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A B S T R A C T 

Upcoming telescopes and surv e ys will revolutionize our understanding of the Universe by providing unprecedented amounts of 
observations on extragalactic objects, which will require new tools complementing traditional astronomy methods, in particular 
machine learning techniques, and abo v e all, deep architectures. In this study, we apply deep learning methods to estimate three 
essential parameters of galaxy evolution, i.e. redshift, stellar mass, and star formation rate (SFR), from a data set recently analysed 

and tailored to the Euclid context, containing simulated H -band images and tabulated photometric values. Our approach involved 

the development of a novel architecture called the FusionNetw ork, combining tw o components suited to the heterogeneous data, 
ResNet50 for images, and a Multilayer Perceptron (MLP) for tabular data, through an additional MLP providing the overall 
output. The key achievement of our deep learning approach is the simultaneous estimation of the three quantities, previously 

estimated separately. Our model outperforms state-of-the-art methods: o v erall, our best FusionNetwork impro v es the fraction of 
correct SFR estimates from ∼70 to ∼80 per cent, while providing comparable results on redshift and stellar mass. 

K ey words: galaxies: e volution – galaxies: general – galaxies: photometry – galaxies: star formation. 
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 I N T RO D U C T I O N  

he issue of galaxy evolution and its underlying physical processes is
t the forefront of modern astrophysical research, and it is supported 
y a rapidly increasing wealth of multiwavelength data sets (images 
nd spectra) provided by surveys and targeted observations. In 
articular, the recently launched Euclid mission ( www.euclid-ec.org ; 
aureijs et al. 2012 ; Euclid Collaboration: Mellier et al. 2024 )
ill provide an unprecedented uniform data set of visible and near 

R images for about 1.5 billion objects in its Wide Surv e y (plus
IR spectra for > 35 million sources), co v ering ∼1/3 of the sky

 ∼14 000 de g 2 ), which is e xpected to support crucial dev elopments
n the field. 

Galaxies are supposed to evolve through cosmic time mainly 
hanks to star formation and mergers, e.g. Conselice et al. ( 2014 );

adau & Dickinson ( 2014 ), evidencing a morphological change 
rom irregular (and/or peculiar) galaxies at high redshift to more 
egular configurations at later epochs, e.g. Mortlock et al. ( 2013 ).
ur understanding of the actual details of such general trend is

xpected to improve significantly in the next few years, thanks to 
ew instruments and surv e ys. 
The evolution of galaxies is often described through a few relevant 

hysical properties, in particular the mass of their visible components 
hereafter, stellar mass), and star formation rate (SFR) as a function of
heir redshift (i.e. distance/age). On one side, for fainter and fainter 
bjects, it is difficult to get measurements sufficiently detailed to 
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chieve a significant individual description. On the other side, the 
cientific interest is anyway focused more on the statistical analysis 
f large sets of galaxies, aimed at discriminating general trends, rather 
han on indi vidual v ariation, which may be dominated by peculiar
vents in the object history, or by their environment (Estrada et al.
023 ). 
Standard techniques (Bisigello et al. 2016 , 2017 ; Ciesla, Elbaz &

ensch 2017 ; Iyer et al. 2018 ) to estimate galaxy physical properties
atching templates or models with galaxy spectral energy distribu- 

ion (SED) become more and more cumbersome with the increasing 
ize of the samples made available by modern large surv e ys. In
articular, SED fitting methods require huge processing power 
nd e xtensiv e support of human e xperts in order to discriminate
ritical cases. Adoption of advanced tools for automated analysis, 
.g. machine learning (ML) and/or data mining tools, is therefore 
 compelling need, as evidenced by the increasing interest in the
cientific community, and its ongoing effort in building the specific 
xpertise. 

In this context, our work is focused on investigating possible 
mpro v ements to the solution to a specific problem, i.e. estimation
f redshift, stellar mass, and SFR on simulated H -band images and
hotometric magnitudes referred to the Euclid mission, by means of 
eep learning techniques. The science goals and o v erall framework
re set by a recent publication (Euclid Collaboration: Bisigello 
t al. 2023 ), to which the interested reader is referred for further
strophysical insight. We work on the same data, by leave of that
aper’s Authors. 
The photometric information is complemented with the mor- 

hological information associated to galaxy images. This is a 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ombination of differently structured data, since the image pixels
re related to each other by the shape of the observed object
and the instrument response), whereas magnitudes are in principle
ndependent scalar values. As a consequence, the tool extracting and
oining the information from the two sides is hereafter labelled as
ultimodal . 
In this context, the key aspects of our approach are: 

(i) The simultaneous estimation of redshift, stellar mass, and
FR by a single network, rather than implementing three dedicated
odels. The rationale is that, for some classes of galaxies, we can

xpect correlations among their age, mass, and star formation history,
ictated by their actual evolution. The deep learning machine may
hus ‘grasp’ some of the underlying relationship among parameters,
xploiting it to improve on their estimation from available data. 

(ii) The new results we obtain for the three aforementioned
uantities, in particular the impro v ed values for SFR. Our model,
 FusionNetwork made of a ResNet (He et al. 2016 ) combined
ith a Multilayer Perceptron (Rumelhart, Hinton & Williams 1986 ;
opescu et al. 2009 ), processes galaxy images and quantitative data
t the same time, exploiting data correlations and leading to better
erformance. 

The focus on collective diagnostics represents, in our opinion,
he most significant difference with respect to Euclid Collaboration:
isigello et al. ( 2023 ), demonstrating that significant margins to-
ards better parameter estimation are still available. Besides, the
erging of heterogeneous information (images and photometry) is

erformed in a more flexible way, explained in Section 3.3 , allowing
urther tuning of the internal representation of the photometric inputs.
he issue of collective, rather than independent, parameter estimation
as been dealt with explicitly also by some of the authors in a simpler
ramework (Gai, Busonero & Cancelliere 2017 ). 

