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A B S T R A C T

Brazil is the world’s second largest importer of olive oil and stared to produce its own oil quite recently in two 
distinct geographic areas. The production is still very small, and studies regarding oil composition are scarce. 
Determination of discriminant differences are useful to support appeals regarding origin indication and to detect 
fraud and adulteration with oils from other countries. In this work the Brazilian extra virgin olive oils (EVOOs) 
volatilome is explored by Artificial Intelligence (AI) tools developed on multiple headspace solid-phase micro-
extraction (MHS-SPME) combined with comprehensive 2D gas chromatography-mass spectrometry and flame 
ionization detection (GC×GC-MS/FID) data. Using MHS-SPME, external standard calibration, and FID predicted 
relative response factors (RRF), the accurate quantification of 51 informative volatile compounds was carried out 
and the odorants responsible for key-positive sensory attributes were used to generate distinctive aroma blue-
prints aligned with the AI smelling based on sensomics. As authenticity and origin assessment decision-making 
tool, augmented visualization by computer vision was applied on volatilome 2D fingerprints. By this approach, 
extra-virgin olive oil samples (n=35), from two olive cultivars (Arbequina and Koroneiki) harvested in the main 
producing regions in Brazil (Rio Grande do Sul and Serra da Mantiqueira) in 2021 and 2022, were effectively 
discriminated and mislabeled products regarding their geographical origin were, for the first time, promptly 
identified.

1. Introduction

Olive oil is a typical food from the Mediterranean region, and is 
mainly composed of triglycerides (from 97 % to 99 % by weight). The 
predominant fatty acid in the triglycerides is oleic (C18:1), related to the 
high nutritional value of the oil. In lower amounts, linolenic (C18:3), 
linoleic (C18:2), and some saturated fatty acids, such as stearic (C18:0), 
and palmitic (C16:0) acids are also present. Terpenic acids, mono and 
diglycerides, free fatty acids, tocopherols, phenolic compounds, sterols, 
chlorophyll, carotenoids, and volatile compounds are found in minor 
amounts as a complex mixture of nonpolar, polar, and amphiphilic 
substances (Mariotti and Peri, 2014).

Within the complex fraction of volatile compounds, several potent 
odorants with low odor threshold (OT) are responsible for the unique 
aroma of olive oils (Neugebauer et al., 2020). Extra virgin olive oil 

(EVOO) has a complex aroma that is related to the genetics of the olive 
tree (cultivar), the pedoclimatic conditions where trees are grown, the 
olive maturation stage, and the extraction process applied. The main 
volatile compounds responsible for the desired green aroma in the oil 
are produced from the oxidation of linoleic and linolenic fatty acids 
through the lipoxygenase pathway (LOX), a series of enzymatic chain 
reactions that occurs during the senescence of the fruit and processing. 
The main fraction of volatiles produced from LOX are linear unsaturated 
and saturated alcohols, aldehydes, and esters with six carbons (Olias 
et al., 1993; Kalua et al., 2007; Kotsiou and Tasioula-Margari, 2015). Not 
only compounds from LOX are found in EVOOs, but also those related to 
fatty acid autooxidation. These non-enzymatic reactions result in the 
formation of hydroperoxide degradation products such as (E)-2-hepte-
nal, (E)-2-octenal, (E)-2-decenal, pentanal, hexanal, heptanal, octanal, 
nonanal, acetic acid, butanoic acid and hexanoic acid, which are mainly 
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related to rancid aroma (Morales et al., 1997; Luna et al., 2006; Neu-
gebauer et al., 2020). Mass spectrometry has been successfully used for 
the identification of more than a hundred volatile compounds in the oil, 
after separation by gas chromatography (Stilo et al., 2021, 2023).

The world’s production of olive oil was 2.7 million tons in the 2022/ 
2023 crop year. The main producers of olive oil in the world are the 
countries of the European Union with 1.5 million tons in the same crop. 
Spain, Greece, Italy, and Portugal have the largest production. Due to 
climate change, during the last years, the production of olive oil in the 
main countries has been affected. In 2021, Spain produced 1.5 million 
tons of olive oil and in the next crop, the production decreased to 
780,000 tons. At the same time, countries that are not known as olive oil 
producers (e.g., Brazil, China, and Australia) started and increased their 
production (International Olive Oil Council - (IOC, 2022).

In this context, Brazil is the second largest importer of olive oil in the 
world (100,340 tons in 2022) but, despite the high consumption, the 
growth of olives in the country and, therefore, the extraction of the oil, 
are quite recent and small in comparison to the size of the domestic 
market. In 2022, only 503 tons of extra virgin olive oil were produced in 
Brazil, 0.24 % of the total amount imported in the same year (Interna-
tional Olive Oil Council - (IOC, 2022); (Brazilian Agricultural Research 
Corporation – Embrapa, 2023). The main EVOO producing regions in 
Brazil are the state of Rio Grande do Sul (RS) and Serra da Mantiqueira 
(MA), which corresponds to the states of Minas Gerais, São Paulo, and 
Rio de Janeiro. The Arbequina (AR) and Koroneiki (KO) cultivars are the 
most produced in the country (Filoda et al., 2021).

Another important aspect is that edible oils are the most adulterated 
foods in the world, and olive oil is no exception. It is estimated that 
between 75 % and 80 % of extra virgin olive oils (EVOOs) sold in the 
United States are adulterated, and that EVOOs fraud in Italy is an in-
dustry worth around 16 billion euros (Sudhakar et al., 2023).

