, these raster files were merged together. 
The second phase of the work involved processing the previously 
organized data using the open-source software QGIS (QGIS, 
2023). To simplify the analysis and reduce numerical 
computational costs, the study area was divided into five larger 
regions. For each of these regions, the corresponding optical 
images were carefully selected and merged to create a single 
image mosaic specific to that area. The chosen bands 
combination was also taken into account. 
Subsequently, both the DEM and the mosaic images were clipped 
using a polygon mask of identical size to the region under 
examination. This process yielded two products with matching 
extents but offering distinct information about the surveyed 
territory. To streamline this procedure across all five regions and 
adapt it to the varying areas of interest, a QGIS plugin was 
developed for automation, facilitating efficient data processing. 
Subsequently, in the third step of the process, digital models were 
generated using the open-source software CloudCompare 
(CloudCompare, 2023). This software was chosen because of its 
capability to manage various data sources and integrate the 
information derived from them. It offers a range of fundamental 
tools for manually editing and rendering 3D point clouds and 
triangular meshes. 
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In this context, the two products resulting from the processing in 
QGIS were extracted as raster files and imported into 
CloudCompare as point clouds. Since both entities had identical 
extents, it became possible to merge color texture and altimetric 
data to create the 3D model. The software features a specific tool 
for this purpose called "Interpolate from another entities," which, 
for each point in the selected cloud, identifies the nearest point in 
the other entity and extracts its color. This straightforward 
operation yields a point cloud containing both altimetric and 
georeferenced data. Moreover, it allows for territorial analysis by 
leveraging the texture derived from the satellite images. 
After completing the entire model production steps, specific 
analyses related to texture’ interpretation were then conducted 
over the 3D models to fully leverage the potential information 
derived from each of them. For this particular case, the 
administrative area of the municipality of Courmayeur, including 
the Italian part of Monte Bianco, was chosen. 
 

3. RESULTS AND DISCUSSION 

Two 3D models for the Italian Alpine Region were at the end 
created, one representing the summer season and one for the 
winter season, with reference to year 2022, as illustrated in Figure 
2.  

 
 
Figure 2. 3D models for the Italian Alpine Region, in winter 

(top), and summer (bottom). 
As previously mentioned, a specific area corresponding to the 
municipality of Courmayeur, was chosen to perform some further 
interpretation analysis. Three different composite bands of the 
same area were obtained to test possible varying insights of the 
terrain (see Figure 3): RGB color (left), false color (B11-B8A-
B4) (middle), slope terrain (right). 
 

 
Figure 3. 3D models of Courmayeur area with different 

representations: true color (left), false color as B11-B8A-B4 
(middle), terrain slope (right). 

 
Notably, the slope terrain representation (right side) specifically 
addresses variations in the terrain, also underlying different slope 
conditions, as solely derived from elevation data. However, if 
only this model is examined, limited observations can be made: 
it is possible to differentiate between mountains and flat areas, 
but identifying glacier formations, for instance, is not as 
straightforward. Conversely, when incorporating the information 

of the true-color representation (left), along with the particular 
combination of color bands, the terrain morphology becomes 
easily discernible. For an easier interpretation, two areas have 
been identified: A area in the upper left corner, in grey color, and 
B area, in the bottom centre, in red color. For instance, in A area, 
numerous glacial tongues alternate with debris and moraine-
covered regions. These distinctions are challenging to be noted 
solely relying on the slope model, and the supporting information 
coming from the texture models helps with an enhanced 
readability of such morphological features. 
Moreover, considering B area, one might mistakenly interpret it 
as hilly or lowland terrain. Yet, when examining the first two 
models, the presence of the Rutor glacial complex, one of the 
largest in the Aosta Valley, becomes evident. 
In order to test some other potential applications, the two 
seasonal models (winter vs. summer models) were compared for 
the same area. The performed tests allowed for the estimation of 
the change rate in snow and ice coverage along season variation. 
To this end, Figure 4 depicts the same area during winter (top) 
and summer (bottom).  
 

 
 

Figure 4. 3D models of the Courmayeur area in winter (top) 
and summer (bottom) with highlighted elevation ranges 

(from blue – low/middle values – to red - high elevations). 
 
On the right part of the image, the colored texture shows in a very 
intuitive manner the elevation values of the area, allowing for the 
rapid identification of the permanent and temporary snow 
accumulation points. By comparing the winter model (top image) 
to the summer one (bottom image), the following considerations 
can be done: in red color, the elevation areas for which the 
ice/snow accumulation persists also during the summer season 
(permanent areas) are showed; while, in blue color, the temporary 
areas that are interested by snow melting during the summer are 
evidenced.  
The link between glacier/snow permanent areas with specific 
elevation ranges is one of the potential applications enabled by 
the adoption of a 3D model that considers seasonal variations as 
additional information further to the elevation ones. 
While exploring various examples, the potential of these models 
become apparent. However, it is crucial to recognize that the 
analyses rely on static information, which may not exhibit perfect 
correlation over time, due to the differing temporal acquisition 
intervals in Sentinel-2 images and the native data used to generate 
the TINITALY DEMs. This discrepancy could result, for 
example, in a morphology depicted by the DEM different from 
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what is observed in the images, thereby failing to achieve a 
perfect correlation between the two datasets. Consequently, there 
is an need to refine these models to establish temporal 
correspondences and spatial relationships among elements within 
a specific region. One approach could involve analysing dynamic 
DEMs generated over a narrow temporal window, aligned with 
both optical satellite and field data acquisitions. This refinement 
is crucial for enabling proactive and responsive disaster 
management strategies that must adapt to the dynamic nature of 
such events. Furthermore, it is closely linked to the fundamental 
concept of the Digital Twin, which integrates dynamic systems 
to monitor various aspects of the Earth's ecosystem. 
 

4. CONCLUSIONS 

In this work we presented some preliminary considerations about 
the DT prototype of Italian Alps, with specific focus on the 
generation of the reference data for such a DT, i.e. the 3D model 
of the Italian Alpine Region. The goal was to create two 3D 
models of reference for year 2022 for different seasons (one for 
autumn/winter and one for spring/summer seasons), that allow 
for different applications, only relying on HR multispectral 
Sentinel-2 imagery and 10m spatial resolution DEMs freely 
provided by INGV. The processing of the data was also 
performed only using open-access software.  
The results obtained are an advancement in the utilization of 
digital surface models. Typically, these models provide elevation 
information about the terrain but lack texture or symbolism. 
However, by combining them with corresponding satellite 
images depicting the studied area, it becomes possible to 
integrate three-dimensional terrain information with spectral 
information, thus contributing in describing its features and 
status. The work provided an example of how 3D models with 
textures beyond RGB composite bands, enable the interpretation 
of the different morphological features, gathering a complete 
overview of the analysed area. In fact, the possibility of 
exploiting the spectral content of the satellite data, beyond the 
VIS part of the electromagnetic spectrum and, thus, the NIR, 
MIR and TIR windows, and consequently also of related spectral 
indexes, would permit the generation of specific thematic 3D 
models for the characterization of the different features over the 
surface: vegetation, water bodies, outcropping lithotypes, etc.. 
These will allow for an extensive use of the derivable 
information, shaping it as a powerful tool for territory 
management, by the in charge authorities. 
Moreover, the two seasonal 3D models, i.e. winter vs. summer, 
allow for different potential applications, placing it as base layer 
data for further and in depth analysis. While the summer model 
offers important insights for land cover and LC change analysis, 
identification and monitoring of landslides and wildfires, etc…, 
the winter model, instead, permits the development of analysis 
related to glaciers monitoring, snow and avalanches dynamics, 
shaping both also as useful tools in the emergency prevention and 
monitoring phases. Also the comparison between the seasonal 
models allows for further analysis such as the identification of 
the link between glacier/snow permanent areas and specific 
elevation ranges, improving the monitoring of climate-change 
related effects. 
Some limitations were encountered, mainly related to the vast 
size of the dataset used for analysing the entire Italian Alpine 
Region that posed computational and technological challenges 
Another limitation is related to the static nature of the DEMs 
used, compared to the optical satellite data which is updated more 
frequently. These limitations can be for sure exceeded with more 
automation by developing ML approaches, from data gathering 
to processing. Moreover, the model updating with real-time 
satellite acquisition, that of course requires cloud computing 

capacities, it is a necessary step to permit also multitemporal 
analysis with data cube techniques. Finally, the integration with 
other data sources such as aerial acquisitions data, in-situ 
surveys, crowdsourcing, etc.. will provide a solid foundation for 
the subsequent development of the digital twin. 
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ABSTRACT: 

The main goal of this study is to analyze the potentialities and weaknesses of remote sensing techniques to map and monitor Posidonia 
oceanica (Linnaeus) Delile meadows in the Mediterranean Sea which represent a highly significant marine plant that provides a series 
of environmental functions such as coastal protection and carbon restoration. We present an overview of state-of-the-art methods that 
enable the possibility of carrying out surveys in brief periods and with low environmental impact, based on the use of high-resolution 
satellites, images, and bathymetric LiDAR. Those data can be collected and elaborated to create a time series to trace trends of growth 
and decline of seagrass meadow. That information can also be used as indicators to guide environmental monitoring, management, and 
development of the territory as well as the setup of restoration sites. With this contribution, we aim to illustrate the criticalities and 
insights of these methods.  

1. THE IMPORTANCE OF COASTAL AND MARINE
HABITAT MONITORING 

The Mediterranean Sea Basin, located at the crossroads of 
Europe, Asia, and Africa, is a biome characterized by strong 
resilience to different stress factors.  The features of this area and 
the lucky combination of exogenous factors, such as average 
temperature, limited rainfall, and a continuous supply of sunlight, 
allow the growth of numerous plant species and a variety of 
habitats. 
At present, owing to the expansion of anthropological activities 
on the coastline, such as dredging, implementation of bathing 
establishments, and anchoring (Marre et al., 2020), coastal and 
marine habitats are weakened by those actions that mine their 
fragile ecosystem (Abadie et al. 2020). The coastal environment 
is a vulnerable area, regularly stressed by different disturbing 
factors and cyclical events as, to give an example, tides which 
can influence coastal erosion and deposition. Consequently, this 
environment and its constituting habitats must be regularly 
monitored and preserved. 
Habitat mapping is the term indicating methods which allow 
identifying, delineating, and documenting the spatial distribution 
of habitats in a specific geographical area. Throughout 
Geographic Information Systems (GIS), remote sensing, and 
field surveys, we can collect data on vegetation types, their 
location, and their evolution in the specific geographical area. 
Marine and coastal areas are continuously subjected to a wide 
range of cyclic variations (e.g. tides), erosive actions (e.g. swirls) 
and less frequent violent phenomena such as sea storms. 
Nowadays, climate change has increased the frequency of 
extreme phenomena that undermine coastal areas. Stressors 
include increased water turbidity, which causes less sunlight 
penetrating thus negatively impacting the underwater vegetation 
(Silva et al., 2009; Telesca et al., 2015), and removal of biomass 
caused by natural as well as human-induced events (Borfecchia 
et al., 2021). These vulnerable habitats must be preserved 
implementing monitoring and protection actions. 
In this contribution, the habitat of interest is Posidonia oceanica 
(from now on, P. oceanica) meadows, whose environmental 
functions will be widely discussed in the next paragraph.  

In this study, we focus on remote sensing techniques to monitor 
the distribution and evolution of P. oceanica meadows. Within 
the range of available approaches, we will deepen on the use of 
satellite images which allow a broad and systemic coverage of 
the area of interest, with known revisit times and the possibility 
of highly automated data analysis.  

1.1 Focus on the P. oceanica (L.) Delile specie 

The Mediterranean Sea hosts the P. oceanica (L.) Delile, a native 
and endemic species widely distributed along the coasts of 
countries bordering the Mediterranean: from Spain to Turkey, 
from France to the Nord of Africa, including Italy, Balkan coast, 
and Greece (figure 1).   

Figure 1. Representation of P. oceanica distribution is 
highlighted by green areas on the Mediterranean coastline 
(Telesca et al., 2015). 

P. oceanica is characterized by its ability to perform chlorophyll
photosynthesis even though it is located below sea level;
therefore, it develops within a maximum depth of 50 meters
under the water level (Yücel-Gier et al., 2020) where, considering 
the water transparency and clarity, it can be reached by sunlight.
P. oceanica develops constituting meadows, whose extent would
depend by several factors, including environmental stressor.
Mostly it develops constituting large and thick agglomerations –

* Corresponding author 

87

mailto:valerio.baiocchi@uniroma1.it
mailto:flavia.cianfanelli@uniroma1.it
mailto:enocerino@uniss.it


 

which take the proper name of meadows – but, in particularly 
turbulent or shaded areas, it distributes in small, disconnected 
clusters (Matta et al., 2014).  
P. oceanica carries out several important environmental 
functions: firstly, it moderates the coastal erosion by creating a 
thick roots net that compact the sand terrain; it plays the same 
function also when it is not alive anymore by distributing on the 
coastline forming the “banquette” agglomerations composed by 
the death leaves that protect the coastline form the wave motion 
(Iacofano e Lo Brutto, 2016; Panagou et al., 2020). Secondly P. 
oceanica meadows represent one of the three habitats in the world 
constituting the blue carbon stocking areas (Silva et al., 2009). 
Mangrove forests, salt marshes and P. oceanica meadows can 
hold carbon dioxide and collect it, creating stock areas, in that 
way those habitats mitigate the emission of CO2 in the 
atmosphere, and, for that reason, the CO2 stocked in the 
vegetation is called “blue carbon” (Dat Pham et al., 2019).   
To detect and monitor the distribution of P. oceanica is crucial, 
not only for the important functions that it plays on preserving 
the coastal and marine habitat, but also because the meadows’ 
health state has been considered from different authors 
(Borfecchia et al., 2013; Thorhaug et al., 2007) a valid 
information to evaluate the health state and resilience of the entire 
sea basin to environmental stressors (Blasi et al., 2011; Marre et 
al., 2020).  
 
 

2.  MONITORING P. OCEANICA USING LIDAR AND 
SATELLITE IMAGES 

The literature presents a broad spectrum of studies applying 
different methods for habitat mapping - which main goal is to 
analyze the territory on different scales considering the habitat 
size and the peculiar elements that constitute it - focusing on the 
presence of P. oceanica meadows in the Mediterranean.  
In fact, to evaluate the presence of P. oceanica meadows it is 
necessary to own a bathymetry model that we can link to the 
vegetation positioning info. It often happens that P. oceanica 
meadows appear very dark in satellite images, showing very low 
reflectance values, sometimes even lower than those recorded on 
the seafloor (Traganos et al., 2018). This phenomenon can lead 
to the error of registering areas with P. oceanica meadows as 
depressions compared to the seafloor, resulting in an inaccurate 
description of reality. For this reason, it is necessary to 
complement the study and the correction of reflectance values in 
satellite images with a bathymetric map of the area in question 
(Matarrese et al. 2008). Bathymetry designates the depth of water 
bodies’ floor and, for extension, represents topographic maps or 
surface models of oceans’, lakes’ and rivers’ bed. Bathymetric 
models can be built using different methods specifically for this 
type of surveys in literature authors have been developed 
techniques based on acoustic sensing. Nowadays, optic remote 
sensing is also used for the construction of bathymetric models: 
in the next paragraph we will illustrate the different 
characteristics in the seabed detection by using soundwaves (then 
illustrated by the usage of multibeam echosounder) and 
electromagnetic waves (Bathymetric LiDAR) to delineate the 
weakness and strengths in the usage of those two methods.  
 

2.1 Sensors used to detect seafloor: a focus on soundwaves 
and electromagnetic waves through water  

To detect the seafloor and build seabed models two types of 
sensors are commonly employed: ones that use soundwaves and 
other ones that work with electromagnetic waves. Both types of 
waves are impacted by the refraction effect which is a 

deterministic phenomenon that implies the deviation of the 
impulse in its path to the seabed.  
The transmission of sound and light in water involves distinct 
characteristics and behaviors due to the differences in these two 
forms of energy: 
on one hand, acoustic sensing is affected by variations in 
temperature and density between water layers, which are known 
as 'thermoclines'. Sound waves in water are reflected and 
refracted among these variations. Sensors using sound waves are 
usually positioned in water because sound waves cannot pass 
through the air-water interface. This happens because sound 
waves are subject to total internal reflection, meaning the sound 
wave remains in one of the two layers (either air or water) and 
does not pass through the interface considering the different 
densities of the two media. 
On the other hand, electromagnetic waves can cross the air-water 
interface: sensors that use those kinds of waves are placed on 
remote sensing platforms, from above and pass through the 
density transition between the two layers. Refraction effect 
occurs both when the signal passes through the air-water 
interface and within the water column: inside the water columns 
the electromagnetic wave is bent due to changes in water 
temperature or salinity (Quan, Fry, 1995).  
Moreover, some of the energy of the electromagnetic wave is 
absorbed and scattered by water molecules, particles, or 
suspended materials (Hossain et al., 2015). This is why optical 
rays can reach only the shallow layers of the water column. 
Considering this, most instruments used for underwater surveys 
employ sound waves because the acoustic signal propagates very 
quickly (given the higher density of water). Unlike 
electromagnetic waves that are scattered in water, sound waves 
are much less affected by scattering compared to electromagnetic 
waves and can measure depths of up to kilometers. 
In the specific case of our research, when conducting habitat 
mapping surveys, especially for P. oceanica, optical sensors can 
still be utilized because the object of interest is typically found 
within the shallow meters of depth. However, when using optical 
sensors for habitat reconnaissance, it is necessary to correct for 
the ray deviation caused by refraction during the processing 
phase as we will illustrate in the paragraph concerning the usage 
of satellite images (2.3).  
 
 
2.2 Bathymetric LiDAR for P. oceanica observation  

 
One of the most classic methods aimed at building bathymetries 
is multibeam echosounder (MBES) employed to produce 
bathymetric models of large portions of territory. This method 
detects points on the seabed using a sensor positioned on the 
bottom of a boat that send acoustic impulses to the seabed which 
return to the sensor: the sensor estimates the distance between the 
sea floor and the sea level (depth) by measuring the travelling 
time between the transmission and the reception of the acoustic 
signal. MBES provide depth measurements up to 6000 meters 
from the sea level (Codevintec, 2023), with a potential accuracy 
complying with the performance standards defined by the Special 
Publication 44 of the International Hydrographic Organization’s 
performance standards for precision mapping (Iho, 2022).  
The limitations of this technique is that it requires long surveying 
times and cannot be used in areas where the boat cannot enter 
(such as canals or the shoreline), for that reason, an alternative to 
overcome this limitation can be found by using  Bathymetric 
LiDAR (Light Detection and Ranging) which can build 
bathymetric Digital Elevation Model (DEM) up to 50 meters 
depth from the water level (Collin et al., 2008). This range of 
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measurement is sufficient for monitoring P. oceanica meadows, 
as they develop in the first 50 meters from the sea level.  
In literature, bathymetries are often built using laser scanner 
techniques in the coastline areas where depth is lower and MBES 
can’t access and detect points. Specifically, bathymetric LiDAR 
can be placed on different kinds of aircrafts such as drones or 
airplanes and usually works by using two different ray lights: 
infrared and green light. The infrared wave allows to measure 
accurately the distance between the sensor and the interface 
atmosphere-water, while the green wave can see through the 
water column and reach the seabed (Zhang et al. 2011, Webster, 
2017).As explained in previous paragraphs, the refraction effect 
must be taken into account when dealing with bathymetric 
LiDAR. Different approaches have been proposed to correct or 
mitigate the measurement error introduced by refraction, using, 
for example, rigorous ray tracing methods following the Snell’s 
law (Mandlburger et al., 2013, Mulsow et al, 2020) and 
estimating the ray’s deviation in its transition from atmosphere to 
water. Some others have developed specific algorithms that 
mitigate the distortion: for example, Saylam et al. (2018) 
computed the water column, claiming that the refraction effect is 
a variable closely linked to the proper location characteristic, 
especially considering the water temperature and salinity levels.  
Webster et al. (2017) utilized a multi-echo LiDAR sensor to 
detect P. oceanica meadows. Analyzing the LiDAR full 
waveform with multiple echoes, they distinguished bathymetry, 
vegetation, and suspended material trough the water column. 
In the last years, it has been widely demonstrated that the 
integration of remote sensing with machine learning can lead to 
higher accuracy levels in detecting the elements on a habitat. 
Along with these methods, machine learning techniques, such as 
leaf area index (LAI), Random Forest (RF) or k-nearest neighbor 
are exploited classify data (Traganos et al., 2018; 
Papakonstantinou et al., 2020) and analyze specific biophysical 
parameters (Borfecchia et al., 2013), to which are functional for 
reading acquired data.  
 
2.3 Satellite images for P. oceanica monitoring 

When it comes to work on satellite images for habitat mapping 
purposes, the most frequently used are multispectral images: 
Landsat_8 and Landsat_9 (Topouzelis et al., 2018; Panayotidis et 
al. 2022; Traganos et al., 2018), Sentinel_2 (Güzel Yücel-Gier et 
al., 2020; Traganos et al., 2018; Borfecchia et al., 2021; Traganos 
et al. 2022; Traganos et al., 2018; Dat Pham et al. 2019); 
PRISMA (Borfecchia et al. 2021), MIVIS, Kompsat_2, 
RapidEye (Matta et al. 2014), ASTER, IKONOS (Matarrese et 
al. 2008) and Pléiades (Rende et al. 2020). These studies typically 
took place in Italy, Grece and Spain, where P. oceanica meadows 
is an endemic specie.  
To perimeter the distribution of P. oceanica on satellite images, 
in literature, usually authors work with RGB images 
(Papakonstantinou et al., 2020) and “pixel based” methods by 
associating a spectral signature (Lyons et al. 2011) to the 
vegetation species, thus detecting its presence or absence. This 
approach may sometimes seem more suitable for delineating 
meadows compared to the object-based technique considering, 
therefore, that sometimes, meadow geometries could appear 
continuous and of large dimensions, while some other times, they 
might appear as small, discontinuous clusters of P. oceanica due 
to the specific environmental conditions of the observed location 
(Matta et al., 2014). However, considering the environmental 
characteristics of the observed territory, reference can be made to 
object-based techniques, to the extent that some authors have 
used the object-based classification algorithms, which classify 
image pixels exploiting by the combination of the bands and the 
geometry of their distribution (Parrish et al., 2016).   

These kind of analysis on satellite images can only be carried out 
after a structured and systematic work of correction of the images 
themselves. During the postprocessing stages of the images, 
indeed, we consider to be essential the extremely meticulous step 
of geometric correction of the images (orthorectification) without 
which the investigations carried out on the satellite images would 
not acquire spatial meaning. Only once the orthorectification of 
the images has been carried out, the elements represented can be 
identified by assigning the chosen coordinates to each of them, 
such as in this case P. oceanica meadows presence.  
To extract information about the meadows distribution from 
satellite images also reflectance values can be exploited: by 
measuring the reflectance and the chlorophyll levels not only it 
is possible to determine the distribution of the meadow but also 
its health state (Thorhaug et al., 2007, Qiu et al., 2019).  
Generally, it is claimed that in most cases the single use of 
satellite images is not sufficient to conduct an accurate evaluation 
of underwater meadows presence and distribution (Matarrese et 
al., 2008; Tien Dat Pham et al., 2019; Papakonstantinou et al., 
2020; Rende et al., 2020; Borfecchia et al., 2022) due to 
environmental disturb factors such as water turbidity, low water 
transparency or deep seabed (Panayotidis et al., 2022).  
Instead, the combination of data extracted from satellite images 
analysis with bathymetric DEM built using the multibeam 
echosounder or bathymetric LiDAR for shallower areas, could 
lead to better results that the ones gained by the single use of one 
of the two instruments alone (Matarrese et al., 2008, Rende et al., 
2020). 
 
 

3. DISCUSSION 

In the first part of Chapter 2 we illustrated the importance of 
updated bathymetry DEM to evaluate the underwater vegetation 
presence. Bathymetries are obtained using soundwaves or 
electromagnetic waves.  
Depending on the specific guidelines of the research project, 
authors will choose the most suitable method for their own 
research purposes.  
For P. oceanica monitoring, LiDAR bathymetry has proved to be 
an effective method. With full-waveform LiDAR, the presence 
of underwater vegetation can be detected, hypothesis that can be 
validated by the observation from satellite images and/or by 
checking surveys in situ. 
By using bathymetric LiDAR, we can detect coastal and shallow 
water areas, in a range of observation from 1 to 60 meters in depth 
(Guenther et al., 2000). Those areas, as well known in literature, 
are difficult areas to monitor with “classical” bathymetric 
techniques, such as multibeam echosounder. This technique, on 
the other hand, is the best choice when it comes to detect deeper 
areas considering the limitation of bathymetric LiDAR: 
refraction effect, turbidity and suspended materials that absorb 
electromagnetic waves (Webster, T., 2017; Marre et al., 2020).  
We consider as the biggest potentiality of bathymetric LiDAR is 
the rapidity with which data can be acquired comparing to 
classical methods (Irish & White, 1998) , as illustrated in par. 2.2, 
MBES takes a bigger amount of time to survey an entire area 
(Collin et al., 2008), while bathymetric LiDAR placed on an 
aerial vehicle of different type (airplane, helicopter, or drone) 
detects the seabed more quickly, keeping in mind that the 
detected study field is limited and depends on the vehicle where 
the sensor is positioned (with drones we can observe smaller 
areas, with airplanes we observe bigger areas).  
The further application that can be achieved using bathymetric 
LiDAR also aimed at recording underwater vegetation is the 
combination of machine learning methods to LiDAR bathymetry 
data: by joining these applications we can detect different 
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territorial elements and distinguish vegetational species (Parrish 
et al., 2016; Amami et al., 2022). 
By using satellite imagery, methodologies have been developed 
to map the areas where P. oceanica is located. By combining 
satellite images with bathymetric models, we can conduct rapid 
territorial surveys, offering a wide range of available material 
and, furthermore, having no environmental impact. Through 
photo interpretation of RGB satellite images or the use of 
machine learning techniques, several studies have demonstrated 
the feasibility of recognizing P. oceanica meadows using satellite 
images. 
The usage of satellite images implemented to detect P. oceanica 
in the Mediterranean Sea offers a vast scale of opportunities, but 
we also must keep in mind the limitations of this technique: 
following we present a Table 1 illustrates pros and cons in the use 
of satellite images for P. oceanica mapping.  
 

PROS CONS 
Depending on the satellite 
constellation, data are 
available for any area of 
interest  

Images must have a very high 
spatial and spectral 
resolution, and this leads to a 
reduced swath   

The acquisition has low 
environmental impact on the 
study field  

The acquisition is limited by 
water turbidity and swirl  

We can carry out surveys on 
large areas simultaneously 
comparing to other 
bathymetric survey 
techniques 

Images must be 
postprocessed keeping a 
special regard to the 
geometric correction linked 
to the refraction effect to 
which electromagnetic 
waves are subjected   

Tab. 1. Pros and Cons in the usage of satellite images declined to 
detect P. oceanica meadows.  
 
Plus, considering the opportunity provided using satellite images, 
which are becoming more and more common, we can observe the 
same area at defined time intervals, leading to the generation of 
time series which can provide evidence of progression, 
regression, variation on the distribution of P. oceanica meadows 
(Lyons et al., 2013; Traganos et al., 2018). 
However, remote sensing alone presents a series of challenges, 
primarily including image distortions caused by acquisition and 
difficulties with techniques using optical sensors to observe areas 
below sea level. Refraction certainly poses one of the major 
obstacles to the use of this methodology, as methods to mitigate 
those distortions are still being developed and do not find 
complete consensus in the scientific community.  
Considering these issues, in the literature authors associates to 
the analysis on satellite images other data obtained through in-
situ remote sensing techniques (such as images acquired through 
scuba diving) as a parameter for assessing the accuracy of P. 
oceanica detections from satellite images (Panayotidis et al., 
2022). Several studies show that the combination of different 
remote sensing instruments is the optimal method to gather the 
necessary information for an effective monitoring activity. 
Different authors verify the accuracy of the data derived from 
remote sensing techniques with multibeam echosounder data 
collected for the same area (Papakonstantinou et al., 2020; 
Panayodis et al., 2022) or on field measurements as underwater 
photographs (Zavalas et al., 2014). Moreover, different 
instruments are applied to detect different zones of the study 
field: for example, shallow waters are registered by LiDAR, 
while the deepest waters are detected by using multibeam 
echosounder. By combining LiDAR and high-resolution 
multispectral images data, it has been proven that the accuracy in 

the habitat mapping increases (Chust  et al., 2008; Collings et al., 
2019, Amani et al., 2022). 
Through a complementary analysis of the outcomes provided by 
different techniques employed in the same area, a more 
comprehensive study can be achieved, also allowing a better 
understanding of changes in the area (Dat Pham et al., 2019).  
The integration of different geomatic techniques, allowing 
seamlessly the observation of vast (e.g. with satellite data) and 
limited (e.g. with aerial and underwater drones) areas, can enable 
the implementation of a multiscale approach where elements and 
phenomena can be analyzed at on different territorial extensions 
and with different levels of details. This approach can properly 
describe complex systems, permits a comprehensive 
understanding of the territory dynamics, and considers the 
elements interactions across various scales (Tomasello et al., 
2022).   
 
 

4. CONCLUSIONS  

We briefly illustrated different techniques that can be exploited 
to build bathymetric models and detect underwater habitats; the 
major differences between the usage of acoustic and 
electromagnet waves, considering their pros and cons in this 
context, have been highlighted.  
These methods can be considered when the surveys must be 
conducted in strict deadlines or, for example, when surveys are 
desired to be carried out on a seasonal or annual basis to compare 
variations in habitat distribution. If cyclic survey campaigns are 
to be conducted, remote sensing techniques can prove to be the 
only practical means to analyse medium to large-sized test sites. 
As shown in this review, many authors support the possibility to 
conduct habitat mapping surveys through remote sensing 
techniques. The integration of data coming from different 
techniques can encourage a better understanding of the territory 
offering the opportunity to analyze it in a multiscale perspective.   
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ABSTRACT: 

Agricultural activities produce huge amounts of agro-residues usable as resources in the optic of the circular economy. Among these, 
those from pruning olive groves, vineyards and fruit plantations can be particularly relevant. Biomass residues from agricultural 
pruning represent a typical case of agro-residues yearly produced and hardly ever used. Mismanagement practices are very common 
and cause serious human and environmental health issues. It is necessary to overcome technical and logistic problems that farmers 
experience by developing a proper management system. This study aims to contribute to the design of an effective collection system 
for agricultural pruning biomass. Data from earth observations are precious to achieve this objective. In this study, the GIS tools were 
used to work on earth observation products and perform a territorial analysis. The attention was focused on an area particularly suited 
to agriculture in the Apulia Region (Italy). Land use maps derived from orthophotos were used to identify areas of pruning waste 
production. By defining and applying pruning indices for each crop, pruning residues were quantified and localized. Based on this, the 
suitable position of the collection centres was defined. The obtained maps can be easily used and continuously updated with remote 
sensing imagery. The study highlights the power of the methodology implying land use maps based on orthophotos and in turn on earth 
observations and GIS tools for this purpose. The results represent a first step towards the improvement of the agro-residues management 
system and can help policymakers and stakeholders to promote more sustainable actions. 

1. INTRODUCTION

Over the last 20 years, the most spread economic model was the 
linear based on “take-make-use-dispose”. This model 
unsustainably exploited huge quantities of readily available raw 
materials and non-renewable energy sources. As consequences, 
the linear model has led to rapid depletion of natural resources, 
progressive loss of biodiversity with dramatic impacts to the 
environmental system and pressures from climate change 
(European Commission, 2012). 
After the energy sector (68.1%), agriculture is the second largest 
production sector with the highest environmental impacts in 
terms of greenhouse gases emissions (19.9%) (Lamb et al., 
2021), and the first sector for environmental impacts due to land 
use (90%) (Kusumastuti et al., 2016). Furthermore, the world 
agricultural production system is responsible for a huge amount 
of solid waste (Kamusoko et al., 2021). Agricultural waste can be 
divided into two categories: inorganic and organic waste. The 
former includes plastic, chemical containers, and other materials 
used in farming activities. Agricultural organic waste is 
represented by biomass; it is estimated that 60% of the world’s 
agricultural biomass comes from plant production (Sommer et 
al., 2015).  
Biomass is the biodegradable fraction of product, industrial and 
municipal waste, and any residues of biological origin from 
agriculture (including plant and animal substances), forestry and 
related industries, such as fisheries and aquaculture (European 
Parliament and Council, 2009)  
These agro-residues represent a resource as they are a stored 
source of solar energy and fixed in the form of organic carbon 
(McKendry, 2002). This intrinsic value can be used prospectively 
in the circular economy and bioeconomy policy. The circular 
economy aims at making production processes sustainable by 
reducing the influx of resources and the production of waste, 
minimizing environmental impact.  