Several recent works deal with various combinations of photom-
try and imaging, for different science goals and using a range of
achine-learning approaches. Estimation of redshift, stellar mass,

nd SFR is also addressed in Humphrey et al. ( 2023 ), based
n photometric data only, using semisupervized techniques, and
ocusing on training trends. The connections between galaxy stellar
ass, SFR, and dark matter halo mass is investigated by Hausen

t al. ( 2023 ), using a machine-learning method called Explainable
oosting Machines working on a range of simulated galaxy physical
haracteristics. Cabayol et al. ( 2021 ) propose LUMOS, a deep
earning approach to measure photometry from galaxy images,
or subsequent estimate of photometric redshift. Henghes et al.
 2022 ) deduce photometric redshift from galaxy images in different
lters using deep learning methods, based on convolutional neural
etworks (CNNs), on a z ≤ 1 sample. A somewhat similar approach
s handled in Syarifudin, Hakim & Arifyanto ( 2019 ). Li et al.
 2022 ), and Treyer et al. ( 2024 ) exploit neural techniques using both
hotometric and galaxy images information in order to estimate only
hotometric redshift. Unsupervized ML by variational auto-encoders
s proposed for galaxy morphology classification from Hubble Space
elescope ( HST ) and JWST images by Tohill et al. ( 2024 ). Besides,
lassification of galaxies, quasars, emission-line galaxies, and stars
rom visible and infrared photometric data using various ML methods
s proposed by Zeraatgari et al. ( 2024 ). Simulation of Euclid images
nd photometry are being actively developed (Euclid Collaboration:
retonni ̀ere et al. 2023 ; Euclid Collaboration: Merlin et al. 2023 ) in

upport to the forthcoming data reduction process, and possibly to
he synergy with other modern projects (Liu et al. 2023 ). 

In Section 2 , we resume the main characteristics of the data set,
f the pre-processing techniques, and of the e v aluation criteria and
NRAS 532, 1391–1401 (2024) 
etrics used. In Section 3 , the exploited neural architectures and
ur deep learning model are described. Section 4 is devoted to
omparison of our results with those in the literature and a discussion
f some of the implications. Finally, in Section 5 , we draw our
onclusions, with some hints on possible future developments. 

 DATA  SET  A N D  METRI CS  

he data set used in our w ork w as derived from the COSMOS2015
ultiwavelength public catalogue (Laigle et al. 2016 ), referring to

he Cosmos Evolution Surv e y (COSMOS; Sco ville et al. 2007 ) field,
omplemented by mock Euclid H -band images derived from the
OSMOS-Drift And SHift (COSMOS-DASH; Mowla et al. 2019 )

urv e y with the HST Wide Field Camera 3 (WFC3). 
The data are described in detail in Bisigello et al. ( 2020 ); Euclid

ollaboration: Bisigello et al. ( 2023 ), in terms of data set structure
nd characteristics, and are used without modifications in our work.
ereafter, and in Section 2.1 , we summarize the main data features

or the reader’s convenience. 
The photometric information (source magnitudes in different

ands) is collected in tabular form; stars and X-ray sources ( < 1
er cent of the galaxy sample) have been removed from the original
OSMOS2015 catalogue. The custom catalogue is inspired to the
uclid Wide Surv e y (Euclid Collaboration: Scaramella et al. 2022 ),

ncluding the four Euclid filters, i.e. I E , Y E , J E , H E , and extended with
he addition of the u band from the Canada–France Imaging Surv e y
CFIS), and the Sloan Digital Sk y Surv e y (SDSS; Gunn et al. 1998 )
agnitudes g , r , i , and z. 
Observations comparable to those from the Euclid H E band are

vailable from the HST -WFC3 Imaging Surv e y in the COSMOS
ield (COSMOS-DASH; Mowla et al. 2019 ), upon suitable trans-
ormation to Euclid resolution (matching its expected PSF rms size)
nd application of realistic noise. This also includes appropriate
caling of the source and background flux to achieve the desired S/N
istribution. 
In particular, the starting point are HST/F160W thumbnails of

1 × 51 pixels, centred on each galaxy, and the simulated H E band
mages have 25 × 25 pixels. We remark that, for most of the expected
ources, Euclid’s resolution is comparably poor, so that the available
orphological information is limited. 
By matching the COSMOS-DASH and COSMOS2015 cata-

ogues, the simulated H E images are linked to the set of mock
uclid magnitudes. The analysis is restricted to images with S/N > 3,

urther split by separation of the subset corresponding to S/N > 10,
o identify respectively low and high flux regimes. In particular, the
ubsets include respectively 27 340 (3 < S/N < 10) and 9799 ( S/N >

0) COSMOS-DASH galaxies, each associated with redshift, stellar
ass, and SFR values. 
The data set is built from highly imbalanced original data, due to

he natural shortage of sufficiently bright galaxies ( S/N > 3(10))
ith low stellar mass ( log 10 ( M ∗/ M �) < 8 (8 . 5)) and low SFR

 log 10 [ SFR / (M � yr −1 )] < −2 . 5 ( −3)), which are therefore under-
epresented. This is liable to turn out as one of the major issues
ith supervized ML tasks (Johnson & Khoshgoftaar 2019 ; Cheng

t al. 2020 ), because learners will make decisions biased towards
he most present values and, in extreme cases, they may completely
gnore the less frequent values. 

In order to mitigate this issue, the data from Euclid Collaboration:
isigello et al. ( 2023 ) have been pre-processed by that paper’s
uthors, applying sample/image augmentation techniques on training
nd validation instances. In particular, magnitudes are perturbed
ccording to S/N level (new instances having the nominal mean value
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nd random variations with standard deviation corresponding to the 
xpected noise), and images are rotated by 10 ◦ steps, up to 35 times,
o generate new data instances consistent with the starting catalogue 
nformation. 

The data set built according to such prescriptions is considered to 
e the ground truth associated with the previously mentioned physical 
roperties, within the limits associated with the astrophysical spread 
mong source parameters, the noise of related observations, and esti- 
ate errors (also due to the underlying models). Future applications 

f our analysis and of the proposed approach will therefore benefit 
lso from impro v ements to the data set itself. 

For simplicity, we analyse only the data set using all nine photo-
etric bands, i.e. the four Euclid plus the five ground-based ones, 
hich is the case providing the best results in Euclid Collaboration: 
isigello et al. ( 2023 ). 

