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PONTRYAGIN DUALITY FOR IWASAWA MODULES

AND ABELIAN VARIETIES

KING FAI LAI, IGNAZIO LONGHI, KI-SENG TAN, AND FABIEN TRIHAN

Abstract. We prove a functional equation for two projective systems of finite
abelian p-groups, {an} and {bn}, endowed with an action of Zd

p such that an

can be identified with the Pontryagin dual of bn for all n.

Let K be a global field. Let L be a Zd
p-extension of K (d ≥ 1), unramified

outside a finite set of places. Let A be an abelian variety over K. We prove
an algebraic functional equation for the Pontryagin dual of the Selmer group
of A.

1. Introduction

Let Γ be an abelian p-adic Lie group isomorphic to Zd
p where Zp is the ring of

p-adic integers and d is a positive integer. The Iwasawa algebra is the complete
group ring Zp[[Γ]] which we denote by Λ. An Iwasawa module is a topological
Λ-module.

We study a Pontryagin duality for Iwasawa modules which are inverse limits of
finite Iwasawa modules with Λ acting through Γn, where Γn denotes Γ/Γpn

. Our
result leads to a functional equation for the characteristic ideals of these Iwasawa
modules. We then apply these results to Selmer groups of abelian varieties over
Zd
p-extensions of global fields.
Before we describe our Pontryagin duality we recall a few simple notions con-

cerning Iwasawa modules. A finitely generated Λ-module M is said to be pseudo-
null if no height one prime ideal contains its annihilator ([Bou65, §4]). A pseudo-
isomorphism of Λ-modules is a homomorphism with pseudo-null kernel and coker-
nel. We write M ∼ N to mean that there exists a pseudo-isomorphism from M to
N .

The inversion Γ → Γ , γ �→ γ−1, gives rise to an isomorphism from Λ to Λ which
we denote as sending an element λ to λ�. This allows us to twist a Λ-module M to
Λ�⊗Λ M , which we denote by M � (see §2.2.2).

Now let us describe the formal structure we need for the Pontryagin duality.
Consider a collection

A = {an, bn, 〈 , 〉n, rnm, knm | n,m ∈ N ∪ {0}, n ≥ m}
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where

(Γ-1) an, bn are finite abelian groups, with an action of Λ factoring through
Zp[Γn].

(Γ-2) For n ≥ m,
rnm : am × bm −→ an × bn ,

knm : an × bn −→ am × bm

are Γ-morphisms such that rnm(am) ⊂ an, rnm(bm) ⊂ bn, knm(an) ⊂ am,
knm(bn) ⊂ bm and rnn = knn = id. Also, {an × bn, r

n
m}n form an inductive

system and {an × bn, k
n
m}n form a projective system.

(Γ-3) We have
rnm ◦ knm = NΓn/Γm

: an × bn −→ an × bn

(where NΓn/Γm
:=

∑
σ∈Ker(Γn→Γm) σ is the norm associated with Γn � Γm)

and
knm ◦ rnm = pd(n−m) · id : am × bm −→ am × bm.

(Γ-4) For each n, 〈 , 〉n : an × bn −→ Qp/Zp is a perfect pairing (and hence an

and bn are dual p-groups) respecting Γ-action as well as the morphisms rnm
and knm in the sense that

〈γ · a, γ · b〉n = 〈a, b〉n ∀ γ ∈ Γ,

(1) 〈a, rnm(b)〉n = 〈knm(a), b〉m,

and
〈rnm(a), b〉n = 〈a, knm(b)〉m.

Write
a := lim←−

n

an and b := lim←−
n

bn .

Definition 1.0.1. We say A as above is a Γ-system if both a and b are finitely
generated torsion Λ-modules.1 We say that a Γ-system A is pseudo-controlled if

a0 × b0 := lim←−
m

⋃

n≥m

Ker(rnm)

is a pseudo-null Λ-module.

The following Pontryagin duality theorem is proved in §3.3. The technical hy-
potheses in cases (1), (2) and (3) will be explained later.

Theorem 1. Let

A = {an, bn, 〈 , 〉n, rnm, knm | n,m ∈ N, n ≥ m}
be a pseudo-controlled Γ-system. Then there is a pseudo-isomorphism

a� ∼ b

in the following three cases:

(1) there exists ξ ∈ Λ not divisible by any simple element and such that ξb is
pseudo-null;

(2) A is pseudo-isomorphic to a twistable pseudo-controlled Γ-system;
(3) A is part of a T-system.

1As we learned only after this paper had been essentially completed, our definition of Γ-system
is very similar to the notion of “normic system” introduced in [Vau09, Définition 2.1]. The main
difference is that Vauclair does not include a duality in his definition.
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PONTRYAGIN DUALITY FOR IWASAWA MODULES 1927

A simple element is the evaluation at γ ∈ Γ−Γp of a cyclotomic polynomial: the
precise definition will be given in §2.1.3. We say that the Γ-system A is twistable
if there exists an integer k such that pn+kan = 0 for every n. For the definition
of T-system and of pseudo-isomorphism of Γ-systems, see respectively §3.1.1 and
§3.1.2.

In §4.3 we apply our results on Pontryagin duality to prove the following.

Theorem 2. Let K be a global field. Let L/K be a Zd
p-extension with a finite

ramification locus S and d ≥ 1. Let A/K be an abelian variety having potentially
ordinary reduction at each place of S. Then the characteristic ideals of Xp(A/L)
and of Xp(A

t/L) (the Pontryagin duals of the Selmer groups of A and of its dual
abelian variety At) satisfy the following equation:

χ(Xp(A/L))� = χ(Xp(A
t/L)) = χ(Xp(A/L)) = χ(Xp(A

t/L))�.

The characteristic ideal χ is explained in §2.1.2 and Xp(A/L) is defined in §4.1.
One key tool in the proof of Theorem 2 will be the notion of the Cassels-Tate

system, introduced in §4. We take Gal(L/K) as Γ. Then, roughly, the Cassels-Tate
system attached to (A,L/K) is a collection A = {an, bn, 〈 , 〉n, rnm, knm} as before,
where an and bn are respectively the co-torsion part of the p-primary Selmer groups

of A and At over Kn := LΓpn

(see §4.2.2).
In §4.4 we prove the following theorem.

Theorem 3. Let A, L/K be as before and let A be the Cassels-Tate system attached
to (A,L/K). Then A is a Γ-system, and hence a and b are torsion Λ-modules. If
furthermore Xp(A/L) is torsion, then they satisfy the functional equation:

a� ∼ b.

In §5, we prove functional equations for characteristic ideals of Pontryagin duals
of the projections of Selmer groups by central idempotents. This provides a pow-
erful tool for solving the Iwasawa Main Conjecture in the constant ordinary case
([LLTT]).

Theorem 1 and Theorem 3 imply equality of the corresponding characteristic
ideals. Using Fitting ideals Mazur and Wiles [MW84] proved such a functional
equation in the d = 1 case, in which A is automatically a T-system. For d ≥ 2,
Fitting ideals do not seem to yield a promising approach for a proof. Theorem 1
seems to lie quite deep. Even in the case of Cassels-Tate systems, our result is not a
straightforward consequence of the control theorems in the number field ([Gr03]) or
function field case ([BL09], [Tan10]) as one might have expected. See in particular
our use of an old result of Monsky (Theorem 3.2.5).

In the number field case, results in the direction of Theorem 2 were obtained (for
d ≤ 2) in [Maz72, §7], [Gr89, §8] and [P03] (see also [Zab10] for a non-commutative
generalization). Also (in the number field case), a functional equation similar
to that in Theorem 2 is proved by Nekovář for some Iwasawa cohomology (see
[Nek06, §0.13]) under some technical hypothesis (no place of bad reduction and not
above p splits completely in L/K). The difference between the Iwasawa cohomol-
ogy of Nekovář and the classical Selmer group is studied in [Nek06, §9.6]. These
two Iwasawa modules are not pseudo-isomorphic in general and no functional equa-
tion for one is (apparently) deduced from that for the other. We do not exclude
however the possibility that this can be achieved. It is also worthwhile to mention
that although Nekovář’s technical assumption is satisfied by any L containing the
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1928 K. F. LAI, I. LONGHI, K.-S. TAN, AND F. TRIHAN

cyclotomic Zp-extension, sometimes it can be restrictive. For instance, if A is an
elliptic curve defined over Q having multiplicative reduction at some q �= p, K is an
imaginary quadratic field over which q does not split, and L/K is the anticyclotomic
Zp-extension, then the assumption is not satisfied.

2. Preparations

In this section we set up notation for later use.

2.1. Iwasawa modules. A comprehensive reference is [Bou65, §4].

2.1.1. Let M be a finitely generated Λ-module. By definition, M is pseudo-null if
and only if no height one prime ideal contains its annihilator (i.e., if for any height
one prime p the localization Mp = 0 is trivial).

Lemma 2.1.1. A finitely generated Λ-module M is pseudo-null if and only if there
exist relatively prime f1, ..., fk ∈ Λ, k ≥ 2, such that fiM = 0 for every i.

Proof. From Γ � Zd
p we get Λ(Γ) � Zp[[T1, ..., Td]]. Thus Λ is a unique factorization

domain, hence all height one prime ideals are principal and the claim follows. �

Lemma 2.1.2. A composition of pseudo-injections (resp. pseudo-surjections, resp.
pseudo-isomorphisms) is a pseudo-injection (resp. pseudo-surjection, resp. pseudo-
isomorphism). Pseudo-isomorphism is an equivalence relation in the category of
finitely generated torsion Λ-modules.

Proof. Let α : M → N and β : N → P be two morphisms of Λ-modules. The first
claim follows observing that there are exact sequences

0 −→ Ker(α)−→ Ker(β ◦ α)−→ Im(α) ∩Ker(β) −→ 0

and

(2) Coker(α)−→ Coker(β ◦ α)−→ Coker(β) −→ 0.

For the second statement, the only thing left to prove is symmetry. Let α : M →
N be a pseudo-isomorphism. Let T be the set of height one primes containing
AnnΛ(M) and put S := (Λ−

⋃
p∈T p). The map α induces an isomorphism of

S−1 Λ-modules S−1M → S−1N : let β be its inverse. Then

HomS−1 Λ(S
−1N,S−1M) � S−1HomΛ(N,M)

implies sβ ∈ HomΛ(N,M) for some s ∈ S and sβ is the required pseudo-
isomorphism. For more details, the reader is referred to the proof of [Bou65, §4,
no. 4, Th. 5]. �

2.1.2. As before, let M be a finitely generated Λ-module. We write χ(M) =
χΓ(M) ⊂ Λ for its characteristic ideal. Thus, χ(M) = 0 if and only if M is non-
torsion. Suppose M is torsion. Combining [Bou65, §4, no. 4, Th. 5] with Lemma
2.1.2, there is a pseudo-isomorphism

Φ:

m⊕

i=1

Λ /ξrii Λ −→ M,(3)
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PONTRYAGIN DUALITY FOR IWASAWA MODULES 1929

where each ξi is irreducible. In this situation, we have

χ(M) :=
m∏

i=1

(ξrii ).

It follows that χ(M) = Λ if and only if M is pseudo-null.
Denote

[M ] :=

m⊕

i=1

Λ /ξrii Λ .

Since a non-zero element in [M ] cannot be simultaneously annihilated by relatively
prime elements of Λ, there is no non-trivial pseudo-null submodule of [M ], and
hence Φ in (3) is an embedding. The module [M ] is uniquely determined by M up
to isomorphism, while Φ is not. However, we shall fix one such Φ and view [M ] as
a submodule of M .

Lemma 2.1.3. Let α : M → N and β : N → M be two pseudo-injections of finitely
generated torsion Λ-modules. Then α and β are pseudo-isomorphisms.

Proof. We have χ(Ker(β ◦ α)) · χ(M) = χ(M) · χ(Coker(β ◦ α)) deduced from the
sequence

0 �� Ker(β ◦ α) �� M �� M �� Coker(β ◦ α) �� 0 .

By Lemma 2.1.2, χ(Ker(β ◦ α)) = Λ, whence χ(Coker(β ◦ α)) = Λ. By (2), this
implies that Coker(β) is pseudo-null: thus β is a pseudo-isomorphism. The same
reasoning applied to α ◦ β shows that α is a pseudo-isomorphism. �

2.1.3. The simple part. The group of roots of unity is denoted μp∞ :=
⋃

m μpm .
We say that f ∈ Λ is a simple element if there exist γ ∈ Γ− Γp and ζ ∈ μp∞ such
that f = fγ,ζ , where

fγ,ζ :=
∏

σ∈Gal(Qp(ζ)/Qp)

(γ − σ(ζ)).