* Corresponding author 

In optics based on “reuse, recycle or biodegradation”, biomass 
can be efficiently used as renewable energy source and as 
secondary raw material in other production processes (FAO, 
1997). Today, energy obtained from biomass, through various 
physical and chemical processes, is considerable; in the world 
biomass is the fourth natural source of energy, after coal, oil, and 
natural gas (Tong, 2019). 
Biomass is not only used as a source of energy to produce biofuel. 
Recent research is increasingly investigating possibilities to 
convert biomass waste in value-added products for diverse 
applications, such as construction materials, medicine, and food 
packaging (Zhou and Wang, 2020). Through different treatments 
and production methods, biomass waste is used to produce 
construction materials with good mechanical and thermo-
hygrometric properties (Barbieri et al., 2019; Liuzzi et al., 2020; 
Ryłko-Polak et al., 2022), good performing materials to be used 
in agriculture (Babu et al., 2022; Vox et al., 2005), biosorbents 
(Anastopoulos et al., 2019; Nampeera et al., 2022), and many 
other products used for electronic components, coatings for 
packaging, in paper industry and in other industrial applications 
(Babu et al., 2022; Tripathi et al., 2019; Zhou and Wang, 2020).  
In the Mediterranean basin, most of the agro-residues are 
represented by pruning waste from permanent crops typical of the 
local agrosystem, such as vineyards, olive groves, and almond 
trees (García-Galindo et al., 2016). 
Over 13 million tons of pruning waste are produced in Europe 
but represent an unexploited resource. In fact, a large fraction of 
these agro-residues is left in the field to decompose naturally, or 
disposed of in dump, or in the worst cases burned. It is estimated 
that 25% of the produced agricultural waste is burned in the open 
field (Venkatramanan et al., 2021). Wrong management of agro-
waste causes damage to human and environmental health, 
threatening food and energy security. The poor management of 
waste is due to a series of factors such as low awareness of the 
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intrinsic value of the product, high costs for collection, logistical 
barriers due to the geographical dispersion of waste, seasonality, 
inhomogeneity of production between crops and production 
realities, and lack of localized collection centres on the territory 
(Velázquez-Martí et al., 2011).  
Knowing the amount of residual biomass for each type of crop 
and its location in the territory allows the design and planning of 
a pruning residues management system. The matter is complex 
and data from earth observations are the key to start addressing 
it. Earth observation products and their application, involving the 
use of geographic information systems (GISs) tools are crucial to 
the study purpose and can lead to the development of a 
georeferenced database. GISs allow managing large amount of 
data, georeferencing, storing, analysing, and visualizing it 
(Hachem et al., 2023). Therefore, a GIS, implemented with earth 
observation data, can be very precious to perform territorial 
analyses, identify biomass production sites and design a 
management system. The resulting database can be continuously 
updated through the updating of land use base maps and remote 
sensing imagery (Lanorte et al., 2017). 
The aim of this study is to apply the methodology based on earth 
observation products, GIS, and specific residues indices to 
quantify and localize biomass production from pruning activity 
in an agricultural area, as a first step towards the design of an 
appropriate management system. Moreover, suitable positions 
for biomass collection centres are identified. The study could be 
further developed by including other parameters relevant to the 
objective and with the support of remote imagery. The obtained 
georeferenced database can be a useful tool to improve the 
agricultural waste management system. The produced maps, 
easily updatable and manageable, can be used by planners and 
policymakers to promote sustainable approaches for the 
development of rural territory and landscape. 
 
 

2. MATERIALS AND METHODS 

The study focuses on an area particularly suited to agriculture in 
the Apulia Region (Southern Italy). The area has mean 
coordinates of latitude 40.962834° and longitude 17.207541° and 
the elevation ranges from 0 m asl to 408 m asl. It measures about 
400 km2 and consists of four municipalities. The four 
municipalities, Monopoli, Polignano a Mare, Conversano and 
Mola di Bari, are grouped since they represent a single optimal 
administrative collection area in the Province of Bari. Given the 
strong vocation for agriculture, the production of agro-residues 
in this area is abundant. 
The attention was focused on the biomass waste coming from 
pruning activities. A GIS database was obtained and pruning 
residues were georeferenced on the territory. 
The methodology implied the use of land use map files freely 
available thanks to the territorial information system of the 
Apulia Region (http://www.sit.puglia.it). Apulian land use map, 
available at scale 1:5000, derives from colour orthophotos with 
0.50 m spatial resolution. These are digital true colour aerial data 
recorded by a digital mapping camera. Land use map was useful 
to identify the cultivated area and the crops distribution in the 
study area. 
The free software QGIS (https://www.qgis.org) was used to 
perform the territorial analysis, starting from the land use map. 
By observing the crops distribution on the land use map and by 
calculating the area per feature through the specific QGIS 
geometry tool, three main crops emerged: olive groves (35%), 
orchards (20%) and vineyards (11%). Olive groves are mainly 
cultivated in the southern part of the study area, orchards 
essentially in the centre and vineyards mostly in the northern part 
(Figure 1). 

 
Figure 1. Land use map of the study area identifying the three 
most widespread crops: olive groves, orchards, and vineyards. 
The attention was then focused on the identified predominant 
crops. To quantify and localize the pruning residues from these 
cultivations, pruning indices were defined and calculated per 
crop. Indices were derived based on data available in the 
literature concerning: the crops distribution on the cultivated area 
and the related quantity of pruning residues per crop, which 
strongly depends on the specific pruning methods in the area 
(ISPRA, 2010). Specifically, data in Table 1, deriving from a 
report of the Italian Institute for Environmental Protection and 
Research (ISPRA, 2010) were used for indices calculation. This 
data, resulting from a detailed estimation approach, was 
considered reliable for the purpose of the present study. The 
estimates are mainly based on three parameters: statistical data 
on the total production per each crop (retrieved from the Italian 
National Institute of Statistics, ISTAT, database); ratio of main 
by-product to product; fraction or percentage of the waste or by-
product already recycled or reused. The combination of these 
three parameters led to the provincial estimates of the agro-
residues. 
 

Crop type Surface Residues 
[ha] [kt/yr of dry matter] 

Olive groves 129450 115.4 
Vineyards 37595 116.62 
Almond trees 20850 27.08 
Cherry trees 16700 1.71 
Peach trees 830 2.35 
Apple trees 100 0.14 
Apricot trees 40 0.04 
Kiwi trees 20 0.03 
Citrus 14 0.05 
Pear trees 12 0.01 
Plum trees 8 0.01 

Table 1. Distribution of the agricultural surface per crop type in 
the province of Bari and related pruning residues (ISPRA, 2010). 
 
The pruning residues indices (PRIs) to be applied in the study 
area were calculated based on Table 1 as: 
  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⁄       (1) 
 
where  PRIcrop = pruning residues index per crop [t ha-1 yr-1] 
 Rcrop = amount of pruning residues per crop [t yr-1 of 

dry matter] 
 Scrop = cultivated surface per crop [ha] 
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PRIs were obtained for each of the three crops. Concerning 
orchards, the weighted mean was considered in order to proper 
take into account all the species cultivated in the area as well as 
their spread. 
The land use map with the selected crops was then integrated by 
adding the new field of the PRIs in the attribute table, reporting 
the specific index per crop. The amount of pruning residues per 
crop (PRcrop, t yr-1) was obtained based on PRIcrop and on the area 
of each feature (Si, ha) as: 
  
 𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑆𝑆𝑖𝑖      (2) 
 
The pruning waste was quantified and localized on the map of 
the area. 
Suitable positions of collection centres were then assessed, also 
considering different management approaches. To this end, the 
coordinates of the features centroids weighted by the specific 
PRIcrop were evaluated as well as the mean coordinates of the 
centroids distinguished per crop, per municipality and for the 
whole area. This was made possible by using the “mean 
coordinates” vector analysis tool available in QGIS. This tool 
calculates a point layer (collection centres location) with the 
centre of mass of the geometries contained in an input layer 
(centroids of features polygons obtained through the “centroids” 
geometry tool). Moreover, an attribute of the layer attribute table 
can be specified as a weight to be applied to each element when 
calculating the centre of mass. In this case, the weighting factor 
was the amount of pruning residues calculated per each feature. 
 
 

3. RESULTS AND DISCUSSION 

The application of the PRIs on the land use map resulted in the 
spatial distribution of pruning waste, which is actually a by-
product, in the study area (Figure 2). The highest production of 
biomass from pruning is localized in the municipality of 
Conversano (13115.6 t yr-1) followed by Monopoli (7709.6 t yr-

1), Mola di Bari (5628.3 t yr-1) and Polignano a Mare (3330.7 t 
yr-1). 

 
Figure 2. Distribution of the pruning waste from olive groves, 
orchards, and vineyards in the study area. 
Concerning the management system for these pruning residues, 
it is important to identify the most suitable position of collection 
centres. In this regard, different approaches were investigated. It 
is possible to define different collection centres, distinguished per 
crop type and per municipality. This would lead to three 
collection centres for each municipality (Figure 3). According to 
the most widespread cultivations in each of the municipalities, 
the dimensions of the three collection centres could be set. As 

shown in Figure 3, the biggest collection centre should be the one 
for olive groves residues in Monopoli, where this crop is widely 
cultivated. This centre should be almost barycentrically located. 
The biggest centres for orchards and vineyards residues should 
be in Conversano, coherently with the land use map. The one for 
vineyards in a decentralised position towards the border with 
Mola di Bari, while the one for orchards more central. 

 
Figure 3. Suitable locations of municipal collection centres and 
related quantities of pruning waste per crop type in the study area. 
This system based on different municipal centres could be 
optimized by considering the possibility to have three 
intermunicipal collection centres in total, one for each crop 
residues (Figure 4). As expected, the collection centres should be 
placed in Monopoli and Conversano. The intermunicipal centre 
for olive groves pruning residues should be in Monopoli, but 
moved towards the border with Polignano a Mare, to serve the 
whole area. The ones for orchards and vineyards should be placed 
in Conversano in barycentric positions considering the 
localization of these crops in the area. The biggest collection 
centre should be for vineyards pruning residues, followed by the 
ones for olive groves and orchards (Figure 5). 

 
Figure 4. Suitable locations of intermunicipal collection centres 
for pruning waste per crop type in the study area. 

 
Figure 5. Amount of pruning waste per crop type and percentage 
distribution in the study area. 
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A further optimization could be to set a unique intermunicipal 
collection centre for all the crops (Figure 6). This should be in 
Monopoli but very close to the border with Polignano a Mare and 
here would converge the whole amount of biomass from pruning 
produced in the area. 

 
Figure 6. Suitable location of an intermunicipal collection centre 
for pruning waste in the study area. 
Suitable locations of collection centres in the different analysed 
scenarios were mathematically obtained as weighted mean 
coordinates. In this very first study other parameters were not 
taken into account. The methodology proposed and in turn the 
results could be enhanced by considering other relevant aspects, 
specific of this issue, in the optic of designing an efficient 
biomass management system. It should be considered that 
pruning residues production is seasonally based and occurs in 
very limited time spans. The production of such by-product is 
very spotted on the territory, consequently there are relevant 
mechanization and transportation needs to be addressed. Finally, 
the management system should aim not only to the environmental 
sustainability, but it should also be technically and economically 
sustainable. Thus, it is crucial to have detailed and updated 
information on the pruning residues density and distribution on 
the territory. To include all these other aspects, the process of 
defining the most suitable location of collection centres and 
designing the whole management system should include the 
implementation of other data. It could be useful to implement 
data on environmental constraints, context favourable or 
unfavourable variables, the altimetry of the territory and the 
availability of infrastructures and transport facilities. Updated 
remote sensing data is fundamental to perform analyses and 
guide the whole process, from the actual quantification and 
distribution of the biomass production to the design of the 
management system, and for a continuous monitoring. 
 
 

4. CONCLUSIONS 

Agricultural activities are characterized by the production of 
considerable quantities of solid waste, some of which are actually 
by-products as in the case of the agro-residues deriving from 
pruning. These biomass residues are particularly precious and 
could become an important resource if considered and managed 
as such and not as a useless waste. To support the sustainable 
management of this biomass, a proper management system is 
mandatory. In this regard, earth observation products and their 
implementation in GIS environment can provide a fundamental 
support. 

The study focuses on the production of agro-residues from 
pruning of olive groves, orchards and vineyards in four 
municipalities of Apulia Region. Thanks to land use map, derived 
from orthophotos and in turn from aerial photogrammetry, and 
by using GIS tools, the territorial analysis was performed. This 
allowed the quantification and localization of the biomass from 
pruning and the investigation of suitable positions of collection 
centres. The land use map was updated including information on 
pruning residues, resulting in a georeferenced database. Such 
database can be easily recreated and updated by using remote 
sensing imagery as well. 
This study suggests that the proposed methodology, based on the 
use of earth observation data, and the obtained results could be 
precious tools for planners and policymakers for setting up a 
proper management system of this resource. Further studies 
aiming at designing the biomass management system should 
overcome the limitations of this first stage research by including 
other relevant parameters such as the presence of environmental 
constraints and infrastructures availability and accessibility. The 
use of remote sensing imagery can also be useful in the 
improvement phase of the study and for the monitoring stage. 
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ABSTRACT: 

Agricultural plastics applications are essential for quality and production enhancement of agricultural systems. However, they 
generate significant amounts of waste that pose a serious threat to the environment. Effective waste management strategies are required 
to address this issue such as the development of a comprehensive map of agricultural plastic waste (APW). This paper presents a GIS-
based model for mapping APWs and identify their gravity centers in the provinces of Bari and Brindisi in Southern Italy. 

Land use maps and APW indices were used to identify location and amount of APWs. Suitable areas for the first collection of end-
of-life plastics were determined as buffer area around the gravity centers location. Land use maps based on orthophotos made available 
on the Apulia region website, in Italy, were used. The use of earth observation products, easily updatable, makes it possible to manage 
the spatial and temporal dispersion of waste related to the seasonality of agricultural production.  

The results of the research show that the model is effective in identifying areas with APW generation. The location of the APW 
gravity centers was found in areas with intensive agriculture.  

Overall, this research demonstrated the potential of GIS-based models for siting APW first collection centers. The GIS database 
relies on land use maps obtained from orthophotos as earth observation product, but land use maps can be easily created and updated 
with remote sensing imagery. By implementing this model decision makers, managers and land planners can take proactive measures 
to promote sustainable waste management chains. 

1. INTRODUCTION

1.1 Plastics in agriculture 

In modern agriculture, plastic serves a diverse range of purposes 
contributing to overall higher productivity (King et al. 2023). 
These include plastic films for greenhouses and mulching which 
contribute to an improved growing environment allowing crops 
to thrive even under harsh environmental conditions as well as in 
periods where these crops would not normally live (Cillis et al. 
2022). 
Plastic use is also important especially in irrigation systems such 
as drip or trickle irrigation which involves the precise delivery of 
water directly to the root zones of plants through a network of 
tubes and emitters. Plastic components are integral to this system, 
as they provide the necessary durability, flexibility, and 
resistance to moisture, ensuring that water reaches the plants 
efficiently. Furthermore, plastic is instrumental in other aspects 
of agriculture, including the packaging of fertilizers and 
pesticides. Plastic containers and bags provide an effective 
barrier for human safety and against moisture and contaminants, 
ensuring the quality and potency of these agricultural inputs. This 
is essential for farmers to achieve optimal results relative to their 
production systems. 
In crop protection, plastic nets play a vital role. They serve as 
shields against pests, birds, and other environmental factors that 
can harm crops. On the other hand, in livestock farming, plastic 
silage bags have become indispensable for collecting and storing 
animal feed. These bags offer an airtight and moisture-resistant 
environment, preventing spoilage and ensuring that the feed 
retains its nutritional value over an extended period (King et al. 
2023). 

* Corresponding author 

1.2 Agricultural plastic waste 

The widespread use of plastic in agriculture has undoubtedly 
improved production efficiency, but agricultural plastics have a 
short useful life (Schettini and Vox, 2012; Blanco et al., 2022). 
This results in the production of a huge quantity of plastic waste 
materials, which needs a correct collection, disposal and 
recycling process (Vox et al., 2005). The quantity of worldwide 
agricultural plastic waste is not well known, but it ranges in the 
literature from 2 to 6.5 million tons per year (Meng et al. 2016). 
Farmers often resort to burning or improperly disposing of plastic 
waste, compounding the environmental challenges associated 
with plastic pollution (Briassoulis et al. 2010). These improper 
disposal practices result in a significant cost to the environment 
and soil health. 
Making matters worse is that agricultural plastic waste (APW) 
has often been overlooked in recycling efforts, despite the 
pressing need to address this issue. The volume of APW is 
substantial and continues to grow exponentially, largely driven 
by global population growth and the increasing demand for 
agricultural products. When this waste is improperly managed, it 
not only contributes to environmental degradation but also poses 
a threat to human health and biodiversity (Hachem et al. 2023). 
Recognizing these challenges, recycling agricultural plastics has 
become a paramount concern. Recycling not only helps mitigate 
the negative environmental impacts of improper disposal but also 
offers several other important benefits. First and foremost, it 
conserves valuable resources by extending the lifecycle of plastic 
materials, reducing the need for virgin plastic production. 
Additionally, recycling agricultural plastics contributes to energy 
conservation by reducing the energy-intensive process of 
manufacturing new plastic products from raw materials. 
Perhaps most significantly, recycling agricultural plastics aligns 
with the principles of a circular economy, where resources are 
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used efficiently, waste is minimized, and materials are reused and 
recycled whenever possible (Scarascia-Mugnozza et al. 2008).  
The first problem in the chain of recovery, storage and 
subsequent recycling of agricultural plastics is their dispersion in 
space and time due to the seasonality of agricultural production. 
Key tools for mapping and defining the routes of agricultural 
waste are GIS (Geographical Information System) technologies. 
These are based on earth observation products such as 
orthophotos, satellite or drone imagery. This research proposes a 
GIS methodology based on maps made from orthophotos to map 
agricultural plastic waste and to locate first collection centers. 
 
1.3 APW collection centers siting using land analysis tools 

Mapping plastics used in agricultural land (Picuno et al. 2011; 
Tarantino and Figorito, 2012; Novelli and Tarantino, 2015; 
Novelli et al. 2016), plastic waste quantification (Blanco et al. 
2018) and set-up of collection strategies are necessary steps in a 
sustainable agricultural production (Briassoulis et al. 2013). 
Earth observation products and their application in land analysis 
tools are of fundamental support for this purpose. Plastic waste 
mapping, analysis and management can be realized by using a 
GIS. This is a powerful tool for land analysis and management 
(Díaz-Palacios-Sisternes et al., 2014; Borgogno Mondino et al., 
2015). Data can be organized in GIS database that can be easily 
updated and managed, increasing the knowledge about land use, 
productive activities, and environmental threats. Updates of 
regional land-use databases or other earth observation products 
could be used to detect changes in land use and thus to update the 
GIS database (Lanorte et al., 2017).  
This approach assists the planning of actions oriented toward 
increasing the environmental sustainability of a specific territory. 
GIS can support decision makers, managers and land planners in 
defining the best waste management facilities and action plans.  
A sustainable waste management needs comprehensive 
solutions, including the strategic placement of collection centers 
tailored to specific types of plastic applications (Blanco et al. 
2018). These collection centers serve as critical hubs where waste 
generated from various agricultural plastic uses can be 
systematically gathered, sorted, and processed. By customizing 
these centers to suit the distinct characteristics of different plastic 
applications, we can streamline the recycling and disposal 
processes, making them more efficient and environmentally 
friendly (Blanco et al. 2018). 
This approach not only helps mitigate the adverse environmental 
impact of plastic waste but also aligns with the broader goal of 
sustainable resource management. It acknowledges the 
inevitability of plastic use in agriculture and seeks to find 
responsible ways to manage the resulting waste, contributing to 
a more sustainable and environmentally conscious agricultural 
industry. The methodology proposed in our research was based 
on the use of orthophoto-based GIS tools to locate the gravity 
centers of different kinds of APW. Suitable areas for the 
placement of centers of waste first collection were defined 
around the gravity centers. 
 

2. MATERIALS AND METHODS 

APW first collection centers location was defined based on APW 
gravity centers identification. Center of gravity theory was 
applied to analyze the spatial distribution of APW generation 
(Zhang et al., 2012; Cobos-Mora et al., 2023). To this end, Plastic 
Waste Indices (PWIs) were defined for the quantification of 
plastic waste generated from the different agricultural practices. 
PWIs were applied to the land features, each describing the crop 
type, as obtained by the land use map. 

2.1 Indices for APW quantification 

The PWI serves as a valuable tool for assessing the annual 
average waste quantity (kg ha-1 yr-1) produced per cultivated area, 
considering various plastic applications in different crop types. It 
is crucial to acknowledge that each plastic type has its distinct 
lifespan. 
PWIs were calculated based on several factors mainly crop type, 
plastic application used in the cultivation process and plastic 
properties (Blanco et al., 2018). Experience with agricultural 
plastic applications, questionnaires and interactions with farmers 
and their associations as well as field surveys were essential for 
the validation process of the different PWI indices. Plastic 
properties include the density of the plastics, their thickness, their 
life duration as well as a correction factor that considers the 
increase of the plastic material surface due to the coverage slope 
with respect to the soil surface, in case of greenhouse, low tunnel 
or vineyard covering materials. For irrigation systems, diameter 
of small and large pipelines is also considered. PWIs assigned to 
bags of fertilizers and containers of pesticides were acquired by 
interaction with farmers, data from the literature (Briassoulis et 
al. 2013) and databases in the University of Bari.  
As an example of a plastic waste index and to better know the 
methodology of its calculation, the following equation applies 
when quantifying waste generated from plastic films of 
greenhouses, low tunnels and vineyards covering materials:  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  𝜌𝜌·𝑇𝑇
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝐹𝐹

· 𝐹𝐹𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐 (1) 
 

where  𝜌𝜌 = density of plastic material [kg m-3] 
 𝑇𝑇 = thickness of plastic material [m] 
 𝐹𝐹𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐= correction factor 

Years = useful life [year] 
 
PWI is expressed in kg ha-1year-1. Fcorrection takes into account the 
slope of the coverage relative to the area of ground covered. 

Table 1. Plastic waste indices for crop type and plastic 
application 

Plastic waste index (kg ha-1yr-1) 

Covering films  Agrochemical 
containers 

 

Vineyards 613.8 Wine grapes 6.0 
Orchards 764.2 Table grapes 10.0 
Greenhouses 565.0 Olive groves 0.6 
Low tunnel films  Orchards 1.8 
Vegetables in open field 936.0 Vegetables 1.7 
Nets  Greenhouses 3.4 
Vineyards (anti-hail nets) 159.0 Fertilizers bags  

Olive groves (nets for olive 
collection) 43.2 Vineyards 1.6 

Orchards (nets for crop 
protection) 192.2 Olive groves 0.5 

Greenhouses (shading nets) 133.3 Orchards 2.2 
Irrigation pipes  Vegetables 2.5 
Vineyards 60.0 Greenhouses 2.0 
Olive groves 36.0   
Orchards 45.0   
Vegetables 50.0   
Greenhouses 75.0   
 
More indices for different crop types and plastic applications are 
presented in Table 1. 
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2.2 Land use maps in provinces of interest 

Using the open source QGIS geographic information system 
software (QGIS, 2023), provinces of Bari and Brindisi in Apulia 
Region, Southern Italy were delimited.  
Single featured land use maps of these two provinces were 
acquired by the official regional website (Regione Puglia, 2023). 
The land use map of the Apulia Region, scale 1:5000, derives 
from orthophotos, featuring 50 cm pixels, created using a 
photogrammetric camera. The legend of the map is compliant 
with the European CORINE Land Cover Changes Database with 
an expansion to the fourth level. 
Area calculations were performed for individual features using 
the field calculator in QGIS. Then, the selection was refined to 
retain only the features of interest, each feature being 
characterized by one land use only.  Next, PWIs were assigned to 
each feature. Finally, geo-referenced maps of APW were 
obtained. 
Figure 1 shows the delimitation of the provinces with respect to 
Italy, as well as the distinction between different land uses inside 
the study area. Land uses we considered in the study were 
orchards, olives, vineyards, irrigated covered crops and non-
irrigated covered crops. Everything other than agricultural 
activities were excluded from the study. 
 
 
 

 
Figure 1. Land use in Bari and Brindisi provinces 

 
2.3 Creation of features centroids 

The centroid for each polygon (feature) corresponding to the 
crops under study (irrigated cover crops, non-irrigated covered 
crops, orchards, olives and vineyards), in the land use map was 
created by using the centroids geometry tool for further 
facilitation in localizing the waste collection centers. All the other 
polygons, associated to others land uses, were neglected to detect 
the optimal siting of collection centers dedicated only to waste 
generated from the crop systems previously mentioned. Figure 2 
shows the centroids acquired for each polygon.  
 
 
 
 
 
 

2.4 Collection centers localization in each province 

QGIS offers an analysis tool that is the “mean coordinates” tool. 
It allows to return the mean coordinates of a set of points, in this 
case, the features centroids. This tool takes into account a weight 
field, which, in our case, is the APW amount of the feature, 
associated with the centroid. This was realized for each plastic 
application in this study (nets, films, irrigation, bags and 
containers). 
To this extent, APW gravity centers were identified at the mean 
coordinates as a single point that is relevant to each of the plastic 
application mentioned. Then, a buffer zone of 3 km was assigned 
to each APW gravity center to allow freedom of localization of 
the collection center inside of this area in case of presence of any 
kind of obstruction. 
After acquiring potential area for collection centers siting for 
each province separately, the same procedure was followed to 
obtain the potential site of waste collection centers for both 
provinces merged. 
 
 

 
Figure 2. Features centroids in Bari and Brindisi provinces 

 
3. RESULTS 

For each province, five candidate areas for collection centers 
were obtained depending on the APW considered during the 
quantification process. The collection centers location mainly 
depended on the type of usage of plastic material in the 
production system. They included collection centers for 
irrigation systems, pesticidal containers, fertilizers bags, nets for 
crop protection and olive collection, and films for greenhouses.  
 
3.1 Bari province collection centers 

The most cultivated crops in Bari province were olives and 
grapes which explains the localization of the collection centers 
close to these types of production. The locations of the collection 
centers of Bari province are shown in Figure 3 along with their 3 
km buffer zones, allowing for a freedom of localization for 
further environmental analysis in case needed.  
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Figure 3. Bari province waste collection centers location 

 
3.2 Brindisi province collection centers 

Brindisi province had the same results as Bari regarding the place 
of localization of collection centers, since the dominant crops 
inside this area were also olives and grapes. Figure 4 shows the 
collection centers locations inside Brindisi province as well as the 
3 km buffer zones.  
 

 
Figure 4. Brindisi province waste collection centers location 

 
3.3 Merged provinces waste collection centers 

The same previous procedure of each province was also 
performed by merging the coordinates of Bari and Brindisi 
provinces together and by executing the mean based on the APW 
of both. Figure 5 shows the collection centers location after 
merging all the features of the provinces.  
Since Bari province is bigger and agricultural activities inside it 
are much more intense than Brindisi, collection centers were 
mainly located inside Bari but in the vicinity of the borders of 
Brindisi province, which was expected. 

 
4. CONCLUSIONS 

Managing agricultural waste effectively is imperative, primarily 
because it's unrealistic to curtail plastic usage in the face of a 
growing population's demands. 
 

 
Figure 5. Merged provinces collection centers 

 
The use of GIS with earth observation products in APW 
management has become an indispensable tool. This offers a 
comprehensive approach to addressing the challenges associated 
with plastic waste by harnessing the power of spatial data 
analysis and visualization. Despite the usage of GIS in this study 
on a small scale, it can be further extended to a larger scale, on 
the country level or even globally. This can create a database of 
waste quantities that can trigger policymakers to have awareness 
along with the producers on the damage caused by APW 
mismanagement.  
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ABSTRACT: 

State-of-the-art approaches use different algorithms for individual tree detection. For each algorithm, a specific methodology to create 
the input Canopy Height Model and/or many parameters should be tuned to adapt the segmentation algorithm to each particular forest 
stand. The main goal of this work aims at developing a pipeline that requires minimal user interaction when working with Low-Density 
Airborne Laser Scanner data in large areas of Mediterranean forest. Therefore, in this paper three open source raster-based algorithms 
and one point-cloud-based algorithm were tested to automatically extract tree location, total tree height and tree crown diameter. 
Through intensive experiments, from tuning the input Canopy Height Models and the sets of parameters, it could be concluded that 
the point-cloud-based algorithm performed better results. However, by applying this same methodology over large areas and using the 
same set of parameters in all reference plots, it was shown that the raster-based algorithms obtained better and more robust results. In 
this sense, these results confirm the usefulness of Low-Density Airborne Laser Scanner data to segment trees (F1-score > 70%) and 
estimate their height and crown diameter in large areas of Mediterranean forest, also highlighting some key aspects related to the choice 
of the correct method and tuning parameters. 

1. INTRODUCTION

Forests act as important carbon sinks and are therefore key 
components of the global carbon cycle. The carbon dioxide 
emissions account is essential for climate regulation policies and 
the evaluation of the effects of these policies, as well as for 
understanding the services they provide to societies (Ameray et 
al., 2021). 
Traditionally, forest inventories are completed by ground-based 
expert crews. These field surveys are uneconomical, time 
consuming and exhausting (especially when applied over large 
and remote areas), not being adequate for studies dealing with 
periodic data collection (Tang and Shao, 2015). Consequently, 
one of the key topics in forest applications is to find an effective 
method to produce efficient and accurate inventories. 
In recent years, Remote Sensing (RS) has proven to be capable 
of providing independent, timely and reliable forest information. 
RS data are used to estimate several forest variables of 
silvicultural interest such as crown diameter (CD), height (H), 
diameter at breast height (DBH) and aboveground biomass 
(AGB) (Aguilar et al., 2022, 2021, 2019). In this sense, and due 
to its ability to estimate attributes at tree level, point cloud data 
(e.g., LiDAR, ALS, UAV-imagery based data, etc.) has become 
a valuable data source in the field of efficient and accurate 
detection and segmentation of individual trees. 
State-of-the-art approaches use different algorithms for 
Individual Tree Detection (ITD), which consists of labelling 
point cloud data at the scale of individual trees. For each 
algorithm, a specific methodology to create the input Canopy 
Height Model (CHM) and/or many parameters should be tuned 
to somehow adapt the segmentation algorithm to each particular 
forest stand. This approach makes the results highly dependent 
on the applied local fitting parameters, which implies difficulties 
when applied for large-scale mapping. In addition, the parameter 
setting process is quite time consuming and requires learning and 
understanding the meaning and role of each parameter. 
The main goal of this work aims at developing a pipeline that 
requires minimal user interaction when working on large areas of 
Mediterranean forest. The expected results should facilitate the 
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production of broad-extend individual tree maps and extract the 
corresponding dendrometric parameters from Low-Density 
Airborne Laser Scanner (LD-ALS) data without wasting time 
adjusting the algorithm parameters. 

2. MATERIAL AND METHODS

2.1 Study area 

The study area was located at “Sierra de María-Los Vélez Natural 
Park” (Fig. 1). With an area of 22562 hectares, it is located in the 
southeastern area of the Iberian Peninsula, in the northern-most 
sector of the province of Almeria. Thirty-eight representative 
square plots of 25 m side were selected in the study area (Fig. 
1d), mainly harbouring almost exclusively Aleppo pine (Pinus 
halepensis Mill.) as the dominant species (between 76% and 
98%) with different percentages of vegetation cover ranging from 
20% to 87%.  

Figure 1. Location of the study area. a) Province of Almeria 
(Spain) in white. b) Region of “Los Vélez” (in green). c) Sierra 
de María-Los Vélez Natural Park (in blue). d) Reference field 
plots are represented as white dots. 

104



 

2.2 Low-Density Aerial Laser Scanner data (LD-ALS) 

The LD-ALS data used in this study was provided by the 
National Plan of Aerial Orthophotography of Spain (PNOA). The 
acquisition of this data was carried out between October 12 and 
13, 2020. The geodetic reference system for X and Y coordinates 
was ETRS 1989 UTM Zone 30N, while heights were referred to 
the official Spanish geoid EGM08-REDNAP. The average point 
density was 1.5 points/m2 (all returns), presenting a nominal (at 
nadir) horizontal and vertical accuracy lower than 0.3 m and 0.15 
m, respectively.  
Thirty-eight subsets (square shape of 31 m×31 m, including an 
extended buffer area of 3 m) of LD-ALS point clouds 
corresponding to the previously defined reference plots were 
extracted. The choice of this expanded area was made to avoid 
the “edge effects” that would have produced the loss of data 
points belonging to trees just on the boundary of the reference 
plots of 25 m side. The final point cloud density took an average 
value of 3.5 point/m2, ranging from 2.12 to 10.00 point/m2. The 
mathematical framework based on a Gaussian Markov Random 
Field (GMRF) ((freely available code at 
https://github.com/3DLAB- UAL/dem-gmrf) was used to extract 
DTMs with a grid spacing of 0.5 m and free of outliers using the 
workflow proposed in Nemmaoui et al. (2023). This GMRF-
DTMs was used for the normalization of the canopy surface 
models. 
 
2.3 Reference Data – Ground Truth 

The field survey was carried out from 31 May to 11 June 2021. 
Any tree with DBH ≥ 7.5 cm and H ≥ 2 m was recorded. The 
ERTS89 coordinates of each tree were collected using the Emlid 
Reach GPS RTK RS2 (rover and base). Tree height was also 
measured using a Nikon® Forestry Pro II 
rangefinder/hypsometer, while CD was estimated from a 3 
cm/pixel RGB orthoimages obtained by using Agisoft Metashape 
software and stereo-images taken by an Unmanned Aerial 
Vehicles (UAV). In this sense, different missions were 
programmed between March 4 and 8, 2021, using a DJI Phantom 
4 Advance© with a flying height of 75 m above ground.  
Table 1 depicts the most important dasometric characteristics of 
the thirty-eight reference field plots. It includes the vegetation 
cover, the tree density per hectare, the tree heights, the basal area 
and Lorey´s mean height (Lh). 
 