.1 Data pr e-pr ocessing 

or application of our neural approaches, the augmented data set from 

uclid Collaboration: Bisigello et al. ( 2023 ) is split into training,
alidation, and test sets, respectively sized to 90, 5, and 5 per cent
f the total, so that 24 605 instances are used for training, 1367 for
alidation, and 1367 for test. A necessary step is aimed at matching
he original data format to an adequate internal representation by 
erforming data normalization and removal of anomalous data, 
escribed below. 
The normalization process helps in stabilizing training and a v oid- 

ng biases on deep learning algorithms. Besides, non-normalized 
argets in regression problems can induce exploding gradients, 
esulting in the failure of the learning process (Sola & Sevilla 1997 ).

Because input magnitude values are spread o v er significantly 
ifferent ranges, each band is rescaled to internal values in the 
0, 1] interval. Similarly, image pixels and targets, i.e. redshift, 
tellar mass, and SFR, are scaled to the same internal range. The
ransformation applied to each parameter x is described by the 
ormalization equation ( 1 ): 

 i = 

x i − min ( x) 

max ( x) − min ( x) 
, (1) 

here x i is the i th component of the x vector made by all the parameter
bservations in the data set. 
Anomalous data, i.e. data that, for any reason, has a numerical 

alue far beyond the range of the others, can be expected to
ignificantly degrade the performance of most machine learning tools 
Khamis et al. 2001 ). Such values are often employed to identify
ack of measurements rather than actual weird values of the physical 
uantity. In our case, just one data instance with value −99 has been
uppressed in the SFR distribution, since we assume it was labelled 
y the providers as missing or bad data. 
It is useful to separately deal also with a data set made only by

nstances describing galaxies for which low stellar masses and low 

FR do not cause a shortage of their number. As done in Euclid
ollaboration: Bisigello et al. ( 2023 ), galaxies with very low mass
 log 10 ( M ∗/ M �) < 8) and very low SFR ( log 10 SFR / ( M � yr −1 )] < 0)
re remo v ed from the full data set. We call this additional data set
alanced . 

.2 Evaluation metrics 

everal metrics are used to e v aluate the performance of our imple-
ented models, also following the guidelines used in the literature 

Euclid Collaboration: Bisigello et al. 2023 ) and references therein. 
he mean square error (MSE) is used as training loss function and to
 v aluate the o v erall model performance. Besides, in order to compare
ur results with the literature, the fraction of outliers ( f out ), the bias
 �z), and the normalized median absolute deviation (NMAD) are 
alculated consistently with Euclid Collaboration: Bisigello et al. 
 2023 ). 

The fraction of outliers f out corresponds to o v er- or underestimated
ata relative to the size of the data set. The bias and NMAD are used to
rovide an indication of the statistical distribution of the estimates. 
n particular, it is expected that this distribution is approximated 
y a Gaussian, so that �z indicates the redshift mean discrepancy
ideally zero), while the NMAD is related to its standard deviation.
he calculation of these quantities differs depending on the target. 

n the following, the subscript ‘in’ refers to the target values, and the
ubscript ‘out’ refers to the estimated values (i.e. rescaled network 
utputs). 
Redshift ( z) . Higher redshift values are expected to be more

ifficult to predict correctly. Thus a prediction is called an outlier
f 

 z out − z in | > 0 . 15(1 + z in ) (2) 

equations ( 3 ) and ( 4 ) define respectively the bias ( �z) and NMAD:

z = median 

[
z out − z in 

1 + z in 

]
(3) 

MAD = 1 . 48 median 

[ | z out − z in | 
1 + z in 

]
. (4) 

tellar mass ( M ∗). As in Euclid Collaboration: Bisigello et al.
 2023 ), we estimate for the entire sample the fraction of outliers,
efined as galaxies for which the stellar mass is o v erestimated or
nderestimated by a factor two ( ∼0.3 dex), so that a mass prediction
s considered an outlier if: ∣∣∣∣log 10 

(
M ∗, out 

M ∗, in 

)∣∣∣∣ > 0 . 3 (5) 

ias ( �M ∗) and NMAD are defined by equations ( 6 ) and ( 7 ): 

M ∗ = median 

[
log 10 

(
M ∗, out 

M ∗, in 

)]
(6) 

MAD = 1 . 48 median 

[∣∣∣∣log 10 

(
M ∗, out 

M ∗, in 

)∣∣∣∣
]

(7) 

FR . Similarly to the stellar mass case, outliers are defined as
alaxies with SFR incorrect by, at least, a factor two ( ∼ 0 . 3 dex): ∣∣∣∣log 10 

(
SFR out 

SFR in 

)∣∣∣∣ > 0 . 3 (8) 

ias ( � SFR ) and NMAD are defined by equations ( 9 ) and ( 10 ): 

 SFR = median 

[
log 10 

(
SFR out 

SFR in 

)]
(9) 

MAD = 1 . 48 median 

[∣∣∣∣log 10 

(
SFR out 

SFR in 

)∣∣∣∣
]

. (10) 

 DEEP  L E A R N I N G  A R C H I T E C T U R E S  

his section describes the details of the neural architectures used: the
ultilayer perceptron (MLP), the ResNet50 that is a particular CNN, 

nd the fusion network, our model which combines them both. 

.1 Multilayer per ceptr on 

LPs (Rumelhart et al. 1986 ; Popescu et al. 2009 ) are the best
nown and widely used neural networks. An MLP is a type of
MNRAS 532, 1391–1401 (2024) 
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M

Table 1. Architecture of the MLP processing photometric data. The first 
layer has nine inputs, i.e. the magnitudes, while the last one has three output 
units. 

Nr Layer N input N output 

1 fully connected 9 2000 
2 fully connected 2000 1000 
3 fully connected 1000 500 
4 fully connected 500 3 
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Figure 1. The ResNet50 model. Skip connections and residual blocks are 
evidenced. 
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rtificial neural network that is composed of multiple layers of
eurons interconnected to each other. 
The structure of an MLP can be divided into three main parts:

nput layer, which contains one neuron for each sample feature, so
he amount of neurons is equal to the dimensionality of the samples
n the data set; one or more hidden layers, each consisting of a certain
umber of interconnected neurons where each neuron processes the
utputs of the previous layer’s neurons; output layer, which produces
he final result, which is usually the solution of a regression or
lassification task. 

To solve non-linear problems the MLP uses non-linear acti v ation
unctions: a common one is the ReLU (rectified linear unit) which
eturns the input value if it is greater than 0, otherwise 0. 

