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Abstract. Recent work in the area of coordination models and col-
lective adaptive systems promotes a view of distributed computations
as functions manipulating computational fields (data structures spread
over space and evolving over time) and introduces the eXchange Cal-
culus (XC) as a novel formal foundation for field computations. In XC,
evolution (time) and neighbor interaction (space) are handled by a single
communication primitive called exchange, working on the neighbouring
value data structure to represent both received values and values to
share. However, the exchange primitive does not allow to directly retain
information about neighbours across subsequent rounds of computation.
This hampers the convenient expression of useful algorithms in XC, such
as the computation of a neighbour reliability score. In this paper, we
introduce a new generalised version of the exchange primitive, also im-
plementing it into the FCPP DSL. This primitive allows for neighbour
data retention across rounds, strictly expanding the expressiveness of the
exchange primitive in XC. The contribution is then evaluated through a
case study on distributed sensing in a wireless sensor network of battery-
powered devices, exploiting the reliability scores to improve robustness.

Keywords: Core calculus · Aggregate computing · C++ DSL.

1 Introduction

The number and density of networked computing devices distributed through-
out our environment is continuing to increase rapidly. In order to manage and
make effective use of such systems, there is likewise an increasing need for soft-
ware engineering paradigms that simplify the engineering of resilient distributed
systems. Aggregate programming [10,19] is one such promising approach, pro-
viding a layered architecture in which programmers can describe computations
by combining resilient operations on “aggregate” data structures with values
spread over space and evolving in time.

The foundation of this approach is on field-based computations, originally
formalized by the field calculus (FC) [8], and later refined by the exchange cal-
culus (XC) [4,5], a terse mathematical model of distributed computation that
simultaneously describes both collective system behavior and the independent,
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2 G. Audrito et al.

unsynchronized actions of individual devices that will produce that collective be-
havior. In this approach, computation (executed in asynchronous rounds), com-
munication (which is neighbour-based), and state over time, are all expressed by
means of a single communication primitive, called exchange.

This primitive applies a given function to a single argument n (a view of
the values produced by neighbours), obtaining as result a view s of the values
to send back to neighbours. This mechanism provides a general communication
pattern, but does not allow to directly retain information about neighbours
across subsequent rounds of computation: the result s obtained on a device in a
round is not available in that device on the following round. This prevents from
conveniently expressing in XC useful algorithms, such as the computation of a
neighbour reliability score based on statistics on messages received by neighbours.
Since XC is Turing-complete, these algorithms could still be expressed, but only
by breaking the neighbouring-value abstraction given by the language.

In this paper, we address this limitation by introducing a new generalised
version of the exchange primitive that allows for neighbour data retention. The
generalised exchange takes two arguments: both the same n as in XC, and a view
o of the values produced for neighbours in the previous round of the same device.
This strictly extends XC, retaining all previous expressiveness while opening the
way for new possibilities. We illustrate the increase in expressiveness by means of
examples, presenting two novel neighbour reliability metrics (uni-connection and
mixed-connection), that can be used in the novel stabilised single-path collection
algorithm. The proposal is then evaluated in a simulated case study on dis-
tributed sensing, set in an unreliable wireless sensor network of battery-powered
devices. The evaluation is carried out through the FCPP simulator [1,7], that
has been extended to support the generalised exchange primitive and a more
advanced model of unreliable communication.

Following a background on field-based approaches (focusing on XC) in Sec-
tion 2, we introduce the generalised exchange construct in Section 3, evaluate
the effectiveness of the construct in a case study on reliable WSN sensing in Sec-
tion 4, and conclude with a summary and discussion of future work in Section 5.

2 Background

In this section, we briefly present the class of field-based coordination approaches,
and then dive into the system modeling, syntax and semantics of the eXchange
Calculus (XC). Please refer to [4,5] for more details.

