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Singular Riemannian foliations and applications to positive
and non-negative curvature

Fernando Galaz-Garcia and Marco Radeschi

Abstract

We determine the structure of the fundamental group of the regular leaves of a closed singular
Riemannian foliation on a compact, simply connected Riemannian manifold. We also study closed
singular Riemannian foliations whose leaves are homeomorphic to aspherical or to Bieberbach
manifolds. These foliations, which we call A-foliations and B-foliations, respectively, generalize
isometric torus actions on Riemannian manifolds. We apply our results to the classification
problem of compact, simply connected Riemannian 4- and 5-manifolds with positive or non-
negative sectional curvature.
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1. Introduction

The study of effective smooth torus actions on compact, smooth manifolds has a rich and
long tradition in the theory of smooth transformation groups (cf. [4, 29]). In Riemannian
geometry, starting with Hsiang and Kleiner’s topological classification of compact Riemannian
4-manifolds of positive (sectional) curvature with an effective isometric circle action [25],
isometric actions of tori have been successfully used to obtain classification results on compact
Riemannian manifolds with positive or non-negative curvature and large isometry groups
(cf. [18, 19, 39, 42]).

The present paper’s main contribution is the observation that several results on smooth
torus actions on compact smooth simply connected manifolds, and on isometric torus actions on
compact, simply connected Riemannian manifolds with positive or non-negative curvature, hold
under less restrictive conditions which do not involve the existence of a group action. Indeed,
many of these results do not hold because of the presence of a torus action, but rather because
the orbit decomposition of the manifold has the structure of a singular Riemannian foliation
whose leaves are diffeomorphic to flat tori of possibly different dimensions. To make this
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statement precise, we introduce a special class of singular Riemannian foliations, B-foliations,
which generalize isometric torus actions on complete Riemannian manifolds. Roughly speaking,
a B-foliation (M,F) is a partition of a complete Riemannian manifold M into connected closed
submanifolds, called the leaves of F , all of which are homeomorphic to some flat manifold and
are at a constant distance from each other. More generally, B-foliations are a particular instance
of singular Riemannian foliations whose leaves are homeomorphic to some closed aspherical
manifold. We will call such singular Riemannian foliations A-foliations.

The fact that A-foliations are more general than isometric torus actions is clear for several
reasons. On the one hand, the leaves need not be tori. On the other hand, even when the leaves
of an A-foliation (M,F) on a complete Riemannian manifold M are diffeomorphic to standard
tori, the foliation may not be homogeneous, that is, there might not be a global torus action
on M inducing the given singular Riemannian foliation F . This occurs, for example, when the
distribution of the tangent spaces of the torus leaves is not orientable. Moreover, our results
hold when the leaves carry exotic smooth structures, for example, in the case of exotic tori.
Nevertheless, we do not know of any non-trivial examples of singular Riemannian foliations
whose leaves are exotic tori. It would be interesting to find B-foliations by exotic tori on simply
connected manifolds and, in particular, on spheres.

In this paper, we focus our attention on A- and B-foliations on compact, simply connected
Riemannian manifolds. Although every aspherical manifold can appear as the regular leaf of an
A-foliation, our first result implies that the simply connected case is considerably more rigid.

Theorem A. Let (M,F) be a closed singular Riemannian foliation on a compact, simply
connected Riemannian manifold M . If L is a regular leaf of F , then π1(L) is isomorphic to
A×K2, where A is abelian and K2 is a finite 2 step nilpotent 2-group.

In particular, we have the following corollary.

Corollary B. Let (M,F) be an A-foliation on a compact Riemannian manifold M . If M
is simply connected, then the regular leaves are homeomorphic to tori.

Observe that 2 step nilpotent 2-groups already appear as fundamental groups of regular
leaves of codimension 1 singular Riemannian foliations and hence cannot be avoided in the
statement of Theorem A (cf. [20, Table 1.4]). This occurs, for example, in the cohomogeneity
1 action of SO(3) on S4.

With Theorem A and Corollary B in place, we extend to A- and B-foliations several basic
results on smooth effective torus actions on smooth compact manifolds (cf. [27, 29, 32, 34]).
We prove the following theorems.

Theorem C. Let (M,F) be a B-foliation on a compact Riemannian manifold M and let
Σ0 ⊆M denote the stratum of zero-dimensional leaves. Then χ(Σ0) = χ(M).

Theorem D. The only codimension 1 A-foliations on compact, simply connected Rieman-
nian manifolds are the homogeneous singular Riemannian foliations (S2,S1) and (S3, T 2).

Theorem E. Let (Mn+2,Fn) be a codimension 2 A-foliation on a compact, simply
connected Riemannian manifold Mn+2 with n � 1. Then either M = S3 and F is given by
a weighted Hopf action, or the following hold.

(1) The leaf space B = M/F is homeomorphic to a 2-disk, the interior of B is smooth, and
the boundary ∂B consists of at least n totally geodesic segments meeting at an angle of π/2.
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(2) Let L0 be a generic leaf and L1 be a singular leaf. Then there is a submersion L0 → L1,
with fiber S1 if L1 belongs to a geodesic in ∂B, or with fiber T 2, if L1 belongs to a vertex
of ∂B.

Another generalization of isometric torus actions are the so-called F-structures, introduced
by Cheeger and Gromov [7, 8]. These structures are, roughly speaking, generalized local torus
actions and play a central role in the Cheeger–Fukaya–Gromov theory of collapsed Riemannian
manifolds with bounded sectional curvature (cf. [6, 14]). The so-called pure F-structures (see
[7]) give rise to B-foliations with leaves diffeomorphic to flat manifolds. Recall that, by work
of Cheeger, Fukaya and Gromov, there exists a constant ε(n, d) > 0, such that any compact
Riemannian manifoldMn with curvature | sec(Mn)| � 1, diam(Mn) < d and vol(Mn) < ε(n, d)
admits a pure F-structure (see [9] and references therein). Therefore, Mn is B-foliated.

Although B-foliations resemble F-structures, the two concepts are independent. A B-foliation
on a Riemannian manifold does not necessarily correspond to an F-structure since, for instance,
B-foliations with exotic torus leaves cannot be generated by F-structures. On the other hand,
certain F-structures among those that are not pure do not generate a B-foliation.

As an application of our results, we extend work in [16, 25, 28, 37] on positively and
non-negatively curved compact, simply connected Riemannian manifolds with large effective
isometric torus actions to the case of A-foliations. Recall that a Riemannian manifold (M, g)
is said to have quasi-positive curvature if (M, g) has non-negative (sectional) curvature and a
point with strictly positive curvature.

Theorem F. Let (Mn, g) be a compact, simply connected Riemannian n-manifold with
quasi-positive curvature supporting a codimension 2 A-foliation.