Learning in the MLP occurs by changing the connection
eights after each input data is processed through backpropagation,
ased on the error in the output with respect to the expected
esult. 

The architecture used in our tests is summarized in Table 1 . 

.2 ResNet 

NNs (LeCun et al. 1989 ; O’Shea & Nash 2015 ) are neural networks
hat aim to efficiently process data that can be represented with a
rid topology, such as images, and are commonly used for computer
ision applications. CNNs are characterized by the local connectivity
roperty and the shared weight property. The former means that
eurons are not connected globally, but just to a few of the neurons
rom the previous layer, and the latter forces neurons to share their
eights, processing the input the same way. The main types of layers

re: the con volutional layer , whose main task is to extract features
hat best describe the input image; the pooling layer, which aims to
radually reduce the representation dimensionality, further reducing
he number of parameters and the computational complexity of the

odel; finally, the fully connected layer (FC) is used to output
he classification/regression values. As with the MLPs, activation
unctions are also used. 

To get higher performance and accuracy it is common to make
etworks deeper by stacking layers. The rationale for adding multiple
ayers is the expectation of an increased capability to learn more
omplex patterns. 

ResNet (Residual Networks; He et al. 2016 ) is a deep learning
rchitecture that solves the problem of training deep neural networks
hrough skip connections. These connections efficiently propagate
radients, enabling ef fecti ve training e v en in v ery deep models.
esNet’s innovation lies in the residual block, which learns residual

unctions and mitigates the issue of vanishing gradients, making it a
ighly influential neural network model in computer vision and other
omains. A standard ResNet50 architecture is shown in Fig. 1 . 
NRAS 532, 1391–1401 (2024) 
.3 FusionNetwork 

he heterogeneous structure of our data set suggests us an alternative
odel, the FusionNetwork , which exploits fusion, i.e. the process of

oining data from multiple modalities, with the aim of extracting
omplementary and more complete information. Our proposed
odel combines an MLP, called hereafter I-MLP (most suited for

abulated photometric data), and a ResNet50 network (most suited
or images). This fusion is obtained connecting the two parts through
 final MLP, called F-MLP, and is represented in Fig. 2 . 

The two partial networks are expected to be able to ‘grasp’ some
f the problem complexity and supply suitable representations to
nputs, whereas the combining stage, with additional fine-tuning,
ay encode further correlations within the data not easily mapped

y each of them separately. As a good starting point, each partial
etwork is pre-trained on the data set. The architecture of the merging
-MLP is summarized in Table 2 . 
For the sake of comparison, we also run our own version of the

NN architecture from Euclid Collaboration: Bisigello et al. (2023 );
e called it CNN s because the simultaneous estimation of redshift,

tellar mass, and SFR is maintained. The CNN s is obtained from our
odel using a classical CNN instead of the ResNet50, and directly

eeding the photometric data into the network, without the processing
erformed by the three fully connected layers of our I-MLP (see
ig. 2 ). 

 RESULTS  A N D  DI SCUSSI ON  

e experimented with two models: a standalone MLP and the
usionNetwork. Both these systems estimate redshift, stellar mass,
nd SFR at the same time, using a final layer with three outputs
simultaneous regression). The training loss is the average MSE of



Multimodal deep learning for galaxies 1395 

Figure 2. The FusionNetwork achieved by combination of an MLP (top 
right) and a Resnet50 architecture (top left). 

Table 2. Architecture of the F-MLP used in the FusionNetwork to concate- 
nate ResNet50 and the I-MLP. 

Nr Layer N input N output 

1 fully connected 1000 2000 
2 fully connected 2000 1000 
3 fully connected 1000 500 
4 fully connected 500 3 
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Figure 3. Trend of the loss function (in log units) o v er the training and 
validation set for simultaneous estimation of redshift, stellar mass, and SFR 

with MLP (top) and FusionNetwork (bottom). The vertical dotted line shows 
the lowest value achieved for the validation loss function. 
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he three targets. The experiments are performed on a Linux-5.13.0 
omputer equipped with an Intel Core i7 8th Gen processor, 8 CPUs,
nd a NVIDIA TITAN RTX GPU (24gb). The software is written in
YTHON 3.9.12 with PYTORCH . 

In all experiments, a batch of 612 data instances (with both images
nd numerical data) is used. At the end of each epoch, the model is
ested on the validation set. This allows us to save the model obtaining
he lowest loss function value on the validation set in order to obtain
etter generalization. For each experiment, the stop criterion is based 
n the lack of impro v ement of the loss function computed on the
alidation set, with respect to the best value, for 15 consecutive 
pochs. Moreo v er, a maximum limit of 1000 epochs is set. The tests
re performed on the whole data set with S/N > 3. 

.1 MLP settings 

he MLP architecture details are described in Table 1 . We remind
hat the MLP only processes the nine numerical magnitude data used 
s input. 

This system is trained using five different seeds. In this experiment,
e consider the best run, i.e. the run achieving the lo west v alue of

he validation loss function, and the average of the five runs, which
rovides an indication of the spread that might be expected from the
esults. The loss function on the training and validation, set for the
est run, is shown in Fig. 3 (top). Training reaches convergence at
poch 673, and terminates at epoch 688 thanks to the stop criterion.
he time required to train the network is 9 min and 19 s. 
.2 FusionNetwork settings 

 pre-training is used to initialize the weights of the two input
omponents of the FusionNetwork (Section 3.3 ), i.e. I-MLP (Section 
.1 ) and ResNet50 (Section 3.2 ). The whole system is then trained
sing five different seeds for statistical relevance. The plot in Fig. 3
bottom) shows the performance of the best model on the training
nd validation sets. 

The model converges at the 39th epoch; the time required to train
he best model is slightly abo v e one hour. 

Validation losses of the fusion model and MLP are comparable so
hat performances of both models will be compared with state-of- 
he-art approaches in the next section. 

