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ABSTRACT
The development of feature-oriented programming (FOP) and of (its

generalization) delta-oriented programming (DOP) has focused pri-

marily on SPLs of class-based object oriented programs. In this pa-

per, we introduce delta-oriented SPLs of functional programs with

algebraic data types (ADTs). To pave the way towards SPLs of multi-

paradigm programs, we tailor our presentation to the functional

sublanguage of the multi-paradigm modeling language ABS, which

already features DOP support for its class-based object-oriented

sublanguage. Our main contributions are: (i) we motivate and il-

lustrate our proposal by an example from an industrial modeling

scenario; (ii) we formalize delta-oriented SPLs for functional pro-

grams with ADTs in terms of a foundational calculus; (iii) we define

family-based analyses to check whether an SPL satisfies certain

well-formedness conditions and whether all variants can be gen-

erated and are well-typed; and (iv) we briefly outline how, in the

context of the toolchain of ABS, the proposed delta-oriented con-

structs and analyses for functional programs can be integrated with

their counterparts for object-oriented programs.
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1 INTRODUCTION
The development of feature-oriented programming (FOP) [1] and

of (its generalization) delta-oriented programming (DOP) [19] has

focused primarily on SPLs of class-based object oriented programs.

In particular, to the best of our knowledge, no FOP/DOP approach

for SPLs of functional programs can be found in the literature. In

this paper, we argue that support for delta-oriented SPLs of func-

tional programs with algebraic data types (ADTs) would be useful,

and we propose and formalize it for the functional sublanguage

of the multi-paradigm modeling language ABS [14]. We choose

ABS because it already features DOP support for its class-based

object-oriented sublanguage [5, 7]; so providing DOP support for

its functional sublanguage would pave the way to investigate SPLs

of multi-paradigm programs. Notably, ABS was successfully used in

industrial case studies [15, 17, 24] and the biggest of these case stud-

ies [15] comprises both functional and class-based object-oriented

code, but was not able to properly implement variability for its

functional code due to a lack of support in ABS.

A functional program consists of a set of ADT definitions and a

set of function definitions. A delta-oriented SPL [19] consists of a

feature model, a base program (usually representing a variant), a set

of deltas, and configuration knowledge. Each delta consists of a set

of delta-operations, specifying changes to the base program. Con-

figuration knowledge specifies an order of application between the

deltas, and a set of activation conditions over features (exactly one

for each delta) specifying which deltas to apply to the base program

to generate the variant associated with the selected product.

Inspired by the formulation of DOP for SPLs of class-based object-

oriented programs [19], it is straightforward to identify the follow-

ing delta operations on functional programs: (𝑖) add, remove, or

modify (by adding or removing a constructor) an ADT definition;

and (𝑖𝑖) add, remove, or modify (while possibly calling its original

version) a function definition.

However, our case study (outlined in Sect. 2) shows that the

presence of ADTs poses an interesting challenge: more fine-grained

operations on function definitions are required to complement the

addition/removal of a constructor in an ADT T by adding/removing

accordingly the corresponding branch of the case-expressions case

𝑒0 { 𝑝1 ⇒ 𝑒1 | · · · | 𝑝𝑛 ⇒ 𝑒𝑛} (𝑛 ≥ 1) where 𝑒0 has type T. Namely,

we need operations to add/remove a branch 𝑝𝑖 ⇒ 𝑒𝑖 (where 𝑝𝑖 is a

pattern matching expression and 𝑒𝑖 is the expression to be evaluated

when the match succeeds) of a case-expression, and also to modify

it (by replacing its right-hand side 𝑒𝑖 ). In order to be able to identify
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the case-expression to be modified we extend the syntax of case-

expressions with a label (which cannot occur twice inside a same

function definition). Then, within a given case-expression, each

branch 𝑝𝑖 ⇒ 𝑒𝑖 can be identified by its left-hand side 𝑝𝑖 . This solves

the problem of identifying the case-expression to be modified and

the branch to be removed or modified. The last issue to be solved

concerns the place where a delta should add a branch to a case-

expression: (𝑖) a case-expression is evaluated by considering its

branches in the order they appear; and (𝑖𝑖) unfortunately (due to

the possible long sequence of add, remove and modify operations

used to generate each variant) it seem almost impossible to devise a

usable DOP construct to control the order in which branches occur

in each variant. To rule out this issue we enforce the following

syntactic restrictions on case expressions:

R1 Each case expression may contain at most one default branch,

i.e., a branch of the form 𝑥 ⇒ 𝑒 (for any variable 𝑥) which

matches with every expression 𝑒0 and is at the last place in

the list of branches.

R2 All the branches but the optional default branch must be mutu-

ally exclusive – so their order becomes immaterial!

The main contributions of this paper are:

(1) we motivate the need of variability support for SPLs of func-

tional programs with ADTs by an ABS example from an

industrial modeling scenario (in Sect. 2);

(2) we devise and formalize a core functional programming lan-

guage with ADTs that is suitable for DOP (in Sect. 3) and

we provide a formal foundation for delta-oriented SPLs of

functional programs with ADTs (in Sect. 4);

(3) we define and formalize properties and family-based analyses

to check whether an SPL satisfies certain well-formedness

conditions and all variants can be generated and are well-

typed (in Sects. 5 and 6); and

(4) we briefly outline how, in the context of the toolchain of the

ABS multi-paradigm modeling language, the proposed delta-

oriented constructs and analyses for functional programs

can be integrated with their counterparts for class-based

object-oriented programs (in Sect. 7).

2 RUNNING EXAMPLE
SPLs of railway operations [15] and of simulators [9] have been

proven useful in practice. We use an SPL of (sketched) simulators

of train operations to illustrate our approach, in particular the

connection between data and functions. Each variant of the SPL

simulates the operations of a single train on a line between two

stations, where it must adhere to physical laws (for acceleration),

as well as to the operations rulebooks to react to the signals along

the line. We introduce the Base Program first, then the SPL.

Base Program: a (sketched) Train Simulator. Fig. 1 gives the code

of the Base Program, which is the variant of the SPL corresponding

to the empty configuration. It defines the basic data structures.

Datatype Train contains the dynamic aspects of a train (position pos,

acceleration a, speed v) and a link to its static specification spec.1

This static specification, defined by datatype Spec, contains only the

1
For sake of readability, we add a label to each ADT constructor argument (as allowed

by the syntax of ABS).

1 data Train = Train(Float pos , Float a, Float v, Spec spec);
2 data Spec = Spec(Float maxV);
3 data Signal = Signal(Float pos , Aspect asp)
4 data Aspect = Main(HaltAspect ha) | Pre(HaltAspect ha);
5 data HaltAspect = Stop | Pass;
6

7 def Spec getSpec(Train train) = case train as lb {
8 Train(_, _, _, spec) => spec;}
9 def Train setA(Train train , Float newA) = case train as lb {
10 Train(pos , _, v, spec) => Train(pos , newA , v, spec );}
11 def Float maxV(Train t) = case getSpec(t) as lb {
12 Spec(x) => x;}
13 def Train simulate(Pair <Train , List <Signal >> prs) =
14 simulate(simulateStep (0.2, prs));
15 def Train react(Train train , Aspect asp) =
16 case train as lbT {
17 Train(pos , _, v, spec) =>
18 case asp as lbA {
19 Main(Stop) => setA(train , -1.0); // emergency break
20 Main(Pass) => setA(train , 0.0);
21 Pre(Stop) => setA(train , -(v*v/20.0));
22 Pre(Pass) => setA(train , ...); }};
23 def Pair <Train , List <Signal >> simulateStep(Float step ,
24 Pair <Train ,List <Signal >> prs )=...
25 def Unit main() = ...

Figure 1: Base Program: a (sketched) train simulator.

maximum possible speed of the train, maxV. A signal is represented

by the datatype Signal that has a position along the track (pos) and

has a certain aspect (asp). The signal aspect, represented by the

datatype Aspect marks the signal as a Main signal or a Pre signal. A

main signal marks the position where a communicated aspect must

be observed (e.g., to stop), while the pre signal announces the main

signal (so the train has time to react). Additionally, the aspect itself,

represented by the datatype HaltAspect is to either Stop at the main

signal, or to Pass it. Operating on these data, we have two helper

functions to update the acceleration of a train (setA) and to unwrap

its maximum velocity (maxV), respectively.

Themain simulation loop is given by the function simulate, which

takes as input a train, a list of events (i.e., signals along the track)

and simulates for 0.2 steps by calling simulateStep – in the base

variant, the loop does not terminate and must be handled outside

the program (e.g., in an interactive environment for the developer).

Function simulateStep returns a pair consisting of a train and list

of events.
2
It takes care of physics and detection of events, and

performs the physical movement, as well as triggers events if nec-

essary. Function react models the reaction of a train to a concrete

event. We omit the body of some functions that are not variable

(such as simulateStep and main), as well as some complex expressions

(like the second argument of the call of function setA in line 23).

An SPL of (sketched) Train Simulators. The feature model, which

specifies 12 products, is pictured in Fig. 2 as a feature diagram.

As usual in DOP [19], in the logical formulation of the feature model,

shown in Fig. 3 (top), only the concrete features (in blue in Fig. 2) are

considered. We consider variability of the simulator infrastructure

itself via the Termination feature, where the simulation stops once

the train is not moving (UntilPos) or a certain amount of time has

passed (UntilTime) and variability in data and functions operating on

them: (𝑖) Modeling more static information, such as maximum and

minimum acceleration (MinMaxA), which the simulator accesses to

break correctly – note that the acceleration of the emergency break

2
In ABS, the standard datatypes Pair<X,Y> and List<Z> are built-in.
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1 // Feature model
2 features UntilPos , UntilTime , Speed , MinMaxA
3 with !( UntilPos && UntilTime)
4 // Configuration Knowledge: Activation conditions
5 delta dNoPass when Speed;
6 delta dUntilPos when UntilPos;
7 delta dUntilTime when UntilTime;
8 delta dSpeed when Speed;
9 delta dMinMaxA when MinMaxA;
10 // Configuration Knowledge: Application order
11 dNoPass < dUntilPos dUntilTime < dSpeed dMinMaxA;

Figure 3: Feature Model and Configuration Knowledge.

in react is hard coded so far; and (𝑖𝑖) modeling more procedural

variants, such as speed limiters which transmit the command to

pass the signal with a certain speed (Speed).

