
09 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Interpretable Fair Distance Learning for Categorical Data

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer Nature

This is the author's manuscript

This version is available http://hdl.handle.net/2318/2032190 since 2024-11-27T08:42:27Z



Interpretable Fair Distance Learning for
Categorical Data

Alessio Famiani1, Federico Peiretti1[0000−0001−7648−162X], and Ruggero G.
Pensa1[0000−0001−5145−3438] (�)

Department of Computer Science, University of Turin, Italy
{alessio.famiani,federico.peiretti,ruggero.pensa}@unito.it

Abstract. Categorical features are widespread in many decision sup-
port systems relying on personal and sensitive data, such as credit scor-
ing or personalized medicine and are not exempt of bias and fairness
concerns. Unfortunately, bias mitigation techniques based on represen-
tation learning for categorical data are poorly studied and most solutions
are limited to using the same approaches designed for numeric data on
one-hot encoded features. To fill this gap, we propose FairDILCA, a fair
extension of a known framework for learning distances on categorical
data, which exploits co-distributions of attributes values for computing
distances. FairDILCA considers the correlation of the features w.r.t. the
protected one to create an unbiased representation of the data, making
any subsequent analysis and learning task fairer. Furthermore, it also
represents a more interpretable option than typical representation learn-
ing approaches, since it relies on deterministic and clear computational
steps. Thanks to extensive experiments, we show the effectiveness of our
framework also when applied to a classification task and in comparison
with a state-of-the-art method pursuing a similar objective.

Keywords: Categorical features · Distance learning · Fairness.

1 Introduction

Throughout the years, machine learning gained an increased notoriety for several
infamous incidents that harmed people by reinforcing prejudices and discrimi-
natory patterns. Such events have raised awareness of the topic and gave birth
to a more trustworthy branch of AI, called Responsible AI, other than to laws,
regulation and guidelines [10] aimed at dealing with ethical issues like privacy,
explainability, transparency, fairness, or environmental sustainability [28]. Some
of these concerns have origin from prejudices encoded in the data used to train
ML models, either because the captured phenomenon is itself biased or for other
factors. In fact, a dataset recording information about individuals may contain
the so called protected features (i.e. gender, sexual orientation, etc...), details that
can be used to infer membership to some social categories of people, hence can be
exploited in a decision making setting and may result in unfair outcomes. Direct
discrimination, known under the name of “disparate treatment” [3], occurs when
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a protected attribute is used explicitly in the decision process and it is prohibited
by various laws and regulations. The simple omission or oversight of such features
may not be enough to solve all unfairness issues within a dataset. In fact, other
features could encode parts of the sensitive information and act as proxies for
the protected characteristics. This is especially true in high-dimensional cases.
This more indirect and maybe involuntary manner of discriminating is closer to
the notion of “disparate impact” [3]. Consequently, a sub-branch of Responsible
AI, called Fair ML, studies debiasing strategies with the goal of dealing with dis-
crimination and prejudices in data and models [24]. Most existing fairness-aware
ML techniques are task-dependent and try to mitigate discriminating descriptive
or predictive patterns in the output model [31, 1]. Another branch of research
focuses on learning new fair, and often latent, representations of data, hence con-
sidered task-independent [30, 25]. Most state-of-the-art approaches assume that
the data are numeric or that categorical data have either been one-hot encoded
or roughly handled. However, it has been shown that commonly used data engi-
neering steps within the ML pipeline, such as data encoding [20] or other data
transformations techniques [6], can have a big impact on fairness. For example,
evidences found in studies like these suggest that one-hot encoding tends to dis-
criminate more in terms of equality of opportunity than target encoding and
that transformation techniques, especially the ones altering data distribution,
along with factors like dataset size or the classifier choice, can have a harmful
influence on fairness as well [20]. Nonetheless, categorical attributes are ubiqui-
tous in tabular data and in many sensitive applications using personal data, such
as credit approval, hiring and healthcare decision support systems. In addition,
very few works in literature focus on learning distances and stating similarities
between objects in a fair manner [21, 34, 16, 32], especially on categorical data.