.3 Result comparison 

his section compares the results from different models in terms of
utlier fraction, bias, and NMAD as described in Section 2.2 . 
We report the outputs from three different reference cases pre- 

ented in Euclid Collaboration: Bisigello et al. ( 2023 ): the SED fitting
odel and their MLP and CNN implementations, respectively, called 

y the Authors DLNN and CNN. We also report the results from our
mplementation of the latter, labelled CNN S : we anticipate here that
t performs similarly to the CNN architecture. 
MNRAS 532, 1391–1401 (2024) 
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Table 3. Results for redshift estimation. In bold, best values and closest 
competitors. SED, DLNN, and CNN are from Euclid Collaboration: Bisigello 
et al. ( 2023 ). 

Algorithm Model f out �z NMAD 

SED 0 .127 −0 .002 0 .045 
DLNN best 0 .001 −0 .002 0 .008 

average 0 .002 −0 .001 0 .011 
CNN best 0 .002 0 .005 0 .028 

average 0 .003 −0 .001 0 .021 
CNN S best 0 .0037 −0 .0043 0 .0296 

average 0 .0037 0 .0011 0 .0193 
MLP best 0 .0015 −0 .0013 0 .0111 

average 0 .0015 -0 .0015 0 .0085 
FusionNetwork best 0 .0007 −0 .0022 0 .0115 

average 0 .0015 −0 .0020 0 .0090 

Figure 4. Comparison of the target value and estimated value of redshift. 
The dashed red line corresponds to perfect estimate, while the dotted red 
lines evidence the outlier threshold from equation ( 2 ). Top left of each panel: 
rele v ant v alues of f out , bias, and NMAD. Bottom right: number of test set 
instances. 
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Figure 5. Error distribution on redshift estimation (difference between z in 
and z out ). The red vertical dashed line (mean value) is consistent with a null 
difference and the red dotted lines correspond to the outlier threshold values 
( ±0.15) from equation ( 2 ). 
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We recall that the MLP takes in input only tabular data (magni-
udes), while the CNN is a multimodal system that also exploits im-
ges. These two neural models are trained for individual estimation of
he physical properties, differently from our approach characterized
y simultaneous estimation of the three parameters. In subsections
.3.1 , 4.3.2 , and 4.3.3 we describe our findings for the three physical
roperties in details. 

.3.1 Redshift estimation 

he main features of our redshift estimation are reported in Table 3
n statistical terms, and illustrated in Figs 4 and 5 . 

The DLNN and CNN already achieved significantly better results
han the reference SED fitting method; in particular, the f out is two
rders of magnitude smaller. 
Our MLP, working on photometric information only, is very robust

n estimating the redshift, with f out and bias in line with both DLNN
NRAS 532, 1391–1401 (2024) 
nd CNN, and NMAD comparable to DLNN and about two times
etter than CNN. Our CNN S provides results quite similar to CNN,
o that the same considerations hold. 

Regarding the FusionNetwork, the best model achie ves lo wer f out 

han all others, but worse values of bias and NMAD w.r.t. MLP and
LNN models. The average results are comparable or better for f out 

ut worse for bias and comparable for NMAD. 
From the comparison, it appears that the most robust model for

edshift estimation only is the MLP. This might be justified by the
oise introduced by the images, exceeding the information provided,
nd increasing the dispersion of the results, thus resulting in higher
MAD and bias values. On the other hand, the FusionNetwork may

till be preferred in terms of pure outlier performance. 
In Fig. 4 , the target redshift is plotted against its estimates provided

y the MLP (top) and the FusionNetwork (bottom), respectively
howing the best (left) and average (right) models. At the top left of
ach panel we report the rele v ant v alues of f out , bias and NMAD. At
he bottom right, we report the number of instances in the test set. 

Our models generate predictions close to the diagonal (desired 1:1
atch) for the entire input range (i.e. z ≤ 3 . 5). The spread of outliers

s narrower at low redshift, increasing with z. 
The plots in Fig. 5 show the distribution of redshift error (dis-

repancy between target and predicted v alue), respecti vely, for the
LP (top) and the FusionNetwork (bottom), in their best (left) and

verage (right) installations. The mean value (red dashed line) is
ery close to zero, with most instances located within the region
elimited by the red dotted lines, associated with the minimum
hreshold for outliers from equation ( 2 ). Moreo v er, the distribution
videncing the lowest spread and offset corresponds to the average
odel of the FusionNetwork, demonstrating the ef fecti veness of a

imple ensemble average approach. 

.3.2 Stellar mass estimation 

he main features of the stellar mass estimate are reported in
ables 4 and 5 in statistical terms, and illustrated in Figs 6 and
 . As abo v e, CNN and CNN S behav e quite similarly, and support the
ame considerations. 

First of all, we e v aluate the performance achieved over the full
ata set, summarized in Table 4 . 
The SED model provides the worst results among the tested cases.

ur MLP shows, as in the redshift case, a clear impro v ement o v er
he DLNN and CNN models on outliers ( f out ). Slightly worse results
re obtained on the bias, since the error distribution is slightly shifted
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Table 4. Results for galaxy stellar mass estimate (full data set). In bold: 
best values and closest competitors. SED, DLNN, and CNN are from Euclid 
Collaboration: Bisigello et al. ( 2023 ). 

Algorithm Model f out �M ∗ NMAD 

SED 0 .135 0 .002 0 .121 
DLNN best 0 .008 −0 .017 0 .054 

average 0 .009 0 .002 0 .040 
CNN best 0 .011 0 .006 0 .050 

average 0 .010 0 .001 0 .044 
CNN S best 0 .0102 −0 .0082 0 .0654 

average 0 .0110 0 .0039 0 .0454 
MLP best 0 .0059 0 .0055 0 .0477 

average 0 .0059 0 .0076 0 .0348 
FusionNetwork best 0 .0044 −0 .0096 0 .0457 

average 0 .0051 −0 .0015 0 .0358 

Table 5. Results for galaxy stellar mass estimation (balanced data set). In 
bold: best values and closest competitors. SED, DLNN, and CNN are from 

Euclid Collaboration: Bisigello et al. ( 2023 ). 