2.1 Field-Based Coordination

Both XC [4,5] and its close predecessor FC [8] belong to the class of field-based
coordination approaches to the design of distributed computing systems. Such
approaches take an important natural source of inspiration from the concept of
field in physics. A coordination field (or co-field) was initially introduced in [14]
to facilitate the formation of self-organizing patterns in agent movement within
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complex environments. Building on this concept, the TOTA (Tuples On The Air)
tuple-based middleware [13] was developed to enable field-based coordination for
pervasive computing applications. In TOTA, each tuple inserted into a network
node is endowed with content (the tuple data), a diffusion rule (determining how
the tuple is to be replicated and spread), and a maintenance rule (dictating how
the tuple should evolve over time or in response to events). One of the pioneering
works linking field-based coordination with formalization tools, such as process
algebras and transition systems, is the στ -Linda model [20]. In this model, agents
can inject processes into the space that propagate, gather, and decay tuples,
thereby sustaining fields of tuples. In [12], the authors define the SMuC language
as an extension of µ-calculus that is able to express global programs on fields
that can be executed on a distributed system. Surveys reviewing approaches to
abstract spatial collective adaptive systems can be found in [9,11,15,16].

2.2 System Model

The systems we aim to program can be conceptualized as sets of nodes, each
capable of engaging with the environment via sensors and actuators, as well as
communicating with neighboring nodes through message exchanges.

We operate under the assumption that each node executes in asynchronous
cycles known as sense-compute-act rounds, where:

– sense: The node gathers current environmental data by querying sensors
and collects recent messages from neighbors. This information constitutes
the node’s context.

– compute: The node processes a shared control program, which interprets
the context (i.e., inputs from sensors and neighbors) to generate an output
detailing the actions to be taken (e.g., actuations and communications).

– act: The node carries out the actions in output, potentially resulting in
changes to the environment or the delivery of messages to neighbors.

This loop ensures continuous assessment of the context at discrete intervals, with
reactions computed and executed continuously and asynchronously. An instance
of system execution can be represented through an event structure (see Figure
1). Here, events (denoted by ϵ) encapsulate entire sense-compute-act rounds,
and the arrows linking events signify that certain source events have furnished
inputs (i.e., messages) to target events. Specifically, if event ϵ′ is linked by an
arrow to ϵ, we designate ϵ′ as a ”neighbor” of ϵ, symbolized as ϵ′ ⇝ ϵ. Therefore,
programming the systems described in this section consists of establishing the
control rules that dictate how the context at each event is translated into the
messages intended for neighboring events.

2.3 Neighbouring Values

In XC, we categorize values into two types. The Local values, denoted by ℓ, en-
compass traditional atomic and structured types like integers, floats, strings, or
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Fig. 1. An event structure modelling a distributed system execution. Node ϵδk denotes
the k-th round of device δ. The yellow area contains a reference event, whose past
(green) and future (blue) are identified from causal arrows between neighbour events.

lists. On the other hand, the neighboring values (referred to as nvalues) are map-
pings w from device identifiers δi to corresponding local values ℓi. Additionally,
there’s an extra local value ℓ acting as a default:

w = ℓ[δ1 7→ ℓ1, ... , δn 7→ ℓn]

An nvalue specifies the values received from or sent to neighbors: received
values are gathered into nvalues, can then be processed locally, and the resulting
nvalue can be interpreted as messages to be sent back to neighbors. Devices
associated with an entry in the nvalue are typically a small subset of all devices,
namely those close enough to the current device and working correctly.

The default value is used when a value isn’t available for some neighbor δ′.
For instance, if δ′ has just been powered on and hasn’t produced a value yet, or
if it has just moved close enough to the current device δ to become one of its
neighbors. Hence, the notation should be understood as follows: “the nvalue w is
ℓ everywhere (i.e., for all devices) except for devices δ1, ... , δn, which have given
values ℓ1, ... , ℓn, respectively.”

To illustrate nvalues, consider Figure 1. Upon waking up for computation
ϵ32, device δ3 might process an nvalue w = 0[δ4 7→ 1, δ3 7→ 2, δ2 7→ 3], representing
messages carrying scalar values 1, 2, and 3 received when asleep from δ4, δ3 (itself
at the previous round), and δ2. Entries for all other (neighbor) devices default
to 0. After computation, δ2 might send out messages represented by nvalue
w′ = 0[δ4 7→ 5, δ3 7→ 6], sending 5 to δ4, 6 to δ3, and 0 to every other (neighbor)
device, such as a newly-connected device. For convenience, w(δ′) denotes the
local value (specific or default) associated with δ′ by w.

