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PONTRYAGIN DUALITY FOR IWASAWA MODULES
AND ABELIAN VARIETIES

KING FAI LAI, IGNAZIO LONGHI, KI-SENG TAN, AND FABIEN TRIHAN

ABSTRACT. We prove a functional equation for two projective systems of finite
abelian p-groups, {a,} and {b,}, endowed with an action of Z¢ such that a,
can be identified with the Pontryagin dual of b, for all n.

Let K be a global field. Let L be a Zg—extension of K (d > 1), unramified
outside a finite set of places. Let A be an abelian variety over K. We prove
an algebraic functional equation for the Pontryagin dual of the Selmer group
of A.

1. INTRODUCTION

Let I" be an abelian p-adic Lie group isomorphic to Zg where Z,, is the ring of
p-adic integers and d is a positive integer. The Iwasawa algebra is the complete
group ring Z,[[I']] which we denote by A. An Iwasawa module is a topological
A-module.

We study a Pontryagin duality for Iwasawa modules which are inverse limits of
finite Iwasawa modules with A acting through I',, where I',, denotes I'/T?". Our
result leads to a functional equation for the characteristic ideals of these Iwasawa
modules. We then apply these results to Selmer groups of abelian varieties over
Zg—extensions of global fields.

Before we describe our Pontryagin duality we recall a few simple notions con-
cerning Iwasawa modules. A finitely generated A-module M is said to be pseudo-
null if no height one prime ideal contains its annihilator ([Bou65, §4]). A pseudo-
isomorphism of A-modules is a homomorphism with pseudo-null kernel and coker-
nel. We write M ~ N to mean that there exists a pseudo-isomorphism from M to
N.

The inversion I' — I', v +— 7", gives rise to an isomorphism from A to A which
we denote as sending an element A to A*. This allows us to twist a A-module M to
Ay®a M, which we denote by M* (see §2.2.2).

Now let us describe the formal structure we need for the Pontryagin duality.

Consider a collection

A= {an, by, (, Jn,t, 0, | n,m e NU{0}, n >m}
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where

(T-1) ay,b, are finite abelian groups, with an action of A factoring through
Zy[Ty].
(T-2) For n > m,

n
m

€ a, X by, — ay, X by,
are [-morphisms such that 7 (a,,) C a,, t7,(b,,) C by, € (a,) C an,
£ (b,) C by, and v = £ = id. Also, {a, x b,, v}, form an inductive
system and {a, x b,, €%}, form a projective system.
(I-3) We have

Uy X by — ay, X by,

ty, oty =Nr r :a, xb, — a, Xb,
(where Ny, /r,, = >, cker(r, -1, O 15 the norm associated with I', — T',)
and
e o = pH =) id: a, X by — apy X by
(P-4) For each n, (, )p: a, X b, — Q,/Z, is a perfect pairing (and hence a,
and b,, are dual p-groups) respecting I'-action as well as the morphisms 7,
and €7, in the sense that

<7'a77'b>n: <avb>n V’YEF,

(1) (a, v, (0))n = (E,(a), b)m,
and
<t;lz(a)> b>n = <a7 E%(b))m.
Write

— —

a:=lima, and b:=1limb, .

Definition 1.0.1. We say 2 as above is a I'-system if both a and b are finitely
generated torsion A-modules[] We say that a I'-system 2 is pseudo-controlled if

a” x b := lim J Ker(s)
m op>m
is a pseudo-null A-module.
The following Pontryagin duality theorem is proved in §3.31 The technical hy-
potheses in cases (1), (2) and (3) will be explained later.
Theorem 1. Let
A= {an,bp,(, Yn 0.t | n,meN, n>m}
be a pseudo-controlled I'-system. Then there is a pseudo-isomorphism
af ~ b
in the following three cases:

(1) there exists &€ € A not divisible by any simple element and such that &b is
pseudo-null;

(2) A is pseudo-isomorphic to a twistable pseudo-controlled T'-system;

(3) A is part of a T-system.

L As we learned only after this paper had been essentially completed, our definition of I'-system
is very similar to the notion of “normic system” introduced in [Vau09, Définition 2.1]. The main
difference is that Vauclair does not include a duality in his definition.
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PONTRYAGIN DUALITY FOR IWASAWA MODULES 1927

A simple element is the evaluation at v € I'—T'P of a cyclotomic polynomial: the
precise definition will be given in §2T.31 We say that the I'-system 2l is twistable
if there exists an integer k such that p"**a, = 0 for every n. For the definition
of T-system and of pseudo-isomorphism of I'-systems, see respectively §3.1.1] and

312

In §4.3] we apply our results on Pontryagin duality to prove the following.

Theorem 2. Let K be a global field. Let L/K be a Zg—extension with a finite
ramification locus S and d > 1. Let AJ/K be an abelian variety having potentially
ordinary reduction at each place of S. Then the characteristic ideals of X,(A/L)
and of X,(A*/L) (the Pontryagin duals of the Selmer groups of A and of its dual
abelian variety At) satisfy the following equation:

X(Xp(A/L))F = X(X,(A"/L)) = X(X,(A/L)) = x(X,(A"/L))".

The characteristic ideal x is explained in §212land X,(A/L) is defined in §411

One key tool in the proof of Theorem 2] will be the notion of the Cassels-Tate
system, introduced in §4. We take Gal(L/K) as I'. Then, roughly, the Cassels-Tate
system attached to (A, L/K) is a collection A = {a,, b,,{, )n,tl, 0} as before,
where a,, and b,, are respectively the co-torsion part of the p-primary Selmer groups
of A and A? over K, := LT (see §L2.2)).

In §4.4] we prove the following theorem.

Theorem 3. Let A, L/ K be as before and let 2 be the Cassels-Tate system attached
to (A,L/K). Then 2 is a I'-system, and hence a and b are torsion A-modules. If
furthermore X,(A/L) is torsion, then they satisfy the functional equation:

at ~ b.

In §5l we prove functional equations for characteristic ideals of Pontryagin duals
of the projections of Selmer groups by central idempotents. This provides a pow-
erful tool for solving the Iwasawa Main Conjecture in the constant ordinary case
(ILLTTY).

Theorem [1 and Theorem [] imply equality of the corresponding characteristic
ideals. Using Fitting ideals Mazur and Wiles [MW8&4] proved such a functional
equation in the d = 1 case, in which 2l is automatically a T-system. For d > 2,
Fitting ideals do not seem to yield a promising approach for a proof. Theorem [II
seems to lie quite deep. Even in the case of Cassels-Tate systems, our result is not a
straightforward consequence of the control theorems in the number field (|Gr03]) or
function field case (|[BL09], [Tani0]) as one might have expected. See in particular
our use of an old result of Monsky (Theorem [B.23]).

In the number field case, results in the direction of Theorem 2l were obtained (for
d < 2) in [Maz72| §7], [Gr89, §8] and [P03] (see also [Zab10] for a non-commutative
generalization). Also (in the number field case), a functional equation similar
to that in Theorem [ is proved by Nekovar for some Iwasawa cohomology (see
[Nek06, §0.13]) under some technical hypothesis (no place of bad reduction and not
above p splits completely in L/K). The difference between the Iwasawa cohomol-
ogy of Nekovai and the classical Selmer group is studied in [Nek06 §9.6]. These
two Iwasawa modules are not pseudo-isomorphic in general and no functional equa-
tion for one is (apparently) deduced from that for the other. We do not exclude
however the possibility that this can be achieved. It is also worthwhile to mention
that although Nekovéi’s technical assumption is satisfied by any L containing the
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cyclotomic Z,-extension, sometimes it can be restrictive. For instance, if A is an
elliptic curve defined over Q having multiplicative reduction at some g # p, K is an
imaginary quadratic field over which ¢ does not split, and L/K is the anticyclotomic
Z,-extension, then the assumption is not satisfied.

2. PREPARATIONS

In this section we set up notation for later use.
2.1. Iwasawa modules. A comprehensive reference is [Bou65, §4].

2.1.1. Let M be a finitely generated A-module. By definition, M is pseudo-null if
and only if no height one prime ideal contains its annihilator (i.e., if for any height
one prime p the localization M, = 0 is trivial).

Lemma 2.1.1. A finitely generated A-module M is pseudo-null if and only if there
exist relatively prime f1,..., fr € A, k > 2, such that f;M =0 for every i.

Proof. From I ~ Z& we get A(T') ~ Zy|[[T1, ..., Ty]]. Thus A is a unique factorization
domain, hence all height one prime ideals are principal and the claim follows. [

Lemma 2.1.2. A composition of pseudo-injections (resp. pseudo-surjections, resp.
pseudo-isomorphisms) is a pseudo-injection (resp. pseudo-surjection, resp. pseudo-
isomorphism). Pseudo-isomorphism is an equivalence relation in the category of
finitely generated torsion A-modules.

Proof. Let a: M — N and 8: N — P be two morphisms of A-modules. The first
claim follows observing that there are exact sequences

0 — Ker(a)— Ker(8 o a)— Im(a) NKer(5) — 0
and
(2) Coker(a)— Coker( o a)— Coker(8) — 0.

For the second statement, the only thing left to prove is symmetry. Let a: M —
N be a pseudo-isomorphism. Let T be the set of height one primes containing
Annp (M) and put S = (A—U,erp). The map « induces an isomorphism of
S~ A-modules S™'M — STIN: let 3 be its inverse. Then

Homg 1, (S™'N, S M) ~ S~ Homy (N, M)

implies s € Homy (N, M) for some s € S and sf is the required pseudo-
isomorphism. For more details, the reader is referred to the proof of [Bou65l §4,
no.4, Th.5]. |

2.1.2. As before, let M be a finitely generated A-module. We write x(M) =
xr(M) C A for its characteristic ideal. Thus, x(M) = 0 if and only if M is non-
torsion. Suppose M is torsion. Combining [Bou65l §4, no.4, Th.5] with Lemma
2.T32] there is a pseudo-isomorphism

(3) o énaA/ﬁi”A—>M,

i=1
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PONTRYAGIN DUALITY FOR IWASAWA MODULES 1929

where each &; is irreducible. In this situation, we have

m

xX(M1) = T

i=1

It follows that x(M) = A if and only if M is pseudo-null.
Denote

(M]:=EPA/E A
i=1

Since a non-zero element in [M] cannot be simultaneously annihilated by relatively
prime elements of A, there is no non-trivial pseudo-null submodule of [M], and
hence ® in @) is an embedding. The module [M] is uniquely determined by M up
to isomorphism, while ® is not. However, we shall fix one such ® and view [M] as
a submodule of M.