To fill this gap, we propose a method to learn fair distances in categorical data
starting from a known framework for distance computation called DILCA [11],
which assumes that the co-distributions of feature values within the dataset can
help define more accurate distances between attribute values. Nevertheless, dis-
tances computed by DILCA are based on data and they are not immune to
fairness concerns. Consequently, its application can result in biased outcomes,
both in the computed distances and in the subsequent learning tasks based
upon them. Hence, in this paper we introduce an extension of DILCA, called
FairDILCA, that includes fairness considerations in all computational steps in
order to produce a debiased version of the pairwise distance matrix. We show
experimentally that FairDILCA can lead to fairer distances and, consequently
to less discriminating usages of them in typical ML tasks, also compared to a
recent state-of-the-art pre-processing technique [29]. To the best of our knowl-
edge, FairDILCA is the first framework specifically tailored to categorical data.
Interestingly, since all algorithms implementing the framework are deterministic
and based on fully interpretable steps, the outcomes of the overall framework
can be easily explained, thus meeting transparency requirements.
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2 Background and Related Work

In this section, we present the background notions required to understand how
our framework works, and a literature overview of related concepts in the field.

2.1 Fair ML approaches for categorical data

Fair ML refers to algorithmic solutions used to assess and mitigate biases in var-
ious steps of the ML pipeline. In literature, fair ML algorithms can be roughly
grouped into three types of approaches [2] depending on where the bias re-
duction process is employed within the pipeline. Some approaches are based
on in-processing and post-processing techniques. The former apply the debias-
ing procedure at training time [14, 33], while the latter focus on transforming a
model output considering protected attribute values and group membership [13].
Our method, instead, can be classified as a pre-processing technique.

Pre-processing methods apply bias mitigation ahead of the learning process,
and focus on creating a new representation or sample of the data containing
less cues about protected features. This can be achieved, for instance, by ran-
domly mapping each sample while considering fairness, utility and distortion
constraints [7] or reweighing instances depending on label and group member-
ship or sampling data according to the inferred weights [12]. Studies regarding
fair representation through Adversarial Learning are pretty popular as well, and
they usually rely on Generative Adversarial Networks (GANs) to be able to gen-
erate unbiased synthetic data [30] or on learning representations for individual
fairness via logical constraints [25]. The main advantage of these approaches
is that they usually are agnostic to tasks and models and, because of this, in
literature they are considered among the most flexible solutions. However, repre-
sentations constructed in the attempt of obfuscating sensitive information might
belong to latent spaces, thus raising explainability and transparency concerns.
Instead, in [29], the authors define a method that applies a linear transformation
to the non-sensitive feature columns in order to remove their correlation with
the sensitive ones while retaining as much information as possible. Even in this
case, the transformation can not be applied on categorical features directly.

The majority of state-of-the-art studies on Fair ML for categorical data are
task-dependent and involve in-process mechanisms using basic distance measures
(such as the overlap) to effectively deal with categorical data as in [26]. Instead,
in [1] a regularisation term is integrated into the objective function and a clus-
tering is considered fair if it is both coherent, when measured on non-sensitive
attributes, and approximate data distribution when measured on protected fea-
tures. For what concerns fair distance learning, few works exists in literature
[21], [34], [16], [32]. For example, [34] describe a way for computing distances
between two instances by leveraging on causal notions with the aim of focus-
ing on a subset of relevant non protected attributes. In [16] instead, a weighted
euclidean distance is learnt following the idea that features with the highest im-
pact on the target should contribute the most. However, again, categorical data
is usually encoded in a raw numeric fashion or handled using overlap measures.
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This unrefined treatment of such type of data, other than diminishing utility,
can introduce biases and have a major impact on model fairness. To the best
of our knowledge, there is no literature on fair distance learning on categorical
attributes.

2.2 The DILCA framework

DILCA [11] is an unsupervised framework created with the purpose of learn-
ing context-based distances between pairs of values of a categorical attribute.
This is achieved by seeing how these values and those of other attributes are
co-distributed within a given dataset. The underlying key idea is that the con-
text is crucial for defining similarities between values, thus between objects. For
example, consider an attribute like Animal whose values are inside the following
set {Cat,Dog, Cougar}, depending on the context, Cat could be more similar
to Dog, if one is talking about pets, or to Cougar, if one is talking about felines.