 VC 
(%) 

Density 
(Trees/ha) 

Height 
(m) 

G 
(m2/ha) Lh (m) 

Max 86.79 1504 18.66 36.03 16.21 
Min 19.99 96 2.03 1.52 3.48 
Average 45.29 371.37 8.85 18.36 9.79 

Table 1. Characteristics, (max, min and average) of the 38 
references plots: Vegetation cover (CV), Density, Height, Basal 
area (G) and Lorey´s height (Lh). 
 
The vegetation cover took an average value of 45.29% (ranging 
from 19.99% to 86.79%), while the values of basal area ranged 
from 1.52 to 36.03 m2/ha (average of 18.36 m2/ha). Lorey´s mean 
height presented an average of 9.79 m, ranging from 3.48 m to 
16.21 m. The mean height took an average value of 8.85 m, 
ranging between 2.03 m and 18.66 m. The thirty-eight selected 
references plots presented an average tree density of 371.37 
trees/ha (ranging from 96 trees/ha to 1504 trees/ha). 
  
2.4 Processing and workflow 

Figure 2 provides an overview of the methodology and workflow 
adopted in this study. This workflow consisted of four steps: i) 
point cloud data normalization and input data generation, ii) ITD, 

iii) accuracy assessment and iv) selection of the best sets of 
tuning parameters.  
The normalization process is performed by subtracting the 
corresponding terrain elevation of the corresponding GMRF-
DTM, obtained from the method described in Nemmaoui et al. 
(2023), from each point cloud Z value. In this way, the resulting 
normalized point cloud stores the elevation of each point as its 
vertical height above the ground. 
Two different interpolation algorithms, such as Point-to-raster 
(P2R) and Pit-free (PF), were tested to build a raster product 
called normalized digital surface model, better known as CHM. 
This CHM was used as input for the raster-based (RB) tree 
segmentation methods of Silva2016 (Silva et al., 2016) and 
Dalponte2016 (Dalponte and Coomes, 2016) (see workflow 
depicted in Figure 2).  
P2R method consists of establishing a regular grid at a defined 
resolution and attributing the elevation of the highest point to 
each pixel. A fixed smoothing 3×3 pixels mean filter was 
performed to the resulting CHM. In this way, a smoothed CHM 
with a spatial resolution of 0.5 m was built for each reference 
plot.  
PF method is based on horizontally segmenting the normalized 
point cloud at different heights (usually 0.2, 5, 10, and 15 m). For 
each segmented layer, multiple-level CHM are generated 
according to the highest point. Finally, the pit-free CHM is 
generated by taking the maximum value of these multiple-level 
CHM in the corresponding pixels (Khosravipour et al., 2014). A 
fixed smoothing 3×3 pixels mean filter was also applied to the 
resulting CHM. All these functions have been implemented in R 
software, Version 1.4.1103 (R Core Team, 2022). 
The third pre-processing algorithm used was the method 
implemented in the Digital Forestry Toolbox (DFT) (Parkan, 
2018) to build the corresponding CHM from the normalized point 
cloud. In this case, the Inverse Distance Weighted (IDW) 
interpolation method (Bartier and Keller, 1996) was applied to 
obtain the raster CHM, also using a smoothing 3×3 pixels 
Gaussian low pass filter to the IDW-based CHM. Note that DFT 
can only be executed in Matlab (MathWorks, Inc., Natick, MA, 
USA).  

   
Figure 2. Workflow of the LD-ALS data processing, individual 
tree detection, accuracy assessment and best parameters 
extraction. (a) Classified point cloud (b) Normalized point cloud 
(c) CHM (d) Normalized point cloud with Seeds in red (e1) and 
(e2) Extracted parameters (position, H, CD) presented in 2D and 
3D, respectively. 
 
Once obtained the CHM for each reference plot, three RB ITD 
methods were tested to segment trees: Dalponte2016 (Dalponte 
and Coomes, 2016), Silva2016 (Silva et al., 2016), and DFT 
approaches (Parkan, 2018) (we invite the reader to check the 
references for more details of each method). 
Dalponte2016 uses local maxima identification with a region 
growing strategy headed up to group unlabelled pixels to an 
adjacent region if the difference of intensities between the pixel 
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and the local maxima (LM) is less than a user-defined parameter. 
The LM searching has been implemented in the LM function 
available in the LidR package (Roussel et al., 2020). It is based 
on a variable Tree Window Size (TWS) adopting the linear 
regression with a quadratic model using only height as the 
predictor variable (Popescu and Wynne, 2004) in pines forests 
(see equation 1). Crossing all input CHM and the three 
parameters of the Dalponte2016 function (see reference), the 
number of output segmentations was 1296 in total for each 
reference plot.  
 

 Crown width = 3.75105 - 0.17919H + 0.01241H2 (1) 
 

Silva2016 is focused on the way to better approximating the 
intersecting canopy of multiple trees after locating treetops by 
LM. A centroidal Voronoi tessellation is computed based on the 
location of the treetops. Then, the crown of each tree is computed 
by region growing inside each Voronoi cell. The region growing 
approach starts from the LM, including those closer pixels that 
satisfy the user-fixed threshold. Again, crossing the input CHM 
and the two parameters of Silva2016 function (see reference), the 
number of output segmentations was 162 for each reference plot.  
The last RB algorithm tested in this study is included in the 
library DFT. In this case, two methods identify the treetops based 
on LM were checked. The first one is based on the method 
reported in Popescu and Wyne (2004) (DFT-P hereinafter). The 
second one relies on the methodology proposed by Kwak et al. 
(2007) (DFT-HM hereinafter). In this case, LM treetops are 
detected using the extended maxima transformation and distance 
transformation of the morphological image-analysis methods. In 
this study, the optimal H value was estimated for the range 
between 0.1 to 0.7 in steps of 0.05 (14 output (13 of DFT-HM + 
1 of DFT-P) segmentations for each reference plot). In both 
cases, the final RB tree segmentation was faced by applying the 
algorithm marker controlled watershed (Kwak et al., 2007). 
The only point-cloud-based (PCB) algorithm tested in this work 
was the method proposed by Li et al. (2012) (Li2012 hereinafter). 
It is a growing region approach working at 3D point cloud level. 
Crossing the four parameters of Li2012 function parameters (see 
reference), the number of output segmentations was 864 in total 
for each reference plot.  
Following the workflow shown in Figure 2, and once the tree 
segmentations were extracted, the next step involved the 
accuracy assessment of the following three variables: i) ITD 
accuracy, ii) tree height estimation accuracy, and iii) tree crown 
diameter estimation accuracy.  
 
a) ITD accuracy: tree detection ratio was evaluated in terms of 
recall (r), precision (p) and F1-score (Equations 2, 3 and 4).  
 

 r = TP
(TP+FN)

 (2);    p = TP
(TP+FP)

 (3);     

F1-score = 2*r*p
r+p

 (4) 
 [TP: True positive (correct detection); FN: False Negative 

(omission error); FP: false positive (commission error)] 
The value of r, p and F1-score were calculated as percentage (0-
100%). The higher the value, the better the tree segmentation 
accuracy. These metrics have been used in several studies 
(Goutte and Gaussier, 2005; Li et al., 2012; Silva et al., 2016; 
Sokolova et al., 2006). 
b) Tree height estimation accuracy: it was evaluated by applying 
some error metrics to each pair of estimated and observed H 
values for each correctly segmented tree. The selected robust 
metrics includes H mean error and H median error to estimate the 
systematic error. Due to its wide use, the H root mean square 
error (H RMSE) was also calculated to estimate random error. In 

addition, the H relative values of RMSE divided by the observed 
H mean value were computed to intuitively scale the magnitude 
of the random error. The Pearson's coefficient of linear 
correlation and r2 coefficient between H estimated and observed 
were also computed. Note that the residuals (difference in 
heights) were calculated by subtracting the observed tree height 
from the tree height extracted with the algorithm. 
c) Tree crown diameter estimation accuracy: the CD has been 
extracted from the concave area extracted by each algorithm used 
in this study. As for the height accuracy assessment, the 
calculated statistical parameters were the following: CD mean 
error, CD median error, CD RMSE, CD relative RMSE and CD 
Pearson r. 
In this study, it has been considered that each algorithm must 
comply with the following goals: i) identifying the maximum 
number of trees existing in each reference plot, ii) extracting the 
height and crown diameter of each tree with the highest possible 
accuracy. For this reason, a combined accuracy index (CAI) 
(Equation 5) ranging from 0 to 100% was introduced to weight 
the importance of each goal. The first step, tree detection, is the 
most critical and should have the most importance (i.e., 70% of 
the weight). Once the trees have been correctly detected, the 
objective is to determine the dendrometric parameters (H and 
CD) of each tree. 
 
CAI = (F1 − score ∗ 70%) + (Hp ∗ 15%) + (CDp ∗ 15%) (5) 

 
[F1-score (see equation 4) ranging from 0 to 1. Hp and CDp:  

Pearson's coefficient of linear correlation for H and CD] 

CAI was used to select the best performing ITD parameters set 
for each algorithm tested in this study. Next, the sets of 
parameters that most frequently gave the best results were 
applied to all plots with the aim of estimating the robustness of 
each of the tested methods. In this way, we attempted to 
approximate the potential accuracy of each method if it were 
applied to a large area. 
 

3. RESULTS AND DISCUSSION 

3.1 Tree detection 

Table 2 depicts the tree detection accuracy in terms of recall, 
precision and F1-score for each algorithm tested in this study. 
The F1-score obtained was greater than 72% in all cases. The best 
accuracy was provided by the PCB algorithm, reaching a value 
of 89.51%. Working with a similar set of data in a mixed multi-
layered forest in the French Alps and adopting a point-based 
approach, Vega et al. (2014) reported an overall performance of 
75% (F1-score) including all trees (dominant, codominant and 
dominated trees). 
 
Algorithm CHM Recall Precision F1-score 

SILVA2016 
Best of P2R and PF 74.76 97.95 83.54 

P2R 74.18 97.94 83.13 
PF 72.64 97.87 81.92 

DALPONTE 
2016 

Best of P2R and PF 72.72 96.26 81.60 
P2R 72.12 95.77 80.96 
PF 70.78 95.56 79.84 

DFT-HM IDW-GS 79.76 69.61 72.14 
DFT-P IDW-GS 78.67 76.41 75.66 
Li 2012 - 86.08 94.32 89.51 

Table 2. Tree detection accuracy for the tested algorithms in 
terms of Recall, Precision and F1-score. GS: Gaussian 
smoothing. 
 
Regarding the tested RB algorithms, Silva2016 was the best (F1-
score = 83.54%), followed by Dalponte2016 (F1-score = 
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81.60%), DFT-P (F1-score = 75.66 %) and DFT-HM (F1-score 
= 72.14%). 
In the case of Silva2016 and Dalponte2016 algorithms, and when 
comparing the two algorithms tested to build the input CHMs, it 
was observed that the P2R algorithm performed better.  
 
3.2 Tree height estimation accuracy 

Table 3 shows the statistical parameters computed to assess the 
accuracy of the estimated tree heights. 
 

  CHM H mean 
error 

H 
median 

error 

H 
RMSE 

H 
relative 
RMSE 

H 
Pearson 

r 

H 
R2 

SILVA2016 

Best of 
P2R 

and PF 
-0.19 -0.22 0.47 5.44 0.94 0.82 

P2R -0.19 -0.22 0.47 5.44 0.94 0.82 
PF -0.2 -0.23 0.48 5.54 0.93 0.79 

DALP-
ONTE2016 

Best of 
P2R 

and PF 
-0.2 -0.23 0.48 5.45 0.94 0.81 

P2R -0.2 -0.23 0.46 5.26 0.95 0.82 
PF -0.22 -0.23 0.43 5.12 0.94 0.82 

DFT-HM  IDW-
GS -0.24 -0.27 0.56 6.5 0.92 0.71 

DFT-P IDW-
GS -0.24 -0.27 0.54 6.09 0.93 0.70 

Li2012 - -0.26 -0.23 0.49 6.01 0.94 0.81 
Table 3. Tree height estimation accuracy for the tested algorithms 
in terms of H mean error (m), H median error (m), H RMSE (m), 
H relative RMSE (%), H Pearson´s r and r2 coefficient. GS: 
Gaussian smoothing. 
 
Regarding systematic error, the bias for all the tested algorithms 
showed average values better than -26 cm and -27 cm for the 
mean and median high error, respectively, which pointed to a 
slight underestimation of the “true” elevation of the trees 
represented by LD-ALS data. This underestimation was also 
reported in other studies (e.g., Véga and Durrieu, 2011) and it is 
explained by the relation between the point density and the 
proportion of sampled tree apices. This effect is due to the low 
density of ALS data producing few laser impacts on the tops of 
the trees, a circumstance that makes it difficult to record just the 
apex of the tree. Focusing on the random error, RMSE presents 
values lower than 56 cm, which implies a relative RMSE lower 
than 6.5%. All algorithms showed a very good fit between the 
estimated and observed tree heights, reaching high values of the 
Pearson's coefficient with values greater than 0.92.  
 
3.3 Crown diameter estimation accuracy 

Table 4 depicts the statistical parameters computed to assess the 
accuracy of the estimated crown diameters. Almost all RB 
algorithms showed a negative systematic error, so pointing to an 
underestimation of the observed CD. Regarding the random 
error, it presented values ranging from 0.64 m to 2.47 m, with the 
Li2012 algorithm being the one that obtained the worst results. 
The highest values of the Pearson linear correlation coefficient 
were achieved using the Silva2016 algorithm. 
 

  CHM 
CD 

mean 
error 

CD 
median 
error 

CD 
RMSE 

CD 
relative 
RMSE 

CD 
Pears
on r 

SILVA- 
2016 

Best of 
P2R 

and PF 
-0.04 -0.05 0.64 15.24 0.75 

P2R -0.10 -0.09 0.68 15.92 0.75 
PF -0.08 -0.03 0.75 17.91 0.69 

DALP-
ONTE 
2016 

Best of 
P2R 

and PF 
-0.01 -0.02 0.84 19.98 0.65 

P2R 0.04 0.04 0.8 18.89 0.66 

PF -0.33 -0.33 0.88 21.18 0.62 

DFT-HM IDW-
GS -0.51 -0.54 1.36 30.86 0.61 

DFT-P IDW-
GS -0.28 -0.27 1.27 28.81 0.61 

Li2012  - 1.86 1.89 2.47 56.9 0.57 
Table 4. Tree crown diameter estimation accuracy for the tested 
algorithms in terms of CD mean error (m), CD median error (m), 
CD RMSE (m), CD relative RMSE (%) and CD Pearson's r. GS: 
Gaussian smoothing. 
 
3.4 Combined accuracy index and large-scale mapping 

All tested algorithms were grouped into three categories (gold, 
silver and bronze medals) based on the CAI awarded (Table 5). 
 
  CHM CAI (%) Category 

SILVA2016 
Best of P2R and PF 83.83 Silver 

P2R 83.53 Silver 
PF 81.73 Silver 

DALPONTE2016 
Best of P2R and PF 81.02 Bronze  

P2R 80.81 Bronze  
PF 79.32 Bronze  

DFT-HM IDW-GS 73.48  
DFT-P IDW-GS 76.08  
Li2012 - 85.27 Gold 

Table 5. Combined accuracy index (CAI). The tree best 
algorithms have been ranked and the optimal value of each 
position is shown in bold. GS: Gaussian smoothing. 
 
In view of the results obtained, it can be highlighted that the gold 
medal clearly went to the Li2012 algorithm, reaching a CAI value 
of 85.27%. In fact, this PBC algorithm obtained very good results 
in the ITD and H extraction phases, although it was the worst at 
extracting CDs. The silver medal was achieved by the Silva2016 
algorithm, reaching CAI values of 83.83% when both the input 
CHMs and the Silva2016 parameters were tuned. Similar results 
(i.e. CAI = 83.53%) were obtained using the CHM generated 
with the P2R algorithm. The Dalponte2016 algorithm, with CAI 
values greater than 79%, achieved the bronze medal, with the 
DFT algorithm placing fourth place with CAI values slightly 
greater than 73%. 
A second “round” of individual tree segmentation was carried out 
by applying the sets of parameters that ensured the best results in 
terms of CAI to all references plots (a proxy of large-scale 
mapping accuracy). The results obtained in this second round are 
depicted in Table 6, while the final selected sets of parameters 
are shown in Table 7. 
 
   CHM F1-

Score 
H 

Pearson´r 
CD 

Pearson´r 
CAI 
(%) 

SILVA-
2016 

P2R 0.83 0.94 0.68 82.12 
PF 0.81 0.94 0.69 81.23 

DALPO-
NTE2016 

P2R 0.80 0.94 0.25 74.18 
PF 0.79 0.94 0.20 72.70 

DFT-HM IDW-GS 0.70 0.93 0.61 72.03 
DFT-P IDW-GS 0.76 0.93 0.61 76.08 
Li2012 - 0.83 0.94 0.55 80.14 

Table 6. Tree detection accuracy and H and CD estimation 
accuracy computed for the tested algorithms applying the same 
sets of parameters to the 38 references plots (large-scale 
mapping). The algorithms are ranked from best to worst with 
gold, silver and bronze medals. GS: Gaussian smoothing.  
 
In the case of large-scale mapping, the Li2012 algorithm obtained 
also very good results both in ITD and H extraction phases, 
showing a F1-score of 0.83 and a H Pearson´s r of 0.94. These 
results were similar to those obtained by the Silva2016 algorithm, 
which awarded the gold medal in this second round. However, 
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Li2012 failed when estimating CD, yielding a low Pearson´s r of 
0.55. On the contrary, Silva2016 managed to obtain better results 
in terms of CD estimation, which allowed it to be placed in the 
first position of the ranking. 
 
  CHM Parameters LD-ALS 

SILVA2016 
P2R max_cr_factor 0.3 

exclusion 0.4 

PF max_cr_factor 0.4 
exclusion 0.5 

DALPONTE
2016 

P2R 

th_tree 2 
th_seed 0.2 

th_cr 0.1 
max_cr 4 

PF 

th_tree 2 
th_seed 0.1 

th_cr 0.1 
max_cr 4 

DFT-HM IDW Optimal H value 0.7 
DFT-P IDW - - 

Li2012 - 

dt1 2 
dt2 2.2 
R 2 
Zu 15 

hmin 2 
Speed-up 5 

Table 7. Sets of parameters corresponding to the best results 
(CAI) applied to the 38 references plots (large-scale mapping). 
 
With CAI values of 82.12% and 81.23% for P2R and PF, 
respectively, Silva2016 is undoubtedly the best option to cope 
with large-scale mapping (i.e., the same tuning parameters in all 
reference plots) when using LD-ALS data in Mediterranean 
forests. The algorithms implemented in DFT achieved the bronze 
medal, reaching a CAI value of 76.08% in the case of the DFT-P 
version. Finally, the Dalponte2016 method was left off the 
podium. It is worth noting that applying the same set of 
parameters to all the reference plots decreased the accuracy in 
CD estimation. This fact is reflected in lower values of the 
Pearson r coefficient of determination, which means a poorer fit 
between the estimated and observed CD. 
 

4. CONCLUSIONS 

This paper assessed the performance of several ITD algorithms 
applied to LD-ALS data. Thus, four different algorithms (three 
RB and one PCB) were tested. The results obtained demonstrate 
that the pipeline proposed in this work can be used to accurately 
extract individual trees and their corresponding dendrometric 
parameters. 
Through intensive experiments, consisting in testing different 
algorithms to build the inputs CHMs, localizing treetops and 
setting the ITD parameters, it was concluded that the PCB Li2012 
algorithm achieved better results. The local calibration of the ITD 
parameters provided an optimum tree detection and accurate 
dendrometric variables extraction. These results proved that LD-
ALS data are a good option to accurately extract individual trees 
(F1-score > 89%) and the corresponding H and CD. By emulating 
large-scale mapping by applying the same set of parameters to all 
plots, Silva2016 proved to be the best option. In this case, the 
recommended set of parameters to detect Aleppo pine was 0.3 
and 0.4 as thresholds for the maximum crown factor and the 
exclusion parameters, respectively. It is also recommended to 
build the input CHM with the P2R algorithm and detect treetops 
using a LM based on a variable Tree Window Size (TWS). This 
combination allowed to reach a CAI of 82.40% (F1-score = 83%; 
H Pearson’s r = 0.94 and CD Pearson’s r = 0.68). 
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ABSTRACT: 

Climate change is profoundly affecting alpine ecosystems. Therefore, pastures monitoring represents a key point. Long time-series of 
Earth Observation (EO) data can be used to explore spectral and thermal behaviour of these surfaces in the climate change 
framework. In this work, almost 40 years of data were considered, with more than 900 acquisitions covering the period 1984-2022, 
from the Landsat 5-9 missions were obtained through Google Earth Engine (GEE) and the correspondent maps of Land Surface 
Temperature (LST) and Normalized Difference Vegetation Index (NDVI) were analysed. Pasture areas were mapped with reference 
to the available cadastral maps from the Aosta Valley (Italy). LST and NDVI were initially pre-processed by filtering out, at pixel 
level, defective observations and regularize the remaining ones. The yearly LST/NDVI yearly maxima were then computed to 
synthetise the phenological season with yearly granularity. A 1st order polynomial was used to fit 39 yearly values of LST and NDVI 
at pixel level on pastures pixels solely. The correspondent gain and offset values were mapped and used to investigate pastures 
reaction to climate changes looking for relationship between local behaviour and topographic features. LST trends was adopted to 
explored the pastures capability of limiting/improving thermal fluxes. NDVI trends was used to read the biomass temporal behaviour 
and support heat fluxes interpretation. EO data allow to understand and preliminary quantify how alpine pastures respond to climate 
change and detect the main drivers of such changes. 

1. INTRODUCTION

Climate change is profoundly affecting alpine ecosystems 
(Peringer, Frank, e Snell 2022; Herzog e Seidl 2018). 
Specifically, global warming poses a significant threat to 
mountain pastures (Godde et al. 2020), which are already 
among the most vulnerable habitat due to weak management 
and their location at high altitudes where the effects are 
amplified (Bellini et al. 2022). Monitoring these areas is crucial 
for understanding their response to changing conditions and 
informing management strategies in various fields, including 
ecosystem and climate studies (De Marinis et al. 2021). Beyond 
their ecological importance, pastures play a vital role in the 
rural economy of alpine regions, supporting agricultural-
forestry and pastoral production that often forms a substantial 
portion of local Gross Domestic Product (GDP), as seen in 
Aosta Valley with over 20% contribution (Floris et al. 2024). 
Given this critical role, long-term monitoring is essential to 
track how pastures are adapting to the shifting climate. In this 
scenario, long time-series (about 40 years) of Earth Observation 
(EO) data, with special concerns about the United States 
Geological Survey (USGS) NASA Landsat missions, can be 
effectively used to explore spectral and thermal behaviour of 
these areas in the climate change framework (Viani et al. 2023; 
Carella et al. 2022). Nowadays, remote sensed data may help in 
monitoring and modelling biophysical trends and detect changes 
that occurs on the Earth surfaces worldwide (Vincenzi et al. 
2021; Bagliani et al. 2019; Latini et al. 2021; Tartaglino et al. 
2020; Caimotto et al. 2020). Unfortunately, there are few 
missions with decadal data despite the fact that in the last 
decade Earth observation programs by both public and private 
agencies have grown exponentially thanks to massive 
investments in the space economy (Ippoliti et al. 2019; Samuele 
et al. 2021). While newer programs like ESA's Copernicus and 
Google's Planet offer data with impressive spectral and 

temporal resolution, they lack the decadal time series (spanning 
at least 30 years) crucial for climate studies (Viani al. 2023; 
Floris et al. 2024; Mandola, et al. 2023), promising endeavours 
like Italy's IRIDE project are still under development (Orusa et 
al. 2023). Currently, the Landsat missions stand as the lone 
provider of free, long-term, medium-high resolution data 
suitable for climate-related research on mountain pastures. 
Several studies have used the Landsat legacy data to monitor 
and model the greening trend in the Alpine arc (B. Z. Carlson et 
al. 2017; Bolton et al. 2020) or using LandTrender algorithm 
(Kennedy et al. 2018) to model land cover changes (Parracciani 
et al. 2024) and assess vegetation and water response to climate 
change (Fu et al. 2022). Other studies have focused on 
monitoring forestry and carbon dynamics (Banskota et al. 
2014). 
Currently, climate and land interactions and related modelling 
based on EO data can only be conducted thanks to Landsat 
Legacy with global data from 1984 to today and in some cases 
from 1972 and almost half a century of observations.  
In this work, more than 900 acquisitions covering the period 
1984-2022, from the Landsat 5-9 missions were obtained 
through Google Earth Engine (GEE) (Gorelick et al. 2017) and 
the correspondent maps of Land Surface Temperature (LST) 
and Normalized Difference Vegetation Index (NDVI) analysed 
and related trends modelled involving pastures areas. The aims 
of the present work were: (i) developing a remote-sensed based 
continuous monitoring approach to map alpine pastures reaction 
to climate change scalable to the whole alpine realities; (ii) 
modelling and mapping alpine pasture reaction to rising 
temperature in Aosta Valley; (iii) preliminary quantifying the 
role of other environmental features such as terrain altitude, 
aspect in thermal/ biomass trends within the study area. All 
these analysis and related deductions can support local/national 
institutions policy to understand and mitigate climate change 
effects. 
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1.1 Study Area 

This study was performed over Aosta Valley Autonomous 
Region (AV) in the NW Italy (fig.1). Despite it is the smallest 
region in Italy, hosts the highest mountains in Europe and 
almost 1/3 of its overall surface is covered by grassland (Orusa, 
Cammareri, e Borgogno Mondino 2022b; 2022a) 

 
Figure 1. Aosta Valley Autonomous Region, NW Italy. 
(Reference system UTM/ED50 zone 32 N, EPSG: 23032) 
 

2. MATERIALS AND METHODS 

LST trends was adopted to explored the pastures capability of 
limiting/improving thermal fluxes. NDVI trends was used to 
read the biomass temporal behaviour and support heat fluxes 
interpretation. More than 900 acquisitions covering the period 
1984-2022 mapping TOA brightness temperature (Tb) available 
in collection 1 of Landsat TOA products from Landsat 5; 7; 8-9 
missions, were selected and processed in GEE.  
It is worth to note that NDVI was computed from Landsat Level 
2 product which is already calibrated at surface reflectance. 
Clouds, shadows and defective pixels were filtered out from 
each selected image using Radiometric saturation QA and Pixel 
QA Pixel Bitmask (quality attributes generated from the 
CFMASK algorithm by NASA) associated to each imagery and 
available per each Landsat collection within GEE (further 
information available at https://www.usgs.gov/landsat-
missions/landsat-collection-2-level-1-data last accessed on 2024 
February). A regularization involving all the observation at a 
monthly step was performed according to (Ermida et al. 2020) 
approach. Gain and offset values were mapped and used to 
investigate pastures reaction to climate changes looking for 
eventual relationship between local behaviour (in terms of both 
LST and NDVI) and topographic features (altitude and aspect) 
as derivable from the AV Regional DTM. A binning onto 
terrain components, NDVI and LST gain and offset was 
conducted in order to explore and test eventual relationships. 20 
bins were done per each variable involving: aspect (with step 
each 0.1 rad); slope (with step each 0.1 rad); altitude (with step 
each 150 m); NDVI mean gain (with step each 0.003) and 
NDVI mean offset (step each 0.1). It is worth to note that these 
variables were binned against LST. Landsat data pre-processing 
were directly performed in GEE and bands missions shifting 
and sensors comparability adjusted using the (Ermida et al. 
2020) approach. Surface emissivity maps, needed for LST 
computation from Tb images (Orusa e Mondino 2019), were 
obtained according to the Fractional Vegetation Cover (FVC) 
approach of eq.1 (Rubio, Caselles, e Badenas 1997): 

ε = FVCεv + (1 − FVC)εs           (1)  
where FVCεv and FVCεs are the FVC values computed for a  
completely vegetated and a pure bare soil pixel, respectively. 
FVC can be computed with reference to eq.2 (T. N. Carlson e 
Ripley 1997) 

FVC = �
NDVI − NDVIs

NDVIv − NDVIs
�

2
          (2) 

 

where NDVIs and NDVIv are the NDVI values corresponding to 
completely bare soil and vegetated pixels, respectively. 
According to previous studies (Jiménez-Muñoz et al. 2009), 
NDVIs and NDVIv were set to 0.2 and 0.86, respectively. Once 
emissivity maps were obtained for all the acquisitions, 
correspondent LST images were finally computed by the 
Statistical Mono-Window (SMW) algorithm (Orusa, Viani, 
Moyo, et al. 2023) from the Climate Monitoring Satellite 
Application Facility (CM-SAF). This technique uses an 
empirical relationship between Tb and LST (Ermida et al. 2018), 
based on a linearization of the radiative transfer equation 
showing an explicit dependence from emissivity eq.3. 

LST = Ai �
Tb

ε � +
Bi

ε + Ci          (3) 
 

where Tb is the TOA brightness temperature, and ε is the 
surface emissivity. Ai, Bi, and Ci are coefficients modelling the 
Total Column Water Vapor (TCWV) effect on LST. These 
coefficients are made available by NCEP/NCAR re-analysis 
project and can be accessed and used through GEE depending 
on the considered Landsat collection. Subsequently, for each 
year the maximum value within the range June-August was 
computed and mapped for NDVI and LST. This composite 
strategy allows to better consider only NDVI and LST values 
during phenological active period. It is worth noting that the 
choice of June-August is based on the timing of vegetation 
maxima. This timeframe was selected after verifying that the 
maxima of both LST NDVI and associated phenological metrics 
MAXVI consistently occur within this period across all years 
studied adopting (Orusa et al. 2023) algorithm. While 
acknowledging the potential influence of climate change on 
vegetation and phenology, a comprehensive pre-check 
encompassing the entire year for each pixel within the study 
area confirmed that June-August indeed captures the maxima of 
LST NDVI for all years involved. This ensures that the analysis 
focuses on the period of peak activity. Finally, 39 maps of 
NDVI and LST were separately stacked along time series and 
clipped on pasture parcels extracted from AV cadastre retrieved 
from AV SCT Geoportal. From the same geoportal the Digital 
Terrain Model (DTM) was also download for in this work 
(https://geoportale.regione.vda.it/ last accessed 2024 February). 
This masking procedure made possible to focus the analysis on 
the pastures pixels solely form the LST/NDVI time-series. The 
LST/NDVI stacks were finally exported from GEE and 
analysed in SAGA GIS v.8.5.0 and R Studio (Conrad et al. 
2015; Racine 2012). Pettitt’s test (James, James, e Siegmund 
1987; Sarvia et al. 2021) was locally applied to NDVI stack in 
R Studio in order to select only pixels that possibly did not 
change their meaning (remains pastures for all the considered 
period). This test detects the moment when a NDVI 
multitemporal profile shows an abrupt change (breakpoint), 
possibly related to pasture removal, along the time series. Pixels 
having a significant breakpoint were masked out also in LST 
stack since represent surfaces where land cover/land use is 
changed thus affecting local emissivity.  For unchanged pixels 
the local trend was approximated by a 1st order polynomial (eq. 
4):  

ϑ = α × t + β          (4)  
Where: θ: is the parameter to model in this case LST and NDVI; 
α: is the gain; t: is the time integer index; β: is the offset.  
  

3. RESULTS AND DISCUSSIONS 

The trends modelled involving LST and NDVI by a 1st order 
polynomial after a de-trending to remove seasonality effect as 
depicted in eq.4 were mapped as reported respectively in 
Figures 2 and 4. It is worth to note that in figures 2 and 4 only 
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unchanged significant pixels within the pastures of the cadastre 
are displayed. 
 

 
Figure 2. LST unchanged significant pixels gain map and 
relative increase of temperature assuming as reference 1984. 
(Reference system UTM/ED50 zone 32 N, EPSG: 23032). 
Starting from the modelled LST maps the difference of LST 
between the years 1984 and 2022 was calculated at pixel level. 
Frequency distribution of LST gain areas was provided in figure 
3.  It is interesting to highlight that more than the 85% of the 
overall AV surface pastures have deeply increased their LST in 
the investigated period (positive gain values). About 44% of 
pastures from 1984 to 2022 have suffered LST increase of 
almost 6°C, while around 56% of pastures have suffered an LST 
increase in the last 39 years upper to 6°C.  

 
Figure 3. Pastures areas distribution (expressed in hectar) 
according most representative binned classes of Gain LST (°C). 
Then, a general increase in NDVI occurs as mapped in figure 4. 

 
Figure 4. NDVI unchanged significant pixels gain map. 
(Reference system UTM/ED50 zone 32 N, EPSG: 23032). 