Lemma 2.1.3. Leta: M — N and B: N — M be two pseudo-injections of finitely
generated torsion A-modules. Then « and [ are pseudo-isomorphisms.

Proof. We have x(Ker(8 o a)) - x(M) = x(M) - x(Coker(8 o o)) deduced from the
sequence

0 —— Ker(foa) M M Coker(foa) —0.

By Lemma T2 x(Ker(8 o a)) = A, whence x(Coker(f o)) = A. By (@), this
implies that Coker($) is pseudo-null: thus 8 is a pseudo-isomorphism. The same
reasoning applied to « o 8 shows that « is a pseudo-isomorphism. O

2.1.3. The simple part. The group of roots of unity is denoted pr,e = {J,, Hpm -
We say that f € A is a simple element if there exist v € I' = I'” and ( € p such
that f = f, ¢, where

frc = I @-a0.

o€Gal(Qp(¢)/Qyp)

(Thus fy¢ is the evaluation at v of the cyclotomic polynomial of which ¢ is a
primitive root.) It is easy to check that simple elements are irreducible in A and
that

(4) Fre A= fro A () =% and ¢ € Gal(Q(€)/Qp) - €.

For any finitely generated torsion A-module M, we get a decomposition in simple
part and non-simple part
[M] = [M}si S2) [M]nsa

in the following way: recalling that [M] is a direct sum of components A /& A, we
define [M]; as the sum over those & which are simple and [M],,5 as its complement.
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2.2. Twists. Any continuous group homomorphism I' — A* gives rise by linearity
to an endomorphism A — A.

2.2.1. An example is the map *: A — A which we have defined by using v+ y~*

for v € I'. The particular importance of this map for us stems from the fact that if
(', ) is a I'-invariant pairing between A-modules, then

(5) <)\ @, b> = <CL, Aﬁ ' b>
for any A € A.

Suppose ¢: I' = Z is a continuous homomorphism. Define ¢*: A — A to be
the ring homomorphism determined by ¢*(vy) := ¢(y)~! -~ for v € . Since on I'

the composition ¢* o (1/¢)* is the identity map, we see that ¢* is an isomorphism
on A.

2.2.2. Let M be a A-module. Any endomorphism a: A — A defines a twisted
A-module A ,®x M , where the action on the copy of A on the left is via « (i.e., we
have (a(AN)p) @ m = p®@ Am for A\, p € A and m € M) and the module structure is
given by
(6) A (p@m):=(Au)@m
(where Ap is the product in A). If moreover « is an isomorphism, A ,®x M can
be identified with M with the A(T')-action twisted by a~!, since in this case (@]
becomes
(7) A(leam)=12a *\)m.

Following the above we shall write

MP=A A M.

Since -f is an involution, (7)) shows that the action of A becomes \ - m = \m.
Let f, ¢ € A be simple, as in 2131 From (@) we obtain the equalities of ideals

®) (o) = (i) = (-
It follows that

(9) (M5, = [M]s;
2.2.3. Let ¢ be as in §2.2.71 Set

(10) M(¢) = A g @7 M.

Note that, if we endow Z, with the trivial action of I', then the A-module Z,(¢)
can be viewed as the free rank one Z,-module with the action of I' through multi-
plication by ¢, in the sense that

v-a=¢(y)a forallyel,acZy(p).
Then for a A-module M we have
M(¢) = Zp(¢) ®z, M,
where I' acts by
v-(e@z)i=(y-a)®(y-2)=0¢(7) (a@yz).

The proof of the following is straightforward and can be found in [LLTT] Lemma
2.4.1].
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Lemma 2.2.1. Let o be an automorphism of A. Suppose M 1is a finitely generated
torsion A-module with

[M]=EBA/551A~
Then . .
[A a®A M] = A @4 [M] = @A/a(ﬁi)” A,

and hence
X(A a®@a M) = a(x(M)).

2.3. Some more notation. The Pontryagin dual of an abelian group B will be
denoted BY. Since we are going to deal mostly with finite p-groups and their induc-
tive and projective limits, we generally won’t distinguish between the Pontryagin
dual and the set of continuous homomorphisms into the group of roots of unity
M. Note that we shall usually think of p,. as a subset of @p (hence with the
discrete topology), so that for a A-module M homomorphisms in MY will often
take values in Q,.
We shall denote the -part of a G-module M (for G a group and ¢ € GV) by

(11) MW .={zeM | g-z=1(g)zforall g € G}.

3. CONTROLLED I'-SYSTEMS AND THE ALGEBRAIC FUNCTIONAL EQUATION

Until §4 we do not need our group I' to be a Galois group. However, to simplify
the notation, we shall identify I' as Gal(L/K) for some L/K so that each open
subgroup can be written as Gal(L/F) for some finite intermediate extension F'.
Let K,, denote the nth layer of L/K, so that I';, = Gal(K,,/K) and Gal(L/K,) =
e =1,

3.1. I'-systems.

3.1.1. T-system. The definition of I'-systems can be extended to the notion of a
complete I'-system, for which we stipulate that for each finite intermediate extension
F of L/K there are Gal(F/K)-modules ap and by with a pairing (, ), and for any
pair F, F’ of finite intermediate extensions with F' C F’, there are I'-morphisms
i and ¢ satisfying the obvious analogues of (I'-1)-(T-4).

We say that 2 is part of a complete I'-system {ap,bp, (, >F,t§/,{?§/} if a, =
ax,, by = bx,, 7' = vx™ and € = €. Obviously this implies a = lim _ ar and
b= 'mF bF.

Assume that 2 is a complete I'-system. Let F' be a finite intermediate extension
and let L'/F be an intermediate Zg-extension of L/F. Write

ar/Fp = lim arps and bL’/F = lim bp.
FCF'CL’! FCF'CL’
They are modules over Ap,/p := Z,[[Gal(L'/F)]]. Set the condition
(T) For every finite intermediate extension F' and every intermediate Zg_l-
extension L'/F of L/F, ar/r and by, p are finitely generated and torsion
over ALI/F.

By a T-system we mean a complete I'-system enjoying the property T.
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3.1.2. Morphisms. We shall always assume that a I-system A = {a,,b,,{ , )n,
e €} is oriented in the sense that we have fixed an order of the pairs (a,, by,).
We define a morphism of I'-systems

2= {am by, < ) >%7t(m)?mk(m):%} — = {cmanv < ) >7Qz:a ( )n E( )m}

to be a collection of morphisms of I'-modules f,,: a, = ¢, gn: 0, — b, commuting
with the structure maps and such that {f,(a),d)¢ = (a, g,(d))> for all n.
A pseudo-isomorphism of I'-systems is a morphism 2 — € such that the induced

maps a — ¢, 0 — b are pseudo-isomorphisms of I'-modules.

Example 3.1.1. Given a I'-system A = {a,,b,} and A € A, let us write a,[\]
for the A-torsion of a,, namely, consisting of those elements in a, killed by A.
We can then define A -2 := {Aa,, A*b,,} and A[N] := {a,[N], b, /A by}, with the
pairing and the transition maps induced by those of A. It is easy to check that
A -2 and A[N] are T-systems and that the exact sequences a,[A] — a, — Aa,, and
b, < b, — b, /\b,, provide morphisms of oriented T-systems AN — A and
A— X2

3.1.3. Derived systems. Let A = {ay, by, { , )n,v, €%} be a I'-system. In the
following, we let £,, denote the natural map

axb—a, xb,

Suppose for each n we are given a I'-submodule ¢,, C a,, such that 7 (¢,,) C ¢,
and €7 (c,,) C ¢y, Using these, we can obtain two derived I'-systems from 2. Let
fn C by, be the annihilator of c¢,, via the duality induced from ( , ),, and let
0, := by, /fn. Then we also have t?,(f,,) C f,, and €7,(f,) C fn. Hence t7, induces a
morphism ¢, X 0, — ¢, X 0,, which, by abuse of notation, we also denote as t],
Similarly, we have the morphism € : ¢, X 9,, = ¢, X 0, and the pairing (, ), on
¢ X 0p. Let € denote the I'-system

{c"?on’ < ’ > gukm | m,n € an Z m}
We also write ¢, := a,,/¢,, and let € denote the I'-system
{ens Fas (5 oot € | myn € Nyn > m}

Then we have the sequences

(12) 0—c—a—e¢e—0
and
(13) 0—f—b—0—0.

Here ¢, 0, ¢ and § are the obvious projective limits; the systems {c,} and {f,}
satisfy the Mittag-Leffler condition (because all groups are finite), so (I2) and (I3)
are exact.

Lemma 3.1.2. Assume a,, = €,(a) for all n. Then ¢ ~ 0 implies f ~ 0

Proof. The assumption implies €,(¢e) = ¢,. Thus f-e¢ = 0 implies f -¢, = 0, and
consequently, by the duality, f%-f, = 0 for all n, yielding f*-f = 0. Now apply
Lemma 21,11 O
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3.1.4. The system A’'. In the following case, we apply the above two methods to-

gether. We first get a system {a, /a®,bL} by putting
(14) a) x b9 = | J Ker(x]) = Ker(a, x b, —> limay, x by,)
n’'>n m

and letting al, bl be respectively the annihilators of b9, a® via {, ),. Then we
apply the €¢-construction to {a,/a,bl} defining o/, C a,,/al via
al, x b, ==Im(a), x b}, — (a,/al) x (b,/b9)).

Notice that b/, is dual to a/,, as can be seen by dualizing the diagram

0 al a,
0 al, a/al

(recall that the duals of al and a,,/a® are respectively b,,/b% and bl). Thus we get
a I'-system
A = {a),, b0, (, Yn, 0o, &0 | m,n e N,;n>m}
Denote, for i =0, 1,
a’ x b’ := limaj, x b},
n
and
o’ x b :=limaj, x b}, = Im(a’ x b* — (a/a’) x (b/6")).

The pairings (, ), allow identifying each a,, x b,, with its own Pontryagin dual and
this identification is compatible with the maps ¢, €. Then a x b is the dual of
lima, x b,. Consider the exact sequence

—

(15) 0 —— a2 x b0 —— a, x b, —— (a, xb,)/(a) xb6?) —— 0.

By construction, al x bl is the dual of (a, x by,)/(a2 x b2). The inductive limit of
(@) gets the identity

lim ay, X by, = lim (ay b,)/ (a2 x b9)
(hﬂ a? x BY = 0 is immediate from ([4))) and hence, taking duals,
al x b' =axb.
Thus we have an exact sequence
(16) 0—a’xb —axb—a xb — 0.

