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Abstract

The paradigm of rationality in choices, which assumes that the decision maker selects the avail-
able alternative(s) that maximize her utility, has been enclosed by several notions of bounded
rationality. These more flexible models aim to explain choice data using regularity properties
inspired by emerging theories from experimental economics and psychology. In the chapters of
these thesis, I analyze some reliable features of the existent bounded rationality models, and
propose novel methods to justify choice behaviors.

In the first chapter of this work, co-authored with Alfio Giarlotta, M. Ali Khan, and Francesco
Reito, we propose a non-standard way to articulate the trade-off between personal utility and
social distance. In mainstream neoclassical consumer theory, market prices and monetary in-
come are the only determinants of individual actions, and the other or the social enters choice,
if it enters at all, through the other’s actions or his/her maximized payoffs. Furthermore, even
when an agent’s preferences are hitched to a social reference point, a fully decisive and imme-
diate response is always assumed. Experimental evidence from both psychology and economics
suggests how social pressures and dissonant tensions question this immediacy. Our approach
deconstructs consumer choice to two stages: a non-decisive first stage in which a binary rela-
tion, called one-many ordering, yields an optimal interval to which choice is confined; a decisive
second stage in which present utility, the distance from the average choice and future social
expectations are taken into account. Finally, we sketch how such a non-neoclassical consumer
can be embedded in a game-theoretic situation.

In the second chapter, co-authored with Alfio Giarlotta and Stephen Watson, we define a
class of properties of choices, called hereditary, which encompasses most declinations of bounded
rationality present in the literature. All hereditary properties hold for few choices. Thus the
fraction of choices that can be explained by known models goes to zero as the number of items
tends to infinity. Several numerical estimates confirm the rarity of bounded rationality even for
small sets of alternatives.
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In the third chapter, co-authored with Alfio Giarlotta, and Stephen Watson, a combinatorial
approach is used to identify and compute the number of non-isomorphic choices on four elements
that can be explained by several models of bounded rationality. These estimates offer a tool to
analyze choice experiments designed on four-element sets. The presented methodology allows
the application of an algorithm to estimate the fraction of choices justifiable by these models
on finite sets. The described approach can be extended to evaluate other – existing or future –
models of bounded rationality.

The fourth chapter studies a context-sensitive model of choice, in which the selection process
is shaped not only by the attractiveness of items but also by their semantics (‘salience’). Items
are ranked according to a binary relation of salience, and a linear order is associated to each item.
The selection of a unique element from a menu is justified by one of the linear orders associated
to the most salient items in the menu. I single out a model of linear salience, in which the order
encoding semantics is transitive and complete. Choices rationalizable by linear salience can
only exhibit non-conflicting violations of WARP. Numerical estimates show the sharp selectivity
of this testable model. The general model, discussed in the Appendix, co-authored with A.
Giarlotta and S. Watson, provides a structured explanation for any behavior, and allows us to
model a notion of ‘moodiness’ of the decision maker, typical of choices requiring as many distinct
rationales as items. Asymptotically, all choices are moody.
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Chapter 1

Individualism and social conformity: a
model of indecisiveness

Joint with Alfio Giarlotta, M. Ali Khan, and Francesco Reito

Introduction
In this paper, we offer a model of individual choice and decision-making that goes beyond
the one in mainstream neoclassical economic theory to take both individual desires and social
preferences into account. Our approach appeals to classical behavioral criteria that involve
both the maximization of personal utility and the minimization of some measure of divergence
between individual and social choice. This is to say, that the model takes an ‘average’ social
preference explicitly into account in a formulation of a two-stage decision. In the first stage, we
consider an agent, who is not able to determine a trade-off between these two competing criteria,
and is thereby indecisive. We formulate this indecisiveness through a binary relation, which we
call one-many ordering: ‘one’ because individual preferences are relevant; ‘many’ because the
pressure exerted by the surrounding environment plays a role; ‘ordering’ because the output is
a reflexive transitive relation. In the first stage a non decisive agent discards all the alternatives
that are dominated according to individual utility and social cost of once-in-a lifetime choice. In
the second stage the agent makes his choice, taking into account personal utility, present social
distance, and expected future social distance. In short, once the non-decisive part of the model
is accounted for, and a choice set is delineated as a consequence of this relation in a manner
reminiscent of Pareto, the individual finalizes the decisive part in a second stage.

As described in the seminal work of Duesenberry (1949) on “other-regarding preferences”,
decisions may be affected by reference dependence. In these cases, the agent’s decision is in-
fluenced by the choice adopted by a select group of people. Reference dependence has been
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widely documented in economic theory. Akerlof (1997) analyzes equilibria of different models
of social distance in individual decisions, claiming that social benchmarks may cause inefficient
allocations. Sobel (2005) describes agents’ preferences and concerns for status and reciprocity.
Bènabou and Tirole (2006) study the behavior of agents who have preferences for both rep-
utation and social esteem, showing that pro-social behavior can be ruled out. Andreoni and
Bernheim (2009) develop a version of the dictator game in which decision makers care about
social image and fairness of their decisions. Ijima and Kamada (2017) propose a network struc-
ture of agents, whose payoffs are affected by social distances. A recent review on the topic is
provided by Bursztyn and Jensen (2016), who discuss how social distances and social image can
be formalized within microeconomic models. The influence of the ‘other’ is more explicit in
applied and experimental economics. Croson and Shang (2008) report the effect of “downward”
social information in decisions to finance public goods. Grinblatt, Kelohariu, and Ikäheimo
(2009) document a “neighborhood effect” in consumer purchases of automobiles. Eesley and
Wang (2017) experimentally verify the impact of social influence on career choice.

The standard approach to analyze the effect of the reference point on individual choices
considers a decisive agent. Indeed, the agent is required to promptly determine a trade-off
between (i) the distance from the reference point, and (ii) personal utility. However, a strand of
the psychology literature—see Alison and Shortland (2019)—shows that people in high-pressure
contexts want to ‘kill two birds with one stone’, trying to obtain the maximum level of personal
utility, while being aligned with a social choice level. In these cases, the agent may not be able to
counterbalance individual preferences and social values, and become indecisive. Indecisiveness
under social pressure and tensions has been tested and measured by Rassin et al. (2007), who
analyze psychometrics properties of Indeciveness Scale.1 Agents’ indecisiveness has been recently
discussed also in experimental and theoretical economics (Gerasimou, 2018; Ok and Tserenjigmid,
2022), and this has influenced our approach towards capturing an agent’s hesitancy when he or
she makes choices under social pressure.

The organization of the paper is as follows. Section 1.1 introduces preliminary notation and
describes the model. Sections 1.2 and 1.3 show the results: the first focuses on individual’s
problem, and the second extend our approach to a game theoretic framework. Section 1.4
underscores the exploratory nature of the work, and suggests directions for further investigation.
All proofs are collected in the Appendix.

1The Indecisiveness Scale consists of 15 items that are answered on a 5-point scale.
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1.1 Preliminary notation and set-up
There is an individual who lives for three time periods, t0, t1 and t2. He has to make a funda-
mental choice (e.g. school or carrer choice, voting or location) that involves the first and second
period and has effects in the third. This fundamental choice is sequential, and will result at the
end of the second period in the variable denoted by e.23 The individual’s payoff is the (global)
utility U p¨q. There is a reference group that imposes social pressure on the individual, in the
sense that the latter faces the cost cpδe,esq, based on the distance, denoted by δ, between e and
es, the (finite) average group choice.

In the first period, the individual makes a ‘myopic’ choice, based on a personal utility function
upeq, and c1pδe,esq. This choice is myopic because the individual considers the current social
distance (producing effects at t0 and t1), but not the future social distance he will face at t2. We
assume that at t0, and given a certain social distance, the individual can only restrict the set
of available alternatives, using a mechanism that will be explained below. At t1 the choice will
be definitive and well-formed. This final choice takes into account (by maximizing a function
U) both personal utility, the present social cost, and the expected cost of the distance between
e and ef , which represents the social group average choice that will be prevalent in future time
pt2q, after the fundamental choice is made.

The agent’s global utility can be written as

U
`

upeq, c1pδe,esq, U
`

upeq, c1pδe,esq, c̄2pδe,ef q
˘ ˘

. (1.1)

The arguments of the function are as follows.

• upeq : R` Ñ R is a utility function, which attains its (finite) maximum at e˚. This map
accounts for personal benefits and costs of the choice e, with no social concerns.

• The map ef is a random variable on R` with finite support, and it describes the agent’s
belief about the future social group choice, that will be formed at t2. We denote by ρpef q

the density of ef , if any. Furthermore, we denote by F the family of all random variables
on R`.

• δ : R2
` Ñ R` is a metric that measures the distance between any pair of choices in R`.

We denote by δe,es the distance between any choice e P R` and es. We denote by δe,ef the
distance between any choice e P R` and ef . Observe that δe,ef is a random variable.

2Fundamental choices have been analyzed by Heifetz, and Minelli (2015).
3This sequential approach is in line with the existing literature on bounded rationality: see Manzini and

Mariotti (2007), and references therein.
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• The maps c1p¨q and c2p¨q are nondecreasing cost functions of the distance of e respectively
from either es or ef , with c1p0q “ c2p0q “ 0. We denote by cpδe,esq the cost of the distance
between e and es, and by c2pδe,ef q the cost of the distance between e and ef . Since c2pδe,ef q

is a random variable, we denote by c̄2pδe,ef q the expected cost of the distance between e

and ef .

• Up¨q is a utility function summarizing individual preferences at t1, nondecreasing in u, and
nonincreasing in c1 and c2.

In the first period, the individual reduces the set of feasible alternatives to those that are
Pareto-optimal with respect to (a) personal utility, and (b) the cost of the distance of the indi-
vidual choice from the current reference group point. This approach allows agent’s indecisiveness
and no compensation between alternative criteria. Here by compensation we mean the ability
to promptly select the item that maximizes agent’s global utility, taking into account personal
utility and social concerns. It can be the case that the agent, feeling the burden of a conflict
between personal aspirations, and social pressure, becomes indecisive, and discards only those
alternatives that are dominated in both criteria. Thus, a choice is preferred to another one if
and only if it gives a higher personal utility and is closer to the reference group’s choice. In the
second period, the agent overcomes his indecision, and makes his fundamental choice, according
to the personal beliefs about the future choice of the reference group. More formally, the process
goes as follows.

1. At t0, the agent observes es, and commits to restrict his available choice to the subset of
alternatives that are maximal with respect to the binary relation ě on R` defined by

ei ě ej ðñ upeiq ě upejq and c1pδei,esq ď c1pδej ,esq (1.2)

for all ei, ej P R`. We call ě the one-many ordering, since it Pareto-ranks all alternatives
according to the conflict between personal utility (‘one’) and cost of δe,es(‘many’). As
usual, ą denotes the strict part of ě, i.e., e ą e1 if and only if e ě e1 and e1 ğ e.

2. At t1, the agent chooses e from the interval determined at t0, taking into account personal
utility, the cost of the distance of her choice from the current social choice, and the expected
cost of δe,ef , the future social distance. The maximization problem becomes

max
e PmaxpR`,ěq

U
`

upeq, c1pδe,esq, c̄2pδe,ef q
˘

. (1.3)

Figure 1.1 pictures the steps of the decision process.

14



The individual observes es, and
discards dominated alternatives
according to up¨q and c1 pδ¨,esq

He overcomes social pressure and relying on
his belief ef , chooses the available

alternative maximizing
U
`

up¨q, c1pδe,esq, c̄2
`

δ¨,ef

˘˘

ef realizes

t0 t1 t2

Figure 1.1: The agent’s decision process

Note that the time frame between t0 and t1 is typically lower than the one starting at t1

and finishing at t2, since the consequences of a fundamental choice can be revealed after years
(think again to education, or voting). 4 Thus, the social choice prevalent at t2 may be, in
principle, rather differente from es. This explains why ef is a random variable. Note that the
agent assumes his fundamental choice, performed at t1, will be kept and produce effects at t2.
This is distinctive of fundamental choices, which are usually thought as a once in a lifetime
decisions: career and school choices, for instance, are expected to affect people’s future, as
analyzed in Hulum, Kleinjans, and Nielsen (2012) and Lent and Brown (2020). Thus, agents
decide considering the long-run effects of their current choices, even if they would have the
possibility to change them as time passes.

1.2 The individual’s problem
As already specified, we conceive the individual’s choice in two distinct stages, a indecisive one
and a decisive one. We begin with the first.

1.2.1 Indecisive stage

As explained in the Introduction, individuals may suffer from social pressure: this is the burden
the agent feels when his choice is too far from that prevailing among the people around him. After
observing the distance of his personal preference from the reference point, the agent becomes
indecisive, unable to fully resolve the contradiction between individual choice and the distance
from the reference group’s choice. To reduce the set of alternatives, the agent takes into account
two distinct criteria: (a) personal utility of the fundamental choice e, and (b) social utility of
the fundamental choice.

4It can be observed that the timespan t1 ´ t0 is a mere expositional device rather than a passage of time. In
fact, the time needed to decide between available alternatives may be considerable: think to purchasing a new
house (after having discarded many apartments proposed by a real estate agency) or accepting a job offer (after
having considered many potential placements).
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Let us justify our approach by an enlightening example: the process to acquire an academic
education. A society with a low level of education may well regard high education useless, or
even consider it with suspicious circumspection. Thus, the distance between the agent’s desired
education and the level of culture of the community may become a measure of social utility
or “acceptability”. In this case, the conflict between the social level of choice and individual
aspiration may not allow the agent to immediately take a decision. This is true also in the
opposite case in which a reference group may push the individual to pursue a high level of
education. For instance, Guerra and Braungart-Rieker (1999) and Saka, Gati, and Kelly (2008)
reported the carrer-decision making difficulties of students college caused by social pressure.
Career indecisiveness as a product of parents-child expectation incongruence has been empirically
documented by Zhang et al. (2022). The maximization of the one-many ordering captures the
indecisiveness that arises from the conflict between personal aspirations and social pressure, and
it constitutes the first decision process of our approach. The relationship ei ě ej says that ei is at
least as good as ej if both (1) ei gives at least the same utility as ej, and (2) ei is at least as close
to the reference point as ej. Thus, when the agent selects items which are maximal according to
ě, he excludes all the suboptimal alternatives that bring a lower personal utility and a higher
social distance. On the other hand, indecisiveness forces him to keep items displaying clashing
combinations of personal utility and social distance. The elimination dominated alternatives
in multiattribute decision making has been reported and examined in consumer psychology,
economics, and computer science (Huber, Payne, and Puto, 1982; Herne, 1999; Xu, 2004; Xu
and Xia, 2012), but in this work we use it to describe and reveal agent’s indecision.

The relation ě is a (typically incomplete) preorder, that is, reflexive and transitive.5 The
next result shows that shows that, under some assumptions, maxpR`,ěq is a closed interval.6

Proposition 1. Assume upeq is strictly quasiconcave, c1p¨q is increasing in δ, and let δ be the
euclidean distance on R`. When es “ e˚, maxpR`,ěq “ es “ e˚. Otherwise, maxpR`,ěq “

re´, e`s “ rminpes, e
˚q,maxpes, e

˚qs.7

Proof. Since up¨q is strictly quasiconcave, it follows that e˚ is unique and u is increasing in r0, e˚q,
and decreasing in pe˚,`8s. Consider the case es “ e˚. Toward a contradiction, suppose there
is e1 ‰ es belonging to maxpr0,`8q,ěq. We have upe˚q “ upesq ą upe1q and δes,es “ 0 ă δe1,es ,
which implies c1pδes,esq “ 0 ă c1pδe1,esq. Thus es ą e1 and e1 R maxpr0,`8q,ěq.

Next, consider the case es ă e˚. We claim that re´, e`s is exactly res, e˚s. To show that we
5Recall that ě is complete if x ě y or y ě x holds for all distinct x, y P X.
6Formally, maxpR`,ěq “ tx P R` | y ą x for no y P R` u
7A function U : R` Ñ R is strictly quasiconcave if for any x, y P R` and any λ P p0, 1q we have that

U pλx ` p1 ´ λqyq ą minpUpxq, Upyqq. When the above inequality weakly holds for any λ P r0, 1s, we say that U
is quasiconcave.
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need to prove that paq any point out of res, e˚s does not belong to re´, e`s, and pbq any point in
res, e

˚s belongs to re´, e`s.
To show that paq holds, assume by contradiction that there exists e1 P re´, e`s that is not

in res, e˚s. Two cases are possible: e1 ă es or e1 ą e˚. If e1 ă es ă e˚, (strict) monotonicity of
u implies upesq ě upe1q, and δes,es “ 0 ă δe1,es , which implies c1pδes,esq ă c1pδe1,esq, since c1 is
(strictly) increasing. Thus es ą e1 and e

1

R re´, e`s. If e1 ą e˚ ą es, since δ is the euclidean
distance on R`, we have that δe˚,es ă δe1,es , which implies cpδe˚,esq ă cpδe1,esq, and upe˚q ě upe1q,
since e˚ is argmaxe upeq. Thus e˚ ą e1, which implies that e1 R re´, e`s.

To show that pbq holds as well, take a point e1 P res, e
˚s. Toward a contradiction, suppose e1

does not belong to re´, e`s. This implies that there is a point e2 such that e2 ą e1. Without loss
of generality, two cases are possible: e2 ă e1 or e2 ą e1. If e2 ă e1, then upe1q ą upe2q, since u

is (strictly) increasing in r0, e˚s. This contradicts the hypothesis, since e2 č e1. If e2 ą e1, then
δe1,es ă δe2,es . This implies c1pδe1,esq ă c1pδe2,esq. This contradicts the hypothesis, since e2 č e1.
The argument is symmetric when es ą e˚.

Thus, when individual preferences are convex,8, and the cost of present social distance is
represented by an increasing map, three cases are possible:

(i) e´ “ es “ e˚ “ e`: the choice that maximizes individual utility equals the social choice.
The maximum is unique, and is obtained at es. The agent will choose e˚, maximizing
personal utility without any form of social pressure.

(ii) e´ “ es ă e˚ “ e`: the social level of choice is lower than that maximizing individual
utility. The optimality interval is res, e˚s. All distinct choices in the interval are pairwise
incomparable. In this first decision stage, the individual is not able to choose anything
within this interval: high levels of e P res, e˚s provide higher utility but also higher social
pressure, since the personal choice is far from the social level; low levels of e P res, e

˚s

provide less social pressure but also lower level of personal utility.

(iii) e` “ es ą e˚ “ e´: the social choice is higher than that maximizing personal utility. The
optimality interval is re˚, ess. This case is symmetric to the previous one. Again, the
individual is not able to choose within the interval: high levels of e P re˚, ess provide less
social pressure but lower personal utility, whereas low levels of e P re˚, ess provide higher
utility but also high social pressure.

Note that the individual’s commitment to re´, e`s holds for two reasons: first, alternatives
discarded at t0 may not be available at t1. This happens in many real-life situations: once

8This is a standard assumption in microeconomic theory, see Mas-Colell, Whinston, and Green (1995).
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one receives a job offer, he must respect a deadline to sign the contract, otherwise the offer is
revoked. Moreover, keeping all alternatives available at t1, whenever possibile, may be costly for
the agent. We now turn to the analysis of the second stage.

1.2.2 Decisive stage

Once the selection of those alternatives that are maximal with respect to the one-many ordering
is made, the agent faces (in two cases out of three) a new decision problem. In fact, he now
takes as given a (not necessarily ex-ante) belief about the future social value ef (that will show
up at t2), and chooses e such that the tradeoff between personal utility, present social distance
and future social distance is maximized. Note that the agent does not consider his belief at
time t0 because of (at least) two reasons: (1) “human myopia”, which leads him to underweight
the future consequences of his actions at t2 and overweight the associated present consequences
(Brown and Lewis, 1981; Angeletos and Huo, 2021); (2) the possibility that he simply has no
belief in the first stage, and shapes his expectations only when he overcomes the indecisiveness
by a more accurate subsequent reasoning.9 The next result shows the existence of an optimal
choice.

Proposition 2. If Up¨q is continuous at e, upeq is strictly quasiconcave, c1p¨q is increasing in
δ, and δ is the euclidean distance on R, an optimal choice exists.

Proof. Since U is continuous in e, and by Proposition 1 maxpR`,ěq “ re´, e`s is a closed
interval, apply Weierstrass’ theorem to conclude that

argmax
ePre´,e`s

U
`

upeq, c1pδe,esq, c̄2pδe,ef q
˘

exists.

A change in es affects the interval re´, e`s. Personal utility plays a role both in the constraint
and in the final decision. The cost c1pδe,esq of the current distance makes the agent undecided,
that is, unable to immediately compensate personal benefits with social costs, and affects also the
agent’s choice at t1. Moreover, the expected cost c̄2pδe,ef q of distance from the future reference
group’s choice, as the present social cost, compensates personal utility and the current social
cost in the final decision, and affects optimal choice according to the shape of U , δ and ef .

We denote by pe “ argmaxU
`

upeq, c1pδe,esq, c̄2pδe,ef q
˘

, if any. Note that ê is the solution to a
standard choice problem, in which the agent is decisive, and able to immediately maximize U ,

9In this work for simplicity we assume that beliefs are exogenous.
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considering present and future social distance. Figure 1.2 illustrates the case in which pe P re´, e`s:
the constraint is useless, and our predictions do not depart from neoclassical consumer theory.

0

1

upeq, ρpef q
c1 pδe,esq

c̄2
`

δe,ef
˘

e

c̄2pδq

c1pδq

es pe e˚

ρpef q

upeq

Figure 1.2: The alternative pe falls in the optimality interval (the red segment).

However, the belief ef may drive pe out of re´, e`s, leading the individual to choose an
alternative with utility U lower than the one he would have selected without social-pressure
constraints, falling in a indecisiveness trap. This case is depicted in Figure 1.3. In Section 1.3.1
we will show how this peculiar situation will turn into a social loss.

0

1

upeq, ρpef q
c1 pδe,esq

c̄2
`

δe,ef
˘

e

c̄2pδq

espe e˚

ρpef q

upeq

c1pδq
0

1

upeq, ρpef q
c1 pδe,esq

c̄2
`

δe,ef
˘

e

ρpef q

es pee˚

c̄2pδq

upeq

c1pδq

Figure 1.3: Extreme belief may move pe out of re´, e`s.
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1.3 Game-theoretic setting
In what follows, we introduce a game-theoretic setting which describes interactions between
agents who behave according to the procedure described in Section 1.1. In Subsection 1.3.1 we
assume that agents share similar preferences and beliefs. Subsection 1.3.2 contains a generaliza-
tion of our approach, that accounts for heterogeneous agents.

1.3.1 Homogeneous agents

We now embed the individual in a society in which agents share the same preferences, and
expectations. This simple representation may be used to describe a uniform society, in which
all members experience similar tastes, and beliefs. Without loss of generality, we use two agents.
Each agent i (i “ 1, 2) has objective function

Ui

´

uipeiq, c1ipδei,e´i
q, Ui

´

uipeiq, c1ipδei,e´i
q, c̄2i

´

δei,ef´i

¯¯¯

. (1.4)

The arguments of the objective function are simple elaborations for the game-theoretic setting
of the specification given in (1.1), where c1ip¨q and c̄2ip¨q are the cost functions of present and
future social distance of the i-th agent, and e´i P R is the choice of the other agent, who, in the
2-agents case, represents society. Moreover, ef´i represents the i-th agent’s belief about future
social choice. The other arguments are as follows:

• δei,e´i
: R2 Ñ R is a metric measuring the distance between the choice of agent i and that

of society. As before, we assume that c is nondecreasing in c1i.

• ef´i
is a random variable on R` representing the expected future social value, which will

be realized at t2,

• δei,ef´i
: R` ˆ F Ñ R` is the distance of ei from the future social level ef´i

.

Again, each individual’s choice is determined in two periods.

1. At t0, agent i observes the social level e´i. Accordingly, he restricts his choices to the subset
of alternatives that are maximal with respect to the binary relation ěi on R` defined as
follows for each i P t1, 2u and ei, e

1
i P R`:

ei ěi e
1
i ðñ uipeiq ě ui

`

e1
i

˘

and c1i
`

δei,e´i

˘

ď c1i
`

δe1
i,e´i

˘

. (1.5)

If maxpR`,ěiq is closed interval, we denote it by re´
i , e

`
i s “ rminpe˚

i , e´iq,maxpe˚
i , e´iqs.
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2. At t1, agent i selects from the interval determined at t0 the level of e. The goal is

max
ei PmaxpR`,ěiq

Ui

´

uipeiq, c1ipδei,e´i
q, c̄2i

´

δei,ef´i

¯¯

, (1.6)

taking into account personal utility, the cost of current social distance and the expected
cost of future social distance.

For each i P t1, 2u the agent’s strategy is ei P maxpR`,ěiq, and the associated payoff function
is Ui

´

uipeiq, c1ipδei,e´i
q, c̄2i

´

δei,ef´i

¯¯

“ Uipei, e´iq “ Ui : maxpR`,ěiq
2
Ñ R.10

Definition 1. A pair pēi, ē´iq is an equilibrium if, for each i P t1, 2u and e1
i P maxpR`,ěiq, it

holds ēi P maxpR`,ěiq, and Upēi, ē´iq ě Upe1
i, ē´iq.

Interaction between agents is based on the restriction of agent i’s alternatives to maxpR`,ěiq,
and on the maximization of Ui at t1. Figure 1.4 shows the steps of each agent’s decision process.

The agent i observes e´i, and
discards dominated alternatives
according to uip¨q and c1i

`

δ¨,e´i

˘

He overcomes social pressure and relying on
his belief ef´i

, he chooses the available
alternative maximizing

Ui

´

uip¨q, c1ipδ¨,e´i
q, c̄2i

´

δ¨,ef´i

¯¯

ef´i
realizes

t0 t1 t2

Figure 1.4: The i-th agent’s decision process.

The following proposition describes equilibria.

Proposition 3. Assume that Uip¨q is continuous at ei, uipeiq is strictly quasiconcave, c1ip¨q

is increasing, and let δ be the euclidean distance. If the pair pēi, ē´iq is an equilibrium, then
ēi “ ē´i. Moreover, an equilibrium always exists.

Proof. To show that in equilibrium ēi “ ē´i , first note that agents have the same preferences,
thus e˚

i “ e˚
´i “ e˚. Since ui is strictly quasi-concave, c1i is increasing and δ is the euclidean

metric, we have that maxpR`,ěiq “ rminpe´i, e
˚q,maxpe´i, e

˚qs for any i P t1, 2u. Moreover, by
Definition 1, for any i P t1, 2u, ēi must belong to rminpē´i, e

˚q,maxpē´i, e
˚qs. This condition is

satisfied if and only if ēi “ ē´i.
To show the existence of an equilibrium, take any e P R. Since Ui is continuous in ei, for

each i-th agent facing e´i “ e there is e1 P rminpe˚, eq,maxpe˚, eqs “ rminpe˚, e´iq,maxpe˚, e´iqs

that maximizes Ui. The reader can check that the pair pe1, e1q is an equilibrium.
10By maxpR`,ěiq

2 we denote the Cartesian square of maxpR`,ěiq.
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The previous result guarantees the existence of an equilibrium, but, depending on the as-
sumptions about ui, c1i, c2i, δi, and Ui, it is possible to provide a full description the set of
equilibria.

Example 1. Akerlof (1997) presents a mathematical formalizations of decisions in which social
interactions matter. Each agent maximizes a utility function consisting of two components: (1)
the intrinsic utility�� of the agent’s choice, and (2) the social distance� of his decision from the
other individuals of the society. One of the models discussed in Akerlof’s work is the conformist
model. A conformist agent maximizes

Ui “ ´d|e´i ´ ei| ´ ae2i ` bei ` k ,

where e´i is the choice of any other individual of the society, and a, b, k, and d are constant
(and nonnegative). The parameter d measures how the agent gains/looses when his level of choice
is higher/lower than the others. The agent aims at adhering to the society’s prevailing opinion.
The equilibrium is any pē, ēq, where ē P

“

b´d
2a

, b`d
2a

‰

. The author argues that any equilibrium
different from b

2a
, the individual optimum, is not Pareto efficient, and it brings a social loss

caused by the need of conformism. Akerlof assumes that agents are immediately decisive, and
capable to select the alternative which maximizes the difference between personal utility and
social distance. As already argued, according to our approach social decisions may cause agent’s
indecisiveness. Thus, in our framework, he first discards any alternative dominated according to
personal utility and social distance, and then relies on his beliefs on future social standards to
perform the optimal choice. If we adopt the assumptions of conformist model in our approach,
setting uipeiq “ ´ae

2
i ` bei ` k, c1i

`

δei,e´i

˘

“ ´d|e´i ´ ei|, and c̄2i “ 0 (agents do not share any
concern about future social distance) we obtain the same set of equilibria.11 Note that this result
does not necessary hold if agents care about the expected future social cost of their decision,
that is, assuming that c2i has some non-zero values. For instance, if we assume that each agent’
objective is

max
eiPmaxpR,ěq

Ui “ max
eiPmaxpR,ěq

´E
`

2d|ef´i
´ ei|

˘

´ d|e´i ´ ei| ´ ae2i ` bei ` k ,

where ef´i
is random variable such that P

`

ef´i
“ b`2d

2a

˘

“ 1, we obtain, according to Def-
inition 1, a range of equilibria

“

b
2a
, b`2d

2a

‰

, in which any pair different from b`2d
2a

is not Pareto-
efficient.12 The belief ef´i

moves the individual optimum to b`2d
2a

. As before, the need for current
conformity causes a social loss for any equilibrium configuration pē, ēq such that ē P

“

b`d
2a

, b`2d
2a

˘

.
Moreover, all the equilibrium configurations pē, ēq such that ē P

“

b
2a
, b`d

2a

˘

lead a social loss caused
11To see this, observe that Definition 1 applies only to the pairs pē, ēq such that ē P

“

b´d
2a , b`d

2a

‰

.
12The proof is straightforward, and available upon request.
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by indecisiveness. In facts, each agent at t0 does not promptly decide, but needs to perform a first
selection, and, discarding all items dominated in both dimensions (personal utility, maximized
at b

2a
, and social distance, minimized at e´i), determines the interval maxpR,ěiq “ re´, e`s.

At t1, overcoming indecision, the agent relies on his belief that settles at b`2d
2a

the future social
choice. Overall, choices belonging to

“

b`d
2a

, b`2d
2a

‰

would now yield a better outcome than selecting
an e P r b

2a
, b`d

2a
q, but if such alternatives do not belong to maxpR,ěiq, the agent cannot select

them. This social loss is a byproduct of the indecisiveness trap described in Section 1.1. Observe
also that if we would have adopted a standard definition of equilibrium, in which agent do not
reduce his set of alternatives to maxpR,ěiq, the equilibrium configurations would have been of
the type pē, ēq, where ē P

“

b`d
2a

, b`2d
2a

‰

.

