
Article https://doi.org/10.1038/s41467-023-40114-2

Neural network-based Bluetooth
synchronization of multiple wearable
devices

Karthikeyan Kalyanasundaram Balasubramanian 1 , Andrea Merello1,
GiorgioZini1, NathanCharles Foster2, AndreaCavallo 2,3, CristinaBecchio 2,4&
Marco Crepaldi 1

Bluetooth-enabled wearables can be linked to form synchronized networks to
provide insightful and representative data that is exceptionally beneficial in
healthcare applications. However, synchronization can be affected by inevi-
table variations in the component’s performance from their ideal behavior.
Here, we report an application-level solution that embeds a Neural network to
analyze and overcome these variations. The neural network examines the
timing at each wearable node, recognizes time shifts, and fine-tunes a virtual
clock to make them operate in unison and thus achieve synchronization. We
demonstrate the integration of multiple Kinematics Detectors to provide
synchronizedmotion capture at a high frequency (200 Hz) that could be used
for performing spatial and temporal interpolation in movement assessments.
The technique presented in this work is general and independent from the
physical layer used, and it can be potentially applied to any wireless commu-
nication protocol.

The adoption of Bluetooth-based wearable devices for the collection
of physiological data in real-world scenarios1,2 has seen a steady
increase, primarily due to their portability, convenience, and safety
attributes.Most applications, including thosewithin the health sector3,
require collection from multiple devices. However, current time syn-
chronization methods for Bluetooth Low Energy (BLE) multi-channel
systems cannot satisfy the requirement of accurate mutual synchro-
nization (i.e., multiple wearables performing a group activity in uni-
son). Here, we present an application-level solution for Bluetooth
synchronization to remotely control wearable devices and ensure
mutual synchronization without placing an undue burden on the
hardware.

Bottlenecks from the BLE protocol are mostly due to channel
jamming and multiple-user functionality. Integrating these wearable
devices with an ad hoc protocol (i.e., ANT+, WiFi, Zigbee) in the
2.4 GHz industrial, scientific, and medical (ISM) band of the wireless
medium can solve the problem. However, if a wearable includes an ad

hocwireless protocol (thus replacingBLE), power consumptionfigures
and physical size of the wearable device normally increase, and a non-
standardized auxiliary receiver at the remote end is required because
these wireless protocols are typically proprietary. Given the wide-
spread use of BLE in many electronic devices (e.g., laptops, mobiles,
and tablets), wireless synchronization across multiple wearables via
BLE is preferable because it maintains standardized and secured con-
nectivity. BLE-based wearable device synchronization is achievable
with specific hardware-software co-design, as detailed in this work.

BLE is an asynchronous wireless protocol for data transfer and
operates assuming either an advertising or a connectedmode between
twoelectronic entities. In advertisementmode, a one-to-manynetwork
transmission occurs based on the Generic Access Profile (GAP)4, par-
ticularly on a broadcast protocol with no data coherence, security, or
encryption. Data on the advertisement header is accessible to every
device on the network, thus raising concerns for data security5. As the
General Data Protection Regulation (GDPR) becomesmandatory when
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handling personal health data and biometric information, wearables
must adhere to the data security regulations, especially while captur-
ing data outside hospital environments or laboratory settings. On the
other hand, when BLE operates in connected mode, the data is
encrypted before wireless transmission, thus complying with the
Generic Attribute Transfer (GATT) protocol from the BLE
specifications4. The electronics in this mode can accept and acknowl-
edge recurring messages from the remote system to carry out an
assigned task (e.g., ascertainpredefinedor user-defined characteristics
to implement a given functionality). For instance, reading the battery
status from a wearable using GATT can be achieved using predefined
characteristics 0 × 2A19 through a return value in the range of 0–100%.
GATT protocol is a suitable option for wearables6. It enables additional
data security and customization while sending commands (a feature
that can be enabled or programmed), resulting in increased flexibility
in controlling wearable functionality. Real-Time Operating Systems
(RTOSs) help improve the flexibility in developing wearable devices.
Active multitasking and pre-emptive scheduling, advanced power
supply control, high responsiveness with predictability, enhanced
protection, and a streamlined code development and maintenance
approach make RTOSs excellent candidates for standalone wearable
systems. To operate with RTOSs, each component in the hardware has
to be conceptually classified, systematically outlined, and prioritized
for execution. Unlike general-purpose operating systems, the task
scheduler in the RTOSs is tightly designed on top of the hardware for
appropriate device functionality; thereby, it relies heavily on the sys-
tem clock and hardware time parameters for performing any
designed tasks.