DILCA has two major steps: context selection, where, for a given target
attribute, a subset of attributes considered relevant is computed; distance com-
putation, where the distances between attribute pair values are measured and
can be used to calculate the distance between objects. More formally, given a
dataset of n data objects D = {o1, . . . on} each described by a set of m cate-
gorical features denoted by F = {X1, X2, ..., Xm} and a feature Y ∈ F , referred
to as the target1, i.e., the one on which the context computation is required,
the relevant features collected for the target form the so called context of Y ,
denoted by CY ⊆ F\{Y }. Additionally, the j-th value of the i-th feature Xi of
the dataset is referred as xj ∈ Xi and, similarly, yi denotes the i-th value of Y .

In DILCA, the context selection is performed in two different ways: a para-
metric one called DILCAM , and an automatic feature selection one called
DILCARR. They both use an information gain based metric called Symmet-
ric Uncertainty (SU), to measure the correlation between two attributes. It is
defined as:

SU(Y,X) = 2 · H(Y )−H(Y |X)

H(Y ) +H(X)
(1)

where H is the entropy, determined as:

H(Y ) = −
∑
i

P (yi)log2(P (yi))

P (yi) being the probability of the value yi of Y . Analogously,

H(Y |X) = −
∑
j

P (xj)
∑
i

P (yi|xi)log2(P (yi))

where P (yi|xi) is the probability that Y = yi given the observation X = xi.
In the remainder of the paper, the notation SUY (Xi) indicates the Symmetric
Uncertainty of Xi for the target Y .
1 Not to be confused with the task-related target (class) variable.
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The parametric method DILCAM add Xi into the context of a target feature
Y if SUY (Xi) is above the mean value, SUY , whose influence is controlled by a
parameter σ ∈ [0, 1]. Formally, the mean of SUY is determined as follows:

SUY =

∑
xi∈F\Y SUY (Xi)

|F \ {Y }|

and the context for a given target variable Y is built by collecting attributes Xi

that satisfy the following condition:

CY = {Xi ∈ F |Xi ̸= Y ∧ SUY (Xi) ≥ σ · SUY }.

DILCARR, instead, is based on a feature selection algorithm that first iden-
tifies a set of significant features and then removes the ones which are considered
redundant [23]. More precisely, in the relevancy step, features Xi ̸= Y are ranked
by decreasing order of SUY (Xi). In the redundancy step features that carry sim-
ilar informative details are removed from the ranking obtained in the previous
step. Given two attributes, X1 and X2, both considered relevant to Y , X2 is
considered redundant w.r.t. X1 if SUX1(X2) ≥ SUY (X2).

Once an appropriate context is returned for a target feature Y , the distance
d(yi, yj) between every pair of its values (yi, yj) can be determined as follows:

d(yi, yj) =

√∑
Xi∈CY

∑
xk∈Xi

∑
(P (yi|xk)− P (yj |xk))2∑

Xi∈CY
|Xi|

(2)

Finally, after all the distances between categorical attributes values Xi are
determined and stored in a matrix MXi

, the usual distance measures can be
applied, e.g. the one below:

d(ok, oj) =

√ ∑
Xi∈F

MXi(ok.Xi, oj .Xi)2 (3)

where ok is the k-th data object and ok.Xi the value of attribute Xi in ok.
DILCA has been applied in different distance-based application scenarios,

such as ensemble learning [27] and clustering of large data [18]. More recently,
in the context of Responsible AI, a differentially-private extension has been pro-
posed [4]. Our contribution, called FairDILCA, extends DILCA to meet fairness
needs, resulting in a task-agnostic approach that natively supports categorical
data and is both more explainable and transparent.

3 The FairDILCA framework

The application of DILCA can reinforce existing biases in data, either because
they are directly encoded by sensitive features or indirectly by features that
act as proxies. Consider for instance a simple dataset like the one in Table 1
that contains details about hiring outcomes in the tech industry. Each person
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is described by four characteristics: their gender, the job position they applied
to, their level of experience for the job in question, if they apply for a part-time
job or not, plus whether they were hired and got the job or rejected. Intuitively,
relevant attributes for this setting are the job position and, more importantly,
the level of experience. Gender, which is the sensitive attribute S, should not be
taken into account in the decision of hiring (or not) someone from a fair decision
process perspective. Also note that Part-time is a known proxy for gender.