3.1.5. Strongly-controlled I'-systems. In the previous section we saw that, since b =
b! and a = a', the information carried by a’ and b does not pass to, respectively,
b and a: this is why in Theorem [Il we have the condition a® x b ~ 0, i.e., 2 is
pseudo-controlled (Definition [LOT]). Now we consider a stronger condition.

Definition 3.1.3. A I-system 2 is strongly controlled if a¥ x b% = 0 for every n.

Lemma 3.1.4. A I'-system A is strongly controlled if and only if ¢}, is injective
(resp. € is surjective) for n > m.

Proof. The definition and the duality. O
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Lemma 3.1.5. Suppose A is a I'-system. Then the following hold:
(1) the system A’ is strongly controlled;
(2) if A is pseudo-controlled, then a ~ a’ and b ~ b'.

Proof. Statement (1) follows from the definition of 2" and (2) is immediate from
the exact sequence ([I6]). O

Lemma 3.1.6. Suppose A is strongly controlled. Then & -b = 0, for some £ € A,
if and only if €' - a = 0.

Proof. By Lemma B.T.4, we have b,, = £,(b). Thus £ - b = 0 implies £ - b,, = 0, and
consequently, by the duality, £* - a,, = 0 for all n, yielding &% - a = 0. (]

3.2. Two maps. In this subsection we introduce the maps ® and ¥, which play a
key role in our constructions.

For simplicity, in the following we shall use the notation @, := Q,[I',] and
A, := Z,[I';]. The projections 7}, : I';, — T'y, are canonically extended to ring
morphisms : A,, — A,,. Let

Qe 1= 1im Qu = @, [[1]].

Thanks to the inclusions A,, < @Q,, we can see A as a subring of Q.

3.2.1. The Fourier map. Let 2 be a I'-system as above. In this section, we construct
a A-linear map
®: af— Homy (b, Quo/A).

First recall that the pairing in (I'-4) induces for any n an isomorphism of A-modules
aﬁl ~ Homzp(bn7 Q,/Zy),

the twist by the involution -* being due to (). Equality () shows that these
isomorphisms form an isomorphism of projective systems, where the right-hand
side is endowed with the transition maps induced by the direct system (b,,t",).
Passing to the projective limit, we deduce a A-isomorphism

al ~ 1i£n Homzp (b, Qp/Zp)'

n

Now the map @ is obtained as the composition of this isomorphism and the following
A-linear maps:

(®-1) the homomorphism
liin HomZp (b"’ QP/ZP)—> liin HomA(bna Qn/ An)

obtained by sending (f,)n to (fn T nyel“n fn('y_lx)y)n;
(®-2) the homomorphism

1.&n}IOInA(bvuQn/An)—> @HomA(van/ An)

induced by ¢,: b — b, ;
(®-3) the canonical isomorphism

lim Hom (b, @/ Ay) 2 Homy (b, 1im Q,, / Ay,)
and the identification @Qn/ Ap = Qoo/ A (since the maps A, — A,, are

surjective).
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Here as transition maps in @Hom,\(bn, Qn/ Ay) we take (for n > m)

HomA(bn,Qn/An)—> HomA(bm,Qm/Am)

d(nfm)(

(17) p—>p T o@poty).

We have to check that (®-1) and (P-2) define maps of projective systems. For
(®-1), this means to verify that for any n > m we have

(18) = p~ 1 (w0 0 frow),
where, by definition, f,, = f, ot],. For x € b,,,
o (fu (vt (D fT R )Y) = D fay T )T ()
YET YET,
(using the fact that, by (I'-2), t?, is a -morphism)

= 3 fulen (v ) () |P |

YE

Z Tt T))y = pd(nim)fm(x)v

yEl
so ([I8) holds. As for (®-2), the transition map
HomA(baQn/An)—> HomA(b>Qm/Am)

is ¢ +— @, o and the map defined in (P-2) is (pn)n — (©n o t,)n . By (1),

—d(n—m) ( n

T © Pn © t:vlz) oty = p_d(n_m)(

Om 0ty = T 0oty ot ot,)

(by property (I'-3) of I'-systems)

7d(n7m)(

=p WzownoNFn/Fmoén):W?nO@nOEn

(since ¢p, being a A-morphism, commutes with Np ,pr ~—and 7, o Np p ==
pdn=m)gny S also (P-2) is a map of projective systems.

Remark 3.2.1. Actually, one can also check that the maps f, — fn used in (P-1)
are isomorphisms. The inverse is f +— J. o f, where d.: Qn/ A, — Qp/Z, is the
function sending » 1. a7 to a. (e being the neutral element in I',,).

If the I'-system 2/ is strongly controlled, then the map ® is clearly injective (since
b maps onto b, for all n). In general, we have the following.

Lemma 3.2.2. The kernel of ® equals (a°)*.

Proof. The image of a = (a,), € a in I'&HHomA(bn, Qn/ Ay) is the map
b= (bn)n — ( Z <an5771bn>n7)n
RISIES

To conclude, observe that a,, — gﬂam is dual to b — b,,. Hence (an, bn)n = 0, for
every b, contained in the image of b — b,,, if and only if a,, € a¥ (]
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3.2.2. Let b be a finitely generated torsion A-module. In §3.2.5 below we shall
construct a map

U: Homa (b, Qoo /A) — Homa (b, Q(A)/A),

where Q(A) is the field of fractions of A. The interest of having such a ¥ comes
from the following lemma.

Lemma 3.2.3. For b a finitely generated torsion A-module, we have a pseudo-
isomorphism

b ~ Homa (b, Q(A)/A).
Proof. From the exact sequence
0—[6] —b—n—0,
where n is pseudo-null, we deduce the exact sequence
Homy (n, Q(A)/A) < Homy (b, Q(A)/A)
— Homa ([b], Q(A)/ A) = Extj (n, Q(A)/A).

The annihilator of n also kills Homa (n, ) and its derived functors, so by Lemma
21T it follows Homp (b, Q(A)/A) ~ HomA([ |, Q(A)/A), and we can assume that

b = [b]. Write
b=A/(&) @ DA/(&)-
Then
Homy (b, Q(A)/A) = @D Homy (A /(&) Q = @ Homa(A/ (&), & ' A/A)

because (Q(A)/A)[&] =& 1 A/A. Since

Homy (A/ (&), & 'A/A) ~ A/ (&) .
we conclude that in this situation Homp (b, Q(A)/A) =b. O

3.2.3. A theorem of Monsky. Let TV (resp. T'Y ) denote the group of continuous
characters I' — p0 (resp. I'yy — p00 ); We view I'Y as a subgroup of I'V. For each
weTY, let B, = Qu(p,m) C Q, be the subfield generated by the image w(T') =
Kpm, and write Oy, 1= Z,;, [upm]. Then w induces a continuous ring homomorphism
w: A= O, C E,. More generally, if O is a Zy-algebra, w induces a homomorphism
on O[[I].

Let O be a Zy-algebra and £ € O[[I']]: we say that w is a zero of ¢ if and only if
w(§) = 0, and denote the zero set

(19) N ={welY | w() =0}
Then we recall a theorem of Monsky ([Mon81), Lemma 1.5 and Theorem 2.6]).

Definition 3.2.4. A subset 2 C I'V is called a Z,-flat of codimension k, if there
exists {71,..., 7} C I' expandable to a Z,-basis of I' and (1, ..., (s, € p,e such that

E={welY | wy)=¢,i=1,..,k}

Licensed to Univ of Montreal. Prepared on Tue Feb 6 18:01:44 EST 2018 for download from IP 132.204.90.173.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



PONTRYAGIN DUALITY FOR IWASAWA MODULES 1937

This definition is due to Monsky: in [Mon81l, §1], he proves that Z,-flats generate
the closed sets of a certain (Noetherian) topology on T'V. It turns out that in this

topology the sets A¢ are closed, and they are proper subsets (possibly empty) if
€ # 0 ([Mon81), Theorem 2.6]). Hence

Theorem 3.2.5 (Monsky). Suppose O C Qp is a discrete valuation ring finite over
Zy and & € O[] is non-zero. Then the zero set AN¢ is a proper subset of 'V and
is a finite union of Zy-flats.

3.2.4. Structure of Qs The group Gal(Q,/Q,) acts on T'Y by (0-w)(7) := o(w(¥)).
Let [w] denote the Gal(Q,/Q,)-orbit of w. Attached to any character w € I'y, there
is an idempotent

(20) €y = |F | > wh )y e Q).

vyel,

The group ring Q,[I',] is a Gal(Q,/Q,)-module via the action on coefficients. Ac-
cordingly, we get the decomposition

QplTs] = @p[pn]Gal(@p/@p) — ( H eg)@p[l“n])Gal Qp/Qp) _ H B,

wery [wlCcry

where [w] runs through all the Gal(Q,/Q,)-orbits of '/ and
E[w = H eXQ;D G'll(@p/@p).

X€w]

Observe that the homomorphism w: Q,[I',] = Q, induces an isomorphism Ej, ~
E,, (the inverse being given by 1 — ZUGG&I(Ew/Qp) o(ew) = (ex)yelw))-
Since 7 (e,,) equals e, if w = w’ ox? and is 0 otherwise, we have the commu-
tative diagram
Qpl'n] —— H[W]crx B

EO

Q[l'm] —— Ty, B

m

where the right vertical arrow is the natural projection by the inclusion I'} < T'),.
It follows that we have identities

(21) Qoo =1lim Q) =~ H E,
n [wlcTY
so that
[wlcAx

for all A € A (here Qoo[A] denotes the A-torsion subgroup).

3.2.5. The map V. Let b be a finitely generated torsion A-module. We assume that
§-b =0, for some non-zero § € A. Let Af := 'V — A¢ denote the complement of
A¢. From (2I)) and (22) one deduces the direct sum decomposition

(23) Qo = Q€] ® Q%

where QS = H[w]cAg Ej)- Let @w: Qoo — Q5. be the natural projection and put
A° := w(A) (here A is thought of as a subset of Q via the maps Z,[I',,] — Q,[[',,]).
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Lemma 3.2.6. We have a A-isomorphism
Homy (b, Q5,/ A°) ~ Homy (b, Q(A)/A).
Proof. Since b is annihilated by &£, the image of each n € Homy (b, Q5. / A°) is

contained in (Q5,/ A°)[¢]. Note that, since w(§) # 0 for every w € Ag, the element
w(§) is a unit in QS,. Denote

§_1AC::{x€ng | £ -z A}

Then
(Q5/ A%l =€ A%/ A°
and hence
Homp (b, Q% / A°) = Homy (b, €71 A° / A°).
Similarly,

Homp (b, Q(A)/ A) = Homp (b, 61 A/ A).
To conclude the proof, it suffices to show that w: A — A€ is an isomorphism,
because then so is the induced map

ETIAJA — A/ A,
Since A° = w(A) by definition, we just need to check injectivity. Suppose w(e) =0
for some € € A. Then w(e) = 0 for every w € Ag, and hence w(&e) = 0 for every

w € I'V. Monsky’s theorem (or, alternatively, the isomorphism (21I))) implies that
e = 0 and hence € = 0. |

Let
(24) T: Homp (b, Qs/A) — Homp (b, Q5 / A°)

be the morphism induced from w. By composition of the isomorphism of Lemma
3.2.6l with T, we deduce the A-morphism

¥: Homp (b, Qso/ A) — Homp (b, Q(A)/A).