1.3.2 The general case
We now embed the individual in a society with n P N agents. Any agent has an inherited
choice e0i, which depends on his past decisions, and social background. We denote by e1i the
fundamental choice the individual performs at t1. Each i-th agent, with i P t1, ¨ ¨ ¨ , nu, has
global utility

Ui

ˆ

uipe1iq, c1ipδe1i,e0´iq, Ui

ˆ

uipe1iq, c1ipδe1i,e1´iq, c̄2i

ˆ

δe1i,eif´i

˙˙˙

. (1.7)

The arguments of the i-th agent’s global utility function Ui are elaborations for the game-
theoretic setting of the specification given in (1.1), and are as follows.

• e1i P R` is the i-th agent’s fundamental choice performed at t1.

• ui : R` Ñ R is i-th agent personal utility, reaching a finite maximum at e˚
1i P R`.

• δe1i,e0´i
“

`

δe1i,e01 , ¨ ¨ ¨ , δe1i,e0i´1
, δe1i,e0i`1

, ¨ ¨ ¨ , δe1i,e0n
˘

P Rn´1
` is a vector containing all the

n´ 1 distances of the type δe1i,e0j , where δ is as in Section 1.1, and j P t1, ¨ ¨ ¨ , nuztiu.

• δe1i,e1´i
“

`

δe1i,e11 , ¨ ¨ ¨ , δe1i,e1i´1
, δe1i,e1i`1

, ¨ ¨ ¨ , δe1i,e1n
˘

P Rn´1
` is a vector containing all the

n ´ 1 distances of the type δe1i,e1j , where δ is as in Section 1.1, and j P t1, ¨ ¨ ¨ , nuztiu.
Since the game is simultaneous, each agent does not know a priori the choice of the
others at t1. Thus, in determining his choice at t1 each i-th agent relies a random vector
ei1´i “

`

ei11, ¨ ¨ ¨ , e
i
1i´1, e

i
1i`1, ¨ ¨ ¨ , e

i
1n

˘

P Fn´1
` describing his belief about others agents

choice at t1. We denote by δe1i,ei1´i
“

´

δe1i,ei11 , ¨ ¨ ¨ , δe1i,ei1i´1
, δe1i,ei1i`1

, ¨ ¨ ¨ , δe1i,ei1n

¯

P Rn´1
`

the vector that embodies the expected distances between the i-th agent’s choice at t1 and
each j’s expected choice at t1.
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• δe1i,eif´i
“

´

δei,eif1
, ¨ ¨ ¨ , δei,eifi´1

, δei,eifi`1
, ¨ ¨ ¨ , δei,eifn

¯

is a vector containing all the n ´ 1

distances between the i-th agent’ fundamental choice and any other expected j-th agent
future choice efj , where each eifj is a random variable, which describes the belief of i about
j’s future choice at t2. This vector accounts for the distance between the i-th agent’s choice
at t1 and the j-th agent’s choice at t2. We denote by eif´i

“

´

eif1 , ¨ ¨ ¨ , e
i
fi´1

, eifi`1
, ¨ ¨ ¨ eifn

¯

the vector of i-th agent’s beliefs about all other agents’ fundamental choice at t2.

• c1ip¨q : Rn´1
` Ñ R` is the i-th agent’s cost function, measuring the burden of the distances

between ei and and any other j-th agent’s present and past choice. We assume that ci

is non-decreasing in δe1i,e0j and δe1i,e1j for any j P t1, ¨ ¨ ¨ , nuztiu, and c1ip0q “ 0, where
0 P Rn´1

` is the zero vector. Observe that c1i
´

δe1i,ei1´i

¯

is a random variable, and we denote

by c̄1i

´

δe1i,ei1´i

¯

its expected value.

• c2ip¨q : Rn´1
` ˆF Ñ R` is the i-th agent’s continuous cost function, measuring the burden

of the distances between ei and and any other j-th agent’s future choice, that will produce
effects at t2. We assume that c2i is nondecreasing in δe1i,eifj

and δe1i,eifj
, and c2ip0q “ 0,

where 0 P Rn´1
` is the zero vector. Since any eij is a random variable, c2i

´

δe1i,eifj

¯

is a

random variable, and we denote by c̄2i

´

δei1,eifj

¯

its expectation.

• Uip¨q is a utility function summarizing the i-th agent’s preferences at t1, nondecreasing in
ui, and nonincreasing in c1i and c2i.

Again, each individual’s choice is determined in two periods.

1. At t0, agent i observes all the others agents inherited choices. To determine e1i, he first
restricts his choices to the subset of alternatives that are maximal with respect to the
binary relation ěi on R` defined as follows for each e1i, e

1
1i P R`:

e1i ěi e
1
1i ðñ uipe1iq ě ui

`

e1
1i

˘

and c1i
`

δe1i,e0´i

˘

ď c1i
`

δe1
1i,e0´i

˘

. (1.8)

2. At t1, agent i selects from the interval determined at t0 the level of e. The goal is

max
e1i PmaxpR`,ěiq

Ui

´

uipe1iq, c̄1i

´

δe1i,ei1´i

¯

, c̄2i

´

δe1i,eif´i

¯¯

, (1.9)

taking into account personal utility, the expected cost of the current social distance (suf-
fered at t1) and expected cost of the future social distance (suffered at t2).
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The i-agent’s set of strategies is maxpR`,ěiq, and we denote by P “
śn

i“1 maxpR`,ěiq the
product space of agents’ strategy sets. The i-agent’s payoff function is

Ui

´

uipe1iq, ci1
`

δe1i,e1´i

˘

, c̄2i

´

δei,eif´i

¯¯

“ Uipe1i, e1´iq “ Ui : P Ñ R.

Definition 2. A vector pē11, ¨ ¨ ¨ , ē1nq P Rn
` is an equilibrium if, for any i P t1, ¨ ¨ ¨ , nu and any

e1
1i P maxpR`,ěiq, it holds ē1i P maxpR`,ěiq and Uipē1i, ē1´iq “ Uipe

1
1i, ē1´iq.

The interaction between agents affects t1, since U depends on c1i
`

δ¨,e1´i

˘

. Figure 1.5 shows
the steps of the i-th agent’s decision process. Agents first suffer social distancing and are
indecisive. They can only discard what is jointly dominated according to personal utility and the
social distance’s cost. Eventually they choose the alternative which maximize current aspirations,
present and future social distances.

The agent i observes any e0j , and
discards dominated alternatives

according to uip¨q and c1i
`

δ¨,e0´i

˘

He overcomes social pressure and relying on
his belief eifj , he chooses the available

alternative maximizing
Ui

´

uip¨q, c̄1ipδ¨,ei´i
q, c̄2i

´

δ¨,eif´i

¯¯

eif´i realizes

t0 t1 t2

Figure 1.5: The i-th agent’s decision process.

The general framework introduced above aims to provide a paradigm to analyze individual
decisions affected by social concerns. Moreover, this setting allows to reproduce agents’ indeci-
siveness in choices affected by social tensions, such as school and career decisions. Differently
from Definition 1, Definition 2 display a standard notion of equilibrium, in which the choice
adopted by other agents at t1 does not affect indecisiveness at t0. However, in this framework
indecisiveness still plays a key role, determining P. Under suitable assumptions on P and Ui,
the existence of an equilibrium is guaranteed.

Proposition 4. If P is nonempty, compact, and convex, and Ui is quasiconcave in e1i and
continuous for each i P t1, ¨ ¨ ¨ , nu, then an equilibrium exists.13

Proof. For each pe11, ¨ ¨ ¨ , e1nq P P, define the map ϕ : P Ñ 2P as follows:

ϕpe11, ¨ ¨ ¨ , e1nq “

#

pe1
11, ¨ ¨ ¨ , e

1
1nq

ˇ

ˇ e1
1i “ argmax

e1iPmaxpR`,ěiq

Uipe1i, e1´iq for all i P t1, ¨ ¨ ¨ , nu
+

.

13A function Ui : P Ñ R is continuous if any inverse image U´1
i pV q of some open set V Ă R is open in P.
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Since for each i P t1, ¨ ¨ ¨ , nu the map Ui is continuous in e1i, and maxpRi,ěiq is nonempty
and compact, we conclude that ϕpe11, ¨ ¨ ¨ , e1nq ‰ ∅, for any pe11, ¨ ¨ ¨ , e1nq P P.14 Since for each
i P t1, ¨ ¨ ¨ , nu the map Ui is quasiconcave in e1i, we obtain that, for any pe11, ¨ ¨ ¨ , e1nq P P,
ϕpe11, ¨ ¨ ¨ , e1nq is a convex set. Given that for any i P t1, ¨ ¨ ¨ , nu the Ui is continuous, the
map ϕpe11, ¨ ¨ ¨ , e1nq has a closed graph. Since P is nonempty, compact, and convex, we apply
Kakutany’s fixed point theorem to conclude that an equilibrium exists.

Remark 1. Akerlof (1997) proposed an economic application of the Feynman (1963)’s gravity
theory to analyze the impact of social distance on individual decisions. The author assumes
that utility is inversely proportional to the product between the current social distance and
the expected social distance determined by his decision. Each i-th agent maximizes the utility
function

Ui “
ÿ

i‰j

p

pf ` |e0i ´ e0j|qpg ` |e1i ´ e1j|q
` p´ae21i ` be1i ` kq , (1.10)

where f, g, p are constant, e0i, e1j are the agent’��s choice at t0, t1, e0j is the choice of everyone
else at t “ 0, and e1j is the expected choice of everyone else at t “ 1. There are many possible
equilibria in the gravity model, which depend on the initial endowments. This model shares
common features with our general case. First, note that in both models each agent selects the
level of e1i taking into account personal utility and the distance between his choice and the
expected choice of everyone else at t1. Moreover, in Akerlof’s gravity model the agent maximizes
a utility function which embodies the distances between his inherited choice e0i and any other
starting choice e0j. In our approach the social cost of choices at t0 exerts pressure on the
agent, who is not immediately decisive, and discards all the alternatives which are dominated
according to personal utility and distance from the other’s agents inherited choice. Differently
from Akerlof’s elaboration, in our model agents at t1 decide dealing also with future consequences
of their choice (those that will show up at t2).

1.4 Concluding remarks
We have provided a theoretical framework to capture and formalize individual choice with both
short and long term life-cycle consequences. As documented in the experimental and empirical
literature in both psychology and economics, agents constantly struggle with the contradiction
between individual desires and social pressures, leading to some indecisiveness, especially in
fundamental choices. At first, the best they can do is to discard dominated alternatives. Then,

14Continuity of Ui in e1i is implied by the continuity Ui.
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they overcome indecision, and choose on the basis of the choice set, personal preferences, and
present and future social distance. In strategic interaction indecisiveness may lead to social loss.
In fact, extreme (exogenous) beliefs may drive the individual optimum out of the set of available
alternatives previously determined in the first stage, forcing the agent to select an item he would
have not choose without the commitment. Further research may be devoted to include a belief
formation and updating mechanism in the analyzed framework (Epstein, Noor, and Sandroni,
2007; Augenblick and Rabin, 2021), and verify whether this mechanism may rule out the loss
that arises from indecisiveness. Moreover, in the sketch of a game-theoretic setting that we
present, a society consists of only a finite number of agents. In real-life situations, reference
groups may be so large that the choice of just one individual is negligible and thereby does not
affect the others. Thus, a natural direction of research is to describe the effect of social distance
in fundamental choices using large games, in which players’ names are distributed in a atomless
probability space, and only a summary of societal actions play a role (Khan et al., 2013).
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Chapter 2

Bounded rationality is rare

Joint with Alfio Giarlotta and Stephen Watson

2.1 Models of bounded rationality
According to the theory of revealed preferences pioneered by Samuelson (1938), choice is ob-
served and preference is revealed. In this approach, rationality coincides with rationalizability,
that is, the possibility to justify the choice behavior of a decision maker (DM) by maximizing
the binary relation of revealed preference. However, rationalizability fails to explain many ob-
served phenomena. Following the inspiring analysis of Simon (1955), rationalizability has been
weakened by forms of bounded rationality, which aim to explain a larger portion of choices by
means of more flexible paradigms. Without claiming to be exhaustive, below we mention several
models of bounded rationality introduced in the literature in the last twenty years.

Manzini and Mariotti (2007) propose an approach in which the DM selects from each menu
the unique item that survives after the sequential application of distinct criteria (asymmetric
relations). Xu and Zhou (2007) characterize a rationalization method which justifies the selection
from any menu as the subgame perfect Nash equilibrium outcome of an associated extensive
game. Rubinstein and Salant (2008) investigate a post-dominance rationality choice rule: the
DM first discards any dominated alternative in the menu, and then chooses the best item from the
remaining ones. The choice procedure proposed by Manzini and Mariotti (2012a) uses semiorders
as rationales, always applied in a fixed order. In Manzini and Mariotti (2012b), the DM only
considers those alternatives that belong to some salient categories. Masatlioglu, Nakajima, and
Ozbay (2012) argue that the DM is typically endowed with a limited attention, and is unable to
take into account all the alternatives in a menu. Apesteguia and Ballester (2013), elaborating on
the work of Masatlioglu and Ok (2005), describe a DM who restricts her attention to alternatives
that are superior to her status quo. In the theory of rationalization of Cherepanov, Feddersen,
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and Sandroni (2013), the DM preliminarily discards items not satisfying some psychological
constraint. Apesteguia and Ballester (2013) describe a choice guided by routes. Yildiz (2016)
discusses a choice rule based on a pairwise comparison of items according to an ordered list.
Lleras, Masatlioglu, Nakajima, and Ozbay (2017) consider overwhelming choices, in which the
DM maximizes a fixed preference over subsets of menus determined by a competition filter.

In relation to all these models, the following query arises:

Question. What is the fraction of choices that are rationalizable by them? In other words,
what is the explanatory power of the existing models of bounded rationality?

This note answers this query for all mentioned models (and possibly for others). We show
that as the number of items goes to infinity, the fraction of choices explained by them becomes
negligible.1 We also provide some numerical estimates, which confirm the rarity of bounded
rationalizability for small sets of alternatives. Our results strengthen the case for the testability
of existing theories, because the small fraction of choices justified by them can be regarded as
truly representative of a coherent choice behavior.

The paper is organized as follows. In Section 2.2 we define the notion of hereditary property,
and show that it applies to all mentioned models of bounded rationality. In Section 2.3 we
prove that the fraction of choices satisfying any hereditary property tends to zero as the size
of the ground set goes to infinity. In Section 2.4 we obtain several estimates on small sets of
alternatives for all presented models, which confirm the rarity of bounded rationality. All proofs
are contained in the main body of the paper, with the only exception of Lemma 8, whose long
computational proof is available online.

2.2 Hereditary properties
In what follows, X is the ground set, a finite nonempty set of alternatives. (Note that X is not
fixed once and for all; in fact, its (finite) cardinality will vary.) Any nonempty A Ď X is a menu,
and X “ 2Xzt∅u is the family of all menus. A choice function on X is a map c : X Ñ X such
that cpAq P A for any A P X ; we refer to a choice function as a choice.

A binary relation ą on X is asymmetric if x ą y implies ␣py ą xq, transitive if x ą y ą z

implies x ą z, and complete if x ‰ y implies x ą y or y ą x (here x, y, z are arbitrary elements
of X). A linear order is an asymmetric, transitive, and complete relation. For any A P X , the
symbol ąæA denotes the restriction of ą to A ˆ A. Note that if ą is a linear order, then so is
ąæA for any A P X .

1This assertion is by no means obvious. In fact, it could be the case that a model contains a non-negligible
fraction of the choice functions even when the size of the ground set grows very large.
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Given an asymmetric relation ą on X and a menu A P X , the set of maximal elements of
A is maxpA,ąq “ tx P X : y ą x for no y P Au. A choice c : X Ñ X is rationalizable if there is
an asymmetric relation ą on X (in fact, a linear order) such that, for any A P X , cpAq is the
unique element of the set maxpA,ąq; in this case, we write cpAq “ maxpA,ąq.

Definition 3. Let c : X Ñ X be a choice. For any A P X , denote by A the family of
nonempty subsets of A. The choice induced by c on A is cæA : A Ñ A, defined by cæApBq “ cpBq

for any B P A . (Note that c “ cæX .) We call cæA a subchoice of c.

Definition 4. Two choices c : X Ñ X and c1 : X 1 Ñ X 1 are isomorphic if there is a bijection
(isomorphism) σ : X Ñ X 1 such that σpcpAqq “ c1pσpAqq for any A P X .

Definition 5. A property P of choices is a proper subset of the collection of all choices for
all finite ground sets, which is closed under isomorphism.2 (Thus, by definition, P holds for at
least one choice on a finite set, and fails for at least one choice on a finite set.) A property P

is hereditary when if P holds for any choice c, then it also holds for any of its subchoices.3

In what follows, we shall identify models of choice and their characterizing properties.

Example 2. Most properties of choices considered in the literature (often called axioms of
choice consistency) are hereditary, e.g., α,4 β, γ, ρ, path independence, WARP, etc.5 On the
contrary, few properties fail to be hereditary: an example of this kind is that of being a moody
choice, in the sense of Giarlotta, Petralia, and Watson (2022c, Definition 2).6

Next, we recall – in chronological order – thirteen models of choice, which employ a notion of
rationality. To keep focus, we omit their formal description, although we mention the behavioral
properties characterizing them. Let c : X Ñ X be a choice. Then:

(i) c is rationalizable (Samuelson, 1938) iff property α holds;
2Equivalently, a property of choices is a formula of second order monadic logic, which involves quantification

over elements and sets, has a symbol for choice, is invariant under choice isomorphisms, and is neither a tautology
nor a contradiction. However, since the latter notion of property is less agile to handle, we prefer – following a
referee’s suggestion – to identify a property with the set of choices satisfying it. Note also that closedness under
isomorphisms implies that only the cardinality of the ground set matters.

3More formally, P is hereditary if for all finite sets X and choices c on X, c P P ùñ p@A P X q cæA P P.
4A choice c : X Ñ X satisfies property α when for any x P X and A,B P X , if x P A Ď B and cpBq “ x,

then cpAq “ x. This property was introduced by Chernoff (1954).
5See Cantone, Giarlotta, and Watson (2021, Section 3.2), and references therein.
6Another example of a non-hereditary property is related to choice correspondences, that is, maps c : X Ñ X

such that ∅ ‰ cpAq Ď A for all A P X . A property of this kind is choosing without dominated elements (CWDE),
which says that for any A P X and x, y P A, if y is never chosen in any menu containing both x and y, then
cpAq “ cpAztyuq. CWDE is used by García-Sanz and Alcantud (2015) to partially extend the characterization
of the rational shortlist method of Manzini and Mariotti (2007) from choice functions to choice correspondences.
See also Cantone, Giarlotta, and Watson (2021, Section 3.5).
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(ii) c is sequentially rationalizable (SR) (Manzini and Mariotti, 2007) iff weak reducibility
(WR) holds;7

(iii) c is a rational shortlist method (RSM) (Manzini and Mariotti, 2007) iff property γ and
weak WARP (WWARP) hold;8

(iv) c is rationalizable by game trees (RGT) (Xu and Zhou, 2007) iff weak separability (WS)
and divergence consistency (DC) hold;9

(v) c is rationalizable by a post-dominance rationality procedure (Rubinstein and Salant, 2008)
iff exclusion consistency (EC) holds iff c is a RSM;10

(vi) c is a choice by lexicographic semiorders (CLS) (Manzini and Mariotti, 2012a) iff reducibil-
ity (Re) holds;11

(vii) c is categorize-then-choose (Manzini and Mariotti, 2012b) iff WWARP holds;

(viii) c is with limited attention (CLA) (Masatlioglu, Nakajima, and Ozbay, 2012) iff WARP
with limited attention (WARP(LA)) holds;12

(ix) c is consistent with basic rationalization theory (Cherepanov, Feddersen, and Sandroni,
2013) iff WWARP holds;

(x) c is a sequential procedure guided by a set of routes (Apesteguia and Ballester, 2013) iff
Re holds;13

7 WR: for any ∅ ‰ S Ď X , there is S P S and a collection of pairs txi, yiuiPI , with xi, yi P S for all i P I,
such that, for all T P S , if T z

Ť

tyi : xi P T u P S , then cpT q “ c pT z
Ť

tyi : xi P T uq. The characterization of
sequential rationalizability by WR is due to Manzini and Mariotti (2012a, Theorem 2).

8γ: for any A,B P X and x P X, if cpAq “ cpBq “ x, then cpA Y Bq “ x. WWARP: for any A,B P X and
x, y P X with x, y P A Ď B, if cpBq “ cptx, yuq “ x, then cpAq ‰ y. Model (iii) is a special case of (ii).

9WS: for any A P X of size at least two, there is a partition tB,Du Ď A of A such that cpS Y T q “

cptcpSq, cpT quq for any S Ď B and T Ď D. For each x, y, z P X, let x ö ty, zu stand for cptx, y, zuq “ x and
x, y, z give rise to a cyclic binary selection, that is, either (i) cptx, yuq “ x, cpty, zuq “ y, and cptx, zuq “ z, or
(ii) cptx, yuq “ y, cpty, zuq “ z, and cptx, zuq “ x. Then DC is: for any x1, x2, y1, y2 P X, if x1 ö ty1, y2u and
y1 ö tx1, x2u, then cptx1, y1uq “ x1 if and only if cptx2, y2uq “ y2.

10EC: for any A P X and x P XzA, if cpA Y txuq R tcpAq, xu, then there is no A1 P X such that x P A1 and
cpA1q “ cpAq.

11Re: for any ∅ ‰ S Ď X , there is S P S and x, y P S such that, for all T P S , if T ztyu P S , then
cpT q “ cpT ztyuq. Note that this property implies weak reducibility (WR), as defined in Footnote 7.

12WARP(LA): for any A P X , there is x P A such that for any B containing x, if cpBq P A and cpBq ‰ cpBztxuq,
then cpBq “ x.

13This characterization is obtained by combining Theorem 4 in Apesteguia and Ballester (2013) and Corollary 1
in Manzini and Mariotti (2012a).
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(xi) c is an (endogenous) status quo bias choice (SQB) (Apesteguia and Ballester, 2013) iff it
is either an extreme status quo biased choice or a weak status quo biased choice;14

(xii) c is list-rational (LR) (Yildiz, 2016) iff the relation of revealed-to-follow is acyclic;15

(xiii) c is overwhelming (Lleras, Masatlioglu, Nakajima, and Ozbay, 2017) iff WARP under
choice overload (WARP-CO) holds iff WWARP holds.16

As announced, we have:

Lemma 1. Models (i)–(xiii) are hereditary.

Proof. (Sketch) Let c : X Ñ X be a choice function.

(i) Suppose c is rationalizable by a linear order � on X, and let A P X. Since cæApBq “

max pB,�æAq for any B P A , it follows that cæA is rationalizable.

(ii) Suppose c is sequentially rationalized by an ordered list pą1, . . . ,ąnq of asymmetric re-
lations on X, that is, for each A P X , defining recursively M0pAq :“ A and MipAq :“

maxpMi´1pAq,ąiq for i “ 1, ..., n, the equality cpAq “MnpAq holds. Let A P X . For each
i “ 1, . . . , n and B P A , we have MipBq “ max

`

Mi´1pBq,ąi
æA

˘

. Thus,
`

ą1
æA , . . . ,ąn

æA

˘

sequentially rationalizes cæA.

(iii)-(v) Recall that c is a RSM if there is an ordered pair L “ pą1,ą2q of acyclic relation on X

which sequentially rationalizes c. Thus, this proof is similar to that of (ii).

(iv) It is not difficult to check that both WS and DC are hereditary.

(vi) Suppose c satisfies Re. For any ∅ ‰ S Ď X , there is S P S and x, y P S such that, for
all T P S , if T ztyu P S , then cpT q “ cpT ztyuq. Let A P X . Since A Ď X , for any
∅ ‰ S Ď A , there is S P S and x, y P S such that, for all T P S , if T ztyu P S , then
cpT q “ cæA “ cpT ztyuq “ cæApT ztyuq.Thus cæA satisfies Re.

(vii)-(ix)-(xiii) WWARP is hereditary: see Cantone, Giarlotta, and Watson (2019).
14The notions of extreme endogenous status quo biased choice and weak endogenous status quo biased choice

are given at page 92 of the mentioned paper.
15Formally, x is revealed-to-follow y if for some A P X , either (1) x “ cpAYyq and

“

y “ cptx, yuq or x ‰ cpAq
‰

,
or (2) x ‰ cpA Y yq and

“

x “ cptx, yuq or x “ cpAq
‰

.
16WARP-CO: for any A P X , there is x P A such that for any B containing x, if cpBq P A and cpB1q “ x for

some B1 Ľ B, then cpBq “ x.
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(viii) By definition, if c is a CLA, then cpAq “ maxpΓ pAq,�q, where Γ : X Ñ X is a choice
correspondence such that x R Γ pBq implies Γ pBq “ Γ pBztxuq for all B P X and x P

X, and � is linear order on X. For any A P X , it is easy to check that cæApBq “

maxpΓæApBq,�æAq for any B P A , where ΓæA satisfies the required property.

(xi) By definition, c is SQB if there is a triple p�, d, Qq, with � linear order on X, d P X, and
Q Ď tx P X : x� du, such that for any S P X , either properties (1)-(2)-(3) or properties
(1)-(2)-(31), given below, hold:

(1) if d R S, then cpSq “ maxpS,�q ;

(2) if d P S and QX S “ ∅, then cpSq “ d ;

(3) if d P S and QX S ‰ ∅, then cpSq “ maxpQX S,�q ;

(31) if d P S and QX S ‰ ∅, then cpSq “ maxpSztdu,�q .

Fix A P X . Select a0 P A, and set

dA :“

#

d if d P A
a0 otherwise.

and QA :“

#

QX A if d P A
ta P A : a� dAu otherwise.

One can check that the triple p�A, dA, QAq witnesses that cæA is SQB.17

(xii) By definition, c is LR if there is a linear order � on X such that cpAq “ cpAztxu, xq for
any A P X , where x “ minpA,�q.18 Fix A P X . For any B P A , cæApBq “ cpBq “

cptcpBztxuq, xuq, where x “ maxpB,�q “ max pB,�æAq. Thus, cæA is LR.

2.3 Asymptotic rarity of bounded rationality
Hereafter, T pnq and T pn,Pq denote, respectively, the total number of choices on a ground set
X of size n ě 2, and the total number of choices on X satisfying a given property P of choices.
Furthermore, F pn,Pq “

T pn,Pq

T pnq
is the fraction of choices on X satisfying P. Note that, by

Definition 18, we have 0 ă F pn,Pq ă 1. Here we prove:

Theorem 1. If P is a hereditary property of choices, then lim
nÑ8

F pn,Pq “ 0.

17Three cases must be considered: (a) d R A; (b) d P A and Q X A “ ∅; (c) d P A and Q X A ‰ ∅.
18Given an asymmetric relation ą on X and a menu A P X , the set of minimal elements of A is minpA,ąq “

tx P X : x ą y for no y P Au.
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Lemma 1 and Theorem 1 readily yield:

Corollary 1. The fraction of choices explained by models (i)–(xiii) tends to zero as the size
of the ground set tends to infinity.

Corollary 1 formally states what is informally assumed – but never proved so far, to the best
of our knowledge – for all known models of bounded rationality: when the cardinality of the
ground set increases, these methods become extremely selective.19

We shall derive Theorem 1 as an immediate consequence of a more general fact, namely
Theorem 5 below. In order to state it, we define a special category of properties.

Definition 6. Let P be a property of choices. A choice c : X Ñ X hereditarily satisfies P if
every subchoice of c (included c) satisfies P, i.e., tcæA : A P X u Ď P. We denote by Hpn,Pq

the total number of choices on a ground set of size n that hereditarily satisfy P.

Let us clarify the relationship between Definitions 18 and 6, because they may look similar
at first sight. Indeed, if P is a hereditary property (according to Definition 18) and c satisfies
P, then obviously c hereditarily satisfies P (according to Definition 6). However, the converse
is false, because a choice may hereditarily satisfy a non-hereditary property. Note also that
Hpn,Pq ď T pn,Pq, and equality holds if P is hereditary.

Theorem 2. For any property P of choices, lim
nÑ8

Hpn,Pq

T pnq
“ 0.

In words, the fraction of choices that hereditarily satisfy any property of choices tends to
zero as the size of the ground set diverges. Theorem 1 is a special case of Theorem 5, because
the hereditarity of P implies Hpn,Pq “ T pn,Pq. However, Theorem 5 is more general than
Theorem 1, because the former also applies to non-hereditary properties.

The remainder of his section is devoted to the illuminating proof of Theorem 5. Hereafter,
P is a property of choices, and X is any set of fixed size n ě 2.

Lemma 2. T pnq “
ś

t|A| : A Ď X, |A| ą 1u “
śn

k“2 k
pnkq.

Proof. For A P X , there are |A| possible choices for cpAq. We can omit menus of size 1.

Note that T pnq grows very fast, e.g., T p4q “ 20 736, and T p5q “ 309 586 821 120.

Lemma 3. Let 1 ď m ď n. For any list of menus pXjq
p
j“1 in X , all having the same size m

and pairwise intersecting in at most one item, we have

Hpn,Pq

T pnq
ď

ˆ

Hpm,Pq

T pmq

˙p

.

19On this point, see also Remark 4 at the end of the paper.
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Proof. By Lemma 2, T pmq “
ś

t|A| : A Ď Xj, |A| ą 1u, for any j in t1, . . . , pu. Let

M :“
ź

␣

|B| : B Ď X, |B| ą 1, B Ę Xj for all j’s
(

.

By regrouping the product in Lemma 2, we get T pnq “ T pmqpM . Furthermore, we have
Hpn,Pq ď Hpm,PqpM . It follows that

Hpn,Pq

T pnq
ď

Hpm,Pqp M

T pmqp M
“

ˆ

Hpm,Pq

T pmq

˙p

.

Definition 7. Let c : X Ñ X be a choice. For any permutation π of X, let cπ : X Ñ X be
the permuted choice of c defined by cπpAq :“ π´1pcpπpAqqq for all A P X .

Clearly, c is isomorphic to cπ for any permutation π of X, and all choices that are isomorphic
to c are of the type cπ for some π. By the next result, all cπ’s are distinct.

Lemma 4. For any choice c on X,
ˇ

ˇtcπ : π is a permutation of Xu
ˇ

ˇ “ n!.

Proof. Let c : X Ñ X be a choice. We show that distinct permutations of X generate distinct
permuted choices on X. Toward a contradiction, suppose π and σ are two distinct permutations
of X such that cπ “ cσ. It follows that cπσ´1 “ c, with πσ´1 ‰ idX . Thus, we can assume without
loss of generality that cπ “ c, with π ‰ idX . Let A P X be the menu A “ tx P X : πpxq ‰ xu,
hence πpAq “ A. Then cpAq is a fixed point of π, because

cpAq “ cπpAq “ π´1pcpπpAqqq ùñ πpcpAqq “ πpπ´1pcpπpAqqqq “ cpπpAqq “ cpAq .

Now the definition of A yields cpAq R A, which is impossible.

By Lemmas 2 and 4, we get

Corollary 2. There are exactly T p4q

4!
“ 864 non-isomorphic choices on 4 items.

The fraction F pn,Pq can be computed by only considering pairwise non-isomorphic choices,
since all equivalence classes of isomorphism have the same size (“ n!).