Table 1. Toy dataset

ID Gender (G) Job Position (J) Experience (E) Part-time (P) Hired

1 Male Software Engineer High False True
2 Female Software Engineer High True False
3 Male Data Scientist Medium False True
4 Female Data Scientist High True False
5 Male Web Developer Low False False
6 Female DB Admin Low False True
7 Female UIX Designer Medium True True
8 Male Software Engineer High False True
9 Male Software Engineer Medium False False
10 Female Help Desk Medium True True
11 Female Cybersecurity Analyst High True False
12 Female Network Admin High True False
13 Female Cybersecurity Analyst Medium False False
14 Male Cybersecurity Analyst Medium False True
15 Male Network Admin Medium True True
16 Male Network Admin Low True True

Discrimination within DILCA can happen while selecting a context for a tar-
get attribute Y . Relevant features are collected with the aim of later computing
distances between pairs of its attribute values. Hence, it is crucial to act at this
stage. Assume th use of DILCAM , after the computation of the matrices needed
for storing the SU and related metrics (see equations in Section 2.2), the con-
texts for the four categorical attributes (the target variable Hired is not taken
into account by the framework) would be respectively, {J, P} for Gender, {E,P}
for Job Position, {J} for Experience and {G, J} for Part-time. Take the context
of Gender as instance. Since DILCAM is used, attributes are selected according
to the values of SU (in this case, the column of the matrix concerning G are
SUY=G(J) ≃ 0.087, SUY=G(E) ≃ 0.021, SUY=G(P ) ≃ 0.094) that exceed the
mean value SUY=G ≃ 0.067. As it can be noted, the protected attribute is more
correlated to Part-time (with an SUY=G(P ) ≃ 0.094 > 0.067), which, as we said,
is a known proxy of Gender, and Job Position (with an SUY=G(J) ≃ 0.087).
DILCA isn’t aware of ethical concepts, and if it takes directly into consideration
such sensitive information, so does the subsequent learning algorithm, leading to
possible discrimination towards people in the learning task (i.e. classification).
Take as example object 14: according to DILCA object 3 is more similar to it
because Gender is directly taken into account and has the same importance of
the other attributes. However, object 13 would be a better option since, aside
Gender, the job position and the other attributes values are the same. In an
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automated decision system scenario, data generated by DILCA could eventually
contribute to a gender bias in a subsequent applied classification task.

To avoid issues like these, we introduce FairDILCA (Fair DIstance Learn-
ing for Categorical Attributes), consisting of a regularisation approach inside
the context selection step, promoting the selection of attributes that are as ac-
curate and unbiased as possible w.r.t. a sensitive attribute S, and a debiased
distance computation method, where a term weighs the contribution of the dif-
ferent attributes to the distance according to their correlation to S. In addition,
a parameter can regulate the degree of fairness involved and so the accuracy
trade-off, making FairDILCA a more suitable option in scenarios requiring more
control by the users. It is worth noting that, in this paper, we consider a single
specified sensitive attribute S at a time. However, the framework can be easily
extended for considering data with multiple sensitive attributes.

3.1 Fair Context Selection

In the standard DILCA framework, the context selection step is performed to
gain relevant attributes w.r.t. a feature taken as the target Y . Simply removing
a sensitive feature can improve fairness, but is not as effective as removing the
informative content of it from the whole dataset. To decide whether an attribute
is part of the context CY , not only must we consider how a feature is linked to
the target Y , but also how it is correlated to the sensitive attribute S.

To this purpose, we define a new correlation coefficient based on the Sym-
metric Uncertainty which we call Fair Correlation Coefficient (FCC), that states
how much an attribute Xi is a proxy for the protected attribute S w.r.t. another
attribute Xj . In addition, FCC relies on a parameter, named α, that regulates
the amount of fairness one want to achieve and ranges between 0, which corre-
sponds to the non-fair case, and 1, corresponding to a case with the highest level
of fairness. The new correlation coefficient is defined as follows.
Definition 1 (Fair Correlation Coefficient). Given two attributes Xi, Xj ∈
F and a parameter α ∈ [0, 1], the Fair Correlation Coefficient is computed as