(Thus fγ,ζ is the evaluation at γ of the cyclotomic polynomial of which ζ is a
primitive root.) It is easy to check that simple elements are irreducible in Λ and
that

(4) fγ′,ζ′ · Λ = fγ,ζ · Λ ⇐⇒ (γ′)Zp = γZp and ζ ′ ∈ Gal(Qp(ζ)/Qp) · ζ .

For any finitely generated torsion Λ-module M , we get a decomposition in simple
part and non-simple part

[M ] = [M ]si ⊕ [M ]ns,

in the following way: recalling that [M ] is a direct sum of components Λ /ξrii Λ, we
define [M ]si as the sum over those ξi which are simple and [M ]ns as its complement.
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2.2. Twists. Any continuous group homomorphism Γ → Λ× gives rise by linearity
to an endomorphism Λ → Λ.

2.2.1. An example is the map � : Λ−→ Λ which we have defined by using γ �→ γ−1

for γ ∈ Γ. The particular importance of this map for us stems from the fact that if
〈 , 〉 is a Γ-invariant pairing between Λ-modules, then

(5) 〈λ · a, b〉 = 〈a, λ� · b〉
for any λ ∈ Λ.

Suppose φ : Γ → Z×
p is a continuous homomorphism. Define φ∗ : Λ → Λ to be

the ring homomorphism determined by φ∗(γ) := φ(γ)−1 · γ for γ ∈ Γ. Since on Γ
the composition φ∗ ◦ (1/φ)∗ is the identity map, we see that φ∗ is an isomorphism
on Λ.

2.2.2. Let M be a Λ-module. Any endomorphism α : Λ → Λ defines a twisted
Λ-module Λ α⊗ΛM , where the action on the copy of Λ on the left is via α (i.e., we
have (α(λ)μ)⊗m = μ⊗ λm for λ, μ ∈ Λ and m ∈ M) and the module structure is
given by

(6) λ · (μ⊗m) := (λμ)⊗m

(where λμ is the product in Λ). If moreover α is an isomorphism, Λ α⊗Λ M can
be identified with M with the Λ(Γ)-action twisted by α−1, since in this case (6)
becomes

(7) λ · (1⊗m) = 1⊗ α−1(λ)m.

Following the above we shall write

M � := Λ �⊗Λ M.

Since ·� is an involution, (7) shows that the action of Λ becomes λ ·m = λ�m.
Let fγ,ζ ∈ Λ be simple, as in §2.1.3. From (4) we obtain the equalities of ideals

(8) (fγ,ζ)
� = (fγ−1,ζ) = (fγ,ζ).

It follows that

(9) [M ]�si = [M ]si .

2.2.3. Let φ be as in §2.2.1. Set
(10) M(φ) := Λ φ∗⊗Λ M.

Note that, if we endow Zp with the trivial action of Γ, then the Λ-module Zp(φ)
can be viewed as the free rank one Zp-module with the action of Γ through multi-
plication by φ, in the sense that

γ · a = φ(γ)a for all γ ∈ Γ, a ∈ Zp(φ) .

Then for a Λ-module M we have

M(φ) = Zp(φ)⊗Zp
M,

where Γ acts by

γ · (a⊗ x) := (γ · a)⊗ (γ · x) = φ(γ) · (a⊗ γx) .

The proof of the following is straightforward and can be found in [LLTT, Lemma
2.4.1].
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Lemma 2.2.1. Let α be an automorphism of Λ. Suppose M is a finitely generated
torsion Λ-module with

[M ] =
m⊕

i=1

Λ /ξrii Λ .

Then

[Λ α⊗Λ M ] = Λ α⊗Λ [M ] =
m⊕

i=1

Λ /α(ξi)
ri Λ,

and hence

χ
(
Λ α⊗Λ M

)
= α(χ(M)).

2.3. Some more notation. The Pontryagin dual of an abelian group B will be
denoted B∨. Since we are going to deal mostly with finite p-groups and their induc-
tive and projective limits, we generally won’t distinguish between the Pontryagin
dual and the set of continuous homomorphisms into the group of roots of unity
μp∞ . Note that we shall usually think of μp∞ as a subset of Q̄p (hence with the
discrete topology), so that for a Λ-module M homomorphisms in M∨ will often
take values in Q̄p.

We shall denote the ψ-part of a G-module M (for G a group and ψ ∈ G∨) by

(11) M (ψ) := {x ∈ M | g · x = ψ(g)x for all g ∈ G}.

3. Controlled Γ-systems and the algebraic functional equation

Until §4, we do not need our group Γ to be a Galois group. However, to simplify
the notation, we shall identify Γ as Gal(L/K) for some L/K so that each open
subgroup can be written as Gal(L/F ) for some finite intermediate extension F .
Let Kn denote the nth layer of L/K, so that Γn = Gal(Kn/K) and Gal(L/Kn) =
Γpn

=: Γ(n).

3.1. Γ-systems.

3.1.1. T-system. The definition of Γ-systems can be extended to the notion of a
complete Γ-system, for which we stipulate that for each finite intermediate extension
F of L/K there are Gal(F/K)-modules aF and bF with a pairing 〈 , 〉F , and for any
pair F , F ′ of finite intermediate extensions with F ⊂ F ′, there are Γ-morphisms
rF

′

F and kF
′

F satisfying the obvious analogues of (Γ-1)-(Γ-4).

We say that A is part of a complete Γ-system {aF , bF , 〈 , 〉F , rF
′

F , kF
′

F } if an =

aKn
, bn = bKn

, rmn = r
Km

Kn
and kmn = k

Km

Kn
. Obviously this implies a = lim←−F

aF and

b = lim←−F
bF .

Assume that A is a complete Γ-system. Let F be a finite intermediate extension
and let L′/F be an intermediate Ze

p-extension of L/F . Write

aL′/F = lim←−
F⊂F ′⊂L′

aF ′ and bL′/F = lim←−
F⊂F ′⊂L′

bF ′ .

They are modules over ΛL′/F := Zp[[Gal(L′/F )]]. Set the condition

(T) For every finite intermediate extension F and every intermediate Zd−1
p -

extension L′/F of L/F , aL′/F and bL′/F are finitely generated and torsion
over ΛL′/F .

By a T-system we mean a complete Γ-system enjoying the property T.
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1932 K. F. LAI, I. LONGHI, K.-S. TAN, AND F. TRIHAN

3.1.2. Morphisms. We shall always assume that a Γ-system A = {an, bn, 〈 , 〉n,
rnm, knm} is oriented in the sense that we have fixed an order of the pairs (an, bn).
We define a morphism of Γ-systems

A = {an, bn, 〈 , 〉An , r(A)nm, k(A)nm} −→ C = {cn, dn, 〈 , 〉Cn, r(C)nm, k(C)nm}

to be a collection of morphisms of Γ-modules fn : an → cn, gn : dn → bn commuting
with the structure maps and such that 〈fn(a), d〉Cn = 〈a, gn(d)〉An for all n.

A pseudo-isomorphism of Γ-systems is a morphism A → C such that the induced
maps a → c, d → b are pseudo-isomorphisms of Γ-modules.

Example 3.1.1. Given a Γ-system A = {an, bn} and λ ∈ Λ, let us write an[λ]
for the λ-torsion of an, namely, consisting of those elements in an killed by λ.
We can then define λ · A := {λan, λ�bn} and A[λ] := {an[λ], bn/λ�bn}, with the
pairing and the transition maps induced by those of A. It is easy to check that
λ · A and A[λ] are Γ-systems and that the exact sequences an[λ] ↪→ an � λan and
λ�bn ↪→ bn � bn/λ

�bn provide morphisms of oriented Γ-systems A[λ] → A and
A → λ · A.

3.1.3. Derived systems. Let A = {an, bn, 〈 , 〉n, rnm, knm} be a Γ-system. In the
following, we let kn denote the natural map

a× b −→ an × bn .

Suppose for each n we are given a Γ-submodule cn ⊂ an such that rnm(cm) ⊂ cn

and knm(cn) ⊂ cm. Using these, we can obtain two derived Γ-systems from A. Let
fn ⊂ bn be the annihilator of cn, via the duality induced from 〈 , 〉n, and let
dn := bn/fn. Then we also have rnm(fm) ⊂ fn and knm(fn) ⊂ fm. Hence rnm induces a
morphism cm × dm → cn × dn, which, by abuse of notation, we also denote as rnm.
Similarly, we have the morphism knm : cn × dn → cm × dm and the pairing 〈 , 〉n on
cn × dn. Let C denote the Γ-system

{cn, dn, 〈 , 〉n, rnm, knm | m,n ∈ N, n ≥ m}.

We also write en := an/cn and let E denote the Γ-system

{en, fn, 〈 , 〉n, rnm, knm | m,n ∈ N, n ≥ m}.

Then we have the sequences

(12) 0 −→ c −→ a −→ e −→ 0

and

(13) 0 −→ f −→ b −→ d −→ 0.

Here c, d, e and f are the obvious projective limits; the systems {cn} and {fn}
satisfy the Mittag-Leffler condition (because all groups are finite), so (12) and (13)
are exact.

Lemma 3.1.2. Assume an = kn(a) for all n. Then e ∼ 0 implies f ∼ 0.

Proof. The assumption implies kn(e) = en. Thus f · e = 0 implies f · en = 0, and
consequently, by the duality, f � · fn = 0 for all n, yielding f � · f = 0. Now apply
Lemma 2.1.1. �
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PONTRYAGIN DUALITY FOR IWASAWA MODULES 1933

3.1.4. The system A′. In the following case, we apply the above two methods to-
gether. We first get a system {an/a0n , b1n} by putting

(14) a0n × b0n :=
⋃

n′≥n

Ker(rn
′

n ) = Ker
(
an × bn −→ lim

−→
m

am × bm
)

and letting a1n, b
1
n be respectively the annihilators of b0n, a

0
n, via 〈 , 〉n. Then we

apply the C-construction to {an/a0n , b1n} defining a′n ⊂ an/a
0
n via

a
′
n × b

′
n := Im

(
a
1
n × b

1
n −→ (an/a

0
n)× (bn/b

0
n)
)
.

Notice that b′n is dual to a′n, as can be seen by dualizing the diagram

0 −−−−→ a1n −−−−→ an⏐⏐

⏐⏐


0 −−−−→ a′n −−−−→ an/a
0
n

(recall that the duals of a1n and an/a
0
n are respectively bn/b

0
n and b1n). Thus we get

a Γ-system

A
′ := {a′n, b′n, 〈 , 〉n, rnm, knm | m,n ∈ N, n ≥ m}.

Denote, for i = 0, 1,

ai × bi := lim
←
n

ain × bin

and

a
′ × b

′ := lim
←
n

a
′
n × b

′
n = Im

(
a
1 × b

1 −→ (a/a0)× (b/b0)
)
.

The pairings 〈 , 〉n allow identifying each an×bn with its own Pontryagin dual and
this identification is compatible with the maps rnm, knm. Then a × b is the dual of
lim
→

an × bn. Consider the exact sequence

(15) 0 −−−−→ a0n × b0n −−−−→ an × bn −−−−→ (an × bn)/(a
0
n × b0n) −−−−→ 0.

By construction, a1n × b1n is the dual of (an × bn)/(a
0
n × b0n). The inductive limit of

(15) gets the identity

lim
→

an × bn = lim
→

(an × bn)/(a
0
n × b0n)

(lim−→ a0n × b0n = 0 is immediate from (14)) and hence, taking duals,

a1 × b1 = a× b.

Thus we have an exact sequence

(16) 0 −→ a
0 × b

0 −→ a× b −→ a
′ × b

′ −→ 0.

3.1.5. Strongly-controlled Γ-systems. In the previous section we saw that, since b =
b1 and a = a1, the information carried by a0 and b0 does not pass to, respectively,
b and a: this is why in Theorem 1 we have the condition a0 × b0 ∼ 0, i.e., A is
pseudo-controlled (Definition 1.0.1). Now we consider a stronger condition.

Definition 3.1.3. A Γ-system A is strongly controlled if a0n × b0n = 0 for every n.