(1) If n = 4, then M4 is diffeomorphic to S4 or CP 2.
(2) If n = 5, then M5 is diffeomorphic to S5.

Theorem G. Let (Mn, g) be a compact, simply connected Riemannian n-manifold with
non-negative curvature and a codimension 2 A-foliation.

(1) If n = 4, then M4 is diffeomorphic to S4, CP 2, CP 2# ± CP 2 or S2 × S2.
(2) If n = 5, then M5 is diffeomorphic to S5 or to one of the two S3-bundles over S2.

Theorem H. Let M be a compact, simply connected Riemannian 4-manifold with a
singular Riemannian foliation by circles. Then the foliation is induced by a smooth circle
action and the following hold.

(1) If M has positive curvature, then M is diffeomorphic to S4 or CP 2.
(2) If M has non-negative curvature, then M is diffeomorphic to S4, CP 2, CP 2# ± CP 2

or S2 × S2.

We call a B-foliation Euclidean if its regular leaves are flat with the induced Riemannian
metric and define the Euclidean rank of a Riemannian manifold (M, g) as the maximum
dimension of Euclidean B-foliations on M compatible with the fixed metric g. This invariant
generalizes the symmetry rank of (M, g) (cf. [21]). It follows from Otsuki’s lemma [5,
Lemma 3.3, p. 224] (cf. also an argument due to Wilking found in [15]) that the Euclidean
rank of a compact, quasi-positively curved Riemannian n-manifold is less than or equal to
�(n+ 1)/2�. In dimension n � 9, it is easy to show, following the comparison arguments in
the proof of Theorem G, that the Euclidean rank of a compact, simply connected Riemannian
n-manifold of non-negative curvature is bounded above by �2n/3�. These bounds coincide with
the corresponding bounds for the symmetry rank (cf. [16, 21]).
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Our paper is structured as follows. In Section 2, we recall some basic facts on singular
Riemannian foliations. In Section 3, we introduce A- and B-foliations and show that the
infinitesimal foliation at any point of a manifold with an A- or a B-foliation is also an A-
or a B-foliation, respectively. Sections 2 through 7 contain the proofs of Theorems A through
E. Section 8 contains the proof of Theorems F and G. Finally, in Section 9 we prove Theorem H.
Throughout our paper, we will assume all manifolds to be connected and without boundary,
unless stated otherwise.

2. Preliminaries

In this section, we collect some background material on singular Riemannian foliations. We
refer the reader to [1, 31] for further results on the theory.

2.1. Singular Riemannian foliations

A transnormal system F on a complete Riemannian manifold M is a decomposition of M
into smooth, complete, injectively immersed connected submanifolds, called leaves, such that
every geodesic emanating perpendicularly to one leaf remains perpendicular to all leaves. A
transnormal system F is called a singular Riemannian foliation if there are smooth vector fields
Xi on M such that, for each point p ∈M , the tangent space TpLp to the leaf Lp through p is
given as the span of the vectors Xi(p) ∈ TpM . We will call the quotient space M/F the leaf
space, and will also denote it by M∗. We will let π : M →M/F be the leaf projection map. The
pair (M,F) will denote a singular Riemannian foliation F on a complete Riemannian manifold
M . Slightly abusing notation, we will also refer to the pair (M,F) as a singular Riemannian
foliation.

A singular Riemannian foliation F will be called closed if all its leaves are closed in M ; the
foliation will be called locally closed at x ∈M if, for some neighborhood U of x, the restriction
of F to U is closed, that is, connected components of the intersection of the leaves of F with
U are closed in U . If F is locally closed at x, then the local quotient U/F is a well-defined
Alexandrov space of curvature locally bounded from below. Similarly, if F is closed, then
the quotient space M/F is an Alexandrov space of curvature locally bounded below. We will
henceforth only consider closed singular Riemannian foliations.

2.2. Group actions

As group actions will appear throughout our work, let us fix some notation before proceeding.
Given a Lie group G acting (on the left) on a smooth manifold M , we denote by Gp = {g ∈ G :
gp = p} the isotropy group at p ∈M and by Gp = {gp : g ∈ G} � G/Gp the orbit of p. The
ineffective kernel of the action is the subgroup K =

⋂
p∈M Gp. We say that G acts effectively

on M if K is trivial. The action is free if every isotropy group is trivial. Given a subset A ⊂M ,
we will denote its image in M/G under the orbit projection map by A∗. When convenient, we
will also denote the orbit space M/G by M∗.

Example 2.1 (Isometric Lie group actions). Perhaps the most familiar example of a
singular Riemannian foliation is the one induced by an (effective) isometric action of a Lie
group G on a complete Riemannian manifold M . In this case, the foliation is given by the
orbits of the action, and we say that the foliation is a homogeneous foliation. If G is compact,
then the foliation is closed, and it is locally closed if and only if all the slice representations
Gp → O(νp(Gp)) have compact image.

Remark 2.2. We will sometimes denote a homogeneous foliation, given by the action of a
Lie group G, by (M,G), provided the G-action is understood.
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2.3. Stratification

Let M be a complete Riemannian manifold with a closed singular Riemannian foliation F . The
dimension of F , denoted by dimF , is the maximal dimension of its leaves. The codimension
of F is, by definition,

codim (F ,M) = dimM − dimF .
For k � dimF , define

Σ(k) = {p ∈M : dimLp = k}.
Every connected component C of the set Σ(k) is an embedded (possibly non-complete)
submanifold of M and the restriction of F to C is a Riemannian foliation. Given p ∈M ,
let Σp be the connected component of Σ(k) through p, where k = dimLp. We will refer to the
decomposition of M into the submanifolds Σp as the canonical stratification of M .

The subset Σ(dimF) is open, dense and connected in M ; it is called the regular stratum of
M . It will be denoted by M0 and its points will be called regular points. If M0 = M, then we
say that the foliation is regular. All other strata Σp have codimension at least 2 in M and are
called singular strata. For any singular stratum Σp, we have

codim (F ,Σp) < codim (F ,M).

2.4. Infinitesimal singular Riemannian foliations

Let M be a complete Riemannian manifold with a closed singular Riemannian foliation F .
Given a point p ∈M and some small ε > 0, let Sp = expp(νpLp) ∩Bε(p) be a slice through p,
where Bε(p) is the distance ball of radius ε around p. The foliation F induces a foliation F|Sp

on Sp by letting the leaves of F|Sp
be the connected components of the intersection between Sp

and the leaves of F . The foliation (Sp,F|Sp
) may not be a singular Riemannian foliation with

respect to the induced metric on Sp. Nevertheless, the pull-back foliation exp∗
p(F) is a singular

Riemannian foliation on νpLp ∩Bε(0) equipped with the Euclidean metric (cf. [31, Proposition
6.5]), and it is invariant under homotheties fixing the origin (cf. [31, Lemma 6.2]). In particular,
it is possible to extend exp∗(F) to all of νpLp, giving rise to a singular Riemannian foliation
(νpLp,Fp) called the infinitesimal foliation of F at p.