Olive oils volatilome encrypts information regarding the quality of 
olives (e.g., botanical origin, harvest region, ripening stage) and of oils 
(e.g., presence of positive aroma attributes, perceivable defects) repre-
senting a fraction of analytical interest in qualification, authentication, 
and certification processes. In this perspective, due to the high chemical 
dimensionality (i.e., number of chemical classes and series of homo-
logues represented) of EVOOs volatilome, comprehensive two- 
dimensional gas chromatography (GC×GC) offers many interesting op-
portunities especially in case of accurate quantification of marker vol-
atiles in presence of co-eluting compounds. Accurate quantification is 
the primary choice in quality assessment over large time-frame studies 
enabling a reliable benchmarking of samples against reference products 
[i.e., identitation (Stilo et al., 2021)]. The main advantages of this 
technique rely on the improved separation efficiency (i.e., peak capacity 
n or separation measure S) that is the product of the two chromato-
graphic dimensions, and higher method sensitivity achieved by 
band-compression in space or in time depending on the type of modu-
lation applied (Stilo et al., 2021, 2021a). Due to these characteristics, 
parallel detection by mass spectrometry (MS) and flame ionization de-
tector (FID), does not suffer of sensitivity drop enabling the exploitation 
of the FID response factors (RFs) quantification in a large range of 
concentrations (Stilo et al., 2021b). GC×GC has therefore been suc-
cessfully applied in the characterization of complex volatile fractions, 
such in food volatilomics (Nicolotti et al., 2013; Magagna et al., 2017; 
Magagna et al., 2017; Uekane et al., 2017; Lukić et al., 2019) and in 
quantitative volatilomics (Stilo et al., 2021c).

With the use of GC×GC techniques, a large amount of data is 
generated; the use of dedicated data processing algorithms, most of them 
developed within the domain of Artificial Intelligence (AI) concepts and 
tools, allows effective exploration of the higher-level information while 
also providing analysts with prompt and reliable decision-making tools 
(Caratti et al., 2024). Recently, sensomics conceptualized an AI smelling 
capable of predicting key-aroma features of food without using human 
olfaction (Nicolotti et al., 2019). The concept allows prediction of the 
aroma blueprint of samples based on the peculiar distribution of food 

key-aroma compounds through their dose over-threshold (i.e., odor ac-
tivity value, OAV) (Dunkel et al., 2014; Nicolotti et al., 2019; Granvogl 
and Schieberle, 2022). Interestingly, if a quantitative volatilomics 
approach is performed, the 2D chromatographic patterns can also be 
approached with the new AI concept of augmented visualization (Caratti 
et al., 2023; Cordero et al., 2010; Reichenbach et al., 2009; Schmarr 
et al., 2010; Schmarr and Bernhardt, 2010; Stilo et al., 2021c). By 
computer vision, a kind of AI tool, chromatographic traces can be 
compared, after registration and re-alignment, to visually identify de-
viations from a reference or highlight marker patterns diagnostic of a 
specific sample’s quality/property.

Regarding Brazilian olive oils, just a few studies explored the vola-
tilome to identify reliable and robust markers of authenticity, identity, 
and quality. Available data relate to cultivars signatures from olives 
harvested in Minas Gerais and in the southern region of Brazil (Zago 
et al., 2019; Carvalho et al., 2020; da Costa et al., 2020; Brilhante et al., 
2022; Lima et al., 2023; Stilo et al., 2023). In particular, one study 
identified potential markers for Koroneiki, Arbequina, Grapollo, and 
Arbosana EVOOs although the samples’ representativeness (n=12) and 
the lack of accurate quantitative data limits the applicability of these 
results (Lima et al., 2023).

A first attempt to create a database for quality benchmarking of 
Brazilian oils was by us (Stilo et al. 2023). In that study, we analyzed 28 
commercial samples available on the Brazilian market after 2020 har-
vest using quantitative volatilomics and compared them to a larger se-
lection of Italian high-quality EVOOs (n=111) identifying country of 
origin markers and delineating a distinctive aroma signature.

Considering these points, the present study aimed to evaluate the 
metabolome of volatile compounds of EVOOs from the two main culti-
vars produced in Brazil (Koroneiki and Arbequina), from the two pro-
ducing regions of the country (Serra da Mantiqueira and Rio Grande do 
Sul) during the crops of 2021 and 2022 to discriminate these EVOOs 
according to their production region and cultivar. To achieve these 
objectives, advanced AI tools and concepts were applied to fully exploit 
the information encrypted in the olive oil volatilome while also col-
lecting quantitative data to build a reference database for Brazilian oils 
quality benchmarking. The set of samples (n=35) investigated covers 
cultivar-specific signatures (Koroneiki and Arbequina), geographical 
tracers (Serra da Mantiqueira and Rio Grande do Sul, Brazil), and har-
vest year impact (crops 2021 and 2022).

2. Material and methods

2.1. Sampling

Thirty-five commercial samples of EVOOs from two crops (2021 and 
2022), two geographical areas, Rio Grande do Sul (RS) and Serra da 
Mantiqueira (MA), and from 2 cultivars (Koroneiki and Arbequina) were 
acquired at the beginning of each crop. Samples, consisting of 500 mL of 
olive oil from the same production batch, were kept in their original 
dark green or amber glass bottles, and stored in a freezer (-20 ◦C) until 
analysis. Classification according to EU quality standards, IOC refer-
ences, and Brazilian protocols was performed at Embrapa’s ISO 17025 
accredited laboratory (Brasil. Diário Oficial da União, 2012; Brasil. 
Diário Oficial da União, 2018; The European Commission, 2016). All 
samples were classified as “extra-virgin” based on their composition and 
sensory quality profile. The samples were named according to their 
cultivar, harvest year, and production region, the list of samples 
together with the acronyms adopted in this study is available in Sup-
plementary Table 1.