Lemma 3.1.4. A Γ-system A is strongly controlled if and only if rnm is injective
(resp. knm is surjective) for n ≥ m.

Proof. The definition and the duality. �
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Lemma 3.1.5. Suppose A is a Γ-system. Then the following hold:

(1) the system A′ is strongly controlled;
(2) if A is pseudo-controlled, then a ∼ a′ and b ∼ b′.

Proof. Statement (1) follows from the definition of A′ and (2) is immediate from
the exact sequence (16). �

Lemma 3.1.6. Suppose A is strongly controlled. Then ξ · b = 0, for some ξ ∈ Λ,
if and only if ξ� · a = 0.

Proof. By Lemma 3.1.4, we have bn = kn(b). Thus ξ · b = 0 implies ξ · bn = 0, and
consequently, by the duality, ξ� · an = 0 for all n, yielding ξ� · a = 0. �

3.2. Two maps. In this subsection we introduce the maps Φ and Ψ, which play a
key role in our constructions.

For simplicity, in the following we shall use the notation Qn := Qp[Γn] and
Λn := Zp[Γn]. The projections πn

m : Γn → Γm are canonically extended to ring
morphisms : Λn → Λm. Let

Q∞ := lim←−Qn = Qp[[Γ]] .

Thanks to the inclusions Λn ↪→ Qn we can see Λ as a subring of Q∞.

3.2.1. The Fourier map. Let A be a Γ-system as above. In this section, we construct
a Λ-linear map

Φ: a�−→ HomΛ(b, Q∞/Λ) .

First recall that the pairing in (Γ-4) induces for any n an isomorphism of Λ-modules

a�n � HomZp
(bn,Qp/Zp),

the twist by the involution ·� being due to (5). Equality (1) shows that these
isomorphisms form an isomorphism of projective systems, where the right-hand
side is endowed with the transition maps induced by the direct system (bn, r

n
m).

Passing to the projective limit, we deduce a Λ-isomorphism

a
� � lim

←
n

HomZp
(bn,Qp/Zp).

Now the map Φ is obtained as the composition of this isomorphism and the following
Λ-linear maps:

(Φ-1) the homomorphism

lim
←
n

HomZp
(bn,Qp/Zp)−→ lim

←
n

HomΛ(bn, Qn/Λn)

obtained by sending (fn)n to
(
f̂n : x �→

∑
γ∈Γn

fn(γ
−1x)γ

)
n
;

(Φ-2) the homomorphism

lim←−HomΛ(bn, Qn/Λn)−→ lim←−HomΛ(b, Qn/Λn)

induced by kn : b → bn ;
(Φ-3) the canonical isomorphism

lim
←
n

HomΛ(b, Qn/Λn) � HomΛ(b, lim←
n

Qn/Λn)

and the identification lim←−Qn/Λn = Q∞/Λ (since the maps Λn → Λm are

surjective).
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Here as transition maps in lim←−HomΛ(bn, Qn/Λn) we take (for n ≥ m)

HomΛ(bn, Qn/Λn)−→ HomΛ(bm, Qm/Λm)

(17) ϕ �→ p−d(n−m)(πn
m ◦ ϕ ◦ rnm) .

We have to check that (Φ-1) and (Φ-2) define maps of projective systems. For
(Φ-1), this means to verify that for any n ≥ m we have

(18) f̂m = p−d(n−m)(πn
m ◦ f̂n ◦ rnm) ,

where, by definition, fm = fn ◦ rnm. For x ∈ bm,

πn
m(f̂n(r

n
mx)) = πn

m

( ∑

γ∈Γn

fn(γ
−1(rnmx))γ

)
=

∑

γ∈Γn

fn(γ
−1

r
n
mx)πn

m(γ)

(using the fact that, by (Γ-2), rnm is a Γ-morphism)

=
∑

γ∈Γn

fn(r
n
m(γ−1x))πn

m(γ) =
|Γn|
|Γm|

∑

γ∈Γm

fn(r
n
m(γ−1x))γ = pd(n−m)f̂m(x) ,

so (18) holds. As for (Φ-2), the transition map

HomΛ(b, Qn/Λn)−→ HomΛ(b, Qm/Λm)

is ψ �→ πn
m ◦ ψ and the map defined in (Φ-2) is (ϕn)n �→ (ϕn ◦ kn)n . By (17),

ϕm ◦ km = p−d(n−m)(πn
m ◦ ϕn ◦ rnm) ◦ km = p−d(n−m)(πn

m ◦ ϕn ◦ rnm ◦ knm ◦ kn)

(by property (Γ-3) of Γ-systems)

= p−d(n−m)(πn
m ◦ ϕn ◦NΓn/Γm

◦kn) = πn
m ◦ ϕn ◦ kn

(since ϕn, being a Λ-morphism, commutes with NΓn/Γm
and πn

m ◦ NΓn/Γm
=

pd(n−m)πn
m). So also (Φ-2) is a map of projective systems.

Remark 3.2.1. Actually, one can also check that the maps fn �→ f̂n used in (Φ-1)
are isomorphisms. The inverse is f �→ δe ◦ f , where δe : Qn/Λn → Qp/Zp is the
function sending

∑
Γn

aγγ to ae (e being the neutral element in Γn).

If the Γ-system A is strongly controlled, then the map Φ is clearly injective (since
b maps onto bn for all n). In general, we have the following.

Lemma 3.2.2. The kernel of Φ equals (a0)�.

Proof. The image of a = (an)n ∈ a in lim←−HomΛ(bn, Qn/Λn) is the map

b = (bn)n �→
( ∑

γ∈Γn

〈an, γ−1bn〉nγ
)
n
.

To conclude, observe that an → lim−→ am is dual to b → bn. Hence 〈an, bn〉n = 0, for

every bn contained in the image of b → bn, if and only if an ∈ a0n. �
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3.2.2. Let b be a finitely generated torsion Λ-module. In §3.2.5 below we shall
construct a map

Ψ: HomΛ(b, Q∞/Λ) → HomΛ(b, Q(Λ)/Λ),

where Q(Λ) is the field of fractions of Λ. The interest of having such a Ψ comes
from the following lemma.

Lemma 3.2.3. For b a finitely generated torsion Λ-module, we have a pseudo-
isomorphism

b ∼ HomΛ(b, Q(Λ)/Λ).

Proof. From the exact sequence

0 −→ [b] −→ b −→ n−→ 0,

where n is pseudo-null, we deduce the exact sequence

HomΛ(n, Q(Λ)/Λ) ↪→ HomΛ(b, Q(Λ)/Λ)

→ HomΛ([b], Q(Λ)/Λ) → Ext1Λ(n, Q(Λ)/Λ).

The annihilator of n also kills HomΛ(n, ) and its derived functors, so by Lemma
2.1.1, it follows HomΛ(b, Q(Λ)/Λ) ∼ HomΛ([b], Q(Λ)/Λ), and we can assume that
b = [b]. Write

b = Λ/(ξ1)⊕ · · · ⊕ Λ/(ξn) .

Then

HomΛ(b, Q(Λ)/Λ) =
⊕

HomΛ(Λ /(ξi), Q(Λ)/Λ) =
⊕

HomΛ(Λ/(ξi), ξ
−1
i Λ/Λ)

because (Q(Λ)/Λ)[ξi] = ξ−1
i Λ /Λ . Since

HomΛ(Λ/(ξi), ξ
−1
i Λ/Λ) � Λ/(ξi) ,

we conclude that in this situation HomΛ(b, Q(Λ)/Λ) = b . �

3.2.3. A theorem of Monsky. Let Γ∨ (resp. Γ∨
n ) denote the group of continuous

characters Γ → μp∞ (resp. Γn → μp∞); we view Γ∨
n as a subgroup of Γ∨. For each

ω ∈ Γ∨, let Eω := Qp(μpm) ⊂ Q̄p be the subfield generated by the image ω(Γ) =
μpm , and write Oω := Zp[μpm ]. Then ω induces a continuous ring homomorphism
ω : Λ → Oω ⊂ Eω. More generally, if O is a Zp-algebra, ω induces a homomorphism
on O[[Γ]].

Let O be a Zp-algebra and ξ ∈ O[[Γ]]: we say that ω is a zero of ξ if and only if
ω(ξ) = 0, and denote the zero set

(19) �ξ := {ω ∈ Γ∨ | ω(ξ) = 0}.

Then we recall a theorem of Monsky ([Mon81, Lemma 1.5 and Theorem 2.6]).

Definition 3.2.4. A subset Ξ ⊂ Γ∨ is called a Zp-flat of codimension k, if there
exists {γ1, ..., γk} ⊂ Γ expandable to a Zp-basis of Γ and ζ1, ..., ζk ∈ μp∞ such that

Ξ = {ω ∈ Γ∨ | ω(γi) = ζi, i = 1, ..., k}.
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This definition is due to Monsky: in [Mon81, §1], he proves that Zp-flats generate
the closed sets of a certain (Noetherian) topology on Γ∨. It turns out that in this
topology the sets �ξ are closed, and they are proper subsets (possibly empty) if
ξ �= 0 ([Mon81, Theorem 2.6]). Hence

Theorem 3.2.5 (Monsky). Suppose O ⊂ Q̄p is a discrete valuation ring finite over
Zp and ξ ∈ O[[Γ]] is non-zero. Then the zero set �ξ is a proper subset of Γ∨ and
is a finite union of Zp-flats.

3.2.4. Structure of Q∞. The group Gal(Q̄p/Qp) acts on Γ∨ by (σ·ω)(γ) := σ(ω(γ)).
Let [ω] denote the Gal(Q̄p/Qp)-orbit of ω. Attached to any character ω ∈ Γ∨

n there
is an idempotent

(20) eω :=
1

|Γn|
∑

γ∈Γn

ω(γ−1)γ ∈ Q̄p[Γn] .

The group ring Q̄p[Γn] is a Gal(Q̄p/Qp)-module via the action on coefficients. Ac-
cordingly, we get the decomposition

Qp[Γn] = Q̄p[Γn]
Gal(Q̄p/Qp) =

( ∏

ω∈Γ∨
n

eωQ̄p[Γn]
)Gal(Q̄p/Qp) =

∏

[ω]⊂Γ∨
n

E[ω],

where [ω] runs through all the Gal(Q̄p/Qp)-orbits of Γ
∨
n and

E[ω] := (
∏

χ∈[ω]

eχQ̄p[Γn])
Gal(Q̄p/Qp).

Observe that the homomorphism ω : Qp[Γn] → Q̄p induces an isomorphism E[ω] �
Eω (the inverse being given by 1 �→

∑
σ∈Gal(Eω/Qp)

σ(eω) = (eχ)χ∈[ω]).

Since πn
m(eω) equals eω′ if ω = ω′ ◦ πn

m and is 0 otherwise, we have the commu-
tative diagram

Qp[Γn] −−−−→
∏

[ω]⊂Γ∨
n
E[ω]⏐⏐
πn

m

⏐⏐


Qp[Γm] −−−−→
∏

[ω]⊂Γ∨
m
E[ω]

where the right vertical arrow is the natural projection by the inclusion Γ∨
n ↪→ Γ∨

m.
It follows that we have identities

(21) Q∞ = lim
←
n

Qn �
∏

[ω]⊂Γ∨

E[ω]

so that

(22) Q∞[λ] =
∏

[ω]⊂
λ

E[ω]

for all λ ∈ Λ (here Q∞[λ] denotes the λ-torsion subgroup).

3.2.5. The map Ψ. Let b be a finitely generated torsion Λ-module. We assume that
ξ · b = 0, for some non-zero ξ ∈ Λ. Let �c

ξ := Γ∨ −�ξ denote the complement of

�ξ. From (21) and (22) one deduces the direct sum decomposition

(23) Q∞ = Q∞[ξ]⊕Qc
∞ ,

where Qc
∞ =

∏
[ω]⊂
c

ξ
E[ω]. Let � : Q∞ → Qc

∞ be the natural projection and put

Λc := �(Λ) (here Λ is thought of as a subset of Q∞ via the maps Zp[Γn] ↪→ Qp[Γn]).
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Lemma 3.2.6. We have a Λ-isomorphism

HomΛ(b, Q
c
∞/Λc) � HomΛ(b, Q(Λ)/Λ).

Proof. Since b is annihilated by ξ, the image of each η ∈ HomΛ(b, Q
c
∞/Λc) is

contained in (Qc
∞/Λc)[ξ] . Note that, since ω(ξ) �= 0 for every ω ∈ �c

ξ, the element

�(ξ) is a unit in Qc
∞. Denote

ξ−1 Λc := {x ∈ Qc
∞ | ξ · x ∈ Λc}.