Note that 0 ∈ νp(Lp) is always a leaf of the infinitesimal foliation Fp. By definition, leaves
stay at a constant distance from each other, in particular every leaf stays in some distance
sphere around the origin, and it makes sense to consider the infinitesimal foliation restricted to
the unit sphere. Since the infinitesimal foliation is invariant under homothetic transformations,
it can be reconstructed from its own restriction to the unit sphere. Taking this into account,
we will sometimes refer to (ν1

pLp,Fp) also as the infinitesimal foliation at p and shall write
(S⊥

p ,Fp).
Given two points p1, p2 in some leaf L, the corresponding infinitesimal foliations (S⊥

p1
,Fp1),

(S⊥
p2
,Fp2) are foliated isometric, in the sense that there is a (non-canonical) linear isometry

S⊥
p1

→ S⊥
p2

preserving the foliation. Moreover, these foliations can be glued together to give a
foliation on ν1(L) in the following sense: If one identifies ν1(L) via the normal exponential map
with ∂Tubε(L), the boundary of an ε-tubular neighborhood of L, then the intersections of leaves
in F with S⊥

p are exactly the leaves in Fp. In particular, if L′ is a leaf in ∂Tubε(L) � ν1L,
then L′ is a union of infinitesimal leaves. Moreover, if p ∈ L and q ∈ L′ can be written as
q = expp εv, v ∈ S⊥

p , then the connected components of a fiber of p under the metric projection
L′ → L (which is a submersion, cf. [31, Lemma 6.1]) are given by Lv, where Lv ∈ Fp are
diffeomorphic to the infinitesimal leaf of S⊥

p passing through v. Therefore, there is a fibration

Lv −→ Lq −→ L̄p (2.1)

for some finite cover L̄p → Lp.
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Remark 2.3. Let (M,F) be a closed singular Riemannian foliation. As recalled in
Subsection 2.1, the leaf space M∗ is an Alexandrov space of curvature locally bounded below.
Let us quickly recall the procedure to compute the space of directions Σp∗ at a point p∗ ∈M∗.
Let p ∈M be a point in the preimage of p∗ and let Sp∗ = S⊥

p /Fp be the quotient of the
infinitesimal foliation (S⊥

p ,Fp). The fundamental group π1(Lp) acts on Sp∗ by isometries via
the so-called holonomy action and Σp∗ is isometric to Sp∗/π1(Lp). Given v ∈ S⊥

p with image
v∗ ∈ Sp∗ , let H be the subgroup of π1(Lp) fixing v∗. Then, in fibration (2.1), the cover L̄p is
L̃p/H, where L̃p is the universal cover of Lp.

Example 2.4. Let (M,G) be a homogeneous foliation. Given a point p ∈M , the connected
component G0

p of the isotropy group Gp acts on νp(Gp) by isometries, via the so-called slice
representation. In this case, the infinitesimal foliation Fp is the homogeneous foliation given
by the orbits of G0

p on νp(Gp). Given q ∈M close to p, with isotropy Gq < Gp, the projection
(2.1) is the projection

G0
p/Gq −→ G/Gq −→ G/G0

p,

where G/G0
p is a cover of the orbit G/Gp though p.

2.5. The Molino bundle

We conclude this section by recalling the main properties of the so-called Molino bundle (cf. [31,
Proposition 4.1]). We let (M,F) be a closed singular Riemannian foliation of codimension q on
a compact Riemannian manifold M . Since the foliation on the regular stratum M0 is regular,
there exists a principal O(q)-bundle M̂ →M0, called the Molino bundle, and a foliation (M̂, F̂)
such that the leaves of F̂ are Galois covers of the leaves of F . Moreover, the leaves of F̂ are
actually diffeomorphic to those of F on an open dense set. In addition, since F is closed, the
leaves of F̂ are given by the fibers of a submersion θ : M̂ →W , where W is the frame bundle
of the orbifold M0/F . In particular, W is a manifold with an almost free smooth O(q)-action
and θ is O(q)-equivariant.

Let M̂O(q) = M̂ ×O(q) EO(q) and WO(q) = W ×O(q) EO(q) be the Borel constructions of M̂
and W , respectively. Then M̂O(q) is homotopy equivalent to M0 and θ induces a fibration
θ̂ : M̂O(q) →WO(q) with the same fibers as θ : M̂ →W . Furthermore, the space B = WO(q)

coincides with Haefliger’s classifying space of the orbifold M0/F (cf. [24]). Therefore, up to
homotopy, there is a fibration

L
ι−→M0

θ̂−→ B, (2.2)

where L is a regular leaf of F .

3. A-foliations and B-foliations

We now introduce A-foliations and B-foliations, which are the main object of study in our
paper.

Definition 3.1 (A-foliation). A closed singular Riemannian foliation (M,F) is an
A-foliation if every leaf is an aspherical manifold.

Definition 3.2 (B-foliation). A closed singular Riemannian foliation (M,F) is a
B-foliation if every leaf is homeomorphic to some Bieberbach manifold.

Recall that a Bieberbach manifold is a manifold diffeomorphic to Rn/G, where G is a
discrete group of Euclidean isometries acting freely and cocompactly on Rn. These groups are
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called Bieberbach groups. Abstractly, Bieberbach groups can be characterized as torsion-free
groups with a normal finite index abelian subgroup (cf. [41]). In particular, every subgroup
of a Bieberbach group is a Bieberbach group. Every Bieberbach manifold is compact, has no
boundary and admits a flat Riemannian metric.

Remark 3.3. We shall use the fact that any aspherical manifold N with fundamental
group isomorphic to a Bieberbach group G must be homeomorphic to a Bieberbach manifold.
To see this, observe first that N must be homotopy equivalent to Rn/G, since both are models
for K(G, 1). It then follows from the solution of the Borel conjecture for flat manifolds (cf. [3,
10, Section 4]) that N and Rn/G must be homeomorphic. The manifolds N and Rn/G may
not be diffeomorphic, as illustrated by the existence of exotic tori, which appear already in
dimension 5 (cf. [26]).

Remark 3.4. In the preceding definition, we do not assume that the leaves are flat with
the induced Riemannian metric.

Example 3.5. Every isometric torus action on a complete Riemannian manifold induces a
(homogeneous) B-foliation. Bundles whose fibers are homeomorphic to Bieberbach manifolds
are also examples of B-foliations.

Example 3.6 (Non-homogeneous B-foliations). The simplest way to construct non-
homogeneous B-foliations with regular leaves homeomorphic to tori is to take the Riemannian
product of a complete Riemannian manifold and an exotic torus. As the leaves are exotic tori,
they cannot correspond to the orbits of an isometric torus action.

