
28 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Decentralized Data Sharing Framework based on a Key-Redistribution method

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

CEUR-WS

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1950651 since 2024-01-07T15:15:01Z

A Decentralized Data Sharing Framework based on a
Key-Redistribution method⋆

Fadi Barbàra1,*,†, Mirko Zichichi2,†, Stefano Ferretti3 and Claudio Schifanella1

1Department of Computer Science, University of Turin, Turin, Italy Via Pessinetto 12, 10149, Turin, Italy
2Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
4Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy

Abstract
One of the problems of cloud-based data services is the trust involved in its management, since service
managers can easily access the data on their servers. The problem is exacerbated in decentralized
data services, where managers and operators are pseudo-anonymous by default, to the point where
these systems are not compliant with data protection regulations such as GDPR. These problems have
historically been dealt with data encryption, but this inhibits data sharing. To enable data-sharing for a
encrypted decentralized file storage, we propose Key-Redistribution Proxy Re-Encryption (KeRePRE).
KeRePRE is a decentralized and encrypted data-service where managers in the form of authorization
servers are part of a threshold proxy re-encryption scheme. In particular, to solve the problem of
malicious nodes, we extend the work in Umbral with a system based on a key-redistribution mechanism
to add and remove managers in a decentralized and trustless way, and we provide a proof of concept
implementation. Data access control is based on an access control list stored on a DLT which can be
read-only accessed by the authorization servers.

Keywords
Proxy re-encryption, Threshold scheme, GDPR, Data Sharing, Decentralized File System

1. Introduction

Data have become valuable assets for individuals, businesses, and governments. The abundance
of data generated by various sources, such as social media, sensors, and mobile devices, has
led to the rise of big data and data-driven decision-making. However, the sheer volume and
complexity of data have also created significant challenges in managing, processing, analyzing,
and, most importantly, protecting them. This last point is where the role of a data intermediator
becomes crucial. A data intermediator acts as a mediator between data holders and recipients,
helping to manage the flow of data and ensure its quality and security. Data intermediation
can be approached taking into consideration the (not so) recent surge of decentralized systems,
such as Distributed Ledger Technologies (DLTs). These pave the way toward an intermediation

5th Distributed Ledger Technology Workshop, May 25-26, 2023, Bologna, Italy
*Corresponding author.
†
These authors contributed equally.
$ fadi.barbara@unito.it (F. Barbàra); mirko.zichichi@upm.me (M. Zichichi); stefano.ferretti@uniurb.it (S. Ferretti);
claudio.schifanella@unito.it (C. Schifanella)
� https://fadibarbara.it (F. Barbàra); mirkozichichi.me (M. Zichichi); http://conceptbase.sourceforge.net/mjf/
(S. Ferretti); http://conceptbase.sourceforge.net/mjf/ (C. Schifanella)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:fadi.barbara@unito.it
mailto:mirko.zichichi@upm.me
mailto:stefano.ferretti@uniurb.it
mailto:claudio.schifanella@unito.it
https://fadibarbara.it
mirkozichichi.me
http://conceptbase.sourceforge.net/mjf/
http://conceptbase.sourceforge.net/mjf/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

where data recipients and processors are constrained to act exactly as the holder instructed,
e.g., through smart contracts[1]. Decentralization, however, inevitably necessitates some forms
of cryptography to render decentralized systems secure and protect data while sharing it.
Comprehensive security is vital, in fact, if a user is put at the center of an environment where
no one can be trusted, e.g., in a trustless or semi-trusted decentralized system. Different
approaches involve the use of (𝑡, 𝑛)-threshold cryptosystems in such semi-trusted decentralized
environments [2, 3, 4]. These approaches involve multiple parties performing a cryptographic
operation together, e.g., using a "share" of a secret in a secret-sharing scheme. An example is
the Threshold Proxy Re-Encryption (TPRE) scheme that enables a data holder to encrypt some
data and delegate some data intermediators (i.e., proxies) to re-encrypt the encryption key in
favor of a data receiver [3, 4].

Most threshold cryptosystems, however, assume data intermediators will take good care of
their secret share. In this paper, we argue that in a “real world” scenario, a key redistribution
mechanism is needed to deal with parties that lose their share, are corrupted, or are faulty. By
designing and implementing such a mechanism in a semi-trusted decentralized environment, it
is possible to perform key rotation, addition, or deletion [5] and cope with situations where
one/more keys get leaked/compromised, or some parties go rogue, or even when new parties
need to get added and old parties get dismissed. Therefore we create a Key-Redistribution Proxy
Re-Encryption (KeRePRE) scheme.

Furthermore, we place the employment of this mechanism in a specific strand of literature that
focuses on data access control managed in a decentralized way through advanced cryptographic
techniques. In particular, the works presented in the literature are often concerned with the
types of data that are personal [2, 6, 7, 1]. The reason for this is that personal data almost
always require strong data protection and security mechanisms, because they identify or render
identifiable a data subject. Indeed, dedicated decentralized technologies can help companies
comply with data protection regulations, such as the General Data Protection Regulation (GDPR)
[8], and individuals exercise their rights. Our second contribution is, therefore, the design of
a Personal Data Store (PDS) that allows data subjects to decide how/where to store the data
and handle data encryption and key distribution using a TPRE with the key redistribution
mechanism. Two main components are involved: Decentralized File Storage (DFS) and a DLT.
The DFS embodies the data storage: it contains the data to encrypt or decrypt. DLTs allow for
avoiding all the typical drawbacks of server-based approaches, such as censorship or single-
point-of-failure, and offer features such as data traceability, verifiability, and, most importantly,
smart contracts execution.

Our Contribution In summary our contributions are:

• We extend the work of Nunez in [4] proposing KeRePRE: a threshold based proxy re-
encryption scheme with support of key-redistribution.

• We provide an implementation of its feasibility1 tailored to the Umbral system, which
can be independently used.

• We show how it is possible to use KeRePRE to create a decentralized PDS linked to a DLT
to manage the access to personal data in a GDPR compliant way

1The implementation can be found at https://github.com/disnocen/umbral-rs

https://github.com/disnocen/umbral-rs

Outline The remainder of this paper is so composed. In Section 2 we provide an overview of
threshold proxy re-encryption schemes and on personal data sharing mechanisms that involve
a DLT. In Section 3.1 we introduce the actors, the architecture model of the system and the
other building blocks that compose the KeRePRE system. In Section 4 we explain how key
redistribution works within the Umbral system. In Section 5 we show how KeRePRE works and
we analyze its security and data protection improvements in Section 6. Finally we conclude in 7

2. Related Works

2.1. Threshold Proxy Re-Encryption in DLTs

The first application of TPRE into a DLT environment was performed by the authors in [3].
They apply TPRE to the access permission mechanism of a consortium DLT. Authors in [9], on
the other hand, propose a decentralized network for the management of a service that provides
encryption and cryptographic access control. Their TPRE reference software is Umbral [4], that
is the base implementation that we are going to refer throughout this work. The weak point
that we argue is present in Umbral is the lack of a key redistribution mechanism.