Then

(Qc
∞/Λc)[ξ] = ξ−1 Λc /Λc

and hence

HomΛ(b, Q
c
∞/Λc) = HomΛ(b, ξ

−1Λc /Λc).

Similarly,

HomΛ(b, Q(Λ)/Λ) = HomΛ(b, ξ
−1 Λ /Λ).

To conclude the proof, it suffices to show that � : Λ → Λc is an isomorphism,
because then so is the induced map

ξ−1Λ/Λ−→ ξ−1 Λc /Λc .

Since Λc = �(Λ) by definition, we just need to check injectivity. Suppose �(ε) = 0
for some ε ∈ Λ. Then ω(ε) = 0 for every ω �∈ �ξ, and hence ω(ξε) = 0 for every
ω ∈ Γ∨. Monsky’s theorem (or, alternatively, the isomorphism (21)) implies that
ξε = 0 and hence ε = 0. �

Let

(24) Υ: HomΛ(b, Q∞/Λ)−→ HomΛ(b, Q
c
∞/Λc)

be the morphism induced from �. By composition of the isomorphism of Lemma
3.2.6 with Υ, we deduce the Λ-morphism

Ψ: HomΛ(b, Q∞/Λ)−→ HomΛ(b, Q(Λ)/Λ).

By construction, the map Ψ depends on ξ only via (23) (that is, it depends only
on Δξ).

3.3. Proof of the algebraic functional equation. In this section, we complete
the proof of Theorem 1 by proving each of (1), (2), (3), separately. To prove (3)
we use (2) and (3) is used in the proof of Theorem 5.1.3.

3.3.1. Non-simple annihilator. In case (1) of Theorem 1 we assume ξb ∼ 0 for some
ξ ∈ Λ such that

(NS): ξ is not divisible by any simple element.

Lemma 3.3.1. Hypothesis (NS) holds if and only if �ξ contains no codimension
one Zp-flat.

Proof. If ξ is divisible by a simple element f = fγ,ζ , then �ξ contains �f which is
a union of the codimension one Zp-flats

{ω ∈ Γ∨ | ω(γ) = σ(ζ)}, σ ∈ Gal(Qp(ζ)/Qp).

Conversely, assume that �ξ contains the codimension one Zp-flat

Ξ = {ω ∈ Γ∨ | ω(γ) = ζ}.
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Each ω ∈ Ξ factors through

π : Λ −→ Zp[ζ][[Γ]]/(γ − ζ) = Zp[ζ][[Γ
′]] ,

where Γ′ is the quotient Γ/γZp , and vice versa every continuous character of Γ′ can
be uniquely lifted to a character in Ξ. Thus the zero set of π(ξ) ∈ Zp[ζ][[Γ

′]] equals
(Γ′)∨. Then Monsky’s theorem implies that π(ξ) = 0 and hence is divisible by γ−ζ
in Zp[ζ][[Γ]]. This implies that ξ is divisible by fγ,ζ in Λ. �

By Monsky’s theorem, we have either �ξ = ∅ or �ξ =
⋃

j Ξj , with

Ξj = {ω ∈ Γ∨ | ω(γ
(j)
i ) = ζ

(j)
i , i = 1, ..., k(j)}.

In the second case, for all j let Gj be the Zp-submodule of Γ generated by the γ
(j)
i ’s,

i = 1, ..., k(j): if (NS) holds, each Gj has rank at least 2. Hence, since there is just

a finite number of j, it is possible to choose {σ(j)
1 , σ

(j)
2 }j such that σ

(j)
i ∈ Gj − Γp

and each pair (σ
(j)
i , σ

(j′)
i′ ) consists of Zp-independent elements unless (i, j) = (i′, j′).

Let ε
(j)
i denote the common value that all characters in Ξj take on σ

(j)
i and write

(25) ϕ1 :=
∏

j

f
σ
(j)
1 ,ε

(j)
1
, ϕ2 :=

∏

j

f
σ
(j)
2 ,ε

(j)
2
.

Then the coprimality criterion (4) ensures that ϕ1 and ϕ2 are relatively prime.
Moreover ω(ϕi) = 0 for all ω ∈ �ξ, that is, �ξ ⊆ �ϕi

. By (22) it follows that

(26) ϕi ·Q∞[ξ] = 0 for both i.

Remark 3.3.2. The case Δξ �= ∅ can actually occur. For example, let γ1, γ2 be two
distinct elements of a Zp-basis of Γ and consider

ξ = γ1 − 1 + p(γ2 − 1) + p2(γ1 − 1)(γ2 − 1).

Then Δξ = {ω | ω(γ1) = ω(γ2) = 1} as one easily sees comparing p-adic valuations
of the three summands ω(γ1 − 1), ω(p(γ2 − 1)) and ω(p2(γ1 − 1)(γ2 − 1)).

Lemma 3.3.3. Assume ξb = 0 for some ξ ∈ Λ satisfying hypothesis (NS). Then
the restriction of Ψ to Φ(a�) is pseudo-injective.

Proof. We just need to control the kernel of the map Υ of (24). If Δξ is empty,
then Υ is the identity and we are done. If not, we show that the kernel and the
cokernel of Υ are annihilated by both ϕ1 and ϕ2 (see (25)). Consider the exact
sequence

0−→ Ker(�)−→ Q∞/Λ−→ Qc
∞/Λc −→ 0

(where by abuse of notation we denote the map induced by � with the same
symbol). This induces the exact sequence

HomΛ(b,Ker(�)) ↪→ HomΛ(b, Q∞/Λ) → HomΛ(b, Q
c
∞/Λc) → Ext1Λ(b,Ker(�)).

Since Ker(�) is a quotient of Q∞[ξ], (26) yields ϕi · Ker(�) = 0. Therefore both
Ker(Υ) and Coker(Υ) are annihilated by ϕ1 and ϕ2. (Note that we cannot say
that Υ is a pseudo-isomorphism, because HomΛ(b, Q∞/Λ) is not a finitely gen-
erated Λ-module: e.g., any group homomorphism b �→ Eω for ω ∈ Δξ is also a
Λ-homomorphism.) �
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Now we can complete the proof of Theorem 1(1).

Proof of Theorem 1(1). To start with, assume ξb = 0. Then, by Lemmas 3.2.2,
3.3.3 and 3.2.3, we get a pseudo-injection a� → b. Moreover, thanks to Lemma
3.1.5, we may assume that A is strongly controlled. By Lemma 3.1.6 this implies
that a is killed by ξ�, which is also not divisible by simple elements. Exchanging
the role of a and b, we deduce a pseudo-injection b� → a and therefore a pseudo-
injection b → a�. The theorem now follows from Lemma 2.1.3.

In the general case when ξb is pseudo-null but not 0, we can still assume that A
is strongly controlled. Let fn be the kernel of the morphism bn → bn, b �→ ξb, and
construct two derived systems as in §3.1.3 (but with fn playing the role of cn). We
get again the two exact sequences (12) and (13). By hypothesis d = ξb ∼ 0 and
then Lemma 3.1.2 implies c ∼ 0. Hence

b ∼ f ∼ e� ∼ a�

(where the central pseudo-isomorphism holds because ξf = 0). �

3.3.2. The non-simple part. Let A′ be the derived system in §3.1.4.

Corollary 3.3.4. For any Γ-system A, we have

[a′]�ns = [b′]ns.

Proof. By Lemma 3.1.5(1) we can lighten notation and assume that A is strongly
controlled (replacing A by A′ if necessary). Write χ(b) = (λμ), with χ([b]ns) = (λ)
and χ([b]si) = (μ). Since b/[b] is pseudo-null, there are η1, η2 ∈ Λ, coprime to each
other and both coprime to χ(b), such that η1 · (b/[b]) = η2 · (b/[b]) = 0. Then
λμη1 · b = λμη2 · b = 0. By Lemma 3.1.6

(27) (λμη1)
� · a = (λμη2)

� · a = 0.

This shows that χ(a) divides sufficiently high powers of both (λμη1)
� and (λμη2)

�.

But since η�1 and η�2 are coprime, they must be both coprime to χ(a).
Set c = (μη1)

� · a, cn = kn(c) for each n, and form the Γ-systems C, E by the
construction in §3.1.3. Let d, e, and f be as in (12) and (13). Since kn(b) = bn,
we have kn(d) = dn, and hence, by Lemma 3.1.4, C is also strongly controlled. By
(27), λ� · c = 0, whence λ · d = 0 thanks to Lemma 3.1.6. Then case (1) of Theorem
1 says c� ∼ d. To complete the proof it is sufficient to show that

[b]ns × [a]ns
ϕ×ψ �� d× c

(where ϕ and ψ are respectively the restrictions to [b]ns and [a]ns of the projection
b → d = b/f and of the multiplication by (μη1)

� on a) is a pseudo-isomorphism.
The inclusion μη1 · b ⊂ μ · [b] ⊂ [b]ns implies μη1 · Coker(ϕ) = 0. Furthermore,

since λ · Coker(ϕ) is a quotient of λ · d = 0, it must be trivial. Thus, by Lemma
2.1.1, Coker(ϕ), being annihilated by coprime λ and μη1, is pseudo-null. Next, we
observe that (μη1)

� · e = (μη1)
� · a/c = 0 yields (μη1)

� · en = 0. The duality implies
that each fn is annihilated by μη1, and by taking the projective limit we see that f
is also annihilated by μη1. It follows that Ker(ϕ) = [b]ns∩ f = 0 since no non-trivial
element of [b]ns is annihilated by μη1 (because η1 is coprime to χ(b) while μ is a
product of simple elements). Similarly, Ker(ψ) = 0 since no non-trivial element of
[a]ns is annihilated by (μη1)

�. To show that Coker(ψ) is pseudo-null, we choose an

η3 ∈ Λ, coprime to λη1, such that η�3 · a ⊂ [a]. Then (27) together with the fact
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that λ is non-simple imply that (μη1η3)
� · a ⊂ (μη1)

� · [a] ⊂ [a]ns. This implies
(μη1η3)

� ·Coker(ψ) = 0. Since λ� ·Coker(ψ), being a quotient of λ� · c = 0, is trivial
and λ�, (μη1η3)

� are coprime, the proof is completed. �

3.3.3. Twists of Γ-systems. We say that the Γ-system A is twistable of order k if
there exists an integer k such that pn+kan = 0 for every n.

Recall that associated to a continuous group homomorphism φ : Γ → Z×
p , there is

the ring isomorphism φ∗ : Λ → Λ defined in §2.2.1. Given such a φ and a Γ-system
A, we can form

A(φ) := {an(φ−1), bn(φ), 〈 , 〉φn, r(φ)nm, k(φ)nm | n,m ∈ N ∪ {0}, n ≥ m} ,

where an(φ
−1) and bn(φ) are twists as defined in (10),

〈x⊗ an, y ⊗ bn〉φn := 〈φ∗(x)an, (φ
−1)∗(y)bn〉n

and r(φ)nm, k(φ)nm are respectively the maps induced by 1 ⊗ rnm and, 1 ⊗ knm. In
general A(φ) won’t be a Γ-system, because the action of Γ on an(φ

−1), bn(φ) does
not factor through Γn. However if we take A twistable of order k and φ such that

(28) φ(Γ) ⊆ 1 + pkZp,

then both an(φ
−1) and bn(φ) are still Γn-modules, because φ(Γ(n)) ⊂ 1 + pn+kZp

by (28) and pn+kan = 0.

Lemma 3.3.5. For any k ∈ N and ξ ∈ Λ−{0}, there exists a continuous group
homomorphism φ : Γ → Z×

p such that (28) holds and both φ∗(ξ) and (φ−1)∗(ξ) are
not divisible by simple elements.