For the variability of termina- Simulate

Termination

UntilPos UntilTime

Speed MinMaxA

Legend

Alternative:

𝐹1

𝐹2 𝐹3
Optional:

𝐹4

𝐹5

Figure 2: Feature Model.

tion conditions, shown by deltas

dUntilPos and dUntilTime in Fig. 4,

only the simulate function needs

to bemodified. The delta dUntilPos

modifies the function by replac-

ing it with a new variant that

checks whether the position of

the train is simulated past 2000m

(snd returns the 2nd element of

a pair). If this is the case, then

the final state of the train is re-

turned. Otherwise, the original version of the function, i.e., before

the delta modified the function, is called. The delta dUntilTime is

analogous, but checks whether the train has come to halt. Only one

such condition can be selected.

The addition of the speed limiter, done by delta dSpeed, requires

to add a new constructor to the datatype HaltAspect, so the case

expression on HaltAspect in function react needs to be adjusted.

This is done by a modifiesCase on the function react, which contains

a modifiesCase on the case expression labeled lbT, which in turn

contains a modifiesCase on the case expression labeled lbA, which

adds two new branches.

If one has speed limiters, one may under certain conditions,

model a Pass aspect as a speed limiter with the corresponding max-

imum speed. The Pass aspect can, thus, be then removed. This is

done by the dNoPass delta.

The addition of new static information to the train requires the

biggest changes, which are expressed by delta dMinMaxA in Fig. 5. It

adds a new constructor ExtendSpec to the datatype Spec, and modifies

several functions. Function maxV shows the interactions of data and

functions: it must be extended to handle the new constructor. The

new functions minA and maxA are just for unwrapping, and function

setA is modified to take the new limits for acceleration into account

– note that the old constructor is handled with the default branch.

Finally, in function react we modify a branch by replacing it with

the minimal allowed acceleration for emergency breaking.

Configuration knowledge, shown in Fig. 3 (bottom), connects

the deltas to the features. Delta dNoPass is activated by feature Speed,

delta dUntilPos is activated by feature UntilPos, etc. The application

order specifies that (whenever activated) dNoPass must be applied

1 delta dNoPass;
2 modifies data HaltAspect { removes Pass; }
3 modifiesCase react { modifiesCase lbT {
4 modifiesCase lbA {
5 removes Main (Pass);
6 removes Pre (Pass); }}};
7

8 delta dUntilPos;
9 modifies def Train simulate(Pair <Train , List <Signal >> prs)
10 = case fst(prs) as lb {
11 Train(pos , _, _, _) =>
12 if(pos >= 2000) then fst(prs)
13 else original(prs); };
14

15 delta dUntilTime;
16 modifies def Train simulate(Pair <Train , List <Signal >> prs)
17 = case fst(prs) as lb {
18 Train(_, _, v, _) =>
19 if(v <= 0.0) then fst(prs)
20 else original(prs); };
21

22 delta dSpeed;
23 modifies data HaltAspect { adds Speed(Float limit); }
24 modifiesCase react { modifiesCase lbT {
25 modifiesCase lbA {
26 adds Main (Speed (target )) => setA(train , 0.0);
27 adds Pre (Speed (target )) => setA(train , ...); }}};

Figure 4: Termination conditions (deltas dUntilPos and
dUntilTime), speed limit aspect (delta dSpeed), removal of passing
aspect (delta dNoPass).

1 delta dMinMixA;
2 modifies data Spec {
3 adds ExtendSpec(Float maxV , Float minA , Float maxA );}
4 modifiesCase maxV { modifiesCase lb {
5 adds ExtendSpec(x, _, _) => x; }}
6 adds def Float minA(Train train) =
7 case getSpec(train) as lb {
8 ExtendSpec(_, x, _) => x; _ => -1.0;}
9 ... // analogous for maxA
10 modifies def Train setA(Train train , Float newA)
11 = if(newA >= maxA(train))
12 then Train(.., maxA(train), ..)
13 else if(newA <= minA(train))
14 then Train(.., minA(train), ..)
15 else original(train , newA);
16 modifiesCase react { modifiesCase lbT {
17 modifiesCase lbA {
18 modifies Main(Stop) => setA(train , minA(train )); }}}

Figure 5: Adding a more complex static structure to trains.

before dUntilPos and dUntilTime which, in turn, must be applied be-

fore dMinMaxA and dSpeed. When features UntilPos, Speed and MinMaxA

are selected, the variant in Fig. 6 is generated.

If the developer would have inserted by mistake the line of code

removes Main (Speed (target))

between lines 4 and 5 in Fig. 4, then the generation of the variant

shown in Fig. 6 would fail, because the application of delta dNoPass

would fail, because the new removes-operation would fail (there

would be no branch “Main (Speed (target)) => ...” to be removed,

because the delta dNoPass is applied first.

If the developer would have forgot to write line 5 in Fig. 4, then

the variant shown in Fig. 6 would contain, between lines 36 and 37,

the code in line 36 of Fig. 1. Since, in the given variant the data type

HaltAspect has no constructor Pass, this would be a type error.
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1 data Train = Train(Float pos , Float a, Float v, Spec spec);
2 data Spec = Spec(maxV:Float)
3 | ExtendSpec(Float maxV , Float minA , Float maxA);
4 data Signal = Signal(Float pos , Aspect asp)
5 data Aspect = Main(HaltAspect ha) | Pre(HaltAspect ha);
6 data HaltAspect = Stop | Speed (limit:Float);
7

8 def Train setA(Train train , Float newA)
9 = if(newA >= maxA(train))
10 then Train(.., maxA(train), ..)
11 else if(newA <= minA(train))
12 then Train(.., minA(train), ..)
13 else setA_core(train , newA);
14 def Train setA_core(Train train , Float newA)
15 = case train {
16 Train(pos , _, v, spec) => Train(pos , newA , v, spec) };
17 def Float maxV(Train train) =
18 case getSpec(train) as lb {
19 ExtendSpec(x,_,_) => x;
20 Spec(x) => x;}
21 adds def Float minA(Train train) =
22 case getSpec(train) as lb {
23 ExtendSpec(_, x, _) => x; _ => -1.0;}
24 // analgous for maxA
25 def Train simulate_core(Train train , List <Signal > evs)
26 = simulate(simulateStep(train , 0.2, evs));
27 def Train simulate(Train train , List <Signal > evs)
28 = case train {
29 Train(pos , _, _, _) =>
30 if(pos >= 2000) then train
31 else simulate_core(train , evs); };
32 def Train react(Train train , Aspect asp) =
33 case train as lbT {
34 Train(pos , _, v, spec) =>
35 case asp as reactL {
36 Main(Stop) => setA(train , minA(train ));
37 Pre(Stop) => setA(train , -(v(train)*v(train )/20.0));
38 Main (Speed (target )) => setA(train , ...);
39 Pre (Speed (target )) = train ;};
40 def Pair <Train , List <Signal >> simulateStep (...)=...
41 def Unit main() = ...

Figure 6: Variant for product {UntilPos, Speed, MinMaxA}.

3 F2ABS: A CORE FUNCTIONAL LANGUAGE
F
2
ABS (Featherweight Functional ABS) is a core language, with an

ABS-like vanilla syntax, which formalizes explicitly typed higher-

order functions and ADTs.
3
Following [13], 𝑋 denotes a possibly

empty finite sequence of elements 𝑋 . In accordance with [11], we

optionally enrich this notation by annotating its righthand side with

the letter indexing the elements of the sequence. For instance, if 1 ≤
𝑘 ≤ 𝑛 then [ 𝑎𝑘 ↦→ 𝜈𝑘

𝑘 ]𝜏𝑖 is a shorthand for [𝑎1 ↦→ 𝜈1, . . . , 𝑎𝑛 ↦→
𝜈𝑛]𝜏𝑖 . Moreover, we use ≡ to denote syntactic equality.

Syntax. The syntax of our core language is given in Figure 7.

Programs are formed by a sequence of (possibly mutually recur-

sive) ADT definitions followed by a sequence of (possibly mutually

recursive) function definitions.

Type variables are ranged over by 𝑎, 𝑏. We write 𝑇 to denote

names of ADTs. Data constructors are ranged over by K. Function

names are ranged over by f,g,h and formal parameter names are

ranged over by x,y,z. ADTs are defined by enumerating the data

3
The functional sublanguage of ABS [14] does not support higher-order functions.

Instead, although it has an ABS-like syntax, F
2
ABS is essentially an higher-order

explicitly typed lambda calculus with ADTs – like, e.g., those presented in [11]. So,

the techniques developed in this paper represent a foundation for delta-oriented SPLs

of higher-order explicitly typed functional programs.

constructors K and the types of their arguments 𝜈 (that may contain

occurrences of the type parameters in 𝑎 ).

Prg ::= DD FF Program

DD ::= data 𝑇 ⟨𝑎⟩ =K1(𝜈1 )| · · · | K𝑚(𝜈𝑚 ) ADT Definition

FF ::= def 𝜏 f⟨𝑎⟩( 𝜈 x ) = 𝑒 Function Definition

𝜏, 𝜈 ::= 𝑎 ||| 𝜈 → 𝜏 ||| 𝑇 ⟨𝜏⟩ Type

𝑒 ::= x ||| K(𝑒 ) ||| f ||| 𝑒 𝑒
||| case 𝑒 as 𝑙 { 𝑝 ⇒ 𝑒 | 𝑝 ⇒ 𝑒 } Expression

𝑝 ::= x ||| K(𝑝 ) Pattern

Figure 7: A vanilla syntax for F2ABS.

An expression is either: a variable; a data constructor applied to

all its arguments; a function name; a function application; or a case

expression, comprising the expression to be matched, the label l,

and the branches (viz. pairs “pattern⇒ expression”).