By construction, the map ¥ depends on £ only via ([23]) (that is, it depends only
on Ag)

3.3. Proof of the algebraic functional equation. In this section, we complete
the proof of Theorem [ by proving each of (1), (2), (3), separately. To prove (3)
we use (2) and (3) is used in the proof of Theorem 131

3.3.1. Non-simple annihilator. In case (1) of Theorem [Tl we assume b ~ 0 for some
& € A such that

(NS): € is not divisible by any simple element.

Lemma 3.3.1. Hypothesis (NS) holds if and only if A¢ contains no codimension
one Zy-flat.

Proof. If £ is divisible by a simple element f = f, ¢, then A, contains A ¢ which is
a union of the codimension one Z,-flats

{weTY | w)=0()}, o€ Gal(Qy(¢)/Qyp).

Conversely, assume that A¢ contains the codimension one Z,-flat

E={wel™ | w(y) =d}
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Each w € Z factors through
m A — Zy[C[[T]]/ (v = ©) = Zp[C][[T],

where I' is the quotient I'/y%», and vice versa every continuous character of I can
be uniquely lifted to a character in Z. Thus the zero set of w(§) € Z,[¢][[I']] equals
(I")V. Then Monsky’s theorem implies that 7(£) = 0 and hence is divisible by v—¢
in Z,[¢][[T]]. This implies that ¢ is divisible by f,¢ in A. O

By Monsky’s theorem, we have either Ag =0 or A =,

j Ej 5 Wlth

Ei=fwel¥ | w(y?)=¢Pi=1,.,k0}.

(3

In the second case, for all j let G; be the Z,-submodule of I" generated by the fyi(j ) ’s,
i=1,.. kY if (NS) holds, each G; has rank at least 2. Hence, since there is just
a finite number of j, it is possible to choose {Ugj),aéj)}j such that 0'§J) eG; —I?
(3 ")
SN

Rt

and each pair (o ) consists of Z,-independent elements unless (z,7) = (7', ).

Let az(»j ) denote the common value that all characters in Z; take on Uz(j ) and write
(25) P = Hfa§f>,e§”’ Pg 1= H for -
J J

Then the coprimality criterion (@) ensures that ¢, and @9 are relatively prime.
Moreover w(p;) = 0 for all w € A, that is, A C A,,. By (22)) it follows that

(26) i Qso[é] =0  for both s.

Remark 3.3.2. The case A¢ # () can actually occur. For example, let v1,72 be two
distinct elements of a Z,-basis of I' and consider

E=mn—1+pr2—1)+p*(n—1(-1).

Then Ag = {w | w(y1) = w(7y2) = 1} as one easily sees comparing p-adic valuations
of the three summands w(y; — 1), w(p(y2 — 1)) and w(p?(y1 — 1)(y2 — 1)).

Lemma 3.3.3. Assume £b = 0 for some & € A satisfying hypothesis (NS). Then
the restriction of U to ®(a*) is pseudo-injective.

Proof. We just need to control the kernel of the map T of (24). If A; is empty,
then T is the identity and we are done. If not, we show that the kernel and the
cokernel of T are annihilated by both ¢ and 2 (see ([20)). Consider the exact
sequence

0— Ker(w)— Qo/A— QS /A°— 0

(where by abuse of notation we denote the map induced by w with the same
symbol). This induces the exact sequence

Homy (b, Ker(w)) < Homp (b, Quo/ A) — Homy (b, QS / A°) — Ext (b, Ker(w)).

Since Ker(w) is a quotient of Qx[¢], [26]) yields ¢; - Ker(w) = 0. Therefore both
Ker(T) and Coker(Y) are annihilated by ¢; and ¢s. (Note that we cannot say
that T is a pseudo-isomorphism, because Homy (b, Qs / A) is not a finitely gen-
erated A-module: e.g., any group homomorphism b — E, for w € A is also a
A-homomorphism.) O
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Now we can complete the proof of Theorem [IJ(1).

Proof of Theorem [I}(1). To start with, assume £b = 0. Then, by Lemmas B.2.2
B33 and B2, we get a pseudo-injection af — b. Moreover, thanks to Lemma
BI3l we may assume that 2A is strongly controlled. By Lemma this implies
that a is killed by &, which is also not divisible by simple elements. Exchanging
the role of a and b, we deduce a pseudo-injection b — a and therefore a pseudo-
injection b — a*. The theorem now follows from Lemma

In the general case when &b is pseudo-null but not 0, we can still assume that 2
is strongly controlled. Let f, be the kernel of the morphism b,, — b,,, b — &b, and
construct two derived systems as in §3.1.3] (but with f,, playing the role of ¢,). We
get again the two exact sequences (IZ) and ([I3)). By hypothesis @ = £€b ~ 0 and
then Lemma implies ¢ ~ 0. Hence

b~f~ef ~af
(where the central pseudo-isomorphism holds because £f = 0). ([l
3.3.2. The non-simple part. Let A’ be the derived system in §3.1.41

Corollary 3.3.4. For any I'-system 2, we have

[a/]gls =[] s
Proof. By Lemma BI.5(1) we can lighten notation and assume that 21 is strongly
controlled (replacing A by 2’ if necessary). Write x(b) = (Ap), with x([b]ns) = (A)
and x([b]s;) = (). Since b/[b] is pseudo-null, there are ny,72 € A, coprime to each

other and both coprime to x(b), such that n; - (b/[b]) = n2 - (6/[6]) = 0. Then
Apng - b= Aung - b =0. By Lemma B.1.0]

(27) (Apm)F - a = (Apna)? - a = 0.
This shows that x(a) divides sufficiently high powers of both (Aum;)* and (Aumng)®.
But since 77? and ng are coprime, they must be both coprime to x(a).

Set ¢ = (um1)* - a, ¢, = &,(c) for each n, and form the I-systems €, & by the
construction in §8I31 Let 9, ¢, and f be as in (I2) and ([I3). Since ¢,(b) = b,
we have £,(0) =0, and hence, by Lemma B.T.4] ¢ is also strongly controlled. By
@7), \*- ¢ = 0, whence -0 = 0 thanks to Lemma[B.I.6l Then case (1) of Theorem
M says ¢* ~ 0. To complete the proof it is sufficient to show that

[0]ns X [a]ns B
(where ¢ and 1) are respectively the restrictions to [b],s and [a],s of the projection
b — 0 = b/f and of the multiplication by (un;)* on a) is a pseudo-isomorphism.

The inclusion pny - b C g - [b] C [b],s implies pn - Coker(p) = 0. Furthermore,
since \ - Coker(p) is a quotient of A -9 = 0, it must be trivial. Thus, by Lemma
211l Coker(y), being annihilated by coprime A and pny, is pseudo-null. Next, we
observe that (um1)*-e = (un1)? - a/c = 0 yields (un;)* - ¢, = 0. The duality implies
that each f, is annihilated by un;, and by taking the projective limit we see that f
is also annihilated by un;. It follows that Ker(p) = [b],,s Nf = 0 since no non-trivial
element of [b],s is annihilated by un; (because 7, is coprime to x(b) while p is a
product of simple elements). Similarly, Ker(y)) = 0 since no non-trivial element of
[a] s is annihilated by (um1). To show that Coker(1)) is pseudo-null, we choose an

ns € A, coprime to Ay, such that 7% - a C [a]. Then [7) together with the fact
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that A is non-simple imply that (umn3)* - a C (um)® - [a] C [a]ns. This implies
(umins)® - Coker(1)) = 0. Since A*- Coker(z)), being a quotient of \*- ¢ = 0, is trivial
and \*, (umin3)* are coprime, the proof is completed. ([l

3.3.3. Twists of I'-systems. We say that the I'-system 2 is twistable of order k if
there exists an integer k such that p"**a, = 0 for every n.

Recall that associated to a continuous group homomorphism ¢: I' — Z, there is
the ring isomorphism ¢*: A — A defined in §2.2.11 Given such a ¢ and a I'-system
2, we can form

A(¢) = {an(071), bu(9), (, )5, e(@), (O, | mym € NU{0}, n>m},
where a,(¢~1) and b, (¢) are twists as defined in (0),

(@ ® an,y ® ba)}, = (6" (2)an, (67) (y)bn)n

and v(@)r, (4)r, are respectively the maps induced by 1 ® 7, and, 1 ® €. In

general 2(4) won’t be a I'-system, because the action of I on a,,(¢~1), b,(¢) does
not factor through I',,. However if we take 2 twistable of order k and ¢ such that

(28) o(T) C 1+ p*Z,,

then both a,(¢~1) and b, (¢) are still I',-modules, because ¢(T'™) C 1 + ptFZ,
by @8) and p"**a, = 0.

Lemma 3.3.5. For any k € N and £ € A —{0}, there exists a continuous group
homomorphism ¢: T — L such that 28) holds and both ¢*(§) and (¢~')*(&) are
not divisible by simple elements.

Proof. First of all, note that (¢~1)*(¢) is not divisible by any simple element if
and only if the same holds for (¢=1)*(&)* = ¢*(£*). So we just need to find ¢ such
that ¢*(£€%) has no simple factor. An abstract proof of the existence of such ¢
can be obtained by the Baire category theorem, observing that if A € A —{0}, then
Hom(T',Z,') cannot be contained in U, Ker (¢ — w(¢*(N))), since all these kernels
have empty interior. A more concrete approach is the following.