Time-sensitive parameters at these wearables represent direct
factors that impact multiple device synchronization. Temperature,
power, process variations, aging, and crystal reference drifts can
degrade their optimal performance, influencing their timing accuracy
and contributing to unwanted delays (e.g., propagation delay, device
latency, anddevice clock7,8). Enhancing time references in awearable is
a viable solution for improving multiple device synchronization, even
using high-level protocols. In this respect, Clock Synchronization
Protocols (CSPs) such asFloodTimeSynchronizationProtocol (FTSP)9,
Reference Broadcast Synchronization (RBS)10, and Timing Sync Pro-
tocols for Sensor Networks (TPSN)11 can be effectively used to achieve
synchronization. Moreover, FTSP features have become a de-facto
standard in many CSPs, such as using time stamps (i.e., storing
recording time for every communication event across the associated
devices). Notably, CSPs forecast three remedial strategies to improve
synchronization, i.e., (1) fine-tuning wearable clocks before the

experiment, (2) differing clock ticks at runtime12, and (3) applying a
time delay13.

However, when dealing with energy-constrained portable sys-
tems, applying high-level protocols directly to microcontrollers to
alter low-level parameters, such as directly modifying their hardware
clock, would inevitably fail in the presence of RTOSs. Indeed, both
multitasking mechanisms and scheduling operate based on time-
slicing concepts. When the device time or clock is altered, the device
would eventually miss critical interrupts or send out-of-sync signals to
the hardware sub-systems, thus leading to hard failures. Last but not
least, besides hardware-related time-sensitive parameters, the intrinsic
non-determinism of the Bluetooth stack, encompassing anchor points
(i.e., the events at which Bluetooth transmission wakes up for asyn-
chronous data transfer) and retries, lead to an unpredictable time shift
during packet transmission, resulting in non-uniformdevice operation
thus affecting mutual synchronization among multiple instances.

To address these limitations and improve the quality of syn-
chronization, we designed a neural network (NN, inside the remote
end to control wearable devices using BLE) consisting of weights and
biases that identify a pattern from a time-stamped series, including
various sources of time shifts and non-deterministic parameters, from
both wearable non-ideal behavior and wireless communication chan-
nel. This NN enables the prediction of various sources of time shifts
from physical components, operating system scheduling-related
issues, and wireless mediums considered as a whole.

Results
We aim to demonstrate multiple Bluetooth-based wearable device
synchronization in a setup featuring Kinematics Detectors1 (KiD, see
Fig. 1a) as hardware and using them across a developed User Interface
(UI) as software. KiD is a high-performance motion-tracking device
specifically designed for real-world applications. Its lightweight, small
form factor and design make it suitable for capturing limb movement
in both toddlers14 and adults, applicable to multi-limb andmulti-agent
settings. KiD can continuously acquire data for two and a half hours
(150min), and it is specifically designed for short-duration in-lab
assessments (see Supplementary Note, “Wearables design methodol-
ogy”). Furthermore, KiD supports the BLE 4.2 protocol (see Supple-
mentaryNote, “KiDHardware layout” for the hardwaredetails) and has
reconfigurable firmware, allowing users to reconfigure parameters in
the hardware subroutines wherever necessary to interact with the
software. Our hardware-software co-design goal here is to provide a
universal solution for synchronizing Bluetooth-based devices without
having an additional burden on the hardware, particularly for

Fig. 1 | Kinematics Detector, a motion capture device and its User Interface.
a KiD motherboard with electronics and battery, wherein they are encapsulated
using aplastic enclosure, and siliconouter case tobewornon thewrist using ahook
and fastening strap.bUser Interface that controls thewearables for experimenting.