2.2. Chemicals

The solvents cyclohexane and dibutyl phthalate (purity: 99 %) and 
the standards of n-alkanes (from C9 to C25), used for linear retention 
indices (IT) calibration, and methyl 2-octynoate, used as Internal 
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Standard (ISTD), were from Merck (Milan, Italy).
The key aroma compounds and potent odorants used for external 

calibration (E)-2-nonenal (CAS 18829–56–6), (E)-2-octenal (CAS 
2548–87–0), heptanal (CAS 111–70–6), (E,E)-2,4-hexadienal (CAS 
142–83–6), (E)-2-hexenal (CAS 6728–26–3), (Z)-3-hexen-1-ol (CAS 
928–96–1), hexanal (CAS 66–25–1), 1-hexanol (CAS 111–27–3), (E)-2- 
pentenal (CAS 1576–87–0), (E)-2-penten-1-ol (CAS 1576–96–1), (Z)-2- 
penten-1-ol (CAS 1576–95–0), 1-penten-3-ol (CAS 616–25–1), 1- 

pentanol (CAS 71–41–0), and 2-pentanol (CAS 6032–29–7) were all 
from Sigma Aldrich (Milan, Italy).

2.3. Standard solutions and calibration curves

Quantification of volatile compounds was performed by multiple 
headspace solid-phase microextraction (MHS-SPME) sampling accord-
ing to a previously validated procedure (Stilo et al., 2021b) as follows: 

Table 1 
List of 51 target compounds with their experimental 1D IT and corresponding literature value (Lit. IT), FID predicted relative response factors (RRF), and MHS-SPME 
decay constant (β) used for quantification purposes. The concentration range of each compound in samples as well as their odor threshold (OT), when available, are 
presented in ng/g.

Compound Name Exp. IT Lit. IT ID criterion RRF β Odor quality OT (ng/g) Concentration range in samples 
(ng/g)

Min. Máx.

1-Hexanol 1343 1348 a 1 0.77 Fruity, banana, soft 400 ƚ 145.12 5859.18
α-Pinene 1013 1017 b 0.82 0.92 Herbal, woody 274 * 30.34 200.74
p-Xylene 1123 1128 b 0.86 0.86 - - <LOQ 63.92
m-Xylene 1130 1140 b 0.75 0.85 - - 10.29 142.14
Hexanoic acid 1829 1839 b 1.28 0.9 - - 21.5 266.10
Heptanoic acid 1936 1946 b 1.19 0.91 - - 10.84 242.34
Decane 998 1000 a 0.78 0.88 - - nd 141.04
Toluene 1028 1036 b 1.18 0.95 - - 57.05 328.57
Phenol 1999 2005 b 1.42 0.91 - - 59.97 374.22
Pentanoic acid 1722 1734 b 1.1 0.69 - - 10.32 130.66
Pentanal 971 957 b 0.78 0.82 - - 210.87 2596.57
Octaneǂ - 800 a 0.96 0.93 - - nd 67.13
Octanal 1284 1289 b 1.13 0.88 Citrus-like, fatty 140 $ 24.82 147.61
Hexyl acetate 1269 1275 b 1.04 0.65 Fruity 200 $ 78.44 532.03
Hexanal 1075 1069 a 0.99 0.81 Green-apple, grass 300 $ 767.83 4018.75
Heptanal 1179 1181 a 1.12 0.89 Citrus-like, fatty 500 $ 20.39 82.08
2-Methylfuranǂ - 855 b 0.86 0.83 - - 33.97 274.42
Ethylbenzene 1116 1122 b 1.65 0.82 - - <LOQ 67.12
3-Methylbutanal 912 911 b 1.1 0.78 Sweet, fruity, malty 5.4 ƚ 11.29 162.50
2-Methylbutanal 908 908 b 1.1 0.74 Sweet, malty 34 $ 11.84 242.12
Benzaldehyde 1511 1524 b 0.95 0.92 Almond, burnt sugar 60 * 41.81 170.49
6-Methyl-5-hepten− 2-one 1330 1339 b 0.98 0.89 - - 20.84 309.62
5-Ethyl-2(5 H)-furanone 1744 1757 b 1.41 0.85 - - 10.72 267.56
(Z)-3-Hexenal 1136 1133 b 1.08 0.65 Green, grassy 1.7 $ 47.09 7749.33
(E)-3-Hexenal 1131 1127 b 1.08 0.64 Artichoke, green, flowers 3.0 ƚ 23.9 923.59
(Z)-3-Hexen-1-ol 1373 1380 a 1.04 0.74 Banana, fresh, grass 1100 * 581.81 9770.32
3,4-Diethyl-1,5-hexadiene (meso) 964 944 b 0.8 0.71 - - 30.45 134.11
3,4-Diethyl− 1,5-hexadiene (RS/SR) 957 936 b 0.81 0.71 - - 33.79 141.3
(E)-2-Pentenal) 1120 1131 a 1.16 0.63 Pungent, apple-like 300 ƚ 92.06 327.40
(Z)-2-Penten-1-ol) 1302 1306 a 1.1 0.61 Green, almond 250 * 291.18 983.51
(E)-2-Penten-1-ol) 1310 1313 a 1.1 0.63 Mushroom, earthy 250 * 47.19 131.48
2-Pentanol 1105 1095 a 1.06 0.84 Musty, fermented 380 * <LOQ 168.89
(E)-2-Octenal) 1422 1430 a 0.98 0.88 Fatty, nutty 120 $ 15.72 41.45
(E)-2-Nonenal) 1528 1534 a 0.95 0.87 Fatty, green, soapy 140 $ <LOQ 45.94
(Z)-2-Hexenal 1194 1193 b 1.08 0.59 Fruity - 58.11 954.60
(E)-2-Hexenal) 1213 1216 a 1.08 0.62 Bitter almond, green, fruity 320 $ 1857.40 >LOQ
(E,E)-2,4-Heptadienal 1455 1461 b 1.06 0.89 Fatty, green, oily 30 $ 25.94 102.49
1-Octeneǂ - 827 b 0.8 0.8 - - 9.17 68.76
1-Octanol 1546 1553 b 0.93 0.93 Nut, mushroom 27 * <LOQ 57.26
1-Penten-3-ol 1151 1157 a 1.1 0.63 Pungent, butter 400 ƚ 317.29 1578.82
1-Pentanol 1240 1240 a 1.06 0.72 Sweet, pungent 470 ƚ 14.47 211.28
3-Methyl-1-butanol 1198 1211 b 1.06 0.65 - - 16.02 413.57
(Z)-3-Hexenyl acetate 1313 1317 b 1.16 0.87 Green 200 ƚ 218.39 3065.17
(E,Z)-3,7-Decadieneǂ 1071 ** b 0.8 0.83 - - 64.04 332.12
(E,E)-3,7-Decadieneǂ 1079 ** b 0.8 0.85 - - 92.41 792.46
(E,E)-2,4-Hexadienal) 1393 1397 a 1.12 0.74 Green 270 * 191.50 1754.29
(E)-β-Ocimene 1244 1233 b 0.82 0.91 - - 9.23 245.46
(E)-2-Hexen-1-ol 1395 1398 b 1.04 0.76 Green, grass 5000 ƚ 42.24 9401.67
(E)-2-Heptenal 1317 1320 b 1.02 0.85 Green, fatty 1200 $ 20.44 111.35
(5Z)-3-Ethyl-1,5-octadiene 1008 1006 b 0.8 0.76 - - 128.27 602.84
(5E)-3-Ethyl-1,5-octadiene 1021 1032 b 0.8 0.79 - - 216.16 955.77