Lemma 5. If P holds hereditarily for exactly q non-isomorphic choices on m items, then

Hpm,Pq

T pmq
“

q ¨m!

T pmq
.

Proof. P holds hereditarily for c iff P holds hereditarily for all cπ, where π is a permutation
of the ground set. By Lemma 4, there are m! permuted choices associated to c.
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Lemmas 3 and 5 readily yield the key upper bound:

Corollary 3. Let 1 ď m ď n. Suppose X has size n, and P is a property that holds
hereditarily for at most q ă T pmq{m! non-isomorphic choices on a set of size m. If pXjq

p
j“1 is

a list of menus in X having size m and pairwise intersecting in at most one item, then

Hpn,Pq

T pnq
ď

ˆ

q ¨m!

T pmq

˙p

.

In particular, if P is hereditary, then F pn,Pq ď

´

q¨m!
T pmq

¯p

.

We are ready to prove the main result of this section.

Proof of Theorem 5. By hypothesis P fails for a choice c on a set of size m (and holds for
q ă T pmq

m!
non-isomorphic choices on this set). Set ζ :“ q¨m!

T pmq
ă 1. Let ϵ ą 0. Select p P N such

that ζp ă ϵ. For any integer n ě mp and any set X of size n, there is a list of pairwise disjoint
menus pXjq

p
j“1 in X all having size m. Corollary 3 yields Hpn,Pq

T pnq
ď ζp ă ϵ.

The proof of Theorem 5 does not use the full power of Corollary 3, because we are taking
pairwise disjoint menus. In the next section we shall use Corollary 3 in its full extent.

2.4 Rarity of bounded rationality on small sets
Our goal is to design a user-friendly algorithm to assess the testability of behavioral choice
models on small sets of items. For rationalizability (i.e., property α), we get exact numbers.

Lemma 6. The fraction F pn, αq of rationalizable choices on n items is (rounding decimals)

n 3 4 5 6

F pn, αq 0.25 0.0012 4ˆ10´10 6ˆ10´26

Proof. Since α is hereditary, F pn, αq “ T pn,αq

T pnq
“

Hpn,αq

T pnq
. Up to isomorphisms, there is exactly

one choice on n items satisfying α, hence Lemmas 2 and 5 yield the claim.

By Lemma 6, the fraction of rationalizable choices is trifling even on tiny ground sets. This
further validates the necessity to switch to models of bounded rationality. To get good estimates
for properties weaker than α, we need a more refined combinatorial approach.

Definition 8. For any integers n,m such that 1 ď m ď n, denote by P pn,mq the maximum
size p of a list pXjq

p
j“1 of subsets of t1, . . . , nu such that |Xj| “ m for all j “ 1, . . . , p, and

|Xi XXj| ď 1 for all distinct i, j “ 1, . . . , p.
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Using Definition 8, we can rewrite Corollary 3 as a simple formula:

Corollary 4. For any integers 1 ď m ď n, and any property P that holds hereditarily for at
most q non-isomorphic choices on a set of size m, we hav e

Hpn,Pq

T pnq
ď

ˆ

q ¨m!

T pmq

˙P pn,mq

.

Corollary 4 gives an upper bound to the fraction of choices that hereditarily satisfy a property
P. In particular, this boundary holds for the fraction of choices satisfying any hereditary
property, and so we can apply Corollary 4 to all models (ii)-(xiii). Clearly, the sharper the lower
bounds to P pn,mq are, the finer the upper bounds to Hpn,Pq{T pnq become. The following
recursive estimate of P pn,mq comes handy:

Lemma 7. For any 3 ď k ď n, where n is a power of a prime, P pkn, kq ě n2 ` kP pn, kq.

Proof. Since n is a power of a prime number, there are operations `, ´, ¨, and { on the set
t0, . . . , n ´ 1u, which make it into a field. For each i, j P N such that 0 ď i ď n ´ 1 and
0 ď j ď n´ 1, define sets Aij by

Aij :“
␣

i`mj `mn : 0 ď m ď k ´ 1
(

Ď t0, . . . , kn ´ 1u ,

where i`mj P t0, . . . , n´1u is computed by using the field operations on t0, . . . , n´1u. All
sets Aij are well-defined and have size k. Furthermore, there are n2 such sets.

Claim: |Aij XAi1j1 | ď 1. Suppose Aij and Ai1j1 overlap in i`mj`mn “ i1 `m1j1`m1n. Since
both i`mj and i1 `m1j1 are less than n, we get m “ m1 and i`mj “ i1 `mj1. Working
in the field on t0 . . . n´ 1u, we have i`mj “ i1 `mj1, and so i´ i1 “ mpj1 ´ jq.

Case 1: If j1 ´ j “ 0 (in the field), then i ´ i1 “ 0, hence i “ i1 and mpj1 ´ jq “ 0. If j “ j1,
we are done. Otherwise, m “ 0, and Aij and Ai1j1 overlap on i “ i1.

Case 2: If j1 ´ j ‰ 0 (in the field), then m “ pi ´ i1q{pj1 ´ jq, and so Aij, Ai1j1 intersect only
on tmn, . . . ,mn ` n´ 1u and at one point in that set.

The Claim gives us n2 sets, each of which intersects each tmn, . . . ,mn`n´1u in one point, with
0 ď m ď k´ 1. We can also find P pn, kq additional sets that are subsets of each tmn, . . . ,mn`

n´ 1u, and we can do this for each m.

Corollary 5. The following lower bounds to P pn, 4q hold:

n 16 20 28 32 36 44

P pn, 4q ě 20 ě 29 ě 57 ě 72 ě 93 ě 141
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Proof. Apply Lemma 7.20 For instance, P p9, 4q “ 3 implies P p36, 4q ě 92 ` 4 ¨ 3 “ 93.

Applying Corollaries 4 and 5 for m “ 4 and n “ 16, 20, 28, 32, 36, 44, we get:

Corollary 6. If P holds hereditarily for at most q non-isomorphic choices on a set of size 4,
then on a ground set of size n the following upper bounds to Hpn,Pq{T pnq hold:

n 16 20 28 32 36 44

Hpn,Pq{T pnq ďpq{864q20 ďpq{864q29 ďpq{864q57 ďpq{864q72 ďpq{864q93 ďpq{864q141

Now we compute the number q for all models (ii)-(xiii); calculations are available online, in
a MethodsX associated paper (?).

Lemma 8. Let P be any of the properties (models) SQB, LR, RGT, RSM, CLS, SR, WWARP,
and CLA. The number q of non-isomorphic choices on 4 items satisfying P is

P SQB LR RGT RSM CLS SR WWARP CLA

q 6 10 11 11 15 15 304 324

Our last result justifies the title of this section:

Theorem 3. Let P be any of the properties (models) listed below. The fractions F pn,Pq of
choices satisfying P on n “ 16, 20, 28, 32, 36, 44 items are, respectively:

P F p16,Pq F p20,Pq F p28,Pq F p32,Pq F p36,Pq F p44,Pq

Status Quo Bias Choice ď 10´43 ď 10´62 ď 10´123 ď 10´155 ď 10´200 ď 10´304

List-Rational Choice ď 10´38 ď 10´56 ď 10´110 ď 10´139 ď 10´180 ď 10´273

Rationalization by Game Tree ď 10´37 ď 10´54 ď 10´108 ď 10´136 ď 10´176 ď 10´267

Rational Shortlist Method ď 10´37 ď 10´54 ď 10´108 ď 10´136 ď 10´176 ď 10´267

Choice by Lexicographic Semiorders ď 10´35 ď 10´51 ď 10´100 ď 10´126 ď 10´163 ď 10´248

Sequentially Rationalizable Choice ď 10´35 ď 10´51 ď 10´100 ď 10´126 ď 10´163 ď 10´248

Weak WARP ď 10´9 ď 10´13 ď 10´25 ď 10´32 ď 10´42 ď 10´63

Choice with Limited Attention ď 10´8 ď 10´12 ď 10´24 ď 10´30 ď 10´39 ď 10´60

Proof. Apply Corollary 6 and Lemma 8.

The numerical estimates given by Theorem 3 complete the analysis of models (i)-(xiii). In
fact, the bounds for RSM also apply to (v) post-dominance rationality procedure, those for CLS
also apply to (x) sequential procedure guided by a set of routes, and those for Weak WARP apply
to three models, namely (vii) categorize-then-choose, (ix) consistency with basic rationalization
theory, and (xiii) overwhelming choice.

20To prove P p16, 4q ě 20, we can also use a simple geometric approach. Display the 16 items on a 4ˆ4 matrix,
and take the 4 rows, the 4 columns, and the 4!

2 products of even class obtained by computing the determinant of
the matrix. These 20 sets pairwise intersect in at most one item.
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Remark 2. A natural direction of research is to estimate the ratios between the number of
choices satisfying α (equivalently, WARP) and the number of choices satisfying weaker axioms.21

The rationale of this investigation is that WARP is often considered excessively demanding,
whereas the testability of weaker axioms of consistency is sometimes debated. We believe that
most of these ratios asymptotically tend to zero, and they may be close to zero even for a rela-
tively small number of items. Computations support this conjecture: for instance, by Lemma 6
the fraction of rationalizable choices on 5 items is 4ˆ 10´10, whereas for choices satisfying Weak
WARP a similar upper bound holds on 16 items.

Remark 3. The fraction F pn,Pq of choices on n items satisfying P is an ex-ante approxi-
mation of the hit rate, as defined by Selten (1991, p. 194). This score, which gives the relative
frequency of correct predictions, is a component of a global measure of predictive success of a
theory. Starting from Afriat (1974), several attempts have been made to identify a measure of
rationality, which may take into account deviations of individual behavior from the maximiza-
tion principle. In this respect, Apesteguia and Ballester (2017) define the swap index, which is
the sum, across all the observed menus, of the number of alternatives that must be swapped
with the chosen one to obtain a choice rationalizable by the linear order(s) maximizing this sum.
Our numerical estimates may be an additional tool to investigate performances of rationality
indices.

Remark 4. We define choice functions on the full domain X “ 2Xzt∅u, implicitly assuming
that the DM’s behavior is observable for all possible menus. However, this hardly happens in
practice. Additional work is needed to obtain estimates when using a different definition of choice
function, which allows for a limited dataset (de Clippel and Rozen, 2021). In this perspective,
instead of computing upper bounds to the fraction F pn,Pq “

T pn,Pq

T pnq
, one should estimate the

fraction F ˚pn,Pq “
Epn,Pq

Epnq
, where Epnq is the number of partial choices on n elements that

arise from experimental/empirical settings.22

21We thank Andrew Ellis for suggesting this possible direction of research.
22We thank a referee for suggesting this refinement of our approach.
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Chapter 3

The number of boundedly rational
choices on four elements

Joint with Alfio Giarlotta and Stephen Watson

3.1 Motivation
The notion of rationalizability pioneered by Samuelson (1938) identifies a narrow kind of rational
choice behavior. Starting from the seminal work of Simon (1955), rationalizability has been
weakened by the notion of bounded rationality, which allows to explain a larger fraction of
choices by more flexible paradigms. In view of applications, it may be interesting to compare
existing bounded rationality models by looking at the fraction of choices justifiable by each of
them. To that end, in this note we give a detailed proof of a related result, namely Lemma 8
in Giarlotta, Petralia, and Watson (2022a). Specifically, we determine – up to relabelings of
alternatives (i.e., up to isomorphisms) – the exact number of choice functions on four items that
can be explained by several existing models of bounded rationality.

Note that choice experiments are typically run on a small number of alternatives, and we
rarely observe subjects’ behavior on all possible menus (de Clippel and Rozen, 2021). While
calculations for choice functions defined on two and three elements are straightforward, an
extensive analysis on four elements requires more effort. The counting methodology illustrated
in this note may constitute a tool to assess choice experiments designed on few items.

Lemma 8 in Giarlotta, Petralia, and Watson (2022a) is the key numerical input for an
algorithm, which establishes an upper bound to the fraction of choices on finite sets that are
boundedly rationalizable by any of these models. The combinatorial approach developed here,
and adapted in Giarlotta, Petralia, and Watson (2022a) to ground sets of greater size, applies,
mutatis mutandis, to any – existing or future – model of bounded rationality.
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3.2 Method background
Let X be a nonempty finite set of options, called the ground set. Any nonempty set A Ď X is
a menu, and X “ 2Xzt∅u is the family of all menus. Elements of menus are also called items.
A choice function (for short, a choice) on X is a map c : X Ñ X such that cpAq P A for any
A P X . The properties of choices that we discuss in this note are listed below, along with some
additional models of bounded rationality that are equivalent to them.1

‚ Status quo bias (SQB) (Apesteguia and Ballester, 2013): By definition, c is SQB iff it
is either extreme status quo bias (ESQB) or weak status quo bias (WSQB).

ESQB: There exists a triple p�, z, Qq, where � is a linear order on X, z is a selected item
of X, and Q Ď tx P X : x� zu, such that for any S P X ,
(1) if z R S, then cpSq “ maxpS,�q ,
(2) if z P S and QX S “ ∅, then cpSq “ z , and
(3) if z P S and QX S ‰ ∅, then cpSq “ maxpQX S,�q .

WSQB: There exists a triple p�, z, Qq, where � is a linear order on X, z is a selected
item of X, and Q Ď tx P X : x� zu, such that for any S P X ,
(1) if z R S, then cpSq “ maxpS,�q ,
(2) if z P S and QX S “ ∅, then cpSq “ z , and
(31) if z P S and QX S ‰ ∅, then cpSq “ maxpSztzu,�q .

‚ List rational (LR) (Yildiz, 2016): By definition, c is LR iff there is a linear order � on X

(a list) such that for any A P X of size at least two, the equality cpAq “ cptcpAzxq, xuq

holds, where x “ minpA,�q.

‚ Rationalizable by game trees (RGT) (Xu and Zhou, 2007): c is RGT iff both weak sep-
arability (WS) and divergence consistency (DC) hold.

WS: For any menu A P X of size at least two, there is a partition tB,Du of A such that
cpS Y T q “ cptcpSq, cpT quq for any S Ď B and T Ď D.

DC: For any x, y, z P X, let x ö ty, zu denote the following: cptx, y, zuq “ x, and either
(i) cptx, yuq “ x, cpty, zuq “ y and cptx, zuq “ z, or (ii) cptx, yuq “ y, cpty, zuq “ z

and cptx, zuq “ x. Then DC says that for any x1, x2, y1, y2 P X, if x1 ö ty1, y2u and
y1 ö tx1, x2u, then cptx1, y1uq “ x1 ðñ cptx2, y2uq “ y2.

‚ Rational shortlist method (RSM) (Manzini and Mariotti, 2007): c is RSM iff both
Weak WARP (WWARP) and property γ hold.

WWARP: see below.
1Models are listed in the same order as in the main result of this paper, namely Theorem 7.
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Property γ: if cpAq “ cpBq “ x, then cpAYBq “ x.

RSM is equivalent to being rationalizable by a post-dominance rationality procedure (Ru-
binstein and Salant, 2008), which is in turn characterized by the property of exclusion
consistency (EC).

EC: For any A P X and x P XzA, if cpAYtxuq R tcpAq, xu, then there is no A1 P X such
that x P A1 and cpA1q “ cpAq.

‚ Sequentially rationalizable (SR) (Manzini and Mariotti, 2007): By definition, c is SR
iff if there is an ordered list L “ pą1, . . . ,ąnq of asymmetric relations on X such that for
each A P X , upon defining recursively M0pAq :“ A and MipAq :“ maxpMi´1pAq,ąiq for
i “ 1, ..., n, the equality cpAq “MnpAq holds.

‚ Choice by lexicographic semiorders (CLS) (Manzini and Mariotti, 2012a): CLS is
equivalent to being SR by an ordered list L “ pą1, . . . ,ąnq of acyclic relations.

‚ Weak WARP (WWARP) (Manzini and Mariotti, 2007): c satisfies WWARP iff for any
distinct x, y P A Ď B, cptx, yuq “ cpBq “ x implies cpAq ‰ y. It turns out that
WWARP characterizes three models of bounded rationality present in the literature,
namely categorize-then-choose (Manzini and Mariotti, 2012b), consistency with basic ratio-
nalization theory (Cherepanov, Feddersen, and Sandroni, 2013), and overwhelming choice
(Lleras, Masatlioglu, Nakajima, and Ozbay, 2017).

‚ Choice with limited attention (CLA) (Masatlioglu, Nakajima, and Ozbay, 2012): c

is CLA iff WARP with limited attention (WARP(LA)) holds.

WARP(LA): for any A P X , there is x P A such that for any B containing x, if cpBq P A
and cpBq ‰ cpBztxuq, then cpBq “ x.

Here we prove the following result:

Theorem 4 (Giarlotta, Petralia, and Watson (2022a), Lemma 8). Let P be any of the properties
(models) SQB, RGT, RSM, SR, CLS, LR, WWARP, and CLA. The number q of non-isomorphic2

choices on 4 items satisfying P is
2Two choices c, c1 : X Ñ X are isomorphic if there is a bijection σ : X Ñ X such that σpcpAqq “ c1pσpAqq for

any A P X . This definition extends to choices defined on different ground sets in the obvious way. It also extends
to choice correspondences, that is, maps Γ : X Ñ X such that Γ pAq Ď A for any menu A P X : see Cantone,
Giarlotta, and Watson (2021, Section 2) for details. Note that counting the number of pairwise non-isomorphic
choice functions on a set is quite simple, but the same is not true of choice correspondences. However, the latter
counting is needed in case we want to generalize the approach of this paper to choice models that deal with
correspondences and not functions.
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P SQB LR RGT RSM SR CLS WWARP CLA

q 6 10 11 11 15 15 304 324

Since for any choice on m elements there are exactly m! choices isomorphic to it (?, Lemma 4),
we derive

Corollary 7. Let P be any of the properties (models) SQB, RGT, RSM, SR, CLS, LR,
WWARP, and CLA. The number pq of choices on 4 items satisfying P is

P SQB LR RGT RSM SR CLS WWARP CLA

pq 144 240 264 264 360 360 7296 7776

The proof of Theorem 1 explicitly displays, for any of the listed falsifiable models, all pairwise
non-isomorphic choices justified by it. To identify all choices explained by each model, it is
enough to collect, for each choice c retrieved from our computation, the 4! isomorphic choices
that are obtained from c by relabeling the items in the ground set X.

3.3 Method summary
We count the number of non-isomorphic choices c : X Ñ X on X “ ta, b, d, eu satisfying any of
the eight properties (models) mentioned in Theorem 7. To simplify notation, we eliminate set
delimiters and commas in menus, writing abd in place of ta, b, du, cpabdq in place of cpta, b, duq,
etc. In particular, we use the notation X “ abde.

For any property P, first we derive suitable constraints from the satisfaction of P, and then
compute the number of choices satisfying these restrictions. Note that we shall not analyze all
models in Theorem 7 in the same order as they are listed in it, but according to convenience,
because some properties imply others (for instance, we have LR ùñ RGT, RSM ùñ SR, CLS
ùñ SR, and SQB ùñ SR). To start, we make an overall computation.

Lemma 9. The total number of non-isomorphic choices on X is 864.

Proof. The problem is equivalent to counting the number of choices such that cpabdeq “ a,
cpbdeq “ b, and cpdeq “ d. There are 3p

4
3q´1 2p

4
2q´1

“ 864 such choices.3

Next, we describe the two approaches that we shall employ for all computations.

3Compare this proof with the one presented in ?, Corollary 2.
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Approach #1:
We describe a graph-theoretic partition of all non-isomorphic choices on X “ abde. The four

classes of the partition are obtained by considering all non-isomorphic selections over pairs of
elements, that is, each class is associated to a tournament (see Figure 3.1).4

Class 1 (4-cycle): cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d. In this
case, the four selections cpabq “ a, cpbdq “ b, cpdeq “ d, and cpaeq “ e reveal a cyclic
binary choice, which involves all items in X (the cycle is in magenta in Figure 3.1).

Class 2 (source and sink): cpabq “ a, cpadq “ a, cpaeq “ a, cpbdq “ b, cpbeq “ b, cpdeq “ d.
In this case, the item a is a source (because it is always selected in any binary comparison),
whereas e is a sink (because it is never chosen at a binary level). Note that there is no
ciclic binary selection involving all four items. Observe also that the associated digraph is
acyclic, in fact it represents the linear order a� b� d� e.

Class 3 (source but no sink): cpabq “ a, cpadq “ a, cpaeq “ a, cpbdq “ b, cpbeq “ e, cpdeq “
d. Again, a is a source, but there is no sink. Moreover, there is no 4-cycle, whereas the
three items different from the source create a 3-cycle (in magenta).

Class 4 (sink but no source): cpabq “ a, cpadq “ d, cpaeq “ a, cpbdq “ b, cpbeq “ b, cpdeq “
d. Here e is a sink, but there is no source. Dually to Class 3, there is no 4-cycle, whereas
the three items different from the sink create a 3-cycle (in magenta).

a b

de

Class 1

a b

de

Class 2

a b

de

Class 3

a b

de

Class 4

Figure 3.1: The four classes in Approach #1.

The above classes are mutually exclusive, and choices belonging to different classes are pairwise
non-isomorphic.5 Furthermore, any choice on X is isomorphic to a choice belonging to one of
these four classes. We conclude that Classes 1-4 provide a partition of the set of all choices to be
analyzed. This graph-theoretic approach will be employed to count choices that are RGT, LR,
SR, SQB, RSM, and CLS. To that end, it suffices to establish the selection on the remaining

4A tournament is a directed graph, which is obtained by assigning a direction to all edges of an undirected
complete graph.

5We refer the reader to sequence A000568 in the OEIS Foundation Inc. (2022), which shows that there are
exactly 4 unlabeled tournaments on 4 vertices.
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five menus, namely the four triples and the ground set. We shall do that by determining some
conditions that are necessary for the model to hold. Then, for each choice under examination,
we show that either these conditions are also sufficient, or the given model cannot satisfy them.

Observe that this approach applies to all models of bounded rationality, as long as their
definition or the behavioral properties characterizing them allow one to make enough deductions
(that is, starting from the selection over pairs of items, we can determine the selection over
larger menus). Note also that this approach naturally extends to computing the number of
non-isomorphic choices on n ě 4 items; however, as n grows, this requires considering several
cases, due to the large number of unlabeled tournaments on n nodes.6

Approach #2:
For the remaining two models (WWARP and CLA), we shall assume, without loss of gener-

ality, that c satisfies the following conditions (see the proof of Lemma 9):

cpabdeq “ a, cpbdeq “ b, cpdeq “ d. (3.1)
In this case, it suffices to determine the selection on the remaining eight menus, namely

4´ 1 “ 3 triples and 6´ 1 “ 5 pairs of items. To that end, we deal with WWARP and CLA in
a different way: in fact, for WWARP we provide a proof-by-cases, whereas CLA is handled by
describing the code of two Matlab programs.

As for Approach #1, also Approach #2 can be adapted to any model of bounded rationality.
Moreover, this methodology also applies to computing the number of non-isomorphic choices on
n ě 4 items (by fixing the selection over suitable n´ 1 menus).

3.4 Method details

3.4.1 Rationalizable by game trees (RGT)

Lemma 10. There are exactly 11 non-isomorphic RGT choices on X.

Proof. Apesteguia and Ballester (2013) show that RGT implies SR. On the other hand, Manzini
and Mariotti (2007) prove that any SR choice satisfies Always Chosen (AC):

AC: for any A P X and x P A, if cpxyq “ x for all y P Azx, then cpAq “ x.

Thus, in particular, any RGT choice satisfies AC. We now proceed to a proof-by-cases, distin-
guishing the four classes described in Approach #1.

6For instance, according to sequence A000568, the number of unlabeled tournaments on five vertices is 12.
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Class 1: (4-cycle): cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, and cpdeq “ d.
Assume c is RGT, that is, WS and DC hold. AC implies that cpabdq “ a, and cpbdeq “ b.
We do not know cpabeq, cpadeq, and cpabdeq. Using the definition of WS, we shall consider
seven subclasses of Class 1, which are based on all possible partitions of X “ abde, and
derive what the definition of c on the three remaining menus must be. Upon checking that
these choices satisfy both WS and DC (and are different from each other), we obtain all
possible RGT choices on X.

1A: abde “ a Y bde. In what follows, we first make some deductions from the fact that
c must satisfy WS, and then derive that there is a unique choice of this kind. Upon
checking that WS and DC hold for c, we conclude that c is RGT. By WS, we have
cpS Y T q “ cpcpSqcpT qq for any S Ď a and T Ď bde. From cpbdeq “ b and cpabq “ a,
we deduce cpabdeq “ a. From de Ď bde, cpdeq “ d, and cpadq “ a, we deduce
cpadeq “ a. Moreover, from be Ď bde, cpbeq “ b, and cpabq “ a, we deduce cpabeq “ a.
The reader can check that c satisfies WS and DC, hence it is RGT. (1 RGT choice.)

1B: abde “ ade Y b. By WS, cpS Y T q “ cpcpSqcpT qq for any S Ď ade and T Ď b. Since
ae Ď ade, cpaeq “ e, and cpbeq “ b, we must have cpabeq “ b. We are still missing
cpadeq and cpabdeq. We distinguish three additional subcases.
1Bi: cpadeq “ a. Since cpabq “ a, WS yields cpabdeq “ a.
1Bii: cpadeq “ d. Since cpbdq “ b, WS yields cpabdeq “ b.
1Biii: cpadeq “ e. Since cpbeq “ b, WS yields cpabdeq “ b.
In all subcases 1Bi, 1Bii, and 1Biii, one can check that c satisfies WS and DC, hence
it is RGT. (3 RGT choices.)

1C: abde “ abe Y d. By WS, cpS Y T q “ cpcpSqcpT qq for any S Ď abe and T Ď d. Since
ae Ď abe, and cpaeq “ e, and cpdeq “ d, we get cpadeq “ d. Again, three subcases are
possible.
1Ci: cpabeq “ a. Since cpadq “ a, WS yields cpabdeq “ a.
1Cii: cpabeq “ b. Since cpbdq “ b, WS yields cpabdeq “ b.
1Ciii: cpabeq “ e. Since cpdeq “ d, WS yields cpabdeq “ d.
In all subcases 1Ci, 1Cii, and 1Ciii, c satisfies WS and DC, hence it is RGT. (3 RGT
choices.)

1D: abde “ abdY e. WS yields cpS Y T q “ cpcpSqcpT qq for any S Ď abd and T Ď e. Since
ab Ď abd, cpabq “ a, and cpaeq “ e, we get cpabeq “ e. Since ad Ď abd, cpadq “ a,
and cpaeq “ e, we get cpadeq “ e. Finally, since cpabdq “ a, and cpaeq “ e, we get
cpabdeq “ e. This choice c satisfies WS and DC, hence it is RGT. (1 RGT choice.)
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1E: abde “ abY de. WS yields cpS Y T q “ cpcpSqcpT qq for any S Ď ab and T Ď de. From
cpabq “ a, cpdeq “ d, and cpadq “ a, we deduce cpabdeq “ a. From e Ď de, cpabq “ a,
and cpaeq “ e, we deduce cpabeq “ e. From a Ď ab, cpdeq “ d, and cpadq “ a, we
deduce cpadeq “ a. This choice c satisfies WS and DC, hence it is RGT. (1 RGT
choice.)

1F: abde “ adY be. WS yields cpS Y T q “ cpcpSqcpT qq for any S Ď ad and T Ď be. Since
cpadq “ a, cpbeq “ b, and cpabq “ a, we deduce cpabdeq “ a. Since a Ď ad, cpbeq “ b,
and cpabq “ a, we deduce cpabeq “ a. Since e Ď be, cpadq “ a, and cpaeq “ e, we
deduce cpadeq “ e. This choice c satisfies WS. However, DC fails for c, because we
have e ö ad, a ö be, cpeaq “ e, and yet cpdbq “ b.7 It follows that c is not RGT. (0
RGT choice.)

1G: abde “ aeY bd. WS yields cpS YT q “ cpcpSqcpT qq for any S Ď ae and T Ď bd. From
cpaeq “ e, cpbdq “ b, and cpbeq “ b, we get cpabdeq “ b. From b Ď bd, cpaeq “ e,
and cpbeq “ b, we get cpabeq “ b. From d Ď bd, cpaeq “ e, and cpdeq “ d, we get
cpadeq “ d. This choice c satisfies WS and DC, hence it is RGT. (1 RGT choice.)

In Class 1, WS does not hold for any choice different from those listed above. Note also
that choices defined in subcases 1Bii, 1Cii, and 1G are the same. We conclude that in
Class 1 there are exactly 8 “ 10´ 2 pairwise non-isomorphic RGT choices.

Class 2 (source and sink): cpabq “ a, cpadq “ a, cpaeq “ a, cpbdq “ b, cpbeq “ b, cpdeq “ d.
Assume c is RGT. AC readily implies that cpabdq “ cpabeq “ cpadeq “ cpabdeq “ a, and
cpbdeq “ b. Thus, in this class we get a unique choice c, which is rationalizable, and so it
is also RGT.

Class 3 (source but no sink): cpabq “ a, cpadq “ a, cpaeq “ a, cpbdq “ b, cpbeq “ e, cpdeq “
d. Assume c is RGT. By AC, we get cpabdq “ cpabeq “ cpadeq “ cpabdeq “ a. Without
loss of generality, we can assume cpbdeq “ b.8 The reader can check that c satisfies WS
and DC, hence it is RGT.

Class 4 (sink but no source): cpabq “ a, cpadq “ d, cpaeq “ a, cpbdq “ b, cpbeq “ b, cpdeq “
d. Assume c is RGT. By AC, we get cpabeq “ a, cpadeq “ d, and cpbdeq “ b. Without loss
of generality, we can assume cpabdq “ a.9 We do not know cpabdeq. As for Class 1, we
examine all possible partitions of abde that are compatible with WS.

7We are taking x1 :“ e, x2 :“ b, y1 :“ a, and y2 :“ d in the definition of DC.
8Indeed, the other two subcases, namely cpbdeq “ d and cpbdeq “ e, generate choices that are isomorphic to

the one we are considering. For instance, if cpbdeq “ d, then the 3-cycle xb, d, ey, which is defined by a ÞÑ a and
b ÞÑ d ÞÑ e ÞÑ b, is a choice isomorphism from X onto X.

9As in Class 3, the other two subcases cpabdq “ b and cpabdq “ d give isomorphic choices.
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To start, we claim that we can discard all partitions of X in which the two items b, d do
not belong to the same subset of abde. To see why, assume by way of contradiction that c
satisfies WS for a partition X1YX2 of abde such that b P X1 and d P X2. Note that a may
belong to X1 or X2. Suppose a P X1. Since ab Ď X1, d Ď X2, cpabq “ a, and cpadq “ d,
WS yields cpabdq “ d, which contradicts the hypothesis cpabdq “ a. Thus, a P X2 holds.
However, since b Ď X1, ad Ď X2, cpadq “ d, and cpbdq “ b, now WS yields cpabdq “ b,
which is again a contradiction. This proves the claim.

By virtue of the above claim, we may only consider partitions of the type abde “ X1YX2

such that b, d P X1, or b, d P X2. Three subcases arise.