Proof. First of all, note that (φ−1)∗(ξ) is not divisible by any simple element if
and only if the same holds for (φ−1)∗(ξ)� = φ∗(ξ�). So we just need to find φ such
that φ∗(ξξ�) has no simple factor. An abstract proof of the existence of such φ
can be obtained by the Baire category theorem, observing that if λ ∈ Λ−{0}, then
Hom(Γ,Z×

p ) cannot be contained in ∪ω Ker
(
φ �→ ω(φ∗(λ))

)
, since all these kernels

have empty interior. A more concrete approach is the following.
Call an element λ ∈ Λ a simploid if it has the form λ = u · fγ,β where u ∈ Λ×

and

fγ,β :=
∏

σ∈Gal(Qp(β)/Qp)

(γ − σ(β))

with γ ∈ Γ− Γp and β a unit in some finite Galois extension of Qp. Simploids are
easily seen to be irreducible, so by unique factorization any principal ideal (λ) ⊂ Λ
can be written as (λ) = (λ)s(λ)n with no simploid dividing (λ)n. Moreover, given
any φ : Γ → Z×

p , the equality

φ∗(fγ,β) = φ(γ)−[Qp(β):Qp] · fγ,φ(γ)β
shows that the set of simploids is stable under the action of φ and (φ∗(λ))s =
φ∗((λ)s). Thus, if fγ1,β1

, ..., fγl,βl
is a maximal set of coprime simploid factors of

ξξ� and if φ is chosen such that no φ(γi)βi, i = 1, ..., l, is a root of unit, then φ∗(ξξ�)
is not divisible by any simple element. �

Proof of Theorem 1(2). Let ξ be a generator of χ(a)χ(b) and let φ be as in Lemma
3.3.5. Then A(φ) also form a pseudo-controlled Γ-system with a(φ−1)=lim←−n

an(φ
−1)
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and b(φ) = lim←−n
bn(φ). By Lemma 2.2.1, both χ(a(φ−1)) and χ(b(φ)) are not di-

visible by simple elements, and hence [a(φ−1)]� = [a(φ−1)]�ns and [b(φ)] = [b(φ)]ns.
Therefore,

[a]� = [a(φ−1)](φ)� = [a(φ−1)]�(φ−1) = [b(φ)](φ−1) = [b],

where the first and the last equality are a consequence of Lemma 2.2.1 and the
third follows from Theorem 1(1) applied to A(φ). �

3.3.4. Complete Γ-systems. Now we assume that our original A is just a part of a
complete Γ-system which we still denote by A. The original A is pseudo-controlled
if and only if so is its complete system. Also, if the original A is strongly controlled,
then by replacing aF × bF by kF (a× b) we can make the complete system strongly
controlled without altering a and b. So we shall assume that A is strongly controlled.

First we assume that a is annihilated by a simple element ξ = fγ1,ζ and extend
γ1 to a basis γ1, ..., γd of Γ over Zp. Let Ψ and Γ′ be the subgroups of Γ with
topological generators respectively γ1 and {γ2, ..., γd}. Note that for H ⊂ Γ a
closed subgroup we shall write H(n) for Hpn

. Let Kn′,n denote the fixed field of the

subgroup Ψ(n)⊕ (Γ′)(n
′) and write a∞,n := lim←−n′ an′,n, b∞,n := lim←−n′ bn′,n with the

obvious meaning of indexes. They are Λ-modules. Let K∞,n denote the subfield

of L fixed by Ψ(n). Then the restriction of Galois action gives rise to a natural
isomorphism Γ′ � Gal(K∞,n/K0,n). Write Λ′ := Λ(Γ′). We shall view Λ′ as a
subring of Λ.

Since A is strongly controlled, a∞,n = k∞,n(a) and b∞,n = k∞,n(b) are finitely
generated over Λ, and hence finitely generated over Λ′, because they are fixed by
Ψ(n).

Proposition 3.3.6. Suppose A is a strongly-controlled complete Γ-system such that

(1) a and b are annihilated by the simple element ξ = fγ1,ζ defined above, with
ζ of order pl;

(2) a∞,m and b∞,m are torsion over Λ′ for some m ≥ l.

Then there exists some non-trivial η ∈ Λ′ such that η · A is twistable.

Here η·A is the complete Γ-system as defined in Example 3.1.1. It is also strongly
controlled if so is A.

Proof. Since ζ is of order pl, the action of γpl

1 is trivial on both a∞,n and b∞,n for
all n. Assume that m ≥ l and suppose both a∞,m and b∞,m are annihilated by
some non-zero η ∈ Λ′. Then η · an′,m = 0 and η · bn′,m = 0 for all n′. Hence for
n ≥ m,

pn−mηan′,n = r
n′,n
n′,m(kn

′,n
n′,m(ηan′,n)) = 0

since γpn

1 acts trivially on an′,n. In particular, pn−mη · an = 0 and by similar
argument pn−mη · bn = 0. Then choose k such that pkai = pkbi = 0 for each
1 ≤ i < m. �

Corollary 3.3.7. Suppose A satisfies the condition of Proposition 3.3.6. Then

a
� ∼ b.

Proof. The morphism A → η · A of Example 3.1.1 in this case is a pseudo-
isomorphism, because a[η] and b/η�b are both killed by fγ1,ζ and either η or η�.
Now apply Theorem 1(2). �
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Proof of Theorem 1(3). We may assume that A is strongly controlled. Suppose a

is annihilated by ξ ∈ Λ, and hence b is annihilated by ξ�. Write ξ = ξs11 · · · ξskk ,
where each ξi is irreducible and si is a positive integer. The proof is by induction
on k.

First assume k = 1. If ξ is non-simple, then the theorem has been proved. Thus,
we may assume that ξ1 is simple and we proceed by induction on s1. The case
s1 = 1 is Corollary 3.3.7. If s1 > 1 let cF := ξ1 · aF and form the derived systems
C and E as in §3.1.3. Note that both enjoy property (T), as immediate from the
sequences (12) and (13). Besides C is strongly controlled and c is annihilated by
ξs1−1
1 , whence (as ξ1 is simple) [c] = [c]� = [d] by the induction hypothesis. We
still have f0 = 0, but we don’t know if e0 = 0. However, induction tells us that
[e/e0] = [f], or equivalently, there is an injection [f] ↪→ [e]. This actually implies an
inclusion [b] ↪→ [a]: to see it, write

[a] = (Λ /ξ1 Λ)
a1 ⊕ (Λ /ξ21 Λ)

a2 ⊕ · · · ⊕ (Λ /ξs11 Λ)as1

and

[b] = (Λ /ξ1 Λ)
b1 ⊕ (Λ /ξ21 Λ)

b2 ⊕ · · · ⊕ (Λ/ξs11 Λ)bs1 .

Then

[c] = (Λ/ξ1 Λ)
a2 ⊕ · · · ⊕ (Λ/ξs1−1

1 Λ)as1

and

[d] = (Λ/ξ1 Λ)
b2 ⊕ · · · ⊕ (Λ/ξs1−1

1 Λ)bs1 ,

while

[e] = (Λ/ξ1 Λ)
a1+a2+···+as1 , [f] = (Λ/ξ1 Λ)

b1+b2+···+bs1 .

Thus, we have a1 ≥ b1 and ai = bi for 1 < i ≤ s1. Then by symmetry, we also have
[a] ↪→ [b], whence [a] = [b] as desired. This proves the k = 1 case.

For k > 1, form again C and E, this time setting cF := ξs11 aF . Then induction
yields [c]� = [d] and [e]� = [f]. To conclude, use the decompositions [a] = [c] ⊕ [e],
[b] = [d] ⊕ [f] which hold because in the sequences (12), (13) the extremes have
coprime annihilators. �

4. Cassels-Tate systems of abelian varieties

From now on, K will be a global field, L/K a Zd
p-extension with a finite rami-

fication locus denoted by S, and Γ = Gal(L/K). Let A/K be an abelian variety
which has potentially ordinary reduction at every place in S.

In this section we consider Selmer groups of abelian varieties over global fields to
construct Cassels-Tate systems, to which we apply the theory of Pontryagin duality
for the Iwasawa modules given earlier.

4.1. The Selmer groups. Let i : Apn ↪→ A be the group scheme of pn-torsion of
A. The pn-Selmer group Selpn(A/K) is defined to be the kernel of the composition

(29) H1
fl(K,Apn)

i∗−−−−→ H1
fl(K,A)

locK−−−−→
⊕

v H
1
fl(Kv, A) ,

where H•
fl denotes the flat cohomology and locK is the localization map to the direct

sum of local cohomology groups over all places of K. The same definition works
over any finite extension F/K. Taking the direct limit as n → ∞, we get

(30) Selp∞(A/F ) := Ker
(
H1

fl(F,Ap∞)−→
⊕

all v

H1
fl(Fv, A)

)
,
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where Ap∞ is the p-divisible group associated with A. The Selmer group sits in an
exact sequence

(31) 0 −→ Qp/Zp ⊗Z A(F ) −→ Selp∞(A/F ) −→ Xp∞(A/F ) −→ 0,

where Xp∞(A/F ) denote the p-primary part of the Tate-Shafarevich group

X(A/F ) := Ker
(
H1

fl(F,A)−→
⊕

v

H1
fl(Fv, A)

)
.

Also, let Selp∞(A/F )div denote the p-divisible part of Selp∞(A/F ) and write
M(A/F ) for Qp/Zp⊗Z A(F ). We have M(A/F ) ⊂ Selp∞(A/F )div ⊂ Selp∞(A/F ).

Definition 4.1.1. Define

Selp∞(A/L) := lim−→
F

Selp∞(A/F )

and

Seldiv(A/L) := lim−→
F

Selp∞(A/F )div

(where F varies among all finite subextensions of L/K). Let Xp(A/L) and Yp(A/L)
denote the Pontryagin dual of Selp∞(A/L) and Seldiv(A/L).

The Galois group Γ acts on the above modules turning them into Λ-modules. We
point out thatXp(A/L) is finitely generated over Λ, and hence so is Yp(A/L). In the
case where A has ordinary reduction at all places in S, this is [Tan14, Proposition
1.1 and Corollary 2.14]. To pass from potentially ordinary reduction to ordinary
reduction, one can argue as in [OT09, Lemma 2.1].

4.1.1. Yp(A/L). The following theorem was originally proved in [Tan14] under the
assumption of ordinary reduction. Here we prove a much more general version in
Theorem 4.1.3.

Theorem 4.1.2 (Tan). Suppose Xp(A/L) is a torsion Λ-module. Then there exist
relatively prime simple elements f1, ..., fm (m ≥ 1) such that

f1 · · · fm · Seldiv(A/L) = 0.

Theorem 4.1.3. Let M be a cofinitely generated torsion Λ-module. Then there
exist relatively prime simple elements f1, ..., fm (m ≥ 1) such that

f1 · · · fm · (MGal(L/F ))div = 0

for any finite intermediate extension K ⊂ F ⊂ L.

Proof. By hypothesis, there is some ξ ∈ Λ−{0} annihilating M . Let f ∈ Λ be such
that ω(f) = 0 for all ω ∈ Δξ . Fix a finite intermediate extensions F/K and, to
lighten notation, put G := Gal(F/K) and O the ring of integers of Q(μpd), where

pd is the exponent of G. Also, let N := O ⊗Zp
MGal(L/F ). Then defining, as in

(20), e′ω :=
∑

g∈G ω(g−1)g for each ω ∈ G∨, one finds |G| ·N =
∑

e′ωN and Λ acts

on e′ωN by λ ·n = ω(λ)n. In particular, one has f · e′ωN = 0 for all ω ∈ Δξ. On the
other hand, if ω /∈ Δξ, then e′ωN is finite because it is a cofinitely generated module
over the finite ring ω(Λ)/(ω(ξ)). It follows that f ·N is finite. Since a finite divisible
group must be trivial, this proves that f ·Ndiv = 0, and hence f ·(MGal(L/F ))div = 0.

It remains to prove that one can find a product of distinct simple elements which
is killed by Δξ. This is a consequence of Monsky’s theorem: one has Δξ =

⋃
Tj
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where the Tj ’s are Zp-flats, and by definition for each Tj there is at least one simple
element vanishing on it. �
Corollary 4.1.4. If Xp(A/L) is torsion, then there is a pseudo-isomorphism

Yp(A/L) ∼
m⊕

i=1

(Λ /fi Λ)
ri ,

for some non-negative integers ri, and hence

[Yp(A/L)] = [Yp(A/L)]si = [Yp(A/L)]�si = [Yp(A/L)]�.

Proof. The second equality is by (9). �
4.2. The Cassels-Tate system.

4.2.1. The Cassels-Tate pairing. For an abelian variety A defined over the global
field K, let At be its dual abelian variety. Let

〈 , 〉A/K : X(A/K)×X(At/K) −→ Q/Z

denote the Cassels-Tate pairing ([Mil86, II.5.7(a)]).
The next proposition is used in the proof of [Mil86, I, Theorem 7.3].