In each branch of a case, the variables occurring in the left-hand

pattern bound the occurrences in the right-hand expression. Pat-

terns can be nested, so a pattern can contains sub-patterns involving

constructor of another ADT. In a pattern, variables must be linearly

used, hence each variable can occur at most once in a pattern. We

assume that the patterns in the branches of each case are mutually

exclusive, except for the optional ending default branch of the form

x⇒e, for some variable x.

Given a 0-ary data constructor K, we will sometimes write K as

short for K(). Since data constructs must be always applied to all

their arguments, no confusion may arise. Similarly, given a datatype

T with no type parameters, we will sometimes write T as short for

T⟨⟩.
Following [14], we do not include neither anonymous functions,

nor let-expressions, nor if-expressions in our core language: they

are syntactic sugar. We use Unit, Bool, Pair, List, Int, Float to denote

the built-in datatypes:

data Unit = Unit data Bool = True | False

data Pair⟨𝑎1, 𝑎2 ⟩ = Pair(𝑎1, 𝑎2 ) data List⟨𝑎⟩ = Nil | Cons(𝑎,List⟨𝑎⟩)
data Int = -N | ... | -2 | -1 | 0 | 1 | 2 | ... | N

data Float = -Inf | ... | -2.01 | ... | 0.0 | ... | Inf | NaN

where we assume N be a natural number. So, the code given in Fig. 1

is an example of F
2
ABS program where, for readability sake, we

have used the anonymous variable _ in patterns and the terminator

“;” as in the ABS syntax.

Typing. The syntax of polymorphic types, environments, and

substitutions is given in Figure 9. If 𝜈 denotes 𝜈1, . . . , 𝜈𝑛 then, we

write 𝜈 → 𝜏 as a shortening for 𝜈1 → · · · → 𝜈𝑛 → 𝜏 (𝑛 ≥ 0). An

environment maps expression variables to types, ADT constructor

names to polymorphic types of the form ∀𝑎 .𝜈 → T⟨𝑎 ⟩, and fun-

cion names to polymorhic types of the form ∀𝑎 .𝜈 → 𝜏 . As usual,

the operation of environment concatenation (denoted simply by a

comma) is well-defined if and only if, either no name assignment

clashes or same names are assigned to same types.

The typing rules for the core language are given in Figure 8 –

they are based on the formalization of Haskell 98 proposed in [11,

Fig.3]. Rule Prg is applied to conclude that the program Prg= DD FF

is well-typed. Its premise ⊢
pD

DD {{{ Γ0 can be concluded by the rule
pD that parses the list DD of datatypes declarations: it collects in
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Program Typing Prg= DD FF ⊢
pD

DD {{{ Γ0 ⊢
pF

FF {{{ Γ1 DD ∝ Γ0 Γ0, Γ1 ⊢
FF

FF
Prg

⊢ Prg

Populating Environment

FF𝑖 ≡ def 𝜏𝑖 f𝑖 ⟨𝑎𝑖𝑘
𝑘⟩(𝜈𝑖𝑗 x𝑖𝑗

𝑗)=𝑒𝑖 where 1 ≤ 𝑖 ≤ 𝑛
pF

⊢
pF

FF1 . . .FF𝑛 {{{ f1:∀𝑎1

𝑘

𝑘
.𝜈 1

𝑗

𝑗→𝜏1 , . . . , f𝑛:∀𝑎𝑛𝑘
𝑘
.𝜈𝑛𝑗

𝑗→𝜏𝑛

DD𝑖 ≡ data 𝑇𝑖 ⟨𝑎𝑖 ⟩=K𝑖
1
(𝜈𝑖, 1 ) | · · · |K𝑖𝑚𝑖

(𝜈𝑖,𝑚𝑖 ) where 1 ≤ 𝑖 ≤ 𝑛
pD

⊢
pD

DD1 . . .DD𝑛 {{{


K1
1
:∀𝑎1 .𝜈 1, 1→𝑇1⟨𝑎1⟩, . . . ,K1𝑚1

:∀𝑎1 .𝜈 1,𝑚1→𝑇1⟨𝑎1⟩,
· · · , · · · , · · · ,

K𝑛
1
:∀𝑎𝑛 .𝜈𝑛, 1→𝑇𝑛⟨𝑎𝑛 ⟩, . . . ,K𝑛𝑚𝑛

:∀𝑎𝑛 .𝜈𝑛, 1→𝑇𝑛⟨𝑎𝑛 ⟩

Function Typing
FF𝑖 ≡ def 𝜏𝑖 f𝑖 ⟨𝑎𝑖 ⟩(𝜈𝑖 x𝑖 )=𝑒𝑖 ; Γ, x𝑖 : 𝜈𝑖 ⊢

e
𝑒𝑖 : 𝜏𝑖 where 1 ≤ 𝑖 ≤ 𝑛

FF

Γ ⊢
FF

FF1 . . .FF𝑛

Expression Typing
(x: 𝜏) ∈ Γ

Var

Γ ⊢
e
x: 𝜏

(f: ∀𝑎𝑖 𝑖.𝜏) ∈ Γ
Fn

Γ ⊢
e
f: [ 𝑎𝑖 ↦→ 𝜈𝑖

𝑖 ]𝜏
(K: ∀𝑎𝑘 𝑘 .𝜏𝑖

𝑖 → 𝑇𝑎𝑘
𝑘) ∈ Γ Γ ⊢

e
𝑒𝑖 : [ 𝑎𝑘 ↦→ 𝜈𝑘

𝑘 ]𝜏𝑖
𝑖

Con

Γ ⊢
e
K(𝑒𝑖 𝑖) : 𝑇 ⟨𝜈𝑘 𝑘⟩

Γ ⊢
e
𝑒1 : 𝜏1 → 𝜏2 Γ ⊢

e
𝑒2 : 𝜏1

App

Γ ⊢
e
𝑒1 𝑒2 : 𝜏2

Γ ⊢
e
𝑒 : 𝜈 Γ ⊢

p
𝑝𝑖 : 𝜈 {{{ Γ′

𝑖
Γ′
𝑖
⊢
e
𝑒𝑖 : 𝜏

𝑖

Case

Γ ⊢
e
case 𝑒 as 𝑙 { 𝑝𝑖 ⇒ 𝑒𝑖

𝑖 } : 𝜏

Pattern Typing
PatVar

Γ ⊢
p
x: 𝜏 {{{ Γ,x: 𝜏

(K: ∀𝑎𝑖 𝑖.𝜈1 → · · · → 𝜈𝑛 → 𝑇⟨𝑎𝑖 𝑖⟩) ∈ Γ Γ𝑗−1 ⊢
p
𝑝 𝑗 : [ 𝑎𝑖 ↦→ 𝜏𝑖

𝑖 ]𝜈 𝑗 {{{ Γ𝑗
PatCon

Γ0 ⊢
p
K (𝑝1 . . . 𝑝𝑛) : 𝑇⟨𝜏𝑖 𝑖⟩ {{{ Γ𝑛

Figure 8: F2ABS typing rules – based on rules presented in [11].

𝜎 ::= ∀𝑎 .𝜏 Polymorphic Type

Γ ::= 𝜖 ||| Γ, 𝑥 : 𝜏 ||| Γ, 𝑓 : 𝜎 ||| Γ, 𝐾 : 𝜎 Environment

𝜃 ::= [𝑎 ↦→ 𝜏 ] Substitution

Figure 9: Polymorphic types, environtments, substitutions.

the environment Γ0 the typing information of all constructors and

verifies the absence of clashing on names. Its premise ⊢
pF

FF {{{ Γ1
can be concluded by the rule pF that parses the list FF of functions:

it collects in the environment Γ1 the typing information of function

declarations (without checking the typing of bodies). Rule Prg

concludes that a program is well-typed whenever: (i) the collected

types of contructors (viz. Γ0) are defined from type-names defined

somewhere in Prg or built-in, which is formally denoted DD ∝ Γ0;
and (ii) the types collected in Γ0, Γ1 are sufficient to type the bodies

(of all defined functions), namely Γ0, Γ1 ⊢
FF

FF .

Rule FF parses a function list and verifies that the body of each

function is a well-typed expression in accord with the declared

types. Rules Var, Fn, Con, App and Case check the types of expres-

sions – they are the same as in [11, Fig.3]. Rules PatVar and PatCon

parse nested patterns in accordance with [11]. In particular, PatCon

checks (rightward) the types of all nested patterns in accord to the

type of the constructor. Each check extends the environment to be

used in next checks, in order to verify the compatibility of types of

all involved variables.

4 DELTA-F2ABS: DOP FOR F2ABS
In Fig. 10, the syntax of Delta-F

2
ABS is defined: a core language for-

malizing DOP for F
2
ABS. An SPL begins with the keyword features

followed by a list of features (i.e., Boolean variables) F that allow

the variability selection, and a formula Φ (after the keyword with)

that specifies the feature model. Then, there are the base program

(possible empty) and the deltas (possibly none).

Spl ::= features F with Φ Prg Dlt CK Software Product Line

Dlt ::= delta D DtO FnO Delta

DtO ::= adds DD ||| removes data 𝑇

||| modifies data 𝑇 { KRO KAO } ADT Operation

KRO ::= removes K Constructor Remove Operation

KAO ::= adds K(𝜈 ) Constructor Add Operation

FnO ::= adds FF ||| removes def f

||| modifies FF ||| modifiesCase f { CaseO } Function Operation

CaseO ::= modifiesCase lb { BRO BMO BAO CaseO } Case Operation

BRO ::= removes 𝑝 Branch Remove Operation

BMO ::= modifies 𝑝 ⇒ 𝑒 Branch Modify Operation

BAO ::= adds 𝑝 ⇒ 𝑒 Branch Add Operation

CK ::= DAC DAO Configuration Knowledge

DAC ::= delta D when Φ; Delta Activation Condition

DAO ::= D D < D D < D D ; Delta Application Order

Figure 10: A vanilla syntax for Delta-F2ABS.