4A: abde “ ae Y bd. By WS, cpS Y T q “ cpcpSqcpT qq for any S Ď ae and T Ď bd. Since
cpaeq “ a, cpbdq “ b, and cpabq “ a, we obtain cpabdeq “ a.

4B: abde “ abd Y e. By WS, cpS Y T q “ cpcpSqcpT qq for any S Ď abd and T Ď e. Since
cpabdq “ a and cpaeq “ a, we obtain cpabdeq “ a.

4C: abde “ a Y bde. By WS, cpS Y T q “ cpcpSqcpT qq for any S Ď a and T Ď bde. Since
cpbdeq “ b and cpabq “ a, we obtain cpabdeq “ a.

Therefore 4A, 4B, and 4C all generate the same choice c. The reader can check that c

satisfies WS and DC. Overall, Class 4 only gives 1 RGT choice.

Summing up Classes 1-4, we obtain 8+1+1+1=11 non-isomorphic RGT choices on X.

3.4.2 List rational (LR)

Lemma 11. There are exactly 10 non-isomorphic LR choices on X.
Proof. Yildiz (2016) states that any LR choice is RGT. In Lemma 10, we have described 11
non-isomorphic RGT choices on X. Below we shall show that all but one of the 11 RGT choices
are LR. Specifically, for each of these 11 RGT choices, first we determine some obvious necessary
conditions for being LR, and then we prove that these necessary conditions are either sufficient
(for 10 choices) or impossible (for 1 choice).10 We use the same numeration as in the proof of
Lemma 10.

1A: cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ a,
cpadeq “ a, cpbdeq “ b, cpabdeq “ a. Assume c is LR. By definition, there is a linear order
� on X such that cpAq “ cpcpAzxqxq for any A P X , where x “ minpA,�q.

Claim 1: b � a and e � a. To prove it, we use the fact that cpaeq “ e and cpabeq “ a.
Toward a contradiction, suppose a � b or a � e. Three cases are possible: (1) a � b and

10It suffices to check that the equality cpAq “ cpcpAzxqxq holds for any menu A such that |A| ě 3.
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e � a; (2) b� a and a� e; (3) a� b and a� e. In case (1), transitivity of � yields e � b,
and so minpabe,�q “ b. By hypothesis, we obtain cpabeq “ cpcpaeqbq “ cpbeq “ b ‰ a,
a contradiction. In case (2), transitivity of � yields b � e, and so minpabe,�q “ e. By
hypothesis, we obtain cpabeq “ cpcpabqeq “ cpaeq “ e ‰ a, a contradiction. In case (3),
e�b implies cpabeq “ cpcpaeqbq “ cpbeq “ b ‰ a, whereas b�e implies cpabeq “ cpcpabqeq “

cpaeq “ e ‰ a, a contradiction in both circumstances.

Claim 2: d � a and e � a. The proof of Claim 2 is similar to that of Claim 1, using the
fact that cpaeq “ e and cpadeq “ a.

Summarizing, Claims 1 and 2 yield the necessary conditions b� a, d� a, e� a. Thus, the
list � must extend the partial order11 associated to the following Hasse diagram:12

db e

a

To complete the analysis, we check that any linear order � extending this partial order
list-rationalizes c. It suffices to show that cpAq “ cpcpAzxqxq for any A P X of size at
least 3, where x “ minpA,�q. Indeed, we have (regardless of how � ranks b, d, e):

• cpabdq “ cpcpbdqaq “ cpabq “ a ;

• cpabeq “ cpcpbeqaq “ cpabq “ a ;

• cpadeq “ cpcpdeqaq “ cpadq “ a ;

• cpbdeq “ b (by considering all possible cases: minpbde,�q “ e implies cpbdeq “

cpcpbdqeq “ cpbeq “ b, minpbde,�q “ d implies cpbdeq “ cpcpbeqdq “ cpbdq “ b, and
minpbde,�q “ b implies cpbdeq “ cpcpdeqbq “ cpbdq “ b);

• cpabdeq “ cpcpbdeqaq “ cpabq “ a .

1Bi: cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ b,
cpadeq “ a, cpbdeq “ b, cpabdeq “ a. (Note that this choice only differs from 1A in the
selection from the menu abe.) Assume c is LR. Since cpabq “ a and cpabeq “ b, an argument
similar to that used to prove Claim 1 yields a� b and e� b. Similarly, from cpaeq “ e and
cpadeq “ a, we derive d � a and e � a. Thus, if � list-rationales c, then we must have

11Recall that a partial order is a reflexive, transitive, and antisymmetric binary relation.
12In a Hasse Diagram, a segment from x (top) to y (bottom) stands for x�y, and transitivity is always assumed

to hold (thus, two consecutive segments from x to y, and from y to z stand for x� y, y � z, x� z).
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d, e � a� b (hence d, e� b by transitivity). Representing these necessary conditions by a
Hasse diagram, the list � must extend the partial order

ed

b

a

Now we check that these necessary conditions are also sufficient, that is, cpAq “ cpcpAzxqxq

for any A P X of size at least 3, where x “ minpA,�q. Indeed, we have:

• cpabdq “ cpcpadqbq “ cpabq “ a ;

• cpabeq “ cpcpaeqbq “ cpbeq “ b ;

• cpadeq “ cpcpdeqaq “ cpadq “ a ;

• cpbdeq “ cpcpdeqbq “ cpbdq “ b ;

• cpabdeq “ cpcpadeqbq “ cpabq “ a .

1Bii ” 1Cii ” 1G: cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a,
cpabeq “ b, cpadeq “ d, cpbdeq “ b, cpabdeq “ b. Assume c is LR. From cpabq “ a and
cpabeq “ b, we derive a� b and e� b. From cpadq “ a and cpadeq “ d, we derive a� d and
e� d. Thus, � must extend the partial order

ea

b d

We check that these necessary conditions are also sufficient.

• cpabdq “ a : If minpabd,�q “ b, then cpabdq “ cpcpadqbq “ cpabq “ a. Similarly, if
minpabd,�q “ d, then cpabdq “ cpcpabqdq “ cpadq “ a.

• cpabeq “ cpcpaeqbq “ cpbeq “ b.

• cpadeq “ cpcpaeqdq “ cpdeq “ d.

• cpbdeq “ b : If minpbde,�q “ b, then cpbdeq “ cpcpdeqbq “ cpbdq “ b. Similarly, if
minpbde,�q “ d, then cpbdeq “ cpcpbeqdq “ cpbdq “ b.
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• cpabdeq “ b : If minpabde,�q “ b, then cpabdeq “ cpcpadeqbq “ cpbdq “ b. If
minpabde,�q “ d, then cpabdeq “ cpcpabeqdq “ cpbdq “ b.

1Biii: cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ b,
cpadeq “ e, cpbdeq “ b, cpabdeq “ b. Assume c is LR. From cpabq “ a and cpabeq “ b, we
get a � b and e � b. From cpdeq “ d and cpadeq “ e, we get d � e and a � e. Thus, �
extends a partial order that is isomorphic to that of case 1Bi:

da

b

e

We check that any extension of the above partial order list-rationales c.

• cpabdq “ cpcpadqbq “ cpabq “ a.

• cpabeq “ cpcpaeqbq “ cpbeq “ b.

• cpadeq “ cpcpadqeq “ cpaeq “ e.

• cpbdeq “ cpcpdeqbq “ cpbdq “ b.

• cpabdeq “ cpcpadeqbq “ cpbeq “ b.

1Ci: cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ a,
cpadeq “ d, cpbdeq “ b, cpabdeq “ a. Assume c is LR. From cpaeq “ e and cpabeq “ a, we
derive e� a and b� a. From cpadq “ a and cpadeq “ d, we derive a� d and e� d. Thus,
� extends a partial order isomorphic to 1Bi and 1Bii:

eb

d

a

We check that any extension of this partial order list-rationales c.

• cpabdq “ cpcpabqdq “ cpadq “ a.
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• cpabeq “ cpcpbeqaq “ cpabq “ a.

• cpadeq “ cpcpaeqdq “ cpdeq “ d.

• cpbdeq “ cpcpbeqdq “ cpbdq “ b.

• cpabdeq “ cpcpabeqdq “ cpadq “ a.

1Ciii: cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ e,
cpadeq “ d, cpbdeq “ b, cpabdeq “ d. Assume c is LR. From cpbeq “ b and cpabeq “ e, we
get a � e and b � e. From cpadq “ a and cpadeq “ d, we get a � d and e � d. Thus, �
extends a partial order isomorphic to the one in 1Bi, 1Bii, and 1Ci:

ba

d

e

We check that any extension of this partial order list-rationales c.

• cpabdq “ cpcpabqdq “ cpadq “ a.

• cpabeq “ cpcpabqeq “ cpaeq “ e.

• cpadeq “ cpcpaeqdq “ cpdeq “ d.

• cpbdeq “ cpcpbeqdq “ cpbdq “ b.

• cpabdeq “ cpcpabeqdq “ cpdeq “ d.

1D: cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ e,
cpadeq “ e, cpbdeq “ b, cpabdeq “ e. Assume c is LR. From cpbeq “ b and cpabeq “ e, we
get b � e and a � e. From cpdeq “ d and cpadeq “ e, we get d � e and a � e. Thus, �
extends a partial order that is isomorphic to 1A:

ba d

e

We check that any extension of � list-rationalizes c.
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• cpabdq “ a : If minpabd,�q “ a, then cpabdq “ cpcpbdqaq “ cpabq “ a. If
minpabd,�q “ b, then cpabdq “ cpcpadqbq “ cpabq “ a. If minpabd,�q “ d, then
cpabdq “ cpcpabqdq “ cpadq “ a.

• cpabeq “ cpcpabqeq “ cpaeq “ e.

• cpadeq “ cpcpadqeq “ cpaeq “ e.

• cpbdeq “ cpcpbdqeq “ cpbeq “ b.

• cpabdeq “ cpcpabdqeq “ cpaeq “ e.

1E: cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ e,
cpadeq “ a, cpbdeq “ b, cpabdeq “ a. Assume c is LR. From cpbeq “ b and cpabeq “ e, we
obtain b � e and a � e. From cpaeq “ e and cpadeq “ a, we obtain e � a and d � a. It
follows that a� e� a, which is impossible. We conclude that c is not LR.

2: cpabq “ a, cpadq “ a, cpaeq “ a, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ a,
cpadeq “ a, cpbdeq “ b, cpabdeq “ a. This choice is rationalizable, hence it is LR.

3: cpabq “ a, cpadq “ a, cpaeq “ a, cpbdq “ b, cpbeq “ e, cpdeq “ d, cpabdq “ a, cpabeq “ a,
cpadeq “ a, cpbdeq “ b, cpabdeq “ a. Assume c is LR. From cpbeq “ e and cpbdeq “ b, we
derive e� b and d� b. Thus, � must extend the following partial order:

d

a

e

b

We check that any extension of � list-rationalizes c .

• cpabdq “ a : If minpabd,�q “ a, then cpabdq “ cpcpbdqaq “ cpabq “ a. If
minpabd,�q “ b, then cpabdq “ cpcpadqbq “ cpabq “ a.

• cpabeq “ a : If minpabe,�q “ a, then cpabeq “ cpcpbeqaq “ cpaeq “ a. If minpabe,�q “

b, then cpabeq “ cpcpaeqbq “ cpabq “ a.

• cpadeq “ a : If minpabd,�q “ a, then cpadeq “ cpcpdeqaq “ cpadq “ a. If
minpade,�q “ d, then cpadeq “ cpcpaeqdq “ cpadq “ a. If minpade,�q “ e, then
cpadeq “ cpcpadqeq “ cpaeq “ a.

• cpbdeq “ cpcpdeqbq “ cpbdq “ b.

• cpabdeq “ a : If minpabde,�q “ a, then cpabdeq “ cpcpbdeqaq “ cpabq “ a. If
minpabde,�q “ b, then cpabdeq “ cpcpadeqbq “ cpabq “ a.
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4: cpabq “ a, cpadq “ d, cpaeq “ a, cpbdq “ b, cpbeq “ b, cpdeq “ d, cpabdq “ a, cpabeq “ a,
cpadeq “ d, cpbdeq “ b, cpabdeq “ a. Assume c is LR. From cpadq “ d and cpabdq “ a, we
obtain d� a and b� a. Thus, � must extend the following partial order:

b

e

d

a

We check that any extension of � list-rationalizes c.

• cpabdq “ cpcpbdqaq “ cpabq “ a.

• cpabeq “ a : If minpabe,�q “ a, then cpabeq “ cpcpbeqaq “ cpabq “ a. If minpabe,�q “

e, then cpabeq “ cpcpabqeq “ cpaeq “ a.

• cpadeq “ d : If minpabd,�q “ a, then cpadeq “ cpcpdeqaq “ cpadq “ d. If
minpade,�q “ e, then cpadeq “ cpcpadqeq “ cpdeq “ d.

• cpbdeq “ b : If minpbde,�q “ b, then cpbdeq “ cpcpdeqbq “ cpbdq “ b. If minpbde,�q “

d, then cpbdeq “ cpcpbeqdq “ cpbdq “ b.

• cpabdeq “ a : If minpabde,�q “ a, then cpabdeq “ cpcpbdeqaq “ cpabq “ a. If
minpabde,�q “ e, then cpabdeq “ cpcpabdqeq “ cpaeq “ a.

Summing up Classes 1-4, out of 11 RGT choices there are exactly 7` 1` 1` 1 “ 10 LR choices
(the only choice that is RGT but not LR is the one in subcase 1E).

3.4.3 Sequentially rationalizable (SR)

Lemma 12. There are exactly 15 non-isomorphic SR choices on X.

Proof. Suppose c is SR. By definition, there is an ordered list L “ pą1, . . . ,ąnq of asymmetric
relations on X such that the equality cpAq “ MnpAq holds for all A P X (where MnpAq has
been defined in Section 3.2).

To start, we introduce some compact notation. For any xi, xi, xp, xq P X, we write:

• xi ↣ xj (which stands for “xi eliminates xj”) if there exists ąs P L with the property
that xi ąs xj, and ␣pxi ąr xj _ xj ąr xiq for any ąr P L such that r ă s;

• pxi ↣ xjqB pxp ↣ xqq (which stands for “xi eliminates xj Before xp eliminates xq”) if
there exist ąs,ąu P L with the property that

– xi ąs xj and ␣pxi ąr xj _ xj ąr xiq for any ąr P L such that r ă s,
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– xp ąu xq and ␣pxp ąt xq _ xq ąt xpq for any ąt P L such that t ă u, and
– s ă u.

In other words, xi ↣ xj means that there is a rationale ąs (with minimum index s) in the list
L “ pą1,ą2, . . . ,ąnq which witnesses a strict preference of xi over xj, and xj is never preferred
to xi for all rationales ą1, . . . ,ąs. This implies that if L sequentially rationalizes c, then in a
pairwise comparison (but not necessarily in larger menus) xi is chosen over xj.

Similarly, pxi ↣ xjqB pxp ↣ xqq means that if L sequentially rationalizes c, then (in
pairwise comparisons) xi eliminates xj, xp eliminates xq, and the former process of elimination
strictly precedes the latter. Note that some of the items xi, xj, xp, xq maybe be the same (in fact,
xj “ xp will often happen in applications). The following result is useful:

Lemma 13. Let x1, x2, x3, x4 P X and A Ď X. We have:

(i) ↣ is asymmetric and complete;13

(ii) B is asymmetric and transitive;14

(iii) x1 ↣ x2 ðñ cpx1x2q “ x1;

(iv) x1 ↣ x2 ^ x1 ↣ x3 ùñ cpx1x2x3q “ x1;

(v) cpx1x2x3q “ x1 ùñ x1 ↣ x2 _ x1 ↣ x3;

(vi) x1 ↣ x2 ^ x1 ↣ x3 ^ x1 ↣ x4 ùñ cpx1x2x3x4q “ x1;

(vii) cpx1x2x3x4q “ x1 ùñ x1 ↣ x2 _ x1 ↣ x3 _ x1 ↣ x4;

(viii) cpx1x2q “ x1 ^ cpx1x2x3q “ x2 ùñ px3 ↣ x1qB px1 ↣ x2q;

(ix) cpx1x2q“x1 ^ cpx1x2x3x4q“x2 ùñ px3 ↣ x1qBpx1 ↣ x2q _ px4 ↣ x1qBpx1 ↣ x2q;

(x) cpx1x2q “ x1 ^ cpx1x3q “ x1 ^ cpx1x2x3x4q “ x2 ùñ px4 ↣ x1qB px1 ↣ x2q;

(xi) px1 ↣ x2qB px2 ↣ x3qB px3 ↣ x1q ùñ cpx1x2x3q “ x3;

(xii) cpAq ‰ x1 ùñ pDr P t1, . . . , nuq pDa P Aq a ąr x1 ^ a, x PMr´1pAq.

Proof. The proofs of parts (i)–(vii) are straightforward, and are left to the reader.
13A binary relation R on X is complete if for all distinct x, y P X, either xRy or yRx (or both).
14By the transitivity of B, we use px1 ↣ x2qB px2 ↣ x3qB px3 ↣ x4q in place of px1 ↣ x2qB px2 ↣ x3q and

px2 ↣ x3qB px3 ↣ x4q.
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(viii) Toward a contradiction, suppose the antecedent of the implication holds, but the con-
sequent fails. Since cpx1x2q “ x1, we get x1 ↣ x2 by part (iii). Furthermore, since
cpx1x2x3q ‰ x1, part (iv) implies that x1 ↣ x3 does not hold, hence x3 ↣ x1 by part
(i). Now the hypothesis ␣ppx3 ↣ x1qB px1 ↣ x2qq implies that x3 eliminates x1 either at
the same time or after x1 eliminates x2. By way of contradiction, suppose x3 ↣ x1 and
x1 ↣ x2 happen at the same time. By definition, there is r P t1, . . . , nu such that x3 ąr x1

and x1 ąr x2. The assumption cpx1x2x3q “ x2 together with x1 ąr x2 implies that x1 must
be eliminated before ąr applies to the menu x1x2x3. Therefore, we must have x2 ąs x1

or x3 ąs x1 for some s ă r. However, we have ␣px2 ąs x1q, because s ă r and x1 ↣ x2

with x1 ąr x2. Hence x3 ąs x1 for some s ă r. We conclude that the elimination was not
simultaneous. It follows that px1 ↣ x2qB px3 ↣ x1q. By a similar argument, one can
derive a contradiction also in this case.

(ix) Toward a contradiction, suppose the antecedent of the implication holds, but the con-
sequent fails. Since cpx1x2q “ x1, we get x1 ↣ x2 by part (iii). Furthermore, since
cpx1x2x3x4q ‰ x1, we get x3 ↣ x1 or x4 ↣ x1 (or both) by part (vi). The assumption
implies that both x3 ↣ x1 and x4 ↣ x1 never happen before x1 ↣ x2. In any case, we
get cpx1x2x3x4q ‰ x2, a contradiction.

(x) Toward a contradiction, suppose the antecedent of the implication holds, but the conse-
quent fails. By part (iii), we get x1 ↣ x2 and x1 ↣ x3. Furthermore, part (vii) yields
␣px1 ↣ x4q, whence x4 ↣ x1 by the completeness of ↣. Since px4 ↣ x1qBpx1 ↣ x2q

fails whereas both x4 ↣ x1 and x1 ↣ x2 hold, it must happen that x4 eliminates x1 simul-
taneously or after x1 eliminates x2. Since cpx1x2x3x4q “ x2, there must be xi P x2x3 such
that pxi ↣ x1qBpx1 ↣ x2q, in particular xi ↣ x1. This is impossible by the asymmetry
of ↣.

(xi) If the antecedent holds, then cpx1x2x3q must be different from both x1 and x2. The claim
follows.

(xii) If cpAq ‰ x1, then we obtain x1 R MrpAq for some r P t1, . . . , nu. Take the minimum s

such that x1 RMspAq. By definition, x1 was eliminated by some elements in Ms´1pAq Ď A,
which is our claim.

To count SR choices, we employ Approach #1. As in the proof of Lemma 10, the implication
‘SR ùñ AC’ (Manzini and Mariotti, 2007) comes handy to simplify the counting. Since several
deduction will be based on Lemma 13, to keep notation compact we use ‘L13(iii)’ in place of
‘Lemma 13(iii)’, ‘L13(v)’ in place of ‘Lemma 13(v)’, etc.
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Class 1: (4-cycle): cpabq “ a, cpadq “ a, cpaeq “ e, cpbdq “ b, cpbeq “ b, and cpdeq “ d.
Assume c is SR. By AC, we get cpabdq “ a and cpbdeq “ b. We need to determine cpabeq,
cpadeq, and cpabdeq. According to the three possible selections from the menu abe, we
distinguish three cases: (1A) cpabeq “ a ; (1B) cpabeq “ b ; (1C) cpabeq “ e .

1A: cpabeq “ a.
Claim: cpabdeq “ a. Toward a contradiction, assume cpabdeq ‰ a. By L13(xii),
there are x P X and ąr P L such that x ąr a and x, a P Mr´1pabdeq, whence x ↣ a.
Since cpabq “ cpadq “ a, we get a ↣ b and a ↣ d by L13(iii), hence x “ e by the
asymmetry of ↣. By L13(viii), cpaeq “ e and cpabeq “ a yield pb ↣ eqB pe ↣ aq

and ␣ppa ↣ bqBpb ↣ eqq. In particular, e is eliminated by b using some rationale
ąs such that s ă r. (Note that since cpbdq “ b, we have b ↣ d by L13(iii), and so
b cannot be eliminated by d.) This is a contradiction, since e PMr´1pabdeq, whereas
the last result tells us that e RMspabdeq ĚMr´1pabdeq.
From the Claim, it follows that 1A generates the following 3 non-isomorphic choices,
which are obtained by considering all possible selections from the menu ade (for
simplicity, in each menu we underline the selected item):15

(1) b, d, a, bd, be, de, bd, be, de, bde, bde ;
(2) b, d, a, bd, be, de, bd, be, ade, bde, bde ;
(3) b, d, a, bd, be, de, bd, be, ad, bde, bde .

To complete our analysis, we check that these choices are sequentially rationalized by
a list L of acyclic (not necessarily transitive) relations:

(1) pą1,ą2q, with a ą1 b ą1 d ą1 e, a ą1 d, b ą1 e, and e ą2a ;
(2) pą1,ą2,ą3q, with b ą1 e, e ą2a, a ą3 b ą3 d ą3 e, and ą3 transitive;16

(3) pą1,ą2q, with a ą1 d, b ą1 d, b ą1 e, and d ą2 e ą2a ą2 b .

1B: cpabeq “ b. Since cpabq “ a, we get pe ↣ aqB pa ↣ bq by L13(viii). We distinguish
3 subcases (i), (ii), and (iii), according to the choice on ade.

(i): cpadeq “ a. Since cpaeq “ e, we have pd ↣ eqB pe ↣ aq by L13(viii). Thus, we
obtain the chain pd ↣ eqB pe ↣ aqB pa ↣ bq. It is not difficult to show that
cpabdeq ‰ d, e. It follows that only two choices need be checked, namely
(4) b, d, a, bd, be, de, bd, abe, de, bde, bde ;

15Since this proof will also be used to count choices that are either RSM or CLS, we shall emphasize in magenta
all SR choices, in order to facilitate their retrieval by the reader.

16Note that no list with two rationales suffices. Indeed, this choice is not RSM, because WWARP fails, since
cpadq “ a “ cpabdeq and yet cpadeq “ d.
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(5) b, d, a, bd, be, de, bd, abe, de, bde, abde .
Both choices are sequentially rationalized by a list L as follows:
(4) pą1,ą2,ą3q, with d ą1 e, e ą2a, a ą3 b ą3 d ą3 e, and ą3 transitive;17

(5) pą1,ą2,ą3,ą4q, with b ą1 d, d ą2 e, e ą3a, a ą4 b ą4 e, and a ą4 d.18

(ii): cpadeq “ d. Since cpadq “ a, we get pe ↣ aqBpa ↣ dq by L13(viii). We already
know that pe ↣ aqBpa ↣ bq. An argument similar to that used in the previous
cases yields cpabdeq “ b. Thus, the only feasible choice c is
(6) b, d, a, bd, be, de, bd, abe, ade, bde, abde .
This choice is SR, and a rationalizing list L is the following:
(6) pą1,ą2q, with e ą1a, a ą2 b ą2 d ą2 e, and ą2 transitive.

(iii): cpadeq “ e. Since cpdeq “ d, we get pa ↣ dqBpd ↣ eq by L13(viii). We already
know that pe ↣ aqBpa ↣ bq. As in subcase (ii), we get cpabdeq “ b. Thus, c is
defined as follows:
(7) b, d, a, bd, be, de, bd, abe, ad, bde, abde .
This choice is SR, and a rationalizing list L is the following:
(7) pą1,ą2q, with e ą1a ą1 d, a ą2 b ą2 d ą2 e, and ą2 transitive.

1C: cpabeq “ e. Since cpbeq “ b, we get pa ↣ bqB pb ↣ eq by L13(viii). We claim that
cpabdeq ‰ b. Otherwise, cpabq “ a and cpadq “ a yield pe ↣ aqB pa ↣ bq by L13(x),
whence the chain pe ↣ aqB pa ↣ bqB pb ↣ eq implies cpabeq “ b by L13(x), which
is false. Thus, there are 3 subcases, according to the choice on ade.

(i): cpadeq “ a. Since cpaeq “ e, we get pd ↣ eqB pe ↣ aq by L13(viii). It is simple
to prove cpabdeq ‰ d, hence cpabdeq ‰ b, d. It follows that only two choices need
be checked:
(8) b, d, a, bd, be, de, bd, ab, de, bde, bde ;
(9) b, d, a, bd, be, de, bd, ab, de, bde, abd .
Both choices are sequentially rationalized by a list L as follows:
(8) pą1,ą2q, with a ą1 b, d ą1 e, b ą2 e ą2a ą2 d, and ą2 transitive;
(9) pą1,ą2,ą3q, with b ą1 d, a ą2 b, a ą2 d ą2 e, b ą3 e, and d ą3 e ą3 a .19

(ii): cpadeq “ d. Since cpadq “ a, we get pe ↣ aqB pa ↣ dq by L13(viii). It is simple
to prove cpabdeq ‰ a, hence cpabdeq ‰ a, d. It follows that only two choices need
be checked:

17Since pd ↣ eqBpe ↣ aqBpa ↣ bq holds, c is not RSM. In fact, WWARP fails.
18Since pb ↣ dqBpd ↣ eqBpe ↣ aqBpa ↣ bq holds, c is not RSM (and not even SR by 3 rationales).
19Since pb ↣ dqB pd ↣ eqB pe ↣ aq holds, c is not RSM. Note that WWARP fails, because cpaeq “ e “ cpabdeq

and yet cpadeq “ a.
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(10) b, d, a, bd, be, de, bd, ab, ade, bde, abde ;
(11) b, d, a, bd, be, de, bd, ab, ade, bde, abd .
Both choices are sequentially rationalized by a list L with two rationales:

(10) e ą1a ą1 b, a ą2 b ą2 d ą2 e, and ą2 transitive;
(11) e ą1a ą1 b ą1 d, a ą2 d ą2 e, and b ą2 e.

(iii): cpadeq “ e. Since cpdeq “ d, we get pa ↣ dqB pd ↣ eq by L13(viii). It is
simple to prove cpabdeq ‰ a, d, hence cpabdeq “ e.
Thus, the only feasible choice c is

(12) b, d, a, bd, be, de, bd, ab, ad, bde, abd .
This choice is SR by a list L with two rationales:

(12) pą1,ą2q, with a ą1 b, a ą1 d, b ą2 d ą2 e ą2a, and ą2 transitive.

Summarizing, in Class 1 there are 12 non-isomorphic SR choices.

Class 2 (source and sink): cpabq “ a, cpadq “ a, cpaeq “ a, cpbdq “ b, cpbeq “ b, cpdeq “ d.
Suppose c is SR. By AC, we get cpabdq “ cpabeq “ cpadeq “ cpabdeq “ a, and cpbdeq “ b.
Thus, the unique possible SR choice is this class is given by

(13) b, d, e, bd, be, de, bd, be, de, bde, bde .

This choice is rationalizable, and so it is SR.

Class 3 (source but no sink): cpabq “ a, cpadq “ a, cpaeq “ a, cpbdq “ b, cpbeq “ e, cpdeq “
d. Assume c is SR. By AC, we get cpabdq “ cpabeq “ cpadeq “ cpabdeq “ a. The only
remaining menu is bde, for which we can assume loss of generality that cpbdeq “ b (because
the other two possibilities cpbdeq “ d and cpbdeq “ e yield isomorphic choices). Thus, c is
defined by

(14) b, d, e, bd, b, de, bd, be, de, bde, bde .

This choice is SR by a list L with two rationales:

(14) pą1,ą2q, with d ą1 e, a ą2 e ą2 b ą2 d, and ą2 transitive.

Class 4 (sink but no source): cpabq “ a, cpadq “ d, cpaeq “ a, cpbdq “ b, cpbeq “ b, cpdeq “
d. If c is SR, then cpabeq “ a, cpadeq “ d, and cpbdeq “ b by AC. Without loss of
generality, we can assume cpabdq “ a (because the other two possibilities yield isomorphic
choices). By an argument similar to those described in the previous cases, one can show
that cpabdeq “ a. Thus, there is a unique possible SR choice in this class, and its definition
is

(15) b, ad, e, bd, be, de, bd, be, ade, bde, bde .
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This choice is SR by a list L with two rationales:

(15) pą1,ą2q, with b ą1 d, d ą2a ą2 b ą2 e, and ą2 transitive.

We conclude that there are 15 non-isomorphic SR choices on X, as claimed.

3.4.4 Status quo bias (SQB)

Lemma 14. There are exactly 6 non-isomorphic SQB choices on X.

Proof. Apesteguia and Ballester (2013) prove that SQB implies SR. Thus, it suffices to determine
which of the 15 SR choices described in Lemma 12 satisfy SQB. We use the same numeration of
cases as in Lemma 12.

(1) b, d, a, bd, be, de, bd, be, de, bde, bde.
This choice is WSQB: set a� b� d� e, z :“ e, and Q :“ bd.

(2) b, d, a, bd, be, de, bd, be, ade, bde, bde.
The reader can check that this choice is not SQB.

(3) b, d, a, bd, be, de, bd, be, ad, bde, bde.
The reader can check that this choice is not SQB.

(4) b, d, a, bd, be, de, bd, abe, de, bde, bde.
The reader can check that this choice is not SQB.

(5) b, d, a, bd, be, de, bd, abe, de, bde, abde.
The reader can check that this choice is not SQB.

(6) b, d, a, bd, be, de, bd, abe, ade, bde, abde.
This choice is both ESQB and WSQB: for ESQB, set a � b � d � e, z :“ e, and Q :“ bd;
for WSQB, set b� d� e� a, z :“ a, and Q :“ e.

(7) b, d, a, bd, be, de, bd, abe, ad, bde, abde.
The reader can check that this choice is not SQB.

(8) b, d, a, bd, be, de, bd, ab, de, bde, bde.
The reader can check that this choice is not SQB.

(9) b, d, a, bd, be, de, bd, ab, de, bde, abd.
The reader can check that this choice is not SQB.