More recently, authors in [2] proposed an architecture that converges TPRE and DLT con-
sensus algorithm for the creation of a decentralized key management system in the Internet of
Things. This system too lacks a key redistribution mechanism. [10] propose a GDPR-compliant
data storage and sharing framework using blockchain for smart healthcare systems where a
PRE network is used to share the encrypted data. Also in their case, there is no use of key redis-
tribution mechanisms. Furthermore, their PRE network solution does not involve a threshold
scheme and can lead to single-point-of-failures.

2.2. DLT and personal data sharing

Various works in the literature aim to propose DLTs-based architectures for data management
to build novel smart services and to promote social good [11, 12]. These solutions usually
store data outside the ledger, i.e., off-chain, and involve the DLT to provide transparency in the
process of access to data while simultaneously enabling users to control their data. Systems
based on DLTs and smart contracts can be leveraged in access control mechanisms to solve
problems related to centralization and privacy leakage [13] and to store, share and transmit
data securely. Many researchers have attempted to envision data management systems where
the user retains control over data, and in some cases, GDPR compliance is taken into account.
[6] provide a system where users have control over their personal data collection and where
transaction history is recorded in a blockchain for data provenance. Their approach is GDPR
compliant, but there is no specific discussion around their cryptographic solution. [14] propose
an architecture based on distributed technologies to exchange health data, while the work of
[7] enables healthcare data exchange through the exploitation of smart contracts for consent.
Users keep a digital copy of their medical data in a personal data account that can be hosted on
any cloud-based data management service. Users customize the dynamic consent preferences
through smart contracts according to the type of data requested, by whom, and for what purpose.
DeepLinQ [15] is a multi-blockchain architecture similar to our proposal. It aims to support

privacy-preserving data sharing in the healthcare sector through granular access control and
smart contracts. Finally, authors in [16] present a PDS that allows users to collect, store and
give third parties fine-grained access to their data using a Secret Sharing scheme. However
their approach is not GDPR compliant as personal data are kept on-chain.

3. Background

In this section we first identify the actors involved in the system we propose, and we will give
an overview of the system’s architectural components (Section 3.1). We use the introduced
terminology to explain how the building blocks of KeRePRE work in Sections 3.2 to 3.4.

3.1. Actors and architectural components

3.1.1. Actors

We define different actors that have one or more roles in the system. In detail, we identify the
following actors:

• Data subject (DS) - The natural person that uses a personal device that in turn generates
personal data.

• Data holder (DH) - The legal or natural person who has the right or obligation or the
ability to make available specific data (both personal and non).

• Data intermediary (DI) - The legal or natural person who mediates between those hold-
ers who wish to make their data available and data recipients. We have two specializations
of data intermediary:

– DFS provider (SP) - The one that provides the access to the DFS. This actor provides
functionalities attributed of storing and serving (encrypted) personal data.

– Authorization Server (AS) - The one that provides the access to the DLT to the
authorization service, i.e., takes part to the cryptosystem.

• Data recipient (DR) - The legal or natural person to whom the data holder makes data
available.

Since the names of the actors involved in KeRePRE are different form the usual names due
to the specific use case involved, we provide a comparison of the names for easy access in
Appendix A.

3.1.2. Architecture Model

In the following, we use a model to refer to the elements managed in the system.

• The data holder actor controls a set of personal data that have not been encrypted, i.e.,
𝒟 = {𝑝𝑑𝑙 | 1 ≤ 𝑙 ≤ 𝑜} where 𝑜 is the amount of pieces of data DH has.

• Furthermore, 𝒦 = {𝑘𝑝𝑑𝑙 | Enc𝑘𝑝𝑑𝑙 (𝑝𝑑𝑙), 1 ≤ 𝑙 ≤ 𝑜} is the data holder’s set of keys used
to encrypt personal data and ℰ = {𝑒𝑝𝑑𝑙 | 𝑒𝑝𝑑𝑙 = Enc𝑘𝑝𝑑𝑙 (𝑝𝑑𝑙), 1 ≤ 𝑙 ≤ 𝑜} is the set of
encrypted personal data.

• Data holders and authorization servers control a set of capsules 𝒞 = {𝛾𝑘𝑝𝑑𝑙 | 𝛾𝑘𝑝𝑑𝑙 =
Enc𝑝𝑘𝐷𝐻

(𝑘𝑝𝑑𝑙), 1 ≤ 𝑙 ≤ 𝑜}, where 𝑝𝑘𝐷𝐻 is the public key of the data holder (see
Definition 1, that contain a key used to encrypt a piece of personal data.

• We consider that all DFS providers 𝑆𝑃 store the data holders’ set of encrypted personal
data 𝑒𝑑𝑝 ∈ ℰ and the associated set of decentralized identifiers used to identify the
𝑒𝑝𝑑. In this case the decentralized identifier is equal to an hash pointer obtained by
hashing the 𝑒𝑝𝑑, i.e., 𝐻𝑃 = {ℎ𝑝𝑒𝑝𝑑𝑙 | ℎ𝑝𝑒𝑝𝑑𝑙 = Hash(𝑒𝑝𝑑𝑙), 1 ≤ 𝑙 ≤ 𝑜} where Hash is a
predetermined hash function (e.g., in the IPFS DFS these hash pointers are CIDs). Thus
ℎ𝑝𝑒𝑝𝑑𝑥 is both the identifier of the 𝑒𝑝𝑑𝑥 datum in the DFS and the on-chain hash pointer,
i.e., that will be stored in the DLT.

3.2. Proxy re-encryption schemes

A well-known problem faced by data holders (DHs) in a decentralized PDS is the lack of direct
control over the outsourced data in ℰ [17, 18] which raises security concerns especially in
(pseudo) anonymous settings.

One of the most effective ways to deal with this issue is for the DH to encrypt the data before
uploading it to the PDS [19]. This naive solution, though, inhibits the delegation of access (i.e.
“sharing”) to a data receiver DR of a piece of data 𝑝𝑑𝑖, since the process requires DH to download,
re-encrypt 𝑝𝑑𝑖 for DR and re-upload 𝑝𝑑𝑖. To solve this issue Blaze et al. introduced the Proxy
Re-Encryption (PRE) scheme in [20]. A PRE is a semi-trusted proxy that transforms a cyphertext
encrypted for DH to a cyphertext encrypted for DR, without decrypting the cyphertext or
leaking the related plaintext. Specifically, with a PRE, DH can encrypt 𝑝𝑑𝑖 under its own public
key before uploading it to the PDS. After receiving the request of data sharing from DR, DH can
generate a proxy re-encryption key and send it to the PRE. The PRE is then able to re-encrypt
𝑝𝑑𝑖 into a cyphertext under the public key of DR.