$ Neugebauer et al. (2020)
* Stilo et al. (2021d)
ƚ Luna et al. (2006)
** Not found in literature
ǂ Tentative identification
Identification criterion: “a” for analytes confirmed by authentic standards and “b” for those that matched spectral similarity and IT tolerance
Compounds highlighted in bold were quantified by external calibration (further information available in Supplementary Table 2)
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quantification of potent odorants in EVOOs by external calibration (14 
selected compounds reported in Supplementary Table 2 and highlighted 
in Table 1 in bold) and quantification of an extended list of marker 
volatiles (n=52) by FID using predicted relative response factors (RRFs) 
based on combustion enthalpies and molecular formula (Cachet et al., 
2016).

Standard stock solutions of potent odorants were prepared at a 
concentration of 10 g/L in cyclohexane. The reference working solution 
(RWS) was prepared by mixing a suitable amount of each standard stock 
solution to achieve the concentration of 0.200 g/L of each compound 
using dibutyl phthalate as solvent.

Calibration solutions (CS) were prepared by diluting appropriate 
amounts of RWS in dibutyl phthalate to reach concentrations of 5, 10, 
15, 20, 25, 30, 50, 100, 150, 200, 250, 300, 350, and 400 mg/L. Five 
microliters of each CS were analyzed by MHS-SPME to build calibration 
curves to reach absolute amounts of 25, 50, 75, 100, 125, 150, 250, 500, 
750, 1000, 1250, 1500, 1750, and 2000 ng. Further information about 
the procedure is available in the Supplementary Figure 1.

Methyl 2-octynoate (ISTD working solution) was prepared at a 
concentration of 0.100 g/L in dibutyl phthalate for standard-in-fiber pre- 
loading. All prepared solutions were stored at − 18◦C in sealed vials.

2.4. Multiple headspace solid phase microextraction (MHS-SPME) and 
quantification of volatile compounds

Volatile compounds were extracted by HS-SPME with a divinylben-
zene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber of 50/30 
μm thickness and 2 cm length from Merck-Supelco (Bellefonte, PA, 
USA). The SPME fiber was conditioned before use as recommended by 
the manufacturer (Brilhante et al., 2022; Stilo et al., 2021b, 2023).

Methyl 2-octynoate was used as ISTD for response normalization and 
quality control. ISTD was preloaded onto the SPME fiber by sampling 
5.0 μL of a 0.100 g/L solution placed into a headspace vial of 20 mL. 
ISTD preloading was done by exposing the fiber to the headspace at a 
temperature of 40◦C for 5 min (Stilo et al., 2021b).

Sampling was performed on 0.100 ± 0.005 g of olive oil placed into 
20 mL headspace vials kept at 40◦C for 60 min under constant agitation. 
After extraction, the fiber was thermally desorbed into the GC×GC 
system injector port in split-flow mode (1:5), with an injector temper-
ature of 250◦C and a desorption time of 5 min (Stilo et al., 2021b).