Comparing LST and NDVI gain maps, it is interesting to note 
that following the increase in LST there was also an increase in 
biomass productivity and that it therefore also exerts a 
mitigating reaction compared to the real temperature. However, 
it should be underlined that this process is only possible in the 
presence of water availability. If it turns out to be a limiting 
factor, especially in periods of greater demand and full 
vegetative activity (for e.g. summer heatwaves), the effects on 
pasture productivity can be important. In fact, today in order to 
produce the same quantity of biomass (hay) compared to 1984 
because of LST increase, it also requires more water because 
the effect on evapotranspiration is greater (see fig.2 and 4). In 
fact, the investigations on pastures reaction to climate changes 
looking for eventual relationship between local behaviour and 
topographic features have shown that: (a) LST Mean Gain is 
higher in AV Eastern pastures then in the Western. Eastern 
pastures have a steeper increasing LST then the Western; (b) 
LST Mean Gain is higher in AV Northern pastures then in the 
Southern. Northern pastures are suffering a steeper increase in 
LST then Southern, nevertheless the gain amplitude is not so 
wide then in E-W; (c) LST Gain mean is higher in AV in the 
bottom of the valley however between 2000-3000 m it rises up. 
Bottom pastures are more exposed to rising LST like those 
located at high altitude. in the latter case, this is probably due to 
the major presence of tare (like rocks and presence and lower 
biomass); (d) no relationship with the slope. In all cases there 
were significance p-value < 0.05. Finally, in pastures where the 
biomass has always expressed a high vigour value (lower NDVI 
gain), it seemed not to be able to mitigate the thermal increase 
(observe in fig.5 the yellow and green cluster gain and offset 
respectively), while in poorly vegetated pastures or in pixels 
subjected to a change of cover due to recolonization by 
herbaceous species and therefore with sparse and reduced 
vegetation (high gain of NDVI) there are lower marked thermal 
gain see red clusters in figure 5 below.  

 
Figure 5. LST, NDVI and terrain relationship to characterize 
alpine pastures in the climate change framework. 

 
4. CONCLUSIONS 

EO data with particular regard to Landsat missions allow to 
understand and preliminary quantify how alpine pastures 
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respond to climate change and detect the main drivers of such 
changes as shown by other studies (Orusa et al. 2020; Orusa,  
Borgogno Mondino 2021; Orusa et al. 2024). In the last 39 
years AV pastures LST increased up to 6°C in many pastures 
(56%). N-E pastures are affected by a steeper increase in 
temperature then those in S-W respecting to the past. Pastures at 
the bottom of the valley and near peaks are more affected by the 
LST rising up. A slightly mitigation in terms of temperature 
seems to be offered only by pastures with sparse vegetation that 
has colonized new areas (i.e. bare soils within pasture gaps 
patches) through the time investigated.   
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ABSTRACT: 

Crop traits monitoring is a fundamental step for controlling crop productivity in the context of precision agriculture and field 
phenotyping. Currently, the use of hyperspectral data in machine learning regression algorithms (MLRAs) has attracted increasing 
attention to alleviate the challenges associated with traditional crop trait measurements. In this framework, an experiment was set up 
to assess the performance of partial least squares regression (PLSR) and random forest (RF) models to estimate several wheat crop 
traits (leaf area index: LAI, canopy water content: CWC, canopy chlorophyll content: CCC, and canopy nitrogen content: CNC) at the 
canopy level, using full-range hyperspectral data (350 – 2500 nm) as inputs. The study compared the performance of the two MLRA 
focusing on the physical interpretation of the results for each particular crop trait. Overall, PLSR provided remarkably higher accuracy, 
tested with a cross-validation strategy, as compared to RF for all the crop traits. In particular, PLSR denoted R2 (nRMSE%) values of 
0.72 (11.97%), 0.77 (10.89%), 0.70 (14.61%), and 0.74 (14.38%) for LAI, CWC, CCC, and CNC, respectively. All PLSR models 
indicated robust prediction capability (RPD > 1.4). In general, analysis of band importance revealed physically-meaningful and 
consistent patterns for each specific crop trait. 

1. INTRODUCTION

1.1 Crop traits estimation with Machine Learning 

In the field of modern agriculture, the need for precision and 
efficiency has never been more critical. The increase of global 
population and food demand, as well as climate change impact, 
are making agricultural production unstable and unpredictable, 
placing notable pressure on agricultural systems. In this context 
is fundamental to increase productivity while mitigating the 
environmental impacts of farming. One of the most promising 
avenues of innovation lies in the development of crop trait 
estimation through remote sensing technology for field 
phenotyping activity and precision farming implementation. The 
goal of field phenotyping is to understand how plants respond to 
various environmental conditions, stressors and management 
practices in real-world non-controlled settings. On the other 
hand, Precision Farming, also known as Precision Agriculture or 
Smart Farming, is an innovative approach to agricultural 
management that leverages technology and data-driven 
techniques to optimise various aspects of crop production. These 
activities need reliable and efficient production of quantitative 
information on plant traits to assess crop status and identify 
strategies for a sustainable and less impacting management. 
Remote Sensing technology is indeed the most effective 
technological solution to estimate and map crop traits in space 
and time, especially considering hyperspectral data, which can 
provide the full range spectral information needed to perform a 
diagnostic assessment of different plant parameters (Hank et al., 
2019). Hyperspectral measurements have been successfully 
utilised in several previous studies to describe structural (e.g. leaf 
area index: LAI - Liang et al., 2020) and biochemical parameters 

(e.g. nitrogen – Heidarian Dehkordi et al., 2022). Data driven 
Machine Learning Regression Algorithms (MLRA) can provide 
a powerful means of exploiting the rich spectral information 
contained in hyperspectral data, enabling precise and non-
invasive estimation of critical crop traits. Further research is 
needed to investigate the performance of MLRA for crop traits 
estimation due to several compelling reasons: i) assess model 
accuracy for product exploitation, ii) understand MLRA results 
to gain trust and acceptance among users and iii) evaluate 
exportability of model in different contexts. 
1.2 Objective 

In this framework, the objective of this study was threefold: i) 
set-up a field phenotyping experiment that produce a variety of 
crop condition to create a bundle dataset of crop ground data and 
spectral measurements, ii) conduct MLRA analysis to assess 
model performance and iii) interpret model significance and 
robustness by analysing the importance of the different spectral 
regions selected by model in relation to the specific plant 
parameter considered. Indeed, the use of MLRA models as black 
boxes can be very risky: therefore, model interpretation is 
fundamental for the exploitation of the developed solution in 
other contexts. 

2. MATERIAL AND METHODS

2.1 Study area and ground dataset 

A controlled experiment was conducted in the framework of the 
E-CROPS project (https://www.e-crops.it/). The study site
(corners NW: 39° 45' 23" N, 8° 35' 58" E; SE: 39° 45' 21" N, 8°
36' 7" E) was an agricultural field in Arborea (Oristano –
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Sardinia, Italy), planted with durum wheat (Triticum aestivum 
L.). To generate a wide range of crop traits - hence a wide range 
of spectral information - different set of agricultural inputs were 
used over the field (Figure 1). The field was split divided in two 
parts with different soil preparation: “minimum tillage” (L1) and 
“traditional ploughing” (L2), in the upper and lower portions of 
the field, respectively. The experimental design consisted in 
constituted a block of three replicates as R1, R2, and R3, 
representing the western, middle, and eastern parts of the field. 
Each replicate included a fully randomised set of four different 
wheat cultivars as Beltorax (V1), F. Camillo (V2), Giulio (V3), 
M. Aurelio (V4) as well as four different N-treatments as 
“Aziendale-30%” (N1), “Aziendale (N2)”, “Aziendale+30% 
(N3)”, and “Variable rate” (N4), for a total of totalling 96 
experimental plots of 6 m × 3 m within the field. Due to crop 
emergence failure in two plots, and excessive presence of weed 
in 6 plots, a total of 88 plots were monitored. 
 

 
Figure 1 Study site in Arborea (OR) (a) and investigated 

experimental plots (b). 
 

N- treatment 
Kg/ha 

1° Stem elongation 
20/04/2022 

2° Flowering 
23/05/2022 

N1 52 0 
N2 52 38 
N3 52 65 
N4 52 8 - 24 

Table 1. N treatment of experiments. 
The fertilisation was split in two periods (end of tillering and 
beginning of flowering), as reported in Table 1. In particular, N4 
represented an expert base variable rate definition, based on 
ground measurements of LAI and chlorophyll content. 
 
2.1.1 Crop traits: measurements were performed during      
three campaigns (28th April, 14th May, and 28th May, 2022) as 
follows: 

- LAI (Leaf area index) was measured using an LI-COR 
LAI2200 plant analyser along transects according to A-
10×B-A scheme in which A and B represent above and 
below canopy measurements for each experimental plot;  

- CCC (Canopy Chlorophyll content) was derived from leaf 
chlorophyll content (LCC), measured in laboratory from 3 
leaf disks sampled on the last fully-developed leaf, by 
multiplying LCC and the corresponding LAI values; 

- CWC (Canopy Water content) was calculated by 
multiplying leaf water content (LWC) by LAI values; LWC 
was determined for five plants within each experimental 
plot, measuring fresh and dry weight (oven-dried at 50°C 
for about three days) of three leaf discs with 8 mm diameter, 
sampled on the last fully-developed leaf. 

- CNC (Canopy Nitrogen Content) was retrieved 
multiplying Leaf Nitrogen Content (LNC) by LAI values; 
LNC was calculated by multiplying leaf mass per area for 
the leaf nitrogen concentration (N%), determined using a 
CN element analyser, for the aforementioned leaf discs. 

 
LCC, LWC and LNC, due to the effort required for destructive 
sampling, samples were collected only for the soil treatment “L2” 
and variety “V4 and V3”, corresponding to a total of 24 analysed 
plots (1 soil x 2 varieties x 3 replicates x 4 N-treatments). 
Samples cardinality for the LAI and CWC/ CCC/ CNC is 
respectively 264 (88 plots x 3 dates) and 72 (24 plots x 3 dates). 
 
2.1.2 Spectral data: Proximal spectral measurements were 
acquired using a handheld spectrometer (Spectral Evolution - RS-
5400) over the three field campaigns. The spectrometer has a full 
spectral range of 350-2500 nm with a spectral sampling interval 
(SSI) of 1 nm. Four spectral measurements were collected on 
each experimental plot at approximately 1 m above the canopy, 
with a nadir viewing angle and under clear sky conditions. Care 
was taken to avoid the presence of weeds and shadows within the 
measuring footprint. A reference panel was sensed before and 
after each measurement to derive reflectance. The plot 
reflectance was derived averaging the four reflectance spectra 
measured in each plot. Moreover, the atmospheric contaminated 
regions between 1350-1500 nm and 1750-2000 nm were 
excluded. It is worth noting that during the first campaign, the 
spectral measurements of 50 plots were not recorded due to 
instrumental issues. Considering the intersection from ground 
and spectral measurements, the final DB includes the following 
cardinality per traits: LAI (#232); CWC (# 61), CCC (#61) and 
CNC (#44). 
 
2.2 Machine learning modelling  

Partial Least Squares Regression (PLSR) and Random Forest 
(RF), recognized among the best performing algorithms, were 
selected for this study. PLSR, for instance, is well-suited for 
extracting meaningful relationships between spectral bands and 
crop traits, by reducing the dimensionality of hyperspectral data 
and identifying key spectral features. For example, Hansen and 
Schjoerring (2003) exploited this technique for canopy nitrogen 
content estimation. On the other hand, Random Forest is known 
for its robustness and ability to handle complex, nonlinear 
relationships in data, making it valuable for modelling intricate 
relationships between spectral signatures and crop traits (Zheng 
et al., 2022). RF has been successfully used for LAI estimation 
(Liang et al., 2020), biomass and yield (Marshall et al., 2022). 
The model development, including training and cross-validation 
was performed using the “caret” package in R (Kuhn, 2008). We 
used a repeated k-fold cross-validation approach (with k = 10 
folds and N = 5 repeats), for traits with high cardinality (n > 100; 
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i.e. LAI), whilst the leave-one-out (LOO) cross-validation 
approach was performed for those traits with low cardinality.  
 
2.2.1 Assessment of results and model interpretation:  
To assess the quality of the MLRA models generated for each 
crop trait, we computed the coefficient of determination (R2), the 
Normalised Root Mean Square Error (nRMSE; normalized by 
range of samples) and the Ratio of the Performance to Deviation 
(RPD). Finally, variable influence on projection was calculated 
using the “VIP” package in R (Greenwell and Boehmke, 2020). 
This analysis was performed for each trait and model to assess 
the physical soundness of the identified solution. VIP graphs 
(wavelength vs importance) were investigated and commented to 
highlight the most important variables for crop traits’ retrieval in 
this study. 
 

3. RESULTS AND DISCUSSION 

3.1 Model performance 

 
Figure 2. Scatter plots and cross validation performance metrics 
for the different traits (rows) and MLRA considered (columns). 

Left and Right column report results for PLSR and RF; traits: 
LAI (a & b), CCC (a & b), CWC (a & b), and CNC (g & h). 

 
Figure 2 provides the scatter plot in cross validation of the eight 
analysed model (4 traits x 2 MLRA). Overall, the accuracy of the 
models were remarkably high (up to R2 > 0.7) for the considered 
canopy-level traits (i.e. LAI, CWC, CCC, and CNC). In general, 
PLSR outperformed RF for the examined traits and all the models 
indicated either good or excellent prediction capability for the 
traits retrieval with RPD values greater than 1.4. This can be due 
to the capacity of the method to handle high dimensionality data 
by projecting them to latent structures that maximise the variance 
of predictors and observations. PLSR is considered a standard for 
crop traits retrieval from leaf level spectra (Burnett et al., 2021). 
Regarding the crop traits investigated CWC and CNC showed 
excellent results (RPD ~ 2). To tackle the multicollinearity of the 
hyperspectral data in RF, we performed principal component 
analysis (PCA) with 20 components as a dimensionality-
reduction technique, and then repeated the RF models. As 
expected, such PCA-based RF models led to more accurate 
results for crop traits retrievals as compared to the RF models 
with full-range hyperspectral data. PCA-based RF models 
indicated R2 (nRMSE%; RPD) values of 0.76 (11.39%; 1.98), 
0.73 (14.25%; 1.87), 0.70 (14.51%; 1.59), and 0.62 (17.36%; 
1.62) for LAI, CCC, CWC, and CNC retrievals, respectively 
(graphs not shown; detailed analysis in Heidarian et al 2024 - 
under review). It is worth mentioning that for the interpretation 
of the models (Section 3.2) the initial RF models (using the full-
range hyperspectral data) were kept allowing to assess the 
importance of all the spectral bands for crop trait retrievals.   
 
3.2 Model interpretation 

The use of hyperspectral data in crop trait analysis within a data-
driven approach presents several challenges. Multicollinearity of 
hyperspectral data determine the strong correlation between 
bands, which can complicate the identification of individual 
bands or wavelengths that are genuinely informative for 
predicting crop traits. Moreover, in high-dimensional data, 
there's a higher likelihood of finding spurious correlations 
between certain spectral bands and crop traits. These correlations 
might not be meaningful or predictive on other dataset but could 
appear significant in the data. Analysing VIP in PLSR models is 
indeed fundamental to assess the model's reliability. VIP analysis 
reported in Figure 3 demonstrates the reliability of identified 
models. Specific wavelengths at SWIR (1716-1745 nm) and NIR 
(1057-1120 nm), Green, and the Red-Edge bands respectively 
showed the highest importance for LAI retrieval. The best-
performing bands for CCC retrieval were situated in Red-Edge 
and Green spectral bands, confirming the well-known 
importance of these regions in relation to chlorophyll presence. 
Visible regions followed by Red-Edge were of higher importance 
for the retrieval of CWC; though specific and diagnostic water 
absorption regions around 910 nm and 1200 nm were also 
identified. However, SWIR bands were not of particular 
importance for CWC retrieval It is worth mentioning that the 
maximum water absorption in leaf, as recorded by contact 
measurements, occurs around 1400, 2000 and 2400-2500 nm 
(Ferret et al. 2021). However, these regions were partially or 
completely removed by the analysis of remote sensing data due 
to atmospheric contamination. The influence of water absorption 
in vegetated canopy is still visible for wavelength close to 2000 
nm and greater than 2400 nm. 
Finally, VIP analysis of the CNC model showed how subtle the 
nitrogen contribution to spectral reflectance is, highlighting the 
absence of significantly important bands or regions. Nonetheless, 
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with respect to the other crop traits, the VIP analysis showed how 
SWIR spectral regions, in particular between 1700-1800 nm and 
2100-2300 nm, appeared to be important, alongside both the Red-
Edge and Visible regions part of the spectrum to retrieve CNC. 
The influence over all spectral range is a well-known feature 
characteristic of dry matter content in the leaves and the VIS/NIR 
part can be influenced by covariance with LAI. 

a) 

b) 

 c)  

d) 
Figure 3. Importance of spectral bands importance for the 

different PLSR models for the traits: a) LAI, b) CCC, c) CWC 
and d) CNC. 

 
4. CONCLUSION 

We demonstrated that full-range hyperspectral data, in 
combination with MLRA algorithms, can provide accurate 
estimates of wheat crop traits at the canopy level. The successful 
use of hyperspectral data in MLRA algorithms was further 

highlighted by the physically meaningful modelling 
performances in accordance with the subtle structural and 
biochemical crop properties. Overall, PLSR provided remarkably 
higher accuracy, tested with a cross-validation strategy, as 
compared to RF for all the crop traits. More precisely, PLSR 
denoted R2 (nRMSE%) values of 0.72 (11.97%), 0.77 (10.89%), 
0.70 (14.61%), and 0.74 (14.38%) for LAI, CWC, CCC, and 
CNC, respectively. All PLSR models indicated robust prediction 
capability with RPD values greater than 1.4, and amongst them, 
CWC was found to have excellent prediction performance, with 
an RPD higher than 2. RF models for LAI and CCC showed good 
prediction capabilities (R2 > 0.5), whilst RF models of neither 
CWC nor CNC were reliable (R2 ~ 0.4). However, the 
significance and robustness of data driven models lie not only in 
their predictive power but also in their interpretability. Although 
machine learning models can excel in making accurate 
predictions, they often operate as 'black box' solutions, making it 
difficult to understand the underlying factors and relationships. 
In this context, the need for transparency and interpretability is 
critical to develop and propose automatic models to monitor crop 
status. In general, the analysis of VIP coefficients of the 
identified models revealed physically meaningful and consistent 
patterns for each specific crop trait investigated.  
Different spectral features were identified for the different traits 
coherent with the expected canopy level characteristics. This 
confirms the importance of the availability of full-range sensors 
such as the operative (e.g. ASI-PRISMA and DLR-ENMAP) and 
planned (e.g. ESA-CHIME and NASA-SBG) missions for 
natural and agricultural vegetation monitoring.  
Our results confirm that such hyperspectral-based MLRA 
approaches could be a powerful tool to accurately monitor the 
crop status throughout the phenological season, to improve high-
throughput phenotyping activities and to further aid precision 
agricultural practices.  
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ABSTRACT: 

In this study, hyperspectral data from the PRISMA satellite are analysed, using spectroscopic methods in combination with machine 
learning regression techniques, to map post-harvest crop residue coverage percentages, in agricultural land. Exponential Gaussian 
Optimization of known diagnostic absorption regions serves to extract higher-level spectroscopic parameters that are then utilized as 
input variables in machine learning regression algorithm (i.e., random forest). The use of a spectral library to train the regressive model 
overcomes the issue of finding a large training sample and increase the method transferability. The good model performance, in both 
training and test, allowed mapping demonstration on two seasons, yielding results that well align with ground observations, 
underscoring the robustness of the approach.  

1. INTRODUCTION

Measuring and mapping non-photosynthetic vegetation (NPV) is 
considered a key topic in remote sensing of sustainable 
agriculture and carbon farming, likewise in the perspective of 
climate robustness of agricultural systems. NPV, in fact, 
represents an important factor in water, nutrient and carbon 
cycling. The mapping of NPV presence and the characterization 
of its quantities are relevant to monitoring soil conservation and 
regenerative field management practices, while some of them are 
strictly connected to the presence and quantity of aboveground 
biomass of crop residues and litter, at critical points in time. 

Studies on NPV mapping by EO data benefit from the availability 
of hyperspectral data, as due to the high spectral resolution, and 
particularly at shortwave infrared wavelengths where, from 1.6 
to 2.3µm, the main spectral diagnostic features of carbon-based 
constituents of plants are apparent (Daughtry, 2001). The launch 
of new generation hyperspectral satellites, as PRISMA 
(PRecursore IperSpettrale della Missione Applicativa) and, more 
recently, EnMAP (Environmental Mapping and Analysis 
Program) offers research opportunities in this field (Verrelst et 
al. 2023), which was previously investigated mainly by means of 
proximal and aerial sensing.  

Early studies proved the potential of PRISMA to map crop 
residues (CR) presence at parcel level exploiting the well-known 
lignin-cellulose absorption feature centred around 2.1µm (Pepe 
et al. 2020). Berger et al. (2021) applied to PRISMA imagery 
hybrid approaches to retrieve NPV biomass in croplands by 
training machine leaning regression algorithm (MLRA) on the 
base of radiative transfer model (RTM) simulations. More 
recently, Pepe et al. (2022) exploited spectroscopic approaches 
with Exponential Gaussian Optimization (EGO) of specific 
absorption features together with Machine Learning 
classification algorithm, to map CR presence as related to field 
management practises. The latter paradigm is also proposed in 
this study, but, in this case, it is aimed at quantifying Crop 
Residue Cover (CRC) percentages on PRISMA hyperspectral 
data using spectroscopic feature analysis and MLRA techniques. 

* Corresponding author 

2. MATERIALS AND METHODS

Our primary aim was to identify distinct spectral characteristics 
that serve as reliable indicators of crop residues. To achieve the 
initial goal of this study, we conducted an exploratory analysis 
on absorption bands of the spectra of crop residues. 
We use for the purpose an extensive and well documented 
spectral library (Hively et al. 2021), namely “Reflectance spectra 
of agricultural field conditions supporting remote sensing 
evaluation of non-photosynthetic vegetation cover”, made 
available online by USGS (https://doi.org/10.5066/P9XK3867). 
It consists of 916 in situ surface reflectance spectra collected 
using a proximal full range spectroradiometer (350 to 2500 nm), 
and annotated with the corresponding fractions of CR, Bare Soil 
(BS) and (if any) Green Vegetation (GV), as estimated by point 
sampling the digital photograph corresponding to the radiometer 
field-of-view. This spectral library was analysed to infer the 
predictive relationship for the quantification of CRC on PRISMA 
data. To facilitate this process, the USGS spectral library was 
initially spectrally resampled to align with PRISMA bands. 
The hypothesis is that some spectral intervals diagnostic for 
different surface characteristics – as related to plant pigments, 
canopy water, lignin-cellulose, and clay minerals – could 
represent sufficient information to quantify CRC in an accurate 
manner, considering their ability to spectrally characterize GV, 
CR and BS, which are the components of post-harvested crop 
fields. This has been confirmed by the exploratory analysis on 
the USGS database. 
The methodological approach to CRC mapping of PRISMA 
involves two main steps. Firstly, it employs the Exponential 
Gaussian Optimization (Pompilio et al. 2009, 2014) technique to 
return the estimation of 4 descriptive parameters of an absorption 
bands1: depth (s), center (µ) , width (σ), and asymmetry (k) and 
saturation (t), as a function of wavelengths (λ) according to 
equation 1.  
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1 the saturation parameter (t) is set to a negligible value and not allowed to 
vary, since saturation is unlikely to occur in this case. 
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EGO serves a dual purpose: modelling specific absorption 
features while reducing the spectral dimension of the dataset. 
This reduction in dimensionality is crucial for efficient analysis. 
The 4 knowledge-based absorption bands - plant pigments (Δλ1: 
530 – 866 nm), canopy water (Δλ2: 1078 – 1262 nm), lignin-
cellulose (Δλ3: 2036 – 2199 nm), clay minerals (Δλ4: 2183 – 
2261 nm) - were optimized. The application of EGO, fitting each 
of the 4 spectral intervals with 4 parameters, results in a feature 
reduction from the original 230 spectral bands to 16 parameters. 
After the EGO fitting, the Random Forest (RF) MLRA is 
leveraged to conduct non-linear regression, facilitating the 
prediction and mapping of CRC based on the optimized spectral 
characteristics.  
The PRISMA images used in this study are acquired over a large 
farm test site (around 3800ha) located in Jolanda di Savoia 
(North-Eastern Italy). Crop Residue Cover of cereals, mainly 
winter wheat, were considered for the study. A field survey was 
conducted to collect ground truth over two seasons (2021 and 
2022): either crop conditions after harvest, and field spectra 
annotated with CRC percentages, were sampled in the test site 
and used for the validation of the mapping approach 
performances.  
 

3. RESULTS AND DISCUSSION 

Figure 1 illustrates an example of EGO fitting outcomes for 
training spectra of the resampled USGS database, for the classes 
of interest: GV (Δλ1 and Δλ2), CR (Δλ3), and BS (Δλ4). As 
depicted in Figure 1, the Δλ3 and Δλ4 intervals exhibit relatively 
minor features (note that y-axis values are different for each plot), 
which are nonetheless significant for detecting crop residues and 
bare soil. It’s important to highlight that EGO Modelling excels 
in preserving and enhancing subtle information that might 
otherwise remain inconspicuous.  
 
 

 
Figure 1. EGO Modelling results for the four spectral intervals (Δλn). 
Bottom side of each plot reports target log spectra (points), the continuum 
model (dashed lines), and the EGO fit (red lines). Top side: model 
residuals of EGO fit (dash-dot lines). (From Pepe et al. 2022). 
 
The set of parameters resulting from EGO was used for 
training a Random Forest model. This model was validated 
against an independent spectral library, then applied to 
PRISMA imagery to obtain Crop Residue Cover maps.  

. By deriving a regressive model based on RF algorithm from the 
USGS spectral library, through a knowledge-based fitting 
process (i.e. EGO modelling of four diagnostic spectral regions), 
the model captured and revealed the significance of various 
investigated features. Figure 2 illustrates this feature importance 
assessment in the form of a bar graph ranking from the most 
informative (top) to the least one (bottom). The feature 
importance graph was constructed based on the Mean Squared 
Error (MSE) associated with each feature space. 
Notably, the most critical parameters were identified as the depth, 
asymmetry, centre, and width of the Cellulose\lignin (LCB) 
absorption band (Δλ3), which aligns with our knowledge-based 
expectations. Figure 3 illustrates the scatter plot between the 
observed and predicted NPV, as well as accuracy metrics 
obtained in cross validation (K-fold) by the regression model. 
The points are evenly distributed around the expected baseline, 
resulting in an R-squared value of 77%, and a low Mean Squared 
Error (MSE) of 0.022. Such results prove the method to be 
accurate enough to predict CRC.  
 

 
Figure 2.  A bar plot of 16 spectroscopic features was generated using 
the MLRA, Random Forest, with a 10-fold cross-validation approach 

and 5 iterations. 
 

 
Figure 3. Observed vs Predicted NPV in cross validation 

 
To further enhance the model, we proposed a further feature 
space reduction. Out of the 16 parameters extracted and ranked 
as reported in the feature importance graph (Figure2), we selected 
the top 8 parameters, setting a MSE threshold at 0.024. These 8 
parameters were then used to train a new RF model. The 
objective was to determine if training with these selected 
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parameters would result in improved performance. The new 
model, assessed in cross validation with K-fold strategy (10-fold, 
5 iterations), show a very high correlation between prediction and 
observation reaching an R-squared value of 81.8%, and 
outperforming the results obtained considering all features. Also, 
the MSE decreased to 0.017, indicating improved accuracy. 
Overall, the performance of the new model with reduced features 
was highly satisfactory. Figure 4 displays the updated scatter 
plot, showcasing the relationship between Observed and 
Predicted NPV obtained for the USGS spectral library.  
The validation phase involved applying the final model to an 
independent spectral dataset acquired in 2021 in the study site. 
The independent data set is a spectral library of around 100 field 
spectra, annotated with CRC visually estimated at 10% steps 
(10%, 20%, 30% …). The model performance on this 
independent dataset (Figure 4, right panel) aligns well with cross 
validation results obtained in training., with R-squared value of 
77.2%, an MSE of 0.028, all falling within our satisfactory range 
of outcomes. 
 

 
Figure 4. Scatter plot and error metrics of: new enhanced RF model 
from on USGS dataset, using 8 most valuable features (left). On the 

right scatter plot and error metrics on independent validation dataset 
from field data. 

The predictive Random Forest model was then applied to the 
primary dataset, represented by two PRISMA images acquired 
over Jolanda di Savoia on June 21st, 2021 and July 3rd 2022, to 
estimate and map the quantity of crop residue coverage 
percentage in the region of interest. The results obtained for the 
June 21st, 2021 are depicted in Figure 5. This CRC map aligns 
well with the ground reference data shown in Figure 6 and 
obtained from the field survey observations. In the map, pixels 
marked in red correspond to high NPV coverage, which, 
according to the reference map, indicates a significant presence 
of standing dead vegetation (i.e., mature wheat not yet 
harvested). To assess model performance on a different season, 
the model was applied to the PRISMA image acquired on July 
3rd 2022, after wheat harvest. 
The mapping results for 2022 (Figure 7) demonstrated a 
remarkable level of consistency with the ground reference map 
(Figure 8), which has been inferred from the crop map with the 
help of farmer’s intelligence. Overall, the model accurately 
identified areas characterized by CR presence. This achievement 
in CRC mapping underscores the model's ability to maintain its 
performance across temporal variations hence dealing with 
uncertainty and variability occurring in natural systems. 
Nevertheless, to achieve precise quantitative estimates, further 
extensive fieldwork is required to validate absolute crop residue 
presence and its fractional cover concerning soil background and 
vegetation. 
 

 

  
Figure 5. Pixel level Crop Residue Cover (CRC) map using PRISMA 

imagery acquired on June 21, 2021 
Figure 6. Ground reference map from field observations in 2021 (scale 

is the same of fig. 5). 
 

  
Figure 7. Pixel level Crop Residue Cover (CRC) map using PRISMA 

imagery acquired on July 3, 2022. 
Figure 8. Ground reference map derived from crop map and 

information from the farm in 2022. 
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4. CONCLUSION 

In this research, we have introduced a workflow, encompassing 
two steps, designed for mapping crop residue coverage (CRC), 
exploiting spaceborne imaging spectroscopy from PRISMA data. 
Our workflow has yielded very satisfactory findings. First, we 
have demonstrated the fitness for purpose of the Exponential 
Gaussian Optimization (EGO) model. This approach has 
significantly enhanced the information content of the spectral 
intervals of interest, as related to plant pigments, canopy water, 
lignin-cellulose and clay minerals, while reducing the feature 
space from 230 bands to 16 metrics layers. Besides, the use of 
machine learning played a pivotal role to find a non-linear 
regression between this reduced space and Crop Residue Cover 
information. The use of a spectral library to train the Random 
Forest (RF) regressive model overcomes the issue of finding a 
large training sample, without the use of simulated data, whereas 
reaching very good levels of predictive capabilities. This is 
proved by applying the RF to independent field datasets and 
satellite images. In this regard, our mapping demonstration has 
yielded results that align with ground observations, underscoring 
the robustness of our approach. Moreover, the application of the 
model on datasets from two different crop seasons, shows similar 
performance, proving the model robustness and its temporal 
transferability. 
In summary, our discoveries proved the substantial potential of 
PRISMA data in monitoring and quantify NPV, spanning from 
individual fields to farm scales. Our overarching objective is to 
further advance and refine this comprehensive model, ensuring 
its continued effectiveness over time and expanding its 
adaptability to a wide range of spatial contexts. In our future 
works, we will focus on rigorously assessing the model 
performance. This assessment will involve the use of ground-
level Crop Residue Cover (CRC) data at the PRISMA scale, 
encompassing data from 2022 and 2023. These ground-level 
observations will serve as a valuable benchmark to evaluate the 
model performance under real-world conditions. Additionally, 
we plan to leverage PRISMA time series data to continuously 
monitor CRC dynamics. This approach will provide insights into 
how CRC changes over time and how well our model adapts to 
these variations. Furthermore, we intend to enhance the model 
capabilities by incorporating Radiative Transfer Model (RTM) 
simulations. This will expand the training dataset and account for 
a broader range of factors that influence reflectance, including 
soil moisture, different mixture of target presence and sensors 
viewing geometry. This refinement process aims to bolster the 
model accuracy and broaden its applicability to various 
environmental conditions. In summary, our future work 
encompasses three key objectives: 1) Testing the robustness of 
the CR model against field-collected ground data from 2022 and 
2023, at the PRISMA scale; 2) Leveraging RTM simulations to 
augment the training dataset and to consider different factors 
influencing reflectance, such as moisture; 3) Continuously 
monitoring CRC dynamics using PRISMA time series data to 
assess changes in time due to agro-management and target 
decomposition. These efforts collectively aim to advance our 
understanding and application of NPV mapping, contributing to 
more accurate and versatile environmental assessments. 
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ABSTRACT: 

Spatio-temporal estimation of crop bio-parameters (BioPar) is required for agroecosystem management and monitoring. BioPar 

such as Canopy Chlorophyll Content (CCC) and Leaf Area Index (LAI) contribute to assess plant physiological status and health at 

leaf and canopy level. Remote sensing techniques are instrumental in spatially explicit CCC and LAI retrieval of arable crops across 

different scales. Machine Learning (ML) techniques, especially Gaussian processes regression (GPR), has outperformed traditional 

approaches based on Vegetation Index in BioPar estimation. However, being ML model based on data driven approach it is necessary 

to thoroughly evaluate the performance of GPR across different sites, seasons, and crop types to assess the exportability of the 

models. This study aimed to develop a transferable GPR algorithm using a large dataset collected over several years (2018-2022), 

on different locations (5 sites) and with different canopy conditions by sampling 10 different arable crops. The study objectives 

included developing a robust GPR algorithm for LAI and CCC estimation from Sentinel-2 data, validating GPR against independent 

datasets, and comparing results with other methods and available products. The study utilized 301 (209 crop + 92 soil spectral) 

CCC and 301 LAI observations for GPR model training. Validation on independent datasets (698 LAI and 364 CCC) revealed the 

reliability of GPR estimation, compared to Sentinel-2 Level 2 Prototype Processor (SL2P) estimates. LAI and CCC estimation metrics 

varied across datasets achieving coherent and similar performance between the two method (GPR and SL2P). In general, SL2P 

model better fits the overall data with slightly higher R2 values with respect to GPR especially for LAI parameter. GRP estimates 

provided better results when accuracy analysis is performed by crops showing lower RMSE (Root Mean Square Error) and MAE 

(Mean Absolute Error). GPR outperforms SL2P for mais and wheat in particular for CCC parameter. These results showed the 

potential of GPR in BioPar estimation, especially when a robust training set was used. BioPar estimation using Sentinel 2 data 

provided high-quality quasi-weekly information, essential for smart crop management and early warnings in decision support 

systems.  