In the following we adapt the definition 3.1 of [4] to the case of a PDS:

Definition 1. A Proxy Re-Encryption (PRE) scheme is a tuple of algorithms
(KeyGen,ReKeyGen,Enc,ReEnc,Dec):

• (𝑠𝑘𝐴, 𝑝𝑘𝐴)← KeyGen(1𝜆) On input security parameter 𝜆, the key generation algorithm
KeyGen outputs a pair of secret and public keys (𝑠𝑘𝐴, 𝑝𝑘𝐴) for user 𝐴.

• 𝑟𝑘𝐴→𝐵 ← ReKeyGen(𝑠𝑘𝐴, 𝑝𝑘𝐴, 𝑠𝑘𝐵, 𝑝𝑘𝐵) On input the pair2 of secret and public keys
(𝑠𝑘𝐴, 𝑝𝑘𝐴) for user 𝐴 and the pair of secret and public keys (𝑠𝑘𝐵, 𝑝𝑘𝐵) for user 𝐵 the
re-encryption key generation algorithm ReKeyGen outputs a re-encryption key 𝑟𝑘𝐴→𝐵 .

• 𝑐𝐴 ← Enc(𝑝𝑘𝐴, 𝑝𝑑) On input the public key 𝑝𝑘𝐴 and a piece of data 𝑝𝑑 ∈ 𝑃𝐷, the
encryption algorithm Enc outputs a cyphertext 𝑐𝐴 ∈ 𝒞

• 𝑐𝐵 ← ReEnc(𝑟𝑘𝐴→𝐵, 𝑐𝐴) On input the re-encryption key 𝑟𝑘𝐴→𝐵 and a cyphertext 𝑐𝐴, the
re-encryption algorithm ReEnc outputs a second cyphertext 𝑐𝐵 ∈ 𝒞 or the error symbol ⊥
indicating that 𝑐𝐴 is invalid.

2Note that this definition is not suitable for a data-sharing setting since both secrete keys are required. This is a
general definition: a more appropriate definition used in our setting will be given in Section 3.4

• 𝑝𝑑← Dec(𝑠𝑘𝐴, 𝑐𝐴) On input the secret key 𝑠𝑘𝐴 and a cyphertext 𝑐𝐴 ∈ 𝒞, the decryption
algorithm Dec outputs the piece of data 𝑝𝑑 or the error symbol ⊥ indicating that 𝑐𝐴 is
invalid.

From Definition 1 it is easy to see that a PRE is an extension of a public key encryption
scheme (PKE). Therefore a PRE must follow the security models of PKEs which presents an
interesting challenge. On the one hand PREs have to guarantee confidentiality and validity of
the cyphertexts as any PKE. On the other PREs have to allow re-encryption of cyphertexts. A
thorough overview of how different schemes deal with the challenge is presented by Nunez et
al. in [4].

3.3. Threshold cryptosystems

Intuitively a (𝑡, 𝑛)-threshold cryptosystem is a system involving multiple parties in a set 𝒫 =
{𝑃𝑖}𝑖∈ℐ , where ℐ is a set of indexes, that perform a cryptographic operation together. The
distinguishing property is that only some of these parties, at least a threshold 𝑡, are required in
order for the cryptosystem to be successful. In other words, at least 𝑡 parties out of 𝑛 have to be
honest and follow the cryptosystem protocol. Since generally a cryptosystem is used to give
access to some information, we say that Σ = (𝑡, 𝑛) is an access structure.

Algorithm 1 LsssPrep for a (𝑡, 𝑛) secret sharing
Require: ℐ : set of identities of parties, 𝑡: threshold, 𝑠: secret

1: 𝑛 = len ℐ
2: for 𝑖 = 1 . . . 𝑡− 1 do ◁ Initialize 𝑎𝑖 for 𝑖 = 0, . . . , 𝑡− 1
3: 𝑎𝑖 ←$ F
4: end for
5: 𝑎0 = 𝑠 ◁ 𝑞(0) = 𝑠
6: Initialize 𝑞(·) = 𝑎0 +

∑︀𝑡−1
𝑖=1 𝑎𝑖·𝑖 ◁ Polynomial initialization

7: for 𝑖 in ℐ do ◁ The values of ℐ must be numbers in the field F
8: Send (𝑖, 𝑞(𝑖)) to party 𝑖
9: end for

Two research strands involve threshold cryptosystems: threshold signing and secret sharing.
On the one hand, (𝑡, 𝑛)-threshold signing, considered to have been introduced by Desmedt in
1987 [21], is a process where 𝑡-of-𝑛 parties are involved into signing a message on behalf of
all 𝑛 participants. On the other hand, in (𝑡, 𝑛) secret sharing a secret 𝑠 is split into 𝑛 different
parts called shares (or fragments) such that 𝑡 of them are necessary to reconstruct the original 𝑠.
Among many secret sharing schemes, we focus on the Shamir Secret Sharing (SSS) one since it
is the one used in both Umbral and the redistribution mechanism our work is based on.

The scheme is based on polynomial interpolation over a field. In a field F, it is well known that
given 𝑡 points in the 2-dimensional plane {(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1 there is one and only one polynomial
𝑞(𝑥) of degree 𝑡− 1 such that 𝑞(𝑥𝑖) = 𝑦𝑖 for each 𝑖 = 1, . . . , 𝑡. Assume a secret number 𝑠. As
mentioned, this secret can be split and shared to 𝑛 parties in such a way that 𝑡 of those shares
are needed to reconstruct 𝑠: see LsssPrep in Algorithm 1.

Since the shares are distinct points on a plane for polynomial 𝑞(·), the SSS scheme uses
Lagrange Polynomials applied to the shares, as presented in Algorithm 2, to reconstruct the
secret.

Algorithm 2 LsssRec for a (𝑡, 𝑛) secret sharing
Require: ℐ : set of identities of parties, 𝑡: threshold

1: 𝑛 = len ℐ
2: Wait for 𝑡 shares 𝑖𝑗1 , 𝑞(𝑖𝑗1) from parties 𝑖𝑗1 , . . . , 𝑖𝑗𝑡 ∈ ℐ
3: 𝐿 = 0
4: for 𝑘 = 1 . . . 𝑡 do
5: 𝜆𝑘 =

∏︀𝑡
𝑤=1,𝑤 ̸=𝑘

𝑖𝑗𝑤
𝑖𝑗𝑤−𝑖𝑗𝑘

◁ Create a Lagrange basis

6: 𝐿 = 𝐿+ 𝜆𝑘𝑞(𝑖𝑗𝑘) ◁ Use Lagrange polinomials to create 𝑞(0) = 𝑠
7: end for
8: return 𝐿 ◁ 𝐿 = 𝑞(0) = 𝑠

3.4. Threshold PRE

One of the goals of this paper is to prove that it is possible to manage decentralized PDSs in a
way that is dynamically secure against malicious nodes. By dynamically secure we mean that
the PDS is able to maintain the properties insured during its instantiation even if a part of the
operator nodes becomes malicious in the future (e.g. it get compromised by an external actor)
and/or if new nodes join the managerial part of the PDS.