One can also construct non-homogeneous B-foliations whose leaves are diffeomorphic to flat
tori in the following way. Let B be a compact smooth manifold with non-trivial fundamental
group, let Tn be a standard n-dimensional torus and ρ : π1(B) → Diff(Tn) be a homomorphism.
Let B̃ be the universal cover of B and let π1(B) act diagonally on the product B̃ × Tn. This
action is free and, taking the quotient, we obtain a fiber bundle

Tn −→ B̃ ×π1(B) T
n −→ B.

The total space B̃ ×π1(B) T
n is B-foliated by the fibers of the bundle. If the B-foliation is

homogeneous, then the bundle is principal, and the structure group reduces to a subgroup
of Tn ⊆ Diff(Tn). In particular, the structure group is contained in the identity component
Diff0(Tn) of Diff(Tn). Thus, to construct a non-homogeneous B-foliation, it is enough to
consider a homomorphism ρ : π1(B) → Diff(Tn) whose image is not entirely contained in
Diff0(Tn).

As a concrete example, if B = S1, Tn = S1 and ρ : π1(B) = Z → Diff(S1) � O(2) is an
orientation-reversing diffeomorphism, then B̃ ×π1(B) T

n is a Klein bottle K, and the foliation
is given by the fibers of the submersion K → S1.

In the case of A- and B-foliations, the total space and the base in fibration (2.1) are
homeomorphic, respectively, to aspherical and Bieberbach manifolds. The following general
result shows that these classes of manifolds are well-behaved with respect to fibrations.

Theorem 3.7. Let F, M, and N be topological manifolds and let F →M → N be a
fibration.

(1) If M is aspherical, then F and N are aspherical.
(2) If M is homeomorphic to a Bieberbach manifold, then F and N are homeomorphic to

Bieberbach manifolds.
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Proof. We first prove part (1). Consider the fibration between the universal covers M̃ → Ñ ,
with fiberH. Since M̃ is contractible and Ñ is simply connected, we can apply the Serre spectral
sequence with integral coefficients, and from it we obtain that H and Ñ are contractible. In
fact, if H∗(H) has cohomological dimension a, and H∗(Ñ) has cohomological dimension b, then
H∗(M̃) has cohomological dimension a+ b and this has to be 0. In particular, Ñ is aspherical.
Therefore, N is aspherical and, from the long exact sequence in homotopy, so is F .

Now we prove part (2). By Remark 3.3, it suffices to show that F and N are aspherical and
π1(F ) and π1(N) are Bieberbach groups. Since M is homeomorphic to a Bieberbach manifold,
it follows from part (1) that F and N are aspherical. From the long exact sequence of the
fibration, we have

1 −→ π1(F ) −→ π1(M) −→ π1(N) −→ 1,

where π1(M) is a Bieberbach group, that is, a torsion-free group with a finite index normal
abelian subgroup. Since π1(F ) is a subgroup of a Bieberbach group, it is again a Bieberbach
group and therefore F is homeomorphic to a flat manifold.

We now prove that π1(N) is a Bieberbach group. First, we show that π1(N) is torsion-free.
Suppose that this is not the case. Then there is a finite cyclic subgroup Zk acting freely on the
contractible manifold Ñ . It follows that Ñ/Zk is a K(Zk, 1), which contradicts the fact that
K(Zk, 1) has infinite cohomological dimension.

Finally, let us show that π1(N) contains a finite index normal abelian subgroup. Since
π1(M) is a Bieberbach group, there exists a finite index normal subgroup Zd ⊆ π1(M). The
image of Zd in π1(N) is a finitely generated normal torsion-free abelian group A. Since the
map π1(M)/Zd → π1(N)/A is surjective, A has finite index in π1(N). Therefore, π1(N) is a
Bieberbach group, and therefore N is homeomorphic to a Bieberbach manifold.

Theorem 3.7 can be applied to fibration (2.1) to obtain the following corollaries.

Corollary 3.8. Let (M,F) be a closed singular Riemannian foliation.

(1) If a regular leaf of (M,F) is aspherical, then (M,F) is an A-foliation.
(2) If a regular leaf of (M,F) is homeomorphic to a flat manifold, then (M,F) is a

B-foliation.

Corollary 3.9. (1) The infinitesimal foliations of an A-foliation are again A-foliations.
(2) The infinitesimal foliations of a B-foliation are again B-foliations.

Since B-foliations generalize torus actions, it is natural to ask when such a foliation is
homogeneous. We will now show that closed singular Riemannian foliations by circles on
compact, simply connected Riemannian manifolds are homogeneous, answering the simplest
instance of this question. We first prove the following general lemma.

Lemma 3.10. Let (M,F) be a closed, singular Riemannian foliation on a compact, simply
connected Riemannian manifold M . Then the foliation (M,F) restricted to the regular part
M0 is orientable.

Proof. By [31, Proposition 3.7], the leaf space M0/F is an orbifold. Lytchak showed in
[30, Corollary 5.3] that πorb

1 (M0/F) = 1, that is, the classifying space B of M0/F is simply
connected. In particular, B is orientable, which implies the result.
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Theorem 3.11. Let (M,F) be a closed, singular Riemannian foliation on a compact,
simply connected Riemannian manifold. If the regular leaves of the foliation are circles, then
the foliation is homogeneous.

Proof. By Lemma 3.10, the foliation F restricted to the regular part M0 is orientable.
Hence (M0,F) is given by a circle action. Since the singular strata of the foliation are smooth
closed embedded submanifolds, the action can be extended to the singular strata by radially
extending it on small tubular neighborhoods around each component of the singular strata.

Remark 3.12. In the subsequent sections, we will assume all manifolds to be compact,
unless stated otherwise.

4. The fundamental group of a regular leaf

Proof of Theorem A

Let (M,F) be a closed singular Riemannian foliation on a compact, simply connected
Riemannian manifold. Observe that M remains simply connected if we discard all the singular
strata of codimension at least 3. Therefore, we may assume that

M = M0 ∪
r⋃

i=1

Σi,

where Σi are the connected components of codimension 2 of the singular stratum and M0 is the
regular stratum of F . We will assume that

⋃r
i=1 Σi is the empty set if there are no codimension

2 strata.
For each i = 1, . . . r, let Ui be a small tubular neighborhood of Σi with foot-point projection

pi : Ui → Σi. The restriction of pi to Ui \ Σi is a circle bundle. The fibers of this circle bundle
define a free homotopy class [ci] of loops in M0. Moreover, if pi ∈ Ui \ Σi, then Lpi

is entirely
contained in Ui and the restriction of pi to Lpi

is a circle bundle

S1 −→ Lpi
−→ Lpi(pi). (4.1)

Let us fix a regular leaf L0 in M0 and a point p0 ∈ L0. For i = 1, . . . r, fix a horizontal curve
γi : [0, 1] →M0 from p0 to some pi ∈ Ui \ Σi. This curve induces an homeomorphism hi : Lpi

→
L0, given by hi(p) = γp(0), where γp is the only horizontal curve ending at p whose projection
to M0/F coincides with the projection of γi. Let ci be a representative of the free homotopy
class [ci] defined in the preceding paragraph, passing through pi. The element ki = hi∗(ci) ∈
π1(L0, p0) is uniquely determined, up to a sign, by γi and ci. Let K ⊆ π1(L0, p0) be the group
generated by the elements ki. Note that each group 〈ki〉 generated by ki is normal in π1(L0, p0)
and therefore K, being generated by normal subgroups, is normal in π1(L0, p0) as well.