Note that a local value ℓ can be naturally converted to an nvalue ℓ[], that
holds the default value for every device. On the other hand, functions on local
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values are implicitly lifted to nvalues by applying them pointwise to the maps’
content. For example, if w1 assigns value 2 to δ3 and w2 assigns default value 1
to δ3, then w3 = w1 · w2 assigns value 2 · 1 = 2 to δ3. Local values and nvalues
can thus be treated uniformly by the exchange calculus.

A fundamental operation on nvalues is provided by the built-in function
nfold(f : (A,B) → A, w : B, ℓ : A) : A. This function folds over an nvalue w,
starting from a base local value ℓ, repeatedly applying function f to neighbors’
values in w, excluding the value for the current device. For instance, if δ2 with
a set of neighbors {δ1, δ3, δ4} performs a nfold operation nfold(∗, w, 1), the
output will be 1 ·w(δ1) ·w(δ3) ·w(δ4). We usually assume that f is associative and
commutative since nvalues are unordered maps. Other common built-in operator
are:

– self(w : A) : A, that returns the local value w(δ) in w for the self device δ.

– modOther(w : A, ℓ : A) : A, that returns an nvalue where the default of w is
changed to ℓ, and all other values are the same as in w.

– mux(ℓ1 : bool, ℓ2 : A, ℓ3 : A), that returns ℓ2 if ℓ1 is True, ℓ3 otherwise (note
that all arguments are evaluated).

Moreover, XC features a single communication primitive:

exchange(ei, (n) => (er, es))

evaluated as follows:

– The device computes the local value ℓi of ei (the initial value).

– To evaluate the function provided as the second argument, it substitutes
variable n with the nvalue w of messages received from neighbors for this
exchange, using ℓi as default.

– The expression returns the value wr from the evaluation of er.

– The second expression es in the argument function’s output evaluates to an
nvalue ws consisting of local values to be sent to neighbor devices δ′, which
will use their corresponding ws(δ

′) upon waking up and performing their
next execution round.

In order to clarify the purpose of the two elements of the pair returned by an
exchange, in the remainder of this paper we use the notation return er send es
as syntactic sugar for the pair (er, es). When er and es coincide, we also use
retsend e as syntactic sugar for the pair (e, e). The exchange construct ab-
stracts the general concept of message exchange and is expressive enough to
allow common communication patterns to be expressed through it. If a program
executes multiple exchange-expressions, XC ensures through alignment that the
messages are dispatched across rounds to corresponding exchange-expressions
(in the same position in the program AST, and with the same stack frames of
function calls).
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Syntax:
e ::= x

∣∣ fun x(x){e}
∣∣ e(e)

∣∣ val x = e; e
∣∣ ℓ

∣∣ w expression

w ::= ℓ[δ 7→ ℓ] nvalue

ℓ ::= b
∣∣ fun x(x){e}

∣∣ c(ℓ) local literal

b ::= exchange
∣∣ nfold

∣∣ self
∣∣ modOther

∣∣ uid
∣∣ mux

∣∣ ... built-in function

Free variables of an expression:
FV(x) = {x} FV(ℓ) = FV(w) = ∅ FV(fun x0(x1, ... , xn){e}) = FV(e) \ {x0, ... , xn}
FV(e0(e1,...,en))=

⋃
i=0...nFV(ei) FV(val x = e; e′) = FV(e) ∪ FV(e′) \ {x}

Syntactic sugar:
(x) => e ::= fun y(x){e} where y is a fresh variable

def x(x){e} ::= val x = fun x(x){e};
if(e){e⊤} else {e⊥} ::= mux(e, () => e⊤, () => e⊥)()

Fig. 2. Syntax (top), free variables (middle) and syntactic sugar (bottom) in XC

2.4 Syntax and Semantics

Figure 2 (top) illustrates the syntax of XC. The overbar notation denotes a
(possibly empty) sequence of elements, where x represents x1, ... , xn (n ≥ 0). The
syntax adheres to that of a standard functional language, without any distinct
features for distribution, which become evident in the semantics.