For these reasons we develop from the work of Nunez [4], which is called Umbral. Umbral is
a threshold PRE which uses a Key Encapsulation Mechanism (KEM) to obtain a Data Encryption
Method (DEM). More explicitly, in Umbral, each file 𝑝𝑑 ∈ 𝒟 from a DH is encrypted with a
symmetric key 𝐾 ∈ 𝒦. The encrypted file is a couple (Enc(𝑝𝑑,𝐾),Enc𝑝𝑘𝐷𝐻

(𝐾)). The Umbral
threshold PRE leverages the ReKeyGen procedure to output multiple shares of the re-encryption
key via a SSS scheme. These share are called fragments or more concisely 𝑘𝐹𝑟𝑎𝑔, in [4], and
are distributed to the node operators as part of the ReKeyGen routine.

More formally a (𝑡, 𝑛) instance of the threshold PRE Umbral for data sharing is different from
an ordinary PRE (see Section 3.2) in the following algorithms:

• 𝑘𝐹𝑟𝑎𝑔1, . . . , 𝑘𝐹𝑟𝑎𝑔𝑛 ← ReKeyGen(𝑠𝑘𝐴, 𝑝𝑘𝐵, 𝑛, 𝑡): On input the secret key 𝑠𝑘𝐴 of user
A (generally the DH), the public key 𝑝𝑘𝐵 of user B (generally the DR), a number of shares
𝑛 and a threshold 𝑡, the re-encryption key generation algorithm ReKeyGen computes the
re-encryption key 𝑟𝑘𝐴→𝐵 and then uses SSS scheme to share if in 𝑛 different 𝑘𝐹𝑟𝑎𝑔s,
where 𝑘𝐹𝑟𝑎𝑔𝑖 = (𝑖𝑑𝑖, 𝑟𝑘𝑖, 𝑜𝑝𝑡), with 𝑖𝑑𝑖 the identity of node 𝑖, 𝑟𝑘𝑖 its share of the
re-encryption key and 𝑜𝑝𝑡 optional arguments depending on the implementation.

Moreover, the KEM part of Umbral is so composed:

• (𝐾, 𝛾𝐾) ← Encapsulate(𝑝𝑘𝐴): On input the public key 𝑝𝑘𝐴 of user 𝐴, the algorithm
Encapsulate outputs a symmetric key 𝐾 ∈ 𝒦 used to encrypt the data and a capsule
𝛾𝐾 = Enc(𝐾).

• 𝑐𝐹𝑟𝑎𝑔𝑖 ← ReEncapsulate(𝑘𝐹𝑟𝑎𝑔𝑖, 𝛾𝐾): On input a key share 𝑘𝐹𝑟𝑎𝑔𝑖 and a capsule
𝛾𝐾 , algorithm ReEncapsulate outputs a share (or fragment) of the capsule 𝑐𝐹𝑟𝑎𝑔𝑖 of the
capsule 𝛾𝐾 .

• 𝐾 ← DecapsulateFrags(𝑠𝑘𝐵, 𝑝𝑘𝐴, {𝑐𝐹𝑟𝑎𝑔}>𝑡
𝑖=1): On input the secret key 𝑠𝑘𝐵 of user 𝐵,

the public key 𝑝𝑘𝐴 of user 𝐴 and at least 𝑡 𝑐𝐹𝑟𝑎𝑔s, algorithm DecapsulateFrags outputs
𝐾 (note that it is the same 𝐾 of algorithm Encapsulate).

Figure 1 highlights the flow of the procedures which we explain in details in Section 5.1

3.5. Key redistribution mechanisms

Most threshold cryptosystems, and particularly secret sharing schemes, assume parties will
take good care of their share. In fact, if some party 𝑃𝑖 loses a share, it is generally said that 𝑃𝑖

is corrupted or faulty. No further analysis on 𝑃𝑖 is done, since from the point of view of the
threshold cryptosystem no single party is important as long as the majority or minority of them
is still honest, depending on the access structure of the cryptosystem.

On the other hand, real world deployments of these systems have to deal with such problems.
For example in Proactive Secret Sharing schemes [22, 23] the participants refresh (or rotate)
their key shares periodically in order to avoid these kinds of problems or at least mitigating
them. The process known as key-refresh or key-rotation.

However, in proactive secret sharing schemes, the access structure is not changed: the set
of parties required for threshold secret sharing are the same before and after the key-refresh.
Therefore the only way to extend or shrink the access structure once it is in place is by performing
a new distribution of the shares. This is costly, since it requires DH to recompute all the shares.
Consequently, new approaches have been proposed in the literature to deal with this issue.

Among those proposals, one that is beneficial for the goal of this paper is the process of
redistribution of shares. Unlike key refreshing schemes, a redistribution of shares is performed
by the AS, supports the change of the access structure and requires no input by the DH (beside
some authorization if needed by the general system).

In this proposal and proof of concept3, we use redistribution method as presented by Desmedt
et al. in [21]. The method leverages a SSS scheme once more and treats each share as a secret
on its own. More formally, given a (𝑡, 𝑛)-SSS scheme with shares 𝑠1, . . . , 𝑠𝑛:

• 𝑠′1, . . . , 𝑠
′
𝑚 ← DesRedistr(𝑠1, . . . , 𝑠𝑛): On input 𝑡 ≤ 𝑘 ≤ 𝑛 shares from a (𝑡, 𝑛)-SSS for

secret 𝑠, algorithm DesRedistr outputs 𝑚 secret shares 𝑠′1, . . . , 𝑠
′
𝑚 such that 𝑘 of them

are needed to reconstruct 𝑠.

In practice DesRedistr transforms a (𝑡, 𝑛)-SSS into a (𝑘,𝑚)-SSS.
It is easy to see that if 𝑘 = 𝑡 and 𝑚 > 𝑛 then DesRedistr adds a new party to the access

structure, while if 𝑡 < 𝑚 < 𝑛 then DesRedistr removes party from the access structure. We will
see in Section 6.1 the constraints on 𝑘 and 𝑚 related on 𝑡 and 𝑛. A working example tailored to
our purposes is presented in Algorithm 3.

3A working implementation of the key redistribution for KeRePRE can be found at https://github.com/disnocen/
umbral-rs/blob/master/src/internal/keyredistrib.rs

https://github.com/disnocen/umbral-rs/blob/master/src/internal/keyredistrib.rs
https://github.com/disnocen/umbral-rs/blob/master/src/internal/keyredistrib.rs

4. Key redistribution within the Umbral system

Since Umbral does not use a key redistribution mechanism, then it is impossible to perform
key rotation, addition or deletion. Consequently, it is impossible for us to apply Umbral as
is. In this section we show how we extend the Umbral functions to create a real-world ready
threshold PRE and in Section 5 we describe how the system can be used in a decentralized PDS
to perform actions equivalent to key deletion, and key addition, beside simple refresh. We use
the terminology as explained in Section 3.1.

We assume that either DH or DR triggers a key redistribution. Note that this triggering may
be part of a notification system in the application that asks DH or DR if they want to act to
mitigate a potential threat (such as a share corruption in one of the operator nodes). We show a
representation of the dynamics of the extended system in Figure 1.