FCCXj (Xi) = (1− α)SUXj (Xi) + α(1− SUS(Xi)) (4)

where SUXj
(Xi) is the Symmetrical Uncertainty between Xi and Xj as defined

in Equation 1.
If the value of α is 0, vi becomes equal to SUXj (Xi), which leads to the same out-
come of the original non-fair DILCAM . Instead, if α = 1, FCCXj

(Xi) becomes
equal to (1− SUS(Xi)) and states how much Xi is a proxy for the sensitive at-
tribute S. Note that, although the FCC is based on the Symmetric Uncertainty,
it is not symmetrical. Furthermore, in this setting, the context of the target
variable Y should not include Y itself, nor the sensitive attribute S.

As the original framework, FairDILCA has two main ways of computing a
relevant context, FairDILCAM and FairDILCARR, which are the fair coun-
terparts of DILCAM and DILCARR (see Section 2.2). Additionally, we also
define a parameterless algorithm, called FairDILCAPL, which does not rely on
the FCC and, consequently, does not require the setting of parameter α.
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FairDILCAM Like the original DILCAM selection method, FairDILCAM

focuses on selecting the relevant subset of features by observing a mean value
whose influence is controlled by the original σ parameter. However, for the com-
putation of the mean value, instead of using SUY (Xi), it takes into account
FCCY (Xi) in the following way:

FCCY =

∑
Xi∈F\{Y ∪S} FCCY (Xi)

|F\{Y ∪ S}|
(5)

Then, an attribute Xi is included in the context for a given target variable Y
when it satisfies the condition:

CY = {Xi ∈ F |Xi ̸= Y ∧Xi ̸= S ∧ FCCY (Xi) ≥ σ · FCCY } (6)

Consider again the example in Table 1. After calculating the FCC values upon
the SU matrix, FairDILCAM would collect the attributes whose FCCs are
above the mean. This leads to computing the following contexts for the four
categorical attributes: {∅} for Gender, {E} for Job Position, {J} for Experience,
and {E} for Part-time. Focusing on Job Position, the only collectable attribute
above the mean value is Experience (with a value of FCCJ(E) ≃ 0.97 against
the FCCJ(P ) ≃ 0.89 of Part-time and a mean value of FCCJ ≃ 0.932). As
expected, neither the sensitive attribute nor its proxy are counted as relevant
attributes giving space to Job Position and Experience, making object 13 more
similar to object 14. This way we ensure that distances won’t depend on the
informative parts of Gender in the data, making any later learning fairer.

Algorithm 1 FairDILCAM(D, F , Y , S, σ, α)
1: MFCC = (FCCα(Xi, Xj))i=1...m,j=1...m

2: FCCY = 1
m−2

∑
Xi ̸=Y MFCC(Xi, Xj)

3: CY = {∅}
4: for all Xi ∈ F\{Y ∪ S} do ▷ the context cannot contain Y nor S

5: if MFCC(Y,Xi) ≥ σ · FCCY then
6: CY = CY ∪ {Xi}
7: end if
8: end for
9: return FairDistanceComputation(D,Y,CY )

In Algorithm 1, we report the pseudocode of FairDILCAM . After the matrix
MFCC recording all FCC values between attributes is computed3, the mean of
the FCC values between the target attribute Y and the other attributes is
calculated excluding Y itself and the sensitive attribute S. Then, the context
selection is performed according to the rule of Equation 6. Once the context is
fully determined, the fair version of the distance computation is performed to
compute the matrix of distances between any pair of values of Y .
2 Parameter α was set to 0.99
3 We remind that MFCC is not symmetric, as, in general FCCXi(Xj) ̸= FCCXj (Xi).
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FairDILCARR This method (described in Algorithm 2) is substantially similar
to DILCARR (see Section 2.2), but instead of using the Symmetric Uncertainty,
it computes the FCC (see Equation 4). In the relevancy step the candidate
attributes Xi are ranked according to the values of FCCY (Xi), in decreasing
order. In this way, the ranking takes into account both the correlation of Xi

w.r.t the target Y and that with the sensitive feature S, depending on the
fairness parameter α. In the redundancy step, candidate attributes for the CY are
collected if an attribute Xi has FCCY (Xi) > FCCXj

(Xi) ∀Xj ∈ F \ {Y,Xi}.
Better explained, Xi is not redundant if the FCC that links Xi to Y , FCCY (Xi),
is greater than the FCC linking Xi to every other attribute Xj with j ̸= i.

