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Enhanced Spontaneous Skin Tumorigenesis and
Aberrant Inflammatory Response to UVB
Exposure in Immunosuppressed Human
Papillomavirus Type 8‒Transgenic Mice

Cinzia Borgogna1, Licia Martuscelli1, Carlotta Olivero2, Irene Lo Cigno1, Marco De Andrea3,4,
Valeria Caneparo1,4, Renzo Boldorini5, Girish Patel2 and Marisa Gariglio1,4
Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with
asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds,
such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant
recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte
carcinoma. Despite their well-established protumorigenic role, the cooperation between b-HPV infection,
impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this
study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical
mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously
develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2þ/þ:K14-
HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in
Rag2‒/‒:K14-HPV8 but not in Rag2þ/þ:K14-HPV8 mice. Their inflamed skin very much resembled that observed in
cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells,
enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this
immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, b-HPV,
and UVB exposure promotes skin cancer development.

Journal of Investigative Dermatology (2023) 143, 740e750; doi:10.1016/j.jid.2022.10.023
INTRODUCTION
Human papillomaviruses (HPVs) are ubiquitous non-
enveloped DNA viruses that specifically target keratinocytes
residing in mucosal and skin sites (Kranjec and Doorbar,
2016; Lambert et al., 2020). To date, more than 220 HPV
types have been completely sequenced and classified into
five genera (McBride, 2022; Van Doorslaer et al., 2017),
among which Alphapapillomaviruses (a-HPVs), such as
HPV16 and 18, and Betapapillomaviruses (b-HPVs), such as
HPV5 and 8, have been respectively linked to cancers at
different anatomical sites (e.g., genital, skin and head and
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neck) (Galloway and Laimins, 2015; Kreuter et al., 2009;
Lechner et al., 2022; Quint et al., 2015; Tetzlaff et al., 2019).

A large body of literature has clearly shown that the
mechanisms underlying a-HPV‒ and b-HPV‒associated
tumorigenesis are markedly different (Cubie, 2013; Egawa
et al., 2015; Venuti et al., 2019). Whereas a-HPVs are
known to persist throughout neoplastic development, giving
rise to tumors dependent on the E6 and E7 viral oncoproteins,
b-HPVs are responsible for far more transient infections,
mainly acting as cofactors of UV light at early stages of skin
carcinogenesis (Akgül et al., 2006; Basukala and Banks,
2021; Gheit, 2019; Tommasino, 2017).

b-HPV‒induced skin lesions primarily develop in immu-
nocompromised subjects where the inability of the host to
clear the infection favors high viral replication rates, leading
to intraepidermal proliferative lesions often progressing to
bona fide skin cancer (Howley and Pfister, 2015; Quint et al.,
2015). These viruses were first discovered in patients
suffering from epidermodysplasia verruciformis (EV), an
autosomal recessive skin disease that specifically predisposes
individuals to superinfection by b-HPV types (Béziat et al.,
2021; Pfister, 2003). Indeed, high viral loads of HPV5 and
HPV8 are found in the affected skin of patients with EV,
where they can exert their full transforming potential, giving
rise to multiple keratinocyte carcinomas (KCs), especially in
sun-exposed areas (e.g., forehead) (Borgogna et al., 2012;
Dell’Oste et al., 2009; Landini et al., 2012; Zavattaro et al.,
2008). Importantly, nonsense sequence variation in two
uthors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
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adjacent genes, named EVER1 and EVER2, have been asso-
ciated with enhanced KC incidence in some consanguineous
families and sporadic cases (Orth, 2006; Ramoz et al., 2002).
The presence of a mutation in either of these two genes can in
fact weaken EVER-mediated host restriction, thereby favoring
b-HPV replication (Lazarczyk et al., 2009). In addition, pa-
tients with EV carrying homozygous null mutations in the
CIB1 gene encoding CIB1, another potential restriction factor
against HPV, have also been reported (de Jong et al., 2018;
Vahidnezhad et al., 2019). Intriguingly, EV-like phenotypes
have also been consistently observed in patients with
different immune defects—mostly T-cell immunodefi-
ciency—that do not harbor any mutations in the EVER genes,
indicating that dysregulated immunosurveillance may also
facilitate b-HPV replication in the skin, thereby altering tissue
homeostasis (Béziat et al., 2021; Borgogna et al., 2014a;
Landini et al., 2014; Saluzzo et al., 2021; Uitto et al., 2022).