A delta comprises a set of operations on ADTs and functions. An

ADT operation can: either add/remove an ADT definition, or modify

an ADT definition by adding/removing constructors. A function

operation can: add/remove a function definition; or modify a func-

tion definition by replacing its body with a new body (the new

body may call the previous incarnation of the function via the key-

word original); or modify some of the case-expressions occurring

in the function. This latter modification is expressed by a case-

operation which specifies: the name of the function f in which the

case-expressions to be modified occur and a set of case-operations.
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Each case-operation (CaseO) specifies: the label lb of the case-

expression e to be modified; a set of remove/modify/add branch-

operations (BRO/BMO/BAO) on branches of e; and a set of case-operations,

each of which refers to a case-expression occurring either in the

expression to be matched or in one of the branches of e. All case-

expressions occurring in a function must have different labels.

In order to apply a branch-operation op (∈BRO/BMO/BAO) on a case-

expression labeled lb𝑛 occurring in a function f, the delta must

specify a function operation modifiesCase f {CaseO} such that CaseO

respects the label-nesting, namely

CaseO ≡ modifiesCase lb1 { · · · modifiesCase lb𝑛 {op} · · · }

has to explicitly traverse the ordered full list lb1,. . ., lb𝑛−1 of the

case labels in which lb𝑛 occurs.

Configuration knowledge CK provides a mapping from products

to variants by describing the connection between deltas and fea-

tures: it specifies an activation condition Φ (a propositional formula

over features) for each delta D by means of a DAC clause; and it speci-

fies an application ordering between deltas by means of a sequence

of DAO clauses. Each DAO clause specifies a partial order over the set

of deltas in terms of a total order on disjoint subsets of delta names

– a DAO clause allows developers to express (as a partial order) depen-

dencies between the deltas (which are usually semantic “requires”

relations [2]). The overall delta application order is the union 𝑅 of

these partial orders – the relation 𝑅 must be consistent (i.e., be a

partial order) and unambiguous (i.e., all the total delta application

orders that respect 𝑅 generate the same variant for each product).

For delta-oriented SPLs of Java-like programs, techniques for check-

ing that 𝑅 is unambiguous are available [2, 16]. These techniques

can be straightforwardly adapted to Delta-F
2
ABS SPLs.

For each set of features 𝜋 , the rules for variant generation (omit-

ted for lack of space) define a reduction

𝜋

⊲ on the SPL such that: if

Spl
𝜋

⊲ Prg holds, then 𝜋 is a product and Prg is the variant for 𝜋 . The

rules are stuck when an error occurs during the generation process.

5 PROPERTIES
The key property that we would like to enforce is type safety.

Definition 5.1 (Type-safe SPL). A Delta-F
2
ABS SPL is type safe iff

all its variants can be generated and are well-typed F
2
ABS programs.

The following three properties – label consistency, useless-operation

absence and type-label uniformity – improve the comprehensibility

of an SPL and simplify type-safety checking. Label consistency

guarantees that the modifiesCases-opeations are not ambiguous.

Definition 5.2 (Label-consistent SPL). A Delta-F
2
ABS SPL Spl is

label-consistent iff: for any two variants Prg1 and Prg2 of Spl, for any

function f and label l such that f contains l in both Prg1 and Prg2,

the path (i.e., the sequence of labels and patterns) traversed to reach

l in f must be the same in both Prg1 and Prg2.

Example 5.3. In Figure 1, the path reaching (i.e., traversed to

reach) lbA in the function react is react.lbT.Train(pos, _, v, spec).lbA,

where “.” is used to concatenate paths in the sense of Definition 5.2.

In order to define the notion of useless-operation free SPL we

introduce the notion of pure SPL.

Definition 5.4 (Pure SPL). A Delta-F
2
ABS SPL Spl is pure iff its

base program is empty. If Spl is pure, then pure(Spl) is Spl itself.

Otherwise, pure(Spl) is the SPL obtained from Spl by replacing its

base program Prg with a delta with a fresh name 𝑑base that consists

of: (i) one add operation for each ADT declaration in Prg; (ii) one add

operation for each function declaration in Prg; (iii) has application

condition true; and (iv) is the first delta to be applied.

Definition 5.5 (Useless-operations and useless-operation free SPL).

Let Spl be a Delta-F2ABS SPL. A function adds- or modifies-operation,

a data type constructor adds-operation, a branch adds- or modifies-

operation of Spl is useless iff no syntax entry introduced by that

operation occurs in some variant of Spl; and Spl is useless-operation

free iff pure(Spl) – where each data type adds-operation is consid-

ered as a set of data type constructor adds-operations – does not

contain useless operations.

Type-label uniformity ensures that each ADT contructor declara-

tion, each function definition, and each case-expression (identified

by its label) has the same type across the base program and all the

deltas.

Definition 5.6 (Type-label-uniform SPL). A Delta-F
2
ABS SPL Spl

is type uniform iff:

• all declarations of the same constructor K declare it with the

same type; and

• all declarations of the same function f declare it with the

same type.

Spl is type-label uniform iff: it is type uniform and (for each function

f, for each label l) all case-expressions labeled l belonging to f

are always typed w.r.t. a same environment (same local variables

with same associated types) with a same type for the matching

expression and with a same type for the whole case-expression.

It worth observing that, if a Delta-F
2
ABS SPL Spl is type-label

uniform, then for any two variants Prg1 and Prg2 of Spl, the following

statements hold:

(1) if a constructor K or a function f is declared in both Prg1 and

Prg2, it must be declared with the same type in both variants;

and

(2) if both Prg1 and Prg2 declare a function f containing a case-

expressionwith the same label, then these two case-expressions

have the same type and match-expressions of the same type.

The vice-versa (i.e., property 1 and 2 imply label-type-uniformity)

holds whenever Spl is useless-operation free.

The SPL illustrated in Sect. 2 is type-safe, label-consistent, useless-

operation free, and type-label uniform.

6 FAMILY-BASED CHECKINGS
We formalize the notion of paths (already used in Definition 5.2) to

identify syntactic elements 𝐸 occurring in an SPL Spl together with

the “locality” where 𝐸 is expected to (possibly) occur in variants.

Definition 6.1 (Paths in an SPL). Let A be the alphabet where

letters are type names 𝑇 , constructors K, function names f, case

labels 𝑙 and patterns 𝑝 . A path 𝜌 is a (possibly empty) sequence of

letters in A that falls in one of the following categories: (𝑖) The
name of a datatype 𝑇 is the path to 𝑇 (because datatype definitions

are outer localities); (𝑖𝑖) 𝑇 .K is the path to the definition of the

constructor K in the datatype 𝑇 ; (𝑖𝑖𝑖) The name of a function f
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is the path to f (because function definitions are outer localities);

(𝑖𝑣) A case-expression labeled lb in a function f is identified by a

path of the form f.((l+ .(𝑝 |𝜖))∗).lb (where 𝜖 is the empty path) that

locates (nesting-respecting) all and only case-expressions (using

their labels) and branches (using their patterns) in which the lb-

labeled case-expression is nested in; and (𝑣) A branch 𝑝 ⇒ 𝑒 of a

case-expression labeled lb in a function f is identified by the path

f.𝜌′ .lb.𝑝 , for some 𝜌′.
Given a path 𝜌 , we denote by prefix(𝜌) the set of prefixes of 𝜌 .

We denote P(Spl) the set of all paths occurring in Spl (i.e., the paths

identifying the relevant syntactic elements in Spl).

For any path 𝜌 , the path obtained from 𝜌 by removing all patterns

is by denoted rmp(𝜌). It is inductively defined as follows:

rmp(𝜀) = 𝜀 rmp(𝜌.𝑎) =
{

rmp(𝜌) if 𝑎 is a pattern

rmp(𝜌).𝑎 otherwise.

Some of our analysis traverse the input SPL to construct tables

Θ (i.e., mappings from keys to values) collecting information that

are exploited by subsequent analyses.

We define an operation to extend a table Θ with a pair 𝑘 ↦→ 𝑣 .

The operation fails if 𝑘 already occurs in the domain of Θ and Θ(𝑘)
is different from 𝑣 .

addG (Θ, 𝑘, 𝑣) =
{

Θ ∪ {𝑘 ↦→ 𝑣} if 𝑘 ∉ dom(Θ)
Θ if 𝑣 = Θ(𝑘).

6.1 Non-Variable Checkings
6.1.1 Label Consistency. This analysis checks label-consistency
(Definition 5.2) and that each label lb occurs at most once in each

function. W.l.o.g., we assume that in the input SPL the deltas Dlt are

listed in an order compatible with the one specified by configuration

knowledge CK. Figure 11 presents the rules of this analysis, where

tables Θ map (f, l) (viz. pairs function-name and label) to paths

𝜌 . They have three possible judgemens: the judgement ⊢
lc

Spl : Θ
states that the SPL Spl has a valid label forest, represented by the

table Θ; the judgement Θ ⊢
lc
𝐸 : Θ′

states that the labels in 𝐸 are

not conflicting with Θ and that extending Θ with the (possible)

additional labels in 𝐸 yield Θ′
; and the judgemens Θ, 𝜌 ⊢

lc
𝐸 : Θ′

states the consistency of 𝐸, assumed to be nested in 𝜌 .

Most rules in Figure 11 simply traverse the input, looking for

cases and their labels. Rule L:7 checks the consistency of the en-

countered label l with paths in Θ and then proceeds to check all

its sub-expressions in their nesting paths. Rule L:13 is driven by a

path f.𝜌 that does not contain the nesting patterns (it is just the

sequence of labels of the modifiesCase in the delta under analysis)

– the sequence of patterns (identifying the nesting branches) is

recovered by using Θ. Rule L:13 looks for consistent/new paths in

the encountered case-operations BMO (by expoiting rule L:14), BAO

(by exploiting rule L:15) and CaseO (by exploiting rule L:13).

Theorem 6.2 (Label Consistency). Consider the following two

statements over an SPL Spl:

(1) The judgment ⊢
lc

Spl : Θ (for some Θ) holds.
(2) Spl is label-consistent and each label occurs at most once in

each function.