1. INTRODUCTION

Remote sensing, with its capacity to provide near real-time and 

comprehensive information, has emerged as an indispensable 

tool for monitoring crop health and growth 

(Defourny et al., 2019; Weiss et al., 2020). In the context of 

precision farming, the accurate estimation of vegetation 

biophysical parameters through remote sensing techniques 

(Verrelst et al., 2019) plays a key role in the effective 

management of agricultural crops. 

Two of the most critical biophysical parameters in this context 

are Leaf Area Index (LAI) and Canopy Chlorophyll Content 

(CCC). LAI represents the extent of foliage cover, aiding in the 

assessment of crop density and growth, while CCC is an indicator 

of photosynthetic activity. These parameters are central in 

decision-making processes because offering insights into crop 

health and vigor. The incorporation of LAI and CCC estimates 

into operational workflows enables farmers to make informed 

decisions about fertilization, thereby optimizing crop 

management and reducing environmental impact. However, 

achieving accurate parameter estimations is no simple task and a 

variety of retrieval methods for BioPar extraction (Verrelst et al., 

2019) have been applied to optical data (multi and hyperspectral). 

The theoretical framework of the multitude of retrieval methods 

was accurately given by Verrelst et al., 2015 with four main 

methodological categories: i) Parametric regression methods 

(Clevers et al., 2017; Crema et al., 2020); ii) Nonparametric 

regression methods (Campos-Taberner et al., 2016; De Peppo et 

al., 2021; Upreti et al., 2019); iii) Physically based model 

inversion methods (Berger et al., 2018; Sehgal et al., 2016) and 

iv) Hybrid regression methods (Candiani et al., 2022; Ranghetti

et al., 2022; Rossi et al., 2022). All these categories are not rigid 

and definitive and we are witnessing new development together 

with improvements in the computational capacity and the 

progress in new imaging sensors. 

In order to meet the increasing demand for tools to support the 

site-specific management of crops, we need to improve 

estimation accuracy but also systems operations. For this reason, 

the data provided by Sentinel-2 represent an optimal solution due 

to the spatial (10-20m) and temporal resolution of the sensor that 

allow to have BioPar maps at a suitable scale for operational 

practices (Bontemps et al., 2015; Defourny et al., 2019; Segarra 

et al., 2020) .  

In this study, we evaluated the potential of non-parametric 

approaches and robustness of ML methods for multi-temporal 

BioPar retrieval by Sentinel-2 multispectral data. The specific 

objectives were: (i) develop a transferable GPR algorithm for 

LAI and CCC estimation by exploiting a robust multi-crop, 

multi-year and multi-site dataset; (ii) assess GPR BioPar retrieval 

performance against ground measurements acquired over 

independent dataset; (iii) compare result with the product freely 

available from Sentinel Application Platform (SNAP) using 

SL2P. 

2. MATERIALS AND METHODS

2.1 Study area and Dataset 

Data collection aimed to assess the robustness of non-parametric 

methods concerning diverse sources of variability of BioPar, 

including specific conditions related to crop species, agronomic 
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practices (density) growth stages, farms, and years. With the 

objectives of effectively capture the site-specific differences in 

BioPar variability, LAI and CCC ground-measurements were 

collected during several field campaigns. The measures, 

performed contemporary to S2 data acquisition, were collected 

on an Elementary Sampling Units (ESU) of 20x20 m according 

to the Validation of Land European Remote Sensing Instruments 

(VALERI) sampling strategy (Baret et al. 2005).  

Figure 1:Study areas of ground measurements: S1 (Arborea); S2 

(Ferrara); S3 (Grosseto); S4 (Milano); S5 (Pisa) 

Different study areas located in central and northern part of Italy 

(Figure 1) were investigated collecting data of ten different crops: 

alfalfa, maize, wheat, emmer, pea, sugarbeet, barley, rice, 

sorghum and soybean. In particular, to achieve a robust multi-

crop, multi-year and multi-site dataset, the ground BioPar 

measurements were conducted over different growing seasons 

from 2018 and 2022 (Table 1) characterized by different growing 

periods and canopy structures and considering different 

agronomic conditions. A total of 907 (573) LAI (CCC) 

observations were collected with standard instrumentation like 

LAI2200 (MC100) (Tagliabue et al., 2022), hemispherical 

photography (Dualex) (Crema et al., 2020) and SunScan (De 

Peppo et al., 2021) during the campaigns. Grubbs’ test for data 

anomalies was performed to identify potential outliers. 

Table 1: Multicrop, multiyear and multisite database with 

ground measurements cardinality. T indicates training dataset; 

V indicates validation dataset 

The S2 Level 2A (L2A) images over the growing seasons were 

acquired using sen2r R package (Ranghetti et al., 2020) providing 

seasonal time-series of Bottom of Atmosphere (BOA) 

reflectance. All cloud-free images, collected in correspondence 

with the in situ monitoring period (±5 days from ground data 

collection), were used to analyse the relationship between 

measured ground BioPar and S2 data. A zonal statistic was 

performed to extract S2 pixels values using the centroid of each 

ESU as reference. S2 bands at10 m (B02, B03, B04, and B08) 

and 20 m (B05, B06, B07, B08A, B11, and B12) were selected 

for the analysis, resampling all bands to 20 m spatial resolution. 

2.2 Machine learning model 

Among the different available MLR algorithms, GPR is 

considered promising for LAI and CCC mapping (Campos-

Taberner et al., 2016; Verrelst et al., 2013, 2012) and in general 

this is also the algorithm more exploited in hybrid approaches 

(Candiani et al., 2022; Tagliabue et al., 2022). GPR is a non-

linear non-parametric regression algorithm that learn the 

relationship between the input (e.g. reflectance) and output (e.g. 

LAI or CCC) fitting a flexible model directly from the data and 

providing both a predictive mean and a predictive variance 

(uncertainty). The theoretical aspects of GPR are deeply 

described in Rasmussen, 2004 and in Verrelst et al., 2019 and in 

studies that applied this approach with hyperspectral (Caicedo et 

al., 2014; Verrelst et al., 2012) and multispectral data (Estévez et 

al., 2020).. In addition, the model is trained and validated 
relatively fast Following De Peppo et al., 2021, GPR was 

selected as the best-performing algorithm for LAI prediction for 

arable crops. Few studies have examined the performance of 

GPR in predicting crop parameters when applied to different site, 

season and crop typology (i.e. validation using independent 

dataset).Moreover, the retrieved BioPar were also compared 

against LAI and CCC generated by the Neural Network (NN) 

model implemented into the S2LP of the Sentinel Application 

Platform (SNAP) (Weiss and Baret, 2016) for all the S2 images. 

2.2.1 Training and cross validation performance 
We first generated 301 (209 from vegetation + 92 soil) data pairs 

(reflectances-BioPar values) from valuable multiyear data set 

(S2_1, S2_3, S2_4) with the simultaneous presence of LAI and 

CCC data (Crema et al., 2020; Tagliabue et al., 2022) for model 

training, and then evaluated model performance with the 

remaining 698 (364) LAI (CCC) samples (Table 1). The accuracy 

of the model in cross validation was assessed using K-fold 

approach (Kohavi, 1995), where the dataset was randomly split 

into k = 10 subsets of equal size repeated 5 times. The coefficient 

of determination (R2), the mean absolute error (MAE) and root 

mean square error (RMSE) were calculated to assess the 

prediction accuracy. 

2.2.2 Independent validation to assess model exportability 

A robust model validation was performed using nine independent 

datasets (Table 1). BioPars estimated using the GPR model were 

compared with LAI and CCC values collected in different 

sampling areas and years to test the transferability of the 

developed model. 

3. RESULTS AND DISCUSSION

The GPR model assessment was performed considering the 

average of coefficient of determination estimated between 

ground-and predicted BioPar and the average value of RMSE and 

MAE from the cross-validation. Overall estimation metrics in 

cross validation ranges from R2=0.89 (MAE=0.49; RMSE=0.74) 

for LAI variable to R2=0.83 (MAE=0.28; RMSE=0.43) for CCC 

(Figure 2). 
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Figure 2: Cross-validation results of LAI (m2 m-2) and CCC (g 

m-2 estimation from GPR. (p-values < 0.05) 

 

In order to evaluate and compare the accuracy of predictions at 

pixel level (i.e. for available ESU) both for data driven GPR and 

NN of S2LP, validation results on independent data were 

evaluated considering the single crops (Table 1).  

 

Table 2: CCC GPR and CCC SL2P metrics derived from 

independent validation (p-values < 0.05) 

Crop Methods R2 MAE RMSE 

alfalfa CCC GPR 0.07 0.65 0.76 

alfalfa CCC SL2P 0.12 0.65 0.78 

barley CCC GPR 0.58 0.57 0.64 

barley CCC SL2P 0.62 0.73 0.86 

maize CCC GPR 0.59 0.43 0.56 

maize CCC SL2P 0.5 0.78 1.21 

soybean CCC GPR 0.85 0.28 0.41 

soybean CCC SL2P 0.87 0.36 0.63 

wheat CCC GPR 0.78 0.53 0.64 

wheat CCC SL2P 0.84 1.07 1.31 

 

Table 3: LAI GPR and LAI SL2P metrics derived from 

independent validation (p-values < 0.05) 

Crop Methods R2 MAE RMSE 

alfalfa LAI GPR 0.08 1.03 1.3 

alfalfa LAI SL2P 0.08 1.44 1.77 

barley LAI GPR 0.53 1.3 1.59 

barley LAI SL2P 0.56 1.12 1.51 

maize LAI GPR 0.51 0.94 1.16 

maize LAI SL2P 0.46 0.96 1.39 

rice LAI GPR 0.47 1.1 1.3 

rice LAI SL2P 0.73 1.2 1.36 

sorghum LAI GPR 0.8 0.45 0.52 

sorghum LAI SL2P 0.9 0.39 0.45 

soybean LAI GPR 0.69 0.98 1.37 

soybean LAI SL2P 0.89 0.68 1 

wheat LAI GPR 0.49 0.93 1.18 

wheat LAI SL2P 0.4 1.05 1.38 

 

LAI and CCC estimation metrics varies across datasets (Table 

2;Table 3) . The results showed that for both LAI and CCC, GPR 

retrieval is reliable and comparable with SL2P estimates for all 

crops and in some cases better. The estimates of vegetation 

biophysical variables given by the toolbox S2LP embedded in 

SNAP represented the reference product. NNs are the most 

widely-used tools and SNAP Biopar have been evaluated in 

previous studies with diverse results (Estévez et al., 2020; 

Kganyago et al., 2020; Xie et al., 2019).  

The estimates showed an agreement between the GPR and S2LP 

results on single crops/dataset. In general, the two models 

showed no partialities for individual crops and were consistent in 

performance except for lower errors in GPR_CCC retrieval. 

Regarding CCC, GPR showed a higher coefficient of 

determination only for maize (CCC_GPR R2=0.59; CCC_S2LP 

R2=0.50) but MAE and RSME (i.e., ~0.4 to ~0.75) were always 

better than S2LP (RMSE ~0.6 to ~1.3) for all the crops. S2LP 

estimates for wheat and maize resulted significantly 

overestimated (data not shown) when compared to ground data 

showing MAE and RMSE value almost double than GPR (see 

table 2).  

With regard to LAI, GPR presented a better coefficient of 

determination for maize (LAI_GPR R2=0.51; LAI_S2LP 

R2=0.46) and wheat (LAI_GPR R2=0.49; LAI_S2LP R2=0.4) 

together with MAE and RSME while for the remaining crops 

S2LP performs better. Also on rice, the LAI estimated by GPR 

has lower R2 but better MAE and RMSE than S2LP. These results 

confirmed the tendency of SNAP-derived products to have higher 

errors as found by Kganyago et al., 2020 with MAE and RMSE 

> 2 and Fernandes et al., 2014 with reasonably unbiased LAI 

estimates with acceptable error (<;1 unit) and validation sites 

with larger (>1 unit) error. 

The satisfactory error metrics confirm the substantial robustness 

of the GPR prediction and its consistency with existing products 

as found in other validation studies (Brown et al., 2021; Campos-

Taberner et al., 2018). The GPR model performed well for most 

crops despite the diversity of species and locations and alfalfa 

was the only crop to have unsatisfactory results for both retrieval 

approaches (R2=0.08), probably due to the law quality of ground 

data (LAI) with LAI max data higher respect to the literature 

(Verger et al., 2009). 

Applying the GPR model to an independent data we highlighted 

the prediction robustness over different areas both globally and 

by single crop. In general, we noted that the performance was less 

influenced by the training data set as usually observed (Mao et 

al., 2019; Verrelst et al., 2019). Estévez et al., 2020 demonstrated 

the feasibility of LAI retrieval from S2 in a hybrid machine 

learning framework using GPR with higher accuracies and lower 

uncertainties (R2=0.78, RMSE= 0.60) compared to the SNAP 

toolbox. However, as mentioned by Upreti et al., 2019, the 

accuracies found by most of the studies using GPR with ML or 

hybrid were not validated against independent ground data, such 

as in the present work. 

However, despite an overestimation of low-LAI values with 

GPR, the positive linear relationship between the measured and 

predicted values was confirmed by the slope values close to 1as 

found also by (De Peppo et al., 2021). This finding is in 

agreement with the outcomes of Verrelst et al., 2015 that 

indicated how GPR was the most effective algorithm for LAI 

retrieval.  

 

 

 
Figure 3: LAI maps of winter wheat of S2 farm in 2023. Black 

lines represent the boundaries of management zones derived 

from a soil map. above 23rd of april; below 23th of may. 
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The BioPar maps generated by the prediction allowed to 
highlight the spatial patterns present within the field during the 
season as shown for LAI in Figure 3. Spatial and temporal 
variability correctly pointed out crop (wheat) growth differences 
according to a soil map of the farm situated in S2 farm. This 
study allowed us to leverage all available information from a 
multi-year multisite and multicrop dataset, thus providing 
greater accuracy in BioPar prediction than ML model trained 
with local training datasets.  

4. CONCLUSION  

Overall the results demonstrated the potentiality of a data driven 
GPR machine learning approach in LAI and CCC estimations of 
arable crops when a robust training set is exploited, such 
condition guarantee a spatial-temporal transferability. The 
results of cross-validation confirm the theoretical GPR retrieval 
performance of this ML method. In addition, this work verified 
the model stability when applied to an independent data set and 
compared the performance with existing products as generated 
by the SNAP toolbox, which is framed in an hybrid approach 
using radiative transfer model simulation and neural network as 
retrieval algorithm. This analysis allowed for a full assessment 
of the robustness and exportability of the developed model and 
the results were in line with other studies with independent 
model simulations. It is important to remark that, despite 
medium high R2, S2LP shows overestimation for CCC in 
particular for wheat and corn as highlighted by high MAE and 
RMSE values. Being LAI and CCC quantitative crops Biopar, 
the lower values of errors of the GPR model can lead to prefer 
this model even for R2 slightly lower than the S2LP model. In 
addition, this ML technique is faster and more easily applied 
than NNs that are closed balck-box that require a relatively long 
time for training. Such maps (decametric quasi-weekly) are a 
fundamental input for decision support systems devoted to 
smart crop management and early warning indication. Many 
precision agriculture techniques could thus benefit from 
information generated with ideal quality and frequency for site-
specific practices aimed at reducing inputs and improving the 
use-efficiency of fertilizers.  
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ABSTRACT: 

The summer of 2022 in Europe was characterized by severe droughts and heatwaves that affected agricultural sector, especially in 
Italy. The frequency of such events is expected to increase in the future due to climate change effects, making it crucial to manage 
water resources at regional scale. Potential and Actual Evapotranspiration can be used for agricultural water requirements analysis 
in order to plan available water resources management. Remote sensing products such as 8-days MOD16A2 offer estimates of 
potential evapotranspiration at a global scale. However, due to its coarse geometric resolution, some doubts arise about the 
consistency of MOD16A2 estimates which may locally show significant errors in respect to ground data. These errors analysis its 
crucial especially for agronomic purposes where local treatments, possibly driven by remotely sensed deductions, are expected to 
mitigate yields losses. This study explores the consistency between MOD16A2 potential evapotranspiration and the 8-days 
cumulated one derived from 135 meteorological stations in Piemonte region (NW-Italy) during 2022, using both temporal and 
spatial approaches. The temporal approach shows a significant high correlation between the potential evapotranspiration temporal 
profiles. However, a poor correlation was found concerning spatial consistency suggesting that MOD16A2 estimates have low 
accuracy, but their trend and seasonality are coherent. Biases between MOD16A2 and meteorological station have been addressed 
for, thus making MOD16A2 a reliable tool for managing water resources if previously ground calibrated. 

1. INTRODUCTION

Over the last few years, the world was characterized by severe 
droughts and heatwaves that affected the agricultural sector, 
especially in Europe. The frequency of such events is expected 
to increase in the future due to climate change effects, making 
it crucial to manage water resources at regional scale. There are 
many factors influencing this phenomenon and analyzing them 
is crucial to try to limit its effects (Jacob and Winner, 2009). 
Phenomena such as the increase in CO2 linked to various 
anthropological activities (Ukhurebor et al,2020; Baer and 
Singer, 2018), production of energy or material goods 
(Elshkaki, 2023), deforestation (Ellwanger et al., 2020) and 
food production (Mirón et al., 2023) play a fundamental role as 
key elements of climate change. The effects of this 
phenomenon on planet earth are innumerable, such as global 
warming, extreme weather events, warming of the oceans and 
their acidification, decreasing biodiversity and the availability 
of water resources. 

Especially in 2022, the agricultural sector has been greatly 
affected by the effects of climate change, especially 
considering the water requirements of crops (Borgogno-
Mondino et al., 2022; DePetris et al., 2022). 

This type of deficit represents a certain risk to farmers' 
livelihoods and the entire agri-food sector. 

* Corresponding author 

For a better and more effective management of water resources 
at regional scale, intervening in the planning and protection of 
the agricultural sector is essential. Evapotranspiration 
obviously plays a major role in water resource management: in 
this context, potential and actual evapotranspiration (ET0 and 
ETc, respectively) can be used for the analysis of water 
requirements in agriculture. 

The use of remote sensing and global data can be a method for 
analyzing these processes (Farbo et al., 2024; DePetris et al., 
2024), taking advantage of the availability of such information 
(Farbo et al., 2022a, 2022b). The Moderate Resolution 
Imaging Spectroradiometer (MODIS) by NASA is an 
instrument supporting two satellites (Terra and Aqua) that 
plays a key role in the analysis of global dynamics related to the 
planet. The use of these data provides a useful tool for better 
understanding the processes involved in crop water 
requirements and water resource management (Orusa et al. 
2023; Orusa and Mondino 2019). The global availability of 
this data is a great advantage in terms of applicability and 
replicability (Viani et al., 2023). Such information may 
contribute globally to the analysis and evaluation of the 
impacts of climate change. Analyzing these with the 
mentioned available resources means effective action in the 
effort to mitigate the impacts of climate change, not only in 
the agricultural sector. 

Despite all the advantages of the use of MODIS for 
evapotranspiration analysis, one of the product's limits is 
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related to the geometric resolution of evapotranspiration 
estimates. This represents a potential problem at the local 
assessment level, potentially leading to significant errors 
compared to ground- based data observations. Other 
instruments, such as meteorological stations, provide

ground-based evapotranspiration assessments, 
which are useful for different agricultural crop management. 

Interpreting and analyzing the consistency between locally 
and remotely available data provides the tools for mitigation of 
water losses and optimisation of farm management in the 
context of crop treatments. 

Considering the availability of local information from the 
meteorological service, the aim of this work is to analyze the 
consistency using both temporal and spatial approaches 
between MOD16A2  Potential  Evapotranspiration  and  
the  8-days cumulated one derived from meteorological 
stations in the Piedmont region (NW Italy) during 2022 

2. MATERIALS AND METHODS

2.1 Study area 

The research was carried out in the Piemonte Region, located 
in Northwestern Italy. This region is extensively farmed and 
features various crop types (Ghilardi et al., 2023; 2022), 
making the agricultural sector a vital component of its 
economy. The Piemonte Region features a network of 
meteorological stations distributed across its entire territory, 
provided by the Rete Agrometeorologica Piemonte (RAM) 
service. In alignment with the study's objectives, 
meteorological stations situated in flat, agricultural areas were 
selectively chosen from the available options (as depicted in 
Figure 1). As a result, the study area (AOI) was delimited to 
cover solely the geographical region corresponding to these 
135 selected meteorological stations. 

Figure 1. Spatial distribution of meteorological stations in the 
Piemonte region. 

2.2 Available data 

Ground data were obtained from the 135 RAM meteorological 
station, covering the period from 1st January 2022 to 30th 
September 2022. Daily ET0 values were calculated using the 
Penman-Monteith equation. 
Within MODIS mission, the MOD16A2 product provides two 
main types of data: Potential Evapotranspiration (PET) and 
Actual Evapotranspiration (ET). This study focuses 
exclusively on Potential Evapotranspiration. MOD16A2 
products are characterized by 8-day temporal resolution and 
500 m of spatial resolution, making it a useful tool for 
supporting regional decisions. 
Google Earth Engine platform was used to retrieve the 8-day 
time series (TS) for the reference period (1st January - 30th 
September). To ensure that only representative data were 
used, observations without clouds were specifically selected. 
PET TS were extracted using the 135 RAM meteorological 
stations location so that PET and ET0 TS are spatially 
consistent. 
Since the PET and ET0 time series have different observation 
intervals (8-days and daily, respectively), the ET0 TS were 
accumulated every 8 days in order to facilitate the comparison 
with PET 
2.3 Space-domain analysis 

Evapotranspiration processes are subject to the influence of 
various factors, the impacts of which can change based on 
topographical variables (Famiglietti and Wood, 1995). To 
evaluate the consistency of PET measurements throughout the 
entire region, a linear model was employed. This model 
enabled a comparative analysis of the ET0 and PET metrics, 
which are represented as follows (eq. 1): 

𝑃𝑃𝑃𝑃𝑃𝑃i = 𝛼𝛼 ⋅ 𝑃𝑃𝑃𝑃0i + 𝛽𝛽 (1) 

where 𝑃𝑃𝑃𝑃𝑃𝑃i and 𝑃𝑃𝑃𝑃0i respectively represent the MODIS data 
and all weather station observations in the study area on a 
specific date. This relationship was observed and maintained 
over time, providing a dynamic understanding of how PET 
varies with ET0 across different spatial points and throughout 
different periods within the year. 

Given the well-established understanding that spatial patterns 
can vary over time (Bosch and Hewlett, 1982), 𝑅𝑅2, the Mean 
Error (ME) and the Mean Absolute Error (MAE) were 
computed and analyzed throughout the entire year according 
to eq. 2 and 3. This analysis provided insights into the 
temporal evolution of the spatial relationship between PET 
and ET0, contributing to a better understanding of this 
dynamic process. 

𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑀𝑀𝐸𝐸𝐸𝐸𝑖𝑖 − 𝑃𝑃𝑀𝑀𝐸𝐸𝑖𝑖)𝑛𝑛
𝑖𝑖−1  (2) 

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛
∑ |𝑀𝑀𝐸𝐸𝐸𝐸𝑖𝑖 − 𝑃𝑃𝑀𝑀𝐸𝐸𝑖𝑖|𝑛𝑛
𝑖𝑖−1  (3) 

2.4 Time-domain analysis 

Prior research has identified variations in MODIS 
evapotranspiration products, with potential overestimations or 
underestimations of ground reference data observed 
depending on the specific study area (Mu et al., 2007). To 
examine whether any discernible patterns exist in potential 
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biases within the AOI, temporal analyses were conducted. The 
objective of these analyses was to determine if the PET TS 
exhibited comparable trends in comparison to the ground 
reference ET0 for each meteorological station within the AOI. 

The assessment of bias and trends utilized linear models, 
which were represented as (eq. 4): 

𝑃𝑃𝑃𝑃𝑃𝑃i = 𝛼𝛼 ⋅ 𝑃𝑃𝑃𝑃0i + 𝛽𝛽 (4) 

where 𝑃𝑃𝑃𝑃𝑃𝑃i and 𝑃𝑃𝑃𝑃0i represented the TS pair corresponding 
to the i-th meteorological station. The model parameters 𝛼𝛼 
and 𝛽𝛽 provided a means to quantify the slope and offset, 
allowing for the identification of biases between PET and 
ET0. 

Similarly to section 2.3, MAE and 𝑅𝑅2 were assessed for each 
meteorological station. 

2.5 Modis Calibration 

Biases identified in section 2.4 underscore the presence of 
spatial misalignment between PET and ET0, thereby 
indicating that the MODIS product may not be entirely 
reliable for water resource management. To rectify this issue, 
the PET data require calibration based on the ground reference 
data. 

In pursuit of this calibration, a reverse model, relying on 
equation 2, was employed. In this model, 𝑃𝑃𝑃𝑃0i served as the 
dependent variable, aiming to derive the necessary model 
parameters for calibrating 𝑃𝑃𝑃𝑃𝑃𝑃i observations, as expressed in 
equation 5: 

𝑃𝑃𝑀𝑀𝐸𝐸�𝑙𝑙  = 𝛼𝛼 ∙ 𝑃𝑃𝑀𝑀𝐸𝐸𝑖𝑖 + 𝛽𝛽 (5) 

Where 𝑃𝑃𝑀𝑀𝐸𝐸�𝑙𝑙 represents the calibrated 𝑃𝑃𝑃𝑃𝑃𝑃i observations. 

Subsequently, the calibrated data were employed instead of the 
uncalibrated data for the space-domain analysis (section 2.3). 
The resulting 𝑅𝑅2 and MAE metrics were then compared to those 
obtained from the uncalibrated MODIS data. 

3. RESULTS

3.1 Space-domain analysis 

Spatial analyses were conducted for the 33 available dates. The 
evolution of R2 is depicted in Figure 2, while Figure 3 presents 
the changes in ME and MAE over the specified period of 
interest. 

TITLE AND ABSTRACT BLOCK 

Figure 2. Evolution of 𝑅𝑅2 derived from eq. 1 over the period of 
interest. 

Figure 3. Evolution of ME and MAE derived from eq. 2 and 3 
over the period of interest. 

Figure 2 shows that PET and ET0 are poorly related over the 
entire period of interest, meaning that the MODIS data cannot 
be directly used to estimate ET0 over AOI. 
Interestingly, Figure 3 indicates that ME and MAE are almost 
always aligned, highlighting an average MODIS underestimate 
equal to 8 mm in 8 days compared to reference data throughout 
the reference period. Possibly, the PET measurements are 
affected by the low spatial resolution of the MODIS sensor 
(500 m) (Sharma et al., 2016). 

3.2 Time-domain analysis 

Time-domain analyses were conducted across the 135 
meteorological stations, and the findings indicate that PET and 
ET0 exhibit similar temporal trends (Figure 4). 

Figure 4. Boxplot representing the models’ R2 statistical 
distribution derived from equation 4 
In particular, the model parameters α and β show a close 
alignment between the two measurements (with α 
approximately equal to 1). However, a noteworthy bias is 
evident, reaffirming the observation made in section 3.1, 
namely, that MODIS PET consistently underestimates ET0 by 
an average of 7-8 mm every 8 days (Figure 5). 

Figure 5. Boxplot representing the models’ 𝛽𝛽 (intercepts, in 
green) and 𝛼𝛼 (slopes, in red) statistical distribution derived 

from eq. 4 

Consistency between MOD16A2 potential evapotranspiration time series and agro-meteo based models in Piemonte (NW Italy)
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3.3 Modis Calibration 

Sections 3.1 and 3.2 have confirmed the presence of notable 
biases between PET and ET0 data, casting doubt on the 
reliability of the MOD16A2 PET product for regional water 
resource management. 

To address these issues, temporally calibrated 𝑃𝑃𝑀𝑀𝐸𝐸� 
measurements were then compared to ground data 
following a similar approach as in section 3.1. 

The newly obtained 𝑅𝑅2 were then compared with the 𝑅𝑅2 values 
derived using native values and these comparisons are 
presented in Figure 6. 

Figure 6. Evolution of 𝑅𝑅2 from PET (black line) and 
𝑃𝑃𝑀𝑀𝐸𝐸� (green line) over the period of interest. 

Notably, the introduction of temporally calibrated 𝑃𝑃𝑀𝑀𝐸𝐸� data 
led to a significant increase in 𝑅𝑅2 values during a substantial 
portion of the crop phenological season. 

Similarly, the MAE associated with 𝑃𝑃𝑀𝑀𝐸𝐸� data showed a 
noteworthy decrease, resulting in an average value of 
approximately 3 mm over an 8-day period across the 
entire reference period. This indicates a reduction in the daily 
error to 0.4 mm on average (Figure 7). 

Figure 7. Evolution of PET (black line) and 𝑃𝑃𝑀𝑀𝐸𝐸� (green line) 
MAE over the period of interest. 

4. CONCLUSIONS

Remote sensing data, with specific reference to MODIS 
mission, allow to globally analyse the potential 
evapotranspiration. However, several previous studies 
highlighted the misalignment between MOD16A2 data to 
ground reference from meteorological stations. This work 
analysed both spatially and temporally. Spatial based analyses 
found poor relations between MODIS and meteorological 
stations, showing that raw MOD16A2 data have to be used with 
caution. Temporal based analyses, conversely, highlighted the 

capability of MOD16A2 to catch the same temporal trend of 
reference meteorological stations. However, some biases have 
been found, specifically MOD16A2 product consistently 
underestimate the daily potential evapotranspiration by 1 mm. 
Once MOD16A2 product has been calibrated, the spatial 
analyses have been performed once again and this time the 
results showed a consistent relationship with ground data and 
a daily potential evapotranspiration error lower than 0.4 mm. 
Thus, it is possible to conclude that raw MOD16A2 data should 
be previously ground calibrated in order to be fully employed 
at regional scale for water resources management. 
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ABSTRACT: 

The importance of solar power, known for its wide availability and low emissions, is underscored by the growing adoption of 
renewable energy, driven by environmental concerns and technological progress. Large photovoltaic (PV) plants require constant 
monitoring for efficiency and reliability. Remote sensing offers a cost-effective solution for accurately capturing plant size, shape, 
and location data. Satellite imagery, especially from open-source satellites such as Sentinel-2 (S2) and Landsat 9, has 
revolutionized remote sensing, enabling the development of machine-learning algorithms for PV system classification. While 
various spectral indices, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index 
(NDVI), enhance accuracy in water and vegetation areas, no specific index exclusively designed for PV extraction exists because of 
the diverse deployment settings of PV arrays. This study introduces a tailored Photovoltaic system extraction index (PVSEI) for S2 
images in two regions known for large PV installations: Viterbo (Italy) and Seville (Spain). PVSEI combines different spectral bands 
to maximize the contrast between the solar panels and the surroundings. Employing Object-Based Image Analysis (OBIA) for 
accurate identification, multiresolution segmentation was used to create segments based on scale, shape, and compactness. The 
Decision Tree (DT) classifier consistently ranked PVSEI as the most effective. Accuracy assessment using the Overall Accuracy 
(OA), Kappa Index of Agreement (KIA), Producer Accuracy (PA), User Accuracy (UA), and F1 consistently yielded excellent 
results, with an OA exceeding 98%. KIA ranged from 0.74 to 0.82 for segmentated objects. Overall, PVSEI excelled in both study 
areas, with occasional challenges in distinguishing bare soil objects resembling PV systems. 