Another group of patients with an EV-like skin phenotype is
represented by organ transplant recipients (OTRs), who
display an overall risk of developing KC 100 times greater
than the general population (Bouwes Bavinck et al., 2010). In
these patients, the main risk factors of skin cancer develop-
ment are (i) impaired immunosurveillance, due to the anti-
rejection immunosuppressive regimen; (ii) UVR; and (iii) b-
HPV infection (Hufbauer and Akgül, 2017; Rollison et al.,
2019; Tampa et al., 2020; Tommasino, 2019; Venuti et al.,
2019; Zhao et al., 2021). Fittingly, we have previously re-
ported active b-HPV infection—as judged by HPV E4-
positive immunostaining of OTR skin biopsies—in prema-
lignant lesions, such as actinic keratoses, as well as in the
hyperplastic edges of KCs. Of note, although the E4þ areas
were mainly found within the disorganized epithelium of
actinic keratoses lesions, in more advanced KCs, they were
always localized in the adjacent pathological epithelium.
Furthermore, we detected MCM7 expression extending to the
upper epithelial layers of E4þ areas, indicating that the
epithelial cells were actively proliferating in areas of pro-
ductive viral infection (Borgogna et al., 2018, 2014b). In
addition, a series of seroepidemiological studies have asso-
ciated the presence of anti‒b-HPV antibodies with skin
cancer in OTRs, and PCR-based studies have identified b-
HPV DNA in over 80% of skin tumors from these patients
(Antonsson et al., 2013; Bouwes Bavinck et al., 2018, 2010;
Genders et al., 2015; Proby et al., 2011; Rollison et al., 2021;
Weissenborn et al., 2005). Although a large body of evidence
has been gathered in humans, the impact of immunosup-
pression in a b-HPV mouse model is still unknown.

In this study, by crossing Rag2‒/‒ mice—lacking both T
and B cells (Hao and Rajewsky, 2001)—with K14-HPV8‒
transgenic mice, which harbor the entire early region of the
HPV8 genotype driven by the K14 promoter, allowing skin-
specific expression of the transgenes (Schaper et al., 2005),
we have generated an immunodeficient mouse model named
Rag2‒/‒:K14-HPV8.

We show that the kinetics of papilloma development in
Rag2‒/‒:K14-HPV8 is significantly more accelerated than
that of immunocompetent Rag2þ/þ:K14-HPV8 mice, with
lesions spreading to the entire skin very quickly after birth.
We also report that Rag2‒/‒:K14-HPV8 mice display persis-
tence of UV-damaged cells in the epithelium, increased
number of mast cells in the dermis, enhanced inflammatory
cytokine release, and rapid papilloma development, sug-
gesting that these Rag2-deficient HPV8-transgenic mice are
much more sensitive to UVB-induced skin inflammation than
their normo-competent HPV8 counterparts.

RESULTS AND DISCUSSION
To recapitulate the therapy-induced immunosuppressed
setting of OTRs, who display defects in both arms of adaptive
immunity (Ritter and Pirofski, 2009; Roberts and Fishman,
2021), and more generally of individuals with a compro-
mised immune system, we generated HPV8-transgenic mice
carrying Rag2 mutations (Rag2‒/‒:K14-HPV8), which lack B
and T cells (Supplementary Figure S1). To rule out any bias
related to the genetic background, mice were backcrossed to
obtain a pure FVB/N background of the parental mouse line
Rag2þ/þ:K14-HPV8 in the immunodeficient genotype.
Spontaneous papilloma development in Rag2‒/‒:K14-HPV8
versus in Rag2þ/þ:K14-HPV8 mice was assessed weekly by
visual inspection of the skin for at least 25 weeks. Within 1
month after birth, Rag2‒/‒:K14-HPV8 mice displayed smaller
size, rough skin, and sparse hair development in comparison
with Rag2þ/þ:K14-HPV8 controls (Figure 1a and b). This
unhealthy phenotype worsened over time, as shown in the
representative images of Rag2‒/‒:K14-HPV8 mice aged 5
months (Figure 1b, left-hand panel). In fact, these mice
developed a severe skin phenotype characterized by dry,
reddish, and scaly skin, exhibiting a series of papilloma-like
proliferative lesions extending to all cutaneous skin causing
alopecia. By contrast, the skin of Rag2þ/þ:K14-HPV8 mice
looked normal, with the sole exception of very few well-
localized papilloma-like lesions usually restricted to the
back (Figure 1b, right-hand panel). By the age of 25 weeks,
all Rag2‒/‒:K14-HPV8 mice had to be killed for ethical rea-
sons. Notably, the lesions started to appear also on the legs at
around age 12 weeks (see Supplementary Figure S2), a site
that has never been reported to be affected in Rag2þ/þ:K14-
HPV8 genotype, even in very old mice (Schaper et al.,
2005). As expected, Rag2þ/þ mice lived normally, and the
lesions were limited to the dorsal skin. Strikingly, a large
fraction of Rag2‒/‒:K14-HPV8 mice developed papilloma at
earlier time points than Rag2þ/þ:K14-HPV8 mice (33% [n ¼
10] vs. 0% at age 10 weeks; P < 0.05) (Figure 1c). At age 24
weeks, 86% of the Rag2‒/‒:K14-HPV8 mice (n ¼ 26) had
papilloma-like lesions, whereas they were visible only in
24% (n ¼ 6) of Rag2þ/þ:K14-HPV8 mice, indicating statisti-
cally significant differences between the two genotypes (P <
0.0001). All mice were observed and examined weekly,
measuring the width and length of the lesions with a caliper
along with their expansion in the whole skin from the
abdomen and back. Individual percentages of affected skin
areas were calculated as reported in Supplementary
Figure S3.