DH's Public
Key

Encapsulation

K

Capsule Re-Encapsulation

Re-Encryption
keyFragment

(kFrag)

Capsule Fragment (cFrag)

Decapsulate Frags K

DR's
Private Key

KEM + Refresh

The goal is to obtain the key K

Key/Capsule Refresh

Capsule Fragment (cFrag)

Capsule Fragment (cFrag)

Figure 1: The image represents the Umbral work flow with our key redistribution extension (in red).
Either DH or DR can trigger a key redistribution procedure. The nodes in the threshold proxy re-
encryption operate the 𝑘𝐹𝑟𝑎𝑔 and 𝑐𝐹𝑟𝑎𝑔 redistribution.

The key-redistribution mechanism in KeRePRE is split into two algorithms: the first algorithm
deals with the 𝑘𝐹𝑟𝑎𝑔s while the second deals with the 𝑐𝐹𝑟𝑎𝑔s. Here we deal with the 𝑘𝐹𝑟𝑎𝑔
redistribution. the 𝑐𝐹𝑟𝑎𝑔 update with the new share 𝑘𝐹𝑟𝑎𝑔′ is easier to understand and
less relevant for the comprehension of the whole system. the interested reader can find it in
Appendix B.

4.1. Kfrags redistribution

A 𝑘𝐹𝑟𝑎𝑔 redistribution is a procedure that transforms a 𝑘𝐹𝑟𝑎𝑔 into a 𝑘𝐹𝑟𝑎𝑔′. More formally:

• (𝑖𝑑, 𝑟𝑘′, 𝑜𝑝𝑡) ← kFragRedistr((𝑖𝑑, 𝑟𝑘, 𝑜𝑝𝑡)): On input a 𝑘𝐹𝑟𝑎𝑔, the kFragRedistr algo-
rithm outputs a new 𝑘𝐹𝑟𝑎𝑔 with the updated re-encryption key share.

In particular kFragRedistr focuses on the update of the 𝑟𝑘 component into a 𝑟𝑘′ component.
The complete kFragRedistr algorithm for a (𝑡, 𝑛) threshold cryptosystem performed by each
party 𝑃𝑖, 𝑖 = 1 . . . 𝑛 is presented in Algorithm 3.

To do it we use the Desmedt routine DesRedistr introduced in Section 3.5 (lines 7-14 of
Algorithm 3). Instead of passing the 𝑖𝑑 to the LsssPrep routine as done in Algorithm 1, we
pass the hashed id ℎ𝑖𝑑 instead: this change is done to maintain compatibility with the original

Algorithm 3 kFragRedistr for a (𝑡, 𝑛) threshold scheme

Require: 𝑘𝐹𝑟𝑎𝑔𝑖 = (𝑖𝑑𝑖, 𝑟𝑘𝑖, 𝑈
𝑟𝑘𝑖 ...), 𝐷, 𝑠𝑖𝑑

1: Get 𝑖𝑑𝑗 from each party 𝑃𝑗

2: for 𝑗 = 1 . . . 𝑛 do
3: if 𝑗 ̸= 𝑖 then
4: Compute ℎ𝑖𝑑𝑗 = 𝐻(𝐷, 𝑖𝑑𝑗)
5: end if
6: end for
7: {𝑠𝑖,𝑗}𝑛𝑗=1

𝑗 ̸=𝑖

← LsssPrep({ℎ𝑖𝑑𝑗}𝑛𝑗=1
𝑗 ̸=𝑖

, 𝑟𝑘𝑖)

8: for 𝑗 = 1 . . . 𝑛 do
9: if 𝑗 ̸= 𝑖 then

10: 𝑃𝑖 sends share (𝑖𝑑𝑖, 𝑠𝑖,𝑗) to party 𝑃𝑗

11: end if
12: end for
13: Wait for all shares {(𝑖𝑑𝑗 , 𝑠𝑗,𝑖)}𝑛𝑗=1

𝑗 ̸=𝑖

from parties 𝑃𝑗

14: 𝑟𝑘′ ← LsssRec({(𝑖𝑑𝑗 , 𝑠𝑗,𝑖)}𝑛𝑗=1
𝑗 ̸=𝑖

)

15: Erase 𝑟𝑘𝑖 and 𝑠𝑖,𝑗 ∀𝑗
16: Output 𝑘𝐹𝑟𝑎𝑔′𝑖 = (𝑖𝑑𝑖, 𝑟𝑘

′
𝑖, 𝑈

𝑟𝑘′𝑖 ...)

Umbral protocol and does not affect the security of the Desmedt key-redistribution protocol.
On the other hand, note that we pass the actual 𝑖𝑑 as parameter in the LsssRec at line 14.

5. Use Case

In this section we describe a system that fully exploits our proposed scheme, i.e., a decentralized
PDS. Our proposal consists of the design of a PDS that addresses two main issues: the lack of
transparency in managing personal information and the inability to access and make personal
data interoperable.The PDS can be intended as the first step toward this aim, relying on a
new user-centered model for managing personal data, where storage is decoupled from the
application logic. Furthermore, providers of personal data apps and data intermediaries can
exploit PDS to prove their compliance with regulations (e.g., GDPR) [24]. The resulting PDS
system we propose is compliant with the GDPR, thus protecting users’ data, and it promotes a
transparent personal data sharing. The use of DLTs and DFS is of paramount importance in our
system architecture. DLTs provide the technological guarantees for trusted data management
and sharing, as they can offer a fully auditable decentralized access control policy management
and evaluation. In the view of the GDPR, this makes it possible to check whether the involved
actors comply with the regulation or not, e.g., the trace personal information sharing can help
data processors, and controllers easily demonstrate their compliance transparently. As concerns
DFS, its combined use with DLT allows overcoming the typical scalability and privacy issues of
the latter while preserving the benefits of decentralization. In practice, DFS is leveraged for

storing the actual data outside the DLT, i.e., through “off-chain” storage, and tracing all the data
references in the DLT (i.e., “on-chain”).

The general idea is straightforward: a data subject is the user of a personal device that
generates different kinds of personal data; a data holder (which can be the data subject itself)
stores and maintains such data in a PDS and a cryptographically immutable reference is stored
in a DLT. In the following, we illustrate the choices behind using such components and their
interactions.

5.1. Components Design

5.1.1. Cryptosystem and Wallet

We assume each actor has a unique pair of asymmetric keys obtained via KeyGen (see Definition
1) In particular DH has key-pair (𝑠𝑘𝐷𝐻 , 𝑝𝑘𝐷𝐻), DR has key-pair (𝑠𝑘𝐷𝑅, 𝑝𝑘𝐷𝑅), and 𝑆𝑃𝑖 has
key-pair (𝑠𝑘𝑆𝑃𝑖 , 𝑝𝑘𝑆𝑃𝑖).

A data holder DH encrypts personal data 𝑝𝑑 using a symmetric key 𝐾 ∈ 𝒦. Then, the key is
placed in a capsule 𝛾 through the Encapsulate routine with input 𝑝𝑘𝐷𝐻 (See Section 3.4).