An XC expression e can take various forms:

– a variable x;
– a (possibly recursive) function fun x(x){e}, which may contain free variables;
– a function call e(e);
– a let-style expression val x = e; e;
– a local literal ℓ, such as a built-in function b, a defined function fun x(x){e}

without free variables, or a data constructor c applied to local literals (pos-
sibly none);

– an nvalue w, as explained in Section 2.3.

XC can be typed with higher-order let-polymorphism, without differentiation be-
tween types for local and neighboring values. This is reflected in the semantics
by having language constructs and built-in functions that accept nvalues as ar-
guments, and by implicitly promoting local values ℓ to nvalues ℓ[]. Free variables
are defined conventionally (Figure 2, middle), and an expression e is considered
closed if FV(e) = ∅. Programs, which are closed expressions, do not contain nval-
ues as sub-expressions, in order to not explicitly mention devices in them: nvalues
only emerge during computations and are the sole values produced by evaluating
programs. The basic syntax presented is then expanded through syntactic sugar
to incorporate infix operators, omitted parentheses in 0-ary constructors, and
other non-trivial encodings described in Figure 2 (bottom).

The semantics of XC comprises (i) a big-step operational device seman-
tics, delineating the computation of a device within a single round; and (ii)
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a denotational network semantics, formalizing communication between differ-
ent device rounds. The device semantics is expressed through the judgement
δ;σ;Θ ⊢ e ⇓ w; θ, interpreted as “expression e evaluates to nvalue w and value-
tree θ on device δ with respect to sensor values σ and value-tree environment
Θ”. In this context:

– w is termed the result of e;
– values in σ may be accessed by built-in functions (sensors) called in e;
– θ is an ordered tree with nvalues on certain nodes, representing messages

to be sent to neighbors by tracking the nvalues produced by exchange-
expressions in e, and the stack frames of function calls; v⟨θ⟩ denotes a value
tree with root v and subtrees θ;

– Θ accumulates the (non-expired) value-trees received by the most recent
rounds of δ’s neighbors, stored as a map δ1 7→ θ1, ..., δn 7→ θn (n ≥ 0) from
device identifiers to value-trees. Notation π1(Θ) denotes the mapping of each
device δi to the leftmost subtree of θi.

The big-step rules of the device semantics define the behaviour of this judgement
in mostly standard terms, although taking care of correctly passing around the
context Θ in order to ensure alignment, and referring to an auxiliary predi-
cate ⇓∗ for the evaluation of built-in primitives. Of particular interest for the
present work is the semantics of the exchange primitive, which is expressed by
the following rule, capturing the behavior described in Section 2.3:

[A-XC]
Θ = δ 7→ w⟨...⟩ wnbr = winit[δ 7→ w(δ)]
δ;σ;π1(Θ) ⊢ wfun(wnbr) ⇓ (wret, wsend); θ

δ;σ;Θ ⊢ exchange(winit, wfun) ⇓∗ wret; wsend⟨θ⟩

Let δ be the device where the exchange operator is executed, and w be the
sequence of nvalues received from neighbours δ, stored in the environment Θ.
The notation winit[δ 7→ w(δ)] represents the nvalue winit after replacing the value
winit(δk) for each neighbour device δk ∈ δ with the message wk(δ) that δk sent
to the local device δ. The resulting value wnbr serves as an argument to function
wfun: the first element of the resulting pair is used as the overall expression
result, while the second is used to label the root of the resulting value-tree (and
is therefore exchanged with neighbours).

The denotational network semantics employs the device semantics to define
the result of evaluating a program across an entire event structure. For detailed,
formal descriptions of the XC semantics, please refer to [4,5].