The extension of the lesions—in terms of expansion of the
affected skin area—was significantly greater in Rag2‒/‒:K14-
HPV8 than in Rag2þ/þ:K14-HPV8 mice. As shown in
Figure1d,Rag2‒/‒:K14-HPV8mice thatwereolddisplayed skin
lesions that spread diffusely to most of the skin surface, with the
percentage of affected skin significantly higher in these mice
than in their immunocompetent counterparts (P< 0.0001 at age
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Figure 1. Enhanced tumor formation and expansion in Rag2‒‒/‒‒:K14-HPV8 versus in Rag2D/D:K14-HPV8 mice. Representative pictures of Rag2‒/‒:K14-HPV8

(left) and Rag2þ/þ:K14-HPV8 (right) mice at ages (a) 1 and (b) 5 months. (c) Tumor incidence and (d) percentage of affected skin in Rag2‒/‒:K14-HPV8 (red line,

n ¼ 30) versus in Rag2þ/þ:K14-HPV8 (green line, n ¼ 25) as a function of time. Rag2‒/‒:K14-HPV8 mice were observed until week 25 after birth and then killed

for ethical reasons, whereas Rag2þ/þ:K14-HPV8 mice were observed until age 50 weeks. In c and d, Fischer’s exact test was performed at week 24. *P < 0.05

and ****P < 0.0001. In c, data are presented as mean � SD. The formula to calculate the percentage of the affected skin is depicted in Supplementary Figure S3.

HPV, human papillomavirus.

C Borgogna et al.
Enhanced Skin Tumorigenesis in Immunosuppressed HPV8-tg Mice

742
24 weeks). When killed, 2 of the 30 Rag2‒/‒:K14-HPV8 mice
analyzed showed lesions macroscopically characterized by the
presence of necrotic areas and ulcerations, reminiscent of those
tumors arising in Rag2þ/þ:K14-HPV8, which were histologi-
cally described as squamous cell carcinoma (Supplementary
Figure S4) (Schaper et al., 2005).

Histological analysis and measurement of the epidermal
thickness of the skin obtained from healthy areas of the
different genotypes—six mice aged 4 months for each geno-
type—did not reveal any significant difference in terms of
epidermal thickness or proliferation in Rag2‒/‒:K14-HPV8
versus in Rag2þ/þ:K14-HPV8 mice (100� 16 vs. 77� 25 mm,
respectively) (Figure 2a and b, left panel). The epidermis of
bothHPV8-transgenic genotypeswas consistently thicker than
that of their nontransgenic counterparts, that is, wild type and
Rag2‒/‒ mice (33� 5 and 37� 7 mm, respectively). Likewise,
the proliferation rate, as determined by the number of prolif-
erating cell nuclear antigen (PCNA)-positive cells, was signif-
icantly higher in the epidermis of transgenic mice than in that
of nontransgenic ones, with higher significance in the Rag2‒/‒

background (Rag2þ/þ:K14-HPV8: 67� 9% vs. wild type: 40�
17% of PCNA-positive cells, P< 0.05; Rag2‒/‒:K14-HPV8: 77
� 12% vs. Rag2‒/‒: 42�16% of PCNA-positive cells, P <
Journal of Investigative Dermatology (2023), Volume 143
0.01), whereas no significant differences were found between
Rag2‒/‒:K14-HPV8 and Rag2þ/þ:K14-HPV8 (Figure 2b, right
panel).

Because we observed that the dermis of the two transgenic
genotypes was massively populated by mast cells (Figure 2a)
and given the controversy over the potential impact of these
cells on HPV-driven carcinogenesis (Antsiferova et al., 2013;
Biswas et al., 2014; Ghouse et al., 2018; Kaukinen et al.,
2015; Rahkola et al., 2019; Siebenhaar et al., 2014), we
sought to estimate the proportion of mast cells in our panel of
mouse genotypes. Although the increased number of mast
cells in Rag2‒/‒:K14-HPV8 mice versus that of their normal
counterparts was statistically significant (wild type: 101 � 36
vs. Rag2‒/‒:K14-HPV8: 232 � 101 cells/mm2, P < 0.05), no
substantial difference in mast cell accumulation was
observed in Rag2‒/‒:K14-HPV8 versus in Rag2þ/þ:K14-HPV8
mice (Figure 2b, middle panel).