Call an element A € A a simploid if it has the form A = u - f, g3 where uv € A*
and

frp = II (v —a(8))
0€Gal(Qp(8)/Qy)

with v € I' = I'? and (3 a unit in some finite Galois extension of Q. Simploids are
easily seen to be irreducible, so by unique factorization any principal ideal (A) C A
can be written as (A\) = (A)s(A), with no simploid dividing (A),. Moreover, given
any ¢: I' = Z), the equality

0" (fr0) = d(0) "B IDL £ 00
shows that the set of simploids is stable under the action of ¢ and (¢*(\))s =

¢*((N)s). Thus, if f,, g,,..., fy,,5 is a maximal set of coprime simploid factors of
£¢% and if ¢ is chosen such that no ¢(v;)B;, i = 1, ..., 1, is a root of unit, then ¢*(££*)
is not divisible by any simple element. (Il

Proof of Theorem [I[2). Let £ be a generator of x(a)x(b) and let ¢ be as in Lemma
Then 21(¢) also form a pseudo-controlled I'-system with a(¢—!) = lim an(e1)
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and b(¢) = lim b,(¢). By Lemma 22] both x(a(¢™!)) and x(b(¢)) are not di-
visible by simple elements, and hence [a(¢~1)]* = [a(¢™1)]5, and [b(d)] = [b(d)]ns-
Therefore,

[a)f = [a(¢™H](¢)F = [a(™ ] (¢7") = [b()](¢7") = [0],
where the first and the last equality are a consequence of Lemma 2211 and the
third follows from Theorem [I(1) applied to (). O

3.3.4. Complete I"-systems. Now we assume that our original 2l is just a part of a
complete I'-system which we still denote by 2. The original 2 is pseudo-controlled
if and only if so is its complete system. Also, if the original 2 is strongly controlled,
then by replacing ap X bg by £r(a X b) we can make the complete system strongly
controlled without altering a and b. So we shall assume that 2 is strongly controlled.

First we assume that a is annihilated by a simple element £ = f,, ¢ and extend
Y1 to a basis 71, ...,7¢ of I over Z,. Let ¥ and I'" be the subgroups of I' with
topological generators respectively 71 and {v2,...,74}. Note that for H C I a
closed subgroup we shall write H (") for HP". Let K, », denote the fixed field of the
subgroup (™ @ (F’)("/) and write o, 1= @n, Un/ my Boop == I'&nn, by »n with the
obvious meaning of indexes. They are A-modules. Let K , denote the subfield
of L fixed by W), Then the restriction of Galois action gives rise to a natural
isomorphism IV ~ Gal(Ky ,,/Kon). Write A’ := A(IY). We shall view A’ as a
subring of A.

Since 2 is strongly controlled, too n = oo n(a) and bos ,, = £, (b) are finitely
ge(ne)zrated over A, and hence finitely generated over A’, because they are fixed by
win),

Proposition 3.3.6. Suppose U is a strongly-controlled complete I'-system such that

(1) a and b are annthilated by the simple element € = f., ¢ defined above, with
¢ of order p';
(2) aoom and boom are torsion over A’ for some m > 1.

Then there exists some non-trivial n € A’ such that n -2 is twistable.

Here 7-2 is the complete I'-system as defined in Example 3.1l It is also strongly
controlled if so is 2.

!

Proof. Since ( is of order p!, the action of 4} is trivial on both Ooo,n, and by 4, for
all n. Assume that m > [ and suppose both 6. ,, and b ,, are annihilated by
some non-zero n € A’. Then 1 - ap m = 0 and 7 - by, = 0 for all n’. Hence for
n>m,

P may = tZ’:nm(EZ’:Z(nan’,n)) =0

since ”yf" acts trivially on a,’,. In particular, p"~™n - a, = 0 and by similar
argument p"~™n - b, = 0. Then choose k such that p*a; = p¥b; = 0 for each
1< <m. |

Corollary 3.3.7. Suppose 2 satisfies the condition of Proposition B.3.6l Then
#
a* ~ b.

Proof. The morphism 20 — 7 -2 of Example B.I.1] in this case is a pseudo-
isomorphism, because a[n] and b/n*b are both killed by f,, ¢ and either 5 or 7.
Now apply Theorem [I}(2). O
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Proof of Theorem [1(3). We may assume that 2l is strongly controlled. Suppose a
is annihilated by € € A, and hence b is annihilated by &. Write & = SEERRE TN
where each ¢; is irreducible and s; is a positive integer. The proof is by mductlon
on k.

First assume k = 1. If £ is non-simple, then the theorem has been proved. Thus,
we may assume that & is simple and we proceed by induction on s;. The case
s1 = 1 is Corollary B3l If s; > 1 let ¢ := & - ap and form the derived systems
¢ and ¢ as in §8T.3 Note that both enjoy property (T), as immediate from the
sequences ([[2) and ([I3)). Besides € is strongly controlled and ¢ is annihilated by

5171 whence (as & is simple) [¢] = [c]* = [9] by the induction hypothesis. We
still have f* = 0, but we don’t know if ¢ = 0. However, induction tells us that
[¢/e°] = [f], or equivalently, there is an injection [f] = [¢]. This actually implies an
inclusion [b] < [a]: to see it, write

[a] = (A /& M) @ (A/E A)™ @ - @ (A /€ )™

and
(6] = (A/& A" @ (A/EF M) @ --- @ (AJE] M)
Then
(= A/ A2 @ (AN
and
Pl=(A/&a A2 @@ (AT A,
while

[e] = (A/& A)rrHaetFan [ = (A/& A)PFottba,
Thus, we have a; > by and a; = b; for 1 < i < s;. Then by symmetry, we also have
[a] <> [b], whence [a] = [b] as desired. This proves the k = 1 case.
For k > 1, form again € and €, this time setting ¢y := ;'ap. Then induction

yields [¢]* = [0] and [¢]* = [f]. To conclude, use the decompositions [a] = [¢] @ [¢],
[6] = [0] ® [f] which hold because in the sequences (I2)), (I3) the extremes have
coprime annihilators. ([l

4. CASSELS-TATE SYSTEMS OF ABELIAN VARIETIES

From now on, K will be a global field, L/K a Zg—extension with a finite rami-
fication locus denoted by S, and I' = Gal(L/K). Let A/K be an abelian variety
which has potentially ordinary reduction at every place in S.

In this section we consider Selmer groups of abelian varieties over global fields to
construct Cassels-Tate systems, to which we apply the theory of Pontryagin duality
for the Iwasawa modules given earlier.

4.1. The Selmer groups. Let i: A,n — A be the group scheme of p"-torsion of
A. The p"-Selmer group Sel,n (A/K) is defined to be the kernel of the composition
(29) HL (K, Apn) ——— HY(K, A) 255 @, HA(K,, A)

where Hf denotes the flat cohomology and lock is the localization map to the direct
sum of local cohomology groups over all places of K. The same definition works
over any finite extension F'/K. Taking the direct limit as n — oo, we get

(30) Sely (A/F) := Ker (Hj(F, Ap)— €D Hy(F,, A))

all v
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where Ape is the p-divisible group associated with A. The Selmer group sits in an
exact sequence

(31) 0 — Qp/Zy, @7 A(F) — Sely (A/F) — I (A/F) — 0,
where IIl,~(A/F) denote the p-primary part of the Tate-Shafarevich group
II(A/F) := Ker (Hy(F, A)— @D Hj(F,, A)).

Also, let Selye(A/F)qi denote the p-divisible part of Sel,~(A/F) and write
M(A/F) for Q,/Z, @z A(F). We have M(A/F) C Selpoc (A/F)ain C Selpee (A/F).

Definition 4.1.1. Define
Selpes (A/L) := ligSelpoo (A/F)
F

and
Selgiy(A/L) = h_n} Selp (A/F)aiv
F

(where F varies among all finite subextensions of L/K). Let X,(A/L) and Y,,(A/L)
denote the Pontryagin dual of Sel,(A/L) and Selg;,(A/L).

The Galois group I acts on the above modules turning them into A-modules. We
point out that X, (A/L) is finitely generated over A, and hence so is Y,,(A/L). In the
case where A has ordinary reduction at all places in S, this is [Tanl4l Proposition
1.1 and Corollary 2.14]. To pass from potentially ordinary reduction to ordinary
reduction, one can argue as in [OT09, Lemma 2.1].

4.1.1. Y,(A/L). The following theorem was originally proved in [Tani4] under the
assumption of ordinary reduction. Here we prove a much more general version in

Theorem 131

Theorem 4.1.2 (Tan). Suppose X,(A/L) is a torsion A-module. Then there exist
relatively prime simple elements f1,..., fm (m > 1) such that

fi- fm - Selaiw(A/L) = 0.

Theorem 4.1.3. Let M be a cofinitely generated torsion A-module. Then there
exist relatively prime simple elements fi1, ..., fm (m > 1) such that

Fue F (MO = 0
for any finite intermediate extension K C F C L.

Proof. By hypothesis, there is some £ € A —{0} annihilating M. Let f € A be such
that w(f) = 0 for all w € A¢. Fix a finite intermediate extensions F//K and, to
lighten notation, put G := Gal(F'/K) and O the ring of integers of Q(g,q), where
p? is the exponent of G. Also, let N := O ®z, MGal(L/F)  Then defining, as in
@0, €, := decw(g_l)g for each w € GV, one finds |G- N = > e/ N and A acts
on e/,N by A-n = w(A)n. In particular, one has f-e/,N =0 for all w € A¢. On the
other hand, if w ¢ A, then e/, N is finite because it is a cofinitely generated module
over the finite ring w(A)/(w(€)). Tt follows that f- N is finite. Since a finite divisible
group must be trivial, this proves that f-Ng, = 0, and hence f-(MG2/L/F)Y 4,0 = 0.

It remains to prove that one can find a product of distinct simple elements which
is killed by A¢. This is a consequence of Monsky’s theorem: one has A¢ = (JT;
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where the T}’s are Z,-flats, and by definition for each Tj there is at least one simple
element vanishing on it. (Il

Corollary 4.1.4. If X,(A/L) is torsion, then there is a pseudo-isomorphism

m

Y, (A/L) ~ @A/ fi )",

i=1
for some non-negative integers r;, and hence
Yo (A/L)] = [Yo(A/L)]si = [Yp(A/LD)]; = [Yp(A/L)]%.
Proof. The second equality is by (). O
4.2. The Cassels-Tate system.

4.2.1. The Cassels-Tate pairing. For an abelian variety A defined over the global
field K, let A? be its dual abelian variety. Let
() ask: II(A/K) x (A" K) — Q/Z
denote the Cassels-Tate pairing ([Mil86 I1.5.7(a)]).
The next proposition is used in the proof of [Mil86l, I, Theorem 7.3].

Proposition 4.2.1. Let A, B be abelian varieties defined over the global field K.
Suppose ¢p: A — B is an isogeny and ¢': Bt — A? is its dual. Then we have the
commutative diagram:

(s Jasx: TI(A/K) x IL(A"/K) —— Q/Z

I |
(, )p/x: IL(B/K) x II(B'/K) —— Q/Z.