5.1.2. (Decentralized) File Storage component

In our design, personal data is kept in a DFS associated with a data subject, i.e., the set of
encrypted personal data referring to the subject that are stored in a DFS. The use of a P2P
network and data replication mechanisms inherent in a DFS, make it so that the storage of
personal data is decoupled from both the DLT and the personal device to provide wider data
availability. This allows having different DLTs and/or services to refer to the same data storage
system and facilitates the creation of a PDS in the perspective of data portability.

Uniquely referenced means that the resource containing the piece of personal data, e.g., data
contained in the decentralized file storage, should be identified by making use of a specific
protocol to keep the content unmodified for verifiability. Specifically, instead of referring to a
resource “normally”, i.e., “resource-name-1”, we make use of the resource content hash digest,
e.g., by using the IPFS content id or CID “QmdmQXB2m...KxDu7Rgm”. This is in line with the
fact that if the content was a specific one at the time of storing the piece of data in the PDS, an
audit must verify that, subsequently, the file may have been altered.

5.1.3. Distributed Ledger Technology component

The primary use of the DLT is the execution of smart contracts implementing personal data
access control. Access to the personal data stored in PDS can be allowed by the data holder
through smart contracts. These access control smart contracts encode the eligibility of data
access through a data structure, namely an access control list (ACL). In practice, each piece of
encrypted personal data 𝑒𝑝𝑑 ∈ ℰ is referenced in a specific smart contract through its on-chain
hash pointer ℎ𝑝𝑒𝑝𝑑. Thus, the smart contract stores a subset of the 𝐻𝑃 set held in the DFS, i.e.,
𝐻𝑃 on-chain ⊆ 𝐻𝑃 . The ACL can be (i) directly modified by the DS or (ii) indirectly modified by
the data holder DH based on a policy set by the subject. Once a recipient is listed in the ACL, i.e.,
authorized to access some content, the DLT providers and authorization servers can verify this

information through the ACL stored in the ledger. Eventually, when the recipient demonstrates
to own the address listed in the ACL, servers release the 𝛾𝐾𝑝𝑑

capsule that includes the 𝑘𝑝𝑑
content key needed to decrypt the encrypted data 𝑒𝑝𝑑.

5.1.4. Capsule Distribution Mechanism

The first operation consists of storing the encrypted data 𝑒𝑝𝑑 in the PDS and obtaining the
reference to the data, i.e., the hash pointer ℎ𝑝𝑒𝑝𝑑. Then the access control smart contract
is updated with the hash pointer ℎ𝑝𝑒𝑝𝑑. While this can be considered a setup, the first real
capsule distribution phase occurs when the holder shares the capsule 𝑐𝑘𝑝𝑑 associated to 𝑒𝑝𝑑
with 𝑛 authorization servers 𝐴𝑆. The holder creates 𝑛 fragments of the capsule such that
𝑐𝑘𝑝𝑑 =

∑︀𝑛
𝑖 𝑐

𝑖
𝑘𝑝𝑑

and each server receives its own capsule fragment. Here the sum operation
represents the fragment aggregated function associated with the SS or TPRE methods, which is
discussed in the next paragraph.

A data recipient may be allowed to access the stored data simply because the holder adds
𝑝𝑘𝐷𝑅 to the ACL in the smart contract The second capsule distribution operation comes after
the data access request made by the recipient to the authorization servers. The data access
request is composed of these elements {𝑝𝑘𝐷𝑅, contractAddr, ℎ𝑝𝑒𝑝𝑑, sign}, where contractAddr
is the address of the smart contract containing the ACL. The sign element is the signature of a
challenge-response message to be signed with 𝑠𝑘𝐷𝑅, to allow each server to identify the data
recipient: this way the recipient proves that it owns the secret key 𝑠𝑘𝐷𝑅. Upon receiving the
data access request and verified 𝐷𝑅’s response, 𝑡 authorization servers check the ACL for the
presence of 𝑝𝑘𝐷𝑅. If 𝑝𝑘𝐷𝑅 is in the ACL, then each of the 𝑡 servers releases its owned capsule
fragment to the recipient. Finally, DR obtains 𝐾𝑝𝑑 via DecapsulateFrags.

5.2. Adding new members

Assuming KeRePRE grows in its user base, it is important for the system to scale accordingly.
On the one hand the ACL management can not scale: the ACL is managed by a smart contract,
therefore scaling that part means dealing with the topic of blockchain scaling, which is outside
the scope of the paper. On the other hand, it is possible to add new authorization servers to
the PDS management. Using terminology from Section 3.1 this means that new ASs have to be
added to the access structure.

To see how it is possible, assume the current access structure for a PDS is (𝑡, 𝑛), i.e. 𝑡 ASs
among 𝑛 are needed to perform the ReEncapsulate algorithm for DR so that DR can obtain 𝐾 via
the DecapsulateFrags algorithm on the {𝑐𝐹𝑟𝑎𝑔}>𝑡

𝑖=1 (see Section 3.1). Then, a new node 𝑆𝑃𝑛+1

can be added by performing kFragRedistr to create a (𝑡, 𝑛+ 1) access structure. Specifically,
with reference to Algorithm 3, if is possible to derive ℎ𝑖𝑑𝑗 for 𝑗 = 1, . . . , 𝑛+ 1 and LsssPrep
can be called for {ℎ𝑖𝑑}𝑛+1

𝑗=1 . Furthermore, it is easy to see how the access structure can be
incremented not just by 1, but for arbitrary 𝜈 > 0 using the same method and in just one
iteration create a new access structure of (𝑡, 𝑛+ 𝜈).

5.3. Members removal

It easy to imagine that in the course of operations, at least a subset of nodes becomes faulty or
are compromised. While ascertain when a 𝐴𝑆 has become malicious is outside the scope of the
paper, we focus on how to deal with such cases.

As in Section 5.2, assume a current access structure of (𝑡, 𝑛). We split the explanation into
two parts: we first deal with the case where there are still 𝑚 honest nodes with 𝑡 ≤ 𝑚 < 𝑛 and
then we deal with the case where 𝑚 < 𝑡.

If there are 𝑚 honest nodes, 𝑡 ≤ 𝑚 < 𝑛, then it is possible to perform kFragRedistr involving
only those 𝑚 honest nodes and excluding the 𝑛 −𝑚 malicious ones. Since the 𝑚 nodes are
honest by hypothesis, then we can trust them to perform data deletion, and therefore exclude
the 𝑛−𝑚 malicious nodes forever, as we explain in Section 6.1. This procedure creates a new
access structure of (𝑡,𝑚).

On the other hand, if 𝑚 < 𝑡, then the system is highly compromised and it is impossible to
have a secure redistribution mechanism at this point, see proof of Theorem 1.

6. Analysis

6.1. Security

The main innovation of the system relies on the extension of the threshold proxy re-encryption
to accommodate the decentralized and encrypted data management with a dynamic access
structure. For this reason the security analysis is focused on this part.