If γ′i : [0, 1] →M0 is a second horizontal curve from p0 to p′i ∈ Ui \ Σi, then a different
homeomorphism h′i : Lp′

i
→ L0 is induced, and we obtain a different element k′i ∈ π1(L0, p0).

Letting ι : L0 →M0 denote the inclusion of L0 in M0, the elements ι∗(ki) and ι∗(k′i) in
π1(M0, p0) are conjugate by an element of π1(M0, p0).

Recall from Subsection 2.5 that, up to homotopy, there is a fibration

L0
ι−→M0

θ̂−→ B, (4.2)

where ι : L0 →M0 is the inclusion and B is Haefliger’s classifying space of the orbifold M0/F .
In particular, by definition, πorb

i (M0/F) = πi(B) for all i > 0. Let H be the image of the
boundary map ∂ : π2(B, b0) → π1(L0, p0) in the homotopy exact sequence of fibration (4.2).
There is an exact sequence

0 −→ H
∂−→ π1(L0, p0)

ι∗−→ π1(M0, p0)
θ̂∗−→ π1(B, b0) −→ 1. (4.3)
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To prove Theorem A, we will proceed in three steps.

Step 1: K ⊆ π1(L0, p0) maps surjectively onto π1(M0, p0) under ι∗.
Step 2: K splits as a product K1 ×K2, where K1 is abelian and K2 is a finite 2 step

nilpotent 2-group.
Step 3: H ⊆ π1(L) is central.

By the first step, π1(L0, p0) is generated by H and K. By the second step, K splits as a product
K1 ×K2, and by the third step [K,H] = {e}. Let A denote the group generated by K1 and
H. Then A and K2 generate π1(L0, p0), [A,K2] = 0 and A ∩K2 = {e}. Therefore, π1(L0, p0)
splits as A×K2.

Proof of Step 1. Since πorb
1 (M0/F) = π1(B) = 1 by [30, Corollary 5.3], the exact sequence

in homotopy of fibration (2.2) implies that ι∗ is surjective. Since K is normal in π1(L0, p0), the
group ι∗(K) is normal in π1(M0, p0).

Let c be a loop in M0, representing an element [c] ∈ π1(M0, p0). Since M is simply connected,
there exists a disk D ⊆M bounding c. We can choose D so that it intersects the strata Σi

transversally, in a finite number of points. For each point qα, we can produce a curve k′iα
in

D going around qα only. The curve c is homotopic to the product of these k′iα
and, by the

discussion at the beginning of the proof, every such k′iα
is conjugate in π1(M0, p0) to some

ι∗(ki) or ι∗(ki)−1 of ι∗(K). Since ι∗(K) is normal, k′iα
is an element of ι∗(K), and so is [c].

Proof of Step 2. Suppose that ki, kj ∈ K do not commute or, equivalently, that

kikjk
−1
i = kj . (4.4)

Consider the circle bundle pj ◦ h−1
j : L0 → Lpj(pj) where pi is the map defined in (4.1). Equation

(4.4) says that pj ◦ h−1
j is not orientable along a curve representing the class ki. Therefore, we

must have
kikjk

−1
i = k−1

j (4.5)

or, equivalently, [ki, kj ] = k−2
j . From (4.5), it follows that k2

j commutes with all ki, and is
therefore central in K.

By exchanging the roles of ki and kj in (4.5), we similarly obtain [ki, kj ] = k−2
i . Thus

k−2
i = k−2

j

for all non-commuting ki, kj , 1 � i, j � r. Since ki and kj do not commute, ki and k−1
j do not

commute either and therefore k2
j = k−2

i = k−2
j . In particular, k4

i = e unless ki is central in K.
The center of K splits uniquely as Z(K) = Z(2) ×K1, where Z(2) is the Sylow 2-subgroup

of Z. Let N = 〈ki | ki /∈ Z(K)〉 and K2 = N · Z(2). By the computations above, [K2,K2] is
generated by the squares of the generators ki in N and therefore it is central. Hence, it is
abelian, and K2 is 2-step nilpotent. On the other hand, [K2,K2] is finitely generated and every
generator has order 2. Therefore, [K2,K2] is a finite 2-group. It follows from the short exact
sequence

0 −→ [K2,K2] −→ K2 −→ K2/[K2,K2] −→ 0

that K2 is a finite 2-group. Clearly, K1 is abelian, [K1,K2] = 0, and K1 ∩K2 = {e}. Thus
K = K1 ×K2.

Proof of Step 3. The map ∂ in sequence (4.3) can be seen as the map α∗ : π1(ΩB, b0) →
π1(L0, p0) induced by the fibration ΩB → L0 → M̂0, where ΩB is the loop space of B. The
map α : ΩB → L0 extends to an action of ΩB on L0 via the holonomy of the fibration M̂0 → B.
We will denote this action by ‘�’. The existence of this action implies that α∗(π1(ΩB, b0)) �
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∂(π2(B)) is central in π1(L0, p0). Indeed, given γL ∈ π1(L0, p0) and γB ∈ π1(ΩB, b0), the
homotopy

H(s, t) = γB(s) � γL(t)

is a homotopy between α∗(γB) · γL and γL · α∗(γB).

The following corollary is a direct consequence of the proof of Theorem A.

Corollary 4.1. Let (M,F) be a closed singular Riemannian foliation on a compact,
simply connected Riemannian manifold M . Let M0 be the regular part of F , let L0 be a
regular leaf and let r be the number of codimension 2 strata. If πorb

2 (M0/F) = 0, then π1(L0)
is generated by at most r elements.

Remark 4.2. In the proof of Theorem A, the non-abelian part K2 is of a very particular
type. One can prove that there exists a surjective homomorphism K → K2, where K is
isomorphic to a finite product of groups Ki that are central extensions 1→Z2 →Ki →Z

ni
2 → 1,

for some ni � 0. The only instances known to us of such groups are Z2, Z4, the quaternion
group Q and products of these groups.