1. INTRODUCTION

The global population surge and increased productivity driven by 
the Industrial Revolution have led to a higher demand for energy, 
predominantly met by fossil fuels, resulting in harmful 
greenhouse gas emissions (Asif and Muneer, 2007). This has 
adverse effects on both the environment and human well-being. 
In contrast, solar energy emerges as a promising, abundant, and 
cost-effective renewable option capable of meeting global energy 
needs (Trappey et al., 2016). Its consistently superior production 
efficiency positions it as a leading contender for a worldwide 
energy solution (Panwar et al., 2011). The adoption of solar PV 
systems has seen a substantial rise, driven by falling costs and 
robust policy support in regions like Europe, the United States, 
Japan, China, and India (Haegel et al., 2017). However, 
implementing PV panels on a large scale may require a 
significant portion of Earth's surface (Tsoutsos et al., 2005). 
While solar parks offer the advantage of generating renewable 
energy, they also pose disadvantages, including land degradation 
due to substantial landscape alterations, potential loss of 
biodiversity and habitat disruption, and landscape fragmentation 
(Hernandez et al., 2014). As the PV power production industry 
continues to rapidly grow, there is an urgent need for detailed 
monitoring and mapping of large solar parks (Yang and Xia, 
2022). Traditional on-site surveys are time-consuming and can 
become outdated and less accurate over time. Therefore, there is 
a critical need for a straightforward, dependable, and non-
intrusive data-gathering method (Jiang et al., 2021). Leveraging 
medium- and high-resolution satellite imagery can greatly benefit 
the detection and study of PV (Zhang et al., 2023). Over the past 
decade, satellite data properties have significantly improved, 
enabling remote sensing applications in various sectors, 
including land-use surveys, and urban and rural planning 
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(Tarantino and Figorito, 2012). Additionally, the availability of 
open-source data from satellites like S2 and Landsat 9 has made 
widespread use of remote earth observations feasible, eliminating 
the need for expensive resources and restrictions on large-area 
applications. Many studies have successfully detected PV solar 
farms by combining remote sensing methods with machine 
learning classification algorithms, such as Random Forest (RF), 
even with moderate-quality imagery (Plakman et al., 2022; 
Ladisa et al., 2022a; Zhang et al., 2023). Spectral data from 
individual bands or spectral indices derived from band 
combinations, such as NDVI and NDWI, have served as primary 
training data for the RF models used in the literature (Plakman et 
al., 2022). The novelty of this study was the development of a 
new index specific to the extraction of PV panels since it has 
never been studied thoroughly due to the different specific 
layouts of PV panels and the different types of soil under the 
panels. The primary objective of this research is to assess the 
performance of a spectral index using an OBIA approach in 
Viterbo, Italy, and Seville, Spain, both known for their significant 
PV installations, at two different seasons (February and August) 
specifically designed for S2 satellite data.  

2. STUDY AREA

The study focuses on two distinct areas: the southern region of 
Sevilla, spanning Dos Hermanas, Utrera, and Los Palacios y 
Villafranca municipalities; and the province of Viterbo, 
specifically Montalto di Castro in western Lazio. These locations 
stand out due to the presence of significant PV solar parks, 
including the renowned "Don Rodrigo" in Seville and "Montalto 
di Castro Photovoltaic Plant" in Viterbo. Notably, both are 
among the largest solar farms in Europe. The cropped area of the 
Seville study site, centered at 37.2118° N and 5.8580° W 
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(WGS84), covers 241771.23 km2, whereas the cropped area of 
the Viterbo study site, located at 42.42714° N and 11.63392° E 
(WGS84), covers 25554.39 km2.  

3. DATASETS AND PRE-PROCESSING

Four cloud-free S2 images from 2022 were selected from the 
ESA Copernicus Scientific Data Hub 
(https://scihub.copernicus.eu). Two images were chosen for each 
study area, one in February and another one in August, to assess 
seasonal variations in PV panel spectral characteristics. The 
Sevilla area images used WGS84 datum with UTM 30N zone 
projection, while the Viterbo area images used WGS84 datum 
with UTM 32N zone projection. Due to low reflectance in the 
visible and infrared range of solar panels (Czirjak, 2017), 10 m 
and 20 m resolution bands were employed. At 10 m resolution, 
bands included Blue (458-523 nm), Green (543-578 nm), Red 
(650-680 nm), and Near Infrared (NIR8: 785-900 nm). At 20 m 
resolution, bands covered Red Edge 1 (694-713 nm), Red Edge 
2 (731-749 nm), Red Edge 3 (769-797 nm), Narrow Near 
InfraRed (NIR8a: 848-881 nm), Shortwave Infrared-1 (SWIR1: 
1565-1655 nm), and Shortwave Infrared-2 (SWIR2: 100-2280 
nm). Bands with resolution over 10m were resampled to 10m 
using ESA's SNAP (Sentinel Application Platform) software. 
After resampling, images were cropped, and defective pixels 
were masked within the Quantum GIS (QGIS) environment 
(version 3.22). 

4. METHODOLOGY

Figure 1 illustrates the workflow of this study. 

4.1 Multi-Resolution Segmentation 

Following previous research recommendations, we employed the 
multi-resolution segmentation (MRS) algorithm in the 
eCognition environment (Trimble, Sunnyvale, California, USA) 
for image segmentation (Ladisa et al., 2022b). This approach 
involves a hierarchical merging of regions. Its effectiveness 
hinges on three key factors: (a) the scale parameter, governing 
the level of permissible heterogeneity in resultant segments; (b) 
the Shape parameter, which assigns importance to both the shape 
and spectral color of objects; and (c) compactness and criterion 
smoothness weight (compactness), crucial for maximizing 
overall coherence (Czirjak, 2017). To ascertain the optimal 
segmentation parameters for processing S2 images, we utilized 
the command line software AssesSeg (Novelli et al., 2017), 
which identifies the most suitable parameter combination based 
on the modification Euclidean Supervised Distance (ED2The 
scale, shape, and compactness parameters used in both study 
areas are in Figure 1 

4.2 Manual pre-classification and spectral signature 
analysis 

Objects exhibiting the highest pixel density of PV panels were 
designated as "PV," while all other objects received the label 
"NO_PV". A subset of these objects, consisting of forty PV and 
forty NO_PV objects, was chosen from each image for spectral 
signature analysis. The NO_PV objects were further categorized 
into four classes, each comprising ten objects: Vegetation (VEG), 
agricultural land (AGRO), bare soil (BARE), and urbanized 
(URBAN). This methodology facilitated a comparative 
examination of spectral characteristics between PV panels and 
different land use categories (Ladisa et al., 2022a). 

Figure 1. The operational pipeline of the utilized approach 

As depicted in Figure 2, an example of the spectral signature 
obtained from the average values of the objects within the 
mentioned classes is provided for the Seville study area in 
February.

Figure 2. Spectral signature area of Sevilla in February 

The classification of land use classes was conducted via a 
manual assessment of both S2 and Google Earth Professional 
images. 

4.3 Photovoltaic Solar Extraction Index 

A new spectral index was created because of the study of spectral 
signatures. It was intended to capture the distinctive trend of the 
spectral signature of PV objects. Except for a peak in the SWIR1 
band, the spectral signature of PV panels was characterized by 
noticeably low values in both the visible and infrared regions, as 
shown in Figure 2. Consequently, the ratios between SWIR1 and 
SWIR2, as well as between SWIR1 and NIR1, were added to 
create the Photovoltaic Solar Extraction Index (PVSEI), which is 
represented in Equation 1.  

Therefore, the sum of the two ratios will be larger when the peak 
is accented, and as a result, the value of the index will be higher. 
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4.4 Features extraction 

In this study, in addition to PVSEI, various other indices used in 
previous research on solar farm mapping were tested. Among 
these, NDVI and NDWI were used (Zhang et al., 2023; Plakman 
et al., 2022), along with other indices such as the Normalized 
Difference Build-up Index (NDBI), Normalized Difference Soil 
Index (NDSI), and Modified Bare Soil Index (MBI), to assess the 
presence of uncovered soil (Chen et al., 2022). Indices related to 
plastic covers, such as the Plastic Greenhouse Index (PGHI), and 
metal covers, such as the color steel building index (CSBI), were 
also explored for the first time in this context (Aguilar et al., 
2022). All these indices were derived from each S2 image and 
object obtained in the segmentation process described above. 
This approach was applied to each study site using the eCognition 
v. 9.5.

4.5 Decision tree modeling 

To assess the efficacy of the newly derived index in pinpointing 
solar parks within the S2 imagery, a straightforward classifier 
was employed: decision tree (DT) (Breiman et al., 1984). This 
classifier, characterized by minimal subdivisions and singular 
threshold values, proved to be optimal for benchmarking the new 
index against existing literature (Aguilar et al., 2022). It has 
previously demonstrated utility in diverse applications, including 
delineating plastic coverings and mapping open-air crops (Peña-
Barragán et al., 2011). For the generation of DT models, each 
image in the study utilized objects categorized as PV and those 
labeled as NO_PV, which served as training sets for the DT. 
Specifically, STATISTICA v. 10 (StatSoft Inc., Tulsa, OK, 
USA) was used both to calculate the DT models via a 10-fold 
stratified cross-validation procedure, with PV or NO_PV classes 
as the dependent variable and to evaluate the importance of each 
index for classification purposes. 

4.6 Accuracy analysis 

For each image, an estimated confusion matrix was created. As a 
result, Overall Accuracy (OA), Kappa Index of Agreement 
(KIA), Producer Accuracy (PA), User Accuracy (UA), and F1 
were calculated. 

5. RESULTS

5.1 Segmentation 

Table 1 presents the outcomes of the MRS process. Alongside 
the total count of segmented objects per image, it also shows the 
number of objects manually labeled for subsequent DT training. 

Table 1. Segmentation results 

5.2 DT Results 

Figure 3 shows the outcomes of the DT model in the four case 
studies. The PVSEI index, developed in this work, appears 
explicitly in the first subdivisions of the DT models in three out 
of four cases. 

Figure 3. DT results: a) Sevilla February; b) Sevilla August; c) 
Viterbo February; d) Viterbo August 

5.3 Importance ranking 

Figure 4 vividly illustrates the performance of the PVSEI in 
comparison to other indices. Even in the case of Sevilla in 
August, where it doesn't claim the top position in the importance 
ranking, it still attains an importance value surpassing 90%. 

Figure 4. Importance 

5.4 Accuracy 

Table 2 shows the accuracy assessment results. Remarkably, both 
OA and KIA values demonstrate consistently high performance 
across all four images. However, it is important to note that PA, 
UA, and F1 scores reveal a notable presence of false positives. 
This can be attributed, at least in part, to the imbalanced 
distribution of the dataset between PV and non-PV objects. 

Table 2. Accuracy results 

6. DISCUSSION AND CONCLUSION

The demand for efficient large-scale PV systems requires 
continuous monitoring, a task addressed by remote sensing 
technologies. Previous studies have made significant progress in 
this area, even with open-source data like S2 (Plakman et al., 
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2022). However, a tailored spectral index for identifying PV solar 
parks was lacking. Using OBIA allowed for precise spectral 
analysis. PVSEI was formulated, capturing the distinct trend of 
the PV class compared to others. The DT model played a crucial 
role in benchmarking PVSEI against other indices and in image 
classification. DT analysis showed PVSEI leading in three out of 
four cases, highlighting its importance. Although MBI surpassed 
PVSEI in August Seville, PVSEI remained highly significant. 
Notably, in August Seville, the bare soil spectral signature 
closely resembled that of PV areas due to similar traits. However, 
the findings of the error matrix (Table 2) validate the robust 
accuracy of PVSEI classification, underscoring the novelty of 
this research in creating a pertinent index for mapping PV 
installations from S2 imagery. This index holds potential as a 
foundational element for upcoming machine learning or deep 
learning algorithms. The study lays a solid groundwork for the 
practical integration of PVSEI into satellite image classification, 
offering implications for the monitoring and management of PV 
solar parks. 
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ABSTRACT: 

The use of SAR imagery has been a vital part of several scientific domains, including environmental monitoring, early warning systems, 

and public safety. Raw data acquired by the radar sensor is typically processed to create a Single Look Complex (SLC) image, which 

is a high-resolution image of the scene being observed. Processing raw data requires a significant amount of computer power and it is 

almost never practical to do it on board of a satellite platform. As a direct consequence, the data is transmitted back to the ground 

segment to be processed. The objective of next-generation studies is to optimize Earth Observation (EO) data processing and image 

creation in order to deliver EO products to the end user with very low latency using a combination of advancements in the on-board 

parts of the data chain.  

In this scenario, the present work focuses on the detection of high-backscattering objects (bright targets) and proposes to eliminate any 

pre-processing by training a Deep Convolutional Neural Network (DCNN) to directly perform the detection on raw data. Due to the 

limited availability of training SAR raw data available in scientific literature regarding the specific topic of high-backscattering objects 

detection, we propose and investigate a physically and statistically based approach to simulate realistic synthetic training SAR raw 

datasets that are then used to train and evaluate a state-of-the-art deep neural residual network.  

We finally show that the trained DCNN can detect successfully high-backscattering objects on real raw data extracted from ERS 

imagery archive. 

1. INTRODUCTION

Since the deployment of the first satellite equipped with a 

Synthetic Aperture Radar (SAR) into orbit in 1978 (Evans, 

2005), the use of SAR imagery has been a vital part of several 

scientific domains, including environmental monitoring, early 

warning systems, and public safety. SAR could be described as 

"non-literal imaging" since the raw data does not resemble an 

optical image and is incomprehensible to humans. For this 

reason, raw data is typically processed to create a Single Look 

Complex (SLC) image, which is a high-resolution image of the 

scene being observed (Figure 1). The processing of raw data to 

create a SLC image is known as focusing step (Cruz, 2022) and 

involves several steps, including range compression, Doppler 

centroid estimation and azimuth compression.  

Typically, for target detection, a despeckle filtering is also 

included in this processing stage (Banerjee, 2018). As a result, 

the processing of raw data requires a significant amount of 

computer power and is almost never practical to do it on board. 

As a direct consequence, the data is transmitted back to the 

ground segment to be processed.  

The objective of next-generation studies is to optimize Earth 

Observation (EO) data processing and image creation in order to 

deliver EO products to the end user with very low latency using 

a combination of advancements in the on-board parts of the data 

chain.  

In this work, we focus on the detection of high-backscattering 

objects (bright targets) and propose to eliminate any pre-

processing by training a Deep Convolutional Neural Network 

(DCNN) to directly perform the detection on raw data.  

The rationale for this approach is linked to the consideration that 

both focusing and despeckling are actually spatial filtering 

operations (space-variant or space-invariant depending on the 

chosen algorithm) and therefore can be ultimately described 

mathematically using the convolution operation. Considering 

that DCNN is a typical deep-learning model that uses 

convolution operations and nonlinear mapping to effectively 

extract target features (Zhang, 2022), there exists a need to 

further investigate approaches that integrate into a single DCNN 

algorithm both the pre-processing and the detection stage, 

therefore working directly on raw data.  

Figure 1. SAR data acquired by ERS-1 ESA mission over the port 

of Manfredonia (Italy). Top: real part of raw data. Bottom: 

amplitude of the SLC obtained by focusing the raw data. 

More specifically, our study attempts to eliminate any pre-

processing by training a DCNN to directly detect point-like 
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strong scatterers on raw data. This indeed might substantially 

shorten the delivery time thus improving the efficiency of the 

relevant satellite-based monitoring services.  

In this regard, the availability of training data represents one of 

the critical issues for the development of machine learning 

algorithms. In fact, the efficacy of the final machine learning-

powered solution for a specific application is ultimately 

determined by the quality and amount of the training data. 

However, to date, there is a limited availability of training SAR 

raw data available in scientific literature regarding the specific 

topic of high-backscattering objects detection. Furthermore, their 

generation from real data is a time-consuming task.  

In this work, we propose and investigate a physically and 

statistically based approach to simulate high-backscattering 

objects and generate realistic synthetic training SAR raw 

datasets.  

We then trained and evaluated a state-of-the-art DCNN on the 

generated synthetic dataset and successively validated it on real 

raw data extracted from ERS imagery archive (ESA, 2023).  

It is one of the first experiments proposed in the SAR literature 

and results are quite encouraging, as they reveal that a well-

trained DCNN can correctly recognize strong scattering objects 

on SAR raw data. 

 

2. DATA AND MATERIALS 

This research study is aimed at the implementation of a DCNN-

based approach capable to detect point-like high-backscattering 

targets directly on SAR raw data. This required two main steps: 

(1) the implementation of a SAR simulator of raw data; (2) the 

configuration and training of a DCNN by using the training 

datasets generated with the SAR simulator.  

 

2.1 Dataset Simulator 

The implementation of the simulator followed an approach based 

on a low level of complexity aimed at developing a fast and 

automatic simulator, thus discarding advanced physical models 

due to the large number of external parameters to consider and 

their complex interaction.  

We also discarded approaches based on the extraction of the 

training dataset directly from real images since it is in general a 

time-consuming activity and requires expert SAR operators.  

As a result, we implemented a hybrid physical-statistical raw data 

simulator based on the generation of the following two 

contributions that are then summed together to generate noisy 

raw data images: 

1. Point scatterers physically simulated assuming: 

- Each target is simulated as a single point scatterer; 

- the acquisition geometry of ERS mission (Table 1); 

- a fixed backscattering coefficient;  

- a variable position of the target in the scene. 

2. As outlined in [(Gao,2010), either in the high-resolution or 

low-resolution case, with the ideal hypothesis of a sea 

background having a constant radar cross section and the 

central limit theorem, both the real and imaginary parts are 

Gaussian-distributed. Although more complex modeling 

can be proposed, the analysis carried out on a number of 

different crops of ERS-1/2 raw complex data shows that it 

is acceptable to model both the real and the imaginary parts 

with a truncated Gaussian distribution characterized by: 

- truncation limits according to ERS data 

quantization of the real and imaginary parts 

performed by the 5-bit analog-to-digital converter 

of the ERS acquisition system. This allows the 

quantized data to take integer values in the range 

of -16 (-24) to +15 (+24-1). 

- a mean value equal to zero; 

- a standard deviation that was varied in order to generate 

different noise intensity levels thus obtaining different 

Signal-to-Clutter Ratio (SCR) values according to the 

following expression: 

  

 SCR = 10 log10 (
PObj

Pn
)

 
   (1) 

 

where  PObj = Average intensity of the object 

 Pn = Average intensity of the noise 

 

 

Parameter Value 

Carrier Frequency 5,3 GHz 

Signal Bandwidth  15,55 MHz 

Sampling Frequency  18,96 MHz 

Pulse Width 37.1 µs 

Pulse Repetition Frequency  ~ 1,68 kHz 

Antenna Aperture 10 m 

Look Angle 23 degrees 

Radar Velocity ~ 7,12 km/s 

Radar Height 785 km 

Full-Frame Raw Image Size 
~30000 pixels (azimuth) 

~5600 pixel in (range) 

Raw Image Spacing 
~4 m (azimuth) 

~8 m (range) 

Length of radar pulse ~700 pixels 

Table 1. Main parameters of the ERS mission (ESA, 2023). 

 

2.2 DCNN training 

Following the proposed approach, we have simulated a stack of 

12000 image crops with 6000 crops containing only clutter noise 

and 6000 crops containing point-like scatterers with different 

level of clutter noise (Figure 2), thus simulating an SCR varying 

from 42 dB to 56 dB.  

The main objective of the DCNN is to classify the input crops 

into two categories: Bright Target (i.e. presence in the given crop 

of a dominant strong scatterer) and No Bright Target (absence in 

the given crop of a dominant strong scatterer). 

For this study, we looked at the effects of different cropping 

dimensions on raw data. The use of small crops is 

recommendable in order to reduce uncertainty about the point-

like scatterer position and to reduce training and classification 

times. Following several tests, we determined that the best trade 

off is a crop size of 100 × 100 samples. Although this size is 

significantly shorter than the impulse response (see Table 1), it 

was observed that when the crop is centred on the point-like 

scatterer peak response, it captures most of the energy of the 

bright target radar return. 

The simulated dataset was used to train a deep neural residual 

network, known as “ResNet” that can be considered a state-of-

the-art Deep Convolutional Neural Network (He, 2015).  

More specifically, the 80% percent of the dataset was used for 

training, while the remaining images were equally divided 

between validation, which is performed periodically during 

training phases, and testing, which is performed at the conclusion 

of the training.  

ResNets use so-called residual blocks that implement shortcut 

connections in the network architecture. The stack of convolution 

G. Cascelli et al.

140



 

layers within each residual block only needs to learn a residual 

term that refines the input of the residual block toward the desired 

output. This makes the ResNet easier to train because the shortcut 

connections enable the direct propagation of information and 

gradients across multiple layers of the network, leading to better 

gradient flow and the convergence properties of the network 

during calibration. This ensures high flexibility for this DCNN 

and increases the potential to understand more complex features. 

The ResNet used in this work was created and trained on Matlab. 

The command used to create its structure is 

resnetLayers(inputSize, numClasses), which creates a 2D 

residual network with an image input size specified by inputSize 

and a number of classes specified by numClasses.  

In these conditions, the net managed to achieve high accuracy 

during the training phase with the simulated raw data. The 

training phase was stopped after several iterations exceeding 95% 

up to 100% of accuracy, as illustrated in Figure 3. 

 

 

Figure 2. Example of real part of simulated raw data. Top: bright 

scatterer in a clutter noise (SCR = 35 dB). Bottom: clutter noise 

only.  

 

 
Figure 3. Training phase of the proposed ResNet. X axis: number 

of training iterations; y axis: accuracy achieved at each iteration. 

Blue curve: training accuracy; black curve: validation accuracy. 

 

2.3 DCNN validation with real data 

Finally, we conducted a thorough test of DCNN detection 

capability of high-backscattering targets using real ERS data.  

A preliminary test was carried out on a sea scenario by extracting 

a first crop from an ERS image in a pure sea area with no 

presence of targets (Figure 4) and a second crop with the presence 

of a ship (Figure 5).  

The DCNN was able to correctly detect both the ship and the sea-

only area with a very high probability as illustrated in the first 

two lines of Table 2. 

Sea scenarios are in general less complex than land scenarios. 

Further investigations were then carried out on land areas. To this 

aim, 9 land crops were extracted from ERS images corresponding 

to three different situations: 

- 3 point-like bright scatterers (PS), Figure 6. 

- 3 wide-area bright scatterers (WA), Figure 7. 

- 3 areas with no bright scatterers (NO), Figure 8. 

The experimental results are detailed in Table 2 where it is 

possible to observe that all the three types of targets have been 

correctly detected. In particular, it is important to note that 

although the DCNN was trained only with point-like bright 

scatterers, it was able to correctly identify wide-area bright 

scatterers. 

It is also interesting to note that the raw data related to the ship 

case show an evident (although noisy) pattern, typical of an 

impulsive radar response. On the contrary, in the case studies 

selected in land areas, this pattern is not recognizable, confirming 

the greater difficulty of operating in a land context compared to 

a sea context. 

 

 
Figure 4. Example of sea-only radar response. Top: raw image. 

Bottom: Amplitude of the SLC.  

 

 
Figure 5. Example of ship radar response. Top: raw image (it can 

be noted the presence of a typical noisy pattern of the impulsive 

radar response). Bottom: Amplitude of the SLC.  
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Target 

ID 

  

Type 

 

  

Bright 

Scatterer 

Detection 

Probability [%] 

SCR 

[dB] 

 

1 SHIP 100% - 

2 SEA 0.00% 28 

3 PS 97,33% 7 

4 PS 99,82% 21 

5 PS 99,72% 13.7 

6 WA 100,00% 9 

7 WA 71,75% 7.8 

8 WA 100,00% 18 

9 NO 0,02% - 

10 NO 0,00% - 

11 NO 0,02% - 

Table 2. Bright targets detection probability for 2 test case in sea 

areas and the 9 test cases in land areas, extracted from real ERS 

raw data. PS: point-like bright scatterers; WA: wide-area bright 

scatterers; NO: no bright scatterers. The third column shows the 

probability associated with the presence of a bright scatterers. 

Ideally it is expected 0% for SEA and NO targets and 100% for 

SHIP, PS, and WA targets. 

 

 

 
Figure 6. Example of point-like strong scatterer. Top: raw image. 

Middle: Amplitude of the SLC. Bottom: Google Earth image. 

 

 
Figure 7. Example of wide-area strong scatterer. Top: raw image. 

Middle: Amplitude of the SLC. Bottom: Google Earth image. 

 

 
Figure 8. Example of area with no strong scatterers. Top: raw 

image. Middle: Amplitude of the SLC. Bottom: Google Earth 

image. 
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3. CONCLUSIONS

In this study, we have proposed a complete framework aimed at 

the detection of high-backscattering (bright) targets applied 

directly to SAR raw data by means of a DCNN.  

We have proposed a simple and automatic simulation method for 

generating the training data set.  

The simulator simulates radar echoes of point-like scatterers 

combined with clutter noise integrated into complex matrices that 

represent the simulated raw dataset.  

Point-like scatterers are simulated by means of a single-point 

physical model, whereas the clutter noise is simulated by means 

of a statistical model based on a truncated gaussian distribution. 

The simulation was carried out in realistic conditions by using 

acquisition parameters of the ERS mission. 

State-of-the-art ResNet DCNN was configured with the aim to 

categorize SAR raw data crops into two classes (High-

backscattering target and No target).  

The DCNN was able to achieve 100% overall accuracy with 

simulated data with an SCR in the range of 42 ÷ 56 dB.  

It is a range of very high SCR values. This choice derives from 

the need to train the network in conditions where it is very clear 

the pattern that it has to identify, that is the impulse response of 

the SAR system.  

In particular, it was noted that the DCNN ability to recognize this 

pattern is learned better when it operates in conditions of high 

SCR and this ability is preserved on real data even for SCR with 

lower values. 

In this regard, final analyses were carried out with 2 case studies 

in sea areas (1 ship in a sea area and 1 sea-only area) and 9 case 

studies in land areas (3 point-like strong scatterers, 3 wide-area 

strong scatterers and 3 areas with no strong scatterers) extracted 

from ERS real data and correctly detected by the trained DCNN.  

The results confirm that although the DCNN was trained with 

very high SCR values, it performed very well in real cases with 

lower SCR values.  

In particular, real cases exhibit an SCR from 7 dB to 28 dB. 

This confirms that the proposed simulation methodology 

accurately represents the main characteristics of real high-

backscattering targets and their interactions with clutter.  

Furthermore, the results obtained in this work give evidence that 

target detection on SAR raw data is feasible thus opening 

interesting solutions related to the possibility to reduce the 

computational cost of the detection algorithms detection thanks 

to the possibility to skip the focusing and despeckling processing 

steps.  

This also opens interesting topics that will be investigated in 

future works related to: 

- performance assessment with a wider range of SCR values;

- performance assessment with other SAR missions operating

with different polarization, acquisition geometries, bands

and spatial resolution (e.g., COSMO-SkyMed);

- performance assessment in the case of different target sizes

and analyses of interference caused by targets placed close

to each other;

- opportunities analysis in terms of on-board

implementations. The possibility to perform detection as

soon as data are taken, would enable the transmission to

ground of alert signals only, with notable reduction of both

latency and downlink bandwidth, thus opening interesting

real-time monitoring scenarios.
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ABSTRACT: 

In recent years, the real-time on-board detection of environmental disasters through Synthetic Aperture Radar (SAR) technology on 
satellite platforms has emerged as a transformative advancement in disaster monitoring. This cutting-edge approach allows for the 
real-time identification and response to emergency events, thereby playing a crucial role in averting potential harm to both human 
populations and the environment.  
This research focuses on harnessing the potential of SAR technology for the rapid and accurate detection of sea oil spill events, a 
well-known critical environmental concern.  
In particular, the work is focused to the critical software optimizations necessary to facilitate implementation of on-board real-time 
processing and data downlink capabilities. To this aim a Deep Convolutional Neural Network (DCNN) approach is proposed for the 
segmentation and classification of SAR intensity images.  
An experimentation phase is dedicated to the validation of the proposed approach with real SAR datasets containing oil spill, look-
alike, ship, sea, land and novelty (mainly rain cells) classes.  
The results exhibit an overall accuracy of 93% and demonstrate the validity of the proposed approach. 

1. INTRODUCTION

Oil spills, resulting from the negligent or accidental release of 
liquid petroleum hydrocarbons into water bodies like oceans, 
rivers, or lakes, pose significant threats to marine ecosystems, 
human health, and local economies. Traditional methods of 
monitoring, such as visual and infrared sensors, are constrained 
by various factors, including poor visibility during adverse 
weather conditions or at night.  
In contrast, SAR technology has emerged as a potent tool for oil 
spill detection due to its capacity to operate under various 
conditions, including low visibility and nighttime scenarios. 
Current research endeavors are largely dedicated to the prompt 
detection of oil spills using SAR technology, an essential step 
toward implementing timely mitigation measures.  
To address this challenge comprehensively, we propose an 
approach that integrates a suite of innovative methods for real 
time oil spill detection. The workflow is based on four main 
points:  
• Leveraging Deep Learning Techniques: our methodology

harnesses the power of deep learning, specifically deep
convolutional neural networks (DCNNs) based on
DeepLab v3+ and ResNet-18 libraries. These advanced
models excel in accurately segmenting and classifying
identified oil spill cases.

• Creating a comprehensive database: we have meticulously
constructed a comprehensive database for training our
models. This database harmonizes data from publicly
available repositories such as CleanSeaNet and TenGeoP-
SARwv with a third dataset specifically built by the
authors by processing known and documented case
studies identified in the sea area in front of the port of
Brindisi (Southern Italy).

• On-Board Satellite Processing: we achieved real-time
detection capabilities by means of an on-board processing
optimized for an efficient use of the limited computing
resources available on the satellite platform. The proposed

processing implements all fundamental SAR data 
processing steps involving focusing, despeckling, land/sea 
mask generation, contrast enhancement. The output of this 
processing represents the input of the DCNN-based 
segmentation and classification of the following classes: 
oil spill, look-alike, ship, sea, land, novelty. 

• Efficient Data Downlink: finally, we have incorporated an
efficient data downlink process that enables the
transmission to the ground segment of only the radar
chips centered to the events of interest thus avoiding the
transmission of the full frame of SAR data.

Details of the proposed methodology are given in the following 
section.  

2. METHODOLOGY

The proposed approach integrates two software tools.   
The first software tool generates (and augments) the training 
database by extracting and identifying several marine 
phenomena from SAR data images. It assigns specific classes to 
the detected phenomena.  
More specifically, the resultant training database integrates 
4035 cases. As illustrated in Figure 1, each case in the database 
includes two images: the input SAR intensity image and the 
relevant labels image, which categorizes each pixel of the SAR 
image into the sea, look-alike, oil spill, ship, novelty (mainly 
rain cells), and land classes.  
The images in the database have a size of 512 x 512 pixels, this 
is a tradeoff between the need to work with large patches to 
enable a better context analysis and the need to reduce 
computational cost for the DCNN training.   
The second software tool implements a modular on-board 
processing for near-real-time oil spill monitoring. The software 
modules implement the sequential tasks illustrated in Figure 2 
and detailed in the following.  
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Figure 1. Examples of data available in the training database. 
Each known case in the database includes two images: the input 
SAR image (left column) and the classified labels image (right 
column). The available classes include sea, look-alike, oil spill, 
ship, novelty, and land as indicated in the colorbar in the bottom 
of the figure. 
 

 
Figure 2. Flow chart of the oil spill detection prototype. 
 
Focusing: As illustrated in Figure 3, this module implements 
the Range-Doppler algorithm (Bamler, 2004). To reduce the 
computational cost this module implements decimation of the 
data and neglects the range migration. This approach speeds up 
the processing at the expense of reduced spatial and radiometric 
resolution of the resulting focused image. Considering that oil 
spill events of interest have a large extension, the resulting 
resolution penalization can be neglected. 
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Figure 3. Flow chart of the Focusing Module. 

Despeckle: Due to the need to decrease the impact of speckle 
noise (Singh et al., 2016) on the amplitude of the focused SAR 
intensity image, a filtering module has been included in the 
software architecture.  
We adopted a simple average filter; it has shown appropriate 
noise reduction and at the same time can be efficiently 
implemented in the frequency domain, as illustrated in Figure 4. 
 

 
Figure 4. Flow chart for the Filtering Module 
Land-Sea Mask Generation: as illustrated in Figure 5, this 
module masks out the land in the acquired radar scene to 
facilitate the subsequent detection phase. This module therefore 
has the objective of generating a binary land-sea mask that can 
subsequently be applied to the SAR intensity image. Its 

implementation (as detailed in Figure 6) requires an input world 
coastline polygon that is then intersected with the radar scene. 
Optionally, the binary mask is also dilated to take into account 
inaccuracies of input coastline polygon. 

 
Figure 5. Example of output generated by the Land-Sea mask 
generation step. Left: coastline (black polygon) and footprint of 
the satellite image (red rectangle). Middle: coastline (red 
polygon) in radar coordinates overlapped onto the SAR 
intensity image. Right: Land-Sea Mask in radar coordinates. 

 

 
Figure 6. Flow chart of the Land-Sea Mask Generation Module. 
Patches Extraction: before proceeding with the detection of 
the events of interest, some post processing operations of the 
SAR intensity image are needed, which make semantic 
segmentation easier. More specifically, as illustrated in Figure 
7, after applying the land-sea mask to the whole despecked 
intensity image, this module splits the whole SAR image into 
patches of appropriate size as required by the DCNN. As 
already stated, the best trade-off was found with patches of 512 
× 512 pixels. A contrast enhancement procedure is then applied 
by clipping the tails of the histogram of the intensity values of 
the patch pixels. 
 

 
Figure 7. Flow chart of the Patches Extraction Module. 
DCNN Segmentation and Classification: the segmentation 
module uses a semantic DCNN based on DeepLab v3+ with 

Focusing

PATCHES EXTRACTION
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ResNet-18 network (Krestenitis et al., 2019) as illustrated in 
Figure 8. This model enables accurate segmentation and 
classification of input patches into 6 classes: ships, oil spill, 
look-alike, land, sea, and novelty (mainly rain cells). As 
illustrated in Figure 9, a patch mosaicking is subsequently 
applied to obtain a segmented and classified image of the same 
size as the full frame input focused and filtered image.  
 

 
Figure 8 DeepLab v3+ convolutional neural network for 
semantic image segmentation Based on ResNet-18. 