In particular, we want to prove the security of member addition (Section 5.2) and member dele-
tion (Section 5.3). We start with a definition for security in the context of a share-redistribution
scheme. Recall that an access structure (𝑡, 𝑛) means that at least 𝑡 parties out of 𝑛 are needed to
reconstruct a secret 𝑠.

Definition 2. Let Redist be a share redistribution scheme form an access structure Σ = (𝑡, 𝑛) to
a access structure Σ′ = (𝑘,𝑚) for a secret 𝑠, with 𝑚 ≥ 𝑡. Let 𝒫 be the set of parties for Σ, 𝒫 ′ the
set of parties in Σ′ such that |𝒫 ∩ 𝒫 ′| ≥ 𝑡. Then Redist is secure if after its run parties from the
set 𝒫 ∖ 𝒫 ′ are not able to reconstruct the secret 𝑠 anymore.

We are now ready to state:

Theorem 1. In the hypothesis of Definition 2, if 2𝑡 > 𝑛, then kFragRedistr as presented in
Algorithm 3 is a secure share redistribution scheme from Σ = (𝑡, 𝑛) to Σ′ = (𝑘,𝑚) with 𝑚 ≥ 𝑡
and 𝑘 ≤ 𝑚.

We give a sketch of the proof below. A complete proof will appear in the complete version of
this work.

Proof. The proof strongly follows the work of Desmedt et al. [21], since the routine kFragRedistr
is inspired by it.

First of all, note that a change from an access structure Σ = (𝑡, 𝑛) to a access structure
Σ′ = (𝑘,𝑚) is feasible if and only if there are still are at least 𝑡 honest parties, otherwise it is

impossible to reconstruct the secret 𝑠 in the first place. This is equivalent to ask for a honest
majority since 𝑡 > ⌊𝑛2 ⌋. Furthermore, note that if 𝑚 < 𝑡 then it is not possible to reconstruct the
secret, since 𝑡 is the least amount of number of parties in 𝒫 needed to reconstruct 𝑠 according to
Σ. If all the constraints are satisfied, then kFragRedistr is equivalent to the system of Theorem 1
in [21]. Consequently, it is possible to apply Corollary 3 of [21] and conclude that it is sufficient
that all the honest parties in 𝒫 erase 𝑟𝑘𝑖 and 𝑠𝑖,𝑗 ∀𝑗 to guarantee that parties in 𝒫 ∖ 𝒫 ′ can not
reconstruct secret 𝑠. Parties are required to do this operation in Line 15 of Algorithm 3.

6.2. Data Protection

Under the GDPR, data controllers (the authorization servers in our use case) are required to
implement appropriate security measures to ensure the confidentiality and integrity of personal
data (Article 32). One of the recommended security measures is the use of encryption to protect
the data from unauthorized access. However, if an encryption key is leaked, it can pose a
significant risk to the confidentiality and integrity of personal data. In such a scenario, data
controllers must take immediate action to comply with the GDPR (Articles 33 and 34). We argue
that KeRePRE improves the efficiency of some steps that need to be performed by the controller
in such a case. The main step is the one referred to as Implement corrective measures, i.e.,
based on the findings of the security review, the data controller should implement corrective
measures to prevent future breaches; this may include strengthening its encryption protocols
and improving access controls. With KeRePRE, the authorization servers are facilitated in the
provision of key deletion and addition procedures, such that they can comply with implementing
corrective measures.

7. Conclusions and Future Works

In this paper we showed how a threshold proxy re-encryption system may be used to obtain
a decentralized and secure personal data storage once extended with key redistribution. We
showed also how a DLT may be used to also decentralize the management of accesses and their
delegations.

While an implementation of the key re-distribution is available online4, in the future we aim
to complete the implementation of the whole system.

References

[1] M. Zichichi, S. Ferretti, G. D’Angelo, V. Rodríguez-Doncel, Personal data access control
through distributed authorization, in: 2020 IEEE 19th International Symposium on Network
Computing and Applications (NCA), IEEE, 2020, pp. 1–4.

[2] Y. Chen, B. Hu, H. Yu, Z. Duan, J. Huang, A threshold proxy re-encryption scheme for
secure iot data sharing based on blockchain, Electronics 10 (2021) 2359.

[3] X. Chen, Y. Liu, Y. Li, C. Lin, Threshold proxy re-encryption and its application in
blockchain, in: Cloud Computing and Security: 4th International Conference, ICCCS 2018,

4The implementation can be found at https://github.com/disnocen/umbral-rs

https://github.com/disnocen/umbral-rs

Haikou, China, June 8–10, 2018, Revised Selected Papers, Part IV 4, Springer, 2018, pp.
16–25.

[4] D. Nuñez, Umbral: A Threshold Proxy Re-Encryption Scheme, Technical Report, NuCypher
Inc., 2018.

[5] J. Aumasson, A. Hamelink, O. Shlomovits, A survey of ECDSA threshold signing, IACR
Cryptol. ePrint Arch. (2020) 1390. URL: https://eprint.iacr.org/2020/1390.

[6] M. M. Merlec, Y. K. Lee, S.-P. Hong, H. P. In, A smart contract-based dynamic consent
management system for personal data usage under gdpr, Sensors 21 (2021) 7994.

[7] M. Koscina, D. Manset, C. Negri, O. Perez, Enabling trust in healthcare data exchange with
a federated blockchain-based architecture, in: IEEE/WIC/ACM International Conference
on Web Intelligence-Companion Volume, 2019, pp. 231–237.

[8] European Parliament, Regulation (eu) 2016/679, 2016.
[9] M. Egorov, M. Wilkison, D. Nuñez, Nucypher kms: Decentralized key management system,

arXiv preprint arXiv:1707.06140 (2017).
[10] P. Bai, S. Kumar, K. Kumar, O. Kaiwartya, M. Mahmud, J. Lloret, Gdpr compliant data

storage and sharing in smart healthcare system: a blockchain-based solution, Electronics
11 (2022) 3311.

[11] M. Naz, F. A. Al-zahrani, R. Khalid, N. Javaid, A. M. Qamar, M. K. Afzal, M. Shafiq, A secure
data sharing platform using blockchain and interplanetary file system, Sustainability 11
(2019) 7054.

[12] V. Ortega, F. Bouchmal, J. F. Monserrat, Trusted 5G vehicular networks: Blockchains and
content-centric networking, IEEE Vehicular Technology Magazine 13 (2018).

[13] M. Jemel, A. Serhrouchni, Decentralized access control mechanism with temporal dimen-
sion based on blockchain, in: 2017 IEEE 14th International Conference on e-Business
Engineering (ICEBE), IEEE, 2017, pp. 177–182.

[14] D. Hawig, C. Zhou, S. Fuhrhop, A. S. Fialho, N. Ramachandran, Designing a distributed
ledger technology system for interoperable and general data protection regulation–
compliant health data exchange: a use case in blood glucose data, Journal of medical
Internet research 21 (2019) e13665.