MHS-SPME was performed following the conditions described pre-
viously. Ten consecutive extractions were carried out for a selection of 
oil samples and 4–6 for the calibration curve solutions, so that an almost 
exhaustive extraction of the analytes of interest was achieved and the 
exponential decay function estimated with greater accuracy. The potent 
odorants subjected to external calibration together with their odor 
qualities, odor thresholds (OT) in oil, experimental IT, regression func-
tion parameters including calibration range, and determination co-
efficients (R2) are reported in Supplementary Table 2.

The quantification of the 14 potent odorants in the samples was 
made by external calibration. For the other compounds identified, 
whenever possible, the quantification was performed by using relative 
response factors (Cachet et al., 2016; Stilo et al., 2021b).

2.5. GC×GC-MS/FID: Instrument configuration and conditions

Samples were analyzed with a system consisting of an MPS-2 auto-
sampler (Gerstel, Mülheim a/d Ruhr, Germany) installed on a GC×GC 
system equipped with a reverse-inject differential-flow modulator 
(Agilent Technologies, Little Falls, DE, USA). The gas chromatograph 
used was an Agilent 7890B coupled to an Agilent 5977B high-efficiency 
source (HES) mass spectrometric detector operated in electronic ioni-
zation mode at 70 eV for identification. The transfer line temperature 
was set at 280◦C, the ion source at 230◦C and quadrupole temperature at 
150◦C. The scanning range was adjusted between 45 and 240 m/z, 
(acquisition frequency of 30 Hz). For quantification, parallel detection 

was performed by a fast FID with a base temperature of 280◦C, H2 flow 
of 40 mL/min, air flow of 350 mL/min, and sampling frequency of 
200 Hz (Stilo et al., 2021b).

The column configuration used was: first dimension (1D) HeavyWax 
(100 % polyethylene glycol - PEG; 20 m × 0.18 mm × 0.18 μm) coupled 
with a second dimension (2D) DB17 column (50 % phenyl- 
methylpolysiloxane; 1.8 m × 0.18 mm × 0.18 μm). The connection 
between the 2D column and the deactivated silica capillaries for the MS 
(0.5 m × 0.1 mm) and FID (1.1 m × 0.18 mm) for parallel detection was 
by a three-way non-purged capillary microfluidic splitter (all the sup-
plies were from Agilent Technologies). The resulting split ratio was 
70:30 (FID/MS) and the dimensions of the bleeding capillary (6.06 m ×
0.1 mm) of deactivated fused silica installed in the modulator plate were 
chosen according to a previously validated flow calculator (Giardina 
et al., 2018). The carrier gas was helium at a flow rate of 0.4 mL/min 
along the 1D column and 10 mL/min along the 2D column. The oven 
temperature program was set: from 40◦C (2.29 min) to 240◦C (11 min) 
at 3.06 ◦C/min. The modulation period (PM) was 3 s and the pulsed time 
was 150 ms (Stilo et al., 2021b).

Compounds were identified by comparison of their mass spectra with 
those from NIST library, and by their linear retention indices (van Den 
Dool and Dec. Kratz, 1963) compared to literature data (Adams, 2007; 
Babushok et al., 2011).

2.6. Computer vision

Computer vision (CV) was applied by generating cumulative class 
images from the 2D spectra of samples of different cultivars (Arbequina 
and Koroneiki – Class cultivar) and production regions (Rio Grande do 
Sul and Serra da Mantiqueira – Classes region). The approach was used to 
promptly highlight compositional differences in samples’ volatilome 
and connect them with samples’ class characteristics (Caratti et al., 
2023; Stilo et al., 2021c).

The workflow used to perform these comparisons was conceptual-
ized by Caratti and co-workers (2023) and further validated for its 
effectiveness in different applications [e.g., butter volatilome, hazelnut 
spoilage, etc. (Stilo et al., 2021c; Caratti et al., 2023)].

In this study, CV was performed using GC Image® software accord-
ing to the following steps: 

− Build a cumulative image with samples belonging to a specific Class. 
In particular, cumulative images were built for EVOOs from Arbe-
quina cultivar, EVOOs from Koroneiki cultivar, EVOOs from Rio 
Grande do Sul region (RS), and EVOOs from Mantiqueira region 
(MA);

− Create a feature template with reliable peaks and peak-regions specific 
of a Class of samples. To do this, the smart template configuration 
included retention times search windows in 1D and 2D (1tR; 2tR), and 
MS spectral similarity between reference and analyzed spectra with a 
direct match factor threshold (DMF – NIST similarity algorithm)>
700 as optimized in previous studies (Stilo et al., 2021, 2021b);

− Apply the feature template created at step-2 on single 2D chro-
matograms or class image chromatograms to effectively register and 
re-align patterns before fusion or before comparative visualization;

− Perform comparative visualization between Cumulative Class images 
of samples with different characteristics via overlaid comparative 
visualization rendered as a diffuse grayscale ratio to achieve 
augmented visualization by CV.