4.2.2. The Cassels-Tate system. Let A be an abelian variety defined over the global
field K. Put
(32) a, = U~ (A"/K,) /Ty (AY/ Ky ) aiv = Selpee (AY/ K./ Selpee (A" ) K ) diw
(33) by, =y (A/K,) /My (A Ky)div = Selpee (A/ K/ Selyee (A K din-
Let
(34) (s Int an X bp—> Qp/Zy
be the perfect pairing induced from the Cassels-Tate pairing on III(A'/K,) x
HI(A/K,). Let t7, and £ be the morphisms induced respectively from the re-
striction

HY(K,,, A x A) — HY(K,,, A® x A)
and the co-restriction

HY(K,, A" x A) — HY(K,,, A® x A).
Let

2= {an, bn, (), T E?n}

We call 2 the Cassels-Tate system of A. As before, we write

a:l&nan and b:zl&nbm

It is clear that A satisfies axioms (I-1)-(I'-4). For the rest of this paper we shall
use the above notation.
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Theorem [E4.4] will show that 2 is a I'-system, but for now we do not need it.
As in §3] write a and b for the projective limits of {a,}, and {b,},. We have the
exact sequence

(35) 0— a— X,(A/L)— Y,(A/L)— 0.
Lemma 4.2.2. If X,(A/L) is torsion, then [Xp(A/L)|ns = [a]ns-
Proof. Corollary 1.4 and the exact sequence ([B3]). O

4.2.3. The module a®. To study a?, we first consider the small piece a%® which is
the image of
500 := Ker(Sely= (A" /K,) — Sel,~(A"/L))
under the projection Sely~(A?/K,,) — a,. Obviously, s2° is a I',,-submodule of
50 1= Ker (Hj (K, ALee) — Hj(L, Alw)) = H{(T™, AL (L)).
Lemma 4.2.3. All the groups H' (T, Al (L)) and H? (T, Al (L)) are finite.

Proof. Tt follows from [Gr03, Proposition 3.3]. Here we partially prove the d = 1
case, because some ingredient of this proof will be applied later. Write

(36) D= A (L) = A(L)[p™]
and let Dy;, be its p-divisible part. We have an exact sequence
(37)  (D/Dai)""” — H'(T™, Dysp)) — HYT™, D) — H'(T™, D/Dysy)
If d=1 and I' = 4%», then we observe that
(4" = 1)Daiv = Daiv,

since Ker(D gl D) = DT is finite. Therefore, HY(T'™ Dy;,,) = 0 and hence,
since D/Dy;, is finite, from the exact sequence [B7) we deduce (see e.g. [BL0O9,
Lemma 4.1])

(38) |H'(T™, D)| < |D/Dasy-

Lemma 4.2.4. The projective limit

00 ._ 15 g0
a = lima,

is pseudo-null.

Proof. If d = 1, a% is pseudo-null since it is a finite set: inequality (B8) together
with the surjection 590 — a% gives a bound on its cardinality.

Let D be as in ([B6) and let r be the Z,-rank of its Pontryagin dual DV. Then
the action of I' gives rise to a representation

(39) p: I'— Aut(Dgs) ~ GL(1,Z,) .

For each v, let f,(x) be the characteristic polynomial of p(y). Then f,(v) is an ele-
ment in A which annihilates Dyg;,. Let mg be large enough such that A*(K,,,)[p™]
generates D/Dgy;,. Then for every v, (v7"° — 1) f,(v) annihilates both s%° and a%
for n > myg, since we have

mQ

(¥ =1fy(v)-D=0.
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Ifd>2and I = @le in”, then each ¢; := (yfmo — 1) f,, () lives in a different
Z,[T;] under the identification A = Z,[[T1, ..., T4]], 7 — 1 = T;. Therefore 01, ..., dq
are relatively prime and a® is pseudo-null by Lemma 2. T.11 O

Put a2 := a¥ /a%. By construction we have an exact sequence

(40) 0—a® —a” —a®:=limay, — 0,

and hence a ~ a°. Applying the snake lemma to the diagram
0 —— Selpe (A'/Ky)aiw — Selpo (A'/K,) —— a, —— 0

I | l

0 ——  Selgin(A'/L) ——— Sel,=(AY/L) —— ligan — 0
we find an injection
(41) a0 < Sely;y (A'/L)/ Selyoo (A" /K, i -

4.3. The proof of Theorem 2l First we consider the case where X,(A/L) is a
torsion A-module.

Lemma 4.3.1. The A-module X,(A'/L) is torsion if and only if so is X,(A/L).
Proof. Any isogeny ¢: A — A' defined over K gives rise, via ¢.: Sel,~(A/L) —
Sel,e (A*/L), to a homomorphism of A-modules ¢Y: X,(A"/L) — X,(A/L) with
kernel and cokernel annihilated by deg(p). O
Corollary 4.3.2. If X,,(A"/L) is torsion over A, then [X,(A/L)]s; = [X,(A"/L)]s
and [Yp(A/L)] = [Yp(A"/L)].

Proof. Let ¢ be as in the proof of Lemma 31l Define a: [X,(A"/L)]y —
[X,(A/L)]s; as the composition

[ (AT/L)] i X, (A1) = X,(A/L) == [X,(A/L)] == [X,(A/L)]i;

where a7 = Y, as is a pseudo-isomorphism and a3 is the projection. We claim

(C) «a is a pseudo-injection.

By symmetry, there is also a pseudo-injection from [X,(A/L)]s to [X,(A"/L)]si.
Then the first equality follows from Lemma [Z.1.3]

To prove claim (C), suppose [X,(A"/L)]s; is annihilated by f € A, which is a
product of simple elements. The kernel of each «; is annihilated by some g; € A
relatively prime to f. Thus the kernel of « is annihilated by both f and g1¢29s.
Then apply Lemma 2.1.71

The second equality can be proved similarly, since ) sends Y, (A*/L) to Y,(A/L)
and [Y,(A/L)]si = [Y(A/L)], [Yp(A"/L)]si = [Yp(A"/L)] by Corollary T4 U

Lemma 4.3.3. If X,(A/L) is torsion over A, then
[a]fs = [0]ns-

Proof. By ([B3)), a is torsion, and similarly so is b: hence 2 is a I'-system. Let
fi,---s fm be those simple elements in Theorem (applied to AY). By @),
we have fi--- f, - a® = 0, and hence [a°] = [a°],;. Then Lemma @24 and (@0)
together imply that [a®] = [a°]s;. Hence, by (I8]), we have [a],s = [a'],s. Similarly,
[0]5s = [0']ns. Then apply Corollary B34 O

Licensed to Univ of Montreal. Prepared on Tue Feb 6 18:01:44 EST 2018 for download from IP 132.204.90.173.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1948 K. F. LAI, I. LONGHI, K.-S. TAN, AND F. TRIHAN

Proposition 4.3.4. If X,(A/L) is torsion over A, then
[Xp(A/L)Jf = [X,(A"/L)] = [Xp(A/L)] = [Xp(A"/L)JF.

Proof. Lemma and Lemma imply [X,(A/L)}%, = [Xp(At/L)]ns, while
@) and Corollary yield [X,,(A/L)]gi = [X,(A"/L)]si. Thus, the first equality
is proved, and the third one is obtained by a similar argument. To proceed, for a
finitely generated torsion A-module M, we define a decomposition in p part and
non-p part
[(M] = [M]p S [M]npv

in the following way: if [M] is a direct sum of components A /€]* A, we define
[M], as the sum over those with & = (p) and [M],, as its complement. We have
[M]% = [M],. This and the first equality imply

[X;D(A/L)]p = [XP(A/L)]BJ = [Xp(At/L)]p'

Let ¢ be the isogeny in the proof of Lemma 3T and write deg(p) = p™ - u with
u relatively prime to p. Then the kernel and the cokernel of ¢, are annihilated by
p". This then leads to

[XP(A/L)]"P = [Xp(At/L)}nzr
U

Proof of Theorem 21 The proof is divided into two cases. If X,(A/L) is torsion,
then a x b is torsion and Theorem Bl is a consequence of Proposition 34l If
Xp(A/L) is non-torsion, then Theorem [ holds trivially, since all terms in the
equation equal 0. (]

Remark. For the proof of Theorem 2] we don’t use the fact that the Cassels-Tate
system is a T-system (as we are going to show).

4.4. A is a I'-system. Now we prove Theorem [3 Denote I,, := Ker(A — Z,[T[',,]).

Lemma 4.4.1. If n € A is a non-zero element, then
rankz, A /(I + (7)) = O(p™“~Y).

Proof. The proof of [Tan14, Lemmal.13] yields rankz, A /(I, + (1)) = O(p™td=h),
where k is the smallest codimension of the Z,-flats in A,. Monsky’s Theorem .27
shows that k > 1 if n # 0. ]

Lemma 4.4.2. Let K be a local field of finite residue field. Let B/K be an
abelian variety and K'/K be a finite Galois extension with G := Gal(K'/K). Then
HY(G, B(K")) is finite.

Proof. Let B! be the dual abelian variety. We need to show that B*(K)/ Ng(B!(K'))
is finite, because by the local duality of Tate it is the dual group of H'(G, B(K'))
(see [TanlQ, Corollary 2.3.3]).

Let § denote the formal group law associated to B/K. Let m and p denote the
maximal ideals of K’ and K. For every x € §(m), the norm N¢(x) is expressed by
an analytic function whose linear term is the trace trg(z). Since K'/K is separable,
for any n we can find k such that p* C trg(m™) and then Hensel’s lemma guarantees
that, taking n sufficiently large, N (x) = y has a solution in F(m™) for any y €
F(p).
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Let B and B’ be the Néron model of B over O and @', the ring of integers of K
and K’ respectively. Then the identity map on B extends to a unique homomor-
phism By, — B’ that respects the actions of G (here Be/ is the base change of
B to O'). The above result implies

(") € Na(B(0) € Ng(B'(0") = Na(B(K")).
Then the lemma follows, since B(K)/(p") is finite. O

For each n, denote H,, := P Hl(I‘EUn), A(Ly)), the direct sum over all places

of K,,.

all w

Lemma 4.4.3. The module H,, is cofinitely generated over Z,, and
corankz,, H, = O(p™ =), as n — co.

Proof. Write w | S, if w is a place of K, sitting above some place v € S; otherwise,
write w {.S. Then @5 H! (Fgf),A(Lw)) is finite, by [Tanl4l Lemma 3.4].