(10) b, d, a, bd, be, de, bd, ab, ade, bde, abde.
The reader can check that this choice is not SQB.
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(11) b, d, a, bd, be, de, bd, ab, ade, bde, abd.
The reader can check that this choice is not SQB.

(12) b, d, a, bd, be, de, bd, ab, ad, bde, abd.

This choice is ESQB: set b� d� e� a, z :“ a, and Q :“ e.

(13) b, d, e, bd, be, de, bd, be, de, bde, bde.

This choice is rationalizable, hence it is SQB.

(14) b, d, e, bd, b, de, bd, be, de, bde, bde.

This choice is both ESQB and WSQB: for ESQB, set a� e � b� d, z :“ d, and Q :“ ab;
for WSBQ, set a� b� d� e, z :“ e, and Q :“ ad.

(15) b, ad, e, bd, be, de, bd, be, ade, bde, bde.

This choice is ESQB: set d� a� e� b, z :“ b, and Q :“ a.

Summing up Classes 1–4, there are 3` 1` 1` 1 “ 6 non-isomorphic SQB choices.

3.4.5 Rational shortlist method (RSM)

Lemma 15. There are exactly 11 non-isomorphic RSM choices on X.

Proof. The claim readily follows from the observations that RSM implies SR, and only 4 of 15
SR choices –namely those numbered (2), (4), (5), and (9), using the numeration in the proof of
Lemma 12– cannot be rationalized by two asymmetric binary relations.

3.4.6 Choice by lexicographic semiorders (CLS)

Lemma 16. There are exactly 15 non-isomorphic CLS choices on X.

Proof. The claim readily follows from the observation that CLS implies SR, and all 15 SR choices
exhibited in the proof of Lemma 12 are rationalized by acyclic relations.

Note that the equality between the number of SR and RSM choices on 4 item is only due to
the size of X, because on larger ground sets there are choices that are SR but not CLS (Manzini
and Mariotti, 2012a, Appendix).

61



3.4.7 Weak WARP (WWARP)

Lemma 17. There are exactly 304 non-isomorphic WWARP choices on X.

Proof. We employ Approach #2 to count all choices on X that do not satisfy WWARP. Suppose
cpabdeq “ a, cpbdeq “ b, and cpdeq “ d. WWARP fails if and only if there are two distinct items
x, y P X and two menus A,B Ď X such that x, y P A Ď B, cpxyq “ cpBq “ x, and yet cpAq “ y.
Since cpXq “ cpabdeq “ a, WWARP fails if and only if there are y P bde and A Ď X of size 3

such that cpayq “ a P A but cpAq “ y. We enumerate all possible cases for the item y P bde, and
the menu A Ď X containing a and y.

(1) y is b, and A is either abd or abe. Thus, there are two subcases:
(1.i) cpabq “ a and cpabdq “ b;
(1.ii) cpabq “ a and cpabeq “ b.

(2) y is d, and A is either abd or ade. Thus, there are two subcases:
(2.i) cpadq “ a and cpabdq “ d;
(2.ii) cpadq “ a and cpadeq “ d.

(3) y is e, and A is either abe or ade. Thus, there are two subcases:
(3.i) cpaeq “ a and cpabeq “ e;
(3.ii) cpaeq “ a and cpadeq “ e.

Note that these cases may overlap.
Consider now the choice on the menu ab, ad, and ae. There are exactly four mutually

exclusive cases (I)–(IV). In each of them, we count non-WWARP choices.

(I) Exactly one of cpabq “ a, cpadq “ a, and cpaeq “ a holds. This happens for a total
of 3

8
864 “ 324 non-isomorphic choices on X. Without loss of generality, assume only

cpabq “ a holds (which happens for 1
8
864 “ 108 non-isomorphic choices on X). Now

WWARP fails if and only if (1.i) or (1.ii) or both hold, which is true for 5
9
108 “ 60 choices.

The same happens when only cpadq “ a holds, or only cpaeq “ a holds. Thus, we get a
total of 180 non-WWARP choices.

(II) Exactly two of cpabq “ a, cpadq “ a, and cpaeq “ a hold. This happens for a total
of 3

8
864 “ 324 non-isomorphic choices on X. Without loss of generality, assume only

cpabq “ a and cpadq “ a hold (which happens for 1
8
864 “ 108 non-isomorphic choices on

X). According to cases (1.i), (1.ii), (2.i), and (2.ii), WWARP fails if and only if at least
one of the conditions cpabdq P bd, cpabeq “ b or cpadeq “ d are true. This happens for

˜

1 ´
1

3

ˆ

2

3

˙2
¸

108 “ 92
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choices. The same reasoning applies when only cpabq “ a and cpaeq “ a are true, or only
cpadq “ a and cpaeq “ a hold. Thus, we get a total of 276 non-WWARP choices.

(III) All of cpabq “ a, cpadq “ a, cpaeq “ a hold. This happens for a total of 1
8
864 “ 108

non-isomorphic choices on X. According to cases (1.i), (1.ii), (2.i), (2.ii), (3.i), and (3.ii),
WWARP fails if and only if at least one of conditions cpabdq P bd, cpabeq P be, or cpadeq P de
holds. Thus, we get a total of

˜

1 ´

ˆ

1

3

˙3
¸

108 “ 104

non-WWARP choices on X.

(IV) None of cpabq “ a, cpadq “ a, and cpaeq “ a holds. This choice satisfies WWARP.

Since cases (I), (II), (III), and (IV) are mutually exclusive, we conclude that WWARP fails
for 180` 276` 104 “ 560 choices. Thus, the number of non-isomorphic WWARP choices on X

is 864´ 560 “ 304.

3.4.8 Choice with limited attention (CLA)

Lemma 18. There are exactly 324 non-isomorphic CLA choices on X.

As announced, instead of giving a formal proof, we present two Matlab programs, which
are based on two equivalent formulations of WARP(LA), described in Lemma 19. The final
numbers of CLA choices obtained by running the two different programs are the same, namely
324.

Definition 9. For any choice c : X Ñ X, a (minimal) switch is an ordered pair pA,Bq of
menus such that A Ď B, cpAq ‰ cpBq P A, and |BzA| “ 1. Equivalently, a switch is a pair
pBzx,Bq of menus such that cpBzxq ‰ cpBq ‰ x.

Lemma 19. The following statements are equivalent for a choice c:

(i) WARP(LA) holds;

(ii) for any A P X , there is x P A such that, for any B containing x, if cpBq P A, then
pBzx,Bq is not a switch;

(iii) there is a linear order ą on X such that, for any x, y P X, x ą y implies that there is no
switch pBzy,Bq such that cpBq “ x.
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Proof of Lemma 19. The equivalence between (i) and (ii) follows from the definition of
WARP(LA) and Definition 11. To show that (iii) implies (ii), for any A P X , take x :“

minpA,ąq. To show that (ii) implies (iii), assume property (ii) holds. Thus, for A :“ X, there
is x P X such that, for any B containing x, pBzx,Bq is not a switch. Next, let A :“ Xzx. By
(ii), there is x1 P Xzx such that, for any B containing x1, if cpBq P Xzx (equivalently, cpBq ‰ x),
then pBzx1, Bq is not a switch. Set x ą x1, and take A :“ Xzxx1. By (ii), there is x2 P Xzxx1

such that, for any B containing x2, if cpBq P Xzxx1 (equivalently, cpBq ‰ x, x1), then pBzx2, Bq

is not a switch. Set x ą x2 and x1 ą x2. Thus, we get the transitive chain x ą x1 ą x2. Since X

is finite, we can continue this process until obtaining what we are after.

In the Specification Table at the beginning of the paper, we have inserted the link to a
Matlab code, which lists all non-isomorphic choices on 4 items satisfying WARP(LA). To
ease the comprehension of the code, below we provide some comments and pseudo-codes, which
describe the tasks implemented by each function defined in the Matlab file.

First, to compute the number of non-isomorphic choices on X “ abde, we list all 864 non-
isomorphic choice functions satisfying cpabdeq “ e, cpabdq “ d, and cpabq “ b.20 In the code,
we set a :“ 1, b :“ 2, d :“ 3, and e :“ 4. Moreover, each subset of abde :“ 1234 is labeled by a
number, which goes from 1 to 11. (Since we do not consider singletons and the empty set, there
are only 11 feasible menus.)

pkg load communications

function y = listofallchoicesiso()

y = [];
for a = [1,3]
for b = [2,3]
for c = [1,4]
for d = [2,4]
for e = [3,4]
for f = [1,2,4]
for g = [1,3,4]
for h = [2,3,4]
choice(1) = 2;
choice(2) = a;

20 This is equivalent to requiring cpabdeq “ a, cpbdeq “ b, and cpdeq “ d, as in Lemma 17.

64



choice(3) = b;
choice(4) = c;
choice(5) = d;
choice(6) = e;
choice(7) = 3;
choice(8) = f;
choice(9) = g;
choice(10) = h;
choice(11) = 4;
y = [y;choice];
end
end
end
end
end
end
end
end
end

We build a function, called index2array(x), which displays, for any menu A (denoted by x
in the code), the array of its elements.

function y = index2array(x)

if (x == 1)
y = [1,2];

elseif (x == 2)
y = [1,3];

elseif (x == 4)
y = [1,4];

elseif (x == 3)
y = [2,3];

.

.

.
disp('not found');
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endif
end

Next, the function listswitches(x) takes as input a choice c (denoted by x in the code)
on X “ abde, and lists as output all the switches of c. The list switches includes all possible
switches of a choice function. Note that each switch pBzx,Bq is encoded as [p,q,r], meaning
that p“ cpBzxq, q“ cpBq, and r“ x. The function switches returns the 3-column matrix of all
switches. Each row displays a switch in the form discussed above.

function y = listswitches(x)

switches = [];
if (x(1) == 1 && x(7) == 2)

switches = [switches;[1,2,3]];
endif
if (x(1) == 2 && x(7) == 1)

switches = [switches;[2,1,3]];
endif
if (x(1) == 1 && x(8) == 2)

switches = [switches;[1,2,4]];
endif
.
.
.
y = switches;
end

The following function, named secontainselement(z), checks whether an item x belongs
to some set A P X . In the code the object z denotes a pair consisting of an item, denoted
by z(1), and a menu, denoted by z(2). The function returns 1 if z(1) belongs to z(2), and
0 otherwise. This function will be used to test the alternatives formulations of WARP(LA)
described in Lemma 19.

function y = setcontainselement(z)

x = z(1);
p = z(2);
if ((p == 1 && x == 1) || (p == 1 && x == 2) || (p == 2 && x == 1) || (p == 2 && x == 3))
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y = 1;
elseif ((p == 3 && x == 2) || (p == 3 && x == 3) || (p == 4 && x == 1) || (p == 4 && x == 4))

y = 1;
elseif ((p == 5 && x == 2) || (p == 5 && x == 4) || (p == 6 && x == 3) || (p == 6 && x == 4))
y = 1;
.
.
.
endif
end

The next code counts the number of non-isomorphic choice functions on X satisfying the
property described in Lemma 19(ii). The function prelimtestWARPLA(A,S,x), for any choice
function c, takes as input a set A P X (denoted by A), the family of all switches of c (represented
by the matrix S), and an item x P X (denoted by x), and checks whether there is a switch
pBzx,Bq such that cpBq P A. This function gives 0 if such a switch exists, otherwise returns
1. Thus, WARP(LA) can be restated as for all nonempty A there exists x P A such that the
function prelimtestWARPLA(A,S,x) returns 1 on input (A,S,x) where S is the list of all existing
switches.

The function testifAisWARPLA(A,S), for a given choice c, takes as input a menu A (denoted
by A) and the family of all switches of c (described in the matrix S), and test whether there is
x P A such that pBzx,Bq is a switch and cpBq P A. This function uses setcontainselement(m),
index2array(A), and prelimtestWARPLA(A,S,x), which were previously built, and gives 1 if
it finds some x satisfying the required constraints, or 0 otherwise.

The function testifchoiceisWARPLA(x) takes as input a choice function c (denoted by x)
and, testing all the menus of c using testifAisWARPLA(A,S), returns 1 if c satisfies WARP(LA),
and 0 otherwise.

The function testWARPLA counts the number of WARP(LA) choices. We collect all the
choices satisfying WARP(LA) in the list WARPLA, while we put the other choices in the list
notWARPLA, and we display, using the commands size(WARPLA) and size(notWARPLA), the size
of these lists, obtaining what we are looking for.

function y = prelimtestWARPLA(A,S,x)
s = size(S)(1);
for j = 1:s

m = [S(j,2),A];
if (S(j,3) == x && setcontainselement(m) == 1)

y = 0;
return;
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endif
end
y = 1;
end

function q = testifAisWARPLA(A,S)
B = index2array(A);
n = size(B)(2);
for i = 1:n

z = prelimtestWARPLA(A,S,B(i));
if (z == 1)

q = 1;
return;
endif

endfor
q = 0;
end

function y = testifchoiceisWARPLA(x)
S = listswitches(x);
for i = 1:11; % Testing all A

j = testifAisWARPLA(i,S);
if (j == 0)

y = 0;
return

endif
y = 1;
end
end

function testWARPLA
y = listofallchoicesiso()
WARPLA = [];
notWARPLA = [];
for i = 1:864

x = y(i,:);
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if testifchoiceisWARPLA(x) == 1
WARPLA = [WARPLA;x];

else
notWARPLA = [notWARPLA;x];

endif
end
disp('number of WARPLA is: ')
size(WARPLA)(1)
disp('number of NOT WARPLA is: ')
size(notWARPLA)(1)
end

Finally, we compute the number of choices satisfying the property stated in Lemma 19(iii).
We need to check whether, given a choice c and the associated switches, a linear order ą on X

satisfies
x ą y ùñ

´

cpBq “ x ùñ
`

cpBq “ cpBzyq _ cpBq “ y
˘

¯

(3.2)

for any x, y P X and B P X containing x, y. To that end, we first build the func-
tion testifsetofswitchesisorderablebyperm(S,q), which takes as inputs the family of all
switches (represented on Matlab by the matrix S) of a given choice function c, and a given
linear order ą on X (represented by a permutation q of the set 1234), and returns 0 if ą satisfies
Condition 3.2, or 1 otherwise.

The function perms([1,2,3,4]) generates all the linear orders on X (i.e. all the possible
permutations of the set 1234). The function testswitchesWARPLA(S) takes as input the family
of all switches of a choice function c, and returns 1 if there is a linear order ą satisfying Condition
3.2, and 0 otherwise. Finally, we define the function testWARPLA2. This command first checks,
for any choice c (which is denoted by x in Matlab), whether it satisfies the property stated in
Lemma 19(iii). Then the function collects the choices satisfying the alternative formulation of
WARP(LA) in the list in, and the other choices in the list out, and displays the size of these
lists, obtaining the number of non-isomorphic choices satisfying WARP(LA) (and the number
of those which do not satisfy it).

function y = testifsetofswitchesisorderablebyperm(S,q)
M = size(S)(1);
for m=1:M

if (q(S(m,2)) < q(S(m,3)))
y = 0;
return
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endif
end
y = 1;
end

function y = testswitchesWARPLA(S)
P = perms([1,2,3,4]);
for (n = 1:24)

if testifsetofswitchesisorderablebyperm(S,P(n,:))
y = 1;
return

endif
end
y = 0;
end

function testWARPLA2
y = listofallchoicesiso();
in = [];
out = [];
for i = 1:864

x = y(i,:);
if testswitchesWARPLA(listswitches(x)) == 1

in = [in;x];
else

out = [out;x];
endif

end
disp('number of WARPLA here is: ')
size(in)(1)
disp('number of NOT WARPLA is: ')
size(out)(1)
end

The reader can check that, running the commands testWARPLA and testWARPLA2, there are
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exactly 324 non-isomorphic choices on X satisfying properties (ii) and (iii) in Lemma 19. We
conclude that the number of non-isomorphic CLA choice on X is 324.
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Chapter 4

Semantics meets attractiveness: Choice
by salience

Introduction
In this paper we describe an approach to individual choice, in which the salience of some al-
ternatives forges the decision maker’s (DM’s) judgement. Our main assumption is that each
alternative can be looked at from two different points of view:

(1) ‘semantics’, related to the information provided by the item;

(2) ‘attractiveness’, related to the possibility of being selected.

These two aspects are typically unrelated: for instance, the item frog’s legs in a restaurant
menu may be unattractive to me (and so I will never select it), and yet it catches my attention,
delivering important information about the chef’s skills (and so convincing me to order an item
that I would otherwise avoid). The informative content of special items in a menu is emphasized
by Sen (1993):

What is offered for choice can give us information about the underlying situation, and can
thus influence our preferences over the alternatives, as we see them.

We describe the semantics of alternatives by means of a binary relation of salience, which
provides an ordinal evaluation of how intriguing an item is when compared to a different one.
Note that some items may display a similar salience (indifference), whereas some others may
carry semantically dissimilar salience (incomparability).

The idea that special items in a menu may affect individual judgements is not new; what is
the new is how this feature is modeled. Kreps (1979) characterizes preferences for flexibility, in
which any menu is weakly preferred to its subsets, and the union of two menus may be strictly
preferred to each of them. From an opposite perspective, Gul and Psendorfer (2003) describe
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preferences for commitment, in which a DM may strictly prefer a proper submenu to a menu
in order to avoid temptation. Masatlioglu and Ok (2005) design a rational choice model with
status quo bias: in each menu, the choice is affected by the item selected as the default option.
All these models suggest the influence of special items on the choice process, but they do not
explicitly refer to the informativeness of alternatives.

In psychology, the effects of salient information on judgement is first documented by Taylor
and Fiske (1978), who, rephrasing Tversky and Kahneman (1974), write:

Instead of reviewing all the evidence that bears upon a particular problem, people fre-
quently use the information which is most salient or available to them, that is, that which
is most easily brought to mind.

Along this path, Bordalo, Gennaioli, and Shleifer (2012, 2013) describe a DM whose attention
is captured by the salience of the attributes that evaluate alternatives. The authors argue that
attention may only be focused on some specific aspects of the environment (e.g., quality and
price), and the DM inflates the relative weights attached to the more salient attributes in the
process of choosing among alternatives.

In our model of choice by salience, we use multiple rationales (linear orders) to explain choice
behavior, where each rationale is labeled by an item of the ground set. Salience is encoded by
a binary relation that describes how the DM’s attention is focused on items. Thus, differently
from Bordalo, Gennaioli, and Shleifer (2013), we define a notion of salience for items, rather
than for attributes; moreover, we only give an ordinal priority of consideration rather than a
cardinal evaluation of salience.

More formally, a salient justification for a choice on X consists of a pair xÁ,L y, where Á

is the salience order on X, and L “ t�x : x P Xu is a family of linear orders on X. Salience
guides choice by pointing at the linear orders that may be used to justify the selection from a
menu A: first the DM identifies the most salient elements of A, and then she rationalizes A by
choosing one among the linear orders associated to the maximally salient elements of A.

To illustrate how the model of choice by salience works, we use a famous example due to
Luce and Raiffa (1957).

Example 3 (Luce and Raiffa’s dinner). Thea selects a main course from a restaurant menu.
She prefers steak (s) over chicken (c), provided that steak is appropriately cooked; moreover, she
is not interested in exotic dishes such as frog’s legs (f). We observe that Thea chooses chicken
over steak when they are the only available items, but selects steak if also frog’s legs are in
the menu. This happens because having frog’s legs in the menu is perceived by Thea as a sign
that the chef knows how to grill a steak. Formally, if X “ tc, f, su is the set of items, Thea’s
preferences are described by the linear order s�c�f , and her observed choice is cfs, cs, fs, cf ,
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where the item selected from each menu is underlined. This choice is not rationalizable by a
single binary relation, because it violates Axiom α (Chernoff, 1954).

Salience explains Thea’s choice behavior by means of two binary rationales. To that end, let
Á be the (transitive and complete) salience order on X defined by f ą c, f ą s, and c „ s, where
ą means ‘is strictly more salient’, and „ stands for ‘has the same salience as’. Furthermore, let
L “ t�c,�f ,�su be the family of linear orders on X such that c �c s �c f , s �f c �f f , and
�s “ �c. Selection from any menu A is then explained by maximizing the linear order in L

indexed by the most salient item of A. For instance, for A “ tc, f, su, the most salient item in
A is f , and the maximization of �f justifies the selection of s. Similarly, s and c are the most
salient items in A “ ts, cu, hence maximizing �s“ �c explains the selection of c.

Luce and Raiffa’s dinner is also used by Kalai, Rubinstein, and Spiegler (2002) to illustrate
their choice model of rationalization by multiple rationales (RMR). According to their approach,
the DM is allowed to use several rationales (linear orders) to justify her choice: she selects from
each menu the unique element that is maximal according to one (any) of these preferences. The
family of linear orders carries no structure, and the selection of a rationalizing order among the
available ones is independent of the menu itself. In fact, they write (p. 2287):

We fully acknowledge the crudeness of our approach. The appeal of the RMR proposed
for “Luce and Raiffa’s dinner” does not emanate only from its small number of orderings,
but also from the simplicity of describing in which cases each of them is applied. [...] More
research is needed to define and investigate “structured” forms of rationalization.

Our approach based on salience reveals the hidden structure of the set of rationales.
Choice by salience is also related to those bounded rationality models that use ‘sequentiality’

to explain behavior, e.g., (i) the sequential rationalization of Manzini and Mariotti (2007), (ii)
the model of choice with limited attention of Masatlioglu, Nakajima, and Ozbay (2012), (iii) the
theory of rationalization of Cherepanov, Feddersen, and Sandroni (2013), and (iv) the model of
list-rational choice due to Yildiz (2016). The underlying general principle of all these models is
the same: the DM’s selection from each menu is performed by successive rounds of contraction
of the menu, eventually selecting a single item. Specifically, a menu is shrunk by either (i)
maximizing two or more acyclic binary relations always considered in the same order, or (ii)
applying a suitable choice correspondence (attention filter) first and a linear order successively,
or (iii) applying a choice correspondence satisfying Axiomα (psychological constraint) first and a
linear order successively, or (iv) sequentially comparing (and eliminating) pairs of items through
an asymmetric binary relation.

The model of choice by salience draws a bridge between the two different categories of
bounded rationality approaches described in the two preceding paragraphs, namely the non-
testable RMR model and the mentioned sequential models: we achieve this goal by separately
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encoding semantics (via the salience order) and attractiveness (via the rationales assigned to
alternatives). Moreover, our approach explains well-known behavioral anomalies, such as the
decoy effect, the compromise effect, and the handicapped avoidance.

In the linear model analyzed in this chapter, we require that (1) the salience order is transitive
and complete, and (2) all linear orders indexed by indifferent items are equal. This linear
variant is independent from most existing models of bounded rationality, being however a special
case of the choice with limited attention of Masatlioglu, Nakajima, and Ozbay (2012), being
characterized by a property of the correspondent attention filter.

In Appendix B, the only assumption that we make about the salience order is the satisfaction
of a minimal feature of rationality, namely the acyclicity of its asymmetric part. Thus, the level
of refinement of this binary relation is not fixed a priori; in fact, it depends on the DM’s
preference structure and the context of the choice problem. In the general model of choice by
salience, no additional assumption is made. This flexibility – which is purely endogenous, insofar
as determined by the DM’s attention structure – entails rationalizability of any observed choice
behavior. It can be shown that there exist choices requiring as many distinct rationales as the
number of items in the ground set: we label all these choices as expressive of a DM’s ‘moody
behavior’. We show that moodiness is rare on a small number of alternatives. However, and
possibly not surprisingly,1 this feature becomes the norm for large sets. In fact, as the number
of items diverges to infinity, the fraction of moody choices tends to one.

The paper is organized as follows. Section 4.1 collects preliminary notions. In Section 4.2 we
discuss the linear model, and provide a multiple characterization of it (Theorem 5). Section 4.3
compares our approach to the existing literature and we show that linear salience is independent
of some models of bounded rationality. Section 4.4 collects final remarks and possible directions
of research. In Appendix B we describe the general approach of choice by salience, showing that
moodiness exists (Theorem 6) and asymptotically prevails (Theorem 7).

4.1 Preliminaries
For readers’ convenience, here we collect all basic notions about choice and preference. A finite
nonempty set X of alternatives (ground set) is fixed throughout. We denote by X the family of
all nonempty subsets of X, and call any A in X a menu. Elements of a menu are often referred
to as items. A choice correspondence on X is a map Γ : X Ñ X that selects some items (at
least one) from each menu, that is, ∅ ‰ Γ pAq Ď A for any A P X . A choice function is a
choice correspondence in which a unique item is selected from each menu; thus, we may identify
it with a map c : X Ñ X such that cpAq P A for any A P X . Here we mostly deal with choice

1On the other hand, the proof of this fact is surprisingly technical: see Appendix B.
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functions, and only occasionally refer to correspondences; thus, unless confusion may arise, we
use ‘choice’ in place of ‘choice function’.2 To simplify notation, we often omit set delimiters and
commas: for instance, AY x stands for AY txu, A´ x for Aztxu, cpxyq for cptx, yuq, etc.

Next, we introduce preferences. Recall that a binary relation R on X is:
- reflexive if xRx, for all x P X;
- asymmetric if xRy implies ␣pyRxq, for all x, y P X;
- symmetric if xRy implies yRx, for all x, y P X;
- antisymmetric if xRy and yRx implies x “ y, for all x, y P X;
- transitive if xRy and yRz implies xRz, for all x, y, z P X;
- acyclic if x1Rx2R . . . RxnRx1 holds for no x1, x2, . . . , xn P X, with n ě 3;3

- complete if either xRy or yRx (or both) holds, for all distinct x, y P X.
The symbol Á denotes a reflexive binary relation on X, and is here interpreted as a weak
preference on the set of alternatives. The following derived relations are associated to a weak
preference Á (x, y range over X):

- strict preference ą, defined by x ą y if x Á y and ␣py Á xq;
- indifference „, defined by x „ y if x Á y and y Á x;
- incomparability K, defined by x K y if ␣px Á yq and ␣py Á xq.

Note that ą is asymmetric, „ is symmetric, and Á is the disjoint union of ą and „. A weak
preference Á on X is a suborder if ą is acyclic, a preorder if it is transitive, a partial order if it
is transitive and antisymmetric, a total preorder if it is a preorder with empty incomparability,
and a linear order if it is a complete partial order. We denote by � (the strict part of) a linear
order (asymmetric, transitive, and complete).

The theory of revealed preferences pioneered by Samuelson (1938) studies when a binary
relation suffices to explain choice behavior by maximization. Given a suborder Á on X and a
menu A P X , the set of Á-maximal elements of A is

maxpA,Áq “ tx P X : y ą x for no y P Au ‰ ∅ .4

A choice c : X Ñ X is rationalizable if there exists a suborder (in fact, a linear order) �

on X such that cpAq P maxpA,�q for any A P X . As customary, we abuse notation, and write
cpAq “ maxpA,�q in place of cpAq P maxpA,�q.

2To further distinguish choice functions from choice correspondences, we use lower case Roman letters for the
former, and upper case Greek letters for the latter.

3Sometimes a binary relation is called acyclic if there is no cycle of length ě 2 (see. e.g., Masatlioglu, Nakajima,
and Ozbay, 2012): according to this terminology, asymmetry is a special case of acyclicity. We prefer to keep
the properties of asymmetry and acyclicity explicitly distinct, using the former term for the absence of cycles of
length two, and the latter term for the absence of cycles of length at least three.

4Note that maxpA,Áq ‰ ∅ because X is finite and ą is acyclic.
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The rationalizability of a choice function5 is characterized by the property of Contraction
Consistency due to Chernoff (1954), also called Independence of Irrelevant Alternatives by Arrow
(1963), or Axiomα by Sen (1971). This property states that if an item is chosen in a menu, then
it is also chosen in any submenu containing it:

Chernoff Property (Axiom α): for all A,B P X and x P X, if x P A Ď B and cpBq “ x,
then cpAq “ x.

For a (finite) choice function, Axiom α is equivalent to the Weak Axiom of Revealed Preference
(Samuelson, 1938), which says that if an alternative x is chosen when y is available, then y

cannot be chosen when x is available:

WARP: for all A,B P X and x, y P X, if x, y P AXB and cpAq “ x, then cpBq ‰ y.

4.2 A testable model of salience
We provide a methodology that aims to reproduces the effect of salience on the DM’s judgement.
Its ingredients are: (1) a total preorder on X, and (2) a family of rationalizing linear orders
indexed by the elements of X.

Definition 10. A rationalization by linear salience (RLS) of a choice c : X Ñ X is a pair
xÁ,L y, where

(LS1) Á is a total preorder on X (the salience order),

(LS2) L “ t�x : x P Xu is a family of linear orders on X (the rationales), and

(LS3) �x equals �y whenever x „ y (the normality condition),
such that, for any A P X , cpAq “ max pA,�xq for some x P maxpA,Áq.

The term ‘linear’ is justified by the joint action of axioms LS1 and LS3: see Remark 5 and
Lemma 20(ii) below. For any menu, the DM’s attention is captured by the most salient items
in it. This leads her to make her selection by maximizing the (uniquely determined) rationale
suggested by those items.6 According to condition LS1, salience classes form a partition of the
ground set, and they are linearly ordered by importance.7 Condition LS3 says that equally
salient items suggest identical criteria to apply in the selection process.8

5For a choice correspondence, rationalizability is characterized by Axioms α and γ (Sen, 1971).
6Note that Definition 10 is sound because of the normality condition LS3.
7This ordering assumption has been already considered in more structured models of salience (Bordalo, Gen-

naioli, and Shleifer, 2012, 2013) as a key feature of DM’s sensory perception.
8We could also make the less restrictive assumption that preferences attached to equally informative alterna-

tives be ‘very close’ to each other, in the sense that a limited numbers of binary switches are allowed. In technical
terms, this accounts to ask that linear orders associated to indifferent items must have a bounded Kendal tau
distance (Kendall, 1938), or, more generally, a bounded distance according to a semantically meaningful notion
of ‘metric for preferences’ (Nishimura and Ok, 2022). This is a topic for future research.
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Remark 5. The rational structure of the salience order and the normality condition yield an
alternative formulation of an RLS choice. In fact, the elements of L can be indexed by the
equivalence classes of salience, rather than by the elements of the ground set. Specifically, the
total preorder Á on X generates a partition SÁ of X into equivalence classes of salience, which
are linearly ordered by ą as follows: for all S, T P SÁ, let S ą T if s ą t for some (equivalently,
for all) s P S and t P T . Now the normality condition LS3 allows us to rewrite the family of
rationalizing preferences in LS2 by L “ t�S : S P SÁu. This representation has the obvious
advantage of being more compact. However, we still prefer to use the original formulation given
in Definition 10, because it is more intuitive.

Any rationalizable choice is RLS: take XˆX as salience order (that is, all items are indifferent
from a semantic point of view), and let L be the family composed of the unique linear order
that explains choice by maximization. The next result provides alternatives formulations of
rationalizability by linear salience; its proof is straightforward, and is left to the reader.

