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Abstract.

This paper presents FedHP, an algorithm that amalgamates federated
learning, hyperspherical geometries, and prototype learning. Federated
Learning (FL) has garnered attention as a privacy-preserving method for
constructing robust models across distributed datasets. Traditionally, FL
involves exchanging model parameters to uphold data privacy; however,
in scenarios with costly data communication, exchanging large neural net-
work models becomes impractical. In such instances, prototype learning
provides a feasible solution by necessitating the exchange of a few class
prototypes instead of entire deep learning models. Motivated by these
considerations, our approach leverages recent advancements in prototype
learning, particularly the benefits offered by non-Euclidean geometries.
Alongside introducing FedHP, we provide empirical evidence demonstrat-
ing its comparable performance to other state-of-the-art approaches while
significantly reducing communication costs.

1 Introduction

Federated Learning (FL) [1] is a revolutionary paradigm in distributed machine
learning, founded on the principle of sharing models rather than raw data. In
this framework, multiple parties with aligned objectives aim to leverage machine
learning techniques to address specific tasks. The approach is motivated by the
fact that machine learning approaches in general and deep learning models in
particular often demand vast amounts of data to achieve robust generalization
and good performance. Collaborating with other parties enables access to larger
datasets, potentially enhancing outcomes significantly. However, concerns re-
garding data privacy hinder direct data sharing.

FL solves this dilemma by facilitating collaboration among parties while safe-
guarding data privacy. In its most basic form [1], each participant, or “client”,
in a federation trains a model locally. Subsequently, they share their trained
model with a trusted central server. This server aggregates the received models
into a global model and disseminates it back to the clients. This iterative process
continues until convergence of the models is achieved.

Personalized Federated Learning (PFL) [2] emerges as one of the most prac-
tical and promising scenarios within FL. In PFL, clients prioritize improving the
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Fig. 1: The figure shows the main components of FedHP. On the left we empha-
size the importance of computing distances from the prototypes which allow the
inference of class probabilities. In the middle, we show that the regularization
term is based on the cosine distance between anchor and local prototypes. On
the right image we represent the aggregation of the prototypes on the server.

performance of their local models over attaining a global model with broad gen-
eralization capabilities. Notably, clients within the federation may exhibit highly
diverse data distributions, reflecting the real-world heterogeneity encountered in
many applications. A recent promising PFL approach [3] is based on Prototype
Learning (PL), which showed to achieve comparable results to state-of-the-art
approaches while requiring a fraction of communication resources.

In modern deep learning based prototype learning approaches the prototypes
are built in an embedding space learnt by a deep learning model [4]. One main
challenge when this approach is used in FL systems is about the alignment of the
features. In fact, local distributions might bring to very different representations
in the embedding space, making the aggregation of the models unreliable. To
overcome this problem, some methods have proposed regularization terms in
order to obtain alignment among the representations. For example FedProto [5]
leverages a regularization term that seeks to align local and global prototypes.
Dai et al. [6] employ a specific aggregation rule in order to inject personalized
contributions in the global model. However, this method shares both the model
and the prototypes, thus losing some of the attractive properties of prototype
federated learning systems.

Here, we introduce FedHP, an approach that learns local prototypes and
avoids the local drift leveraging ideas firstly introduced by Hyperspherical Pro-
totypical networks [7]. Our contribution with this work is threefold: (i) we pro-
pose an efficient method to learn the prototypes positions alongside the training
of the embedding model, which allows the embedding and the prototypes to be
mutually optimized to work well together; (ii) we propose a regularization term
based on hyperspherical prototypical networks [7] that aims at dividing the space
in a uniform way, and (iii) we provide empirical evidence showing that FedHP
is not demanding in terms of communication costs, it is competitive with non-
prototype based approaches and easily outperforms state-of-the-art prototype
techniques.
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2 Method