5. Euler characteristic of B-foliations

Proof of Theorem C

Let W be a small tubular neighborhood Bε(Σ0) of Σ0 and let V = M \Bε/2(Σ0). As {W,V }
is an open cover of M , we have

χ(M) = χ(W ) + χ(V ) − χ(W ∩ V )
= χ(Σ0) + χ(V ) − χ(W ∩ V ).

Observe that V and W ∩ V are saturated submanifolds without zero-dimensional leaves. We
will now show that χ(V ∩W ) = χ(V ) = 0, which proves the theorem. Note that V ∩W retracts
to M ′ = ∂Bε/2(Σ0), which is a compact saturated submanifold of M .

Recall that M ′/F|M ′ admits a finite good open cover {U∗
1 , . . . , U

∗
k}, that is, every finite

intersection U∗
α1

∩ · · · ∩ U∗
αk

is contractible (cf. [40]). For 1 � i � k, we let Ui ⊂M be the
preimage of U∗

i under the leaf projection map. We can write

χ(M ′) =
∑

i

χ(Ui) −
∑

i,j

χ(Ui ∩ Uj) + · · · ,

where the sum is finite. Observe that every finite intersection retracts to a leaf. Since these
leaves are homeomorphic to non-trivial Bieberbach manifolds, their Euler characteristic is 0.
In particular, χ(M ′) = χ(W ∩ V ) = 0. We will now show that χ(V ) = 0. Observe first that V ,
the closure of V , has boundary M ′. The double M ′′ = V ∪M ′ V is a compact manifold which
admits a B-foliation without zero-dimensional leaves and, as before, χ(M ′′) = 0. On the other
hand, χ(M ′′) = 2χ(V ) − χ(M ′), so χ(V ) = 0.

6. A-foliations of codimension 1 on simply connected manifolds

Proof of Theorem D

We first prove the following lemma.

Lemma 6.1. Let Mn+1 be a compact, simply connected (n+ 1)-manifold. If (Mn+1,Fn)
is a codimension 1 closed singular Riemannian foliation, then the foliation cannot be regular.
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Proof. Suppose that Fn is a regular foliation. Since Mn+1 is simply connected, it follows
from work of Molino [31] that Fn must be a simple foliation, that is, it is given by the fibers of
a Riemannian submersion. Hence there is a fibration Ln →Mn+1 → S1. Since Mn+1 is simply
connected, the long exact sequence in homotopy for the fibration yields a contradiction.

We now prove Theorem D. Let M be a compact, simply connected manifold and (M,F) be
a codimension 1 A-foliation of M . By Lemma 6.1, F is singular. Therefore, the leaf space M∗

is homeomorphic to a closed interval [−1, 1]. In particular, M0/F ∼= (−1,+1) is a contractible
manifold and there are at most two strata of codimension 2. By Corollary 4.1, the fundamental
group of a regular leaf has at most two generators. By Corollary B, the regular leaves are
homeomorphic to tori. Therefore, a regular leaf must be diffeomorphic to S1 or T 2. It follows
that M is either two- or three-dimensional and, since M is simply connected, it must be
diffeomorphic to S2 or to S3. In the case of S2, it follows from Theorem 3.11 that the foliation
comes from a smooth circle action.

Suppose now that M is diffeomorphic to S3. In this case, the regular leaves are two-
dimensional, the singular leaves L± are one-dimensional, hence they are circles, and the regular
leaves fiber over L± with fiber a circle. By Corollary B, the regular leaves are diffeomorphic to
a 2-torus. We can therefore describe S3 as a double disk bundle

M = D− ∪φ D+,

where D± is a disk bundle over L± and φ : ∂D+ → ∂D− is a diffeomorphism. Moreover, the
foliation F consists of the distance tubes to the zero section (with respect to some Euclidean
structure on the disk bundles). Note that D± are solid tori and ∂D± are tori.

Since M is diffeomorphic to S3, the gluing map φ is unique up to isotopy. In particular, since
the foliation (M,F) is uniquely determined up to foliated diffeomorphism by the isotopy type
of φ, it follows that there is only one foliated diffeomorphism type of codimension 1 foliation
in S3 that decomposes S3 into two full tori, and this must be the one given by the standard
linear T 2-action.

7. A-foliations of codimension 2 on simply connected manifolds

Proof of Theorem E

Throughout this section, we let (M,F) be an A-foliation of codimension 2 on a compact, simply
connected Riemannian manifold M .

7.1. Regular A-foliations of codimension 2

We first consider the case where (M,F) is regular.

Proposition 7.1. If F is regular, then M is diffeomorphic to S3 and the generic leaf is
diffeomorphic to S1.

Proof. Since (M,F) is regular and has codimension 2, it follows from [30, Theorem 1.6] that
the quotient M/F is a compact, simply connected orbifold without boundary. In particular,
M/F is homeomorphic to S2.

In our case, the fibration (2.2) is given by L→M → B, where L is a regular leaf of F and B
is the classifying space of the orbifoldM/F . Therefore, there is a rational homotopy equivalence
B →M/F and, as a consequence, π2(B) ⊗ Q ∼= Q. Tensoring the long exact homotopy sequence
of the fibration L→M → B with Q, we get

Q −→ π1(L) ⊗ Q −→ 0.
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Figure 1. Example of a leaf space of a codimension 2 A-foliation.

By Corollary B, L is a torus. Therefore, the sequence above implies that L is diffeomorphic
to S1. Since (M,F) has codimension 2, M is three-dimensional. By Perelman’s proof of the
Poincaré conjecture, M must be diffeomorphic to S3.

By Theorem 3.11, a regular foliation on S3 by circles must be homogeneous. Moreover, the
circle action must be equivalent to a linear circle action on S3 (cf. [33]).

7.2. Singular A-foliations of codimension 2

We now consider the case where (M,F) is singular.
Since the foliation is not regular, by [30] there are no exceptional leaves and the leaf space

M∗ is homeomorphic to a two-dimensional orbifold B with non-empty boundary corresponding
to singular strata. As in the case of group actions, the fundamental group of M surjects onto
the fundamental group of the leaf space (cf. [4, Chapter II, Theorem 6.2 and Corollary 6.3]).
Therefore, the leaf space is simply connected and hence it is homeomorphic to a disk. The
boundary of B consists of the union of geodesic arcs. The points in the interior of these arcs
correspond to leaves which we will call least singular leaves, while the vertices of the leaf space,
that is, the points where two geodesic arcs in the boundary meet, correspond to leaves which
we will call most singular leaves (see Figure 1).