2.7. Data treatment and statistical analyses

GC×GC data were processed using GC Image® software version 
2021r3 (GC Image, LLC, Lincoln NE, USA). Statistical analyses and 
chemometrics were carried out by using XLSTAT software (Lumivero, 
Denver CO, USA). Principal Component Analysis was conducted on both 
normalized responses for all UT features and accurate amounts of 
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quantified compounds to highlight natural sample clusters within the 
sample set. Data was mean centered before PCA analysis. To identify 
discriminant markers between sample classes, Partial Least Squares 
Discriminant analysis (PLS-DA) was applied. Discriminant analytes were 
selected within those with a Variable Importance on the Projections 
(VIPs) score above 1. For PLS-DA modelling, the training set was 
composed by all samples while the validation was by randomly selecting 
a 30 % of samples from the data set. Up to 10 reiterations were applied. 
For both unsupervised and supervised analysis all replicates per sample 
were computed (Brereton, 2009).

3. Results and discussion

3.1. The use of MHS-SPME followed by GC×GC-MS/FID for 
identification and quantification of volatile compounds in EVOOs

EVOO volatilome encrypts information on many key-quality vari-
ables e.g., cultivar, geographical origin, cultivation methodologies, 
oxidation level, and aroma profile (Brilhante et al., 2022; da Costa et al., 
2020; Lima et al., 2023; Stilo et al., 2021b, 2023). Using MHS-SPME 
followed by GC×GC-MS/FID, it was possible to consistently monitor 
115 reliable peaks (including targeted and untargeted features), 77 of 
them identified using linear retention indices (ITs) and EI-MS spectral 
similarity (threshold > 900). Quantification of 51 target volatiles was 
achieved via MHS-SPME, external standard calibration and FID pre-
dicted RRFs (Cachet et al., 2016; Stilo et al., 2021b). The list of the 
quantified compounds is reported in Table 1 along with information on 
type of identification, accurate amount in the sample, odor quality, and 
OT in oil.

From identification and quantification, a database was built and a 
workflow was established to diagnose markers for authentication ac-
cording to production region and cultivar: (1) based on the quantifica-
tion of the target volatile compounds present in Brazilian EVOO 
samples; partial least squares-discriminant analysis (PLS-DA) and 

principal component analysis (PCA) were performed to understand if a 
natural sample clustering according to production region (MA and RS) 
and cultivar (AR and KO) was possible; (2) CV on Cumulative Class 
images was further explored to achieve full validation of this prompt 
tool for authenticity evaluation (Caratti et al., 2023). CV results, in 
addition to providing immediate visual comparison, also reinforce the 
results previously obtained in step 1 and allow the use of untargeted 
compounds in the analysis to find extra discriminant markers; (3) 
application of Artificial Intelligence smelling machine concept to 
determine the aroma blueprint in samples from different cultivars 
(Neugebauer et al., 2020; Stilo et al., 2021b). This step was applied only 
for cultivar discrimination since is expected that EVOOs produced from 
different cultivars have distinct sensorial profiles. This workflow pro-
vides consistent information to distinguish EVOOs samples according to 
cultivar and production region and also allows the identification of 
erroneous allegations regarding cultivar and origin. The comparisons 
performed are further discussed in the next items.

3.2. Production region volatilome signatures

In Fig. 1A is shown the PCA loadings plot for Arbequina samples 
produced in 2021 and 2022, colors correspond to production regions 
and ellipses are set to 95 % of confidence level. Considering this set of 
samples and their natural clustering according to the production region, 
two cumulative images were prepared, each consisting of 4 samples. 
These cumulative images were used for CV by means of comparative 
visualization rendered as a grayscale fuzzy ratio (Fig. 1B). Arbequina 
samples from the MA region have higher relative amounts of alcohols 
and acetic acid (brighter part), while samples of the same cultivar from 
RS show higher amounts of aldehydes (darker part).

The same procedure was applied to the Koroneiki samples (Fig. 1C 
and D). To perform these analyses, the sample coded as KO22_MA1 was 
removed, and this will be discussed further ahead. The PCA showed that 
there is not a good separation between samples of Koroneiki cultivar 

Fig. 1. A: PCA showing a natural clustering for Arbequina samples produced in 2021 and 2022 according to production region (PLS-DA followed by PCA). B: 
Comparison between cumulative images of Arbequina samples from RS (dark) and MA (bright) produced in 2021 and 2022. C: PCA showing a natural clustering for 
Koroneiki samples produced in 2021 and 2022 according to production region (PLS-DA followed by PCA). D: Comparison between cumulative images of Koroneiki 
samples from RS (dark) and MA (bright) produced in 2021 and 2022.

N.S. Brilhante et al.                                                                                                                                                                                                                            Journal of Food Composition and Analysis 136 (2024) 106826 

5 



according to the production region, but the comparative overlayed 
visualization rendered as a grayscale fuzzy ratio indicated that samples 
from RS have higher relative amounts of most of the volatile compounds 
(darker part highlighted in yellow) than the samples from the MA region 
(brighter part). In Arbequina samples, 29 volatile compounds were 
important for discrimination according to region, while for Koroneiki 
samples this was for 28 analytes.

As in this research, other studies have demonstrated the role of 
volatile compounds in the geographic discrimination of olive oils (Stilo 
et al., 2021b). Lukić et al. (2019)) used target and untargeted volatile 
compounds for differentiation of VOOs produced from different culti-
vars in selected Croatian regions. The study concluded that this 
approach may have practical application in better understanding and 
classifying monovarietal VOOs according to production region and 
cultivar.