3 Enhanced Exchange Operator

In this paper, we extend the exchange operator by allowing the use of a function
wfun that accepts two arguments: wold and wnbr (the changes w.r.t. the semantics
of the previous exchange operator are colored in red).
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[A-XC’]
Θ = δ 7→ w⟨...⟩ wnbr = winit[δ 7→ w(δ)] wold =

{
wk |δ if δ = δk for a k

winit δ not in δ

δ;σ;π1(Θ) ⊢ wfun(wold,wnbr) ⇓ (wret, wsend); θ

δ;σ;Θ ⊢ exchange(winit, wfun) ⇓∗ wret; wsend⟨θ⟩

We define wnbr as for the original exchange operator. If there is no value for
the local device δ in the environment Θ (and thus, it is the first round that the
current device is computing this exchange expression), we define wold to equal
the initialization value winit. If instead δ appears in the sequence of neighbours
(and thus δ = δk for some k), wold is set to the nvalue wk (extracted from w

in Θ) computed in the previous round by the local device as wsend, with the
domain restricted to the current neighbors δ. This is written with notation w |D,
that corresponds to setting the value in w for any device δ′ not in D to the
default value of w. Note that the extended exchange operator can exploit only
the values sent by δ in the previous round. However, multi-step memory can
be implemented in terms of single-step memory, e.g., by sending a history of
previously sent values as an nvalue associating lists of values to devices. Note
that an essentially analogous single-step approach is adopted for preserving state
in other field-based languages, such as in the distributed implementation of the
SMuC calculus [12], and in the FC rep operator [8]. In that case, multi-step
memory can be built on top of rep, although for local values only.

In the following examples, we exploit the extended exchange operator to im-
plement different connection counters between the current device and its neigh-
bours. Such counters can be viewed as quantitative ranks of the connection reli-
ability between nodes, an important piece of information that can be exploited
in several contexts. In particular, in Section 4 we will present a single-path col-
lection algorithm that uses such ranks to determine the best node to select as
parent of the current node in order to find a path toward the source node.

Example 1 (Unidirectional Connection Counter). The following uniconn-count
function produces an nvalue of inbound connection counters, associating every
neighbour to the number of times a message has been received from it.

def uniconn-count() {

exchange( 0, (o,n) => retsend o + modOther(1,0) )

}

We set the initial value of the exchange to 0. The update function increases
the nvalue o by one unit for all neighbours, without changing its default value.
This is achieved through themodOther function, which applied on 1 and 0 creates
an nvalue with a default value of 0 and mapping all current neighbours to 1.
Thus, this function counts the number of consecutive rounds in which neighbours
remain neighbours, resetting to 0 each time a former neighbour stops being a
neighbour. Since the neighbours are exactly those devices that successfully sent a
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message to the current device in recent times, this function measures the inbound
connection’s quality between the current device δ and its neighbours. On the
other hand, it does not depend on the outbound connection’s quality: even if
the current device never sends messages successfully, the counters still increase.
Notice that uniconn-count is based on argument o, and in fact it does not use
argument n. Indeed, such function could not be expressed (without breaking the
nvalue abstraction) with the classic one-argument exchange operator.

Example 2 (Bidirectional Connection Counter). The following biconn-count func-
tion produces an nvalue of bidirectional connection counters, associating every
neighbour to the number of times a message has bounced back and forth between
it and the current device.

def biconn-count() {

exchange( 0, (o,n) => retsend n + modOther(1,0) )

}

This function is identical to uniconn-count, except that the update function
passed to exchange uses argument n instead of o. Thus, in order for the counter
to produce a value k larger than 1 for a current neighbour, such neighbour need
to have sent a counter value of k − 1 to the local device. This can only happen
if the neighbour had received a value of k − 2 from the local device, and so on.

In fact, if the local device δ is not able to send to a neighbour δ′ but only
to receive from it, the counter for δ′ will never get larger than 1. Thus, this
function allows to measure the combined inbound and outbound connection
quality between the current device and its neighbours.

Notice that this function ignores the o parameter of the function passed to
exchange, and thus essentially uses the original exchange described in Section 2.4.
Indeed, this function was first introduced as an example of XC capabilities [4,5].

Example 3 (Mixed Connection Counter). Finally, the mixedconn-count function
exploits the extended exchange operator with different return and send expres-
sions, to enable a behavior which combines those of the two preceding examples,
allowing to measure an outbound connection’s counter.