Algorithm 2 FairDILCARR(D, F , Y , S, α)
1: MFCC = (FCCα(Xi, Xj))i=1...m,j=1...m

2: CY = {X ∈ F\{Y ∪ S}}
3: for all Xi ∈ CY in descending order w.r.t. MFCC(Y,Xi) do ▷ Relevancy step
4: for all Xj s.t. MFCC(Y,Xj) ≤ MFCC(Y,Xi) do
5: if MFCC(Xi, Xj) ≥ MFCC(Y,Xj) then ▷ Redundancy step
6: CY = CY \ {Xj}
7: end if
8: end for
9: end for

10: return FairDistanceComputation(D,Y,CY )

FairDILCAPL In this variant, an additional step, the sensitivity check step,
is added to the original DILCARR strategy to remove those features, excluding
Y , that act as proxies for the sensitive feature S. Basically, an attribute Xi is
removed from CY if the following condition is satisfied:

SUS(Xi) > SUY (Xi) (7)

More intuitively, an attribute is removed from CY if it is more informative for the
sensitive attribute than the target attribute. The last variant, with the context
computed regardless of α is showcased in Algorithm 3.

Note that, for a given Y , when all other attributes Xi are too strongly corre-
lated with S, the resulting context could be empty. When it happens, it means
that Y should be filtered out during computation of the pairwise object distance.

3.2 Fair Distance Computation

To compute the distance between any pair of values of the same target attribute
Y , the fair method differs from its non fair counterpart by the inclusion of a
term γi that weighs the contribution of the probability differences between each
pair of attribute values. More formally:

dfair(yi, yj) =

√√√√∑
Xi∈CY

∑
xk∈Xi

γi (P (yi|xk)− P (yj |xk))
2∑

Xi∈CY
γi|Xi|

(8)
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Algorithm 3 FairDILCAPL(D, F , Y , S)
1: MSU = (SU(Xi, Xj))i=1...m,j=1...m

2: CY = {X ∈ F\{Y ∪ S}}
3: for all Xi ∈ CY in descending order w.r.t. MSU (Y,Xi) do
4: if MSU (S,Xi) ≥ MSU (Y,Xi) then ▷ Sensitivity step
5: CY = CY \ {Xi}
6: end if
7: end for
8: for all Xi ∈ CY taken in descending order w.r.t. MSU (Y,Xi) do ▷ Relevancy step
9: for all Xj s.t. MSU (Y,Xj) ≤ MSU (Y,Xi) do

10: if MSU (Xi, Xj) ≥ MSU (Y,Xj) then ▷ Redundancy step
11: CY = CY \ {Xj}
12: end if
13: end for
14: end for
15: return FairDistanceComputation(D,Y,CY )

where γi =
1−SUS(Xi)

n−
∑

i SUS(Xi)
and n = |CY |. Note that γi is directly proportional to

1
SUS(Xi)

and
∑

αi = 1. The procedure is described in Algorithm 4.

Algorithm 4 FairDistanceComputation(D, Y , CY )
1: for all Xi ∈ CY do ▷ Compute all γi coefficients
2: γi =

1−SUS(Xi)

|CY |−
∑

Xi∈CY
SUS(Xi)

3: end for
4: for all yi, yj ∈ Y s.t. yi ̸= yj do

5: MY (yi, yj) =

√∑
Xi∈CY

∑
xk∈Xi

γi

(∑
(P (yi|xk)−P (yj |xk))2

)
∑

Xi∈CY
γi|Xi|

6: end for
7: return MY

As final remark, it is worth noting that, when computing the distance between
object pairs, the sensitive attribute and all other attributes with empty contexts
should not be taken into consideration. If CY is empty for all Y , than computing
a fair distance in unfeasible and the algorithm fails. However, this condition never
happens in our experiments.