By using MHS-SPME followed by GC×GC-MS/FID, Stilo and collab-
orators identified discriminant chemical traits between Brazilian and 
Italian EVOOs. 1-Penten-3-one, (Z)-3-hexenal, (E)-2-hexenal, (E,E)-2,4- 
heptadienal, 1,8-cineole (eucalyptol), benzaldehyde, hexanal, and (E)-2- 
hexen-1-ol were quantified and identified as important compounds in 
this discrimination (Stilo et al., 2023). Brilhante et al. (2022) evaluated 
Brazilian EVOOs from Koroneiki cultivar from RS and MA and identified 
(Z)-3-hexenyl acetate as an important discriminant volatile compound 
in samples produced in MA and hexyl acetate in samples produced in RS.

3.3. Evaluation according to cultivar

After the comparison between regions, the next step was to compare 
cultivars. To perform the PCA, the samples were grouped according to 
regions (RS and MA) to try to discriminate them by cultivar (AR and 
KO). In Fig. 2A and B is shown the natural clustering according to 
cultivar for Arbequina and Koroneiki samples from MA and RS respec-
tively. To perform these analyses, the samples coded as AR22_MA1 and 
KO22_MA1 were removed, and the reason why will be detailed later. 
Separating samples according to the production region, it was possible 
to observe good discrimination between the samples of different culti-
vars, mainly for those from the MA region (Fig. 2A). In MA samples, 31 
volatile compounds were important for discrimination according to 
cultivar, while for RS samples this was for 22 analytes.

Cumulative images were also prepared to identify possible discrim-
inants for EVOOs produced from each cultivar. In Fig. 3A is shown the 
comparative visualization rendered as a grayscale fuzzy ratio of a cu-
mulative image of the Koroneiki samples from RS and MA and a cu-
mulative image of the Arbequina samples from RS and MA, all produced 

in 2021 and 2022. Eight samples were used to create each Cumulative 
Class image. In Fig. 3B and C is shown the comparative visualization 
rendered as a grayscale fuzzy ratio of Koroneiki and Arbequina samples 
from MA and a cumulative image of the Koroneiki and Arbequina 
samples from RS, respectively.

It was possible to see in the three images that samples of the Arbe-
quina cultivar (brighter part) have a higher relative amount of (E)-2- 
hexenal, while samples of the Koroneiki cultivar (darker part) have a 
higher amount of (Z)-3-hexenal; one non-identified compound (high-
lighted in yellow in the images) is also a common characteristic in the 
Koroneiki samples. In this case, the use of cumulative images can be an 
interesting approach to indicate distinctive characteristics between 
EVOOs produced from different cultivars.

The compounds observed in this study as cultivar markers were also 
reported in the literature (Lima et al., 2023). These authors found the 
(Z)-3-hexenal as the most abundant volatile compound in Koroneiki 
samples, while the (E)-2-hexenyl acetate was the most representative in 
Arbequina. In this work, for Arbequina samples, the compound that 
appeared in higher amounts was the (E)-2-hexenal, which can be con-
verted in (E)-2-hexenyl acetate by alcohol acetyltransferase (AAT). 
Other research reported higher concentrations of C6 compounds in 
Arbequina cultivar due to the high activity of hydroperoxide lyase in this 
cultivar (Sánchez-Ortiz et al., 2013).

3.4. The use of aroma blueprint to discriminate cultivars

Another approach used to discriminate samples according to cultivar 
was the determination of the aroma blueprint that characterizes EVOOs, 
using an Artificial Intelligence smelling machine concept (Nicolotti 
et al., 2019; Neugebauer et al., 2020). Fifteen key-aroma compounds 
and potent odorants were quantified by external calibration using an 
MHE-SPME-GC×GC-FID procedure and FID predicted RRFs based on 
combustion enthalpies (Neugebauer et al., 2020; Stilo et al., 2021b).

Using the quantified volatile compounds, the estimation of odor 
activity values (OAVs) was undertaken to provide a more accurate 
representation of the sensory impact of the most potent odorants on the 
overall aroma of EVOOs of each cultivar. In accordance with sensomic 
principles, an odorant is considered a key-aroma compound if it has an 
OAV exceeding 1 and if its presence in an aroma recombinant is relevant 
to properly distinguish the odor identity of a product (Dunkel et al., 
2014).

In Fig. 4 is shown a spider diagram with aroma blueprint differences 
between Arbequina and Koroneiki samples. Results are presented as 
OAVs in log10 scale. Fourteen compounds make up the aroma blueprint 

Fig. 2. A: PCA showing a natural clustering according to cultivar for Arbequina and Koroneiki samples from MA (PLS-DA followed by PCA). B: PCA showing a natural 
clustering according to cultivar for Arbequina and Koroneiki samples from RS (PLS-DA followed by PCA).
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of Brazilian EVOOs produced from Arbequina and Koroneiki cultivars: 
hexyl acetate (fruity), hexanal (green-apple, grass), 2-methylbutanal 
(malty), benzaldehyde (almond, burnt sugar), (Z)-3-hexenal (green, 
grassy), (Z)-3-hexen-1-ol (banana, fresh, grass), (Z)-2-penten-1-ol 
(green, almond), (E)-2-hexenal (bitter almond, green, fruity), (E,E)-2,4- 
heptadienal (fatty, green, oily), 1-penten-3-ol (pungent), (Z)-3-hexenyl 
acetate (green, banana-like), (E,E)-2,4-hexadienal (green), (E)-2-hexen- 
1-ol (green, grass), and 1-hexanol (fruity, banana, soft).