1 def mixedconn-count() {

2 exchange( 0, (o,n) =>

3 return n

4 send mux(o == 0, n/2, o) + modOther(1, 0)

5 )

6 }

The value of the send expression (line 4) is the one that is sent to neighbours
(contributing in forming their value of n in the following round), and will become
parameter o in the next round of the same device. For each neighbour that
has not a zero connection counter in o (i.e., is not a new neighbour), the send
expression increases its connection counter by one, as in uniconn-count. Thus,
this expression mostly computes a connection counter of received messages.
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However, differently from uniconn-count, a new neighbour does not necessar-
ily start from zero, but it starts instead from n/2, that is, half of the connection
counter that the neighbour device has for the current device. In this way, occa-
sionally losing a connection drops the counter without setting it drastically to
zero: thus, the expression computes a counter of received messages “smoothed
out” with a bidirectional connection pattern.

As a final difference from uniconn-count, the n value received from neighbours
is the one returned by the function as the computed value (line 3). Since o

is a smoothed counter of received messages, it follows that n will contain the
smoothed counters of received messages that the neighbours have with me: in
other words, it represents counters of sent messages. This allows to measure the
outbound connection’s quality between the current device and its neighbours
in a more reliable way than both uniconn-count and biconn-count. As we will
show in Section 4, this is the best computed information to use as rating for
scenarios of data collection where information flows in just one direction from
the peripheral nodes toward the source node.

4 Case Study: Reliable WSN Sensing

In order to illustrate the potential applications of the newly introduced exchange
operator, we simulated a network of battery-powered IoT sensors recharging us-
ing solar panels, with varying battery charge level that influences their commu-
nication power. In such a network, we assumed the presence of a gateway device
(the node with uid equal to 0) that is connected to the power supply, and thus
is always at maximum battery charge and has the best connection parameters.

We assume that the network has to perform a distributed sensing task, where
data perceived by individual sensors is aggregated towards the gateway. For
simulation purposes, we consider the test scenario where the data to be collected
is the sum of a sensed value of 1 for each device (that is, the task is counting
the number of active nodes in the network). Even though this task may be too
abstract as a distributed sensing application, from a coordination perspective it
has the same complexity as any other data collection task, and thus it provides
a useful test bed that is easy to evaluate and measure. The implementation of
this simulated case study is publicly available online.1

4.1 The Aggregate Program

We implement the case study through the novel stabilized single-path collection
strategy, shown as function ssp collection in Figure 3, with arguments:

– dist: estimated distance of the current device from the collection source;
– value: the value to be aggregated;
– null: the neutral element of the aggregation;
– accum: the aggregation function;

1 https://github.com/fcpp-experiments/oldnbr-evaluation

https://github.com/fcpp-experiments/oldnbr-evaluation
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1 // type: (num) -> num

2 def nbr(v) {

3 exchange( v, (o,n) => return n send v )

4 }

5
6 // type: (num, num, num, (num, num) -> num, num, num) -> num

7 def ssp_collection(dist, value, null, accum, rating, stale_factor) {

8 fst(exchange((null, 0.0, uid()), (o,n) =>

9 val result = nfold(accum, mux(trd(n) == uid(), fst(n), null), value);

10
11 val best_neigh = nfold( min, (nbr(dist), -rating, nbr(uid())) );

12 val best_neigh_rating = -snd(best_neigh);

13 val best_neigh_uid = trd(best_neigh);

14
15 val parent_rating = snd(o) * stale_factor;

16 val parent = trd(o);

17
18 if (parent_rating > best_neigh_rating) {

19 retsend (result, parent_rating, parent)

20 } else {

21 retsend (result, best_neigh_rating, best_neigh_uid)

22 }))

23 }

Fig. 3. Stabilized Single-Path Collection in XC.

– rating: an nvalue ranking neighbours by reliability;
– stale factor: factor resisting to changes of the aggregation path.