START begins the experiment, and STOP suspends the experiment. The UI provides
means to know the wearable’s operation status and information like the physical
distance from the remote system and information on the wearable’s battery level,
which is crucial while performing experiments.
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synchronization. The designed software sends commands to a syn-
chronous network of wearables to enable easy control and
maintenance.

The evaluator can remotely control the devices by sending com-
mands from the remote system using the UI (see Fig. 1b). Here, the
participants can wear the KiD directly on their limbs for an experiment
and perform a prescribed task given by the evaluator. The UI is
designed to display the wearable’s current status, perform any main-
tenance task (clearing the inbuilt memory or renaming the wearable if

required), control them for a certain experiment, download their data
(in a comma separated value format), and eventually report commu-
nication and internal errors to troubleshoot any potential issues
(see Supplementary Methods, “KiD Software flow chart”). Figure 2a
depicts themotion captureoperational schemewithoneormoreKiDs.
The depicted scheme gives an example of designing an experiment
using these wearables. For straightforward data capture, the com-
mands between the remote system and the devices are sent over BLE
4.2. Bluetooth communication between devices is based on START and

Fig. 2 | Motion capturing that facilitates online labels to be sent as task iden-
tifiers during acquisition. a Motion capturing operational scheme that
demonstrates the use ofKiDs regardlessof thenumberof devices linked to theUser
Interface. b An example hand motion sequence used in the mocap demonstration.
c Timeline and the number of samples captured using KiD for an artifact for 25 s,
where the frequency of the KiD is 199.846 ± 0.1430 Hz and R-value =0.9987 when

the test is repeated 100 times. d Examples of IMU data (motion profile) that were
captured within START to STOP events from the limbs. The colored window
represents the tagged sections of TASK 134, TASK 135, TASK 136 that were sent
during themotion capture using the MARK feature. The time for the task is denoted
as Δt134 = 7 s, Δt135 = 5.2 s, and Δt136 = 5.8 s.
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STOP commands (see Supplementary Table 1) that perform Action
initialization and suspend data capture. Let us consider that the
evaluator wants to perform an investigation to capture a hand motion
sequence (rotating the hand clockwise for 25 s, see Fig. 2b). In this case,
the evaluator fixes a KiD onto a participant’s wrist, performs config-
uration, instructs the participant about the execution of the desired
motion sequence, and through the UI, the experimenter sends START
and STOP commands as illustrated on the aforementioned operational
scheme for Motion capturing. Figure 2c, d shows the data profile of
such task, downloaded from the KiD using the UI, where the acquired
‘sample’ or data are captured within the reception of the commands
START and STOP by the wireless device. The MARK feature enables the
tagging of captured data with labels, where the labels are stored
directly onto the KiD’s memory wirelessly to identify an event or task
whileprocessing thedata.When theMotioncapturing experiment is
repeated over 100 times, the sampling frequency of the device has
been found to have a mean of 199.846 ± 0.1430 Hz, with an R-value =
0.9987, thus confirming high sampling frequency (see “Methods: Low-
level parameter evaluation”).

Multiple device synchronization
Quantifying time uncertainty in the devices can provide a better over-
view of how profoundly they affect the synchronous operation. In such
cases, the devices shall abide to have identical or designated data to
derive the time deviations during the multiple device data capture. In
particular, each KiD shall have the designated spatial domain across all
devices to support measuring time uncertainty with a less complicated
or simple interpretation. One feasible technique to achieve the desig-
nated spatial domain is to fasten every wearable to a fixed plane12. KiDs,

in this case, are stacked vertically (see Fig. 3a, b, where each KiD is
placed on top of another) in a fixed plane for acquiring the given
rotation. Given that the device’s operation is already known (here, KiD
collects the temporal and spatial information from an IMU at 200 Hz;
see Supplementary Fig. 4, KiD as a standalone system), the MARK com-
mands are sent periodically while capturing. At the devices, these MARK
commands are automatically stored inside the device’s memory upon
receiving them. For every sent MARK, time in the device, the reaction
time of the device, time in the remote system, and their differences are
systematically noted and organized. For instance, Fig. 3c shows
the stacked KiDs captured data, i.e., the acceleration profiles in terms of
the spatial and temporal domain are the designated spatial attributes.
MARK 435 is one such command, and its timing is systematically noted
across devices for calculating temporal shifts (τ, the time difference
between the devices on a common reference frame). Figure 3d depicts
the temporal shifts among the devices, where these shifts indicate that
the devices transmit data asynchronously while using Bluetooth.