Proposition 4.2.1. Let A, B be abelian varieties defined over the global field K.
Suppose φ : A → B is an isogeny and φt : Bt → At is its dual. Then we have the
commutative diagram:

〈 , 〉A/K : X(A/K)×X(At/K) −−−−→ Q/Z
⏐⏐
φ∗

�⏐⏐φt
∗

∥∥∥

〈 , 〉B/K : X(B/K)×X(Bt/K) −−−−→ Q/Z.

4.2.2. The Cassels-Tate system. Let A be an abelian variety defined over the global
field K. Put

an := Xp∞(At/Kn)/Xp∞(At/Kn)div = Selp∞(At/Kn)/ Selp∞(At/Kn)div ,(32)

bn := Xp∞(A/Kn)/Xp∞(A/Kn)div = Selp∞(A/Kn)/ Selp∞(A/Kn)div.(33)

Let

(34) 〈 , 〉n : an × bn−→ Qp/Zp

be the perfect pairing induced from the Cassels-Tate pairing on X(At/Kn) ×
X(A/Kn). Let rnm and knm be the morphisms induced respectively from the re-
striction

H1(Km, At ×A) −→ H1(Kn, A
t ×A)

and the co-restriction

H1(Kn, A
t ×A) −→ H1(Km, At ×A).

Let
A = {an, bn, 〈 , 〉n, rnm, knm}.

We call A the Cassels-Tate system of A. As before, we write

a := lim←−
n

an and b := lim←−
n

bn .

It is clear that A satisfies axioms (Γ-1)-(Γ-4). For the rest of this paper we shall
use the above notation.
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Theorem 4.4.4 will show that A is a Γ-system, but for now we do not need it.
As in §3, write a and b for the projective limits of {an}n and {bn}n. We have the
exact sequence

(35) 0−→ a−→ Xp(A/L)−→ Yp(A/L)−→ 0.

Lemma 4.2.2. If Xp(A/L) is torsion, then [Xp(A/L)]ns = [a]ns.

Proof. Corollary 4.1.4 and the exact sequence (35). �

4.2.3. The module a00. To study a0n, we first consider the small piece a00n which is
the image of

s
00
n := Ker

(
Selp∞(At/Kn)−→ Selp∞(At/L)

)

under the projection Selp∞(At/Kn) � an. Obviously, s00n is a Γn-submodule of

s
0
n := Ker

(
H1

fl(Kn, A
t
p∞)−→ H1

fl(L,A
t
p∞)

)
= H1(Γ(n), At

p∞(L)) .

Lemma 4.2.3. All the groups H1
(
Γ(n), At

p∞(L)
)
and H2

(
Γ(n), At

p∞(L)
)
are finite.

Proof. It follows from [Gr03, Proposition 3.3]. Here we partially prove the d = 1
case, because some ingredient of this proof will be applied later. Write

(36) D := At
p∞(L) = At(L)[p∞]

and let Ddiv be its p-divisible part. We have an exact sequence

(37) (D/Ddiv)
Γ(n)−→ H1(Γ(n), Ddiv)−→ H1(Γ(n), D)−→ H1(Γ(n), D/Ddiv) .

If d = 1 and Γ = γZp , then we observe that

(γpn − 1)Ddiv = Ddiv,

since Ker(D
γpn−1−→ D) = DΓ(n)

is finite. Therefore, H1(Γ(n), Ddiv) = 0 and hence,
since D/Ddiv is finite, from the exact sequence (37) we deduce (see e.g. [BL09,
Lemma 4.1])

(38) |H1(Γ(n), D)| ≤ |D/Ddiv|.
�

Lemma 4.2.4. The projective limit

a
00 := lim←− a

00
n

is pseudo-null.

Proof. If d = 1, a00 is pseudo-null since it is a finite set: inequality (38) together
with the surjection s00n � a00n gives a bound on its cardinality.

Let D be as in (36) and let r be the Zp-rank of its Pontryagin dual D∨. Then
the action of Γ gives rise to a representation

(39) ρ : Γ−→ Aut(Ddiv) � GL(r,Zp) .

For each γ, let fγ(x) be the characteristic polynomial of ρ(γ). Then fγ(γ) is an ele-
ment in Λ which annihilates Ddiv. Let m0 be large enough such that At(Km0

)[p∞]
generates D/Ddiv. Then for every γ, (γpm0 − 1)fγ(γ) annihilates both s00n and a00n
for n ≥ m0, since we have

(γpm0 − 1)fγ(γ) ·D = 0.
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If d ≥ 2 and Γ =
⊕d

i=1 γ
Zp

i , then each δi := (γpm0

i − 1)fγi
(γi) lives in a different

Zp[Ti] under the identification Λ = Zp[[T1, ..., Td]], γi − 1 = Ti. Therefore δ1, ..., δd
are relatively prime and a00 is pseudo-null by Lemma 2.1.1. �

Put ā0n := a0n/a
00
n . By construction we have an exact sequence

(40) 0 −→ a
00 −→ a

0 −→ ā
0 := lim←−

n

ā
0
n −→ 0,

and hence a0 ∼ ā0. Applying the snake lemma to the diagram

0 −−−−→ Selp∞(At/Kn)div −−−−→ Selp∞(At/Kn) −−−−→ an −−−−→ 0
⏐⏐


⏐⏐

⏐⏐


0 −−−−→ Seldiv(A
t/L) −−−−→ Selp∞(At/L) −−−−→ lim−→ an −−−−→ 0

we find an injection

(41) ā
0
n ↪→ Seldiv(A

t/L)/ Selp∞(At/Kn)div .

4.3. The proof of Theorem 2. First we consider the case where Xp(A/L) is a
torsion Λ-module.

Lemma 4.3.1. The Λ-module Xp(A
t/L) is torsion if and only if so is Xp(A/L).

Proof. Any isogeny ϕ : A → At defined over K gives rise, via ϕ∗ : Selp∞(A/L) →
Selp∞(At/L), to a homomorphism of Λ-modules ϕ∨

∗ : Xp(A
t/L) → Xp(A/L) with

kernel and cokernel annihilated by deg(ϕ). �
Corollary 4.3.2. If Xp(A

t/L) is torsion over Λ, then [Xp(A/L)]si = [Xp(A
t/L)]si

and [Yp(A/L)] = [Yp(A
t/L)].

Proof. Let ϕ be as in the proof of Lemma 4.3.1. Define α : [Xp(A
t/L)]si →

[Xp(A/L)]si as the composition

[Xp(A
t/L)]si

� � �� Xp(A
t/L)

α1 �� Xp(A/L)
α2 �� [Xp(A/L)]

α3 �� [Xp(A/L)]si,

where α1 = ϕ∨
∗ , α2 is a pseudo-isomorphism and α3 is the projection. We claim

(C) α is a pseudo-injection.

By symmetry, there is also a pseudo-injection from [Xp(A/L)]si to [Xp(A
t/L)]si.

Then the first equality follows from Lemma 2.1.3.
To prove claim (C), suppose [Xp(A

t/L)]si is annihilated by f ∈ Λ, which is a
product of simple elements. The kernel of each αi is annihilated by some gi ∈ Λ
relatively prime to f . Thus the kernel of α is annihilated by both f and g1g2g3.
Then apply Lemma 2.1.1.

The second equality can be proved similarly, since ϕ∨
∗ sends Yp(A

t/L) to Yp(A/L)
and [Yp(A/L)]si = [Yp(A/L)], [Yp(A

t/L)]si = [Yp(A
t/L)] by Corollary 4.1.4. �

Lemma 4.3.3. If Xp(A/L) is torsion over Λ, then

[a]�ns = [b]ns.

Proof. By (35), a is torsion, and similarly so is b: hence A is a Γ-system. Let
f1, ..., fm be those simple elements in Theorem 4.1.2 (applied to At). By (41),
we have f1 · · · fm · ā0 = 0, and hence [ā0] = [ā0]si. Then Lemma 4.2.4 and (40)
together imply that [a0] = [a0]si. Hence, by (16), we have [a]ns = [a′]ns. Similarly,
[b]ns = [b′]ns. Then apply Corollary 3.3.4. �
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Proposition 4.3.4. If Xp(A/L) is torsion over Λ, then

[Xp(A/L)]� = [Xp(A
t/L)] = [Xp(A/L)] = [Xp(A

t/L)]�.

Proof. Lemma 4.2.2 and Lemma 4.3.3 imply [Xp(A/L)]�ns = [Xp(A
t/L)]ns, while

(9) and Corollary 4.3.2 yield [Xp(A/L)]�si = [Xp(A
t/L)]si. Thus, the first equality

is proved, and the third one is obtained by a similar argument. To proceed, for a
finitely generated torsion Λ-module M , we define a decomposition in p part and
non-p part

[M ] = [M ]p ⊕ [M ]np,

in the following way: if [M ] is a direct sum of components Λ /ξrii Λ, we define
[M ]p as the sum over those with ξi = (p) and [M ]np as its complement. We have
[M ]�p = [M ]p. This and the first equality imply

[Xp(A/L)]p = [Xp(A/L)]�p = [Xp(A
t/L)]p.

Let ϕ be the isogeny in the proof of Lemma 4.3.1 and write deg(ϕ) = pn ·u with
u relatively prime to p. Then the kernel and the cokernel of ϕ∗ are annihilated by
pn. This then leads to

[Xp(A/L)]np = [Xp(A
t/L)]np.

�

Proof of Theorem 2. The proof is divided into two cases. If Xp(A/L) is torsion,
then a × b is torsion and Theorem 2 is a consequence of Proposition 4.3.4. If
Xp(A/L) is non-torsion, then Theorem 2 holds trivially, since all terms in the
equation equal 0. �

Remark. For the proof of Theorem 2, we don’t use the fact that the Cassels-Tate
system is a Γ-system (as we are going to show).

4.4. A is a Γ-system. Now we prove Theorem 3. Denote In := Ker(Λ � Zp[Γn]).

Lemma 4.4.1. If η ∈ Λ is a non-zero element, then

rankZp
Λ /(In + (η)) = O(pn(d−1)) .

Proof. The proof of [Tan14, Lemma1.13] yields rankZp
Λ /(In + (η)) = O(pn(d−k)),

where k is the smallest codimension of the Zp-flats in Δη. Monsky’s Theorem 3.2.5
shows that k ≥ 1 if η �= 0. �

Lemma 4.4.2. Let K be a local field of finite residue field. Let B/K be an
abelian variety and K′/K be a finite Galois extension with G := Gal(K′/K). Then
H1(G,B(K′)) is finite.

Proof. LetBt be the dual abelian variety. We need to show thatBt(K)/NG(B
t(K′))

is finite, because by the local duality of Tate it is the dual group of H1(G,B(K′))
(see [Tan10, Corollary 2.3.3]).

Let F denote the formal group law associated to B/K. Let m and p denote the
maximal ideals of K′ and K. For every x ∈ F(m), the norm NG(x) is expressed by
an analytic function whose linear term is the trace trG(x). Since K′/K is separable,
for any n we can find k such that pk ⊂ trG(m

n) and then Hensel’s lemma guarantees
that, taking n sufficiently large, NG(x) = y has a solution in F(mn) for any y ∈
F(pk).
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Let B and B′ be the Néron model of B over O and O′, the ring of integers of K
and K′ respectively. Then the identity map on B extends to a unique homomor-
phism BO′ −→ B′ that respects the actions of G (here BO′ is the base change of
B to O′). The above result implies

F(pk) ⊂ NG(B(O′)) ⊂ NG(B
′(O′)) = NG(B(K′)).

Then the lemma follows, since B(K)/F(pk) is finite. �

For each n, denote Hn :=
⊕

all w H1(Γ
(n)
w , A(Lw)), the direct sum over all places

of Kn.

Lemma 4.4.3. The module Hn is cofinitely generated over Zp, and

corankZp
Hn = O(pn(d−1)), as n → ∞.

Proof. Write w | S, if w is a place of Kn sitting above some place v ∈ S; otherwise,

write w � S. Then
⊕

w�S H1(Γ
(n)
w , A(Lw)) is finite, by [Tan14, Lemma 3.4].