Suppose w | S. If A has good ordinary reduction at w, then Hl(I‘gl), A(Ly)) is
finite [Tan10, Theorem 3]. The same holds, if A acquires good ordinary reduction
under a finite Galois extension K'/K,, ., because then H'(K'L,,/K', A(K'L,)) is
finite [op. cit.] and the kernel of the composition

HY(TSY, A(L ) HYK' Ly / K w, A(KK'Lyy)) —= HY(K' Ly /K', A(K' Ly, ))

is contained in H*(K'/K, ., A(K')) that is finite, by Lemma
Suppose that A has split multiplicative reduction at some w. By [TanI4l, Lemma
3.8] as well as its proof, if g = dim A, we have

corankyz, HY (T A(L,)) < rankz, (K ,,/Np, /K, (L)) = g-rankg, < g.d.

By applying Lemma and the above argument, the same inequality also holds
if A has potential multiplicative reduction at w. Then we note that for v € S,
because the decomposition subgroup I';, is of positive rank, the number of places
of K,, sitting over v is of order O(p™4~1), as n — oo. O

We state our next theorem in the notation of §4.2.2]

Theorem 4.4.4. Let K be a global field, L/K a Zg-extension with a finite ramifi-
cation locus, and let A be an abelian variety over K which has potentially ordinary
reduction over the ramification locus of L/K. Let 2 be the Cassels-Tate system of
A. Then a and b are finitely generated torsion A-modules and A is a I'-system.

Proof. Recall that Q(A) denotes the fraction field of A. Suppose a were non-
torsion. Let r and s denote respectively the dimensions over Q(A) of the vector
spaces Q(A)a and Q(A)X,(A/L): by (B3], the former is contained in the latter. Let
€1,y €py ey €5 € Xp(A/L) form a basis of Q(A)X,(A/L) such that ey, ..., e, are in
a. Writea' =A-e1+---+A-e, Caand X' =A-e1+---+A-ey C X,(A/L). Then
X,(A/L)/X’ is torsion over A, and hence is annihilated by some non-zero n € A.

Let w € I'V be a character not contained in A, (see (I9)). Extend it as in §3.2.3]
to a ring homomorphism w: A — O, whose kernel we denote by ker,,. Then we
have the exact sequences

o Tor (A / kery, X,(A/L)/a") — (A/ ker,) @5 a
(42) LB (A Jker,,) ®a X, (A/L),
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where i : a/ — X,(A/L) is the inclusion, and
0 — X'Ja/ —— X, (A/L)/d —— X,(A/L)/X' —— 0.
The fact that X'/a’ is free over A implies that the natural map
Tora (A / kery,, X,(A/L)/a") — Torp(A / ker,,, X,(A/L)/X")

is an injection. Then the group Torp(A /ker,, X,(A/L)/d’) must be finite,
because the quotient A /ker, ~ O, has finite residue modulo w(n) and
Torp (A / kery,, X,(A/L)/X"), being annihilated by the non-zero residue class of
7 in A / ker,,, is finite. Thus, the homomorphism id,, ® ¢ in ([@2]) must be injective,
because (A/ker,) ®a o' is a free O,-module. Hence its image is free of positive
rank over Q.

Now assume that w € T'y C I'V. Denote E,, := Qp(pt,n) and V,, := E,, ®z, A /1,,.
Then O, C E,, and w extends to a ring homomorphism w : V,, — E,,. We have

V.= P v

wel'y

with V%) = E,, and the projection V,, — Vi = n given by w. The above
discussion shows if w € A,, then the image of id,, ® i: Vnw) Qp o — Vn(w) XA
Xp(A/L) is a positive dimensional vector space on E,,. Since w € A, if and only
if w factors through A /(I, + (n)), in view of Lemma 41l we conclude that as
n — 0o, the Zy-rank of the image of
o — A/, @r0d — A/, @y X,(A/L)
is at least of order p?® + O(p™@=1). Then the same holds for the image of
a— A/I, ®r X,(A/L),

since a’ — X,,(A/L) factors through a’ — a. By duality, the image of
Selpoe (A/L)T" —— Sel, (A/L)/ Selgin(A/L)

has Z,-corank at least of order p® +O(p™(@~V). Let S(L/K,) denote the preimage
of Selye (A/L)F(n) under the restriction H'(K,,, Ape) — H'(L, Ay ). Since the
composition

S(L/Kp) — Selyoe (A/ L) —— Sel oo (A/L)/ Selgin(A/L)

factors through S(L/K,,) — S(L/K,,)/ Selpe (A/K},)div, while by the Hochschild-
Serre spectral sequence and Lemma 23] the left morphism has finite cokernel, the
Z,-corank of S(L/K,,)/ Sely (A/K,,)aiv is at least of order p?” + O(p™@~1). Then
the same holds for the Z,-corank of S(L/K,,)/ Sel,~ (A/K,,), and hence for that of
‘H,,, because of the exact sequence

0 — Sely~(A/K,) — S(L/K,) — Hn

due to the localization map. But Lemma [4.3] says this is absurd. The proof for b
just replaces A with At O

Proof of Theorem Bl The first assertion results from Theorem 4.4 and the second
from Corollary and Lemma [£3.3 O
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Remark 4.4.5. Theorem £ 4 4] says a x b is torsion even when X,(A/L) is not. It is
worthwhile to mention that Theorem 44 also implies that 2 enjoys property (T)
(just replace L/K with an arbitrary Z¢!-subextension L'/F).

4.5. Is 2 pseudo-controlled? It is natural to ask if the Cassels-Tate system 2 is
pseudo-controlled: we tend to believe that this actually holds as long as X,(A/L)
is torsion. Propositions [£.5.3] and [£.5.4] below give evidence to support our belief.

Lemma 4.5.1. For n > m the restriction map
(m)
Selpee (A Kp)aiv — (Selpoe (A/K)" " )aiw
18 surjective.
Proof. The commutative diagram of exact sequences

Selyoo (A K)div = Selpes (A) Kypy) gin ™ Selpe (4/ K,y,) —— by,

L C
(Selyee (A/F )™ ) gin C (Selpoe (A Kop) ain)F ™ > Sel oo (A/ K, )T —— b2
induces the exact sequence

Ker(t,) — Coker(j) — Coker(7).

Since Ker(t7,) is finite while Coker(j’) is p-divisible, it is sufficient to show that
Coker(4) is annihilated by some positive integer. Consider the commutative diagram
of exact sequences

Selpoe (A/ K ) HA (K, Ape) — 22 [Ty o H (Ko, A)

. n n
ll lres’nl lr’!ﬂ

(m) (m) locy (m)
Selpoo (A/Kn)F gHé(KnaAPW)F - Hallel(anaA)Fw

that induces the exact sequence

Ker ( Im(locy,) I Im(locy,) )— Coker(i)— Coker(res],).
By the Hochschild-Serre spectral sequence, the right-hand term Coker(resl’,) is a
subgroup of H*(K,, /K, Ap~(K,)), and hence is annihilated by p"~™) = [K,, :
K,,]. Similarly, the left-hand term, being a subgroup of [ [, HY (K y/ K A(Kpy)),
is also annihilated by [K, : Kp,]. O
Lemma 4.5.2. If L/K is a Zy-extension and X,(A/L) is a torsion A-module, then
there exists some N such that
(m) (m)
Selyoo (A/Kp)aiv = (Selps (A/Kp)aiv) = (Selpee (A/Kn)" ") div

holds for alln > m > N.

Proof. The second equality is an easy consequence of the first one. The assump-
tion I' = ~% implies that if f € A is simple, then f divides v*" — 1 for some
m. Therefore, by Theorem there exists an integer N such that (’ypN —
1) Seldw(A/L)F(n) = 0 for every n. The kernel of the map Selpe (A/K},)giv —
Seldw(A/L)F(") is finite by Lemmal£. 23]l This implies that ('ypN—l) Selpee (A/ K ) div
must be trivial, since it is both finite and p-divisible. ([l

Licensed to Univ of Montreal. Prepared on Tue Feb 6 18:01:44 EST 2018 for download from IP 132.204.90.173.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1952 K. F. LAI, I. LONGHI, K.-S. TAN, AND F. TRIHAN

Proposition 4.5.3. If L/K is a Zy-extension and X,(A/L) is a torsion A-module,
then 2 is pseudo-controlled.

Proof. We apply Lemma 5.1l and Lemma If we are given an element x €
Sely (A!/K,,) with res!,(z) € Selye (A'/K))aiv for some I > n > N, then we can
find y € Selye (A'/KN)ain such that resh(y) = resl (z). Then x — res(y) €
Ker(res!)) C s%°. This actually shows that a’ = a%. Then apply Lemma24 O

Proposition 4.5.4. If L/K is a Zg—extension ramified only at good ordinary places
and X,(A/L) is a torsion A-module, then A is pseudo-controlled.

Proof. Let f1,..., frn be those simple elements described in Theorem 1.2l and
write g; 1= f[lfl .o fm. Since f; divides 47" — 1, for some ; and r;, by Theorem
4. 1.2l we get

(43) gi - Selui (A'/L) C Sel (At /L)%

where ¥, C I' is the closed subgroup topologically generated by v; and we use the
notation H®" := H?" for any subgroup H < I'. In view of Proposition 5.3, we
may assume that d > 2. Then we can find 4, ...,04 as in the proof of Lemma
M24 and such that the elements d;g;, ¢« = 1,...,m, j = 1,...,d, are coprime. By
construction each §; annihilates s for all n. We are going to show that if a = (ay,)n,
a, € a¥, is an element in a’, then for n > r;,

(44) 5]g2 cAp = 0, j = ]., ,d

Then it follows that 6;g; - a® = 0 for every i and j, and hence a° is pseudo-null.
Fix n > r;. Choose closed subgroups ®; C I', ¢ = 1,..., m, isomorphic to Zg_l

such that I' = ¥; & &,, and then set LW .= L@E"’ and let Ll(i) denote the Ith layer

of the Z,-extension L()/K,, so that Gal(L(i)/Ll(i)) is canonically isomorphic to
\I,l(_H»n)'

For each [ > n, let & be a preimage of a; under
Sel, (A'/K}) —— q

and denote by & the image of & under the corestriction map Sely(A'/K;) —
Selpoe (At/L(z) ). Note that K; is an extension of Ll(z_)n because I'; C \IIZ(-Z)QEH) =

l—n

Gal(L/Ll(i)n). Thus, the restriction map sends & to an element 6, €
Seldm(At/L)‘I’gl)q’gn). Then by (@3)
(45) gi -0, € Selgi (At /L)

By the control theorem [Tanl0, Theorem 4] the cokernel of the restriction map
Selye (A Ky )aiw " Selyz, (A'/L)T"

is finite: we denote by p° its order. Choose [ > n 4 e and choose £, to be the
image of & under the corestriction map Selp~(A'/K;) — Sely(A'/K,). Then
@3) implies that g; - 0, = p°g; - 0, which shows that g; - 0,, = res,(0),), for some
0! € Selgin(A/K,). Then m,(g; - & — 0),) = g; - an. Since g; - &, — 0., belongs to
s which is annihilated by &;, we have d,g; - a, = 0 as desired. O
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5. CENTRAL IDEMPOTENTS OF THE ENDOMORPHISM RING OF A

Let &£ denote the ring of endomorphisms of A/K and write Z, & := Z, ®z &.
We assume that there exists a non-trivial idempotent e; contained in the center of
Z, E. Set ez :=1—e;1. Then we have the decomposition:

(46) Zpg = elng X egng.