Let us assume to be given a dataset X = {(xi, yi)}, with xi taking values in
a sample space X , yi ∈ C = {1 . . . C}, and |X| = N . To describe FedHP,
let us start by noticing that in PL, the prototypes are usually defined as the
average of the representations belonging to a certain class [3]. This choice is very
common also in federated learning approaches using prototype learning [5, 6],
with the twist that the computation of prototypes is weighted by the number
of examples for each class present in each client. In our approach, following
[4, 8], we define the prototypes as parameters of the neural network. This choice
is computationally efficient and avoids computing the per-class average of all
examples at every batch. Specifically, a backbone network f(·, θ) : X → Rd is
augmented with parameters Π = {πj : j ∈ C} representing the prototypes, with
πj ∈ Rd. The local objective that each client minimizes is:

argmin
θ,Π

L(θ,Π;λ),

i.e., each client searches for the set of parameters θ and Π that minimize the
regularized loss L over the training set X:

L(θ,Π;λ) = LD(θ,Π) + λLH(Π), (1)

where λ ≥ 0 is an hyperparameter of the method. The first term LD is a distance
based cross-entropy loss [4]:

LD(θ,Π) =
1

N

∑
(xi,yi)∈X

− log
e−d(zi,πyi

)∑
j∈C e

−d(zi,πj)
, (2)

where zi = f(xi; θ) ∈ Rd, f is the output of the backbone network and d(·, ·) is
the euclidean distance (see also Figure 1, left diagram).

In FL scenarios, the main issue with prototype learning is the tendency
for prototypes to disalign, as each client learns their own prototype embed-
ding that can diverge over time. This becomes particularly difficult in strongly
heterogeneous scenarios, where the local distribution differs consistently. To
overcome this problem, our method leverages techniques to spread prototypes
uniformly [7]. In particular, we initialize the prototypes to be uniform on the
hypersphere S = {x ∈ Rd : ∥x∥2 = 1} by minimizing the Uniform loss LU [7].
Specifically, we search for prototype parameters Π that minimize:

LU (Π) =
1

C

∑
i∈C

max
j∈C

Mij , M = PP⊤ − 2I, s.t. ∀i ∥Pi∥ = 1, (3)

where Pi,· = πi is a matrix containing the current set of hyperspherical pro-
totypes, I denotes the identity matrix and M contains the pairwise cosine sim-
ilarities between prototypes. To summarize: the prototypes are initialized on
the server by minimizing (3) and then broadcasted to the clients. When the

71

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



initialization phase ends, the initial prototypes are fixed as anchor points π̄ in
the embedding space, and they are then used to avoid local driftings of the
prototypes by means of the LH term in the main loss function L:

LH(Π) =
∑
j∈C

1− π̄j · πj

∥π̄j∥∥πj∥
(4)

i.e., the sum, for all classes j, of the cosine distance between the anchor proto-
types π̄j and local prototypes πj (see Figure 1, middle diagram). It is worth
noting that, thanks to this loss function, we encourage the prototypes to keep a
uniform partition of the space.

In FedHP, at each local training step, the prototypes are updated to min-
imize (1) and are then sent to the server. Upon receiving the prototypes, the
server aggregates them, weighting their contribution according to the number of
examples of each class that each client owns. The result is a new global set of
prototypes {πj

g}Cj=1, with:

πj
g =

1

Kt

Kt∑
i=1

N j
i

Ni
πj

i (5)

where, Kt is the number of clients selected at round t, N j
i is the subset of

examples in client i labelled as j, Ni is total number of examples in client i, and
πj

i is the j-th local prototype in client i (see Figure 1, right diagram). The global
set of prototypes are then sent to each client and each client substitutes its local
prototypes with the received ones. This results in a very low communication
overhead, since the only parameters to be shared are the prototypes and not the
model. Learning the prototypes through our framework, we obtain a smooth
alignment of the prototypes and a fine partition of the space, avoiding prototypes
drifting.

3 Experiments and Discussion

We compare FedHP with three other methods. We selected FedAvg to provide
a baseline comparison with methods that share the full model at each iteration.
FedProto [5] is the current state-of-the-art method among federated learning
methods that shares only the prototypes. FedNH [6] is an hybrid method that
shares both the prototypes and the model at each iteration.

We simulate non-iid scenarios in two ways: with a label skew governed by
a Dirichlet distribution [9] with parameter β ∈ {0.3, 1.0}. We test the four
algorithms on MNIST, Cifar10 and SVHN. We do not perform preprocessing on
the datasets with the exception of feature normalization. In the case of MNIST,
we tested a simple convolutional network [1], for Cifar10 and SVHN we employed
the network from [6]. We experiment with 100 clients and a participation rate of
10%. All the algorithms ran for 150 rounds in the case of MNIST and Cifar10.
On SVHN, we ran the algorithms for 300 rounds. At each round, we let the
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Table 1: Percentage of test accuracy on 3 datasets for our proposed method and
the competing approaches. The results displayed are the mean over 5 runs with
their standard deviation. We put in bold the best results between the approaches
sharing only the prototypes and underlined the overall best.