Algorithm Model f out �M ∗ NMAD 

SED 0 .128 0 .001 0 .120 
DLNN best 0 .005 −0 .017 0 .054 

average 0 .006 0 .002 0 .040 
CNN best 0 .006 0 .006 0 .050 

average 0 .007 0 .001 0 .044 
CNN S best 0 .0075 −0 .0083 0 .0640 

average 0 .0075 0 .0039 0 .0445 
MLP best 0 .0045 0 .0052 0 .0472 

average 0 .0030 0 .0077 0 .0343 
FusionNetwork best 0 .0022 −0 .0100 0 .0453 

average 0 .0022 −0 .0020 0 .0354 

Figure 6. Comparison between the estimated stellar mass and target value. 
The red dashed line is the identity and the red dotted lines correspond to the 
outlier definition from equation ( 5 ). At the top left of each panel, we report 
the f out , bias, and NMAD for galaxies in the whole data set, and (in brackets) 
for the balanced data set. On the bottom right we report the number of objects 
in the test set. 

Figure 7. Error distribution on stellar mass estimation. The red vertical 
dashed line shows a null difference and the red dotted lines correspond to the 
outlier definition, equation ( 5 ). 

t  

D
 

b  

N  

F  

e
N  

t

t  

r  

a
 

5  

i

l  

F
N  

i  

m
 

c
F
v  

u

o  

g
 

b  

M  

a  

z  

t
 

a  

v  

m
s
±  

o
m  

I
r

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/2/1391/7697559 by dep. Biologia Anim
ale e dell'U

om
o - U

niv. Torino user on 03 O
ctober 2024
o wards positi ve v alues, while the NMAD is comparable to the
LNN and CNN. 
The o v erall best result on f out is achieved by the FusionNetwork

est model, with a bias slightly shifted to ne gativ e values. Its
MAD is consistent with other methods. On the other hand, the
usionNetwork average model turns out to be quite robust in terms of
rror dispersion, obtaining the best bias value and quite competitive 
MAD. Moreo v er, its f out is second to the best, slightly higher than

he best model, making it a very robust choice. 
Furthermore, the performance assessment on stellar mass estima- 

ion is repeated o v er the balanced sample, deprived of underrep-
esented galaxy classes (see 2.1 ). Table 5 shows the new results
chieved after filtering out these instances from the data set. 

These new results show that outliers ( f out ) are reduced by nearly
0 per cent with all models. Apparently, a large fraction of errors is
n the underrepresented region of the data set. 

The MLP and the FusionNetwork achieve a significantly lower 
evel of outliers ( f out ) than all other approaches. Moreo v er, the
usionNetwork average model and CNN biases are very close to zero. 
MAD values of the best models are comparable, whereas rele v ant

mpro v ements are achieved by the average MLP and FusionNetwork
odels. 
In Fig. 6 , the target values of stellar mass (whole data set) are

ompared with our estimates, respectively for the MLP (top) and 
usionNetwork (bottom), in their best (left) and average (right) 
 ersions. The gre y area in the charts of the figure shows the
nderrepresented galaxies, corresponding to log 10 ( M ∗/ M �) < 8. 
The points relative to the MLP and FusionNetwork models turn 

ut to be very well distributed along the diagonal, evidencing the
ood performance obtained for stellar mass estimation. 
Finally, the graphs in Fig. 7 show the histogram of discrepancy

etween the target M ∗ value and the estimates, in log units, for the
LP (top) and the FusionNetwork (bottom), in their best (left) and

verage (right) cases. Mean values (red dashed lines) are very close to
ero, with most instances located within the red dotted lines, related
o the outlier thresholds from equation ( 5 ). 

In Fig. 8 , we show the variation of the metrics with redshift (top)
nd I E magnitude (bottom). The vertical lines highlight rele v ant
alues of the redshift distribution: the dashed line is the sample
ean μ; the densely dotted line evidences the range μ ± σ (one 

tandard deviation); the sparsely dotted line indicates the range μ
2 σ . Fig. 8 (a) shows that the FusionNetwork obtains the lowest

utlier fraction (bottom panel) and NMAD (mid panel) across the 
ajority of the redshift range. The bias (top panel) is comparable.

n general, each architecture shows the lowest error at intermediate 
edshift values, where more samples are available. As the redshift 
MNRAS 532, 1391–1401 (2024) 
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Figure 8. Variation of the bias (top), NMAD (centre), and fraction of outliers 
(bottom) of the reco v ered stellar mass with respect to the redshift (Fig. 8 a) 
and to the I E magnitude (Fig. 8 b). The redshift (resp. I E magnitude) range on 
the x -axis is divided into 20 bins, and the grey area evidences the bins with 
less than 2000 samples. 
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Table 6. Results for SFR estimation on the full data set. Bold: best values and 
closest competitors. SED, DLNN, and CNN are from Euclid Collaboration: 
Bisigello et al. ( 2023 ). 

Algorithm Model f out � SFR NMAD 

SED 0 .622 −0 .065 0 .637 
DLNN best 0 .411 −0 .021 0 .350 

average 0 .416 −0 .045 0 .359 
CNN best 0 .440 0 .016 0 .383 

average 0 .446 −0 .063 0 .390 
CNN S best 0 .3819 −0 .0305 0 .3097 

average 0 .3614 0 .0017 0 .2949 
MLP best 0 .3409 −0 .0239 0 .2719 

average 0 .3424 −0 .0093 0 .2697 
FusionNetwork best 0 .2970 0 .0201 0 .2484 

average 0 .2963 0 .0011 0 .2394 

Table 7. Results for SFR estimation in the balanced data set. Bold: best 
values and closest competitors. SED, DLNN, and CNN are from Euclid 
Collaboration: Bisigello et al. ( 2023 ). 

Algorithm Model f out � SFR NMAD 

SED 0 .560 −0 .115 0 .521 
DLNN best 0 .310 −0 .023 0 .280 

average 0 .315 −0 .027 0 .293 
CNN best 0 .325 −0 .046 0 .293 

average 0 .345 −0 .055 0 .306 
CNN S best 0 .2812 −0 .0611 0 .2359 

average 0 .2600 −0 .0282 0 .2297 
MLP best 0 .2500 −0 .0285 0 .2211 

average 0 .2355 −0 .0302 0 .2149 
FusionNetwork best 0 .2076 0 .0145 0 .1906 

average 0 .2109 −0 .0189 0 .1937 

Figure 9. Comparison between the estimated SFR and the target value. The 
red dashed line is the identity, and the red dotted lines correspond to the outlier 
definition from equation ( 8 ). The grey area evidences the underrepresented 
galaxy classes. i.e. SFR ≤ 1 M � yr −1 . 
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ncreases, outlier fraction and NMAD suffer a marginal rise, also due
o the scarcity of samples with higher redshift. The metrics acquire
ess statistical significance in the redshift range > 3 (grey area), which
s poorly represented in the data set. A similar trend can be seen by
nalysing the measures with respect to the I E magnitude, shown in
ig. 8 (b): slightly better performance of the FusionNetwork on outlier
raction (bottom panel) and NMAD (mid panel), with comparable
ias (top panel), o v er most of the magnitude range, with large noise
t the underrepresented bright end (grey area, I E < 20). 