Altogether these findings indicate that HPV8-driven skin
tumorigenesis is significantly enhanced in a Rag2‒/‒ versus in
Rag2þ/þ background. Although the skin lesions appeared at
early ages and expanded much faster in Rag2-null mice, no
significant differences were observed with regard to the
standard histological markers of proliferation analyzed. To



Figure 2. Histological and immunohistochemical characterization of the skin from Rag2‒‒/‒‒:K14-HPV8 versus that from Rag2D/D:K14-HPV8. (a)

Representative images of H&E (upper row), toluidine blue staining (middle row), or PCNA (brown) immunostaining (lower row) in nonlesional skin biopsies

obtained from the indicated mouse genotypes. Bars ¼ 50 mm. Black arrows indicate toluidine blue‒positive cells. (b) Quantification of epidermal thickness (mm)

(left panel), quantitative evaluation of mast cell infiltration in the dermis (number of mast cells/mm2) (middle panel), and percentage of PCNA-positive cells in

the epidermis. The average percentage was calculated on the basis of the total number of cells and the number of positively stained cells (right panel). Each

symbol represents the mean value obtained by evaluating 10 tissue section areas from a single mouse (n ¼ 6 for each genotype). Data are presented as mean �
SD. Statistical analysis was performed by classical one-way ANOVA followed by Tukey’s post hoc test. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P <

0.0001. All groups were compared, but only those that reached statistical significance are shown. HPV, human papillomavirus; PCNA, proliferating cell nuclear

antigen.
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ascertain whether transgene expression levels in the two
HPV8-transgenic mouse genotypes may affect skin tumori-
genesis, we measured HPV8 E6 and E7 mRNA levels by RT-
qPCR in epidermal lysates of lesional skin from Rag2‒/‒:K14-
HPV8 versus that from Rag2þ/þ:K14-HPV8 mice. As shown
in Supplementary Figure S5, E6 and E7 mRNA expression
levels did not significantly differ between the two mouse
strains. The mean DCt (�SD) was 2.54 � 1.78 versus 2.64 �
1.10 for E6 transcripts and 3.69 � 0.89 versus 2.54 � 0.77 for
E7 transcripts in Rag2‒/‒:K14-HPV8 and Rag2þ/þ:K14-HPV8
mice, respectively.

Because the major risk factor contributing to skin cancer
development is UVB exposure, either alone or in synergy
with b-HPV infection, especially in immunosuppressed in-
dividuals, we next assessed the effects of a low dose of UVB
exposure on the skin of Rag2‒/‒:K14-HPV8 versus that of
Rag2þ/þ:K14-HPV8 mice. To this end, mice aged 1 month
were exposed to a single UVB dose (0.36 J/cm2) (Figure 3a,
left panel) and then monitored for skin lesion development by
visual inspection. Much to our surprise, all UVB-treated
Rag2‒/‒:K14-HPV8 mice (n ¼ 6) showed very rapidly clear
signs of enhanced skin inflammation, with epidermal thick-
ness and ruffling, quickly expanding to the entire surface of
the skin—about 90% of the surface was ultimately affected
30 days post-UVB exposure (P < 0.01) (Figure 3a, right
panel). This rapid skin deterioration prompted us to kill the
mice by the age of 2 months when papilloma-like lesions
were macroscopically evident in many areas of the skin. As
expected from the very low UVB dose used and the single
exposure, neither Rag2þ/þ:K14-HPV8 nor nontransgenic
control mice displayed any skin alterations over the 1-month
observational period (Figure 3b, first row) (Hufbauer et al.,
2015). When we looked at the histology of the skin in the
different genotypes, we found that the epidermis from UVB-
treated Rag2‒/‒:K14-HPV8 mice had become thicker, with
clear signs of papillomatosis and acanthosis, in comparison
www.jidonline.org 743
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Figure 3. Rag2‒‒/‒‒:K14-HPV8 mice are highly sensitive to UVB-induced inflammation and tumorigenesis. (a) Experimental timeline (left panel). Percentage of

affected skin in WT, Rag2þ/þ:K14-HPV8, Rag2‒/‒:K14-HPV8, and Rag2‒/‒ mice observed for 30 days after UVB irradiation (n ¼ 6 for each genotype). The

formula to calculate the percentage of the affected area is depicted in Supplementary Figure S3. Data are presented as mean � SD. Fischer’s exact test was

performed on day 30 after UVB irradiation. **P < 0.01 (right panel). (b) Phenotypic appearance of WT, Rag2þ/þ:K14-HPV8, Rag2‒/‒:K14-HPV8, and Rag2‒/‒
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with UVB-treated skin from Rag2þ/þ:K14-HPV8 mice (457 �
178 vs. 112 � 48 mm, respectively, P < 0.0001) (Figure 3b
and c). Consistent with the histology, the proliferation rate
measured by PCNA staining in the skin from UVB-treated
Rag2‒/‒:K14-HPV8 mice was significantly higher than that
from UVB-treated Rag2þ/þ:K14-HPV8 mice (Figure 3b and
c). Congruently, significant differences in epidermal thickness
were also found in the skin from UVB-treated Rag2‒/‒:K14-
HPV8 versus that of untreated mice, whereas no differences
were found in the skin from UVB-treated versus in that of
untreated Rag2þ/þ:K14-HPV8 mice (Supplementary
Figure S6). Notably, the number of mast cells present in the
dermis of UVB-treated Rag2‒/‒:K14-HPV8 was also signifi-
cantly greater than that observed in similarly treated dermis
of Rag2þ/þ:K14-HPV8 mice (365 � 87 vs. 129 � 58 cells/
mm2 respectively, P < 0.001) (Figure 3b and c).