MNIST

IID Dir(0.3) Dir(1.0)

FedAvg 97.75 ± 0.25 97.61 ± 0.21 97.99 ± 0.07

FedNH 84.30 ± 21.10 96.42 ± 3.45 90.16 ± 11.08

FedProto 84.40 ± 0.67 85.58 ± 1.25 85.52 ± 0.68

FedHP 96.04 ± 0.14 96.82 ± 0.21 96.53 ± 0.10

Cifar10

FedAvg 60.27 ± 0.74 56.11 ± 1.84 60.43 ± 1.05

FedNH 52.17 ± 1.61 65.65 ± 1.32 58.39 ± 1.32

FedProto 35.42 ± 0.47 49.15 ± 0.94 41.16 ± 0.98

FedHP 45.57 ± 0.65 62.19 ± 0.86 53.00 ± 0.98

SVHN

FedAvg 90.27 ± 0.10 88.33 ± 0.72 89.95 ± 0.95

FedNH 86.33 ± 0.86 89.89 ± 1.25 86.32 ± 0.43

FedProto 59.72 ± 0.64 64.70 ± 1.81 61.53 ± 0.88

FedHP 82.11 ± 0.30 73.50 ± 2.72 80.64 ± 1.36

local minimizers to run for 5 local epochs, using SGD, a learning rate of 0.01, a
momentum of 0.9, and weight decay set to 10−4 for parameters θ and Adam with
learning rate 0.005 for the prototypes Π. Each client keeps 20% of their dataset
as local test set. During the last round, the global model is broadcast to all the
clients, which perform one last fit on their local data. This is standard practice
in a PFL scenario. The parameter λ in (1) is set to 0.1. The latent embedding
dimension for our method and FedProto is 1024 for MNIST and 1600 for Cifar10
and SVHN. It is worth mentioning that FedNH and FedHP only use the backbone
network, while FedAvg and FedProto rely on the complete networks (backbone
+ head).

Based only on the quantity of information shared at each iteration, we would
assume that FedNH and FedAvg be dominant in our experiments and this is
indeed the case in many situations. However, as shown in Table 1, FedHP
largely outperforms FedProto and is often only slightly worse (when not better)
than the other two methods. In addition, the communication overhead makes
methods like FedAvg and FedNH impractical in scenarios where communication
needs to be limited to the bare minimum such as in some edge devices and
IoT/embedded systems. Sharing only the prototypes effectively overcomes this
challenge. Notably, at each round, FedAvg clients share 582,026 parameters
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for MNIST and 725,952 for Cifar10 and SVHN, whereas FedNH incurs an even
higher cost due to exchanging both the model and the prototypes. On the
contrary, our approach, as well as FedProto, drastically reduces communication
costs to 10,240 parameters for MNIST and 16,000 for Cifar10 and SVHN.

Leveraging the capabilities of Hyperspherical Prototypical Networks, we cap-
italize on the continual refinement of prototypes. Specifically, this strategy en-
ables the integration of hyperspherical regularization and batch-level prototype
updates, resulting in higher performance and faster training. These outcomes
also highlights the pivotal role of a uniform spatial separation through hyper-
spherical regularization.

4 Conclusions

In this paper, we have introduced FedHP a new method that leverages the effec-
tiveness of Prototype Learning in a Federated Learning scenario. FedHP employs
recent techniques from the Prototype Learning research, defining the prototypes
as parameters of the network and using a regularization term inspired by Hyper-
spherical Prototypical Networks. FedHP showed promising results outperform-
ing the state-of-the-art competitor which shares only prototypes, and remaining
competitive with approaches sharing the whole model.

In the future, we will investigate how to improve performances of FedHP
by augmenting the quantity of information shared, while still avoiding to share
the complete model and without compromising the privacy of the technique. A
possible direction could be extending FedHP following the sharing scheme of
LG-FedAvg[10] which only shares the head of the network.
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