Lemma 20. The following statements are equivalent for any choice c : X Ñ X:
(i) c is RLS;

(ii) there are a linear order � on X and a set t�x : x P Xu of linear orders on X such that
cpAq “ max

`

A,�maxpA,�q

˘

for any A P X ;

(iii) there are a choice correspondence Φ : X Ñ X satisfying WARP (called a focusing filter)
and a set t�x : x P X u of linear orders on X such that cpAq “ max pA,�xq for some
(equivalently, for all) x P ΦpAq;9

(iv) there are a choice function d : X Ñ X satisfying WARP and a set t�x : x P Xu of linear
orders on X such that cpAq “ max

`

A,�dpAq

˘

for any A P X .

Lemma 20(ii) (and (iv)) provides an apparently simpler notion of choice by linear salience.
However, we still prefer Definition 10, because it emphasizes that items with the same salience
should be associated to the same rationales (or, at least, to very similar rationales: see Remark 5
and Footnote 8). This is relevant also in view of the possibility to relaxing the completeness and
the transitivity of the relation of salience, thus obtaining a more permissive (testable) model of
choice.

Lemma 20(iii) points out an alternative description of the behavioral process entailed by a
linear salience approach. The DM’s salience is described by a focusing filter, which assigns to
any menu those items that draw her attention. These items will induce the DM to use a specific

9A choice correspondence Φ : X Ñ X satisfies WARP when for all A,B P X and x, y P X, if x, y P A X B,
x P ΦpAq, and y P ΦpBq, then x P ΦpBq. By the Fundamental Theorem of Revealed Preference Theory –
see Arrow (1959) and Sen (1971) – a choice correspondence satisfies WARP if and only if it is rationalizable by
a total preorder.
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criterion to make her choice. The focusing filter must satisfy WARP: if an item is among the
most salient in a given menu, the same must happen in any submenu. This condition is a
consequence of DM’s ability to rank items according to their salience.

In Sections 4.24.2.4 and 4.3, we shall extensively discuss the relationship of our linear model
with several approaches of bounded rationality already present in the literature. Lemma 20
already allows us to point out a few differences of this kind. For instance, Bordalo, Gennaioli,
and Shleifer (2012) adopt the notion of salience function, which can be seen as a cardinal version
of a focusing filter. A choice correspondence, called an attention filter, is also involved in
the model of Masatlioglu, Nakajima, and Ozbay (2012); however, its properties and behavioral
interpretation are different from those of a focusing filter. There is also an apparent analogy with
the approach of Cherepanov, Feddersen, and Sandroni (2013), who consider a DM shrinking the
set of feasible items using a choice correspondence Ψ satisfying Axiom α (see Section 4.1 of the
mentioned paper), before applying a suitable rationale (which is an asymmetric binary relation,
or, in some cases, a linear order).10 However, the focusing filter Φ in Lemma 20(iii) plays a
role that is different from that of Ψ . Note that an equivalent formulation of Definition 10 has
been independently discussed in a paper by Kibris, Masatlioglu, and Suleymanov (2021), who
propose a theory of ‘reference point formation’.11 However, beside a different motivation relying
on salience, in Lemma 20 we present alternative representations of our behavioral pattern, which
go beyond the ordered reference dependence defined in the mentioned work. Moreover – and
possibly more important from a practical point of view – we offer in Subsections 4.2.2, 4.2.3,4.2.4,
?? a new characterization, identification, and behaviorial analysis of this phenomenon. A more
detailed comparison between the two models is provided in Section 4.3.

4.2.1 Minimal switches and conflicting menus

Here we describe some possible features of ‘irrationality’.

Definition 11. For any choice c : X Ñ X, a switch is an ordered pair pA,Bq of menus such
that A Ď B and cpAq ‰ cpBq P A.12 A switch pA,Bq is minimal if |BzA| “ 1. Equivalently, a
minimal switch is a pair pA,AY xq of menus such that cpAq ‰ cpAY xq ‰ x.

Switches are violations of Axiom α (equivalently, WARP). A minimal switch pA,AYxq arises
whenever if the DM chooses y from a menu A, and a new item x is added to A, then the item

10A choice correspondence Ψ : X Ñ X satisfies Axiom α when, for any x P X and A,B P X , if x P A Ď B
and x P ΨpBq, then x P ΨpAq. Note that for choice correspondences, WARP is stronger than Axiom α, being
equivalent to the join satisfaction of Axiom α and Axiom β (Sen, 1971).

11These two similar approaches were formulated in a completely independent way. (For the sake of transparency,
let us emphasize that a preliminary draft of our salience model was presented by Angelo Petralia at Universitat
Pompeu Fabra of Barcellona in 2019.)

12Cherepanov, Feddersen, and Sandroni (2013) refer to such a pair of menus as anomalous.
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selected from the larger menu AY x is neither the old nor the new. When the ground set X is
finite, switches can always be reduced to a minimal ones:

Lemma 21. Let c : X Ñ X be a choice. For any switch pA,Bq, there are a menu C P X and
an item x P X such that A Ď C Ď C Y x Ď B and pC,C Y xq is a switch.

Proof. Suppose there are A,B P X such that pA,Bq is a switch, hence cpAq ‰ cpBq P A. If
|BzA| “ 1, the claim holds. Thus, assume |BzA| ą 1, hence there are x P X and C P X such
that A Ĺ C Ĺ C Y x “ B. If pC,Bq is a (minimal) switch, then we are done again. Thus,
suppose pC,Bq is not a switch.

Claim: pA,Cq is a switch. By hypothesis, either (i) cpBq “ x or (ii) cpBq “ cpCq holds.
Since pA,Bq is a switch, case (i) cannot happen, hence cpBq “ cpCq “ b ‰ x. It follows that
b P AzcpAq, because otherwise pA,Bq would fail to be a switch, contradicting the hypothesis.
This proves that pA,Cq is a switch.

Thus, the original violation of Axiom α witnessed by the switch pA,Bq takes place within
the smaller pair pA,Cq, where C “ Bztxu. If pA,Cq is minimal, then we are done. Otherwise,
we repeat the above argument, and show that there are y P X and D P X such that A Ĺ D Ĺ

D Y y “ C, and either pA,Dq or pD,Cq is a switch. In the latter case, we are done. In the
former case, pA,Dq is a switch, and we can continue as above. Since X is finite, we eventually
obtain what we are after. (Note that the assumption of the finiteness of X is essential in proving
Lemma 21.

By Lemma 21, the existence of minimal switches characterizes non-rationalizable choices.
Suitable pairs of minimal switches identify a strong type of pathology:

Definition 12. Two distinct menus A,B P X are conflicting if there are a P A and b P B such
that both pA,AY bq and pB,B Y aq are switches.

Theorem 5 in Subseection 4.2.3 states that RLS choices display no conflicting menus. We
conclude this section with a necessary condition for RLS choices.

Lemma 22. Let c : X Ñ X be an RLS choice, and Á the associated salience order. For any
A P X and x P X, if pA,AY xq is a switch, then x ą a for all a P A.

Proof. Suppose c : X Ñ X is RLS via the total preorder Á. Let A P X and x P X be such
that pA,A Y xq is a switch, whence cpAq “ y and cpA Y xq “ z ‰ x, y. Assume there is some
w P A such that w Á x. This implies that maxpA,Áq Ď maxpA Y x,Áq, hence, by normality,
cpAYxq “ y or cpAYxq “ x, which is false. We conclude that x ą a for all a P A, as claimed.
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In words, if a new element x is added to a menu A, and the item chosen in the enlarged
menu AY x is neither the old nor the new, then x is more salient than any element in A. This
is exactly what happens in Luce and Raiffa’s dinner (Example 3), when the item f (frog’s legs)
is added to the menu tc, su “ tchicken, steaku.

4.2.2 Revealed salience

Any choice can be associated with an irreflexive relation revealed by minimal switches.

Definition 13. Given c : X Ñ X, define a relation ( of revealed salience on X by

x ( y ðñ there is a menu A containing y such that pA,AY xq is a switch

for any distinct x, y P X. Hereafter, we write x ( A if pA,AY xq is a switch, because the latter
fact implies x ( a for all a P A.13

Essentially, ( infers salience from observed data: if adding x to a menu A causes a switch,
then x is revealed to be more salient than any item in A.14 The next three remarks illustrate a
connection between revealed salience and the binary relations revealed by three existing bounded
rationality approaches. However, we point out that the rationale inspiring revealed salience is
different from those described below.

Remark 6. The relation ( evokes the relation Rev defined in the theory of rationalization of
Cherepanov, Feddersen, and Sandroni (2013, p. 780): for any distinct x, y P X, xRev y holds
if there is a special violation of WARP, that is, an ordered pair pA,Bq of menus such that
x, y P A Ď B, cpAq “ x, and cpBq “ y. 15 Since violations of WARP can be reduced to
minimal switches (Lemma 21), xRev y holds if and only if there is z P X distinct from x and
y, and A P X such that cpAq “ x and cpA Y zq “ y, which yields z ( x. We conclude that
xRev y implies z ( x for some z distinct from x and y. Thus, the two revealed relations Rev
and ( describe different types of attitudes: Rev looks at the attractiveness of items, whereas (
is related to their semantics.

13Indeed, ( arises as a hyper-relation on X, that is, a subset of X ˆ X . The hyper-relation ( compares items
to menus by declaring x ( A if pA,A Y xq is a switch. Hyper-relations have proven useful in rational choice,
often providing a rather general perspective: see the pioneering papers by Aizerman and Malishevski (1981) and
Nehring (1997), as well as the recent work by Chambers and Yenmez (2017) and Stewart (2020). However, in
our approach, hyper-relations would increase technicalities without getting any crucial leverage. Thus we define
( as a binary relation.

14Revealed salience is called revealed conspicuity in the reference-dependence theory of Kibris, Masatlioglu,
and Suleymanov (2021).

15This relation has been also analyzed in Dutta and Horan (2015).
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Remark 7. Revealed salience ( is a a weak converse16 of the relation P associated to a choice
with limited attention (CLA) (Masatlioglu, Nakajima, and Ozbay, 2012, p. 2191). Recall that
for any distinct x, y P X, xPy holds if there is A P X such that x “ cpA Y yq ‰ cpAq. It
follows that xPy implies y ( x, but the reverse implication does not hold (see Susection 4.2.4
for details). Again, as Rev, the relation P operates at a different level than (, being related to
the attractiveness of items (by Theorem 1 in the mentioned paper, the transitive closure of P
reveals preferences).

Remark 8. The relation ( is the converse of the relation rP defined in Ravid and Stevenson
(2021), where x rPy holds if there is a menu A containing x such that pA,A Y xq is a switch.
The authors show that the asymmetry and the acyclicity of rP are necessary conditions of their
model. In Theorem 5 we refine their results, and show that the asymmetry of ( (hence of rP ) is
necessary and sufficient for an RLS choice.

In the path to characterize RLS choices by the asymmetry and the acyclicity of revealed
salience, it is worth mentioning the following crucial fact:

Lemma 23. For any choice, if revealed salience is asymmetric, then it is also acyclic.

Proof. In what follows, we fix a choice c : X Ñ X, and denote by ( the relation of revealed
salience. We first prove three preliminary results.

Lemma 24. Let A P X and x, y P X be such that x ‰ y P A and x * y.
(i) If x R A, then adding x to A does not switch the choice, except maybe to x.

(ii) If x P A´ cpAq, then removing x from A does not affect the choice.

Proof of Lemma 24. By Definition 13, x ( y means that there is A P X such that y P A and
cpAq ‰ cpAY xq ‰ x. Thus x * y means that for any A P X containing y, cpAY xq is equal to
either x or cpAq. Now both (i) and (ii) readily follow.

Lemma 25. For any A,A1, B P X and x P X, if A1 Ď A, A * x and x P B, then cpB Y A1q P

A1 Y cpBq.

Proof of Lemma 25. Take A,A1, B P X and x P B such that Lemma 25 fails, where A1 is a subset
of A that is minimal for this failure. Thus, A * x and cpBYA1q R A1YcpBq. If A1 “ tyu for some
y P X, then y * x and cpB Y yq R tcpBq, yu. However, this is impossible by Lemma 24. Next,
consider the case |A1| ě 2. Choose y P A1, and set A2 :“ A1 ´ y Ď A. By the minimality of A1,
we get cpBYA2q P A2YcpBq Ď A1YcpBq. It follows that cpBYA2q ‰ cpBYA1q “ cpBYA2Yyq,
which contradicts y * x.

16The converse Rc of a relation R on X is defined by xRcy if yRx, for all x, y P X.
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Lemma 26 (Choice on triples). Suppose ( is asymmetric. For any distinct x, y, z P X, if x ( y

and x * z * y, then cpxyzq ‰ y.

Proof of Lemma 26. Let x, y, z be distinct elements of X satisfying the hypothesis. Since x ( y,
there is A P X such that x, y R A, cpAY yq ‰ cpAY xyq ‰ x. Thus, we have x ( AY y, which
in turn implies y * x and A * x by the asymmetry of (. Note also that z R A, since otherwise
x ( z, contradicting the hypothesis. Now we can make the following deductions:

(i) if cpAY yzq ‰ z, then cpAY yzq “ cpAY yq (since z * y);

(ii) if cpAY xyzq ‰ x, then cpAY xyzq “ cpAY yzq (since x * z);

(iii) if cpAY xyzq ‰ y, then cpAY xyzq “ cpAY xzq (since y * x);

(iv) if cpAY xyzq ‰ z, then cpAY xyzq “ cpAY xyq (since z * y);

(v) if cpAY xyzq R A, then cpAY xyzq “ cpxyzq (by Lemma 25, since A * x).

Three cases: (1) cpAY xyzq P A; (2) cpAY xyzq “ y; (3) cpAY xyzq P tx, zu.
In case (1), the implications (ii), (iii), and (iv) yield cpA Y yzq “ cpA Y xzq “ cpA Y xyq,

hence these chosen items are all equal to some a P A. Now (i) applies, and so cpA Y yq “ a,
which contradicts cpAY xyq ‰ cpAY yq.

In case (2), the implications (ii), (iv), and (v) yield cpA Y yzq “ cpA Y xyq “ cpxyzq, hence
these chosen items are all equal to y. Now (i) applies, and so cpA Y yq “ y, which again
contradicts cpAY xyq ‰ cpAY yq.

It follows that case (3) holds, and so the implication (v) yields cpA Y xyzq “ cpxyzq. This
implies cpxyzq ‰ y, thus completing the proof of Lemma 26.

We now proceed to the combinatorial proof of Lemma 23. Toward a contradiction, suppose
( is asymmetric, but there is a (-cycle of minimum length, say a1 ( a2 ( . . . ( an ( a1, where
n ě 3 and all ai’s are distinct; let C “ ta1, a2, . . . , anu be the set of items involved in the cycle.
To start, assume n “ 3, that is, a1 ( a2 ( a3 ( a1 and C “ ta1, a2, a3u. Using the asymmetry
of ( and applying Lemma 26, we get:

(1) a1 ( a2 and a1 * a3 * a2, hence cpa1a2a3q ‰ a2;

(2) a2 ( a3 and a2 * a1 * a3, hence cpa1a2a3q ‰ a3;

(3) a3 ( a1 and a3 * a2 * a1, hence cpa1a2a3q ‰ a1.

Thus cpCq is empty, a contradiction. Next, assume n “ 4, i.e., a1 ( a2 ( a3 ( a4 ( a1 and
C “ ta1, a2, a3, a4u. Minimality yields a1 * a3 * a1 and a2 * a4 * a2, and asymmetry entails
a1 * a4 * a3 * a2 * a1. Using again Lemma 26, we now make the following deductions:
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(1) a1 ( a2 and a1 * a3 * a2, hence cpa1a2a3q ‰ a2;

(2) a2 ( a3 and a2 * a1 * a3, hence cpa1a2a3q ‰ a3;

(3) a2 ( a3 and a2 * a4 * a3, hence cpa2a3a4q ‰ a3;

(4) a3 ( a4 and a3 * a2 * a4, hence cpa2a3a4q ‰ a4;

(5) a3 ( a4 and a3 * a1 * a4, hence cpa3a4a1q ‰ a4;

(6) a4 ( a1 and a3 * a2 * a1, hence cpa3a4a1q ‰ a1.

Thus, we have cpa1a2a3q “ a1, cpa2a3a4q “ a2, and cpa3a4a1q “ a3. In what follows, we derive
again that cpCq is empty, a contradiction. Indeed, a4 * a3 implies that cpCq is equal to either
a4 or cpa1a2a3q “ a1. Similarly, a1 * a4 implies that cpCq is equal to either a1 or cpa2a3a4q “ a2,
and a2 * a1 implies that cpCq is equal to either a2 or cpa3a4a1q “ a3. Summarizing, we have

cpCq P ta1, a2u X ta1, a3u X ta2, a3u “ ∅
as claimed. In the general case, let a1 ( a2 ( . . . ( an ( a1, with C “ ta1, a2, . . . , anu. By a

similar argument (or induction), we get

cpa1a2 . . . an´1q “ a1 , cpa2a3 . . . anq “ a2 , cpa3a4 . . . a1q “ a3 .

Now, an * an´1 implies cpCq P ta1, anu, a1 * an implies cpCq P ta1, a2u, and a2 * a1 implies
cpCq P ta2, a3u, and so cpCq “ ta1, an´1u X ta1, a2u X ta2, a3u “ ∅, which is impossible. This
completes the proof of Lemma 23.

In words, the absence of revealed cycles of length two suffices to prove the absence of revealed
cycles of any length. Lemma 23 is important in applications, because checking asymmetry is
computationally faster than checking acyclicity.

The converse of Lemma 23 fails to hold:

Example 4 (An acyclic but not asymmetric revealed salience). Let X “ tx, y, zu, and define a
choice c : X Ñ X by xyz, xy, xz, yz . This choice is non-rationalizable, because doubletons are
rationalized by the linear order x � y � z, but the �-worst item z is selected in X. Revealed
salience is acyclic but not asymmetric, because we have x ( y, x ( z, y ( x, and y ( z.
(For instance, pyz, xyzq and pxz, xzyq are minimal switches, which respectively yield x ( y and
y ( x.) Note also that the two menus tx, yu and ty, zu are conflicting.
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4.2.3 Characterization

The absence of conflicting menus – or, alternatively, the asymmetry of revealed salience – char-
acterizes our model of linear salience.

Theorem 5. The following statements are equivalent for a choice c:

(i) c is RLS;

(ii) revealed salience is asymmetric;

(iii) there are no conflicting menus.

Proof. Fix a choice c : X Ñ X, and let ( be the relation of salience revealed by c. The proof
that (ii), (iii), and (iv) are all equivalent statements is straightforward, and is left to the reader.
To prove that (i) implies (ii), assume c is rationalizable by salience by a total preorder Á. By
Lemma 22 and Definition 13, ą is an asymmetric extension of (. It follows that ( is asymmetric
as well.

To complete the proof of Theorem 5, it remains to show that (ii) implies (i). We need some
preliminary results, namely Lemmata 27, 28, and 29.

Lemma 27. If ( is asymmetric, then there is a total preorder that extends the transitive closure
of (.

Proof of Lemma 27. Asymmetry of ( implies its acyclicity by Lemma 23. By Szpilrajn (1930)’s
theorem, there is a total preorder extending the transitive closure of (.

Notation: In what follows, Á denotes a total preorder that extends the transitive closure of
(, whereas ą is the strict part of Á. Furthermore, for any x P X, set xÓ :“ ty P X : x Á yu.

Lemma 28. If ( is asymmetric, then any pair pA,Bq of menus included in xÓ is not a switch,
as long as x belongs to both A and B.

Proof of Lemma 28. Suppose ( is asymmetric. Toward a contradiction, assume there are x P X

and menus A,B P X , with A Ĺ B Ď xÓ, and x P A, such that pA,Bq is a switch. By Lemma 21,
there are y P X and C P X such that A Ď C Ĺ C Y y Ď B and pC,C Y yq is a switch. It follows
that y ( C Ě A, and so, in particular, y ą A, because ą extends (. We conclude that y ą x, a
contradiction.

Next, we define a binary relation ąx for each x P X. It will turn out that each ąx is the strict
part of a partial order whenever the relation of revealed salience is asymmetric (see Lemma 29).
For any x P X and distinct y, z P xÓ, define
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y ąx z ðñ there is A Ď xÓ such that x, y, z P A and y “ cpAq. (4.1)

Note that if either y or z (or both) does not belong to xÓ, then we leave y and z incomparable.
Observe also that ąx is irreflexive by construction. We shall abuse notation, and write y ąx A,
whenever exists A Ď xÓ such that x, y P A and y “ cpAq. The reason for this abuse of notation
is that y ąx A implies y ąx z for any z P Aztyu.

Lemma 29. If ( is asymmetric, then ąx is asymmetric and transitive for any x P X.

Proof of Lemma 29. Assume ( is asymmetric, and let x P X. To prove that ąx is asymmetric,
suppose by way of contradiction that y ąx z and z ąx y for some y, z P X. (Note that y ‰ z,
because ąx is irreflexive by construction.) By the definition of ąx, there are A,B Ď xÓ such that
x, y, z P AXB, y “ cpAq, and z “ cpBq. Consider the menu AXB, which is included in xÓ and
contains x, y, z. If cpAX Bq R ty, zu, then pAX B,Aq is a switch, which contradicts Lemma 28.
On the other hand, if cpAXBq “ y (resp. cpAXBq “ z), then pAXB,Bq (resp. pAXB,Aq) is
a switch, which is again forbidden by Lemma 28. Thus cpAXBq is empty, which is impossible.

To prove ąx is transitive, let w, y, z P X be such that w ąx y ąx z. By the definition of
ąx, there are A,B Ď xÓ such that x, y P A X B, z P B, w “ cpAq, and y “ cpBq. Consider the
menu A Y B, which is included in xÓ and contains x. We claim that cpA Y Bq “ w. Indeed, if
cpAYBq P pAYBq´ tw, yu, then either pA,AYBq or pB,AYBq is a switch, which contradicts
Lemma 28. Moreover, if cpA Y Bq “ y, then pA,A Y Bq is a switch, which is impossible by
Lemma 28. This proves the claim. Now we get w ąx pAYBq, hence w ąx z, as wanted.

Now we complete the proof of Theorem 5. Suppose ( is asymmetric. Let Á be a total
preorder extending the transitive closure of (, which exists by Lemma 27. For any x P X, define
the binary relation ąx as in (4.1). By Lemma 29, each ąx is asymmetric and transitive, thus it
is the strict part of a partial order. For any x P X, let �x be a linear extension of ąx, which
exists by Szpilrajn (1930)’s Theorem.

Let us quickly sketch how to construct a rationalization by linear salience from an asymmetric
revealed salience (. By Lemma 23, ( is acyclic, hence it is a suborder. Pick any total preorder
Á on X that extends the transitive closure of ( : this will be our salience order. The linear
rationales �x on X are obtained, for each x P X, by a classical revealed preference argument:
first get a partial order ąx by declaring y revealed better than z if there is a menu A such that
x is one of the most salient items in A and y is chosen in A. The elicitation of ąx from the
observed choice helps us to explain data. If an item y is selected in a menu A in which another
item x captures the DM’s attention, then y is better than any other alternative in A, according
to the preference suggested by x. Finally, let �x be any linear extension of ąx.
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Remark 9. Lemma 23 and Theorem 5 show that the parameter identification of RLS is compu-
tationally easy, which is crucial in applications. By comparison, identification of less restrictive
models – such as those defined in Masatlioglu, Nakajima, and Ozbay (2012), and Cherepanov,
Feddersen, and Sandroni (2013) – is more demanding. While the characterization of these theo-
ries effectively amounts to the requirement that the revealed preferences mentioned in Remarks 7
and 6 must not contain cycles of arbitrary length, the characterization of RLS is simply based
on the absence of cycles of length two.

4.2.4 Choices with salient limited attention

The objective of this section is twofold. Our first goal is to prove that linear salience is a special
case of the well-known model of choice with limited attention due to Masatlioglu, Nakajima,
and Ozbay (2012). Our second goal is to provide a descriptive characterization of RLS choices
in terms of special types of attention filters.

Definition 14. (Masatlioglu, Nakajima, and Ozbay, 2012) A choice c : X Ñ X is with limited
attention (CLA) if cpAq “ maxpΓ pAq,�q for all A P X , where

(a) � is a linear order (rationale) on X, and

(b) Γ : X Ñ X is a choice correspondence (attention filter) such that for any B P X and
x P X, x R Γ pBq implies Γ pBq “ Γ pB ´ xq.

The DM selects an item from a menu maximizing a linear order on the subset of elements
that attract her attention. Upon defining a binary relation P on X by

xPy ðñ there is A P X such that x “ cpAq ‰ cpA´ yq (4.2)
for all distinct x, y P X, Masatlioglu, Nakajima, and Ozbay (2012, Lemma 1 and Theorem 3)

prove that c is CLA if and only if P is both asymmetric and acyclic.
To accomplish our first goal, let rP be the converse of revealed salience (. A simple compu-

tation shows that for all distinct x, y P X, we have

x rPy ðñ there is a A P X such that x P A and y ‰ cpAq ‰ cpA´ yq. (4.3)

Thus rP extends P . Since c is RLS if and only if rP is asymmetric (and acyclic), and considering
the choice of Example 4 (which is CLA but not RLS), we get:

Lemma 30. Any RLS choice is a CLA. The converse is false.

Proof. Let c : X Ñ X be an RLS choice. By Theorem 5, revealed salience ( is asymmetric and
acyclic, hence so is its reverse rP . To prove that c is CLA, we show that also the relation P is
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asymmetric and acyclic. To that end, it suffices to prove that P is included in rP . Indeed, for
all distinct x, y P X, we have

x ( y ðñ there is a menu A such that y P A and pA,AY xq is a switch
ðñ there is a menu A such that y P A and cpAq ‰ cpAY xq ‰ x

ðñ there is a menu A such that y P A and x ‰ cpAq ‰ cpA´ xq.

Thus rP is defined by (4.3). Since (4.2) implies (4.3), we obtain P Ď rP , as claimed.

To accomplish our second goal, we first identify a family of choices with limited attention
characterized by special types of attention filters.

Definition 15. A choice c : X Ñ X is with salient limited attention (CSLA) if cpAq “

maxpΓ pAq,�q for all A P X , where

(a) � is a linear order on X (rationale), and

(b)1 Γ : X Ñ X is a choice correspondence (salient attention filter) such that for all B P X

and x P X, x ‰ minpB,�q,maxpΓ pBq,�q implies Γ pBq ´ x “ Γ pB ´ xq.

Condition (b)1 in Definition 15 is stronger than condition (b) in Definition 14: if x R Γ pBq,
then Γ pBq “ Γ pBq´x “ Γ pB´xq, and so any salient attention filter for c is an attention filter.17

In a CLA, for any item x in A that does not catch the DM’s attention (that is, x R Γ pAq), the
filter Γ does not discern between the original menu and the menu deprived of the irrelevant
item (that is, the equality Γ pAq “ Γ pA ´ xq holds). In a CSLA, this indiscernibility feature
is extended to all items of A that are different from the best element in Γ pAq and the worst
element in A: among the items brought to her attention, the DM focuses only on the (salient)
items holding an extreme position in her judgement, either maximum or minimum. (Note that if
minpB,�q R Γ pAq, then the DM does not consider the minimum.) This feature is coherent with
the salience theory of choice under risk as in Bordalo, Gennaioli, and Shleifer (2012): the DM’s
evaluation of lotteries is affected by extreme payoffs, which makes her risk-lover when upsides
are high, and risk-averse if downsides are high.

As announced, we have:

Proposition 5. RLS is equivalent to CSLA.

Proof. pùñq Suppose c : X Ñ X is RLS. By Theorem 5 and Lemma 23, rP is acyclic and
asymmetric. Let � be any linear extension of rP (i.e., � is a linear order and contains rP ).

17Note also that Definition 15 makes explicit the dependence of the salient attention filter from the DM’s
rationale. This dependence is implicit in the CLA model, but becomes explicit in the process of constructing an
attention filter from the given rational: see the proof of Theorem 3 in Masatlioglu, Nakajima, and Ozbay (2012,
p. 2202).
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Denoted xÓ :“ ty P X : x � y or y “ xu for any x P X, define a choice correspondence
Γ� : X Ñ X as follows for all A P X :Γ�pAq :“ cpAqÓ X A. (4.4)

We claim that (i) cpAq “ maxpΓ�pAq,�q for all A P X , and (ii) Γ� is a salient attention filter:
this will show that c is a CSLA. The first claim readily follows from the definition of Γ�. To
prove (ii), let B P X and x P X. We deal separately with the two possible cases: (1) x R Γ�pBq,
and (2) x P Γ�pBq, but x ‰ minpB,�q,maxpΓ�pBq,�q.

Case 1: By (4.4), we get x � cpBq. Since � extends rP , rP is the converse of (, and ( is
asymmetric, we derive that x ( cpBq fails to hold, and so there is no menu D P X such
that cpBq P D and x ‰ cpDq ‰ cpD ´ xq. It follows that we must have cpBq “ cpB ´ xq,
since otherwise D :“ B would be a menu witnessing x ( cpBq, which is impossible. Now
the definition of Γ� and the hypothesis x R Γ�pBq yield Γ�pBq´x “ Γ�pBq “ Γ�pB´xq,
as claimed.

Case 2: Since x ‰ maxpΓ�pBq,�q, formula (4.4) gives cpBq�x. We claim that cpBq “ cpB´xq.
Indeed, we have:

cpBq ‰ cpB ´ xq ùñ x ‰ cpBq ‰ cpB ´ xq

ùñ pB ´ x,Bq is a switch (by the definition of a switch)

ùñ x ( pB ´ xq (by the definition of ()

ùñ pB ´ xq rPx (because rP is the converse of ()

ùñ dpB ´ xq� x (because � extends rP )

ùñ x “ minpB,�q

which contradicts the hypothesis x ‰ minpB,�q. Now (4.4) and the claim yield

Γ pBq ´ x “ pcpBqÓ XBq ´ x “ cpB ´ xqÓ X pB ´ xq “ Γ pB ´ xq,

as wanted. This completes the proof of necessity.

pðùq18 Suppose c : X Ñ X is a CSLA. In what follows, we say that pΓ,�q rationalizes c if
cpAq “ maxpΓ pAq,�q for all A P X , where � is a linear order on X, and Γ is a salient attention
filter. Furthermore, we say that pΓ,�q maximally rationalize c if pΓ,�q rationalizes c, and there
is no salient attention filter Γ 1 : X Ñ X distinct from Γ such that pΓ 1,�q rationalizes c and
Γ pAq Ď Γ 1pAq for all A P X .

Lemma 31. If pΓ,�q rationalizes c, then pΓ�,�q maximally rationalizes c.
18I thank Davide Carpentiere for providing this simple proof.
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Proof of Lemma 31. Suppose pΓ,�q rationalizes c. To prove the claim, we show:

(i) cpAq “ maxpΓ�pAq,�q for all A P X ;

(ii) Γ� is a salient attention filter;

(iii) Γ� is maximal.