Suppose w | S. If A has good ordinary reduction at w, then H1(Γ
(n)
w , A(Lw)) is

finite [Tan10, Theorem 3]. The same holds, if A acquires good ordinary reduction
under a finite Galois extension K′/Kn w, because then H1(K′Lw/K′, A(K′Lw)) is
finite [op. cit.] and the kernel of the composition

H1(Γ
(n)
w , A(Lw))

� � �� H1(K′Lw/Kn w, A(K′Lw)) �� H1(K′Lw/K′, A(K′Lw))

is contained in H1(K′/Kn w, A(K′)) that is finite, by Lemma 4.4.2.
Suppose that A has split multiplicative reduction at some w. By [Tan14, Lemma

3.8] as well as its proof, if g = dimA, we have

corankZp
H1(Γ(n)

w , A(Lw)) ≤ rankZp
(K×

n w/NLw/Kn w
(L×

w))
g = g ·rankZp

Γ(n)
w ≤ g ·d.

By applying Lemma 4.4.2 and the above argument, the same inequality also holds
if A has potential multiplicative reduction at w. Then we note that for v ∈ S,
because the decomposition subgroup Γv is of positive rank, the number of places
of Kn sitting over v is of order O(pn(d−1)), as n → ∞. �

We state our next theorem in the notation of §4.2.2.
Theorem 4.4.4. Let K be a global field, L/K a Zd

p-extension with a finite ramifi-
cation locus, and let A be an abelian variety over K which has potentially ordinary
reduction over the ramification locus of L/K. Let A be the Cassels-Tate system of
A. Then a and b are finitely generated torsion Λ-modules and A is a Γ-system.

Proof. Recall that Q(Λ) denotes the fraction field of Λ. Suppose a were non-
torsion. Let r and s denote respectively the dimensions over Q(Λ) of the vector
spaces Q(Λ)a and Q(Λ)Xp(A/L): by (35), the former is contained in the latter. Let
e1, ..., er, ..., es ∈ Xp(A/L) form a basis of Q(Λ)Xp(A/L) such that e1, ..., er are in
a. Write a′ = Λ ·e1+ · · ·+Λ ·er ⊂ a and X ′ = Λ ·e1+ · · ·+Λ ·es ⊂ Xp(A/L). Then
Xp(A/L)/X ′ is torsion over Λ, and hence is annihilated by some non-zero η ∈ Λ.

Let ω ∈ Γ∨ be a character not contained in Δη (see (19)). Extend it as in §3.2.3
to a ring homomorphism ω : Λ � Oω whose kernel we denote by kerω. Then we
have the exact sequences

TorΛ(Λ / kerω, Xp(A/L)/a′) −→ (Λ/ kerω)⊗Λ a

idω⊗i−−−−→ (Λ / kerω)⊗Λ Xp(A/L) ,
(42)
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where i : a′ −→ Xp(A/L) is the inclusion, and

0 −−−−→ X ′/a′ −−−−→ Xp(A/L)/a′ −−−−→ Xp(A/L)/X ′ −−−−→ 0 .

The fact that X ′/a′ is free over Λ implies that the natural map

TorΛ(Λ / kerω, Xp(A/L)/a′)−→ TorΛ(Λ / kerω, Xp(A/L)/X ′)

is an injection. Then the group TorΛ(Λ / kerω, Xp(A/L)/a′) must be finite,
because the quotient Λ / kerω � Oω has finite residue modulo ω(η) and
TorΛ(Λ / kerω, Xp(A/L)/X ′), being annihilated by the non-zero residue class of
η in Λ / kerω, is finite. Thus, the homomorphism idω ⊗ i in (42) must be injective,
because (Λ/ kerω) ⊗Λ a′ is a free Oω-module. Hence its image is free of positive
rank over Oω.

Now assume that ω ∈ Γ∨
n ⊂ Γ∨. Denote En := Qp(μpn) and Vn := En⊗Zp

Λ /In.
Then Oω ⊂ En and ω extends to a ring homomorphism ω : Vn → En. We have

Vn =
⊕

ω∈Γ∨
n

V (ω)
n

with V
(ω)
n = En and the projection Vn → V

(ω)
n = En given by ω. The above

discussion shows if ω �∈ Δη, then the image of idω ⊗ i : V
(ω)
n ⊗Λ a′ −→ V

(ω)
n ⊗Λ

Xp(A/L) is a positive dimensional vector space on En. Since ω ∈ Δη if and only
if ω factors through Λ /(In + (η)), in view of Lemma 4.4.1, we conclude that as
n → ∞, the Zp-rank of the image of

a′ −→ Λ /In ⊗Λ a′ −→ Λ /In ⊗Λ Xp(A/L)

is at least of order pdn +O(pn(d−1)). Then the same holds for the image of

a −→ Λ /In ⊗Λ Xp(A/L),

since a′ → Xp(A/L) factors through a′ → a. By duality, the image of

Selp∞(A/L)Γ
(n) �� Selp∞(A/L)/ Seldiv(A/L)

has Zp-corank at least of order pdn+O(pn(d−1)). Let S(L/Kn) denote the preimage

of Selp∞(A/L)Γ
(n)

under the restriction H1(Kn, Ap∞) −→ H1(L,Ap∞). Since the
composition

S(L/Kn) �� Selp∞(A/L)Γ
(n) �� Selp∞(A/L)/ Seldiv(A/L)

factors through S(L/Kn) −→ S(L/Kn)/ Selp∞(A/Kn)div, while by the Hochschild-
Serre spectral sequence and Lemma 4.2.3, the left morphism has finite cokernel, the
Zp-corank of S(L/Kn)/ Selp∞(A/Kn)div is at least of order pdn+O(pn(d−1)). Then
the same holds for the Zp-corank of S(L/Kn)/ Selp∞(A/Kn), and hence for that of
Hn, because of the exact sequence

0 −→ Selp∞(A/Kn) −→ S(L/Kn) −→ Hn

due to the localization map. But Lemma 4.4.3 says this is absurd. The proof for b
just replaces A with At. �

Proof of Theorem 3. The first assertion results from Theorem 4.4.4 and the second
from Corollary 4.3.2 and Lemma 4.3.3. �
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Remark 4.4.5. Theorem 4.4.4 says a× b is torsion even when Xp(A/L) is not. It is
worthwhile to mention that Theorem 4.4.4 also implies that A enjoys property (T)
(just replace L/K with an arbitrary Zd−1

p -subextension L′/F ).

4.5. Is A pseudo-controlled? It is natural to ask if the Cassels-Tate system A is
pseudo-controlled: we tend to believe that this actually holds as long as Xp(A/L)
is torsion. Propositions 4.5.3 and 4.5.4 below give evidence to support our belief.

Lemma 4.5.1. For n ≥ m the restriction map

Selp∞(A/Km)div −→ (Selp∞(A/Kn)
Γ(m)

)div

is surjective.

Proof. The commutative diagram of exact sequences

Selp∞(A/Km)div = Selp∞(A/Km)div
� � ��

j′

��
j
��

Selp∞(A/Km) �� ��

i
��

bm

r
n
m

��
(Selp∞(A/Kn)

Γ(m)

)div⊂(Selp∞(A/Kn)div)
Γ(m) � � �� Selp∞(A/Kn)

Γ(m) �� bΓ
(m)

n

induces the exact sequence

Ker(rnm) −→ Coker(j) −→ Coker(i).

Since Ker(rnm) is finite while Coker(j′) is p-divisible, it is sufficient to show that
Coker(i) is annihilated by some positive integer. Consider the commutative diagram
of exact sequences

Selp∞(A/Km) �
� ��

i
��

H1
fl(Km, Ap∞)

locm ��

resnm
��

∏
all v H

1(Kmv, A)

rnm
��

Selp∞(A/Kn)
Γ(m) � � �� H1

fl(Kn, Ap∞)Γ
(m) locn �� ∏

all w H1(Knw, A)Γ
(m)
w

that induces the exact sequence

Ker
(
Im(locm)

rnm �� Im(locn)
)
−→ Coker(i)−→ Coker(resnm) .

By the Hochschild-Serre spectral sequence, the right-hand term Coker(resnm) is a
subgroup of H2(Kn/Km, Ap∞(Kn)), and hence is annihilated by pd(n−m) = [Kn :

Km]. Similarly, the left-hand term, being a subgroup of
∏

v H
1(Knv/Kmv, A(Knv)),

is also annihilated by [Kn : Km]. �
Lemma 4.5.2. If L/K is a Zp-extension and Xp(A/L) is a torsion Λ-module, then
there exists some N such that

Selp∞(A/Kn)div = (Selp∞(A/Kn)div)
Γ(m)

= (Selp∞(A/Kn)
Γ(m)

)div

holds for all n ≥ m ≥ N .

Proof. The second equality is an easy consequence of the first one. The assump-
tion Γ = γZp implies that if f ∈ Λ is simple, then f divides γpm − 1 for some

m. Therefore, by Theorem 4.1.2, there exists an integer N such that (γpN −
1) Seldiv(A/L)Γ

(n)

= 0 for every n. The kernel of the map Selp∞(A/Kn)div →
Seldiv(A/L)Γ

(n)

is finite by Lemma 4.2.3. This implies that (γpN−1) Selp∞(A/Kn)div
must be trivial, since it is both finite and p-divisible. �
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Proposition 4.5.3. If L/K is a Zp-extension and Xp(A/L) is a torsion Λ-module,
then A is pseudo-controlled.

Proof. We apply Lemma 4.5.1 and Lemma 4.5.2. If we are given an element x ∈
Selp∞(At/Kn) with resln(x) ∈ Selp∞(At/Kl)div for some l ≥ n ≥ N , then we can
find y ∈ Selp∞(At/KN )div such that reslN (y) = resln(x). Then x − resnN (y) ∈
Ker(resln) ⊂ s00n . This actually shows that a0n = a00n . Then apply Lemma 4.2.4. �

Proposition 4.5.4. If L/K is a Zd
p-extension ramified only at good ordinary places

and Xp(A/L) is a torsion Λ-module, then A is pseudo-controlled.

Proof. Let f1, ..., fm be those simple elements described in Theorem 4.1.2. and

write gi := f−1
i f1 . . . fm. Since fi divides γ

pri

i − 1, for some γi and ri, by Theorem
4.1.2 we get

(43) gi · Seldiv(At/L) ⊂ Selp∞(At/L)Ψ
(ri)

i ,

where Ψi ⊂ Γ is the closed subgroup topologically generated by γi and we use the
notation H(i) := Hpri

for any subgroup H < Γ. In view of Proposition 4.5.3, we
may assume that d ≥ 2. Then we can find δ1, ..., δd as in the proof of Lemma
4.2.4 and such that the elements δjgi, i = 1, ...,m, j = 1, ..., d, are coprime. By
construction each δi annihilates s

0
n for all n. We are going to show that if a = (an)n,

an ∈ a0n, is an element in a0, then for n ≥ ri,

(44) δjgi · an = 0, j = 1, ..., d.

Then it follows that δjgi · a0 = 0 for every i and j, and hence a0 is pseudo-null.
Fix n ≥ ri. Choose closed subgroups Φi ⊂ Γ, i = 1, ...,m, isomorphic to Zd−1

p

such that Γ = Ψi ⊕Φi, and then set L(i) := LΦ
(n)
i and let L

(i)
l denote the lth layer

of the Zp-extension L(i)/Kn, so that Gal(L(i)/L
(i)
l ) is canonically isomorphic to

Ψ
(l+n)
i .
For each l ≥ n, let ξl be a preimage of al under

Selp∞(At/Kl)
πl �� al

and denote by ξ′l the image of ξl under the corestriction map Selp∞(At/Kl) →
Selp∞(At/L

(i)
l−n). Note that Kl is an extension of L

(i)
l−n because Γl ⊂ Ψ

(l)
i Φ

(n)
i =

Gal(L/L
(i)
l−n). Thus, the restriction map sends ξ′l to an element θl ∈

Seldiv(A
t/L)Ψ

(l)
i Φ

(n)
i . Then by (43)

(45) gi · θl ∈ Seldiv(A
t/L)Γ

(n)

.