The E6 and E7 oncoproteins have been reported to interfere
with DNA damage repair, thus leading to the accumulation of
DNA photoproducts, such as cyclobutane pyrimidine dimers,
which in turn contribute to genomic instability and cancer pro-
gression in many experimental models of HPV-induced skin
carcinogenesis (Deshmukh et al., 2016; Hasche et al., 2017;
Hufbauer et al., 2015; Hufbauer and Akgül, 2017). Thus, we
decided to assess the extent of phosphorylated H2AX (gH2AX)
nuclear staining, a surrogate marker of DNA damage and chro-
mosomal instability, in mice killed 1 month after UVB exposure.
As expected from the very long time passed from the exposure to
such a low UVB dose, UVB-exposed Rag2þ/þ:K14-HPV8 mice
showed very few gH2AX-positive nuclei in the skin (9� 6 cells/
mm2),whereasnoneweredetected in their parental counterparts.
Surprisingly, a significantly increased number of gH2AX-positive
nuclei were found in the skin from UVB-treated Rag2‒/‒:K14-
HPV8 mice (70 � 42 cells/mm2) (Figure 3b and c). To
strengthen these data, we stained serial skin sections with an
antibody recognizing 53BP1, another marker of damaged DNA
recruited to double-strand breaks (Chang et al., 2017; Lei et al.,
2022; Rappold et al., 2001). Consistent with our previous
gH2AX staining, we observed an increased number of cells dis-
playing 53BP1-positive foci (Figure 3d and e) in the skin from
UVB-treated Rag2‒/‒:K14-HPV8 versus from similarly treated
Rag2þ/þ:K14-HPV8 mice (56 � 39 cells/mm2 and 8 � 9 cells/
mm2, respectively, P< 0.001). Notably, the number of cells with
53BP1 foci dropped dramatically in the skin from untreated
Rag2‒/‒:K14-HPV8micewhencomparedwith that of theirUVB-
treated counterparts (56 � 39 cells/mm2 vs. 4 � 4 cells/mm2,
respectively, P < 0.0001).
=
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counterstaining in blue; fourth and fifth row, respectively) immunohistochemical
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To assess whether differential cytokine expression in the
skin could account for the aberrant reaction to UVB observed
in Rag2‒/‒:K14-HPV8 mice, skin protein extracts were
analyzed by BioPlex arrays. As shown in Figure 4 and
Supplementary Figure S7, the expression levels of several
inflammatory cytokines/chemokines (e.g., G-CSF, CXCL-1,
IL-6, monocyte chemotactic protein-1, and IL-1b) were
significantly upregulated in the inflamed skin areas of UVB-
exposed Rag2‒/‒:K14-HPV8 mice in comparison with those
measured in noninflamed and non-UVB‒exposed skin areas
from the same mice. In line with the lack of inflammation
observed in Rag2þ/þ:K14-HPV8 and parental mice on UVB
exposure, none of the cytokines/chemokines mentioned
earlier was upregulated in these genotypes.

The current concepts of enhanced skin cancer develop-
ment in patients with immune defects (e.g., OTRs) emphasize
the important role of impaired immunosurveillance com-
bined with enhanced susceptibility to UVB-induced DNA
damage in this setting (Rollison et al., 2019; Tommasino,
2017). In addition to these two fundamental risk factors, a
series of molecular and epidemiological data support a
functional contribution of some cutaneous b-HPV genotypes,
especially HPV8 and HPV5, in potentiating UVB-mediated
destabilization of the genome and preventing cell cycle ar-
rest that would normally trigger DNA repair mechanisms
(Dacus and Wallace, 2021; Giampieri and Storey, 2004;
Wallace et al., 2015). In particular, b-HPV oncoproteins have
been shown to disrupt the cellular response to UV exposure
by dampening DNA repair mechanisms. The interaction of E6
with the pro-apoptotic protein BAK prevents its accumulation
after UV-irradiation‒induced DNA damage, thus reducing
apoptosis of damaged cells (Holloway et al., 2015;
Simmonds and Storey, 2008; Underbrink et al., 2008). Up-
stream of the inhibition of apoptosis, b-HPV E6 expression
deregulates the G1 to S-phase cell cycle checkpoint in
response to DNA damage, which in turn allows cells with
persistent DNA damage to proliferate (Giampieri and Storey,
2004; Wendel and Wallace, 2017). These effects arise from
the interaction of b-HPV E6 with acetyltransferase p300, an
important coactivator of DNA damage repair gene tran-
scription (Dacus and Wallace, 2021; Marthaler et al., 2017;
Smola, 2017; Wallace and Galloway, 2014). The reduced
availability of the DNA damage repair kinases ataxia telan-
giectasia mutated and ataxia telangiectasia mutated and
Rad3-related as well as BRCA1 and BRCA2 in b-HPV E6‒
expressing cells in vitro significantly delays the repair of
ond row), toluidine blue (third row), PCNA, and gH2AX (brown with nuclear

staining of UVB-irradiated skin from the indicated mouse genotype are shown.