Let L be a singular leaf and fix p ∈ L. By Corollary 3.9, the infinitesimal foliation (Sr
p,Fp) is a

codimension 1 A-foliation, whose quotient is a closed interval. By Theorem D, the infinitesimal
foliation (Sr

p,Fp) must be one of the homogeneous foliations (S2,S1) or (S3, T 2). Since Sr
p is a

round unit sphere, it follows from the main theorem in [36] that the foliation is isometric to
one of the homogeneous foliations (S2,S1) or (S3, T 2) induced by orthogonal actions on round
unit spheres. In the first case, the leaf space of the homogeneous foliation is isometric to a
closed interval of length π and corresponds to the infinitesimal foliation of a least singular leaf.
In the second case, the leaf space of the homogeneous foliation is isometric to a closed interval
of length π/2 and corresponds to the infinitesimal foliation of a most singular leaf.

Since there are no exceptional leaves, by Remark 2.3, the holonomy action is trivial. Hence
the space of directions at any point p∗ ∈M∗ is isometric to the leaf space of the infinitesimal
foliation at p∗. In particular, the angle between geodesic arcs meeting at vertices of M∗ is π/2
and fibration (2.1) yields the desired metric fibrations in part (2) of Theorem E. Finally, since
the regular leaves are homeomorphic to n-tori and the edges of the leaf space correspond to
codimension 2 strata, Corollary 4.1 implies that there must be at least n edges. This concludes
the proof of Theorem E.

8. Curvature and A-foliations of codimension 2

8.1. Proof of Theorem F

We prove assertions (1) and (2) separately.
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Proof of assertion (1). Suppose n = 4. Then the leaf space is a two-dimensional Riemannian
manifold of non-negative curvature, homeomorphic to a 2-disk, with polyhedral boundary and
with positive curvature in an open subset. By Theorem E, the leaf space M∗ has m � 2 vertices
where boundary edges meet at an angle of π/2. These points, which we will denote by p∗i ,
correspond to zero-dimensional leaves pi in M . Since M is quasi-positively curved, so is M∗.
By the Gauss–Bonnet theorem, mπ/2 < 2πχ(M∗) = 2π, which implies that m = 2 or m = 3.
In either case, M decomposes as a union M = D1 ∪φ D2, where D1 is diffeomorphic to a small
distance ball around p1 and D2 is diffeomorphic to a tubular neighborhood around either p2, if
m = 2, or to the closure of the stratum opposite to p1, if m = 3. Therefore, ∂D1 � ∂D2 � S3.

If m = 2, then there exist diffeomorphisms ψi : Di → B4 where B4 is a unit ball in R4, and
M is diffeomorphic to B4 ∪φ B

4, where φ = ψ2|∂D2 ◦ φ ◦ ψ1|−1
∂D1

: S3 → S3. By Hatcher’s proof
of the Smale conjecture [23], φ is isotopic to φ0 ∈ O(4), and thus M � B4 ∪φ0

B4 � S4.
If m = 3, then the closure N of the stratum opposite to p1 is a two-dimensional smooth

submanifold of M and F restricts to a codimension 1 foliation with two singular leaves. Hence,
N is diffeomorphic to S2 and, since ∂D2 � S3, there is a diffeomorphism ψ2 : D2 → B, where
B is a tubular neighborhood of a totally geodesic S2 in CP2. Again, there is a diffeomorphism
ψ1 : D1 → B4, and M is diffeomorphic to B4 ∪φ B where φ is defined using ψ1, ψ2, as before.
Once again, φ is isotopic to φ0 ∈ O(4), and M � B4 ∪φ B � CP 2.

Proof of assertion (2). By the work of Barden [2] and Smale [38], it suffices to verify that
H2(M,Z) = 0. The leaf space M∗ is homeomorphic to a disk and it has at least three vertices,
by Theorem E. A comparison argument as in part (1) implies that there are exactly three
vertices in M∗.

Let X− ⊆M be the preimage of an edge of M∗, and let X+ = S1 be the preimage of the
opposite vertex. The preimage X− is smooth closed submanifold of M without boundary, and
it is a deformation retract of M \X+. Since codim (X+) > 2, π1(X−) = π1(M \X+) = 1 and
therefore X− = S3. It follows that M admits a decomposition as a double disk bundle

M = D(X−) ∪D(X+), ∂D(X−) = ∂D(X+) = X0,

where X0 is a distance tube around X− and X0 → X1 is an orientable circle bundle. In
particular, X0 = S3 × S1 and from the Mayer–Vietoris sequence applied to the double disk
decomposition, we obtain

H2(S3 × S1,Z) −→ H2(S3,Z) −→ H2(M,Z) −→ Z −→ Z −→ 0,

from which it follows easily that H2(M,Z) = 0.

8.2. Proof of Theorem G

We prove parts (1) and (2) separately.

Proof of part (1). By the Gauss–Bonnet Theorem, the leaf space M∗ has at most four
vertices. On the other hand, by Theorem E, M∗ has at least two vertices. Hence, by Theorem C,
the Euler characteristic of M4 is 2, 3 or 4, and it follows from the work of Freedman [13] that
M4 is homeomorphic to S4, CP 2, CP 2# ± CP 2 or S2 × S2. If M∗ has two or three vertices,
then the leaf space structure is the same as the one in the proof of part (1) of Theorem F
and M admits a decomposition as a double disk bundle. It follows that M4 is diffeomorphic to
S4, if M∗ has two vertices, or to CP 2, if M∗ has three vertices. If M∗ has four vertices, then
M∗ is isometric to a flat rectangle and M also admits a double disk bundle decomposition. In
this case, it follows from [17, Theorem 1.1] that M is diffeomorphic to one of CP 2# ± CP 2 or
S2 × S2.
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Proof of part (2). By Theorem E, the leaf space M∗ has at least three vertices. On, the
other hand, since the leaf space is non-negatively curved, it may have at most four vertices. If
there are exactly three, then, proceeding as in the proof of Theorem F, we conclude that M
is diffeomorphic to S5. Therefore, we can restrict our attention to the case in which M∗ has
four vertices, so that M∗ is isometric to a flat rectangle [−1, 1] × [−1, 1]. To conclude that M
is diffeomorphic to one of the two S3-bundles over S2, it suffices to prove that H2(M,Z) = Z

and then appeal to the work of Barden [2] and Smale [38].
Let X± ⊆M and X0 ⊆M be the preimage of {±1} × [−1, 1] ⊆M∗ and {0} × [−1, 1],

respectively. Similarly, define Y±, Y0 to be the preimages of [−1, 1] × {±1}, [−1, 1] × {0}. They
are all smooth closed submanifolds of M without boundary, there are maps φ± : X0 → X±
which are circle bundles, and M can be written as a double disk bundle

M = D(X−) ∪D(X+), ∂D(X−) = ∂D(X+) = X0. (8.1)

Let N be the preimage of the point (−1,−1) ∈M∗. The leaf N is diffeomorphic to S1, and its
normal bundle ν(N) has rank 4 and is orientable. Since the universal cover of N is contractible,
the structure group of ν(N) is completely determined by an isometry P of S3

p = ν1
pN at some

point p ∈ N . Since the structure group preserves the foliation F , the isometry P preserves
the infinitesimal foliation (S3

p,Fp), which is isometric to the foliation induced by the isometric
T 2 action on S3. Since P also preserves the orientation of S3, P ∈ SO(4) ∩ Isom(S3

p,Fp) =
SO(4) ∩ (O(2) × O(2)) = S(O(2) × O(2)).