Then statement 1 implies statement 2. Moreover, if Spl is useless-

operation free, then statement 2 implies statetement 1.

6.1.2 Type Uniformity. The type uniformity of an SPL Spl can be

straightfowardly checked by collecting in a table Θ all the types

of all constructors and functions (declared in the base programs

and the deltas) and verifying that Θ maps each entry to a single

polymorphic type. If Spl is type uniform we denote ΓSpl the table
Θ, which is indeed the environment associating to functions and

constructors their unique polymorphic types in Spl.

In the rest of this document, we assume type uniformity for each

considered SPL.

6.1.3 Type-Label Uniformity and Partial Typing. Partial typing
adapts (neglecting dataypes) the type system of Fig. 8 to check

that an SPL Spl is type-label uniform and that all the functios and

constructors are used according the their type in ΓSpl.
Before introducing the rules for partial typing, we recall that in

a case-expression case 𝑒 as 𝑙 { 𝑝𝑖 ⇒ 𝑒𝑖 }: (𝑖) the “input” expression
𝑒 (with a type 𝜈) is matched against all patterns 𝑝𝑖 ; (𝑖𝑖) the whole
expression has an “output” type 𝜏 which is the type of all expressions

𝑒𝑖 in the branches 𝑝𝑖 ⇒ 𝑒𝑖 (c.f. Fig. 8); (𝑖𝑖𝑖) each pattern 𝑝𝑖 binds

variables in the branch 𝑝𝑖 ⇒ 𝑒𝑖 , the actual values of these variables

is obtained by the match against the “input” expression 𝑒 , and the

typing rules Γ ⊢
p
𝑝 : 𝜈 {{{ Γ′ of Fig. 8 extend Γ with types for

bound variables. Therefore, in many respects, a case-expression

looks like a function and we can associate to it the type 𝜈 → 𝜏 . For

each lb-labeled case-expression in a function f, we use type tables

Θ to store the typing of available local variables (parameters of f

and outer patterns) together with the type 𝜈 → 𝜏 . In this way, local

environments becomes available to checks that delta declarations

modifying case are uniform andwell typed as required by type-label

uniformity (Definition 5.6).

Figure 12 presents the rules for partial typing. Many of them

straightforwardly adapt the rules of the type system in Fig. 8. In

particular: rule FF corresponds to rule U:2; and rules Var, Con, Fn,

App, Case correspond to rules U:3, U:4, U:5, U:6, U:7, respectively.

The rules for partial typing have four possible judgments: (1) the

judgment in the conclusion of U:1 is about a whole SPL; (2) judg-

ments of the form Θ ⊢u 𝐸 : Θ′
state that 𝐸 has no case-declaration

conflicting with Θ and that Θ′
is the extension of Θ with the case-

declarations in 𝐸; (3) judgments of the formΘ, 𝜌 ⊢u 𝐸 : Θ′
state that

𝐸 lives in the branch 𝜌 , that 𝐸 has no case-declaration conflicting

with Θ, and that Θ′
is the extension of Θ with the case-declarations

in 𝐸; and (4) judgments of the form Θ, Γ, 𝜌 ⊢u 𝑒 : 𝜈,Θ′
state that

𝐸 lives in the branch 𝜌 , and 𝐸 has no case-declaration conflicting

with Θ when local variables are uniformly typed by Γ and that Θ′

is the extension of Θ with the case-declarations in 𝐸.

W.l.o.g., we assume that in the input SPL the deltas Dlt are listed

in an order compatible with the one specified by configuration

knowledge CK. Rule U:2 stores function parameter as the local vari-

ables in an environment, and record the function name as starting

path. Rules U:3 to U:6 simply traverse expressions and check that

they are well typed w.r.t. the type table and typing environment

Γ. Rule U:7 manages the case expression by traversing its sub-

expressions and add (or check the consistency of) its type and its

local environment in the type table. The rest of the rules deals

with deltas and delta operations. In particular, rules U:9 and U:11

forward the function declarations to the rule U:2. Rules U:12 pre-

dispose the initial path where local variables can be found in Θ.
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Θ1 = ∅ Θ𝑖 ⊢lc FF𝑖 : Θ𝑖+1 Θ𝑖 ⊢lc Dlt𝑖 : Θ𝑖+1

⊢
lc

features F with Φ DD FF1 . . . FF𝑛′ Dlt𝑛′+1 . . . Dlt𝑛′′ CK : Θ𝑛′′+1
L:1

Θ, f ⊢
lc
𝑒 : Θ′

Θ ⊢
lc

def 𝜏 f⟨𝑎1, . . . 𝑎𝑛 ⟩ (x1 : 𝜈1, . . . , x𝑚 : 𝜈𝑚 ) = 𝑒 : Θ′
L:2

Θ, 𝜌 ⊢
lc
x : Θ

L:3

Θ𝑖 , 𝜌 ⊢
lc
𝑒𝑖 : Θ𝑖+1

Θ1, 𝜌 ⊢
lc

K(𝑒1, . . . , 𝑒𝑛 ) : Θ𝑛+1
L:4

Θ, 𝜌 ⊢
lc

f : Θ
L:5

Θ1, 𝜌 ⊢
lc
𝑒1 : Θ2 Θ2, 𝜌 ⊢

lc
𝑒2 : Θ3

Θ1, 𝜌 ⊢
lc
𝑒1 𝑒2 : Θ3

L:6

𝜌 ′ = f.𝜌.l Θ0 = addG (Θ, (f, l), 𝜌 ′ ) Θ0, 𝜌
′ ⊢

lc
𝑒 : Θ1 Θ𝑖 , 𝜌

′ .𝑝𝑖 ⊢lc 𝑒𝑖 : Θ𝑖+1

Θ, f.𝜌 ⊢
lc

case 𝑒 as l { 𝑝1 ⇒ 𝑒1 . . . 𝑝𝑛 ⇒ 𝑒𝑛 } : Θ𝑛+1
L:7

Θ𝑖 ⊢lc FnO𝑖 : Θ𝑖+1

Θ1 ⊢lc delta D DtO FnO1 . . . FnO𝑚 : Θ𝑚+1
L:8

Θ ⊢
lc

FF : Θ′

Θ ⊢
lc

adds FF : Θ′
L:9

Θ ⊢
lc

removes def 𝑓 : Θ
L:10

Θ ⊢
lc

FF : Θ′

Θ ⊢
lc

modifies FF : Θ′
L:11

Θ𝑖 , f ⊢lc CaseO𝑖 : Θ𝑖+1

Θ1 ⊢lc modifiesCase f { CaseO1 . . . CaseO𝑛 } : Θ𝑛+1
L:12

Θ, 𝜌 .𝑝 ⊢
lc
𝑒 : Θ′

Θ, 𝜌 ⊢
lc

modifies 𝑝 ⇒ 𝑒 : Θ′
L:14

𝜌1 = f.𝜌.l 𝜌2 = Θ(f, l) rmp(𝜌2 ) = 𝜌1 Θ𝑖 , 𝜌2 ⊢lc BMO𝑖 : Θ𝑖+1 Θ𝑖 , 𝜌2 ⊢lc BAO𝑖 : Θ𝑖+1 Θ𝑖 , 𝜌1 ⊢lc CaseO𝑖 : Θ𝑖+1

Θ, f.𝜌 ⊢
lc

modifiesCase l { BRO BMO1 . . . BMO𝑚BAO𝑚+1 . . . BAO𝑛 CaseO𝑛+1 . . . CaseO𝑘 } : Θ𝑘+1
L:13

Θ, 𝜌 .𝑝 ⊢
lc
𝑒 : Θ′

Θ, 𝜌 ⊢
lc

adds 𝑝 ⇒ 𝑒 : Θ′
L:15

Figure 11: Label Consistency

Θ1 = ∅ Θ𝑖 ⊢u FF𝑖 : Θ𝑖+1 Θ𝑖 ⊢u Dlt𝑖 : Θ𝑖+1

⊢u features F with Φ DD FF1 . . . FF𝑛 Dlt𝑛+1 . . . Dlt𝑛′ CK : Θ𝑛′+1
U:1

Θ1, [x𝑖 ↦→ 𝜈𝑖 ], f ⊢u 𝑒 : 𝜏,Θ2

Θ1 ⊢u def 𝜏 f⟨𝑎1, . . . 𝑎𝑛 ⟩ (x1 : 𝜈1, . . . , x𝑚 : 𝜈𝑚 ) = 𝑒 : Θ2

U:2

Γ (x) = 𝜈

Θ, Γ, f.𝜌 ⊢u x : 𝜈,Θ
U:3

s = [𝑎𝑖 ↦→ 𝜏𝑖 ] Θ𝑖 , Γ, f.𝜌 ⊢u 𝑒𝑖 : 𝜎 (𝜈𝑖 ),Θ𝑖+1 ΓSpl (K) = ∀𝑎𝑖 𝑖.𝜈1 → · · · → 𝜈𝑛 → 𝑇⟨𝑎𝑖 𝑖⟩

Θ1, Γ, f.𝜌 ⊢u K(𝑒1, . . . , 𝑒𝑛 ) : 𝑇 ⟨𝜏1, . . . , 𝜏𝑚 ⟩,Θ𝑛+1
U:4

s = [𝑎𝑖 ↦→ 𝜏𝑖 ] ΓSpl (f) = ∀𝑎𝑖 𝑖.𝜏

Θ, Γ, f.𝜌 ⊢u f : s(𝜏 ),Θ
U:5

Θ1, Γ, f.𝜌 ⊢u 𝑒1 : 𝜏1 → 𝜏2,Θ2 Θ2, Γ, f.𝜌 ⊢u 𝑒2 : 𝜏1,Θ3

Θ1, Γ, f.𝜌 ⊢u 𝑒1 𝑒2 : 𝜏2,Θ3

U:6

Θ0, Γ, f.𝜌.l ⊢u 𝑒 : 𝜈,Θ1 Γ ⊢
p
𝑝𝑖 : 𝜈 { Γ𝑖 Θ𝑖 , Γ𝑖 , f.𝜌.l.𝑝𝑖 ⊢u 𝑒𝑖 : 𝜏,Θ𝑖+1

Θ𝑟 = addG (Θ𝑛+1, (f, l), (Γ, 𝜈 → 𝜏 ) )