.3.3 SFR estimation 

he results for the SFR estimation are reported in Tables 6 and 7 , and
hown in Figs 9 and 10 . The considerations in the following hold for
NN S as well as for CNN. 
First of all, we e v aluate the SFR performance achiev ed o v er the

ull data set, summarized in Table 6 . Overall, the best f out , �M ∗,
nd NMAD are all achieved by the FusionNetwork average model.
n terms of outlier performance, best and average MLP models are
omparable to each other, and significantly better than DLNN and
NN. FusionNetwork best and average models are also comparable
ith each other, and significantly better than MLP. A similar
rogression can be seen on NMAD, with MLP better than DLNN
nd CNN, and further impro v ement achiev ed on FusionNetwork. The
ias values � SFR are comparable, in the range of a few per cent, with
NRAS 532, 1391–1401 (2024) 
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Figure 10. Error distribution on SFR estimation. The red vertical dashed line 
shows a bias close to zero, and the red dotted lines correspond to the outlier 
definition from equation ( 8 ). 
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Figure 11. Variation of the bias (top), NMAD (centre), and fraction of 
outliers (bottom) of the reco v ered star formation rate with respect to the 
redshift (Fig. 11 a) and to the I E magnitude (Fig. 11 b). The redshift (resp. 
I E magnitude) range on the x -axis is divided into 20 bins, and the grey area 
evidences the bins with less than 2000 samples. Relevant redshift (resp. I E 
magnitude) ranges are shown by the vertical lines: mean (dashed), one and 
two standard deviations. 
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he best result from the average CNN S and FusionNetwork ( < 0.2 per
ent). 

Estimation of the SFR pro v es to be much more challenging than
he other two parameters. In particular, for redshift and stellar mass
redictions, most of the f out results are in the order of 10 −3 , while
n SFR our best value of f out is 0.2963 (30 per cent of outliers).
one the less, our method leads to significant impro v ements o v er

he SED fitting method (62 per cent), and performs significantly 
etter than the DLNN (41 per cent) and CNN (44 per cent) models.
his can be mainly explained, to our understanding, by the ability 
f the networks to simultaneously estimate all targets and by the 
daptability of FusionNetwork. 

In Table 7 , we report the results achieved on the balanced data set.
here is a noticeable impro v ement on f out from both MLP ( ∼24 per
ent) and FusionNetwork ( ∼21 per cent), with the best model of the
atter being the best o v erall (20.76 per cent). 

Bias values are comparable for most methods, within a factor 
wo; the very small absolute value of � SFR on the whole data
et, for the average CNN S and FusionNetwork, may be just a 
appy coincidence. The NMAD on MLP ( ∼22 per cent) impro v es
ignificantly with respect to DLNN and CNN ( ∼29 per cent), with
maller, but still appreciable, additional impro v ement ( ∼19 per cent)
n FusionNetwork. 
In Fig. 9 , the target values of SFR (whole data set) are compared

ith our estimates, respectively, for the MLP (top) and FusionNet- 
ork (bottom), in their best (left) and average (right) versions. The 
rey area in the charts of the figure shows the underrepresented 
alaxy classes, i.e. log 10 [ SFR / (M � yr −1 )] < 0. It may be noted that,
ompared to previous plots (Figs 4 and 6 ), the point cloud is much
cattered, with largest errors in the underrepresented area. 

The graphs in Fig. 10 show the histogram of discrepancy between 
he target SFR value and the estimates, in log units, for the MLP
top) and the FusionNetwork (bottom), in their best (left) and average 
right) cases. Mean values (red dashed lines) are still close to zero,
ith most instances within the red dotted lines, corresponding to the 
utlier thresholds from equation ( 8 ). 
The variation of the reco v ered SFR metrics with redshift and

 E magnitude is shown in Fig. 11 . SFR estimation in the low
edshift range degrades as the number of samples decreases, similarly 
o the stellar mass prediction. Our experiments show decreasing 
utlier fraction and NMAD at increasing redshift, up to z � 3,
here underrepresentation becomes dominant. As in stellar mass 

stimation, the lowest error is obtained for galaxies fainter than the 
right end of the I E band, partly because of their large number in
he data set. Also, noisy ranges are reflected both in redshift and I E 

agnitude distributions. 
.4 Discussion 

he results impro v ements achiev ed appear to be related to two
ifferent aspects. On one side, simultaneous estimation of physical 
roperties, which may be expected to bear connections in classes 
f objects, gives our tools a chance to learn the ‘shape’ underlying
ur data distribution. Besides, images and photometric data have a 
ifferent internal structure, since the former encode a bidimensional 
ix el-to-pix el relationship that is not present in a table of magnitudes,
hose columns could, e.g., be easily swapped without any loss of

nformation. This lead us to the choice of tools (MLP and Resnet50)
edicated to each kind of data, using an additional MLP layer to
erge the intermediate results. 
In general, the estimate of the SFR achieves the greatest improve-
ent with respect to the other physical quantities. Ho we ver, the
FR estimation still remains much more noisy than redshift and 
tellar mass. This is possibly implicit in the natural spread of SFR
hroughout the data set. 

Also, we achieve a significant estimate impro v ement in data re-
ions where there are more samples in the training set. This confirms
hat the netw orks f ail to generalize correctly in underrepresented
egions. Data availability depends on the distribution of objects 
n the Uni verse; ho we ver, gi ven that more and more data may be
MNRAS 532, 1391–1401 (2024) 
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xpected to become available with new instruments and forthcoming
urv e ys, our capabilities to extract information, in particular by
raining deep learning tools, may be expected to impro v e as well.
uture developments may therefore take into account the increasing
ata ensemble expected in coming years, so that, rather than freezing
 specific architecture, an e voluti ve approach seems to be called for.