As mentioned previously, propagation delay, Bluetooth re-trans-
mission, anchor points, and frequency drifts are limiting factors in the
Bluetooth technology (mostly present while using GATT) and prevent
the synchronous operation of the wearables, thus resulting in non-
linear and in-determinable temporal shifts. To achieve synchroniza-
tion, the devices must ideally run timing error-free, have zero propa-
gation delay, have time-independent software routines, and maintain
relationships among devices during the data acquisition session.

Temporal-shift evaluation
The factors behind such temporal shifts must be precisely identified
and tackled. First, in a multiple-device synchronous network,

Fig. 3 | Multiple device evaluation without synchronization algorithm. a KiDs
are vertically stacked upon each other, i.e., KiDi where i is 1…3 for evaluating the
multiple device performance. bWhile data capturing, all these KiDs share the same
spatial attributes, allowing it more straightforward to analyze the temporal attri-
bute. c Acceleration profiles from three KiDs show the 200 Hz motion data with a
similar spatial attribute. d The temporal shifts (τi where i is 1…3 indicate temporal
shifts in each wearable device) within KiDs provide incorrect time information;
thus, they provide inaccurate time stamping. e Frequency drift among three

devices KiDi where i is 1…3 when connected to the remote system without syn-
chronization for 1024 s. f Example of KiDs latency, when connected with three
devices, due to the Bluetooth transmission for a synchronizedmessage that affects
synchronization, the mean values found to be KiD1 = 9.5 ± 1.762 ms,
KiD2 = 23.8 ± 2.01 ms, KiD3 = 32.5 ± 2.37 ms. g The average synchronization error in
these wearables is 30 ms, i.e., the frequency drift within devices and the Bluetooth
latency contribute to this indeterministic error causing inaccurate time interpola-
tion while experimenting.
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frequency drift among wearables is critical (see “Methods” section
on Evaluating communication). For instance, Fig. 3e shows the fre-
quency drift of three devices compared to the system clock. The
sampling frequency of KiD1, KiD2, and KiD3 is 199.68 Hz, 199.72 Hz, and
199.82 Hz, respectively. Second, each command requires transmission
and acknowledgment by the devices resulting in a given latency. We
have sampled the delay required to transmit packets between the
remote system and devices to estimate propagation delay, which
directly influences latency. As shown in Fig. 3f, the latency is a
non-determinable Bluetooth parameter due to the Bluetooth stack
re-transmission (retry protocol: see Supplementary Fig. 5, Bluetooth
stack operation), which is influenced by the conditions of the wireless
medium. The overall impact of the temporal shift is an increased
average synchronization error (see Fig. 3g, where the average syn-
chronization error is 30 ms), which leads to unsynchronized wearable
devices.

Neural network for synchronization
Often, the only way to evaluate non-determinable temporal shifts is
using a non-linear estimator (e.g., a neural network) that, in this con-
text, can be trained and devised to adjust packet transmission times
and hence counterbalance the uncertain delay caused by the wireless
transmission. Figure 4a shows how KiDs are attached to the neural
network15. For instance, consider three devices, KiD1, KiD2, and KiD3,
connected to the network. When the host system sends a command to
these devices, it does it sequentially from one device to another at a
given system time (tMi ). Each device accepts the command at different
device times (tSi ) (see Evaluating wireless communication channel in
the “Methods” section for the relationship between devices and
Remote System and for details about virtual clock concepts).