5.1. The endomorphism rings. Let £' denote the endomorphism ring of A'/K.
Since the assignment ¢ — 9! sending an endomorphism 1 € £ to its dual endomor-
phism can be uniquely extended to a Z,-algebra anti-isomorphism -*: Z, & — Z, £*,
we find idempotents ef, €5 and the analogue of ([#6). If £ and £! act respectively on
p-primary abelian groups M and N, then these actions can be extended to those
of Z, & and Z, E*. We have the following Z,-version of Proposition 211

Lemma 5.1.1. For every a € a,, b € b, and ¢ € Z, E we have
(47) (a,9:(b)) = (¥i(a), b) -

Proof. First note that any 1 € £ can be obtained as a sum of two isogenies (e.g.,
because k + v is an isogeny for some k € Z). Thus Proposition L2l and linearity
of the Cassels-Tate pairing imply that ({#7) holds for such .

In the general case, since Zj, £ is the p-completion of &, for each positive integer
m there exists ¢,, € € such that v — ¢, € p"Z, . Choose m such that p™a =
p™b = 0. Then

(@, Y (D)) = (@, Pm . (D)) = (. (a), b)n = (¥2(a), ).
]

If M and N are respectively Z, & and Z, & modules, write M) for e; - M and
N® for et - N. Then (@) implies M = MM @ M® and N = N o N® . In
particular,

a=a¥ @®a?® and b =60 @p?

with a() = Hm al) and b®) = lim b))

Corollary 5.1.2. For every n, we have a perfect duality between a%l), bSLl)
between ag), 512).

and one

Proof. We just need to check (a%l), %2)>n = <a53),b$})>n =0. Ifa € asLl) and
be bg), then (a,b), = (¢! - a,es - b),, = (a,e1ea - b), = {a,0), = 0. O

Then 2A® := {a{, 6, (,),x" €7}, i = 1,2, satisfy conditions (I'-1) to (I'-4)
and hence by Theorem [£.4.4] and Remark [£435] are I'-systems and part of T-

systems. They are pseudo-controlled if and only if so is 2(. By Theorem [I(3) and
Proposition 5.4l we have the following.

Theorem 5.1.3. If 2 is pseudo-controlled, then
(48) [aW] = [6W]* and [a@] = [6@)F

Corollary 5.1.4. If L/K is a Zg-emtensz'on ramified only at good ordinary places
and X,(A/L) is a torsion A-module, then @8] holds.
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5.2. The height pairing. Applying e; to the exact sequence ([BH) we get
(49) 0— a')— X,(A/0L)Y— Y,(4/L)P— 0.

Unfortunately in general we are unable to compare either X,(A/L)® with
X, (A*/L)D or Y,(A/L)) with Y,(A?/L)®. However, we can get some partial
results as follows.

5.2.1. The Néron-Tate height pairing. First we briefly recall the definition of the
Néron-Tate height pairing
(50) haj: A(K) x AK)— R.
For details, see [Lan83, V, §4]. Let
Py — Ax A

denote the Poincaré line bundle: then hy /i 18 the canonical height on A x At
associated with the divisor class corresponding to Pj4.

Proposition 5.2.1. Let A, B be abelian varieties defined over the global field K.
Let ¢: A — B and ¢': Bt — A! be an isogeny and its dual. Then the following
diagram is commutative:

haji: A(K) x AHK) —— R

o]

hg i B(K)x BY(K) —— R.
Proof. By definition of the Néron-Tate pairing and functorial properties of the
height ([Lan83| Proposition V.3.3]), ha,k(-,#'(-)) and hp/k(4(:),-) are the canon-
ical heights on A x B! associated with the divisor classes corresponding respectively
to (1 x ¢*)*(Pa) and (¢ x 1)*(Pg). But the theorem in [Mum74, §13] implies
(51) (1 x ¢")*(Pa) = (¢ x 1)*(P5)
(see MumT74, p. 130]). O

5.2.2. The p-adic height pairing. We extend (B0) to a pairing of Z,-modules.

Lemma 5.2.2. Let A be an abelian variety defined over the global field K. For
every finite extension F/K there exists a p-adic height pairing

(52) hasp: (Zy, @ A(F)) x (Z, ® A(F))— EF,
where Er is a finite extension of Q,, with the left and right kernels equal to the

torsion parts of Z, @ A(F) and Z, @ AY(F). If char(K) = p one can choose
EF = Q;r

Proof. It char(K) = p, then after scaling by a factor log(p), the pairing ﬁA/F
takes values in Q (see for example [Sch82l §3]): in this case we define hy,p by

BA/F = —log(p)ha,r and extend it to get (62). In general, the image of the Néron-
Tate height ha /r generates a subfield E7. C R. By the Mordell-Weil theorem, £, is
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finitely generated over Q, and hence can be embedded into a finite extension Er of
Qp. Then we have the pairing

hajp: A(F) x A F)— Ej C Er,
which is obviously continuous in the p-adic topology, and thus can be extended to
a pairing h 4,/ as required. Since the left and right kernels of h 4, are the torsion

parts of A(F) and AY(F), if z1,...,x, and y, ..., y, are respectively Z-basis of the
free parts of A(F) and A*(F), then

det; ;(ha,r(zi,y;)) = dety j(hayr(zi,y;)) # 0,

which actually means that h 4, is non-degenerate on the free part of its domain. [J

5.2.3. For each finite extension F'//K let h,,p be the p-adic height pairing estab-
lished in Lemma[5.2.2] The action of £ on A(F’) extends to that of Z,, £ on Z,QA(F)
and the following results are proven by the same reasoning as in the proofs of Lemma

BT T and Corollary
Lemma 5.2.3. For every z € Z, ® A(F), y € Z, @ A'(F) and ¢ € Z, € we have
(53) hasr((x),y) = ha/r(z, ' (y)).

Corollary 5.2.4. Fori = 1,2, the modules Z, ® A(F)® and Z, @ A*(F)® have
equal rank over Zy.

5.2.4. Write M(A/F) := Q,/Z,® A(F). Now we assume that all Tate-Shafarevich
groups are finite. Hence M(A/F') = Sel,os (A/F) i and M(A/L) := lim . M(A/F)
= Selyiv(A/L). The action of Z, £ on M(A/L) extends to its dual as (e - ¢)(z) :=
¢(ex). We have Y,(A/L)®) = (M(A/L)D)V and

(54) Yo(A/L) = Yy (A/L)D @ Yy(A/D).

Theorem 5.2.5. If X,(A/L) is a torsion A-module, L/K is ramified only at good
ordinary places and M, (A/F) is finite for every finite intermediate extension of
L/K, then

Yo A/D)V] = WA DYOF and [Y(A/D)] = [Vy(AY/ L)@
Proof. Fix i € {1,2}. By Theorem LT.2, we write

Yo (A/D) D)= A /() (A /D)D) = P /(f)*,
v=1 v=1
where f1, ..., fm are coprime simple elements and r,, s, are non-negative integers.
We need to show that r, = s, for every v, since A /(f,) = (A /(f.))"

Let P, denote the quotient Y,(A/L)®/[Y,(A/L)®] and P, the analogue for
At. Since P, P, are pseudo-null A-modules, there are 7y,72 € A coprime to
f = fi-- fm such that n;P; = 0. Then f, is coprime to mnoff, ! for each v.
We choose w € TV such that w(f,) = 0 and w(mmnaff, ') # 0. Let E be a finite
extension of Q, containing the values of w. Set EM := E®z, M for any Z,-module
M. We see E as a module over F A via the ring epimorphism F A — FE induced
by w. The exact sequence

0 = Tork ,(E, EP)— E @ E[Y,(A/L)]
— E®ga E}/;,(A/L)(i)—> E®par EP =0
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yields
r, = dimp(E ®px BY,(A/L)7).

Let I' CT" denote the kernel of w and write W, (A) for the coinvariants EY,(A/ L)l(fu), .
The isomorphisms

E@pa BY,(A/L)Y ~ E@py EY,(A/L){) ~ (EY,(A/L){1)*)
show that 7, = dimpg W, (4)“). A similar argument proves s, = dimg W,,(A*)«).
Write K, := L' and T,, := Gal(K,/K). Since I,~(A/K,) is finite, the

control theorem [Tanl0, Theorem 4] implies that the restriction map M(A/K,,) —
M(A/L)T™ has finite kernel and cokernel. Thus we find

rankz, (M(A/Kw)(i))\/ = rankz, ((M(A/L)Fw)(i))v — ranks, Yp(A/L)(FiU)J.
This and Corollary 524 yield
rankz, Y, (A/L)5) = ranky, Y,(A'/L)Y).
Similarly, for the character w = w?, we have
rankz, Y,',(A/L)g)ﬂ = rankz, YI',(At/L)g)Z.

As in §3.24) let [w] denote the Gal(Q,/Q,)-orbit of w. By I'Y, = [w] UTY, we get
the exact sequence of E[l',]-modules:

0—=1]I (Ww(A))(X) —— Wy(A) ——= W (4) —0.

XE[w]

Since for all x € [w] the eigenspaces (W, (A))X) have the same dimension over E,
the two equalities and the exact sequence above imply

dimp (W, (A))) = dim g (W,,(A%)«)

which completes the proof. O

Theorem 5.2.6. If X,(A/L) is a torsion A-module, L/K is ramified only at good
ordinary places and M, (A/F) is finite for every finite intermediate extension of
L/K, then

X(Xp(A/L)) = x(Xp(A*/L)V)E - x(X,(A/L)?)
= X(Xp(A/L)W) - x(Xp(AT/L)D)E.

Proof. Just use the exact sequence ([@J) (together with its A*-analogue with b(*)),
Corollary B.T.4 and Theorem [5.2.3] to get

(55) X(Xp(AT/L) D) = x(X,(A/L)1).
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In the next paper [LLTT] of this series we shall apply Theorem [(.2.6] to prove
the Iwasawa Main Conjecture for constant ordinary abelian varieties over function
fields.
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