The most important compounds for the aroma blueprint discrimi-
nation of Arbequina samples were (E)-2-hexen-1-ol, with the descriptors 
of green and grass; (E)-2-hexenal, with the descriptors of bitter almond, 
green, and fruity; hexanal, with the descriptors of green-apple and grass; 
and 1-hexanol, with the descriptors of fruity, banana, and soft. In the 
case of Koroneiki samples, the main compounds that characterized this 
cultivar were (Z)-3-hexenal, which contributes with green and grassy 
odor; and (Z)-3-hexenyl acetate, with the descriptors of green and 

banana-like (Luna et al., 2006; Neugebauer et al., 2020). Not only 
compounds from the lipoxygenase pathway contribute to the aroma 
blueprint of Brazilian EVOOs and, with the exception of (E,E)-2,4-hep-
tadienal, only those with positive odor descriptors were identified. This 
is in accordance with published data, as Stilo et al. (2023) found similar 
results in the comparison between Italian and Brazilian EVOOs blue-
print. With the aroma blueprint, the objective comparison between 
samples was achieved and the results presented in the previous item 
were reinforced. The sensory peculiarities of each cultivar can be 
observed in the results presented.

3.5. GC×GC-MS/FID as a powerful tool to discriminate samples 
produced in different regions

Two samples were removed from the statistical analysis because the 
production regions were incorrectly stated on product labels 

Fig. 3. A: Comparison between the cumulative image of 8 Koroneiki samples from RS and MA (dark) and the cumulative image of 8 Arbequina samples from RS and 
MA (bright). B: Comparison between the cumulative image of 4 Arbequina samples (bright) and the cumulative image of 4 Koroneiki samples (dark) from the MA 
region. C: Comparison between the cumulative image of 4 Arbequina samples (bright) and the cumulative image of 4 Koroneiki (dark) samples from RS. The cu-
mulative images were created from samples produced in 2021 and 2022 crops.
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(AR22_MA1 and KO22_MA1). The labels brought the allegation that the 
oils had been produced in the Mantiqueira region but, actually, they 
were from RS. This information was observed in the analyses presented 
in Fig. 5A and B and confirmed with the producers.

The Mantiqueira region comprises three states, Rio de Janeiro (RJ), 
Minas Gerais (MG), and São Paulo (SP), the samples analyzed in this 
research came from MG and SP. While EVOOs are produced in a flat 
region of the state of Rio Grande do Sul, those produced in Mantiqueira 
are grown in a region of mountains with different altitudes and sun 
incidence (Wrege et al., 2015). Knowing this, the Arbequina samples 
from Mantiqueira were divided by state of production to see if there was 
a difference in EVOOs produced in the same region but in different 
states. Fig. 5A shows the PCA performed for these samples. The same 
was done with the Koroneiki samples from Mantiqueira (Fig. 5B).

It was possible to observe that there is no separation by groups ac-
cording to the state of production (SP x MG) for samples belonging to the 
same region (MA) but is possible to see that the samples coded 
AR22_MA1 and KO22_MA1 do not belong to the group of EVOOs from 
the MA region. After tracking them down using batch IDs, and without 
disclosing previously our results, it was confirmed by the respective 
producers that these two samples were from olives cultivated and pro-
cessed in Rio Grande do Sul (RS region). It can be seen in Fig. 5C and D, 
in which these samples were placed together with those from the RS 
region, no cluster formation was observed.

The use of HS-SPME combined with GC×GC-MS/FID followed by the 
identification and quantification of volatile compounds present in the 
samples allowed to discriminate Brazilian EVOOs produced in different 
regions and from different cultivars. The analyses carried out with the 
AR22_MA1 and KO22_MA1 samples indicated the use of information 
encrypted in EVOOs volatilome as an efficient approach to identify 
cultivar and production region, which can be a tool to support claims for 
origin certification and food control agencies. To the best of our 
knowledge, this is the first reported case of mislabeling regarding 

geographical origin identified in Brazilian olive oils.

4. Conclusions

For the first time, 35 samples of the 2 main cultivars (Arbequina and 
Koroneiki) produced in the EVOOs producing regions in Brazil (Rio 
Grande do Sul and Serra da Mantiqueira) in two different crops (2021 
and 2022) were analyzed to discriminate them according to production 
region and cultivar. The use of AI tools was also essential for data pro-
cessing, another novelty for Brazilian EVOO samples.

MHS-SPME combined with GC×GC-MS/FID and quantification by 
external calibration and predicted RRF were a great tool in the quality 
assessment of EVOO samples. This technique, combined with the use of 
computer vision and the determination of EVOOs aroma blueprint, was 
also a valuable approach to indicate distinguishing characteristics be-
tween EVOOs produced in different regions (Rio Grande do Sul and 
Mantiqueira) and from different cultivars (Arbequina and Koroneiki).

The techniques used in this study can be applied not only for Bra-
zilian EVOOs analysis, but for VOOs in general. As perspective, it is 
intended to create a database combining the data collected in this study 
with information on other olive oils produced in different regions and 
countries from different cultivars. This database can be used to identify 
the origin and cultivar of EVOOs, the second most frauded food in the 
world (Sudhakar et al., 2023). Indeed, during the method development, 
two mislabeled EVOOs, regarding their geographical origin, were 
identified amidst the samples analyzed. This is the first identification of 
mislabeled samples detected in Brazilian oils. Furthermore, this collec-
tion of data can be expanded to include information regarding adul-
teration and fraud profiles, and become a valuable tool for the Brazilian 
agencies of food control and law enforcement.

Fig. 4. The Spider diagram shows aroma blueprint differences between Arbequina and Koroneiki cultivars. Results are shown as Odor Activity Values (OAVs) in 
log10 scale.
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