Figure 4b depicts the neural network output (see Supplementary
Methods, “Neural network concepts” and Supplementary Fig. 6) while
learning the time relationship between the remote system and the

Fig. 4 | Neural network interpretation and implementation. a Neural network
implementation technique at the application level for improving synchronization.
b Correlation between the predicted and actual time where the R-value is 0.9967.
c Neural network time response and error graph. d Three perfectly synchronized
KiDs for interpolating temporal and spatial attributes contributing toward

detecting fine motion skills between MARK 337 and MARK 338. The accelerometer
(raw data of one dimension) is normalized to explain synchronization. e Improved
average synchronization error to 1.25 ms. f Synchronization validation across
multiple devices in several platforms (PC, Linux, and Mac) show 97.3% success in
synchronization. g Battery drain time while synchronized motion capturing.
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devices (i.e., the neural network acts as a virtual clock layer) to provide
accurate device synchronization. The R-value, i.e., the correlation
between the actual and predicted values after 100 iterations, is 0.9967
(see Fig. 4b). The Compute delays can precisely estimate τ1, τ2, and τ3,
used across the devices to store themessage into its devicememory at
a compensated time. As a result, the devices can adjust frequency drift
if present, the device latency, and the communication delays to pro-
vide mutual synchronization, as shown in Fig. 4c.

Considering the concept of synchronization, which involves the
phase alignment of each remote system clock, sending commands to
multiple wearables to synchronize events exactly is a challenging task.
Instead, we send labeling events to the synchronous network con-
taining multiple wearables (two or more KiDs linked together via
neural networks) through our neural network-based layer, which
enables consistent operation across wearables, operating as an addi-
tive synchronization layer. For instance, if the evaluator sends START
to the network through the UI, the wearables in the network instantly
invoke the given commands at corrected time instants, thus elim-
inating the need for the evaluator to sendmultiple devices individually
and accounting for latencies and delays. Under such accounts of
operation, Fig. 4d shows the synchronized event from three KiD
devices, where these wearables operate synchronously with low delay
variation. The MARK command automatically transmits the marker to
all the KiDs. For example, MARK 337 and MARK 338 are communicated
through the UI to the three KiDs using the neural network layer, which
transmits signals in the correct sequence and compensates for latency
and delay across all the connected devices. Thus, all the devices linked
to the synchronized network can receive messages from the UI in
mutual synchronization. The devices captured data synchronously
(see the data in the inset from MARK 337 to MARK 338) and thereby
show the significance of reduced temporal shifts. The average syn-
chronization error across the devices is 0.356ms (see Fig. 4e), allowing
it to be suitable for synchronous BLE applications. A lower average
synchronization error than the sampling frequency signifies the
capacity to take messages while capturing data, notwithstanding that
lower average synchronization errors could improve the accuracy of a
message transmission5.

The synchronization networkwas tested acrossmultipleKiDs (i.e.,
two, three, and four devices) by repeating the tasks in the range of
150–200 iterations (see Fig. 4f). As shown in the results, however, in
some cases, synchronization failed during the trials with a 2.7% failure
rate, and those failures were due to two primary reasons that we have
addressed to improve our system. The first reason is an OS software
update, mostly affecting the UI. We have observed that OS libraries
strongly affected timing and performance. Consequently, to address
this issue, we have rewritten some parts of the UI to use independent
software modules from the OS. The second reason is that the experi-
ment was purposefully carried out to evaluate the outcome of com-
plete battery exhaustion (see Fig. 4g, where the KiDs, on average, work
better if the experiments are within 150min). In both situations, syn-
chronization failed due to device acquisition failure. Consequently, we
have updated the UI error and status message management. In parti-
cular, the timeout functions now report any synchronization error if
the commands are not acknowledged within a given time (see Sup-
plementary Fig. 2).