Lemma 8.1. P ∈ SO(2) × SO(2).

Proof. The isometry P belongs to SO(2) × SO(2) if and only if it preserves the orientation
of both singular leaves L1,L2 � S1 of the infinitesimal foliation at p, otherwise it reverses
both. If L1, L2 ∈ F are the (singular) leaves containing expp L1, expp L2, respectively, they
are two-dimensional and they are both tori if and only if P ∈ SO(2) × SO(2), otherwise they
are both Klein bottles. It follows that either all the two-dimensional leaves are orientable
(if P ∈ SO(2) × SO(2)) or none of them are. Moreover, since the generic leaf in X− is orientable
if and only if X− is (and the same holds for X+, Y±), it follows that X±, Y± are all orientable
if and only if P ∈ SO(2) × SO(2), otherwise none of them are.

Suppose now that P /∈ SO(2) × SO(2). As we said, it follows that X+,X− are non-orientable,
and since X0 is always orientable, the circle bundles φ± : X0 → X± are non-orientable. It
follows from equation (8.1) and [20, Table 1.4] that π1(X0) is finite. On the other hand, X0

itself can be written as a double disk bundle

X0 = D(K−) ∪D(K+), ∂D(K−) = ∂D(K+) = T 3,

where K± are Klein bottles. From the Mayer–Vietoris sequence, it follows that π1(X0) cannot
be finite, and this provides a contradiction.

The following statements immediately follow from the proof of the lemma.

(i) Every two-dimensional leaf is a torus.
(ii) The manifolds X±, Y± are orientable.
(iii) The bundles X0 → X± are orientable, and therefore principal S1-bundles.

From the facts listed above, X− can be decomposed as a union of two solid tori. Therefore,
X− is diffeomorphic to either S2 × S1 or to a lens space Lm = S3/Zm. Since φ− : X0 → X−
is a principal bundle, X0 is homotopy equivalent to either T 2 × S2 (only if X− = S1 × S2) or
to S1 × Lm. If X0 ∼ S1 × Lm, then consider the homotopy fibration F → X0 ↪→M . Since φ±
are orientable, it follows from [20, Table 1.4] that π1(F ) = Z ⊕ Z, and from the long exact
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sequence in homotopy we obtain

0 −→ π2(M) −→ Z ⊕ Z −→ Z ⊕ Zm −→ 0.

Therefore, H2(M,Z) = π2(M) = Z.
The only possibility left is that X0 ∼ S2 × T 2, and X± = S2 × S1. Applying the Mayer–

Vietoris sequence to the double disk bundle decomposition (8.1), we obtain

H2(S2 × T 2) Δ∗−→ H2(S2 × S1) ⊕H2(S2 × S1) −→ H2(M) ∂∗−→ Z2 −→ Z2 −→ 0.

It follows immediately that ∂∗ = 0. Moreover, the map

Δ∗ : H2(S2 × T 2) = Z2 −→ H2(S2 × S1) ⊕H2(S2 × S1) = Z2

is explicitly computable and its cokernel is Z. Therefore, H2(M,Z) = Z in this case as well.

9. Curvature and singular Riemannian foliations by circles

Proof of Theorem H

Throughout this section, we let (M,F) be a singular Riemannian foliation by circles on a
compact, simply connected Riemannian 4-manifold. By Theorem 3.11, (M,F) is a homogeneous
foliation, that is, it is induced by a smooth effective circle action on M . By work of Fintushel
[11, 12], Pao [35], and Perelman’s proof of the Poincaré conjecture, a compact, simply
connected smooth 4-manifold with a smooth effective circle action is diffeomorphic to a
connected sum of copies of S4, ±CP 2 and S2 × S2. It follows from Theorem 3.11 that a compact,
simply connected 4-manifold with a singular Riemannian foliation by circles is diffeomorphic
to a connected sum of copies of S4, ±CP 2 and S2 × S2.

The leaf space structure of (M,F) corresponds to the orbit space structure of a smooth circle
action on a compact, simply connected smooth 4-manifold (cf. [11]). In particular, the leaf space
M∗ is a simply connected topological 3-manifold, possibly with boundary, the components
of the zero-dimensional stratum are homeomorphic to 2-spheres or isolated points, and the
boundary components of M∗ are 2-sphere components in the zero-dimensional stratum. With
these preliminary remarks in place, we prove the rest of Theorem H.

Proof of (1) and (2) of Theorem H

By Poincaré duality, 2 � χ(M). By the discussion in the first paragraph of the proof, to prove
parts (1) and (2) of the theorem, it suffices to show that χ(M) � 3 when M is positively curved,
and χ(M) � 4 when M is non-negatively curved.

By the results in the preceding subsection, the leaf spaceM∗ is a simply connected topological
manifold with an Alexandrov space structure. In particular, M∗ is positively curved if M has
positive curvature, and M∗ is non-negatively curved if M has non-negative curvature. Since
the proof follows as in the proof of an isometric circle action, via comparison arguments already
found in the literature (cf. [21, 22, 25, 37]), we only indicate the necessary steps.

Positively curved case. Suppose first that ∂M∗ is not empty, and let F ∗ be a connected
component of ∂M∗. Then, by the Soul Theorem for Alexandrov spaces, there exists a unique
point p∗0 at maximal distance from F ∗ and all the points between F ∗ and p∗0 must correspond to
regular leaves. In particular, the boundary of M∗ is always connected. The point p∗0 is either a
regular leaf or an isolated point in Σ0. Therefore, χ(M) � 3. Suppose now that ∂M∗ is empty.
Then Σ0 consists only of isolated points. The space of directions at an isolated point in the
zero-dimensional stratum is isometric to the quotient of a round unit S3 by an isometric circle
action without fixed points. By a triangle comparison argument as in [22], there can be at
most three such points. Therefore, χ(Σ0) � 3.
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Non-negatively curved case. Suppose first that ∂M∗ has at least two components, ∂M∗
− and

∂M∗
+. Then M∗ is isometric to ∂M∗

+ × [0, 1] and there are no isolated points in Σ0. Hence
χ(M) = 4. Suppose now that ∂M∗ is connected and let C∗ be the set at maximal distance from
∂M∗ in M∗. There can be at most two isolated points in Σ0 contained in C∗, so χ(M∗) � 4.
Finally, suppose that ∂M∗ is empty and Σ0 consists only of isolated points. As in the positively
curved case, a triangle comparison argument as in [22] implies that there can be at most four
such points, so χ(M) � 4.
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