[15] E. Y. Chang, S.-W. Liao, C.-T. Liu, W.-C. Lin, P.-W. Liao, W.-K. Fu, C.-H. Mei, E. J. Chang,
Deeplinq: distributed multi-layer ledgers for privacy-preserving data sharing, in: 2018
IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), IEEE,
2018, pp. 173–178.

[16] Z. Yan, G. Gan, K. Riad, Bc-pds: protecting privacy and self-sovereignty through
blockchains for openpds, in: 2017 IEEE Symposium on Service-Oriented System En-
gineering (SOSE), IEEE, 2017, pp. 138–144.

[17] K. Popovic, Z. Hocenski, Cloud computing security issues and challenges, The 33rd
International Convention MIPRO (2010) 344–349.

[18] K. Ren, C. Wang, Q. Wang, Security challenges for the public cloud, IEEE Internet
Computing 16 (2012) 69–73. doi:10.1109/MIC.2012.14.

[19] S. Sundareswaran, A. Squicciarini, D. Lin, Ensuring distributed accountability for data
sharing in the cloud, IEEE Transactions on Dependable and Secure Computing 9 (2012)
556–568. doi:10.1109/TDSC.2012.26.

[20] M. Blaze, G. Bleumer, M. Strauss, Divertible protocols and atomic proxy cryptography, in:

https://eprint.iacr.org/2020/1390
http://dx.doi.org/10.1109/MIC.2012.14
http://dx.doi.org/10.1109/TDSC.2012.26

K. Nyberg (Ed.), Advances in Cryptology - EUROCRYPT ’98, International Conference on
the Theory and Application of Cryptographic Techniques, Espoo, Finland, May 31 - June
4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer Science, Springer, 1998, pp.
127–144. URL: https://doi.org/10.1007/BFb0054122. doi:10.1007/BFb0054122.

[21] Y. Desmedt, S. Jajodia, Redistributiong secret shares to new access structures and its
applications, Technical Report ISSE TR-97-01, George Mason University, 1997.

[22] V. Nikov, S. Nikova, On proactive secret sharing schemes, in: H. Handschuh, M. A. Hasan
(Eds.), Selected Areas in Cryptography, 11th International Workshop, SAC 2004, Waterloo,
Canada, August 9-10, 2004, Revised Selected Papers, volume 3357 of Lecture Notes in Com-
puter Science, Springer, 2004, pp. 308–325. URL: https://doi.org/10.1007/978-3-540-30564-4_
22. doi:10.1007/978-3-540-30564-4_22.

[23] A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung, Proactive secret sharing or: How
to cope with perpetual leakage, in: D. Coppersmith (Ed.), Advances in Cryptology -
CRYPTO ’95, 15th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 27-31, 1995, Proceedings, volume 963 of Lecture Notes in Com-
puter Science, Springer, 1995, pp. 339–352. URL: https://doi.org/10.1007/3-540-44750-4_27.
doi:10.1007/3-540-44750-4_27.

[24] M. Zichichi, S. Ferretti, G. D’Angelo, V. Rodríguez-Doncel, Data governance through
a multi-dlt architecture in view of the gdpr, Cluster Computing 25 (2022) 4515 – 4542.
doi:10.1007/s10586-022-03691-3.

A. Umbral and KeRePRE Comparison

We present in Table 1 how the actors involved in KeRePRE relate with the proxy re-encryption
scheme in Umbral.

KeRePRE Umbral
Data Subject N/A
Data Holder Alice
DFS Provider N/A
Authorization Server Proxy Re-encryption Node
Data Recipient Bob

Table 1
Comparison of the names between the Umbral project and our extension KeRePRE

B. cFrag

As mentioned in Section 3.4, for each 𝑘𝐹𝑟𝑎𝑔 there is a 𝑐𝐹𝑟𝑎𝑔. The latter is used by DR to
recover the data after a Re− Encryption has been performed by the node operators.

Algorithm 4 shows how a 𝑐𝐹𝑟𝑎𝑔 is updated. Note that cFragRefresh must be performed after
kFragRedistr since knowledge of the new 𝑟𝑘′ is necessary to operate the update of the 𝑐𝐹𝑟𝑎𝑔.
To see why the change works note that:

https://doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-540-30564-4_22
https://doi.org/10.1007/978-3-540-30564-4_22
http://dx.doi.org/10.1007/978-3-540-30564-4_22
https://doi.org/10.1007/3-540-44750-4_27
http://dx.doi.org/10.1007/3-540-44750-4_27
http://dx.doi.org/10.1007/s10586-022-03691-3

Algorithm 4 cFragRefresh for a (𝑡, 𝑛) threshold scheme
Require: 𝑐𝐹𝑟𝑎𝑔𝑖, 𝑟𝑘𝑖, 𝑟𝑘

′
𝑖, 𝑠𝑖𝑑

1: (𝐸𝑖, 𝑉𝑖, 𝑖𝑑𝑖, 𝑋𝐴)← 𝑐𝐹𝑟𝑎𝑔𝑖

2: 𝐸′
𝑖 = 𝐸

𝑟𝑘′𝑖/𝑟𝑘𝑖
𝑖

3: 𝑉 ′
𝑖 = 𝑉

𝑟𝑘′𝑖/𝑟𝑘𝑖
𝑖

4: Output 𝑐𝐹𝑟𝑎𝑔′𝑖 = (𝐸′
𝑖, 𝑉

′
𝑖 , 𝑖𝑑𝑖, 𝑋𝐴)

𝐸′
𝑖 = 𝐸

𝑟𝑘′𝑖
𝑟𝑘𝑖
𝑖 = (𝐸𝑟𝑘𝑖)

𝑟𝑘′𝑖
𝑟𝑘𝑖 = 𝐸𝑟𝑘′𝑖 (1)

so 𝐸′
𝑖 is constructed as if it came directly from the ReEncryption function. Moreover, the change

does not require the nodes operators to know 𝐸 (which would be unfeasible because of the
discrete logarithm problem). All these considerations works similarly for 𝑉 ′

𝑖 .

	1 Introduction
	2 Related Works
	2.1 Threshold Proxy Re-Encryption in DLTs
	2.2 DLT and personal data sharing

	3 Background
	3.1 Actors and architectural components
	3.1.1 Actors
	3.1.2 Architecture Model

	3.2 Proxy re-encryption schemes
	3.3 Threshold cryptosystems
	3.4 Threshold PRE
	3.5 Key redistribution mechanisms

	4 Key redistribution within the Umbral system
	4.1 Kfrags redistribution

	5 Use Case
	5.1 Components Design
	5.1.1 Cryptosystem and Wallet
	5.1.2 (Decentralized) File Storage component
	5.1.3 Distributed Ledger Technology component
	5.1.4 Capsule Distribution Mechanism

	5.2 Adding new members
	5.3 Members removal

	6 Analysis
	6.1 Security
	6.2 Data Protection

	7 Conclusions and Future Works
	A Umbral and KeRePRE Comparison
	B cFrag