Part (i) readily follows from the definition (4.4) of Γ�. For (ii), let B P X be any menu, and x an
item of B different from both minpB,�q and maxpΓ�pBq,�q. Toward a contradiction, suppose
Γ�pBq ´ x ‰ Γ�pB ´ xq. The definition of Γ� yields

`

cpBqÓ XB
˘

´ x ‰ cpB ´ xqÓ X pB ´ xq,
hence cpBq ‰ cpB ´ xq. Moreover, we have x ‰ maxpΓ pBq,�q. Since Γ pBq ´ x “ Γ pB ´ xq

because Γ is a salient attention filter, we obtain cpBq P Γ pB ´ xq and cpB ´ xq P Γ pBq, which
respectively yield cpB ´ xq� cpBq and cpBq� cpB ´ xq, a contradiction. To prove (iii), suppose
by way of contradiction that there is a salient attention filter Γ 1 such that pΓ 1,�q rationalizes
c and y P Γ 1pDq ´ Γ�pDq for some D P X and y P D. Since y R Γ�pDq, we get y � cpDq. On
the other hand, since y P Γ 1pDq and pΓ 1,�q rationalizes c, we must have cpDq� y or cpDq “ y,
which is impossible.

Lemma 32. If pΓ�,�q maximally rationalizes c, then � extends rP .

Proof of Lemma 32. Suppose pΓ�,�q maximally rationalizes c. To show that � extends rP , we
prove that ␣px � yq implies ␣px rPyq, for distinct x, y P X. Suppose ␣px � yq, hence y � x

by the completeness of �. Since rP is the converse of (, we need show that y * x. Toward a
contradiction, suppose y ( x, that is, y ‰ cpBq ‰ cpB ´ yq for some menu B P X containing
both x and y. Note that y ‰ minpB,�q (because y � x) and y ‰ maxpΓ�pBq,�q “ cpBq.
Since c is a CSLA, we obtain Γ�pBq ´ y ‰ Γ�pB ´ yq, which implies that cpBq P Γ�pB ´ yq

and cpB ´ yq P Γ�pBq. Since cpBq ‰ cpB ´ yq, condition (4.4) yields cpB ´ yq � cpBq and
cpBq� cpB ´ yq, which is impossible.

Lemma 31 and Lemma 32 readily yield

Corollary 8. If pΓ,�q rationalizes c, then � extends rP .

Now we complete the proof of sufficiency. Suppose pΓ,�q rationalizes c. By Corollary 8, �
extends rP , hence rP must be asymmetric. By Theorem 5, c is RLS.

Note also that Proposition 5 implies that CSLA holds if and only if the revealed preference rP

is asymmetric (and acyclic). A CSLA representation of an RLS choice offers also an alternative
interpretation of choice data. In fact, we have:19

19The proof of this fact is left to the reader.
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Lemma 33. Let c : X Ñ X be CSLA, and pΓ,�q any associated explanation of it. If there are
A P X and x, y P A such that y ‰ cpAq ‰ cpA´ yq (i.e., x rPy), then x� y, y P Γ pAq, and y is
equal to minpΓ pAq,�q.

In other words, for a CSLA, if removing y from a menu A containing x causes a switch, then
we can deduce not only that the DM prefers x to y and pays attention to y at A, but also that
y is the least preferred item among those brought to her attention in A. Lemma ?? states in
any menu, there are at most two alternatives that matter to the DM: the selected item, and
the least preferred one (among those observed). In terms of tractability, this feature allows the
analyst to identify any menu with a two element set.

4.2.5 Numerical estimates

Here we show that linear salience yields a selective choice model, even when the number of
items in the ground set is rather small. To that end, we evaluate the fraction of RLS choices
for some sizes of the ground set. All estimates are obtained by using the techniques introduced
in Giarlotta, Petralia, and Watson (2022a), and specifically analyzed in Giarlotta, Petralia, and
Watson (2022c): we refer the reader to those papers for details.

Definition 16. A subchoice of a choice c : X Ñ X is any choice cæA : A Ñ A, with A P X

and A :“ tB P X : B Ď Au, defined by cæApBq “ cpBq for all B P A .

Definition 17. Two choices c : X Ñ X and c1 : X 1 Ñ X 1 are isomorphic if there is a bijection
σ : X Ñ X 1 such that σpcpAqq “ c1pσpAqq for any A P X .

Definition 18. A property P of choices is a set of choices closed under isomorphism. We
denote by T pnq, T pn,Pq, and F pn,Pq “

T pn,Pq

T pnq
, respectively, the total number of choices on n

elements, the total number of choices on n elements satisfying property P, and the fraction of
choices on n elements satisfying property P.

The ratio F pn,Pq “
T pn,Pq

T pnq
can be computed only considering choices on n elements that

are pairwise non-isomorphic, because all isomorphism classes have exactly the same size (“ n!):
see Giarlotta, Petralia, and Watson (2022a, Lemma 4).

Definition 19. A property P of choices is hereditary whenever if P holds for any choice, then
it also holds for any of its subchoices.20

Lemma 34 (Giarlotta, Petralia, and Watson (2022a), Corollary 5). If P is a hereditary property
that contains at most q pairwise non-isomorphic choices on four elements, then the following
upper bounds to F pn,Pq hold:

20Thus, P is hereditary if for all choices c : X Ñ X, c P P implies cæA P P for all A P X .
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n 4 16 20 28 32

F pn,Pq “pq{864q ďpq{864q20 ďpq{864q29 ďpq{864q57 ďpq{864q72

It is not difficult to show that:21

Lemma 35. The class of RLS choices is hereditary. Moreover, there are exactly 40 pairwise
non-isomorphic RLS choices on four elements.

In comparison, there are exactly 864 pairwise non-isomorphic choices on four items, of which
324 are CLA (Giarlotta, Petralia, and Watson, 2022a, Lemma 8), and only 1 is rationalizable.
Lemmata 34 and 35 readily yield the numerical estimates we were after, which explicitly show
the sharp selectivity of the RLS model:

Corollary 9. The following upper bounds hold for the fractions F pn,Pq of choices on n “

4, 16, 20, 28 elements, which are, respectively, rationalizable, RLS, or CLA:

P
n 4 16 20 28 32

WARP “ 0.0011 ď 10´58 ď 10´85 ď 10´167 ď 10´211

RLS “ 0.046 ď 10´26 ď 10´38 ď 10´76 ď 10´96

CLA “ 0.37 ď 10´8 ď 10´12 ď 10´24 ď 10´30

4.3 Additional relations with literature
Here we compare choice by linear salience with several models of bounded rationality. We also
show how a salience approach can accommodate some anomalies that have been extensively
studied in the choice literature.

4.3.1 Bounded rationality models

Rubinstein and Salant (2006) propose a context-sensitive explanation of an extended choice
function, that is, a map c : X ˆ F Ñ X, which assigns to any menu A Ď X the unique
alternative selected under the frame f P F . An extended choice function c induces a choice
correspondence CcpAq : X Ñ X by assigning to any menu A all the elements chosen from A

in some frame. An extended choice function is a salient consideration function if, for any frame
f P F , there is a linear order �f such that cpA, fq “ maxpA,�f q. The rationalizability of choice
correspondences is characterized by the existence of salient consideration functions that satisfy
specific coherence properties. The general setting defined by the authors encodes the possibility
that different contexts may lead to different rationales to apply in the decision.

21The proof is similar to that of Lemma 8 in Giarlotta, Petralia, and Watson (2022a).
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According to our approach, the preference justifying the DM’s selection is triggered by the
most salient item in the menu. This constraint determines a less sophisticated formulation of
the problem, and a smaller amount of choice data needed to test the model.

Choice by linear salience is connected to the sequential rationalization of Manzini and Mari-
otti (2007). According to their approach, in any menu the DM sequentially applies asymmetric
rationales in a fixed order. In our model, sequentiality is shaped by a different philosophy, be-
cause the rationale justifying selection depends on the menu. As expected, these two procedures
may yield very different results.Recall that c : X Ñ X satisfies Always Chosen when for any
A P X , if x P A is such that x “ cptx, yuq for all y P A, then cpAq “ x. Manzini and Mariotti
(2007) show that Always Chosen is a necessary condition for the sequential rationalizability of
a choice. In particular, a choice is a rational shortlist method if it is sequentially rationalizable
by two rationales. Theorem 1 in Manzini and Mariotti (2007) characterizes rational shortlist
methods by the satisfaction of two properties, namely Expansion Consistency (called Axiomγ by
Sen, 1971) and Weak WARP. Expansion Consistency requires that any item selected from two
menus is also selected from their union. Weak WARP says that for any A,B P X and x, y P X

such that tx, yu Ď A Ď B, if cpxyq “ x “ cpBq, then cpAq ‰ y. The next example shows the
sequential rationalizability and RLS are not nested models.

Example 5 (Independence of sequential rationalizability). The choice in Example 3 is RLS,
but not sequentially rationalizable, because Always Chosen (and Expansion Consistency) fails.
Conversely, define on X “ tw, x, y, zu a choice c : X Ñ X by

wxyz , wxy , wxz , wyz , xyz , wx , wy , wz , xy , xz , yz .

This choice is not RLS, because revealed salience is not asymmetric: indeed, we have x (

y ( x, since pwy,wyxq and pxz, xzyq are switches. It is easy to check that c satisfies Axiom γ

and Weak WARP, and it is a rational shortlist method.

A sequential contraction of menus is also used in the theory of rationalization due to
Cherepanov, Feddersen, and Sandroni (2013). Here the DM discards from a menu all those
items that are not allowed by a psychological constraint (a choice correspondence satisfying
Axiom α), and then maximizes a fixed linear order to select an item. Our Lemma 20 shows
that rationalizability by salience implies the existence of a choice correspondence Φ (a focusing
filter) which satisfies WARP. Although the focusing filter may be seen as a special psychologi-
cal constraint (since WARP implies Axiom α for choice correspondences), its interpretation is
radically different in our model: in fact, Φ only picks the most salient alternatives, but causes
no reduction of the selectable items. We show that models characterized by Weak WARP and
RLS are not nested.
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Example 6 (Independence of basic rationalization theory and categorize-then-choose). Any
choice defined on 3 items satisfies Weak WARP; however, the choice in Example 4 is not RLS.
Conversely, define on X “ tw, x, y, zu a choice c : X Ñ X by

wxyz , wxy , wxz , wyz , xyz , wx , wy , wz , xy , xz , yz .

Weak WARP does not hold for c, because wxyz, xyz, and xy . However, c is RLS.

Ravid and Stevenson (2021) analyze the impact of (bad) temptations on individual choices.
In their model, the DM maximizes a function which is strictly increasing with respect to the
utility of each item, and the difference between the item’s temptation and the maximal temp-
tation available in the menu. It can be shown that choice behaviors explained by temptation
can be justified by our linear salience approach (and vice versa), capturing however a rather
different positive model of behavior. Furthermore, the characterization of the model of Ravid
and Stevenson (2021) relies on the Axiom of Revealed Temptation (ART),22 whereas our CLS
model is characterized by the asymmetry of revealed salience or by the absence of conflicting
menus.

As already mentioned in Section 4.2, Kibris, Masatlioglu, and Suleymanov (2021) propose a
theory of reference point formation, which is then applied to risk, time, and social preferences
by Lim (2021). Their model, which is characterized by the Single Reversal Axiom (SRA),23 is
equivalent to the linear salience model; however, both their underlying motivation and their
treatment of the topic are very different from ours.24 Specifically, we provide multiple represen-
tations of choice by linear salience, in which make use of salience filters. Moreover, we present a
plain characterization and identification of RLS, that crucially differentiate it from less tractable
and restrictive bounded rationality methods. Furthermore, our approach allows us to prove that
linear salience is a special case of limited attention, in which only salient items matter. Last but
not least, the RLS model is only one of the many specification of a general approach based on
salience, whose flexibility may allow one to obtain a better fit to the DM’s attention structure.

22ART requires each menu A to contain at least one item x such that WARP is obeyed on the collection of
subsets of A that contain x.

23SRA: for all S, T P X and distinct x, y P X such that tx, yu Ď S X T , if x ‰ cpSq ‰ cpSzxq, then either
cpT q “ y or cpT zyq “ cpT q.

24The equivalence among different models is quite frequent in the literature on bounded rationality in choice:
it essentially says that some relevant phenomena may be modeled in several distinct and yet equivalent ways. For
instance, the three models of bounded rationality named categorize-then-choose (Manzini and Mariotti, 2012b),
basic rationalization theory (Cherepanov, Feddersen, and Sandroni, 2013), and overwhelming choice (Lleras,
Masatlioglu, Nakajima, and Ozbay, 2017) are all equivalent to a single behavioral axiom of choice consistency,
namely Weak WARP.
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4.3.2 Anomalies

Rationalization by linear salience can explain the following phenomena: (1) attraction effect, (2)
compromise effect, and (3) avoidance of the handicapped.

An attraction effect (or decoy effect) takes place when there is an increase of the probability
to choose an item as soon as an asymmetrically dominated item is added to the menu. Originally
studied by Huber, Payne, and Puto (1982), this phenomenon is modeled in a context of reference
dependence and product differentiation by Ok, Ortoleva, and Riella (2007, 2011, 2015). To
illustrate it, consider a consumer who chooses between two goods x, y with two distinct attributes.
Good y is better that good x on attribute 1, but x overcomes y on attribute 2. The consumer
selects y from tx, yu (giving priority to attribute 1), but chooses x from tx, y, zu, where z is
dominated by x (but not by y) in both dimensions. The new item z acts as a decoy, enhancing
the features of x and inducing the consumer to favor attribute 2.

Example 7. Let c be the choice on X “ tx, y, zu defined by xyz, xy, xz, yz . This choice is
rationalizable by salience by xÁ,L y, where Á is defined by z ą x, z ą y, and x „ y, and L is
the set t�x,�y,�zu, with �x “ �y, y �x x�x z, and x�z z �z y. Here �z reflects the ranking
of items by the second attribute, whereas �x “ �y ranks items in accordance with the first
attribute. Observe also that z is more salient than both x and y, and this provokes a shift of
DM’s preferences in the whole menu.

Choice by linear salience also explains the compromise effect, which accounts for an increase
of the probability of selecting an item appearing as ‘intermediate’ rather than ‘extreme’ in a
menu. Compromise effect was first investigated by Simonson (1989), whose experiments show
that a brand may gain market share when it becomes a compromise option in a choice set.25

To illustrate it, consider a consumer who chooses among distinct versions of the same good, say
w, x, y, z. According to their quality q, these items are ranked by z ąq y ąq x ąq w. A higher
quality entails a lower affordability in price p, which yields the reverse ordering w ąp x ąp y ąp z.
A top-quality item is unlikely to be selected in a menu, whereas an intermediate alternative may
be chosen.

Example 8. Let c : X Ñ X be the choice on X “ tw, x, y, zu defined by wxyz, wxy, wxz, wyz,
xyz, wx, wy, wz, xy, xz, and yz. This choice is RLS: salience Á is z ą y ą w, x and x „ w,
whereas L is the family of linear orders t�w,�x,�y,�zu, where z �w y �w x �w w, �x “ �w,
x �y y �y z �y w, and y �z x �z z �zw. In any menu, the top quality good is the most salient
item, and acts as a warning for the consumer, inducing her to accept an intermediate option.

25Later on, this phenomenon has been analyzed in various theoretical frameworks: see, e.g., Kivetz, Netzen,
and Srinivasan (2004).
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Finally, we show that the model of linear salience provides a sound explanation for the so-
called avoidance of the handicapped. According to this behavioral pattern, tested by Snyder et
al. (1979) and mentioned in Cherepanov, Feddersen, and Sandroni (2013), people masquerade
motives behind their choice. In the original experiment, three options are given: watching movie
1 alone (x), watching movie 2 alone (y), and watching movie 1 with a person in a wheelchair
(z). Several subjects, who must choose between x and z, go for z. When their alternatives are
y and z, many subjects select y, apparently displaying a preference for movie 2 over movie 1.
However, between x and y several subjects choose x, revealing a preference for movie 1 over
movie 2. The truth is that some subjects prefer movie 1 to movie 2, but they also want to avoid
the handicapped, and are embarrassed by their motivation. Thus, in displaying a preference for
watching movie 2 alone rather than watching movie 1 with the handicapped, they are hiding her
real motive behind a false preference for movie 2 over movie 1.26

Example 9. Define c : X Ñ X on X “ tx, y, zu by xyz, xy, xz, yz. (Note that c is isomorphic
to the choice in Example 7.) An RLS for c is xÁ,L y, where z ą x „ y, and L “ t�x,�y,�zu

is such that �x “ �y, x�x y �x z, and y �z z �z x. The presence of the handicapped makes z

the most salient item, and induces the DM to hide her motives behind the preference of movie 2

over movie 1, as described by �z. When z is not available, the subject shows her true preference,
which ranks movie 1 over movie 2, and movie 1 with the handicapped is the least desirable
option.

4.4 Concluding remarks
The aim of this paper is to provide a general framework for context-sensitive behaviors, explain-
ing how salience of items affects individual choice. Choice by salience semantically extends the
RMR model of Kalai, Rubinstein, and Spiegler (2002) by providing a structured explanation of
choice behavior. The classes of rationality prompted by RMR are refined by means of a partition
of all choices in n classes, where the last one encodes a notion of moodiness. For small ground
sets, moodiness does not affect almost all choices: as a consequence, the partition in n classes
of rationality is empirically significative. We conjecture that all choices that can be explained
by an existing (testable) model of bounded rationality are never moody.

The testable model of linear salience identifies a special class of choices with limited attention
of Masatlioglu, Nakajima, and Ozbay (2012), in which only non-conflicting violations of WARP
are admitted. On the other hand, choice by linear salience is independent from many other mod-

26The handicapped avoidance is a between-subject experiment, so it does not actually allow us to observe
people’s choice functions. However, choice by linear salience provides a sound interpretation of the behavior
inferred from this experimental evidence.
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els of bounded rationality, such as the sequential rationalization of Manzini and Mariotti (2007),
the theory of rationalization of Cherepanov, Feddersen, and Sandroni (2013), and the model
categorize-then-choose of Manzini and Mariotti (2012b). In fact, the feature of sequentiality in
a linear salience approach displays a crucial difference from existing models: salience does not
reduce the set of available items, instead it endows the DM with a sound criterion to select a
rationale to be maximized.

The analysis of this paper hinges on a deterministic representation of salience, which implies
that the perceived salience of items remains constant across menus. Possible extensions should
consider a stochastic approach to salience, attained by considering a probability distribution
over different relations of salience. Moreover, although the assumption on the salience ordering
is quite consolidated in the literature, the composition of menus may affect the role of the items
in DM’s perception, creating cycles of any length. Thus, another possible direction of research
is to design weaker properties of salience, which consider reversals of salience caused by different
combinations of alternatives in distinct menus.

4.5 Appendix to Chapter 4: A general model of salience
Joint with Alfio Giarlotta and Stephen Watson

4.5.1 A general approach

In the general model of salience the only assumption that we make about the salience order
is the satisfaction of a minimal feature of rationality, namely the acyclicity of its asymmetric
part. This flexibility – which is purely endogenous, insofar as determined by the DM’s attention
structure – entails rationalizability of any observed choice behavior. It can be shown that there
exist choices requiring as many distinct rationales as the number of items in the ground set: we
label all these choices as expressive of a DM’s ‘moody behavior’. We show that moodiness is
rare on a small number of alternatives. However, and possibly not surprisingly,27 this feature
becomes the norm for large sets. In fact, as the number of items diverges to infinity, the fraction
of moody choices tends to one.

Definition 20. A rationalization by salience of c : X Ñ X is a pair xÁ,L y, where

(S1) Á is a suborder on X (the salience order), and

(S2) L “
␣

�x : x P X
(

is a family of linear orders on X (the rationales),
27On the other hand, the proof of this fact is surprisingly technical: see Appendix B.
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such that for any A P X , we have cpAq “ max pA,�xq for some x P max pA,Áq. In this case,
we call xÁ,L y an RS for c, and c an RS choice.

Given a menu A, the DM’s attention is captured by the most salient items, and an element
is chosen in A by maximizing one of the rationales indexed by these items. This approach is
flexible, because it allows for an incompleteness/intransitivity of the salience order, according
to an endogenous feature of the DM’s perception. For instance, some items may display an
incomparable salience, and thus suggest different preferences to apply in the decision. Moreover,
transitivity may fail, even for the relation of strict salience. This flexibility yields non-testability:

Lemma 36. Any choice is rationalizable by salience.

The general approach of choice by salience is connected to the RMR model of Kalai, Rubin-
stein, and Spiegler (2002). Recall that a set t�1, . . . ,�pu of linear orders on X is a rationalization
by multiple rationales (RMR) of c if, for all A P X , the equality cpAq “ maxpA,�iq holds for
some i in t1, . . . , pu. In other words, an RMR is a set of rationales such that any menu can be
justified by maximizing one of them. Similarly to the RS model, the RMR model is non-testable,
because it rationalizes any choice. Thus, Kalai, Rubinstein, and Spiegler (2002) classify choices
according to the minimum size of an RMR. Specifically, they prove that any choice on n elements
needs at most n ´ 1 rationales (Proposition 1), and as n goes to infinity, all choices need the
maximum number of rationales (Proposition 2). Note that in the RMR model, choice behav-
ior is collectively explained by rationales, with no need of an explicit connection between each
menu and the linear order rationalizing it. On the compelling necessity of having a ‘structured’
multiple rationalization, Kalai, Rubinstein, and Spiegler (2002, p. 2287) write:

As emphasized in the introduction, our approach is “context-free”. We agree with Sen
(1993) that if “motives, values or conventions” are missing from our description of the
alternatives, then we’d better correct our model, whether or not IIA is violated.

The RS model refines the RMR model by revealing the internal structure of the set of ratio-
nales. Moreover, the derived partition into ‘equivalence classes of rationality’ is very selective:
in fact, choices requiring the maximum number of rationales according to salience are more
rare than choices requiring the maximum number of rationales according to the RMR model,
especially for a small set of alternatives (see Section ??4.5.2). Finally, differently from the RMR
approach, we can derive models of salience with empirical content by requiring the salience
relation to satisfy suitable properties (see Section 4.2).

4.5.2 Moodiness

Some choices do require the maximum number of rationales to encode attractiveness.
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Definition 21. A choice c is moody if for any RS xÁ,L y of c, �x ‰ �y whenever x ‰ y.
(Thus, a moody choice on X always demands |X|-many distinct rationales.)

The situation described by Definition 21 is somehow pathological: it is peculiar of a DM
who justifies whatever choice behavior she may exhibit by ‘local’ explanations, that is, an ad hoc
rationale for each case.28 In relation to Definition 21, one may wonder whether moody choices
exist. This query is by no means trivial. Let us explain why.

For the RMR model, Kalai, Rubinstein, and Spiegler (2002, Proposition 1) show that any
choice on a ground set of size n can be always rationalized by n ´ 1 linear orders. The crucial
point here is that the RMR model imposes no constraints on the linear order that can be used
to rationalize a specific menu.

On the contrary, any RS xÁ,L y requires the rationales in L to be directly connected to the
menus they rationalize: each linear order �x in L carries a label, and a menu A can only be
rationalized by an order whose label is a maximally salient items of A. This necessary condition
implies that the proof of Proposition 1 in Kalai, Rubinstein, and Spiegler (2002) does not carry
over the RS approach. However, similarly to the RMR model, we still have:

Theorem 6. There are moody choices.

Proof. We define a special type of choice function.

Definition 22. Let Ì be a linear order on X, with |X| ě 6. A choice c : X Ñ X is flipped
(w.r.t. Ì) if for any a, b, d, e, f, g P X such that a Ì b Ì d Ì e Ì f Ì g,

cpabq “ a , cpabdq “ d , cpabdeq “ b , cpabdefq “ e , cpabdefgq “ a .

Thus, c is flipped if the chosen items are the worst (on 2 items), the best (on 3), the second
worst (on 4), the second best (on 5), and again the worst (on 6).

Then Theorem 6 is an immediate consequence of the following fact:

Lemma 37. Any flipped choice on 39 elements is moody.

Proof of Lemma 37. Let c : X Ñ X be a flipped choice on the linearly ordered set pX,Ìq, where
|X| “ 39. Toward a contradiction, suppose c is non-moody. Thus, there is an RS xÁ,L y for
c such that �a “ �b P L for some distinct a, b P X; denote this linear order by �ab. We can
assume that Á is X ˆ X, that is, Á poses no constraints in the selection of the rationalizing
linear order. Without loss of generality, suppose a Ì b.

Since c is flipped, we have cpabq “ a, and so a�ab b. By the pigeon principle, there is Y Ď X,
with |Y | ě t 39´2

3
u` 1 “ 13, such that a, b R Y , and at least one of the following conditions holds:

28A different notion of moody choice is used by Manzini and Mariotti (2010).
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(1) a Ì Y Ì b, or

(2) Y Ì a Ì b, or

(3) a Ì b Ì Y ,

where a Ì Y Ì b means a Ì y Ì b for all y P Y (and a similar meaning have a Ì b Ì Y and
Y Ì a Ì b). Again by the pigeon principle, there is Z Ď Y , with |Z| ě 5, such that at least one
of the following cases happens:
(A) Z �ab a�ab b, or

(B) a�ab Z �ab b, or

(C) a�ab b�ab Z.

A numbered case and a lettered case can overlap: we denote these cases by A1, A2, A3, B1, B2,
B3, C1, C2, and C3, respectively. List the elements of Z “

␣

z1, z2, . . . , z|Z|

(

in increasing order
according to Ì, that is, z1 Ì z2 Ì . . . Ì z|Z|. In what follows we examine all nine possible cases,
and obtain a contradiction in each of them.

Case A1: By definition of flipped choice, cpazbq “ b holds for any z P Z. It follows that b�z z

and b�z a for any z P Z. The definition of flipped choice yields cpazhzizjzkbq “ a for any
h ă i ă j ă k. Thus, we must have either (i) a�ab b and a�ab z for any z P tzh, zi, zj, zku,
or (ii) a �z b and a �z z

1 for some z P tzh, zi, zj, zku and all z1 P tzh, zi, zj, zku. However,
both (i) and (ii) are false.

Case A2: Since cpzabq “ b for any z P Z, we have that b�z z and b�z a for any z P Z. Since
cpzhzizjabq “ a for any h ă i ă j, we must have either (i) a �ab b and a �ab z for all
z P tzh, zi, zju, or (ii) a �z b and a �z z

1 for some z P tzh, zi, zju and all z1 P tzh, zi, zju.
However, both (i) and (ii) are false.

Case A3: Since cpabzizjq “ b for any i ă j, we have b �z a for all but at most one z P Z.
Since cpabzhzizjzkq “ a for any h ă i ă j ă k, we have either (i) a �ab b and a �ab z

for all z P tzh, zi, zj, zku, or (ii) a �z b and a �z z
1 for some z P tzh, zi, zj, zku and for all

z1 P tzh, zi, zj, zku. Note that (i) is always false, hence a�zb holds for some z P tzh, zi, zj, zku,
say z “ zh. Since |Z| ě 5, we can repeat the same argument using four items of Z distinct
from zh, and conclude that a �z b holds for at least two distinct z P Z. However, this is
impossible.

Case B1: Since cpazibq “ b for any zi P Z, we have
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b�zi a and b�zi zi (4.5)

for all zi P Z. Since cpazizjbq “ zi for any i ă j, either (i) zi�zi a, zi�zi b, and zi�zi zj, or
(ii) zi �zj a, zi �zj b, and zi �zj zj holds. Since (i) is impossible by condition (4.5), we get

zi �zj a , zi �zj b , and zi �zj zj (4.6)

for all i ă j. Moreover, since cpzizjbq “ b for any i ă j, either (i) b�zj zi and b�zj zj, or
(ii) b�zi zi and b�zi zj holds. Since (i) is impossible by condition (4.6), we conclude

b�zi zi and b�zi zj (4.7)

for all i ă j. Finally, cpazizjzkbq “ zk for any i ă j ă k yields

- either (i) zk �ab a, zk �ab b, zk �ab zi, and zk �ab zj,

- or (ii) zk �zi a, zk �zi b, zk �zi zi, and zk �zi zj,

- or (iii) zk �zj a, zk �zj b, zk �zj zi, and zk �zj zj,

- or (iv) zk �zk a, zk �zk b, zk �zk zi, and zk �zk zj.

Now we get a contradiction, because (i) is impossible by assumption, (ii) and (iii) are
impossible by condition (4.7), and (iv) is impossible by condition (4.5).

Case B2: Since cpziabq “ b for any zi P Z, we have

b�zi a and b�zi zi (4.8)

for all zi P Z. Since cpzizjabq “ zj for any i ă j, either (i) zj �zj a, zj �zj b, and zj �zj zi,
or (ii) zj �zi a, zj �zi b, and zj �zi zi holds. Since (i) is impossible by condition (4.8), we
get

zj �zi a , zj �zi b , and zj �zi zi (4.9)

for all i ă j. Furthermore, since cpzizjbq “ b for any i ă j, either (i) b�zi zi and b�zi zj,
or (ii) b�zj zi and b�zj zj holds. Since (i) is impossible by condition (4.9), we conclude

b�zj zi and b�zj zj (4.10)
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for all i ă j. Finally, since cpzhzizjzkabq “ zh for any h ă i ă j ă k, we get

- either (i) zh �zh zi, zh �zh zj, zh �zh zk, zh �zh a, and zh �zh b ,

- or (ii) zh �zi zi, zh �zi zj, zh �zi zk, zh �zi a, and zh �zi b ,

- or (iii) zh �zj zi, zh �zj zj, zh �zj zk, zh �zj a, and zh �zj b ,

- or (iv) zh �zk zi, zh �zk zj, zh �zk zk, zh �zk a, and zh �zk b ,

- or (v) zh �ab zi, zh �ab zj, zh �ab zk, zh �ab a, and zh �ab b .

However, (i)–(iv) contradict (4.9), whereas (v) contradicts the hypothesis.

Case B3: Since cpabzq “ z for all z P Z, we must have z �z a and z �z b for all z P Z. Since
cpbzq “ b for any z P Z, we have (i) b�z z, or (ii) b�ab z for all z P Z. However, both (i)
and (ii) are false.

Case C1: Since cpazbq “ b for all z P Z, we must have b �z a and b �z z for all z P Z. Since
cpzbq “ z for all z P Z, we have either (i) z�ab b, or (ii) z�z b for all z P Z. However, both
(i) and (ii) are false.

Case C2: Since cpzabq “ b for all z P Z, we get b�z a and b�z z for all z P Z. Since cpzbq “ z

for all z P Z, we have either (i) z �ab b, or (ii) z �z b for all z P Z. However, both (i) and
(ii) are false.

Case C3: Since cpabzq “ z for all z P Z, z�z a and z�z b hold for all z P Z. Since cpabzizjq “ b

for any i ă j, we get b�z a, b�z zi, and b�z zj for some z P tzi, zju, a contradiction.

This completes the proof of Lemma 37, and therefore of Theorem 6.

The proof of Theorem 6 is non-trivial: it uses the notion of a flipped choice, which is defined
on a linearly ordered set X, and is such that the selection of elements in a menu systematically
‘oscillates’ from the best item to the worst item. In Appendix A, we describe this construction
in detail, and show that any RS for a flipped choice on 39 elements always needs 39 distinct
rationales. We are not aware of smaller ground sets that give rise to such a pathology. Thus, it
appears that moody choice behavior arises only when a large number of items is involved, which
in turn justifies a classification that labels ‘strongly irrational’ all moody choices.