This function uses the common XC routine nbr(v), which sends v to neighbours
and returns the nvalue n composed of the values received by neighbours (that is,
their value for v), implemented in lines 2–4. It also uses the common functions
fst, snd, and trd which return the first, second and third element of a tuple
respectively; and function uid which returns the local device identifier.

The function consists of a single exchange operation, evolving a triple that
consists of:

– the partial aggregate computed in the current node;
– the current rating of the parent chosen;
– the id of the parent chosen.

Initially, the partial aggregate is equal to null, and the parent is the local device
with zero rating. As in classic single-path collection [18], the aggregation hap-
pens following the chosen parents of each node. This is realised in line 9, where
the partial aggregation result is computed by folding the partial aggregation re-
sults of neighbouring nodes that selected the current device as their parent, via
the given accumulate function. Whenever parents are chosen closer to the col-
lection source than the current node, the aggregation is guaranteed to converge
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val dist = abf_hops(uid() == 0);

val sum = (x, y) => x + y;

val uni-res = ssp_collection(dist, 1.0, 0, sum, uniconn-count(), 0.7);

val bi-res = ssp_collection(dist, 1.0, 0, sum, biconn-count(), 0.7);

val mix-res = ssp_collection(dist, 1.0, 0, sum, mixedconn-count(), 0.7);

Fig. 4. ssp collection calls using different connection counters as rating.

each value towards the source, where the aggregation result will be equal to the
aggregation of each value in the network (except for values that have been lost
during communication).

What distinguishes this algorithm from classic single-path collection is the
strategy for choosing the parent. First, the best candidate among neighbours is
computed in line 11-13, as the one with minimal distance (to ensure that we
are getting closer to the source), distinguishing nodes with the same distance
by choosing the one with maximal rating. We save the identifier of the best
candidate in best neigh uid and its rating in best neigh rating.

Such candidate is then compared with the previous parent, extracted from
o in lines 15-16, while reducing its rating by the stale factor. If the reduced
rating of the previous parent exceeds that of the best candidate among neigh-
bours (line 18), the previous parent is retained as parent for the current round
(line 19), otherwise the best neighbour becomes the new parent (line 21).

The usage of ssp collection in the case study is shown in Figure 4. We cal-
culate argument dist using the adaptive Bellman-Ford algorithm implemented
in XC,2 measuring distance in hops. The value parameter is set to 1.0 (i.e.,
each device contributes 1.0 to the collected value), while the null value is 0
(the neutral element of the sum). The accum parameter is set to a function sum-
ming its arguments. The rating parameter is an nvalue computed with one of
the three connection counters defined in Section 3. Finally, we set the value of
stale factor by observing that values close to 0.0 result in a system with faster
response to perturbation but increased instability, while values close to 1.0 led
to a more stable system with slower reaction to changes. We thus empirically
set the stale factor to 0.7 to balance sensitivity to changes and stability.

4.2 Simulation Settings

We tested the proposed SSP collection algorithm in a simulated network of
stationary nodes through the FCPP simulator [1,7] and its new feature to em-
ulate unreliable connectivity. Table 1 shows that there are three possible bat-
tery level-profiles for battery-powered devices, which are HIGH, MEDIUM, and
LOW, which in turn determine the values of three node parameters influenc-
ing its connectivity, namely sleep ratio, send power ratio, and recv power ratio.

2 The Bellman-Ford algorithm lends itself very well to distributed implementations in
Field Calculus and XC [6].
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PROFILE sleep ratio send power ratio recv power ratio

SOURCE 0.00 1.00 1.00

HIGH 0.00 0.90 1.00

MEDIUM 0.00 0.75 0.99

LOW 0.10 0.25 0.75

Table 1. Battery profiles and their parameters

The gateway has a special SOURCE profile which grants higher send power,
modeling the advantage of being connected to the power supply.

The results in this paper are obtained by running 1000 simulations using
different random generation seeds. Each simulation lasted 250 seconds and com-
prised 100 devices randomly spread in a 150m× 150m square area. Each device
performed asynchronous rounds every second on average, with a variance of 10%.