By the control theorem [Tan10, Theorem 4] the cokernel of the restriction map

Selp∞(At/Kn)div
resn �� Seldiv(At/L)Γ

(n)

is finite: we denote by pe its order. Choose l ≥ n + e and choose ξn to be the
image of ξl under the corestriction map Selp∞(At/Kl) → Selp∞(At/Kn). Then
(45) implies that gi · θn = pegi · θl, which shows that gi · θn = resn(θ

′
n), for some

θ′n ∈ Seldiv(A
t/Kn). Then πn(gi · ξn − θ′n) = gi · an. Since gi · ξn − θ′n belongs to

s0n, which is annihilated by δj , we have δjgi · an = 0 as desired. �
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5. Central idempotents of the endomorphism ring of A

Let E denote the ring of endomorphisms of A/K and write Zp E := Zp ⊗Z E .
We assume that there exists a non-trivial idempotent e1 contained in the center of
Zp E . Set e2 := 1− e1. Then we have the decomposition:

(46) Zp E = e1Zp E × e2Zp E .

5.1. The endomorphism rings. Let E t denote the endomorphism ring of At/K.
Since the assignment ψ �→ ψt sending an endomorphism ψ ∈ E to its dual endomor-
phism can be uniquely extended to a Zp-algebra anti-isomorphism ·t : Zp E → Zp E t,
we find idempotents et1, e

t
2 and the analogue of (46). If E and E t act respectively on

p-primary abelian groups M and N , then these actions can be extended to those
of Zp E and Zp E t. We have the following Zp-version of Proposition 4.2.1.

Lemma 5.1.1. For every a ∈ an, b ∈ bn and ψ ∈ Zp E we have

(47) 〈a, ψ∗(b)〉n = 〈ψt
∗(a), b〉n .

Proof. First note that any ψ ∈ E can be obtained as a sum of two isogenies (e.g.,
because k + ψ is an isogeny for some k ∈ Z). Thus Proposition 4.2.1 and linearity
of the Cassels-Tate pairing imply that (47) holds for such ψ.

In the general case, since Zp E is the p-completion of E , for each positive integer
m there exists ϕm ∈ E such that ψ − ϕm ∈ pmZp E . Choose m such that pma =
pmb = 0. Then

〈a, ψ∗(b)〉n = 〈a, ϕm∗(b)〉n = 〈ϕt
m∗(a), b〉n = 〈ψt

∗(a), b〉n.

�

If M and N are respectively Zp E and Zp E t modules, write M (i) for ei ·M and

N (i) for eti · N . Then (46) implies M = M (1) ⊕ M (2) and N = N (1) ⊕ N (2). In
particular,

a = a(1) ⊕ a(2) and b = b(1) ⊕ b(2) ,

with a(i) = lim←−n
a
(i)
n and b(i) = lim←−n

b
(i)
n .

Corollary 5.1.2. For every n, we have a perfect duality between a
(1)
n , b

(1)
n and one

between a
(2)
n , b

(2)
n .

Proof. We just need to check 〈a(1)n , b
(2)
n 〉n = 〈a(2)n , b

(1)
n 〉n = 0. If a ∈ a

(1)
n and

b ∈ b
(2)
n , then 〈a, b〉n = 〈et1 · a, e2 · b〉n = 〈a, e1e2 · b〉n = 〈a, 0〉n = 0. �

Then A(i) := {a(i)n , b
(i)
n , 〈 , 〉, rnm, knm}, i = 1, 2, satisfy conditions (Γ-1) to (Γ-4)

and hence by Theorem 4.4.4 and Remark 4.4.5, are Γ-systems and part of T-
systems. They are pseudo-controlled if and only if so is A. By Theorem 1(3) and
Proposition 4.5.4 we have the following.

Theorem 5.1.3. If A is pseudo-controlled, then

(48) [a(1)] = [b(1)]� and [a(2)] = [b(2)]�.

Corollary 5.1.4. If L/K is a Zd
p-extension ramified only at good ordinary places

and Xp(A/L) is a torsion Λ-module, then (48) holds.
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5.2. The height pairing. Applying ei to the exact sequence (35) we get

(49) 0−→ a
(i)−→ Xp(A/L)(i)−→ Yp(A/L)(i)−→ 0 .

Unfortunately in general we are unable to compare either Xp(A/L)(i) with

Xp(A
t/L)(i) or Yp(A/L)(i) with Yp(A

t/L)(i). However, we can get some partial
results as follows.

5.2.1. The Néron-Tate height pairing. First we briefly recall the definition of the
Néron-Tate height pairing

(50) h̃A/K : A(K)×At(K)−→ R .

For details, see [Lan83, V, §4]. Let

PA −→ A×At

denote the Poincaré line bundle: then h̃A/K is the canonical height on A × At

associated with the divisor class corresponding to PA.

Proposition 5.2.1. Let A, B be abelian varieties defined over the global field K.
Let φ : A → B and φt : Bt → At be an isogeny and its dual. Then the following
diagram is commutative:

h̃A/K : A(K)×At(K) −−−−→ R
⏐⏐
φ

�⏐⏐φt

∥∥∥

h̃B/K : B(K)×Bt(K) −−−−→ R.

Proof. By definition of the Néron-Tate pairing and functorial properties of the
height ([Lan83, Proposition V.3.3]), h̃A/K(·, φt(·)) and h̃B/K(φ(·), ·) are the canon-
ical heights on A×Bt associated with the divisor classes corresponding respectively
to (1× φt)∗(PA) and (φ× 1)∗(PB). But the theorem in [Mum74, §13] implies

(51) (1× φt)∗(PA) � (φ× 1)∗(PB)

(see [Mum74, p. 130]). �

5.2.2. The p-adic height pairing. We extend (50) to a pairing of Zp-modules.

Lemma 5.2.2. Let A be an abelian variety defined over the global field K. For
every finite extension F/K there exists a p-adic height pairing

(52) hA/F :
(
Zp ⊗A(F )

)
×
(
Zp ⊗At(F )

)
−→ EF ,

where EF is a finite extension of Qp, with the left and right kernels equal to the
torsion parts of Zp ⊗ A(F ) and Zp ⊗ At(F ). If char(K) = p one can choose
EF = Qp.

Proof. If char(K) = p, then after scaling by a factor log(p), the pairing h̃A/F

takes values in Q (see for example [Sch82, §3]): in this case we define hA/F by

h̃A/F = − log(p)hA/F and extend it to get (52). In general, the image of the Néron-

Tate height h̃A/F generates a subfield E′
F ⊂ R. By the Mordell-Weil theorem, E′

F is
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finitely generated over Q, and hence can be embedded into a finite extension EF of
Qp. Then we have the pairing

h̃A/F : A(F )×At(F )−→ E′
F ⊂ EF ,

which is obviously continuous in the p-adic topology, and thus can be extended to
a pairing hA/F as required. Since the left and right kernels of h̃A/F are the torsion
parts of A(F ) and At(F ), if x1, ..., xr and y1, ..., yr are respectively Z-basis of the
free parts of A(F ) and At(F ), then

deti,j(hA/F (xi, yj)) = deti,j(h̃A/F (xi, yj)) �= 0,

which actually means that hA/F is non-degenerate on the free part of its domain. �
5.2.3. For each finite extension F/K let hA/F be the p-adic height pairing estab-
lished in Lemma 5.2.2. The action of E on A(F ) extends to that of Zp E on Zp⊗A(F )
and the following results are proven by the same reasoning as in the proofs of Lemma
5.1.1 and Corollary 5.1.2.

Lemma 5.2.3. For every x ∈ Zp ⊗A(F ), y ∈ Zp ⊗At(F ) and ψ ∈ Zp E we have

(53) hA/F (ψ(x), y) = hA/F (x, ψ
t(y)) .

Corollary 5.2.4. For i = 1, 2, the modules Zp ⊗ A(F )(i) and Zp ⊗ At(F )(i) have
equal rank over Zp.

5.2.4. Write M(A/F ) := Qp/Zp⊗A(F ). Now we assume that all Tate-Shafarevich
groups are finite. HenceM(A/F ) = Selp∞(A/F )div andM(A/L) := lim−→F

M(A/F )

= Seldiv(A/L). The action of Zp E on M(A/L) extends to its dual as (e · ϕ)(x) :=
ϕ(ex). We have Yp(A/L)(i) = (M(A/L)(i))∨ and

(54) Yp(A/L) = Yp(A/L)(1) ⊕ Yp(A/L)(2).

Theorem 5.2.5. If Xp(A/L) is a torsion Λ-module, L/K is ramified only at good
ordinary places and Xp∞(A/F ) is finite for every finite intermediate extension of
L/K, then

[Yp(A/L)(1)] = [Yp(A
t/L)(1)]� and [Yp(A/L)(2)] = [Yp(A

t/L)(2)]�.

Proof. Fix i ∈ {1, 2}. By Theorem 4.1.2, we write

[Yp(A/L)(i)] =

m⊕

ν=1

(Λ /(fν))
rν , [Yp(A

t/L)(i)] =

m⊕

ν=1

(Λ /(fν))
sν ,

where f1, ..., fm are coprime simple elements and rν , sν are non-negative integers.
We need to show that rν = sν for every ν, since Λ /(fν) = (Λ /(fν))

�.
Let P1 denote the quotient Yp(A/L)(i)/[Yp(A/L)(i)] and P2 the analogue for

At. Since P1, P2 are pseudo-null Λ-modules, there are η1, η2 ∈ Λ coprime to
f := f1 · · · fm such that ηjPj = 0. Then fν is coprime to η1η2ff

−1
ν for each ν.

We choose ω ∈ Γ∨ such that ω(fν) = 0 and ω(η1η2ff
−1
ν ) �= 0. Let E be a finite

extension of Qp containing the values of ω. Set EM := E⊗Zp
M for any Zp-module

M . We see E as a module over E Λ via the ring epimorphism E Λ → E induced
by ω. The exact sequence

0 = Tor1E Λ(E,EP1)−→ E ⊗E Λ E[Yp(A/L)(i)]

−→ E ⊗E Λ EYp(A/L)(i)−→ E ⊗E Λ EP1 = 0
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yields

rν = dimE(E ⊗E Λ EYp(A/L)(i)) .

Let Γω⊂Γ denote the kernel of ω and writeWω(A) for the coinvariantsEYp(A/L)
(i)
Γω .

The isomorphisms

E ⊗E Λ EYp(A/L)(i) � E ⊗E Λ EYp(A/L)
(i)
Γω � (EYp(A/L)

(i)
Γω)

(ω)

show that rν = dimE Wω(A)(ω). A similar argument proves sν = dimE Wω(A
t)(ω).

Write Kω := LΓω

and Γω := Gal(Kω/K). Since Xp∞(A/Kω) is finite, the
control theorem [Tan10, Theorem 4] implies that the restriction map M(A/Kω) →
M(A/L)Γ

ω

has finite kernel and cokernel. Thus we find

rankZp

(
M(A/Kω)

(i)
)∨

= rankZp

(
(M(A/L)Γ

ω

)(i)
)∨

= rankZp
Yp(A/L)

(i)
Γω .

This and Corollary 5.2.4 yield

rankZp
Yp(A/L)

(i)
Γω = rankZp

Yp(A
t/L)

(i)
Γω .

Similarly, for the character � = ωp, we have

rankZp
Yp(A/L)

(i)
Γ� = rankZp

Yp(A
t/L)

(i)
Γ� .

As in §3.2.4, let [ω] denote the Gal(Q̄p/Qp)-orbit of ω. By Γ∨
ω = [ω] � Γ∨

ωp we get
the exact sequence of E[Γω]-modules:

0 �� ∏
χ∈[ω](Wω(A))(χ) �� Wω(A) �� Wωp(A) �� 0 .

Since for all χ ∈ [ω] the eigenspaces (Wω(A))(χ) have the same dimension over E,
the two equalities and the exact sequence above imply

dimE(Wω(A))(ω) = dimE(Wω(A
t))(ω) ,

which completes the proof. �

Theorem 5.2.6. If Xp(A/L) is a torsion Λ-module, L/K is ramified only at good
ordinary places and Xp∞(A/F ) is finite for every finite intermediate extension of
L/K, then

χ(Xp(A/L)) = χ(Xp(A
t/L)(1))� · χ(Xp(A/L)(2))

= χ(Xp(A/L)(1)) · χ(Xp(A
t/L)(2))� .

Proof. Just use the exact sequence (49) (together with its At-analogue with b(i)),
Corollary 5.1.4 and Theorem 5.2.5 to get

χ(Xp(A
t/L)(i))� = χ(Xp(A/L)(i)) .(55)

�
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In the next paper [LLTT] of this series we shall apply Theorem 5.2.6 to prove
the Iwasawa Main Conjecture for constant ordinary abelian varieties over function
fields.

Acknowledgments

The second, third, and fourth authors thank Centre de Recerca Matemàtica for
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