Θ0, Γ, f.𝜌 ⊢u case 𝑒 as l { 𝑝1 ⇒ 𝑒1 . . . 𝑝𝑛 ⇒ 𝑒𝑛 } : 𝜏,Θ𝑟

U:7

Θ𝑖 ⊢u FnO𝑖 : Θ𝑖+1

Θ1 ⊢u delta D DtO FnO1 . . . FnO𝑛 : Θ𝑛+1
U:8

Θ ⊢u FF : Θ′

Θ ⊢u adds FF : Θ′
U:9

Θ ⊢u removes def 𝑓 : Θ
U:10

Θ ⊢u FF : Θ′

Θ ⊢u modifies FF : Θ′
U:11

Θ𝑖 , f ⊢u CaseO𝑖 : Θ𝑖+1

Θ1 ⊢u modifiesCase f { CaseO1 . . . CaseO𝑛 } : Θ𝑛+1
U:12

Θ𝑖 , 𝜌 .l ⊢u BMO𝑖 : Θ𝑖+1 Θ𝑖 , 𝜌 .l ⊢u BAO𝑖 : Θ𝑖+1 Θ𝑖 , 𝜌 .l ⊢u CaseO𝑖 : Θ𝑖+1

Θ1, 𝜌 ⊢u modifiesCase l { BRO BMO1 . . . BMO𝑚 BAO𝑚+1 . . . BAO𝑛 CaseO𝑛+1 . . . CaseO𝑘 } : Θ𝑘+1
U:13

Θ(f, l) = (Γ, 𝜈 → 𝜏 ) Γ ⊢
p
𝑝 : 𝜈 {{{ Γ′ Θ, Γ′, f.𝜌.l ⊢u 𝑒 : 𝜏,Θ′

Θ, f.𝜌.l ⊢u modifies 𝑝 ⇒ 𝑒 : Θ′
U:14

Θ(f, l) = (Γ, 𝜈 → 𝜏 ) Γ ⊢
p
𝑝 : 𝜈 {{{ Γ′ Θ, Γ′, f.𝜌.l ⊢u 𝑒 : 𝜏,Θ′

Θ, f.𝜌.l ⊢u adds 𝑝 ⇒ 𝑒 : Θ′
U:15

Figure 12: Partial Typing

Rules U:14 and U:15 predispose the local variables for possible re-

cursive call to the rule U:7 in presence of case-expressions. Note

that the branch removal operations are simply skipped, since they

do not declare anything and do not contain any expressions that

need to be type-checked.

Theorem 6.3 (Partial Typing). Let Spl be a label-consistent type-

uniform SPL. Consider the following three statements over Spl:

(1) The judgment ⊢u Spl : Θ (for some Θ) holds.
(2) Spl is label-type uniform.

(3) Each variant Prg𝑖 = DD FF of Spl is such that ΓSpl ⊢
FF

FF (c.f.

Fig. 8).

Then statement 1 implies statements 2 and 3. Moreover, if Spl has no

useless operations, then statement 2 and 3 imply statement 3.

6.2 Variable Checkings
6.2.1 Getters. The family-based analyses presented in this section

use some auxiliary functions (aka getters) that extracts information

from SPLs.

Definition 6.4 (Getters on FM and CK). Given an SPL Spl, we

denote by fm(Spl) the propositional formula (over feature names)

specifiying the featuremodel of Spl. Moreover, we denote by act(Spl)
the propositional formula (over feature names and delta names)

formed by the conjunction of bi-implications equating each delta

name to its activation conditions.

For the sake of simplicity, we assume that in what follows the

considered SPL Spl is pure and label-consistent (c.f. Section 6.1.1),

so that Θ is the table that stores all path identifying the labels of Spl,

namely ⊢
lc

Spl : Θ. Moreover, we denote < a total order on deltas

compatible with the configuration knowledge of Spl.
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Weuse paths, as defined in Definition 6.1, to identify the syntactic

elements 𝐸 considered in declarations of Spl together with the “lo-

cality” where 𝐸 is expected to (possibly) occur in variants. Notably,

the prefixes of a path 𝜌 allows us to identify the super-localities

whose modification may affect delta-operations on syntactic ele-

ments identified by 𝜌 .

In accord with Definition 6.1, we have the following kinds of

paths: a datatype is identified by its name; a constructor K of a

datatype 𝑇 is identified by 𝑇 .K; a function is identified by its name;

a case labeled lb in a function f is identified by Θ(f, lb) = f.𝜌 .lb

(such that ⊢
lc

Spl : Θ and 𝜌 is described by the regular expression

(l+ .(𝑝 |𝜖))∗); and, a branch 𝑝 ⇒ 𝑒 in case labeled lb of a function f

is identified by 𝜌.𝑝 such that Θ(f, lb) = 𝜌 .
We define the following getters on paths.

Definition 6.5 (Getters on paths). Given an SPL Spl and a path

𝜌 ∈ P(Spl), we denote by:
• add(Spl, 𝜌) the set of delta names 𝑑 that add the path 𝜌 in

Spl;

• rem(Spl, 𝜌) the set of delta names 𝑑 that remove the path 𝜌

in Spl; and

• mod(Spl, 𝜌) the set of delta names 𝑑 that modify the path 𝜌

in Spl.

It is worth observing that the name of the variability operations

in a delta d makes evident the getters that return d. For instance, for

ADT-operations: (i) if d contains adds DD (adding a datatype named

𝑇 ) then d ∈ add(Spl,𝑇 ); (ii) if d contains removes data𝑇 then d ∈
rem(Spl,𝑇 ); (iii) if d contains modifies data 𝑇 { removes K_0 adds K_1(𝜈 )}
then d ∈ mod(Spl,𝑇 ), d ∈ rem(Spl,𝑇 .𝐾0) and d ∈ add(Spl,𝑇 .𝐾1).
Moreover, the getters in Definition 6.5 behaves on a delta d con-

taining adds FF, removes def f, modifies FF, BRO, BMO, BAO as follows: (i)

if d contains adds FF then, for all 𝜌 occurring in FF (included 𝜌 = f),

d ∈ add(Spl, 𝜌); (ii) if d contains modify FF (acting on the function f),

then d ∈ rem(Spl, f) and, for all 𝜌 occuring in FF (included 𝜌 = f),

d ∈ add(Spl, 𝜌); (iii) if d contains BAO of the form adds 𝑝 ⇒ 𝑒 (acting

on the function f, so it is included in a modifiesCase f) aiming to add

the branch to the case l (so its nearest modifiesCase is labeled l) and

Θ(f, l) = 𝜌′, then, for all 𝜌 occurring in 𝑝 ⇒ 𝑒 (included 𝜌 = 𝑝),

d ∈ add(Spl, 𝜌′ .𝜌); (iv) if d contains BMO of the form modifies 𝑝 ⇒ 𝑒

(acting on the function f, so it is included in a modifiesCase f) aim-

ing to modify the branch in the case l (so its nearest modifiesCase

is labeled l) and Θ(f, l) = 𝜌′, then d ∈ rem(Spl, 𝜌′ .𝑝) and, for all
𝜌 occurring in 𝑝 ⇒ 𝑒 (included 𝜌 = 𝑝), d ∈ add(Spl, 𝜌 .𝜌′); (v) if
d contains either removes def f or BRO (acting on the path 𝜌), then

𝑑 ∈ rem(Spl, 𝜌). It is worth to note, that if d contains modifiesCase on

l nested in a modifiesCase f and Θ(f, l) = 𝜌 , then d ∈ mod(Spl, 𝜌′)
for all 𝜌′ ∈ prefix(𝜌).

6.2.2 Applicability consistency.

Addition Operation. Given an SPL Spl, the constraint for checking

that no addition operation of a path 𝜌 ∈ P(Spl) fails is as follows:

predA(Spl, 𝜌 ) =
∧
𝑑≠𝑑 ′

(𝑑 ∧ 𝑑 ′ ⇒
∨
𝑑 ′′

𝑑 ′′)

with

{
𝑑,𝑑 ′ ∈ add(Spl, 𝜌 ), 𝑑 ′′ ∈ ⋃

𝜌′∈prefix(𝜌 ) rem(Spl, 𝜌 ′ )
and 𝑑 ′ < 𝑑 ′′ ≤ 𝑑

This constraint states that if two deltas add the same path, then

there must be a third one in between that removes it (possibly

𝑑′′ = 𝑑).

Removal Operation. Given an SPL Spl, the constraint for checking

that no removal operation of a path 𝜌 ∈ P(Spl) fails is as follows:

predR(Spl, 𝜌 ) =
∧
𝑑

(
𝑑 ⇒

(∨
𝑑 ′′

(𝑑 ′′∧
∧
𝑑 ′

¬𝑑 ′)
))

with

{
𝑑 ∈ rem(Spl, 𝜌 ), 𝑑 ′ ∈ ⋃

𝜌′∈prefix(𝜌 )
(
rem(Spl, 𝜌 ′ ) − add(Spl, 𝜌 ′ )

)
,

𝑑 ′′ ∈ add(Spl, 𝜌 ) and 𝑑 ′′ < 𝑑 ′ < 𝑑

This constraint states that for a removal operation to succeed (in

delta 𝑑), there must be a previous delta 𝑑′′ that added the path to

remove, with no other delta 𝑑′ in between removing it first.