3.3 Characteristics of the FairDILCA framework

FairDILCA offers various key features, depending on the specific version adopted.
First of all, it belongs to the family of pre-processing techniques and can pro-
duce a debiased version of the input data. This can then be used by subsequent
distance-based learning algorithms that do not necessarily need to consider fair-
ness constraints in order to produce fairer outcomes. In other terms, it is task-
agnostic.

Another non-trivial benefit is the availability of both parametric and non-
parametric variants. On the one hand, the parameter α allows the user to control
the level of desired fairness involved and, consequently, the trade-off between
accuracy and bias reduction, making FairDILCA a flexible option that can adapt
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to different contexts. On the other hand, FairDILCAPL can be used in all
application scenarios when deciding a trade-doff is difficult or even impossible.

Furthermore, due to its nature, FairDILCA works in a white-box fashion, as
it returns distances between object pairs that can be traced back to attributes
contexts, created by following a features selection process based on notions like
relevancy and correlation to the protected attributes. This makes FairDILCA
more explainable and transparent, and thus more trustworthy.

4 Experiments and discussion

This section reports the experiments conducted to assess the performance of
FairDILCA in terms of accuracy and fairness. Two types of experiments were
conducted. The first aimed at assessing the output of the framework alone, specif-
ically the distance matrices. The second was designed to assess the accuracy
and fairness of a classification task applied to the distance matrices learnt by
FairDILCA. As direct competitor, we use CorrelationRemover [29] (hereinafter
referred to as CR), which distorts the original data matrix by smoothing the
correlation of any variable w.r.t. the sensitive one. When using CR, the data are
not discretized, but categorical attributes are converted into numeric ones using
one-hot encoding (as CR works on numeric data only). Consequently, distances
of data processed by CR are computed according to the standard Euclidean (ℓ2)
norm. CR adopts a parameter (also called α) that controls the amount of fairness
one wants to guarantee when debiasing the data.

All DILCA variants are implemented in Python. We use the implementation
of CR provided in the Fairlearn package4, while we use the machine learning
algorithms available in Scikit-learn. The source code for reproducing all our
experiments is available online5.

The datasets used in our experiments are all downloaded from the UCI Ma-
chine Learning Repository [15], and are typically adopted in the evaluation of
fairness frameworks for tabular data. Their size in the number of data objects
and features, alongside the details about the protected attributes, the number
of categorical features available, the task-specific target attributes are given in
Table 2. Note that, since FairDILCA and its non-fair counterpart only support
categorical data, before applying them, we discretize the numerical features using
K-Means with five bins.

4.1 Assessment of the distances learnt by FairDILCA

As first experiment, we assess the distance matrices resulting from the applica-
tion of FairDILCA to categorical datasets with the goal of measuring their dis-
tortion compared to the original ones (as computed by DILCA) as well as their
actual fairness. To measure the distortion, we compute the Pearson’s correlation

4 https://github.com/fairlearn/fairlearn
5 https://github.com/alessiofamiani/FairDILCA
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Table 2. Datasets used for performance evaluation

Dataset #Objects #Features #Cat. Feat. Sens. Attr. Task Target

Adult (S) [5] 32 561 15 9 Sex Income
Adult (R) [5] 32 561 15 9 Race Income
Obesity [22] 2 111 17 9 Gender Obesity Lv.
Bank Marketing [19] 45 211 17 10 Marital status Deposit sub.
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Fig. 1. Pearson correlation coefficient on pairwise object distances (top) and Average
distances between the largest protected groups and all the other groups for FairDILCA
(middle) and CR (bottom). NFHE stands for Non Fair one-Hot Encoding.

coefficient between the pairwise object distance matrix after the application of
FairDILCA and CR, and the ones computed, respectively, by DILCA on cate-
gorical data and by CR on numeric ones. The fairness is measured by computing
the average distance between objects belonging to the minority groups (MiGs),
i.e., the least represented groups within the dataset, and those belonging to the
majority one (MaG), i.e., the most represented group within the dataset. The
rationale is that the more fairness is demanded (i.e., the greater the value of
α), the more similar the objects belonging to different protected groups. Con-
sequently, when α increases, we expect a decrease in the value of the average
distances between objects in the MiGs and objects in the MaG.