own in the inset corresponds to the square highlighted in the gH2AX images.

of epidermal thickness (mm), the second panel indicates the quantitative

ird panel indicates the percentage of PCNA-positive cells in the epidermis (the

umber of positively stained cells), the fourth panel indicates the quantification

). Each symbol represents the mean value obtained by evaluating 10 tissue

ented as mean � SD. Statistical analysis was performed by classical one-way
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ars (inset) ¼ 5 mm. (e) Quantification of 53BP1-positive cells in the epidermis
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****P < 0.0001. All groups were compared, but only those that reached

ing cell nuclear antigen; WT, wild type.
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Figure 4. Enhanced cytokine/chemokine induction in Rag2‒‒/‒‒:K14-HPV8 mice on UVB exposure. Quantification of G-CSF, CXCL-1, IL-6, MCP-1, and IL-1b
cytokines in UVB-irradiated skin homogenates from WT, Rag2þ/þ:K14-HPV8, Rag2‒/‒:K14-HPV8 (inflamed or non-inflamed skin), and Rag2‒/‒ mice by Bio-

Plex Pro Mouse Cytokine 23-Plex Immunoassay. Each symbol represents the value of an individual mouse (n ¼ 6 for each genotype). Data are represented as

mean � SD. Statistical analysis was performed by classical one-way ANOVA followed by Tukey’s post hoc test. *P < 0.05, **P < 0.01, and ***P < 0.001. HPV,

human papillomavirus; MCP-1, monocyte chemotactic protein-1; WT, wild type.
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UV-induced cyclobutane pyrimidine dimer while increasing
the UV-induced frequency of DNA double-stranded breaks
(Wallace et al., 2015, 2012). In these cells, delayed gH2AX
foci resolution—a known marker of DNA double-stranded
breaks—after exposure to ionizing radiation has been re-
ported (Wallace et al., 2015). Because skin cancer in humans
arises from a long-lasting multistep process where b-HPV
infection is mostly active in the early stages of the disease and
usually not maintained in the overt cancer, it has always been
challenging to definitely prove b-HPV contribution to
tumorigenesis in vivo.

In this study, using an immunocompromised skin-specific
HPV8-transgenic mouse model, we provide the proof of
concept that lack of immunosurveillance and persistence of
UV-damaged cells are both contributing to enhanced skin
cancer development and inflammation in KCs overexpressing
HPV8 E6 and E7 oncoproteins. Specifically, we show that the
lack of immunosurveillance is critical for tumor formation in
terms of both early development and expansion. In the first
weeks after birth, when the skin of Rag2þ/þ:K14-HPV8 mice
looks fully normal, the skin of their Rag2-deficient counter-
parts is already characterized by an unhealthy inflamed
phenotype, which is quickly populated by multiple and
confluent papilloma-like lesions covering the entire skin
surface. This enhanced tumor formation does not appear to
be associated with any changes in skin histology in immu-
nocompromised versus in immunocompetent transgenic
mice, including the abnormal expansion of LRIG1þ KC stem
cells in the upper hair follicles, a phenomenon occurring in
both genotypes (Lanfredini et al., 2017).
Journal of Investigative Dermatology (2023), Volume 143
Another important finding from our in vivo model is the
demonstration that the KCs expressing HPV8 early proteins
display reduced ability to clear UVB-damaged cells, as
indicated by the persistence of a remarkable number of
gH2AX and 53BP1 foci after 1 month from exposure to a
single low dose of UVB. In addition, this accumulation of
damaged cells is accompanied by an increased skin-specific
expression of a series of inflammatory cytokines/chemokines
and enhanced recruitment of mast cells. Altogether, these
findings perfectly fit with the skin inflammatory phenotype
observed in Rag2‒/‒:K14-HPV8 mice, along with the
enhanced and prolonged reaction to UVB exposure. In
addition, the cytokines/chemokines found upregulated in our
setting are known to be crucial in skin inflammation and
enhanced cancer development in a panel of experimental
models (Fitsiou et al., 2021; Mantovani et al., 2008; Neagu
et al., 2019). Although several studies have already shown
a cause‒effect relationship among HPV infection, UVB
exposure, and skin cancer development in transgenic mice
expressing HPV20, HPV38, or HPV8, the impact of immu-
nosuppression on tumorigenesis had not been investigated in
these animal models (Deshmukh et al., 2016; Michel et al.,
2006; Viarisio et al., 2018, 2011).

Although this study does not provide mechanistic details
about the molecular pathways driving skin inflammation and
cancer, for which further studies are clearly needed, our
mouse model shows that the coexistence of immune defects,
b-HPV infection, and UVB exposure promotes the formation
of a highly inflammatory environment in the skin, partly
explained by the persistence of UVB-damaged cells,
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enhanced release of inflammatory cytokines/chemokines,
and abnormal expansion/recruitment of professional inflam-
matory cells (e.g., mast cells).