Modification Operation. Given an SPL Spl, the constraint for

checking that no modification operation of a path 𝜌 ∈ P(Spl) fails
is as follows:

predM(Spl, 𝜌 ) =
∧
𝑑

(
𝑑 ⇒

(∨
𝑑 ′′

(𝑑 ′′∧
∧
𝑑 ′

¬𝑑 ′)
))

with

{
𝑑 ∈ mod(Spl, 𝜌 ), 𝑑 ′ ∈ ⋃

𝜌′∈prefix(𝜌 )
(
rem(Spl, 𝜌 ′ ) − add(Spl, 𝜌 ′ )

)
,

𝑑 ′′ ∈ add(Spl, 𝜌 ) and 𝑑 ′′ < 𝑑 ′ < 𝑑

This constraint has the same structure as predR(Spl, 𝜌) before: for
a modification operation to succeed (in delta 𝑑), there must be a

previous delta 𝑑′′ that added the path to remove, with no other

delta 𝑑′ in between removing it first.

Full Applicability Constraint. We can now combine all the previ-

ous constraints to ensure that all delta operations are valid:

predAPP(Spl) =
∧

𝜌∈P(Spl)

(
predA(Spl, 𝜌 ) ∧ predR(Spl, 𝜌 ) ∧ predM(Spl, 𝜌

)
Finally, we can bind this constraint to the variability model of

the SPL to obtain the formula

(fm(Spl) ∧ act(Spl)) ⇒ predAPP(Spl)

This formula states that given a product 𝜋 (i.e., a model of fm(Spl)),
and extend it to the set of delta’s activated by 𝜋 (i.e., a model of

act(Spl)), then if the resulting model validates the constraints, then

all delta operations triggered by the product 𝜋 will succeed, i.e., the

corresponding variant can be generated. This property is formalized

in the following theorem.

Theorem 6.6 (Applicability consistency). The following two

statements on an SPL Spl are equivalent:

(1) The constraint (fm(Spl) ∧ act(Spl)) ⇒ predAPP(Spl) is valid.
(2) All variants of Spl can be generated.

6.2.3 Pattern Compatibility. This analysis checks that during the

generation of a variant, no incompatible (i.e., violating the restric-

tions R1 and R2 given in Sect. 1) patterns can be used in the same

case-expression.

Definition 6.7 (Pattern incompatibility). Two patterns 𝑝1 and 𝑝2
are incompatible (written⇊ (𝑝1, 𝑝2)) iff either:

• 𝑝1 and 𝑝2 are not variables and there exists 𝜎1 and 𝜎2 such

that 𝜎1 (𝑝1) = 𝜎2 (𝑝2); or
• 𝑝1 and 𝑝2 are variables.
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Given an SPL Spl, we define the getter on SPL such that

pat(Spl, f, 𝑙 ) = {𝑝 | ∃𝜌, f.𝜌.𝑙 .𝑝 ∈ P(Spl) } .

Given an SPL Spl, the fact that a path 𝜌 ∈ P(Spl) is present in a

variant is specified by the following constraint:

Pre(Spl, 𝜌 ) =
∨
𝑑

(
𝑑 ∧ (

∧
𝑑 ′

¬𝑑)
)
with


𝑑 ∈ add(Spl, 𝜌 ),
𝑑 ′ ∈ ⋃

𝜌′∈prefix(𝜌 ) rem(Spl, 𝜌 ′ )
and 𝑑 < 𝑑 ′

The following constraint specifies that a variant must not contain

any incompatible pattern, simply by stating that two incompatible

patterns cannot be present together.

predC(Spl) =
∧

f.𝜌 .𝑙 ∈P(Spl)

∧
𝑝1≠𝑝2∈pat(Spl,f,𝑙 )

⇊(𝑝1,𝑝2 )

¬
(

Pre(Spl, f.𝜌.𝑙 .𝑝1 )
⇔ Pre(Spl, f.𝜌.𝑙 .𝑝2 )

)

Theorem 6.8 (Pattern compatibility). Consider the following

two statements over and SPL Spl:

(1) The constraint (fm(Spl) ∧ act(Spl)) ⇒ predC(Spl) is valid.
(2) No generable variant of Spl has incompatible patterns in a

case-expression.

Then statement 1 implies statement 2. Moreover, if all variants of Spl

can be generated, then statement 2 implies statement 1.

6.2.4 Dependency Analysis. The dependency analysis is formalized

by the judgment ⊢ Spl : Φ, defined by the rules in Fig. 13, deriving

a constraint Φ stating that all elements (types, constructors and

function) used in a variant of the SPL Spl are declared in that variant.

We reuse the predicate Pre(Spl, 𝜌) defined in Section 6.2.3 in

order to check that 𝜌 is added by some deltas and not subsequently

removed. But we need another predicate Pre(Spl, 𝜌, 𝑑) asserting that
if 𝑑 is activated then there exists another delta 𝑑′ which is activated

and never removed taking into account original.

Given an SPL Spl, a delta 𝑑 adding a path 𝜌 ∈ P(Spl), the con-
straint stating that the version of 𝜌 given by 𝑑 is present in a variant

is as follows:

Pre(Spl, 𝜌,𝑑 ) = 𝑑 ∧ ©«
∧
𝑑 ′

𝑑 ′ ⇒
∨

𝜌′′,𝑑 ′′
Pre(Spl, 𝜌 ′′, 𝑑 ′′ )ª®¬

with:

{
𝑑 ′ ∈ ⋃

𝜌′∈prefix(𝜌 ) rem(Spl, 𝜌 ′ )
𝜌 ′′, 𝑑 ′′ ∈ kept(Spl, 𝜌 ) and 𝑑 < 𝑑 ′′ ≤ 𝑑 ′

where kept(Spl, 𝜌 ) is the set of pairs (𝜌 ′′, 𝑑 ′′ ) such that:
there is f s.t. f ∈ prefix(𝜌 ) ∩ prefix(𝜌 ′′ )
and 𝑑 ′′ ∈ add(𝜌 ′′ )
and 𝜌 ′′ is a maximal path in 𝑑 ′′

where an original occurs

This formula states that for the declaration of 𝜌 given in 𝑑 to be

accessible in a variant, we need that 𝑑 must be activated, and that

for any delta 𝑑′ that remove 𝜌 after 𝑑 , there must be another delta

𝑑′′ in between that keeps 𝜌 visible through a call to original. More

precisely, 𝑑′′ must introduce a path 𝜌′′ that: (i) identifies a call

to original, i.e., removing it is equivalent to removing the original

call (this is encoded with 𝜌′′ being a maximal path containing the

original call); (ii) is located in the new body of the same function

f where 𝜌 was located; and (iii) is accessible in the variant (i.e.,

Pre(Spl, 𝜌′′, 𝑑′′) must hold).

The rules in Figure 13 have three possible judgments: a judgment

of the form ⊢ 𝐸 : Φ states that the syntactic entry 𝐸 generates the

constraint Φ; a judgment of the form 𝑑 ⊢ 𝐸 : Φ states that the

syntactic entry 𝐸 in the delta 𝑑 generates the constraint Φ; and
statements of the form 𝑑, 𝜌 ⊢u 𝐸 : Φ states that the syntactic entry

𝐸 living in the path 𝜌 generates the constraint Φ.
Most of rules in Figure 13 simply accumulates constraints from in-

ner syntax node, or return true because that syntax entry contains

no dependency. There are only three rules that actually introduce

dependency in the generated constraint Φ: ruleD:6 states that when
a datatype 𝑇 is used, then it must exists; rule D:8 states that when

a constructor K is used, then it must exists; and rule D:9 states that

when a function f is used, then it must exists.

6.2.5 Type-Safety Analysis. The type-safety analysis relies on the

analyses presented so far. It is illustrated by the following theorem.

Theorem 6.9 (Type-safety). Consider a type-uniform SPL Spl,

a type table Θ and a constraint Φ such that both Θ′ ⊢u Spl : Θ and

⊢ Spl : Φ hold; and consider the following two statements over Spl:

(1) The constraint (fm(Spl) ∧ act(Spl)) ⇒ Φ is valid.

(2) All generable variants of Spl are well typed.

Then statement 1 implies statement 2. Moreover, if all variant of Spl

can be generated, then statement 2 implies statement 1.

7 INTEGRATIONWITH CLASS-BASED DOP
ABS (https://abs-models.org/) is multi paradigm modelling lan-

guage which supports DOP for its class-based object-oriented sub-

language. Its toolchain implements type-uniformity, pre-typing and

applicability-consistency family-based checks, while dependency-

consistency is currently under development [7]. In this section we

briefly outline how delta-oriented constructs for functional pro-

grams and the associated family-based checks proposed in this

paper can be smoothly integrated with their counterparts for class-

based object-oriented programs into the ABS toolchain.

Integration of family-based type checking. The functional and

object-oriented sublanguages of ABS interact only on the level

of expressions, and variable declarations. An expression in the

object-oriented sublanguagemay use a function or constructor from

the functional sublanguage, and any field, method parameter or

variable declaration may refer to an ADT. Consequently, in addition

to the already existing analysis that check the two sublanguages

independently, we must also ensure the following properties:

(1) expressions in functions that use objects must be well typed;

(2) functional expressions in methods must be well typed;

(3) all classes and interfaces referred in an ADT or a function

must be present in all variant where the ADT or function

occurs; and

(4) all ADT, type constructors and function referred in an in-

terface or class must be present in all variant where the

interface or class occurs.