The results are given in Figure 1. In the top row, we report the values of
the Pearson correlation coefficient for increasing values of α. Interestingly, while
the decrease of the Pearson’s correlation coefficient is smooth, FairDILCA has
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a stable behavior for low and medium values of α. Then it decreases faster,
although it remains on higher values compared to CR. Instead, the decrease on
the average distances between MaG and MiGs is unexpectedly counterintuitive
in CR (bottom row), with the exception of Obesity, while it is more coherent in
FairDILCA (middle row). This confirms that our method actually reduces the
distances between data objects belonging to different protected categories, while
containing the distortion within reasonable limits.

(a) DILCAM (b) FairDILCAM (c) NFHE (d) CR

Fig. 2. t-SNE computed on Adult (S) in the top row and Obesity (bottom).
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Fig. 3. Macro-averaged F1-score (top) and fairness measures (bottom) of kNN.

To better investigate the behavior of FairDILCA and CR, we apply t-SNE [17]
to their representation in comparison with their non fair counterparts. More
in details, we use the original numeric data and the representations learnt by
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DILCAM , FairDILCAM with α = 0.5 and CR with the same α. In Figure 2
we report the 2D visualization where each point is colored according to the
protected group membership for Adult (top) and Obesity (bottom). The plots
confirm that both algorithms work reasonably well on Obesity, while on Adult
(S) the transformation applied by CR makes the data even more biased compared
to its non fair counterpart. It is worth noting that, without the fair adjustment,
DILCA stresses the differences between Males and Females in Adult.

4.2 Results on classification

Here, we discuss the results of the application of a traditional machine learning
task on the representation learnt by FairDILCA, compared with the same task
applied to the the representation computed by CR and DILCA. In more detail,
we consider a classification task using kNN with k = 23 in all experiments6.
After splitting the dataset into training set (70% of the data instances) and test
set (the remaining 30%), we first learn all transformations on the training data
and apply them on both sets. Hence, for the fair and non fair versions of DILCA,
we discretize the whole data according to the bins learnt on the training set only.
Then, all (Fair)DILCA distances are learnt on the training set and applied on the
whole dataset. As regards CR, after applying one-hot encoding on categorical
attributes, the fair transformation is learnt on the training set only and then
applied on the whole dataset. Finally, for measuring the performance of the
classifier, we compute the macro-averaged F1-score on the test set. To assess the
fairness of the results, we use three different metrics depending on the specific
application of each dataset, as suggested in [8]. So, we compute the demographic
parity ratio (DPR) for Adult, the equalized odds ratio (EOD) for Obesity and the
equal opportunity ratio (EOP) for Bank Marketing, three recognized measures
for assessing the presence of biases in decision support systems [9]. For all these
three measures, higher values imply fairer predictions.

The results are reported in Figure 3. The top row displays the macro-averaged
F1-score of the classifier. It indicates that DILCA generally performs better on
categorical data than one-hot encoding approaches on it. Additionally, the F1-
score of FairDILCA is more stable and, in some cases, even better than the
non-fair variants. FairDILCA also produces fairer predictions than DILCA. In-
terestingly, CR exhibits a counterintuitive behavior in all datasets except Obe-
sity, as its fairness decrease for higher values of α.

5 Conclusion

We have introduced FairDILCA, an extension of a popular distance learning
framework for categorical data, which takes into account fairness observations in
both the context selection and the distance computation stages. To this purpose,
we have defined a parametric fair correlation measure together with two different

6 We choose a rather high value of k to stabilize the behavior of the classifier.
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strategies to use it in the context computation stage. Moreover, we have defined
a fully parameterless strategy relying on the standard symmetrical uncertainty,
already used by the non fair version of DILCA. As clues have showed, FairDILCA
have promising performances in terms of fairness with a reasonable perturbation
degree in comparison with the distance matrices returned by the original DILCA.

One technical limitation to the effectiveness of FairDILCA lies in the need for
discretization of numerical data in order to compute the conditional probabilities
used in the computation. This may have an impact on the fairness itself, as
discretization can introduce bias in the data, and we plan to investigate deeper
this issue as future work. Another opportunity of improvement for FairDILCA
lies in the support of multiple sensitive attributes at a time, an aspect that is
generally overlooked in the literature, but of crucial importance for the correct
management of fairness issues in data science and machine learning applications.
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