Theorem 6 raises a new query, concerning the ubiquity of moody choices when the size of
the ground set grows larger and larger. Similarly to what Proposition 2 in Kalai, Rubinstein,
and Spiegler (2002) states for the RMR model, we have:

Theorem 7. The fraction of moody choices tends to one as the number of items in the ground
set goes to infinity.
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Proof. We shall obtain Theorem 7 as a corollary of a more general result, namely Theorem 8,
which states that certain categories of properties of choice functions (called TFLH) occur al-
most never when the size of the ground set tends to infinity. Then, upon showing that being
non-moody is a TFLH property (Lemma 38), we readily derive Theorem 7. To ease the compre-
hension of the long and involved proof of Theorem 7, we describe in Figure 4.1 all implications
needed to achieve our claim.

L46 C10

L44 L45
C11 C12 C13 C14 C15 T8

L42 L40

L43 L41
L39 L38

T7

Figure 4.1: The proof of Theorem 7: ‘L’, ‘C’, and ‘T’ stand for, respectively, ‘Lemma’, ‘Corollary’,
and ‘Theorem’; an arrow from A to B signals that A is used to prove B.

We begin by defining TFLH properties.

Definition 23. A property P of choice functions is:29

• locally hereditary if, when P holds for c : X Ñ X, there are x, y P X such that, for any
Y Ď X with x, y P Y , there is a choice c1 : Y Ñ Y satisfying P;

• tail-fail if, for any k P N, there is a set X of size k and a choice c on X such that P fails
for any choice c1 on X satisfying c1pAq “ cpAq for any A P X of size at least k.

Then P is a tail-fail locally hereditary (TFLH) property if it is both tail-fail and locally heredi-
tary.30 Moreover, we say that P is asymptotically rare if the fraction of choices on X satisfying
P tends to zero as the size of X tends to infinity.

The two results needed to prove Theorem 7 are the following (see Figure 4.1):

Lemma 38. Being non-moody is a TFLH property.

Theorem 8. Any TFLH property of choices is asymptotically rare.
29A property of choice functions is a set P of choices that is closed under isomorphism. Equivalently, a

property of choices is a formula of second-order logic, which involves quantification over elements and sets, has a
symbol for choice, and is invariant under choice isomorphisms. Thus to say that a property P holds for c means
that c1 P P for all choices c1 isomorphic to c.

30In Giarlotta, Petralia, and Watson (2022a), we introduce a notion of ‘hereditary property’ to prove that
bounded rationality according to most models present in the literature is rare. Specifically, a property P is
hereditary if whenever it holds for a choice, it also holds for any of its subchoices. TFLH properties obviously
comprise hereditary properties as very special cases.
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Proof of Lemma 38

To start, we define a more articulated notion of flipped choice.

Definition 24. Let pX,Ìq be a linearly ordered set of size |X| “ n ě 12. List the items of any
A “ tx1, . . . , xpu P X in Ì-increasing order, i.e., x1 Ì x2 Ì . . . Ì xp. Then a choice c : X Ñ X

is p˚-homogeneous scrambled (w.r.t. Ì) if there are six distinct integers p1, p2, p3, p4, p5, p6 P

t7, 8, . . . , nu such that p˚ “ maxtp1, . . . , p6u, and the following properties hold for any A P X :

• if |A| “ p1, then cpAq “ maxpA,Ìq “ xp1 (the best w.r.t.Ì);
• if |A| “ p2, then cpAq “ maxpAztxp2u,Ìq “ xp2´1 (the second best);
• if |A| “ p3, then cpAq “ maxpAztxp3 , xp3´1u,Ìq “ xp3´2 (the third best);
• if |A| “ p4, then cpAq “ minpA,Ìq “ x1 (the worst);
• if |A| “ p5, then cpAq “ minpAztx1u,Ìq “ x2 (the second worst);
• if |A| “ p6, then cpAq “ minpAztx1, x2u,Ìq “ x3 (the third worst).

The next result says that any p˚-homogeneous scrambled choice defined on a sufficiently large
set is moody:

Lemma 39. For any p˚ ě 12, there is an integer N ą p˚ such that any p˚-homogeneous scrambled
choice c : X Ñ X on a set X of size |X| ě N is moody.

Proof of Lemma 39. Lemma 39 will be an immediate consequence of two results, namely Lemma
40 and Lemma 41. In order to state them, we need an additional notion, which obviously shares
features with properties typically defined in Ramsey Theory (whence the terminology):

Definition 25. Let c : X Ñ X be a non-moody choice, where X is endowed with a linear
order Ì. Let L “ t�x : x P Xu be a family of linear orders on X rationalizing c by salience.
Then, there are a, b P X such that �a “ �b (denote this linear order by �ab). A menu Y Ď X

containing a and b is ta, bu-Ramsey whenever the following conditions of ‘homogeneity’ hold (to
simplify notation, we set Y 1 :“ Y zta, bu):

(R1) if there is x P Y 1 such that b�x x, then b�x x for all x P Y 1;
(R2) If there is x P Y 1 such that b�x a, then b�x a for all x P Y 1;
(R3) if there is x P Y 1 such that a�x x, then a�x x for all x P Y 1;
(R4) if there is x P Y 1 such that a Ì x, then a Ì x for all x P Y 1;
(R5) if there is x P Y 1 such that b Ì x, then b Ì x for all x P Y 1;
(R6) if there are x, x1 P Y 1 such that x Ì x1 and b�x x

1, then b�x x
1 for all x, x1 P Y 1 such that

x Ì x1;
(R7) if there are x, x1 P Y 1 such that x Ì x1 and b�x1 x, then b�x1 x for all x, x1 P Y 1 such that

x Ì x1;
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(R8) if there are x, x1 P Y 1 such that x Ì x1 and a�x x
1, then a�x x

1 for all x, x1 P Y 1 such that
x Ì x1;

(R9) if there are x, x1 P Y 1 such that x Ì x1 and a�x1 x, then a�x1 x for all x, x1 P Y 1 such that
x Ì x1;

(R10) if there is x P Y 1 such that x�ab a, then x�ab a for all x P Y 1;
(R11) if there is x P Y 1 such that x�ab b, then x�ab b for all x P Y 1.

We can now state the two technical results which imply Lemma 39.

Lemma 40. Let c : X Ñ X be a non-moody choice such that |X| “ N for some N P N. Further,
let a, b P X be two distinct items such that �a “ �b. If there is some ta, bu-Ramsey set Y Ď X

with |Y | ě p˚ for some p˚ ă N , then c is not p˚-homogeneous scrambled.

Lemma 41. For any p˚ P N, there is an integer N ą p˚ such that, for any non-moody choice
c : X Ñ X on a set X of size |X| ě N , there are two items a, b P X and an ta, bu-Ramsey set
Y Ď X of cardinality |Y | ě p˚.

Next, we prove Lemmata 40 and 41.

Proof of Lemma 40. We need the following preliminary result:

Lemma 42. Let c : X Ñ X be a non-moody p˚-homogeneous scrambled choice (w.r.t. Ì). For
any distinct a, b P X such that �a “ �b, if there is an ta, bu-Ramsey set Y Ď X with |Y | ě p˚,
then there are distinct p1, p2, p3, p4 ď p˚ satisfying the following properties for any A P X such
that ta, bu Ď A Ď Y :

1. if |A| “ p1, then cpAq “ a;
2. if |A| “ p2, then cpAq “ b;
3. if |A| “ p3, then cpAq “ minpAzta, bu,Ìq;
4. if |A| “ p4, then cpAq “ maxpAzta, bu,Ìq.

Proof of Lemma 42. Let a, b be distinct elements in X such that �a “ �b, and let Y Ď X be
an ta, bu-Ramsey set such that |Y | ě p˚ ě 12. Set Y 1 :“ Y zta, bu “ tx1, . . . , xpu (which is, as
usual, listed in increasing order w.r.t. Ì). Since Y is ta, bu-Ramsey, by (R4) and (R5) exactly
one of the following cases must hold:

• a Ì b Ì Y 1, or
• a Ì Y 1 Ì b, or
• Y 1 Ì a Ì b, or
• b Ì a Ì Y 1, or
• b Ì Y 1 Ì a, or
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• Y 1 Ì b Ì a.
Note that, for each of the six cases above, a, b, x1, xp are among the first best, second best, third
best, worst, second worst, or third worst positions in A. Thus the claim readily follows from the
fact that c is p˚-homogeneous scrambled.

We now complete the proof of Lemma 40. Toward a contradiction, suppose c is a non-moody
choice on a set X of size |X| ě N for some N P N, c is p˚-homogeneous scrambled for some
p˚ ă N , and there is some ta, bu-Ramsey set Y of size |Y | ě p˚, where a, b P X are distinct and
such that �a “ �b “ �ab. By (R10) and (R11), exactly one of the following cases holds for Y 1:
(A) Y 1 �ab a�ab b ;
(B) a�ab Y

1 �ab b ;
(C) a�ab b�ab Y

1;
(D) Y 1 �ab b�ab a ;
(E) b�ab Y

1 �ab a ;
(F) b�ab a�ab Y

1.

By Lemma 42, there are distinct p1, p2, p3, p4 ď p˚ such that any A Ď Y containing a and b

satisfies properties 1–4 in Lemma 42. Denote A “ tx1, . . . , xpuYta, bu Ď Y , where x1 Ì . . . Ì xp.
Further, set rps :“ t1, 2, . . . , pu.

Case 1: Suppose |A| “ p1, hence cpAq “ a. In cases (A), (D), (E), and (F), we have

a�xi
b , a�xi

xi , a�xi
xj (4.11)

for some i P rps and for all j P rpsztiu. By (R2) and (R3), it follows

a�x b and a�x x (4.12)

for any x P Y 1. Moreover, if i “ 1, then (4.11) and (R8) imply

a�x x
1 (4.13)

for any x, x1 P Y 1 such that x Ì x1. If i ‰ 1, then (4.11) and (R9) imply

b�x1 x (4.14)

for all x, x1 P Y 1 such that x Ì x1.
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Case 2: Suppose |A| “ p2, hence cpAq “ b. In cases (A), (B), (C), and (D), we have

b�xi
a , b�xi

xi , b�xi
xj (4.15)

for some i P rps and for all j P rpsztiu. By (R1) and (R2), it follows

b�x a and b�x x (4.16)

for any x P Y 1. Moreover, if i “ 1, then (4.15) and (R6) imply

b�x x
1 (4.17)

for any x, x1 P Y 1 such that x Ì x1. If i ‰ 1, then (4.15) and (R7) imply

b�x1 x (4.18)

for all x, x1 P Y 1 such that x Ì x1.

Case 3: Suppose |A| “ p3, so cpAq “ x1. In cases (B), (C), (E), and (F), we have

x1 �xi
a , x1 �xi

b , x1 �xi
xj (4.19)

for some i P rps and for all j P rpszt1u. If i “ 1, then (R1) and (R3) imply

x�x a and x�x b (4.20)

for all x P Y 1. On the other hand, if i ‰ 1, then (4.19), (R7) and (R9) imply

x�x1 a and x�x1 b (4.21)

for all x, x1 P Y 1 such that x Ì x1.

Case 4: Suppose |A| “ p4, so cpAq “ xp. In cases (B), (C), (E), and (F), we have

xp �xi
a , xp �xi

b , xp �xi
xj (4.22)

for some i P rps and for all j P rpsztpu. If i “ p, by (R1) and (R3) we get
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x�x a and x�x b (4.23)

for all x P Y 1. On the other hand, if i ‰ p, then (4.22), (R6) and (R8) imply

x1 �x a and x1 �x b (4.24)

for all x, x1 P Y 1 such that x Ì x1.

Next, we use Cases 1, 2, 3, and 4 to derive a contradiction. (Whenever two conditions C and
C 1 cannot simultaneously hold, we write C K C 1.)

(i) We have (4.14) K (4.21) and (4.13) K (4.24). Since one among (4.13) and (4.14) must
happen, we conclude that (4.11) K p(4.21)^ (4.24)q .

(ii) We have (4.17) K (4.24) and (4.18) K (4.21). Since one among (4.17) and (4.18) must
happen, we conclude that (4.15) K p(4.21)^ (4.24)q.

(iii) By (i), we know that (4.11) K p(4.21)^ (4.24)q . Since we have (4.12) K (4.20) and (4.12) K
(4.23), a simple computation yields (4.11) K p(4.19)^ (4.22)q.

(iv) By (ii), we know that (4.15) K p(4.21)^ (4.24)q . Since we have (4.12) K (4.20) and
(4.12) K (4.23), a simple computation yields (4.15) K p(4.19)^ (4.22)q.

(v) Since (4.12) K (4.16), we conclude (4.11) K (4.15).

Note that at most one among (4.11), (4.15), and p(4.19)^(4.22)q can hold. However, for each
of the cases (A), (B), (C), (D), (E), and (F), two of the above conditions must simultaneously
hold, and this is impossible. This proves Lemma 40.

Proof of Lemma 41. We need the following notion:

Definition 26. Let c : X Ñ X be a non-moody choice on a set X endowed with a linear order
Ì, and let a, b P X be two items such that �a “ �b “ �ab. We call ta, bu-Ramsey 1-signature the
map r : Xzta, bu Ñ t0, 1u7 which assigns to any x P Xzta, bu a vector pr1pxq, . . . , r7pxqq P t0, 1u7

(which is one of 27 “ 128 possible ‘colors’) according to the following rules:
• r1pxq “ 0 ðñ b�x x ,
• r2pxq “ 0 ðñ b�x a ,
• r3pxq “ 0 ðñ a�x x ,
• r4pxq “ 0 ðñ a Ì x ,
• r5pxq “ 0 ðñ b Ì x ,
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• r6pxq “ 0 ðñ x�ab a ,
• r7pxq “ 0 ðñ x�ab b .

Moreover, we call ta, bu-Ramsey 2-signature the map pr : rXzta, bus2 Ñ t0, 1u4 which assigns to
any unordered pair tx, x1u P rXzta, bus2 such that x Ì x1 a vector ppr1px, x1q, . . . , pr4px, x

1qq P t0, 1u4

(which is one of 24 “ 16 possible ‘colors’) according to the following rules:31

• pr1px, x
1q “ 0 ðñ b�x x

1 ,
• pr2px, x

1q “ 0 ðñ b�x1 x ,
• pr3px, x

1q “ 0 ðñ a�x x
1 ,

• pr4px, x
1q “ 0 ðñ a�x1 x .

The next result characterizes ta, bu-Ramsey sets in terms of the signature maps; its proof is
straightforward, and is left to the reader.

Lemma 43. Let c : X Ñ X be a non-moody choice on a set X endowed with a linear order Ì,
and let a, b P X be two items such that �a “ �b. The following conditions are equivalent for any
set Y Ď X containing a and b:

(i) Y is ta, bu-Ramsey;
(ii) the maps ræY zta,bu and prærY zta,bus2 are constant.32

We now prove Lemma 41. Let p˚ be an integer ě 12, and set N˚ :“ 128pp˚ ´ 1q ` 1. By
Ramsey’s theorem, there is N˚˚ P N such that, for any edge coloring with 16 colors on a graph
of N˚˚ vertices, there is a monochromatic subgraph on N˚ vertices.33 We claim that the integer
N :“ N˚˚ ` 2 ą p˚ is the one we are looking for.

Let c : X Ñ X be a non-moody choice on a set X of cardinality |X| “ N , and let a, b P X be
distinct items such that �a “ �b. Fix a linear order Ì on X, and let pr : rXzta, bus2 Ñ t0, 1u4 be
the associated ta, bu-Ramsey 2-signature (which is an edge coloring with 16 colors on rXzta, bus2).
It follows that there is some (monochromatic) set Y ˚ Ď Xzta, bu of size |Y ˚| “ N˚ such that
prærY ˚s2 is constant. Now let r : Xzta, bu Ñ t0, 1u7 be the ta, bu-Ramsey 1-signature associated to
Ì. Note that for any x P Y ˚, ræY ˚ has 128 possible values. Since N˚ “ 128pp˚ ´ 1q ` 1, by the

31Recall that the symbol rAs2 stands for tB Ď A : |B| “ 2u.
32We denote by ræY zta,bu and prærY zta,bus2 the restrictions of r and pr to Y zta, bu and rY zta, bus2.
33A graph is a pair G “ pV,Eq, where V is a finite set of elements (vertices) and E is a set of unordered pairs

of vertices (edges). A graph G “ pV,Eq is complete if E contains all possible pairs of distinct vertices. Given
a graph G “ pV,Eq, a subgraph of G is a graph G1 “ pV 1, E1q such that V 1 Ď V and E1 Ď E. A complete
subgraph of a graph is called a clique. Given a set K “ t1, . . . , ku of k ě 1 labels (the ‘colors’), an edge coloring
is a map γ : E Ñ K that assigns a color in K to each edge. Then the pair pG, γq is a colored graph, which is
monochromatic whenever γ is constant. In its general form, Ramsey’s theorem states that for any given number
k of colors and any given integers n1, . . . , nk, there is an integer Rpn1, . . . , nkq such that if the edges of a complete
graph G on Rpn1, . . . , nkq vertices are colored with k different colors, then there is a color i P t1, . . . , ku such that
G has a monochromatic clique on ni vertices whose edges are all colored with i.
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pigeon principle there is Y ˚˚ Ď Y ˚ such that |Y ˚˚| ě p˚ and ræY ˚˚ is constant. By Lemma 43,
Y :“ Y ˚˚ Y ta, bu is an ta, bu-Ramsey set, as required.

Lemma 39 readily follows from Lemmata 40 and 41.

We can finally prove Lemma 38. Let P˚ be the property of being non-moody. We first
show that P˚ is locally hereditary. Suppose c : X Ñ X is non-moody. By definition, there are
distinct a, b P X such that �a “ �b. The elements a and b are the ones we are seeking to prove
that P˚ is locally hereditary. Indeed, take any Y Ď X such that a, b P Y . Then the (sub)choice
c1 : Y Ñ Y on Y , defined by c1pBq :“ cpBq for any B P Y , is non-moody.

To prove that P˚ is a tail-fail property, for any k P N take six integers p1, p2, p3, p4, p5, p6,
having maximum p˚ and minimum p˚, such that k ă p˚. By Lemma 39, there is N P N such that
any p˚-homogeneous scrambled choice c on a ground set X of size at least N is moody. Moreover,
any choice c1 on X such that c1pAq “ cpAq for any A P X of size at least k is p˚-homogeneous
scrambled, and so, by Lemma 39, it is moody. This completes the proof.

Proof of Theorem 8

To start, we make some computations based on calculus, namely Lemmata 44 and 45.

Lemma 44. For any δ, α P R such that 0 ă δ ă 1 and α ą 0, we have

lim
nÑ8

`

1´ p1´ δqn
α˘n2

“ 1 .

Proof of Lemma 44. Replacing variables (n2 by m), it suffices to show that

lim
mÑ8

´

1´ p1´ δqm
α
2
¯m

“ 1,

that is, taking logs of both sides,

lim
mÑ8

log
´

1´ p1´ δqm
α
2

¯m

“ 0. (4.25)

It is straightforward to check that (4.25) holds.

Lemma 45. Let 0 ă δ ă 1. Suppose there exists β ą 2 such that for some function h : N Ñ R,
it holds hpnq ą nβ for all but finitely many n. Then

lim
nÑ8

´

1´ p1´ δq
hpnq

n2

¯n2

“ 1 .

Proof of Lemma 45. Setting α :“ β ´ 2 in Lemma 44, we get
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1 ě lim
nÑ8

´

1´ p1´ δq
hpnq

n2

¯

ě lim
nÑ8

´

1´ p1´ δq
hpnq

n2

¯n2

ě lim
nÑ8

ˆ

1´ p1´ δq
nβ

n2

˙n2

“ lim
nÑ8

`

1´ p1´ δqn
α˘n2

“ 1 ,

which proves the claim.

Definition 27. Let X be a set of cardinality n ě 2. Given an integer p ă n, a family F of
subsets of X is m-uniform if |F | “ m for all F P F . If, in addition, |F XG| ď k for all F,G P F ,
where 1 ď k ă m, then F is called pm, kq-sparse. We denote by Spn,m, kq the maximum size
of a pm, kq-sparse family on a set of size n. Moreover, we denote by T pn,m, kq the maximum
size of a pm, kq-sparse family F on a set of size n such that |F | is a multiple of n2.

In what follows we derive some results about Spn,m, kq, which will be then extended to
T pn,m, kq. The following combinatorial result is well-known:

Lemma 46 (Rodl, 1985). For any positive integers m, k P N such that m ą k,

lim
nÑ8

Spn,m, kq

ˆ

m

k

˙ˆ

n

k

˙´1

“ 1 .

Corollary 10. For any k,m P N with 5 ď k ă m, there is β ą 2 such that Spn,m, kq ą nβ

for all but many finitely integers n.

Proof of Corollary 10. Fix k,m P N such that 5 ď k ă m. Lemma 46 yields

Spn,m, kq ě
1

2

ˆ

m

k

˙´1ˆ
n

k

˙

for almost all n P N. Since k ě 5 implies that
`

n
k

˘

ě n3 for almost all n, we get

Spn,m, kq ě
1

2

ˆ

m

k

˙´1

n3 “ cn3

for almost all n and for some c ą 0. Take any β such that 2 ă β ă 3. Since cn3 ą nβ if and
only if n3´β ą 1

c
, we obtain Spn,m, kq ě cn3 ą nβ for almost all n.

Corollary 11. For any k,m P N and δ P R such 5 ď k ă m and 0 ă δ ă 1,

lim
nÑ8

´

1´ p1´ δq
Spn,m,kq

n2

¯n2

“ 1 .

Proof. Apply Lemma 45 and Corollary 10.

Corollary 12. For any k,m P N and δ P R such 5 ď k ă m and 0 ă δ ă 1,

lim
nÑ8

´

1´ p1´ δq
T pn,m,kq

n2

¯n2

“ 1 .
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Proof of Corollary 12. We use Corollary 11 and a sandwich argument. Let k,m P N and δ P R
such 5 ď k ă m and 0 ă δ ă 1. We first prove

Spn,m, kq

2
ď Spn,m, kq ´ n2 ď T pn,m, kq ď Spn,m, kq . (4.26)

The last two inequalities are an immediate consequence of the definition of Spn,m, kq and
T pn,m, kq. Therefore, it suffices to show that the first holds as well. Toward a contradiction,
suppose Spn,m, kq{2 ą Spn,m, kq ´ n2. Then, we have

Spn,m, kq ă 2n2 ùñ p1´ δq
Spn,m,kq

n2 ą p1´ δq
2n2

n2

ùñ

´

1´ p1´ δq
Spn,m,kq

n2

¯n2

ă
`

1´ p1´ δq2
˘n2

.

However, by Corollary 11, we get

1 “ lim
nÑ8

´

1´ p1´ δq
Spn,m,kq

n2

¯n2

ď lim
nÑ8

`

1´ p1´ δq2
˘n2

“ 0 ,

which is impossible. Next, we prove

lim
nÑ8

´

1´ p1´ δq
Spn,m,kq

2n2

¯n2

“ 1 . (4.27)

Since there is 0 ă σ ă 1 such that 1´ σ “ p1´ δq
1
2 , Corollary 11 readily yields

lim
nÑ8

´

1´ p1´ δq
Spn,m,kq

2n2

¯n2

“ lim
nÑ8

´

1´ p1´ σq
Spn,m,kqq

n2

¯n2

“ 1.

Since Spn,m,kq

2n2 ď
T pn,m,kq

n2 ď
Spn,m,kq

n2 by (4.26), we get

1´ p1´ δq
Spn,m,kq

2n2 ď 1´ p1´ δq
T pn,m,kq

n2 ď 1´ p1´ δq
Spn,m,kq

n2

hence

´

1´ p1´ δq
Spn,m,kq

2n2

¯n2

ď

´

1´ p1´ δq
T pn,m,kq

n2

¯n2

ď

´

1´ p1´ δq
Spn,m,kq

n2

¯n2

and so, by (4.27) and Corollary 11,

1“ lim
nÑ8

´

1´p1´δq
Spn,m,kq

2n2

¯n2

ď lim
nÑ8

´

1´p1´δq
T pn,m,kq

n2

¯n2

ď lim
nÑ8

´

1´p1´δq
Spn,m,kq

n2

¯n2

“1.

This completes the proof.

Corollary 13. Let k,m P N and δ, ϵ P R be such that 5 ď k ă m, 0 ă δ ă 1, and ϵ ą 0.
Then there exist positive integers n and h, a set X of size n, and an pm, kq-sparse family F of
|F | “ h subsets of X such that h is divisible by n2 and

´

1´ p1´ δq
h
n2

¯n2

ą 1´ ϵ. (4.28)

Proof of Corollary 13. Apply Corollary 12.
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Corollary 14. Let k,m P N and δ, ϵ P R be such that 5 ď k ă m´2, 0 ă δ ă 1, and
ϵ ą 0. Then there exist positive integers n and h, a set X of size n, an pm, k ` 2q-sparse family
G “ tGi : i P Iu of |G | “ h subsets of X, and a partition I “ tIx,y : x, y P Xu of I in sets
having all the same size |Ix,y| “ h{n2 such that

(i)
`

1´ p1´ δqh{n2˘n2

ą 1´ ϵ , and

(ii) i P Ix,y implies x, y P Gi for any i P I.

Proof. of Corollary 12. Apply Corollary 13 to k, m ´ 2, and δ to get an integer n and an
pm ´ 2, kq-sparse family F “ tFi : i P Iu of size h such that (4.28) holds. Define a partition
I “ tIx,y : x, y P Xu of I such that (ii) holds. Finally, for any i P I, define Gi :“ Fi Y tx, yu

when i P Ix,y.

Corollary 15. Let 0 ă δ ă 1 and ϵ ą 0. Then there are positive integers n, m, and h, a set
X of size n, an pm, 7q-sparse family G “ tGi : i P Iu of |I| “ h subsets of X, and a partition
I “ tIx,y : x, y P Xu of I in sets having all the same size |Ix,y| “ h{n2 such that

(i)
`

1´ p1´ δqh{n2˘n2

ą 1´ ϵ , and
(ii) i P Ix,y implies x, y P Gi for any i P I.

Proof of Corollary 15. Apply Corollary 14 for k :“ 5.

Definition 28. Two choice correspondences c : X Ñ X and c1 : X 1 Ñ X 1, respectively having
X and X 1 as ground sets, are isomorphic, denoted by c » c1, if there is a bijection σ : X Ñ X 1

(called an isomorphism) such that σpcpAqq “ c1pσpAqq for any A P X , where σpAq is the set
tσpaq : a P Au.

We are ready to prove Theorem 8. Let P be a TFLH property. We shall show that P

is asymptotically rare, that is, as the number of items in the ground set tends to infinity, the
fraction of choices satisfying P tends to zero. Notation: if c and c1 are choices on ground sets of
the same size, then we write c « c1 to mean that c and c1 are isomorphic if restricted to menus
of cardinality at least 8.

Since P is tail-fail, there is a choice c0 on a set of size m ě 8 such that, for any choice c

defined on a set of the same size m, if c « c0, then c does not satisfy P. Let δ be the probability
that a random choice c on a set of size m be such that c « c0; thus, 0 ă δ ă 1.

Fix ϵ ą 0. Apply Corollary 15 to get integers n,m, h, a set X of size n, an pm, 7q-sparse
family G “ tGi : i P Iu of subsets of X having maximum size |I| “ h, and a partition I “

tIx,y : x, y P Xu of I such that |Ix,y| “ h{n2 for any Ix,y P I with the properties that i P Ix,y

implies x, y P Gi, and p1´ p1´ δqh{n2
qn

2
ą 1´ ϵ.
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Let c be a random choice on X. For any i P I, let Ti :“ rGis
ě8 be the family of all subsets

of Gi of size at least 8. Note that Ti X Tj “ ∅ for any distinct i, j P I. We conclude that cæGi

are independent random variables as i varies, as long as we only look at menus of size at least
eight.34 Since Pr

`

cæGi
ff c0

˘

“ 1´ δ for any i P I, and all cæGi
’s are independent, we get

Prpp@i P Ix,yq cæGi
ff c0q ď p1´ δq

h
n2

for all x, y P X, hence

PrppDi P Ix,yq cæGi
« c0q ě 1´ p1´ δq

h
n2

for all x, y P X. We conclude

Prpp@x, y P XqpDi P Ix,yq cæGi
« c0q ě

´

1´ p1´ δq
h
n2

¯n2

ą 1´ ϵ

and so

PrppDx, y P Xqp@i P Ix,yq cæGi
ff c0q ă ϵ. (4.29)

Now suppose c satisfies P. Since P is locally hereditary, there are x, y P X such that cæY

satisfies P for any Y Ď X containing x and y. Thus, since i P Ix,y implies x, y P Gi, we conclude
that there are x, y P X such that cæGi

satisfies P for any i P Ix,y, hence cæGi
ff c0 for any

i P Ix,y. Thus, there are x, y P X such that cæGi
ff c0 for any i P Ix,y. Now (4.29) yields that the

probability that c satisfies P is lower than ϵ. By the arbitrariness of ϵ, the proof of Theorem 8
is complete.

The proofs of Theorems 6, 7, and 8 suggest that moodiness only arises for rather large sets
of alternatives. This is compatible with empirical evidence: any DM who is presented with
too many items tends to loose focus, and ends up randomly selecting one of them; moreover,
the larger the ground set, the more likely this randomness/irrationality surfaces. The fact that
moody behavior only appears for large datasets also suggests that models employing too many
rationales are empirically not desirable.

By virtue of Theorem 7, if we partition the family of all finite choices into ‘classes of ratio-
nality’ (that is, according to the minimum number of rationales needed for an RS), the class of
moody choices does eventually collect almost all choices. However, moodiness remains quite a
rare phenomenon for a small number of alternatives. This consideration gives empirical content
to the partition based on salience: the larger the difference between the number of items and
that of rationales, the more rational the choice behavior.

An analogous conclusion can hardly be drawn for the partition generated by the RMR
34Here by cæGi

we denote the choice restricted to the family of all nonempty subsets of Gi.
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model. For instance, all choices on n “ 3 items are boundedly rationalizable by many known
models, such as choice with limited limited attention (Masatlioglu, Nakajima, and Ozbay, 2012),
categorize-then-choose (Manzini and Mariotti, 2012b), basic rationalization theory (Cherepanov,
Feddersen, and Sandroni, 2013), and overwhelming choice (Lleras, Masatlioglu, Nakajima, and
Ozbay, 2017). However, some of these choices need n ´ 1 “ 2 rationales. The situation is
similar on a ground set of size n “ 4. Here the fraction of choices satisfying any of the models
mentioned above is between 1

3
and 3

8
,35 and yet many of these boundedly rationalizable choices

require the maximum number n ´ 1 “ 3 of rationales. We conclude that the last class of the
partition generated by the RMR model is hardly expressive of a form of ‘strong irrationality’,
whereas this feature can only be detected by employing a context-dependent approach.

35For the computation of these fractions, see Giarlotta, Petralia, and Watson (2022a, Lemma 8).
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