 

 
Figure 9. Flow chart of the DCNN Segmentation and 
Classification Module. 
Downlink: as detailed in Figure 10, this module sends the data 
of interest to the ground segment. Data is packaged on the basis 
of the settings indicated by the operator. In particular, it is 
possible to send raw or intensity radar chips that include any 
combination of the following classes: ships, oil spills, look-
alikes and novelties. The size of the available chip is 
configurable through dilation morphological operators and in 
the case that more than one event of interest fall into the same 
chip, they are integrated into a larger chip in order to avoid 
duplication of data transmitted to the ground segment. 
 

 
Figure 10. Flow chart of the Downlink Module. 

 
 

3. RESULTS AND DISCUSSION 

All the modules described in the previous section were 
implemented and tested with real SAR data. The results show 
that the proposed system achieves good performance. 
More specifically, as illustrated in Figure 11, the confusion 
matrix demonstrates the system's robustness, in detecting oil 
spills (93%), ships (92%), and novelty objects (99%), with an 
high overall accuracy equal to 93%. 
Examples of successful application of the proposed approach to 
real case studies extracted from ERS SAR data are given in 
Figure 12. 

 
Figure 11. Confusion matrix obtained during the test of the 
proposed system with real cases. 
 

 

 
Figure 12. Left: examples of three SAR patches including oil 
spill events (first two rows) and novelty events (third row) 
provided in input to the DCNN segmentation and classification 
step. Middle: ground truth data. Right: results generated by the 
DCNN. 
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Preliminary computational performance tests have been carried 
out with an ERS raw image of 30233 lines and 5616 pixels. 
Execution time and memory occupation for each module have 
been measured on a common laptop with a CPU Intel i7 and 16 
GB RAM and are reported in Table 1. 
Module Execution Time  

[s] 
Memory Occupation  

[GB] 
Focusing 15 2.5 
Despeckle 10 1.2 
Land/Sea Mask 
Generation 

3 0.1 

Patches Extraction 2 0.4 
DCNN 
Segmentation and 
Classification 

10 0.6 

Patch Mosaicking 
and Downlink 

12 1.3 

Table 1. Computation performance of each module of the 
software prototype. 

In synthesis, a total execution time of 52 seconds with a peak 
RAM memory of 2.5 GB was requested for the processing of a 
full frame ERS image covering approximately an extension of 
100 km × 100 km. Assuming an average ERS satellite platform 
velocity of 7.7 km/s, it results that a 100-km stripe is acquired 
in 13 s. Assuming also a 12% duty cycle for ERS mission, it 
results that the available processing time to process a 100-km 
stripe is 81.7 s according with the following expression: 
 
 Max Proc Time = 100−12

12
∙ 13 [𝑠𝑠] = 81.7 𝑠𝑠   (1) 

 
The available processing time (81.7 s) compared with the 
measured processing time (52 s) gives enough margin for 
implementation of this prototype on a dedicated hardware 
platform for onboard computing. 
 
 

4. CONCLUSION 

The proposed approach implements a promising solution for 
real-time oil spill and ship monitoring through the fusion of 
SAR technology and deep learning.  It significantly enhances 
processing speed while reducing downlink bandwidth by 
transmitting only relevant data.  More specifically, it involves:  
• An optimized pre-processing of the SAR raw data 

(focusing, despleckling, land-sea masking, block 
partitioning and contrast enhancement). 

• A DCNN-based segmentation and classification module 
able to assign to each pixel of the input image a specific 
class selected among ships, oil spill, look-alike, sea, land 
and novelty (mainly rain cells). 

• A downlink that optimizes data sent to the ground 
segment by selecting only raw or intensity radar chips that 
include the events (or classes) of interest.  

It must be emphasized that the software discussed is a prototype 
experimental system, designed to operate on a satellite in orbit. 
It has been specifically calibrated to detect medium to large-
sized oil spills in real-time, a key objective that addresses 
critical operational needs for monitoring and rapid response to 
marine pollution events. Given the intrinsic limitations 
regarding the computational resources available on a satellite 
platform, the reduction in spatial resolution and the employment 
of frequency filtering have been implemented as necessary 
actions to mitigate speckle in SAR imagery. These measures 
allow us to preserve the system's computational efficiency to the 
fullest. Such constraints are common in satellite applications, 

and our choices have been guided by an aim to optimize the 
balance between image quality and operational feasibility 
within the context of limited onboard computing power. 
Additionally, we wish to clarify that at the time of the study, we 
exclusively employed VV polarization, as it represents the sole 
polarization available from the ERS mission, which was chosen 
for this preliminary evaluation. Undoubtedly, the access to 
quad-polarization SAR data, would add significant value to the 
analysis, enabling us to explore more sophisticated algorithmic 
approaches and potentially more accurate classifications.  
Based on these observations, future research directions involve: 
• expanding the dataset involving a complete selection of L, 

C and X-Band SAR missions and comparing performance 
with several machine learning approaches. 

• Analyze the impact of spatial resolution degradation 
introduced by despeckle filtering with respect to small 
size oil spills events. 

• Use of polarimetric data to improve detection capabilities 
as discussed in (Migliaccio, 2015).  

• Exploitation of external key information such as 
Automatic Identification System data. 

• Enhancement of detection accuracy by recognizing that 
oil spill detection transcends a mere dark area search 
algorithm, encompassing a more intricate process rooted 
in underlying physical principles. In view of all this 
matter the use of DCNN can be even more useful once 
properly framed in a firm physical approach. 

• Implementing the software on a hardware platform 
specific for on-board processing.  
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ABSTRACT: 

Satellites with high spatial and spectral resolution have changed the way of considering the environment and environmental 
phenomena. PRISMA (PRecursore IperSpettrale della Missione Applicativa), launched in March 2019, has become the first 
hyperspectral satellite mission in Europe representing an innovative technology in the field of satellite remote sensing. With the aim 
to support and promote the scientific use of PRISMA mission, the Italian Space Agency (ASI) published a call addressed to the Italian 
EO Community, named “PRISMA SCIENZA” programme. In this framework, ASI co-financed 15 proposals focused on different 
topics of interest: agriculture and forestry, inland and coastal waters, air quality, ecosystems structure and composition, ice and snow, 
raw materials, cultural heritage and natural hazards. This paper provides an overview of the trends observed during the implementation 
of this programme, with a focus on the projects related to vegetation thematic area, highlighting the relevance of hyperspectral data for 
1) forest cover analysis to support National Forest Inventory (AFORISMA project), 2) Controlling of Landfill and Environment
Assessment Research (CLEAR-UP project), 3) Ecosystem functions, habitats, and diversity characterization analysis (HYPERECOS
project), 4) developing algorithms for the retrieval of plant functional traits in agricultural and forest ecosystems (PRIS4VEG project),
5) Improved estimation of forest carbon sequestration from PRISMA retrieval of canopy nitrogen and photosynthetic potential
(PRISMA-FOREST-NC project), 6) Topsoil properties Estimation for Agriculture (TEHRA project). These projects, as well as the
PRISMA SCIENZA initiative overall, intend to support the full data exploitation of the mission and strategically promote the
development of Italian know-how in the sector of hyperspectral remote sensing.

1. INTRODUCTION

The PRISMA (PRecursore IperSpettrale della Missione 
Applicativa) high-resolution space and spectral satellite is on 
orbit from the end of March 2019. PRISMA is a demonstrative 
spaceborne mission fully deployed by the Italian Space Agency 
(ASI). PRISMA completed the offer in the Earth Observation 
space segment of ASI, until now essentially based on the 
Synthetic Aperture Radars (SAR) of the COSMO-SkyMed 
constellation. PRISMA is the first hyperspectral satellite mission 
in Europe of the new generation with full range VNIR-SWIR 
coverage and represents the technological vanguard in the field 
of satellite remote sensing. PRISMA integrates the 30m 
hyperspectral imagery operating in the VNIR-SWIR range with 
237 spectral bands and a 5m panchromatic camera (PAN), 
sensitive to all colours (Caporusso G et al. 2020).  
Indeed PRISMA is a new generation sensor that provide for the 
first time European full range VNIR-SWRI data.  

Other initiatives were already available. DLR DESIS mission is 
hyperspectral but limited to 400 - 1050 nm in VNIR 
(https://www.dlr.de/eoc/desktopdefault.aspx/tabid-
13622/23667_read-54280/) as well as CHRIS from UK Space 
Agency can be considered hyperspectral again but limited to 
VISNIR (https://earth.esa.int/eogateway/instruments/chris). 

With this innovative sensor, ASI has provided the scientific 
community with a tool capable of acquiring images of the Earth's 
surface containing information on the chemical-physical 
composition of the objects present in the observed scene, 
providing a unique information contribution for various 
applications. Further development of new hyperspectral sensors 
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with higher performance is also underway by ASI (ASI website, 
2022). 
In order to raise awareness of the PRISMA mission, ASI has set 
up a research funding program, called “PRISMA SCIENZA” 
(Licciardi et al. 2022) to prepare data exploitation and 
applications development for the mission. The programme 
supports R&D projects proposed by experts in hyperspectral 
remote sensing sector from national public research institutions 
to industries, also in the framework of international partnerships. 
The main goal is to support the science community to explore 
new application potentials, to develop software tools for 
hyperspectral data processing and to maximize the use of 
PRISMA data also in combination with other Earth Observation 
missions.  
The “PRISMA SCIENZA” program is of strategical interest for 
ASI as it intends to:

- know the skills and scientific interests of the entire national
community of users of the PRISMA mission;

- stimulate and strategically involve the national community
in the scientific use of data from the PRISMA mission and
in the exploration of its potential;

- broaden the spectrum of possible applications of mission
data;

- strategically promote the development of Italian know-how
and strengthen existing skills in the hyperspectral remote
sensing sector.

As the vegetation topic covers the 33% of projects, it is the most 
representative thematic area for the PRISMA SCIENZA call. 
Thus, in this paper the projects related to this topic are mainly 
presented, trying also to underline the impact of the scientific 
downstream applications based on PRISMA data exploitation on 
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the Sustainable Development Goals (SDGs) of the United 
Nations Agenda 2030.   
 

2. THE PRISMA SCIENZA PROGRAMME 

The ASI’s PRISMA SCIENZA ASI programme supports R&D 
projects that have been selected following a competitive 
procedure through research call. Forty-one proposals were 
received and, among these, twenty-three have been considered 
eligible. Most of these projects have been proposed by teams 
consisting of both Academic and Industrial partners (41% 
universities, 35% research centers; 24% SMEs), and this 
simplifies the technology transfer process. ASI financed the first 
15 proposals that are focused on different topics of interest, such 
as agriculture and forestry, inland and coastal waters, air quality, 
ecosystems structure and composition, ice and snow, raw 
materials, cultural heritage and natural hazards.  
In the context of a more sustainable management of natural 
resources, the quantitative and spatialized estimation of 
functional traits of terrestrial vegetation in agro-forestry plays a 
fundamental role (Figure 1).  
 

 
Figure 1 Observed trends in topics of interest in the PRISMA 

SCIENZA programme  
 
In this context, six of the fifteen projects (33%) are related to the 
“agriculture and forestry” thematic area over three topics; the 
67% of topics of interest are splitted over three topics: Forest 
monitoring, Precision Farming and Environmental Assessment 
and monitoring. 
 

2.1 PRISMA SCIENZA projects 

The six projects of PRISMA SCIENZA programme, related to 
vegetation thematic area are dedicated to the relevance of 
hyperspectral data for 1) forest cover analysis to support National 
Forest Inventory (AFORISMA), 2) Controlling of Landfill and 
Environment Assessment Research (CLEAR-UP), 3) Ecosystem 
functions, habitats, and diversity characterization analysis 
(HYPERECOS), 4) developing algorithms for the retrieval of 
plant functional traits in agricultural and forest ecosystems 
(PRIS4VEG), 5) Improved estimation of forest carbon 
sequestration from PRISMA retrieval of canopy nitrogen and 
photosynthetic potential (PRISMA-FOREST-NC), 6) Topsoil 
properties Estimation for Agriculture (TEHRA). 
 
2.1.1 AFORISMA (Apprendimento automatico per l'analisi 
di coperture FORestali con dati IperSpettrali della missione 
prisMA a supporto dell'inventario forestale nazionale).  
This project, spanning two years, starting from July 2022, is 
focused on the classification of forest cover for updating the 
National Forest Inventory and monitoring forest response to the 
occurrence of extreme weather events (Figure 2). 
 

 
Figure 2 Study area of the AFORISMA project. 

The AFORISMA project partners include the Centro di ricerca 
Foreste e Legno del Consiglio per la ricerca in agricoltura e 
l’analisi dell’economia agraria (CREA-FL), Università degli 
Studi di Trento / Dipartimento di Ingegneria e Scienza 
dell’informazione (UNITN), Arma dei Carabinieri – Comando 
Unità Forestali, Ambientali e Agroalimentari (CUFAA) and the 
University of Extremadura, Escuela Politécnica de Cáceres - 
Department of Technology of Computers and Communications, 
Hyperspectral Computing Laboratory (UNEX). 
AFORISMA project is organized in two main lines of activities: 
1. Characterization of the specific composition of forest stands, 

with: automatic classification of forest categories and tree 
species; production of related wall-to-wall maps, extended 
continuously over large areas large (potentially the entire 
national territory); periodic update of classification and maps 
with high frequency Early observation of changes accelerated 
by climate change; decision support in terms of management 
and silvicultural practices 

2. Monitoring the response of forest stands to the occurrence of 
extreme weather events: identification of the reaction of tree 
vegetation in areas damaged by extreme events; as entity 
damage suffered and recovery capacity of the vegetation 
survived the event; as the ability to reconstitute new 
vegetation layers (by natural regeneration) in totally 
destroyed areas; the hyperspectral data can be used to identify 
changes spectrally selective and of very small magnitude (not 
possible with multispectral data). 

Considering that AFORISMA is a useful project addressed in the 
development of methods of processing and analysis of PRISMA 
data aimed at recognizing the different forest categories and the 
tree species that characterize them, as well as monitoring the 
stresses induced by extreme meteorological events and 
quantifying the recolonization by the tree and shrub vegetation in 
the phases following the event, it provides a contribution to the 
SDGs (Sustainable Development Goals) 15 (Life on land). 
2.1.2 CLEAR-UP (Control of Landfill and Environment 
Assessment Research Using Prisma) project aims to use 
PRISMA data for the identification of soil and air pollutants 
produced by landfills (Figure 3), to map heavy metals, harmful 
emissions (CH4, CO2, Nox) and vegetative stress.  
The implementation of in situ and EO data management system 
is foreseen. 
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Figure 3 PRISMA image acquired on the Melfi (PZ, Basilicata 

Region, Italy) site with the relevant sampling points. 
 

The CLEAR-UP project partners include the Università Sapienza 
di Roma Scuola di Ingegneria Aerospaziale (UniSapienza-SIA), 
Consiglio Nazionale delle Ricerche-Istituto di Metodologie per 
Analisi Ambientale (CNR-IMAA), SERCO Italia S.p.A., 
Euro.Soft s.r.l. and the Aerospace Engineering Faculty-
University of Brasilia (AEF-UNB). 
CLEAR-UP is a useful project for monitoring legal and illegal 
landfills, contributing to the SDGs 11 (Susteinable cities and 
communities). 
CLEAR-UP will span two years, starting from October 2022. 
 
2.1.3 HYPERECOS (HYPERspectral prisma data for 
ECOSystem functions, habitats, and diversity characterization) 
project proposes to develop new algorithms for mapping and 
monitoring ecosystem functions, habitats and their biodiversity, 
through the use of PRISMA hyperspectral data. This project is 
focused on the use of PRISMA data (Figure 4) - alone or in 
conjunction with other systems - for analyzing ecosystems and 
get a classification of habitats at fine scale, a retrieval of 
ecosystem functional properties and a correlation with biological 
by estimating biophysical parameters diversity in various 
ecosystems types: forests, alpine pastures and wetlands. 

 
Figure 4 PRISMA SWIR data, in RGB Bands 50-125-200, of 
National Park Hunsrück-Hochwald (Germany), 2020-09-11 

 
The HYPERECOS project partners include Università della 
Tuscia – Dipartimento Scienze Agrarie e Forestali (UniTUS 
DIBAF), EURAC RESEARCH, TERRASYSTEM s.r.l., 
Consiglio per la ricerca in agricoltura e l’analisi dell’economia 
agraria (CREA-FL) and the Trier University, Environmental 
Remote Sensing and Geoinformatics, Germany (UniTrier). 
HYPERECOS is a useful project for developing methods to 
process and analyse different EO data in order to define 
experimental protocols able to highlight functional traits and 
habitat diversity. HYPERECOS contributes to the SDGs 15. 
HYPERECOS will span two years, starting from May 2022. 
 

2.1.4 PRIS4VEG (Sviluppo di algoritmi per la stima di 
parametri funzionali della vegetazione terrestre da dati PRISMA 
in ambito agro-forestale) project is aimed at creating the 
methodological basis for the development of a PRISMA data 
processing chain for i. the generation of level 3 products related 
to vegetation, i.e. biophysical/biochemical parameters derived 
from PRISMA reflectance data (At-surface Reflectance, L2D 
product) ii. the evaluation of the contribution of these L3 level 
products in the generation of higher level products (L4), i.e. 
products that are the result of further processing levels (e.g. 
statistical analysis or multi-level integration) or assimilation into 
agronomic/environmental modelling. In the Figure 5, the Ticino 
Regional Park that is one of the PRIS4VEG study site, is 
represented. 
 

 
Figure 5 PRIS4VEG study area, Ticino Regional Park 

(Lombardy Region, Italy). 

The achievement of these objectives will be guaranteed  
development of algorithms for the estimation of functional 
parameters of terrestrial vegetation from PRISMA data in the 
agro-forestry sector. 
The PRIS4VEG project partners include the Università degli 
Studi di Milano–Bicocca (UNIMIB), CNR-Istituto per il 
Rilevamento Elettromagnetico dell’Ambiente (IREA), CNR-
Istituto di Metodologie per Analisi Ambientale (CNR-IMAA), 
Università degli Studi della Tuscia - Dipartimento di Scienze 
Agrarie e Forestali (DAFNE), Natural resources department, 
Faculty of Geoinformation Science and Earth Observation, 
University of Twente. 
PRIS4VEG is a useful project for demonstrating the value of such 
products for environmental monitoring applications and in 
support of sustainable agro-practices, contributing to the SDGs 
12 (responsible production and consumption) and 15, indirectly 
to the SDGs 2. 
PRIS4VEG will span two years, starting from April 2022. 
 
2.1.5 PRISMA-FOREST-NC (Improved estimation of forest 
C sequestration from PRISMA retrieval of canopy N and 
photosynthetic potential) project. The main goal of PRISMA-
FOREST-NC is to estimate leaf nitrogen concentration, canopy 
nitrogen content, canopy maximum carboxylation rate (potential 
CO2 gain) and Leaf Area Index (LAI). 
This research is aimed at: 
- develop innovative methods for estimating the 

concentration and content of nitrogen (N) and 
photosynthetic potential (Vcmax, maximum carboxylation 
rate) of the canopies of forest covers, through the integration 
of PRISMA hyperspectral images with data from two 
monitoring networks (International Co-operative 
Programme on Assessment and Monitoring of Air Pollution 
Effects on Forests, ICP Forests); 

- evaluate the errors associated with the decoupling between 
the ICP Forests spatial resolution (5 plants), the PRISMA 
images (30 m) and the footprint of the FLUXNeT 
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measurements (200-500 m), through two dedicated 
campaigns; 

- demonstrate the impact of the information thus obtained on 
the forecast of the financial statements carbon (C) of forest 
covers, through the assimilation of PRISMA images in a 
biogeochemical model of the ecosystem, and the analysis of 
the greater predictive capacity compared to a baseline; 

- demonstrate the relevance of using PRISMA images 
compared to Copernicus images Sentinel 2 at lower spectral 
resolution, analyzed with the same work chain.  

 
The PRISMA-FOREST-NC project partners include Alma Mater 
Studiorum-Università di Bologna,-Dipartimento Scienze e 
Tecnologie AgroAlimentari (UNIBO-DISTAL), CNR-Istituto 
per la BioEconomia (IBE) and the Istituto di Fisica Applicata 
“Nello Carrara” (CNR-IFAC). 
PRISMA-FOREST-NC is a useful project for demonstrating the 
relevance of the use of PRISMA images in comparison to other 
EO data, analysed with the same work chain. PRISMA-
FOREST-NC contributes to the SDGs 12, 13 (climate action) and 
15. 
PRISMA-FOREST-NC will span two years, starting from May 
2022. 
 
2.1.6 TEHRA (Topsoil properties Estimation from 
Hyperspectral Remote sensing for Agriculture) project aims at 
develop methods and algorithms for PRISMA product generation 
to monitor and map soil properties of agronomic and 
environmental interest, in support of more sustainable and 
climate-smart precision agriculture strategies and environmental 
policies. The main objective of TEHRA project is to study 
methods and algorithms to estimate topsoil parameters (Casa et 
al. 2023) of agronomic interest: soil texture (clay, sand, silt), SOC 
(Soil Organic Carbon), soil moisture, Available Water Content 
(AWC), soil nutrients such as Potassium, Phosphorous. 
 

 
Figure 6 Mapping of clay (left) and soil organic carbon (right) 
on the Jolanda di Savoia farm from PRISMA using a multi-date 

approach 

The Figure 6 shows the results of the mapping of topsoil 
properties obtained for the area of Jolanda of Savoia Bonifiche 
Ferraresi farm, using a multi-date approach. 
 
The TEHRA project partners include Università degli Studi della 
Tuscia, Dipartimento di Scienze Agrarie e Forestali (UNITUS- 
DAFNE), e-GEOS, CNR-Istituto di Metodologie per Analisi 
Ambientale (IMAA) and the Tel Aviv University (TAU). 
TEHRA is a useful project for developing methods and 
algorithms for the estimation of soil properties of agronomic and 
environmental interest from PRISMA satellite hyperspectral 
data, that could support: 1) the adoption of more sustainable and 
climate-smart farming practises, e.g. through the implementation 
of precision agriculture applications; 2) monitoring in support of 
agricultural and environmental policies, e.g. related to climate 
change and for the encouragement of the adoption of practices 

preserving soil health. TEHRA project contributes directly to the 
SDGs 12 and 13, indirectly to the SDGs 1 and 2. 
TEHRA will span two years, starting from May 2022. 

 
3. CONCLUSIONS 

The main scope of the PRISMA SCIENZA programme, funded 
by ASI, is the use of PRISMA data for a wide range of research 
and applications, to foster the integrated use of PRISMA data in 
conjunction with data from other missions and sources, 
This paper summarized the primary goals and activities of 
PRISMA SCIENZA programme mainly in the field of vegetation 
with agro-forest-sector analysis. As hyperspectral data contains 
rich features in the spectral domain, the vegetation monitoring is 
an important research field to explore the full capabilities of the 
PRISMA hyperspectral sensor, for example, testing new 
algorithms for feature selection, model and map specific 
vegetation characteristics, such as biophysical and biochemical 
quantities, monitor stress factors such as nitrogen deficiency, 
moisture deficiency, or drought conditions. 
Numerous PRISMA SCIENZA projects, although they are in a 
preliminary stage, are demonstrating the added value provided by 
PRISMA data acquired ad hoc during the project activities 
lighting also the contribution that the exploitation of this data can 
provide to achieve some of the goals of the Agenda 2030. More 
in general, it is worth of mention, that all the projects included in 
this initiative provide also a contribution to SDG 4 (quality 
education) allowing to support training of specialist profiles. 
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ABSTRACT: Artificial passive reflectors are often employed as stable radar targets in many Interferometric Synthetic Aperture 
Radar (InSAR) applications. Depending on the shape of radar targets, as well as on SAR satellite characteristics, the pointing 
satellite-to-target direction able to guarantee the best radar detectability can vary. As the matter of fact, Line-Of-Sight (LOS) 
projections of SAR missions depends on the latitude, as well as on the characteristics of SAR missions (e.g., satellite orbits, passes, 
antenna orientation, incidence angle). The present study aims at investigating the ability of the quad-corner reflector (quad-CR), 
which is a passive reflector able to backscatter the incident radar waves over a wide range of radar viewing angles in both elevation 
and azimuth, to operate as coherent radar target in InSAR application at mid-latitude considering LOS projections of currently 
operating X-Band SAR satellite missions. To do this, two steps have been carried out: 1) simulations of X-Band SAR missions to 
retrieve LOS projections for an area of interest located in Central Italy; 2) simulations in elevation and azimuth of radar 
backscattering of quad-CRs. As a results of such comparison, it emerges the capability of this radar target to ensure a good radar 
backscattering covering many LOS directions in accordance with currently operating X-Band SAR missions.  

1. INTRODUCTION

In the field of Interferometric Synthetic Aperture Radar 
(InSAR), the absence of stable and coherent natural targets can 
pose a threat to the effectiveness of its application (Ferretti et 
al., 2001). Radar reflectors, which can be either active or 
passive, are designed to enhance the radar backscattering from 
the target to radar platforms. Their ability to backscatter radar 
signals is defined monostatic Radar Cross Section (RCS) 
expressed in dBsm, which represent one of the main parameter 
that characterizes a radar reflector (Knott, 1993). Considering 
X-Band applications, relatively compact passive radar reflectors
can provide a significant monostatic RCS. As a result, passive
radar reflectors are more employed in X-Band SAR applications
than active ones due to their and low-cost and effectiveness in
terms of construction and maintenance.
Depending on the installation latitude of radar target, as well as
on the characteristics of SAR missions, such as satellite orbits
and incidence angles, many satellite-to-target Line-Of-Sight
(LOS) projections exist. Concerning on X-band SAR missions
and regarding satellite orbits, they can be either Sun-
Synchronous Orbit (SSO) or Mid-Inclination Orbit (MIO)
depending on the inclination angle of the orbital plane. SSO
orbits have inclinations slightly higher than 90 degrees, while
MIO orbits are around 45 degrees. To whom regards to
incidence angles, which represents the angle between the
vertical line and the Satellite-to-Target LOS direction, it can
vary according to many factors (e.g., SAR imaging mode,
topographic variations). Moreover, LOS projections can differ
by the satellite passes, which can be either ascending (asc) or
descending (desc), and the orientation of SAR antenna, which
can be only right-looking, only left-looking or both right- and
left-looking.
In the light of the above and concerning currently operating X-
Band SAR missions, this study aims at investigating LOS
projections at mid-latitude in comparison with a radar reflector
able to guarantee wide range of radar viewing angles in both
elevation and azimuth, which is the quad-Corner Reflector

(quad-CR) (Doerry, 2014). As known, depending on the shape 
of radar targets, the pointing target-to-satellite direction able to 
guarantee the best radar detectability can vary both in elevation 
and in azimuth. Among the more diffuse shape of artificial radar 
reflectors in InSAR application, there is the trihedral CR 
(Sarabandi & Tsen-Chieh Chiu, 1996). As the matter of fact, it 
has the ability to guarantee a good RCS targeting the 
backscattering in the desired direction with a good radar 
detectability, that is about 40° of both azimuth and elevation 
angles at -3 dBsm (Doerry, 2014). However, due to its shape, it 
is not able to cover more radar viewing angles. Thus, in the light 
of currently operating X-Band SAR missions and derived 
multiple LOS projections at the same installation latitude of 
radar target, it raises the need to install artificial reflectors, such 
as the quad-CR, able to guarantee a good radar detectability in 
more LOS directions with the same radar reflector. Moreover, 
as at mid-latitudes X-band SAR satellites with MIO orbits has 
LOS projections with a strong vertical (Up-Down) and 
horizontal (North-South) components, and ones with SSO orbits 
has LOS projections with a strong vertical (Up-Down) and 
horizontal (East-West) components, a 3D displacement vector 
can be obtained by the InSAR processing of LOS projections 
derived by SAR missions with both SSO and MIO orbits. 
This study has been conducted with reference to an Area Of 
Interest (AOI) located in Central Italy (Rome, 41°54' latitude N) 
by simulating satellite orbits of currently operating X-band SAR 
missions with both SSO and MIO orbits. As a consequence, 
horizontal LOS projections have been derived at the selected 
latitude. Next, monostatic RCSs of quad-CRs with triangular 
plates have been simulated both in elevation and azimuth, while 
considering various geometric measures of base and height. The 
results of this comparison between LOS projections and 
monostatic RCSs of quad-CRs have been discussed highlighting 
their relevance in current InSAR applications. 
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2. MATERIALS AND METHODS 

As already highlighted, this study provides a comparison 
between horizontal LOS projections derived by simulations of 
SSO/MIO orbit and RCS simulations of quad-CRs with 
triangular plates with different L/h ratios (Figure 1). 

 
Figure 1: Simulated passive radar reflector: Quad-CR (h 

= height; L = base; φ = azimuth angle; θ = 
elevation/incidence angle). 

 
Orbit simulations have been carried out through the software 
Analytical Graphics, Inc. Satellite Tool Kit (AGI-STK) 
considering orbit inclinations of currently operating X-Band 
SAR satellite missions (see Table 1). Reference values of orbit 
inclinations have been chosen among ones of currently 
operating SAR satellite missions: 

• 97.4° for SSO orbits; 
• 44° and 53°, respectively, for MIO orbits. 

 
Table 1: Main currently operating and concluded(*) X-
Band SAR satellite missions (source: www.eoportal.org). 
 

Satellite 
mission 

Orbit 
Inclination 

Frequency 
(GHz) Source 

Capella-6 53.0° 
(MIO) 

9.4 - 9.9 Capella Space 
(US) 

Capella-7 and 
Capella-8 

97.4° 
(SSO) 

Capella-9 and 
Capella-10 

44.0° 
(MIO) 

Cosmo-
SkyMed 

97.86° 
(SSO) 9.60 Italian Space 

Agency 

KOMPSAT-5 98.1° 
(SSO) 9.66 

Korea 
Aerospace 
Research 
Institute 

SAR-Lupe 
Constellation 

98.2° 
(SSO) 9.65 

German 
Ministry of 

Defence 
SIR-C/X-

SAR* 
57° 

(MIO) 9.6 DLR, ASI, 
NASA-JPL 

TerraSAR-X 
TanDEM-X 

97.44° 
(SSO) 9.65 German Space 

Agency 
UMBRA 

constellation 
97.4° 
(SSO) 9.80 Umbra Space 

(US) 

RISAT-2* 41° 
(MIO) 9.59 

Indian Space 
Research 

Organisation 

SEOSAR/Paz 97.44° 
(SSO) 9.65 Hisdesat 

(Spain) 

Consequently, horizontal LOS projections of simulated 
SSO/MIO orbits have been derived with reference to the 
latitude of the AOI located in Central Italy (Rome, 41°54' 
latitude N). Regarding each horizontal LOS projection, figure 2 
and table 2 show track angles, which represent the angles 
between the East direction and the projection on the ground of 
the Satellite-to-Target LOS direction, measured clockwise 
(Capes & Passera, 2022). 
 
Table 2: Simulated track angles (measured clockwise 
with reference to the East) for X-Band SAR satellite 
missions with SSO and MIO orbits at the AOI latitude 
(A=asc; D=desc; R=right; L=left). 
 

Orbit 
inclination Inclination 

Pa
ss

es
 

Lo
ok

 

LAT 
 41°54’ 
Track 
angles 

(degrees) 

MIO 44° 
A R -106 

L 74 

D R -74 
L 106 

MIO 53° 
A R -128 

L 52 

D R -52 
L 128 

SSO 97.4° 
A R 167 

L -13 

D R 13 
L -167 

 

 
Figure 2: Horizontal LOS projections related to simulated 

SAR satellite missions operating with different orbit 
inclinations (SSO-97.4°, MIO-53° and MIO-44°) with 

reference to the AOI latitude (Rome, 41°54' latitude N). 
Track angles (measured clockwise with reference to the 

East) are in red (A=asc; D=desc; R=right; L=left). 
 
The RCS simulations for quad-CRs with triangular plates have 
been carried out using a 3D electromagnetic software, 
specifically CST Studio Suite® (Dassault Systèmes, 2020). 
These simulations covered various viewing angles in both 
elevation (θ) and azimuth (φ). The selected reference frequency 
for these simulations is 9.66 GHz, in line with currently 
operating X-Band SAR missions (see Table 1). 
A reference value of 38° has been chosen as reference incidence 
angle. It represents the average incidence angle of X-Band SAR 
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missions listed in Table 1. It is worth noting that incidence 
angles in these missions may vary between 10° and 70°. 
Monostatic RCS simulations have been performed for quad-
CRs varying the L/h ratios, which permits the precise vertical 
targeting of the RCS peak. Monostatic RCS simulations of 
quad-CR with various L/h ratios have been carried out in both 
elevation (at 1° intervals for θ ranging from 0° to 90°) and 
azimuth (at 1° intervals for φ ranging from 0° to 360°). 
 

3. RESULTS AND DISCUSSION 

Figure 3 depicts the results of RCS simulations for quad-CRs 
with various L/h ratios. It illustrates the incidence angles, 
measured with reference to the Zenith, associated with peak 
RCS as the L/h ratio varies. Moreover, it shows the vertical 
variation of radar detectability, considered as -3 dBsm 
(Corenman et al., 1995), when the L/h ratio of quad-CRs 
changes. 

 
Figure 3: Incidence angles (see figure 1) and radar 

detectability (-3 dBsm) related to peak RCS of simulated 
quad-CRs with various L/h ratios. 