Overall, this mouse model very much resembles the
phenotype of OTRs who usually developed inflamed skin,
especially in sun-exposed areas, a process also known as
field cancerization (Braakhuis et al., 2003; Gilchrest, 2021;
Olivero et al., 2018; Vanharanta and Massagué, 2012;
Willenbrink et al., 2020). Finally, very likely owing to the
different experimental model used, our manuscript hardly fit
with the data reported by Strickley et al. (2019), which argue
that infection of the skin with commensal cutaneous papil-
lomaviruses induces T-cell immunity and inhibits skin carci-
nogenesis in immunocompetent mice.

MATERIALS AND METHODS
Generation of Rag2‒/‒:K14-HPV8‒transgenic mice,
genotyping, and treatments

The K14-HPV8‒transgenic mice (Schaper et al., 2005) were kindly

provided by the group of Herbert Pfister and Baki Akgül, University

of Cologne (Cologne, Germany). The Rag2‒/‒ mice (Hao and

Rajewsky, 2001) were kindly provided by Cecilia Garlanda from

the Humanitas Research Center (Milan, Italy). Briefly, Rag2‒/‒ mice

were crossed with K14-HPV8 mice to produce the first filial gener-

ation (F1) with mixed genetic backgrounds (FVB/N and C57BL/6).

The Rag2þ/‒ progeny was backcrossed with K14-HPV8 mice to

obtain the first backcross generation (N1). The Rag2þ/‒ mice from

the N1 generation were backcrossed with K14-HPV8 mice for 10

generations to yield the N10 generation with pure FVB/N back-

ground. The N10 mice with Rag2þ/‒:K14-HPV8 or Rag2þ/‒ geno-

types were intercrossed to obtain the genotype Rag2‒/‒:K14-HPV8

(Supplementary Figure S1). Mice were housed under pathogen-free

conditions in our animal facilities in accordance with “The Guide

for the Care and Use of Laboratory Animals,” and the experimen-

tation was approved by the Italian Ministry of Health (agreement

number 500/2019-PR).

Genomic DNA was isolated from tail biopsies of mice aged 10

days by the phenol-chloroform standard method. PCR analysis to

detect the presence of the Rag2 gene was performed using a set of

three primers designed to amplify the DNA sequence of Rag 2 exon

3 and the replacement gene (forward primer: 50eCAAGGA

CGCTCTAGGAATGCA-30, reverse primers: wtREV 50-GCTATGT-

TATGACCCACTGTTAC-30, and mutREV 50-GCTTTACGGTATCGCC

GCTC-30). PCRs were performed on a C1000 Touch thermal cycler

(Bio-Rad Laboratories, Hercules, CA) using the following protocol:

95 �C for 3 minutes, 35 cycles of 94 �C for 30 seconds; 55 �C for 30

seconds; 72 �C for 20 seconds; and a final extension period at 72 �C
for 5 minutes. PCR products were separated by 1.5% agaroseeTAE

gel electrophoresis, and SYBR safe DNA gel stain (Invitrogen, Wal-

tham, MA) was used to detect the separated bands. RAG2 band sizes

were expected to be 324 base pair for the wild type allele and 419

base pair for the mutant allele. The PCR protocols used for the HPV8

transgenes have been described elsewhere (Schaper et al., 2005).

Calculation of the percentage of affected skin

All mice were weekly evaluated by measuring the width (w) and

length (l) of the lesions and the whole skin from the abdomen and

back with a caliper. Areas were calculated with the formula (A) ¼ w

� l. Each mouse’s total lesional area was obtained through the sum

of all the single lesion areas (A1, A2.), whereas the total skin area (A

tot) was calculated by the sum of the abdominal and back areas. The
percentage of affected skin areas was calculated as (lesional area/

total skin area) � 100 as reported in Supplementary Figure S3.

RT-qPCR

The skin was incubated overnight with dispase II 0.5% (Sigma-

Aldrich, St. Louis, MO) at 4 �C, and then the epidermis was me-

chanically separated from the dermis. Epidermal RNAwas extracted

using TRIzol (Thermo Fisher Scientific, Waltham, MA) and retro-

transcribed using iScript cDNA synthesis kit (Bio-Rad Laboratories),

and RT-qPCR analysis was performed as described (De Andrea et al.,

2010; Lanfredini et al., 2017).

UVB irradiation

UVB radiation was generated by a UV device (9021, DELTA OHM,

Caselle, Italy) equipped with a radiometric probe suitable for

measuring radiation in the UV region B (UVB spectral range ¼
280e315 nm). Before UVB exposure, mice were anesthetized (2%

isoflurane), and their back (4 cm2) was shaved with an electric razor.

Anesthetized mice were irradiated once with 0.36 J/cm2 UVB at the

shaved back (Marcuzzi et al., 2009). Mice were checked for 30 days

twice a week for the appearance of tumors.

Histological and immunohistochemical analysis of the skin

Consecutive 5-mm thick tissue sections were cut from formalin-fixed,

paraffin-embedded blocks; dewaxed; and rehydrated using standard

procedures. Serial sections were stained with H&E, toluidine blue, or

primary antibodies against PCNA (P8825 clone PC10, Sigma-

Aldrich), gH2AX (clone JBW301, MilliporeSigma, Burlington, MA),

and 53BP1 (clone E-10, Santa Cruz Biotechnology, Dallas, TX).