The points 1 and 2 can be ensured by combining the partial typing

analysis of the two sublanguages: by combining together the class

table from the object-oriented sublanguage and the ΓSpl table de-
scribed in this paper, we can ensure that every usage of an element

declared in the resulting table is correct w.r.t. its declaration.

https://abs-models.org/
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⊢ Dlt𝑖 : Φ𝑖

⊢ features F with Φ Dlt1 . . . Dlt𝑛 CK :
∧

1≤𝑖≤𝑛
Φ𝑖

D:1

𝑑,𝑇 .K𝑖 ⊢ 𝜈𝑖
1
: Φ1

𝑖
· · · 𝑑,𝑇 .K𝑖 ⊢ 𝜈𝑖

1
: Φ1

𝑛𝑖

𝑑 ⊢ data𝑇 ⟨𝑎1, . . . 𝑎𝑛 ⟩ = K1 (𝜈11 , . . . , 𝜈1𝑛1

) | · · · | K𝑚 (𝜈𝑚
1
, . . . , 𝜈𝑚𝑛𝑚 ) :

∧
1≤𝑖≤𝑚

∧
1≤ 𝑗≤𝑛𝑖

Φ𝑖
𝑗

D:2

𝑑, f ⊢ 𝑒 : Φ 𝑑, f ⊢ 𝜈𝑖 : Φ𝑖

𝑑 ⊢ def 𝜏 f⟨𝑎1, . . . 𝑎𝑛 ⟩ (x1 : 𝜈1, . . . , x𝑚 : 𝜈𝑚 ) = 𝑒 : Φ ∧
∧

1≤𝑖≤𝑚
Φ𝑖

D:3

𝑑, 𝜌 ⊢ 𝑎 : true
D:4

𝑑, 𝜌 ⊢ 𝜈 : Φ1 𝑑, 𝜌 ⊢ 𝜏 : Φ2

𝑑, 𝜌 ⊢ 𝜈 → 𝜏 : Φ1 ∧ Φ2

D:5

𝑑, 𝜌 ⊢ 𝜈𝑖 : Φ𝑖

𝑑, 𝜌 ⊢ 𝑇 ⟨𝜈1, . . . 𝜈𝑛 ⟩ : (Pre(Spl, 𝜌,𝑑 ) ⇒ Pre(Spl,𝑇 ) ) ∧
∧

1≤𝑖≤𝑛
Φ𝑖

D:6

𝑑, 𝜌 ⊢ x : true
D:7

𝑑, 𝜌 ⊢ 𝑒𝑖 : Φ𝑖 K constructor of𝑇

𝑑, 𝜌 ⊢ K(𝑒1, . . . , 𝑒𝑛 ) : (Pre(Spl, 𝜌,𝑑 ) ⇒ Pre(Spl,𝑇 .K) ) ∧
∧

1≤𝑖≤𝑛
Φ𝑖

D:8

𝑑, 𝜌 ⊢ f : (Pre(Spl, 𝜌,𝑑 ) ⇒ Pre(Spl, f) )
D:9

𝑑, 𝜌 ⊢ 𝑒1 : Φ1 𝑑, 𝜌 ⊢ 𝑒2 : Φ2

𝑑, 𝜌 ⊢ 𝑒1 𝑒2 : Φ1 ∧ Φ2

D:10

𝑑, 𝜌 ⊢ 𝑒 : Φ 𝑑, 𝜌.𝑙 .𝑝 ⊢ 𝑒𝑖 : Φ𝑖 𝑑, 𝜌.𝑙 .𝑝 ⊢ 𝑝𝑖 : Φ′
𝑖

𝑑, 𝜌 ⊢ case 𝑒 as 𝑙 { 𝑝1 ⇒ 𝑒1 . . . 𝑝𝑛 ⇒ 𝑒𝑛 } : Φ ∧
∧

1≤𝑖≤𝑛
(Φ𝑖 ∧ Φ′

𝑖 )
D:11

𝑑 ⊢ DtO𝑖 : Φ𝑖 𝑑 ⊢ FnO𝑖 : Φ𝑖

⊢ delta𝑑 DtO1 . . . DtO𝑛 FnO𝑛+1 . . . FnO𝑚 :

∧
1≤𝑖≤𝑚

Φ𝑖

D:12

𝑑 ⊢ DD : Φ

𝑑 ⊢ adds DD : Φ
D:13

𝑑 ⊢ removes data𝑇 : true
D:14

𝑑,𝑇 ⊢ KAO𝑖 : Φ𝑖

𝑑 ⊢ modifies data𝑇 { KRO KAO𝑛+1 . . . KAO𝑚 } :
∧

1≤𝑖≤𝑚
Φ𝑖

D:15

𝑑,𝑇 .K ⊢ 𝜈𝑖 : Φ𝑖

𝑑,𝑇 ⊢ adds K(𝜈1, . . . , 𝜈𝑛 ) :
∧

1≤𝑖≤𝑛
Φ𝑖

D:16

𝑑 ⊢ FF : Φ

𝑑 ⊢ adds FF : Φ
D:17

𝑑 ⊢ removes def 𝑓 : true
D:18

𝑑 ⊢ FF : Φ

𝑑 ⊢ modifies FF : Φ
D:19

𝑑, f ⊢ CaseO𝑖 : Φ𝑖

𝑑 ⊢ modifiesCase f { CaseO1 . . . CaseO𝑛 } :
∧

1≤𝑖≤𝑛
Φ𝑖

D:20

𝜌1 = f.𝜌.l 𝜌2 = Θ(f, l) 𝑑, 𝜌2 ⊢ BMO𝑖 : Φ𝑖 𝑑, 𝜌2 ⊢ BAO𝑖 : Φ𝑖 𝑑, 𝜌.𝑙 ⊢ CaseO𝑖 : Φ𝑖

𝑑, 𝜌 ⊢ modifiesCase l { BRO BMO1 . . . BMO𝑚 BAO𝑚+1 . . . BAO𝑜 CaseO𝑜+1 . . . CaseO𝑝 } :
∧

1≤𝑖≤𝑝
Φ𝑖

D:21

𝑑, 𝜌.𝑝 ⊢ 𝑒 : Φ

𝑑, 𝜌 ⊢ modifies 𝑝 ⇒ 𝑒 : Φ
D:22

𝑑, 𝜌.𝑝 ⊢ 𝑒 : Φ

𝑑, 𝜌 ⊢ adds 𝑝 ⇒ 𝑒 : Φ
D:23

Figure 13: Dependency Analysis

Most of the points 3 and 4 are guaranteed by the dependency

analysis of the two sublanguages. The only missing part is checking

that the classes and interface subtyping relation hold during the

dependency analysis of the functional sublanguage. This part can be

ensured by extending the rules in Figure 13 to include the subtyping

relation as it is already done in the dependency analysis of the

object-oriented sublanguage.

Syntactical and Transformational Considerations. On a more syn-

tactic level, we point out that we require only to extend the current

implementation of ABS with the ability to label case-expressions.

Furthermore, the DOP operations are analogous for both sublan-

guages, meaning that the integration of variant generation would

be purely on (named) subtrees in the AST and must not introduce

new concepts beyond the ability to refer to other kinds of sub-ASTs.

8 RELATEDWORK
The notions of type-safety and type-uniformity for Delta-F

2
ABS,

given in Sect. 5, are inspired by analogous notions for DOP of SPLs

of Java-like programs [2], which in turn are inspired by analogous

notions for FOP of SPLs of Java-like programs [22]. Also the as-

sociated family-based analysis for Delta-F
2
ABS, given in Sect. 6,

are inspired by corresponding family-based analysis for DOP of

SPLs of Java-like programs [7, 8] and for FOP of SPLs of Java-like

programs [10, 22]. However, the development of the case study

illustrated in Sect. 2 required to devise a way to specify deltas on

function definitions that are more fine-grained than the deltas on

class definitions considered in the mentioned works on FOP/DOP.

Namely, to define and analyze the modifiesCase operation – a delta-

operation that works synergistically with the delta-operations on

on ADTs by allowing developers to modify any occurrence of a

case-expression in the body of a function.

The Variational Lambda Calculus (VLC) [3, 4] is a conservative

extension of the implicitly typed 𝜆-calculus with constructs for

introducing and organizing static variability in 𝜆-calculus expres-

sions. The VLC is inspired by the more abstract Choice Calculus [12],

which (like the VLC) is a fundamental representation of software

variation designed to serve as a foundation for theoretical research

in the field (indeed, as pointed out in [4], VLC can be understood

as the instantiation to 𝜆-calculus of the Choice Calculus). In [3, 4]

a type assignment system for VLC is defined by introducing the

notion of variational types (which lift variations from 𝜆-calculus

expressions to types), and a variational type inference algorithm

that is proved correct, complete and most general. Namely, the algo-

rithm (which is an extension of the algorithmW for 𝜆-calculus [6])
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takes a VLC expression 𝑒 and returns a variational type. A success-

fully inferred variational type indicates that all variants of the 𝑒 are

type correct, and the type of each variant 𝑣 of 𝑒 can be obtained

by applying to the variational type of 𝑒 the same configuration

choices applied to 𝑒 for obtaining 𝑣 . The paper [4] also briefly out-

lines with a few examples how to add to VLC sum types (in the

formulation presented in [18]), which are the basis for ADTs. The

main differences between Delta-F
2
ABS and VLC are as follows: (1)

VLC expresses variability by an annotative approach, while Delta-

F
2
ABS considers DOP, which is a transformational approach (see,

e.g., [20, 23] for a classification of SPLs implementation approaches);

(2) VLC variants are implicitly typed 𝜆-calculus expressions, while

Delta-F
2
ABS variants are expressed in F

2
ABS, which can be un-

derstood as an explicitly typed 𝜆-calculus with function definitions

and ADT definitions; and (3) VLC has been designed looking at

theoretical research [3, 4], while (although aimed at providing a

rigorous foundation) Delta-F
2
ABS has been designed looking at

practical application in industrial modeling scenarios.

Lambda VL [21] is a lambda calculus extended to supportmultiple

versions in one program and equipped with proper notion of type

safety. As pointed out in [21], the DOP approach is complementary

to the line of research that led to the development of Lambda VL,

which aims to enable programmers to more freely combine and

control programs of different versions in a single code.

9 CONCLUSION AND FUTUREWORK
We have proposed and formalized DOP for SPLs of functional pro-

gramming with ADTs, together with family-based analyses to check

whether an SPL satisfies certain well-formedness and conditions

and whether all variants can be generated and are well-typed pro-

grams. Although the proposed techniques apply to higher-order

functional languages in general (cf. footnote 3 in Sect. 3), our pre-

sentation is tailored to the functional sublanguage of the multi-

paradigm modeling language ABS, which already supports DOP

for its class-based object oriented sublanguage. In future work, we

would like to extend our formalization to cover useless-operation

absence analysis, to merge it with the existing formalization of DOP

for the object-oriented sublanguage of ABS [7], to implement it,

and to integrate it into the ABS toolchain (cf. Sect. 7).
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