The maximum communication range between two nodes varies depending on
their battery profile, and is calculated as:

range(δs, δr) = comm range · send power ratio(δs) · recv power ratio(δr)

where the reference comm range is set to 50m, δs is the sender device and δr is
the receiving device. Note that depending on the battery profile of δs and δr,
range(δs, δr) may be different from range(δr, δs).

In the simulation, 100% of the messages from δs to δr are lost if their distance
is past range(δs, δr), and 0% of the messages are lost if their distance is zero.
In order to accurately model unreliability of communication, the probability of
failure at intermediate distances is calculated according to a continuous step-
like function inferred from real-world measurements [17], that reaches 50% of
communication failure at a distance of 0.7 · range(δs, δr). Parameter sleep ratio
models a further message failure probability, due to the device being in a sleeping
state during the time window when the message should be received. Note that
sleep ratio equal to zero does not entail that the device is never sleeping: in real-
world networks, it is usually achieved by negotiating listening time-windows with
neighbours, sleeping only outside of those. To better emulate battery preserving
policies, we consider that in the LOW state a device might miss some of this
time-windows allowing an increase in the sleeping time.

In order to model varying lighting conditions on the solar panels, all nodes
have a 1% probability to improve or to worsen their battery profile in every
round. A connection with a neighbour is dropped if the current device is unable
to receive a message from it for 5 seconds.

4.3 Experimental Results

Figure 5 shows the screenshot of a running simulation, with devices as nodes and
existing connection as edges of a graph in the simulation area. The color of each
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Fig. 5. Screenshot of a simulation of the case study in FCPP.

node represents its current battery profile: red for LOW, yellow for MEDIUM,
green for HIGH, and black for the gateway. Figure 6 shows the average (over
1000 simulations) of the number of nodes in the network the algorithm was able
to count over time using different functions to compute the reliability rank.

We include a line with a count of the working nodes, i.e., with high or medium
battery as reference. As expected the computed value is lower than the total
number of nodes, due to communication failures, but it’s closer to the number
of working nodes. The classic (not stabilised) single-path collection strategy, in
these scenarios with unreliable connectivity, performs poorly compared to SSP
collection. This is due to always selecting as parent the node in the neighbour-
hood closest to the source with the lowest uid, which may not grant a high-quality
connection and may change often. All three versions of SSP collection improve
over it, as they make a more informed selection using rating information, and
change parents less often thanks to the retention mechanism guided by the stale
factor. Among the possible ratings, the uniconn rating performs the worst, as it
computes its connection-counter from received messages only. That may cause
the selection as parent of a node to which the current device is not able to reli-
ably send messages, if connection links are sufficiently asymmetrical. The biconn
rating improves over uniconn by deriving its connection counter from a two-way
message exchange, which ensure that both the sender and the receiver of the
communication are able to communicate.

Themixedconn rating further improves over biconn, by measuring the number
of messages successfully sent to neighbours without the additional requirement
to reliably receive data back. It also handles temporary disconnection of a node
more gracefully, by retaining the rating decreased by a penalty, for nodes that
exited the neighbourhood in the current round rather than resetting their rating
back to the default value. This allows to further stabilise the parent selection,
improving the collection performance.
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Fig. 6. Average number of nodes in the network counted by the source node using
different connection counter functions over 1000 simulations. Time is in seconds.

5 Conclusions and Outlook

In this paper, we introduced a new generalised version of the exchange primitive
in XC [4,5], also implementing it into the FCPP DSL [1,7]. This primitive allows
for neighbour data retention across rounds, strictly expanding the expressiveness
of the exchange primitive in XC. We illustrate the increased expressiveness by
means of examples, introducing new connection metrics. We then evaluated the
contribution by simulation of a case study on distributed sensing in a wireless
sensor network of battery-powered devices. In the future, we plan to further in-
vestigate on which neighbour reliability score function can work best in different
scenarios. Further, we will try to apply the reliability scoring technique, and in
general the possibilities opened by the enhanced exchange primitive, to more
advanced algorithms that have been shown to be more effective than classical
single-path collection, such as the LIST and BLIST algorithms [2,3]. Finally,
further investigations could be performed on the expressiveness of the enhanced
exchange primitive possibly expanding the self-stabilising patterns in [18].
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