Antigen unmasking was performed by microwaving the sections for

10 minutes in 10 mM citrate buffer at pH 6.0 (Vector Laboratories,

Burlingame, CA). Slides were incubated overnight at 4 �C with pri-

mary antibodies diluted in 5% normal goat serum, stained by indi-

rect immunoperoxidase with the substrate 3,30-diaminobenzidine,

counterstained with Mayer’s hematoxylin, and mounted on slides

using VectaMount mounting medium (Vector Laboratories). The

epidermal thickness and the cell number for the quantification of

mast cells, PCNA, gH2AX, and 53BP1-positive cells were recorded

using Fiji software technology.

Cytokine BioPlex assay

Skin lysates were obtained from thawed, homogenized, and soni-

cated tissues using the BioPlex cell lysis kit (Bio-Rad Laboratories).

Proteins were quantified using a BCA assay (Thermo Fisher Scienti-

fic). Tissue lysates were brought to 1 mg/ml using 1� PBS with 0.5%

BSA, and 50 ml were added to each well. Cytokines were measured

by BioPlex Pro mouse Cytokine 23-Plex Assay (Bio-Rad Labora-

tories) according to the manufacturer’s instructions. Data were ac-

quired and analyzed with a Luminex device using the Bio-Rad Bio-

Plex System and Bio-Plex Manager Software.

Statistical analysis

All statistical analyses were performed using GraphPad Prism

(GraphPad Software, San Diego, CA), version 6.00, for Windows;

data are expressed as mean � SD. For comparisons among three

groups, means were compared using one-way ANOVA followed by

Tukey’s post hoc test. Fisher’s exact test was used for the analysis of

tumor incidence and lesional skin expansion. Significance was set at

P < 0.05.
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Supplementary Figure S1. Flowchart

of the breeding procedure used to

generate Rag2‒‒/‒‒:K14-HPV8 mice.

HPV, human papillomavirus.

C Borgogna et al.
Enhanced Skin Tumorigenesis in Immunosuppressed HPV8-tg Mice
Supplementary Figure S2. Rag2‒‒/‒‒:K14-

HPV8 mice aged 5 months showing

lesions spreading to most of the skin

surface, including the legs.HPV, human

papillomavirus.
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Supplementary Figure S3. Formula to calculate the percentage of the

affected areas. A, area; A1/2/3, area of the lesion; l, length; w, width.

Supplementary Figure S4. Rag2‒‒/‒‒:K14-HPV8 mice develop skin squamous cell carcinoma. (a, b) Representative pictures of the two Rag2‒/‒:K14-HPV8 mice

displaying skin squamous cell carcinoma. Panels c and d show the H&E images of the cutaneous lesions from the mouse of panel a. The tumors display well-

differentiated areas with pearl-like structures surrounded by dermal nests of atypical keratinocytes (panel c) and ulcerated areas showing dysplastic foci (black

arrow in panel d). Bar (red) ¼ 50 mm; bar (blue) ¼ 100 mm. HPV, human papillomavirus.
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Supplementary Figure S6. Quantification of the epidermal thickness (mm) in Rag2D/D:K14-HPV8 (green) and Rag2‒‒/‒‒:K14-HPV8 (red) mice with or without

UVB irradiation. Each symbol represents the mean value obtained by evaluating 10 tissue section areas from a single mouse (n ¼ 6 for each genotype). Data are

presented as mean � SD. Statistical analysis was performed by classical one-way ANOVA followed by Tukey’s post hoc test. ****P < 0.0001. All groups were

compared, but only those that reached statistical significance are shown. HPV, human papillomavirus.

Supplementary Figure S5. HPV8 E6 and E7 transgenes are equally

expressed in the lesional epidermis of the two HPV8-transgenic mice. RT-

qPCR analysis of HPV8 E6 and E7 mRNA expression levels in lesional skin

from Rag2þ/þ:K14-HPV8 (green; n¼3) and Rag2‒/‒:K14-HPV8 (red; n¼3).

Values were normalized to mouse-specific b-actin and plotted as DCt. Data

are represented as means � SD. HPV, human papillomavirus.
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Supplementary Figure S7. Cytokine and chemokine profile in UVB-irradiated skin homogenates from WT, Rag2D/D:K14-HPV8, Rag2‒‒/‒‒:K14-HPV8 (inflamed

or non-inflamed skin), and Rag2‒/‒ mice using Bio-Plex Pro Mouse Cytokine 23-Plex Immunoassay. Each symbol represents the value of an individual mouse

(n ¼ 6 for each genotype). Data are represented as mean � SD. Statistical analysis was performed by classical one-way ANOVA followed by Tukey’s post hoc

test. *P < 0.05, **P < 0.01, and ***P < 0.001. All groups were compared, but only those that reached statistical significance are shown. HPV, human

papillomavirus; MCP-1, monocyte chemotactic protein-1; WT, wild type.
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