We recall that we analysed only the data set using all nine pho-
ometric bands, i.e. the four Euclid plus the five ground-based ones,
hich is the case providing the best results in Euclid Collaboration:
isigello et al. ( 2023 ), neglecting the case restricted to the four
uclid bands. We may expect that more information is in general an
sset, but the weight may be different depending on the associated
oise lev el and, abo v e all, on the astrophysical rele v ance of specific
ata subsets: e.g. the authors of that paper remarked that the shorter
avelength ground-based filters are especially useful to impro v e on
FR estimate, due to the higher sensitivity of the parameter to UV,
ather than near-IR, radiation. 

Diagnostics uncertainty suffers a natural increase in data starved
egions, i.e. bright magnitude, high z, or low SFR populations. It may
herefore be expected that future surveys, increasing the available
raining data set also in such regions, will allow for better parameter
stimation, depending on the specific information content. 

Comparing our performance with Euclid Collaboration: Bisigello
t al. ( 2023 ) in the same conditions, corresponding to the balanced
ata set, the redshift estimate within a normalized error of 0.15 is ap-
roximately equi v alent, i.e. achie ved in 99.9 per cent of the instances;
lso, the stellar mass estimate within a f actor tw o ( ∼0.3 dex) is in
oth cases obtained for 99.5 per cent of the sample. Besides, the SFR
stimate, within a factor two ( ∼0.3 dex) improves from ∼70 to ∼80
er cent of the balanced sample. 

In the former two cases, the tools used by Euclid Collaboration:
isigello et al. ( 2023 ) already achieved a nearly perfect match
etween target and output, and it would be difficult to claim an
f fecti v e impro v ement. The latter case is more challenging, and the
erformance gain is therefore both rele v ant in itself and appealing
n the application perspective. In the selected context, the proposed
pproach of simultaneous estimation of redshift, stellar mass, and
FR appears to be fruitful, providing some improvements already in

he comparison of the original CNN with our CNN S , which is a close
nough tool apart from the capability of taking better advantage of
arameter correlations hidden in the data. 
The proposed FusionNetwork tool also appears to make a signif-

cant contribution to further improving the SFR estimate, arguably
ue to its higher learning flexibility associated with the separate
re-processing of images and photometric data, and in particular
he exploitation of the ResNet capabilities on images. Therefore,
usionNetwork provides the best results on collective estimate of

he three parameters ensemble, even if individual results are in
ome cases suboptimal. Besides, the MLP, providing intermediate
erformance with significantly reduced complexity (since it only
orks on photometric data) remains an interesting tool that may be

onveniently retained for comparison and verification purposes. 
Our future work may include further impro v ement on the proposed

iagnostic tools as well as application to other science areas. The
ynergy between the Euclid Wide Surv e y and Gaia on the common
40 per cent sky area is particularly of interest. Similar issues have

een recently discussed by some of the authors (Gai et al. 2022 ),
estricted mainly to the maintenance of the Gaia catalogue on the
tellar population shared with China space station telescope (CSST).
he investigation can be applied to the galaxy population at the faint
nd of Gaia and the bright end of Euclid , where complementary
maging and photometric measurements may be matched. Gaia will
NRAS 532, 1391–1401 (2024) 
rovide an independent photometric determination in the visible ( G
and and BP/RP colours) for most sources in the common magnitude
ange, thus helping with respect to the general issue of better spectral
efinition of the Euclid tar gets. Syner gy with other projects may be
onsidered as well. Ground-based surv e ys will pro vide more accurate
hotometric and spectroscopic data on statistically significant subsets
f galaxies, but not on the whole Euclid data set. Besides, the CSST
Liu et al. 2023 ) may provide a valuable additional contribution due
o its photometry ranging from near UV to near IR, and a sky coverage
uite comparable, although not totally superposed, to Euclid. 

 C O N C L U S I O N S  

n this work, state-of-the-art deep learning architectures are used
o estimate redshift, stellar mass, and SFR of galaxies o v er an
eterogeneous data set including tabulated photometric data and
imulated H -band images from Euclid . 

One of the key aspects of our approach is the simultaneous
stimation of the three physical properties, whereas machine learning
echniques have been used in previous works to estimate them
ndividually. The other main component consists in the hierarchical
ombination of tools, each optimized for processing a specific kind
f data, in a multimodal architecture. 
The best results are achieved on the balanced data set, excluding

he underrepresented regions of the variables. The performance
n the estimation of redshift and stellar mass is > 99 per cent,
omparable to that achieved in Euclid Collaboration: Bisigello et al.
 2023 ). Conv ersely, significant impro v ements are reached on SFR
stimates, with a considerable reduction of outliers from ∼30 per
ent in that paper to our ∼20 per cent: simultaneous estimation and
doption of advanced ML tools appear to provide better capabilities
n constraining the most uncertain quantity by consistency with the
ther parameters. Galaxy evolution studies and extragalactic science,
n general, will undoubtedly benefit from such impro v ed diagnostics
erformance. 
We emphasize that our method is general and can be easily

pplied to other multimodal data consisting of images and tabular
nformation. In particular, it can be easily extended to include
dditional photometric data, which would significantly impro v e the
vailable astrophysical information, thus possibly improving the
stimation of the desired parameters. Multimodal data combination
s a potential asset towards exploitation of the synergy among several

odern projects and surv e ys; specific options will be e v aluated, also
epending on the available resources and opportunities. 
The Euclid space telescope recently entered its nominal operation

hase, and will soon provide its first data release. Thus, our proposed
pproach could be ef fecti vely tested and used on real data within
bout a year. For application to real data, future developments on
usionNetwork (including tests on other modern ML tools) may
e required in order to impro v e the match, e.g. to Euclid in-flight
arameters (PSF shape, noise levels, and so on), and to extend the
raining data set with inclusion of up-to-date science data, e.g. new
bservations, in particular to impro v e the description of as yet poorly
epresented classes of galaxies. Recent advances on simulated Euclid
hotometry and imaging (Euclid Collaboration: Bretonni ̀ere et al.
023 ; Euclid Collaboration: Merlin et al. 2023 ) may be conveniently
ncluded to this purpose. 
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