 
It emerges that as the ratio between the base (L) and the height 
(h) (L/h) decreases, which means increasing the height of the 
quad-CR relative to the base L, the incidence angle related to 
the peak RCS shifts vertically towards sharper angles. When the 
L/h ratio is 1, the angle associated with the peak RCS is 
approximately 54°, whereas the angle is ~38°, which 
corresponds to the reference incidence angle considered in this 
case study, when the L/h ratio is 1/3. Moreover, it arises that by 
decreasing the L/h ratio of the quad-CR, there is a slight 
increase in vertical radar detectability, which changes from 
approximately 32° for an L/h ratio of 0.5 to values of about 44° 
with a ratio of 0.2. In particular, for L/h = 1, vertical radar 
detectability is approximately 38°, while for L/h = 1/3, it is 
about 43°. 
Considering a quad-CR with a L/h ratio equal to 1/3 (#quad-
CR1), which target the RCS peak in the desired vertical 
direction (~38°), figure 4 shows the horizontal RCS values in 
comparison with the horizontal LOS projections derived by 
simulations of SSO/MIO orbits at the selected AOI latitude in 
Central Italy (Rome, 41°54' latitude N). Figure 4 even shows 
the width of the main lobe (-3 dBsm) that represents the 
reference value of the radar detectability (Corenman et al., 
1995). Radar detectability of #quad-CR1 with reference to ~38° 
as incidence angle is approximately 176° represented by four 
main lobes of ~44° symmetrically and mirror-like oriented, 
which means roughly 49% of the overall φ. 
When comparing LOS projections of SSO/MIO orbits with 
reference to the AOI latitude and the RCS simulation of the 
#quad-CR1, the best orientation of this radar reflector results 0° 
North in the horizontal plane. The selected orientation 
effectively guarantees a good RCS to LOS projections with 
strong E-W and N-S components targeting SSO-97.4° (losing 
approximately 0.6 dBsm with reference to the peak RCS) and 

MIO-44° orbits (losing about 1.2 dBsm with reference to the 
peak RCS). 
As shown in figure 4, LOS projections related to MIO-53° are 
not targeted. As it is sufficient to cover only one LOS projection 
with a strong N-S component (in this case LOS projections 
related to MIO-44°) for any 3D displacement-related InSAR 
analysis, this does not result as a limiting factor. 
Thus, the #quad-CR1 demonstrates its ability to be employed as 
coherent radar target in InSAR processing related to both SSO 
and MIO orbits, attempting to the assessment of the 3D vector 
related to land displacement. 
To improve horizontal radar detectability by expanding the 
azimuth angle coverage and consequently increasing the 
likelihood of targeting more LOS projections, it is necessary to 
raise the L/h ratio.  
 

 
Figure 4: Comparison between the horizontal monostatic 
RCS of quad-CR with L/h =1/3 - #quad-CR1 (in red RCS 
with reference to peak RCS), radar detectability (in blue), 
and LOS projections of simulated SSO/MIO orbits (in 
black). 
 
Figure 5 displays the horizontal monostatic RCS considering a 
quad-CR with a L/h ratio equal to 1 (#quad-CR2) with reference 
to an incidence angle of ~38°. It is worth noting that RCS 
values are reported with reference to the relative peak RCS at 
~38°, as the absolute peak RCS occurs at ~54° and is higher (+2 
dBsm) than the relative RCS peak. As shown, radar 
detectability of #quad-CR2 with reference to ~38° as incidence 
angle increases with respect to the #quad-CR1. As the matter of 
fact, radar detectability is approximately 204° with four main 
lobes of ~51°, which means around 57% of the overall φ. 
However, it has a slight reduction in radar detectability in 
elevation, approximately by 5° (Figure 3). 
Although there is an increase of about 7° per main lobe for a 
total gain of about 28°, which increases the overall azimuth 
coverage of the quad-CR, as in the previous case (Figure 4) the 
coverage of the overall LOS projections related to the 
considered SSO and MIO orbits is unchanged at the AOI 
latitude. Moreover, in this case it is important to keep in mind 
that the #quad-CR2 should be sized considering the loss of 2 
dBsm due to the difference between the absolute and relative 
RCS peaks. 
However, in the field of InSAR processing, these radar targets 
are built to be installed in contexts such as slopes and buildings. 
Thus, radar reflectors with a lower L/h ratio (#quad-CR2) can 
be preferred because it results less bulky, as well as it can have 

Comparing line-of-sights of current SSO/MIO X-band SAR missions at mid-latitude and Radar cross sections of Quad-corner reflectors 

155



 

a good stability and a lower sail effect with regard to wind 
action. 
 
 
 

 
Figure 5: Comparison between horizontal monostatic 
RCS of quad-CR with L/h =1 (in red relative RCS), radar 
detectability (in blue), and LOS projections of simulated 
SSO/MIO orbits (in black). 
 

4. CONCLUDING REMARKS 

This work aims at investigating the ability of the quad-CR to 
operate as coherent radar target in InSAR application 
considering LOS projections of currently operating X-Band 
SAR missions with reference to an AOI located in central Italy. 
As a result, the main aspects related to the installation of quad-
CRs in comparison with simulated LOS projections of currently 
operating X-Band SAR missions with SSO/MIO orbits at the 
reference latitude (Rome, 41°54' latitude N) have been shown.   
First of all, quad-CR results as an easy-to-install radar target, 
requiring only a horizontal plane and a horizontal installation 
angle. It is also capable to cover more horizontal directions if 
compared with a classic trihedral CR. As the matter of fact, 
quad-CR has four main lobes of more than 40° symmetrically 
and mirror-like oriented, which means approximately 50% of 
the overall azimuth (φ) angles, whereas the trihedral CR has 
only one lobe of about 40° in both elevation and azimuth. Thus, 
quad-CR demonstrates its ability to cover more LOS projections 
at the same location derived by many SSO and MIO orbits 
attempting to the assessment of the 3D vector of land 
displacement. Moreover, due to its shape, quad-CR has the 
same phase centre that is independent from LOS directions. 
Then, the present work shows the results of RCS simulations 
with regards to a reference incidence angle (38°) derived by 
currently operating X-Band SAR missions. RCS simulations 
have been carried out considering quad-CRs with many L/h 
ratios, in particular showing advantages and disadvantages 
while considering a quad-CR with a L/h ratio equal to 1/3 
(#quad-CR1), as well as one with a symmetrical structure (L/h = 
1 - #quad-CR2).  
As a result of such comparison, it emerges that #quad-CR1 is 
able to target the peak RCS in the desired incidence/elevation 
angle with a good horizontal radar detectability (~176°) and a 
vertical radar detectability (~43°) greater than one of #quad-
CR2 (~38°). However, with reference to the horizontal radar 
detectability, #quad-CR2 has a greater radar detectability 
(~204°). Moreover, it is less bulky than #quad-CR1, as well as it 
can have a good stability and a lower sail effect with regard to 

wind action. In the light of the above, #quad-CR2 seems to be 
more effective than #quad-CR1. It is worth noting that #quad-
CR2 has to be sized correctly considering the loss of RCS due 
to the difference between the relative and the absolute RCS 
peak, which is about 2 dBsm. 
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ABSTRACT: 

Assessment and monitoring of deformations imposed on principal linear infrastructures by natural and man-made factors and 
addressing the phenomenon play an important role in the management of these assets and support decision-making policies in the 
context of risk management and mitigation. This study utilizes a Machine Learning (ML) approach for deformation analysis of 
highways and railways of the Lombardy region, Italy, by combining the deformations derived from InSAR analysis and geo-
environmental characteristics. The vertical displacement velocities (mm/year) extracted from European Ground Motion Service 
(EGMS) datasets covering these infrastructures are utilized as the target input deformation data. The conditioning features considered 
in this work include elevation, slope angle, slope aspect, precipitation, curvature, solar radiation, and Normalized Difference Vegetation 
Index (NDVI). Several ML models with different characteristics have been exploited, including Decision Tree (DT), Linear regression 
(LR), Light GBM (LG), XGBoost (XG), Random Forest (RF) and Extra Trees (ET). After evaluating the accuracy of the trained 
models (using Receiver Operating Characteristic (ROC) and Spearman criteria), the cause-effect relationship has been established and 
the major triggering factors have been detected (using SHapley Additive exPlanations (SHAP) and Permutation Feature Importance 
(PFI)). The results showed that XG, RF and ET are respectively the most accurate models for this type of analysis. Also, it has been 
seen that rainfall is the most influencing cause of the detected deformation, together with the high importance of Elevation for highways 
and Solar radiation for railways.  

1. INTRODUCTION

Linear Infrastructures, characterized by a high level of systemic 
vulnerability (Hellström, 2007; Penny et al., 2018), are subject to 
several environmental and geological hazards. In the context of 
risk assessment and management, monitoring these important 
assets plays an important role in establishing maintenance 
planning and preventive measures against disruptive phenomena, 
such as ground deformation due to natural and anthropogenic 
causes. In-situ and traditional infrastructure monitoring 
approaches, such as high-precision levelling measurements 
(Sevil et al., 2021), are known to be costly and time-consuming. 
On the other hand, satellite Remote Sensing (RS) techniques, 
such as Synthetic Aperture Radar (SAR) Interferometry 
(InSAR), are recognized to be promising tools for monitoring and 
condition assessment of infrastructures (Macchiarulo et al., 
2022). 
As an essential branch of the Copernicus Land Monitoring 
Service (CLMS), the European Ground Motion Service (EGMS) 
provides freely accessible ground deformation data spatially 
covering almost all European countries. The deformation time 
time-series contained in the datapoints are acquired based on 
InSAR processing of Sentinel-1 images from Jan 2016 to Dec 
2021 and from Jan 2018 to Dec 2022 in first and second updates, 
respectively (up to the publication date of this work) (Crosetto et 
al., 2020; Costantini et al., 2022). The dataset has been 
successfully used in several cases such as deformation analysis 
of critical linear infrastructures (Eskandari and Scaioni, 2023) 
and other applications (Crosetto and Solari, 2023). 
The Lombardy region is well-known to be prone to serious 
hydrogeological hazards, such as landslides, particularly during 
heavy rains and snow melts, which can cause damage to the 
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infrastructure (Antonielli et al., 2019). Being located in a 
seismically active area, and the highways passing through several 
zones that are at risk of earthquakes(Garbin and Priolo, 2013), 
can pose a risk to the stability of the infrastructure such as bridges 
and tunnels. High groundwater level and soil instability is an 
ordinary condition in the region, causing ground settlements 
(Gattinoni and Scesi, 2017; Ikuemonisan et al., 2021). These 
conditions would result in displacement on the infrastructures, 
particularly in areas where the soil is composed of soft or poorly 
compacted material. 
In this study, InSAR-derived deformation dataset detected on and 
nearby of the principal linear infrastructures, geo-environmental 
parameters, and Machine Learning (ML) techniques have been 
integrated to address the major causes of this complex 
phenomenon, specifically emphasizing railway and highway in 
Lombardy region, Italy. The study provides a well-stablished 
insight on the appropriate ML models to be used for this type of 
analysis (by careful evaluation of the accuracy of the models) and 
ground deformation-triggering factors for the principal linear 
infrastructures in the region (by utilizing reliable feature 
importance detection algorithms). 

2. MATERIAL AND METHOD

This work targets the highways (as the principal roads) and 
railways of Lombardy region, North of Italy, to search for the 
major causes of deformation imposed to these linear 
infrastructures. In this section, the inputs used for the general 
analysis, the Machine Learning (ML) techniques, and the 
performed analyses to evaluate the ML techniques and address 
the major factors are described. Figure 1 show the overall 
workflow of this work.  
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2.1 Inputs 

The geo-environmental input of this analysis is composed of 
Elevation (derived from 20𝑚 × 20𝑚 Digital Elevation Model 
(DTM) of Lombardy region), slope angle, slope aspect, curvature 
(these last three are obtained through spatial analysis of DTM), 
rainfall, Normalized Difference Vegetation Index (NDVI) 
(spatial resolution of 300𝑚 from Copernicus Global Land 
Service) and solar radiation, to be correlated with vertical ground 
deformation rate [mm/year] from Ortho (L3) products of EGMS 
dataset, detected on these linear assets by Sentinel-1 InSAR 
analysis.  EGMS L3 products provide valuable information on 
the vertical (up-down) and horizontal (east-west) deformations 
by using the Line of Sight (LOS) measurements (considering 
both ascending and descending satellite orbit tracks) of GNSS-
calibrated InSAR measurements from European Space Agency 
(ESA) Sentinel-1 mission. The calibrated and processed 
Sentinel-1 datapoints (L2B products) have been downsampled on 
a uniform grid 100𝑚 spatial resolution to form L3 products. 
Therefore, the L3 datapoints used in this study, covering the 
highways and railways, may contain deformation information 
from a small neighbourhood surrounding the assets.  

2.2 Machine Learning Approach 

In order to establish the relationship between the geo-
environmental factors (features) and vertical ground deformation 
(target) of railways and highways, multiple machine learning 
techniques with different characteristics are exploited in this 
study, including Decision Tree (DT), Linear Regression (LR), 
Light GBM (LG), XGBoost (XG), Random Forest (RF) and 
Extra Trees (ET) (interested readers may refer to these work for 
more information and application of the models (Mahesh, 2020; 
Shehadeh et al., 2021; Shebl et al., 2023)). It should be noted that 
the Train-Validation ratio is 7:3 for all the training operations, 
and the reason for this selection is the higher performance of this 
ratio (Nguyen et al., 2021) for this type of analysis.  
Concerning DT and ET methods, it is suggested not to be used 
when a strong relationship exists among the conditioning factors. 
One effective way to check this condition is to use multi-
collinearity analysis, which serves as a crucial operation in data 
preprocessing, particularly in ground deformation analyses. In 
this study, to perform multi-collinearity analysis and evaluation 
of inter-factor relationships, tolerance (TOL) and variance 
inflation factor (VIF) parameters are used as the reciprocals.   

2.3 Performance and Importance Analyses 

In machine learning, the Receiver Operating Characteristic 
(ROC) curve is a graph showing the performance of a 
classification model at all classification thresholds. To compute 
the points in an ROC curve, it is possible to evaluate a logistic 
regression model many times with different classification 
thresholds, but this would be inefficient. Fortunately, there's an 
efficient, sorting-based algorithm that can provide this 

information, called Area under the ROC Curve (AUC). 
Theoretically, the ROC curve and AUC based on the validation 
dataset are known as the predictive rate curve (Hong et al., 2015; 
Tacconi Stefanelli et al., 2020). 
Besides AUC, the Spearman rank correlation coefficient is used 
to evaluate the inter-correlation between the ML Models in terms 
of the obtained results. The coefficient, ranging between 0 and 1, 
is a statistical measure used to evaluate the strength and direction 
of the monotonic relationship between two variables (Xiao et al., 
2016). It is often used to compare the performance of machine 
learning models by calculating the correlation between the 
predicted values and the actual values. A higher correlation 
indicates a better fit between the predicted and actual values and 
thus a more accurate model (Ali et al., 2017). 
After evaluating the performance and reliability of ML models, 
it is crucial to assess the contribution of each conditioning factor 
(features) in the established model for each model. The operation 
involves identifying the relative importance (global impact) of 
each feature used in a predictive model, in terms of its 
contribution to the overall accuracy of the model. It allows for 
determining which features are the most relevant for predicting 
the target variable and gaining insights into the underlying 
relationships and patterns in the data, with a high potential to be 
particularly useful for understanding complex models. Among 
the variety of simple to complex methods for feature importance 
analysis, two well-known techniques are used which are 
described in the following (Scavuzzo et al., 2022; Kaneko, 2022): 
 SHapley Additive exPlanations (SHAP): the algorithm utilizes

a game theory-based method that measures the contribution of
each feature to the model's prediction for a particular data
point. It computes the average impact of each feature across all
possible combinations of features and assigns a score to each
feature based on its contribution to the model's output.

 Permutation Feature Importance (PFI): the method involves
shuffling the values of each feature in the dataset and
measuring the effect on the model's performance. The higher
the drop in performance after shuffling a feature, the more
important that feature is considered to be.

3. RESULTS

As the first data analysis to check the suitability of the factors for 
DT and ET methods, the multi-collinearity analysis results are 
reported in Table 1. A TOL value greater than 0.1 typically 
indicates independence of the factor under examination from the 
other factors (Shang et al., 2023), and as indicated in the results, 
it can be understood that the data are appropriate to be fed to 
algorithms.  

Table 1. Multi-collinearity results 

Factors highway railway 

TOL VIF TOL VIF 

Elevation 0.281 3.556 0.272 3.678 

Slope 0.645 1.551 0.311 3.219 

Aspect 0.994 1.006 0.993 1.008 

Curvature 0.983 1.017 0.997 1.003 

Solar radiation 0.651 1.537 0.744 1.344 

Rainfall 0.293 3.417 0.570 1.754 

NDVI 0.978 1.023 0.899 1.113 

Figure 1. The general workflow adopted in this work. 
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3.1 ML Performance 

Table 2 lists the Area Under ROC Curve (AUC) values for 
different ML models (considering both highway and railway 
cases). In general, it has been shown that an AUC of 0.5 suggests 
no discrimination, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 
is considered excellent, and more than 0.9 is considered 
outstanding. As it can be understood from Table 1, after the 
XgBoost model that has the best performance (acceptable for 
highways and excellent for railways), RF and ET show better 
accuracy, respectively, than other models. It should be noted that, 
in general, the performance for the railway network is always 
better than the case of the highway, which announces the better 
correlation between geo-environmental factors and ground 
deformation phenomena related to railways. It may be related to 
the better backscattering properties of railway networks (than 
highways,  
mostly built from asphalt), and consequently, more accurate 
InSAR-derived deformations on these assets. 
Figure 2 shows the matrix of Spearman rank correlation 
coefficient values of models for both cases of highway and 
railway networks. Here, again, the best intercorrelation can be 
seen among XG, RF and ET for both cases, and the overall higher 
performance for the railway networks is obvious. LR model 
shows a reasonable correlation with the above-mentioned three 
models in terms of the final output of the model, which enhances 
the consistency between the outcomes of Table 2 and Figure 2. 
The ensembles model is also considered here which is a weighted 
combo of XG and RF models (weights of 5 and 1, and weights of 
2 and 1 for highway and railway cases, respectively).  

Table 2. AUC value for the ML models 

Models highway railway 

Decision Tree 0.50 0.73 

Linear Regression 0.60 0.76 

LightGBM 0.70 0.72 

XgBoost 0.78 0.80 

Random Forest 0.77 0.78 

ExtraTrees 0.73 0.78 

3.2 Factor Importance Analysis 

This section presents the results of the crucial step of feature 
(factor) importance. This enables to identify the condition factors 
having more correlation with the ground deformation occurrence 
to the linear infrastructure, according to the decision made by 
each model after the training. Figure 3 illustrate the global 
relative feature importance detected by Auto ML toolbox of 
ArcGIS Pro software for each ML model for both railway and 
highways. For highways, rainfall and elevation are selected to be 
the most affecting factors by the set of, in the order of importance, 
[XG, ET, LF, RF] and [LG, DTLR, XG], respectively. NDVI and 
slope angle are identified to be the next affecting factors, detected 
by both XG and LG models. On the other hand, almost all the 
models agree with the high importance of rainfall intensity in 

Figure 2. Spearman rank correlation coefficient values for a) 
highways and b) railways 

Figure 3. Global relative feature importance according to 
each ML model by Auto ML toolbox of ArcGIS Pro for a) 

highways and b) railways 

a) 

b) 

a) 

b) 

Assessment of linear infrastructure deformation using EGMS-InSAR. Data and geoenvironmental factors through machine learning: Railways and highways 
of Lombardy region, Italy
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terms of the correlation with ground deformations imposed on 
railways, with solar radiation and elevation ranked as the 
subsequent influencing factors identified by LR and XG, 
respectively. The rank rising of Solar radiation (from highway to 
railway) and the almost neutral effect of aspect and curvature can 
be of interest in this analysis.  
Regarding SHAP and PFI criteria, Table 3 summarizes the results 
in terms of the detection of the most affecting factors. PFI agrees 
with the findings from Figure 3 concerning the very high 
importance of combined rainfall-elevation for highways and 
rainfall for railways. SHAP detects the single rainfall intensity 
factor (for all the ML models) as the most affecting feature in the 
case of highways, which neglects the effect of elevation, NDVI 
and slope (compared to Figure 3 and PFI outcomes). However, 
for the railway case, the effect of solar radiation and NDVI is 
detected besides the high importance of rainfall. It is worth noting 
that the overall identification of rainfall intensity by this study, as 
the main triggering factor for ground deformations imposed on 
critical linear infrastructures in the Lombardy region, coincides 
with the results of the other studies regarding the major cause of 
land surface displacements in the region.  

Table 3. Most affecting factors detected by SHAP and PFI 

PFI SHAP 

Model highway railway highway railway 

DT elevation rainfall rainfall rainfall 

LR elevation solar rad. rainfall solar rad. 

LG elevation rainfall rainfall NDVI 

XG rainfall rainfall rainfall solar rad. 

RF rainfall rainfall rainfall rainfall 

ET rainfall rainfall rainfall rainfall 

4. CONCLUSION

The study takes advantage of the machine learning approach to 
correlate the geo-environmental factors with the displacements 
imposed on the critical linear infrastructures of the Lombardy 
region, Italy. The principal outcomes of this work can be 
summarized below: 
 For Highway and Railway assessment and addressing the

major causes of deformations, the ML models of XgBoost,
Random Forest, and Extra Trees show the best performance
and prediction accuracy.

 Rainfall intensity is the major cause of the deformation
occurring to Railways and Highways in the Lombardy region.
Elevation, Normalized Difference Vegetation Index, and Areal
Solar Radiation are the other factors most affecting linear
infrastructures in terms of deformation.

Taking advantage of freely available and downsampled EGMS 
L3 products and simple machine learning approaches, this study 
significantly contributes to the understanding of ground 
deformations imposed on linear infrastructures in the Lombardy 
region and the leading factors causing this phenomenon. 
However, it is expected that using advanced networks (such as 
Deep learning approaches) together with other InSAR products 
with higher spatial resolution (such as EGMS L2B datasets) may 
provide a more detailed and deeper comprehension of the field, 
particularly for localized phenomena, which will be aimed at the 
future studies.  
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ABSTRACT: 

Copernicus Sentinel-2 MSI satellite data exhibit variable geolocation spatial accuracy, resulting in a weak spatial coherence that 
significantly affect time series consistency at pixel level. Although the evolution of Sentinel-2 MSI processing baselines aims, 
among other objectives, to improve image co-registration with respect to a Global Reference Image (GRI), geospatial accuracy is 
still not adequate for detailed time series analysis. 
To undertake operational image co-registration, Sentinel-2 Shift DataBase (S2SDB) has been established. The S2SDB contains 
information about horizontal linear local shifts, generated using AROSICS software, which can be easily applied to any Sentinel-2 
MSI spectral band or spatially explicit derived products, using various image processing software solutions. The DataBase, by 
releasing simple but relevant information with an open access data policy, can contribute to reduce time and computational effort 
required to significantly improve spatial coherence and time series consistency of Sentinel-2 MSI imagery. 
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1. INTRODUCTION

Copernicus Sentinel-2 satellite constellation allows to sense 
Earth surface at high spatial and spectral resolution and its high 
revisit frequency foster new advances for land monitoring 
capacity. Sentinel-2 MSI data exhibit variable geolocation 
spatial accuracy, resulting in a weak spatial coherence that 
significantly affect time series consistency at pixel level. 
Despite evolving Sentinel-2 MSI processing baselines aims, 
among other objectives, to improve image co-registration with 
respect to a Global Reference Image (GRI), geospatial accuracy 
is still not adequate for detailed time series analysis. The release 
of the GRI has been repeatedly delayed, re-processing of past 
Sentinel-2 MSI data is currently not planned, and the expected 
global geo-registration accuracy needs to be confirmed in an 
operational setting (Rufin et al., 2020). 
Here comes the need to provide users with an effective tool to 
perform fast and effective co-registration of Sentinel-2 MSI 
acquisitions over time, improving spatial coherence and time 
series consistency. 
Global co-registration algorithms, which identify horizontal 
linear shift to be applied to all image pixels, include area-based 
methods, feature-based approaches, integration of feature-based 
and area-based least squares matching on hierarchical layers 
(LSReg) (Yan et al., 2016). Characteristic Sentinel-2 MSI co-
registration error patterns, in the form of block-like error 
clusters, follow the flight line direction and are likely also 
related to the individual detector arrays and with the sensor orbit 
track and movements in space" (Scheffler et al., 2017). Since 
Sentinel-2 MSI temporal co-registration is not consistent 
throughout the entire image, identification of multiple 
horizontal linear shifts for a single image is required. Local co-
registration algorithms, that allow to identify horizontal linear 
shifts for a set of tie-points, include two-dimensional sub-pixel 
disparity measurement algorithm based on block matching 
(QPEC / Medicis) (Cournet et al., 2016), and phase correlation 
for sub-pixel shift estimation in the frequency domain utilizing 
the Fourier shift theorem (Scheffler et al., 2017).  

Methodologies to quantify image shifts, developed in recent 
years, require considerable computational effort to effectively 
co-register satellite acquisition time series. 
To undertake operational image co-registration, a DataBase 
containing simple but relevant information about horizontal 
linear local shifts, that can be easily applied to any Sentinel-2 
MSI spectral band or spatially explicit derived product using 
various image processing software solutions, can represent a 
valuable tool. 
Objectives of the presented initiative are: i) generate Sentinel-2 
MSI local Shifts DataBase (S2SDB) for operational image co-
registration, over Italian national territory; ii) report and discuss 
horizontal linear shift statistics. 

2. MATERIALS AND METHODS

Satellite optical multispectral imagery acquired by MSI sensor 
aboard Copernicus Sentinel-2 satellite constellation have been 
used for the analysis of horizontal linear local shifts. The high 
spatial resolution (10 m, 20 m and 60 m), the high revisit time 
(5 days with two satellites), and the 13 spectral bands (from the 
visible to shortwave infrared) are the characteristics of the 
Sentinel-2 Multi-Spectral Instrument (MSI) sensor. All 
Sentinel-2 MSI acquisitions (bottom of atmosphere reflectance 
– L2A) acquired in the period November 2015 – January 2023,
with cloud cover lower than 90%, were collected for the
geographic extent corresponding to Italian national territory (65
granules). Copernicus Sentinel-2 MSI data, processed at level
2A by CNES using MAJA atmospheric correction algorithm,
were collected from THEIA Land data center catalogue (61
available granules). Sentinel-2 MSI data processed at level 2A
using Sen2Cor atmospheric algorithm, for the remaining 4
granules not available from the above-mentioned catalogue,
were collected from the Copernicus Open Access Hub.
Collected satellite acquisitions, representing bottom of the
atmosphere reflectance, orthorectified, terrain-flattened and
atmospherically corrected, were masked for invalid pixels
(cloud, cloud cirrus, cloud shadow, topographic shadow, snow,
edge, and high sun zenith angle) and for water areas. Spectral
band named B4, corresponding to red radiometric interval (665
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nm), was used for subsequent image matching in co-registration 
analysis, as it is used as reference for operational band-to-band 
Sentinel-2 MSI co-registration (Gascon et al., 2017). 
Automated and Robust Open-Source Image Co-Registration 
Software (AROSICS), designed to perform automatic subpixel 
co-registration of two satellite image datasets based on an image 
matching approach working in the frequency domain (Scheffler 
et al., 2017), was used to identify horizontal linear local shifts. 
It was selected considering its ability to use a local co-
registration approach, and its demonstrated application with 
Sentinel-2 MSI acquisitions (Stumpf et al., 2018). In addition, 
the use of Fourier shift theorem should reduce time variability 
issues (i.e. related to vegetation phenology). AROSICS 
procedure combines a multistage workflow for effective 

detection of false positives, including three levels of filtering: i) 
removal of tie-points with low reliability according to internal 
tests; ii) SSIM filtering; iii) RANSAC outlier detection. 
Structural Similarity Index Measure (SSIM) is a weighted 
measurement of the difference between two images structure, 
contrast, and luminance discrepancies (Wang et al. 2004). It is 
used to filter tie-points where shift correction does not increase 
image similarity. The widely used state-of-the art algorithm 
RANSAC (Fischler et al., 1981) is capable of interpreting data 
containing a significant percentage of gross errors and is 
therefore ideal for applications in automated image analysis in 
which interpretation is based on the data provided by error-
prone feature detectors.  
 

 

 
Figure 1. (a) Absolute X shift. (b) Absolute Y shift. (c) Absolute shift. (d) Number of satellite observations (analysed period: 

November 2015 – January 2023). 
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Figure 2. Structural Similarity Index Measure (SSIM) variation. 

 
AROSICS was configured using the following settings: grid 
size: 1220 m; window size: 64 pixels, max points: 7000; max 
shift: 5 pixels; minimum reliability: 40%. Co-registration 
algorithms require that a single satellite acquisition, named 
master, be selected for image matching with all other satellite 
acquisitions, names slaves. The master acquisition for each 
Sentinel-2 granule was selected based on the following criteria: 
i) be acquired during summer 2021, in order to have a single 
reference year and avoid snow and ice cover as much as 
possible; ii) containing as few masked pixels as possible. 
Identified horizontal linear local shifts were used to perform 
statistical analysis on the shift in X and Y directions for several 
Sentinel-2 MSI processing baselines, valid tie-points, reliability 
and SSIM variation. 
Finally, the identified horizontal linear local shifts were used to 
generate sets of Ground Control Points (GCPs), that were 
entered into the Sentinel-2 MSI local Shifts DataBase (S2SDB). 
All the analysis was done using software SNAP, AROSICS, 
Python, QGIS and R-cran. 
 

3. RESULTS AND DISCUSSION 

To perform operational image co-registration, Sentinel-2 Shift 
DataBase (S2SDB) has been established. The S2SDB contains 
information about horizontal linear local shifts, that can be 
easily applied to any Sentinel-2 MSI spectral band or spatially 
explicit derived product, using various image processing 
software solutions. 
Currently, S2SDB provides information about horizontal linear 
local shifts, for each single Sentinel-2 MSI acquisition over the 
Italian national territory. It consists in a set of txt file containing 
Ground Control Points (GCPs), available for both 10 m and 20 
m spatial resolution. The text file can be used in several 
software tools to perform local image warping, in order to 
improve the spatial co-registration of images acquired at 
different times. Its purpose is to improve spatial coherence and 
significantly reduce data processing requirements, as it allows 
the local horizontal linear shift processing step not to be 
repeated each time an image temporal stack is generated.  

 
 

Figure 3. (a) Percentage of valid tie-points. (b) Percentage of mean reliability. 
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S2SDB features makes it reproducible and suitable for the use 
in operational services by improving time series consistency at 
pixel level. S2SDB (version v1) contains GCPs of about 36000 
individual Sentinel-2 MSI images, acquired within the period 
November 2015 - January 2023 and related to 65 Sentinel-2 
granules, corresponding to the coverage of Italian national 
territory. The total S2SDB volume is about 2.11 GB. GCPs file 
corresponding to satellite acquisitions with 5 or less tie-points 
remaining after the false positives filtering procedure, was not 
been generated. S2SDB can be freely accessed at: 
https://github.com/ffilipponi/S2SDB. 
The resulting absolute shifts in X, Y and both directions are 
shown in Figure 1 maps, along with the number of satellite 

observations, that clearly represents the overlapping areas of 
satellites relative orbits. 
Maps in Figure 2 shows the SSIM variation, that increases of 
about 0.1. Figure 3 shows the percentage of valid tie points, that 
on average reaches 25%, along with the mean reliability, that is 
lower in cropland areas, probably due to small inter-annual 
changes in parcels boundaries. 
Figure 4 shows the variation in absolute shifts between 
Sentinel-2 MSI data processing baselines. Baseline 03 and 
baseline 04 have improved absolute shifts compared to baseline 
02. However, there is still field to improve the operational 
standard products. 

 

     
Figure 4. (a) Absolute shift for the full analysed period: November 2015 – January 2023. (b) Absolute shift for baseline 02. (c) 

Absolute shift for baseline 03. (d) Absolute shift for baseline 04. 
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Maps in Figure 4, particularly Figure 4b, exhibit greater shifts 
in correspondence of topographically complex areas. The 
reasons could be related to a multitude of factors, including the 
different orbit and the Digital Elevation Models inadequate 
resolution, in combination with co-registration error patterns in 
the form of block-like error clusters. Variations in absolute 
shifts between different baselines, decreasing from baseline 03 
onward, suggest the use of different Digital Elevation Models in 
the process of image orthorectification, that was changed in 
different baselines for geometric refinement purpose.  
Geospatial accuracy of master reference images is still weak 
and does not correspond to real world. To overcome this 
limitation, future improvements of the S2SDB should consider 
using a different master image. Alternatives could be the use of 
temporal composite to reduce number of masked pixels, the use 
of satellite optical multispectral VHR data, although there are 
economic costs issues, or the use of aerial imagery, with issues 
related to timeliness of release and acquisition date information. 
Another S2SDB improvement, to be considered for future 
developments, is the extension of the window size, in order to 
better deal with partial coverage of the granule extent in some 
Sentinel-2 MSI acquisitions. 
The S2SDB, by releasing simple but relevant information with 
an open access data policy, can contribute to reduce time and 
computational effort required to significantly improve Sentinel-
2 MSI imagery spatial coherence and time series consistency. 
Improved co-registration may also contribute to strengthen 
satellite sensor interoperability by producing denser time series 
to improve Earth observation land monitoring for a wide range 
of applications (e.g. forest logging). The information stored in 
the S2SDB have been successfully used to improve Earth 
Observation derived products, like phenological metrics 
estimates (Filipponi et al., 2022). 
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