Artifact extraction and labeling
Wearables can potentially capture sensor data at high frequencies
(e.g., in our case, 200 Hz), resulting in massive volumes of data that
demand human intervention (data hard to comprehend if the experi-
ment includes various extracted features16) to extract a specific task.
Such practices physically limit the experiment to a static time and
make feature extraction of a particular event difficult for the evaluator.
Therefore, the capacity to easily identify and name the data segments
during real-time acquisition can be of significant added value. Thus,we

have added a feature (thanks to the capability of GATT for accepting
messages that can edit the datapath of the microcontroller for per-
forming an assigned task) that consists of sending virtual labels during
data capture, which we herein define as ‘Labeling’. Here, the evaluator
can assign a unique label for each task and send it as a message from
the remote system to the wearables that store the label alongside the
associated data. Data within two unique labels can be easily associated
with a given task, providing advantages at higher-level data inter-
pretations, classifications, and clustering. In this context, we have
implemented a specific MARK command with a label implemented
using a 16-bit unsigned arithmetic integer (0-32767) that can be sent to
the KiDs through the UI. For instance, MARK 134 in the motion profile
(see Supplementary Table 2), as depicted in Fig. 2c, is one such label
sent via the UI, where the label appends to the device’s internal
memory. KiD(s) continuously acquire data until they receive the STOP
command. With the help of this low-level primitive, the evaluator can
use asmany labels as required, thusproviding complete annotations to
identify critical events. For example, Fig. 2d depicts the intervals
between two such labels, that is, Δt134, i.e., the delay between markers
MARK 134 and MARK 135, which contains 7 s of 1400 ‘samples’/motion
data representing a specific task TASK 134. Similarly, another interval
Δt135 = 5.2 s between MARK 135 and MARK 136 identifies TASK 135 and
Δt136 = 5.8 s identifies TASK 136.

Labeling (i.e., Event or Artifact extraction) provides a straight-
forward approach for marking intervals and deciphering factual
information from complete unlabeled data16. Figure 5 demonstrates a
multiple KiD motion capture task comprising four devices (KiD1, KiD2,
KiD3, and KiD4), all linked to the NN layer and stacked vertically,
demonstrating scalability while using NN. For Artifact extraction in
multipleKiDs, the evaluator canuse the samecommandMARK followed
by an arithmetic label sent to the synchronized network instead of a
device. Identified tasks in Fig. 5 show the systematic acquisition of
TASK 401, TASK 402, TASK 403, and TASK 404 using the MARK com-
mand sent to the network. Our ‘synchronized labels’ (the labels sent to
the synchronized network) for identifying tasks among the motion
data seem a convenient and crucial method for extracting or per-
forming task-specific group activities (sometimes recognizing critical
movements or tasks). The artifacts from multiple limb motion data
may be efficiently bundled for any sophisticated numerical models,
such as machine learning or artificial intelligence17, or saved as a sig-
nificant data set of an anticipated activity. Our labeling method has
been conceived to be elementary to allow the investigators to focus on
task organization (event coordination or planning) rather than con-
centrating on the technical aspects of the wearable. We believe our
method could be a one-of-a-kind method in data acquisition.

Discussion
Well-designed, transferable time synchronizationmethods are needed
to support Bluetooth-based wearable devices. Here, we present an
application-level solution for Bluetooth-based device synchronization
in a setup featuring multiple unsynchronized KiDs. Measuring and
quantifying complex, naturalistic, unrestrained, andminimally shaped
behavior presents formidable conceptual and technical challenges,
which are only just beginning to be addressed in behavioral and neu-
roscience research14,18–21 (see Supplementary Discussion, “Motor
behavior or sensorimotor analysis”). To tackle this challenge, it is often
crucial to collect synchronized responses from multiple devices. KiDs
operate solely based on the GATT mode, receiving device commands
to perform specific services and securely storing sensor data in their
inbuilt memory (not providing an external medium, see Supplemen-
tary Discussion, “Safety measures on wearables design for toddlers”).
Our synchronized network concept, combined with a method for
sending multiple labels, provides a solution for collecting temporal-
sensitive responses and synchronizing KiD devices. This capability
opens up new avenues for research, ranging from investigations of
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bilateral motor coordination to interpersonal synchronization during
real-life multi-agent interactions22.

Few studies report on wireless sensor or BLE synchronization,
and most of them require low-level parameters handling or config-
uring individual wearables with different settings and do not provide
a universal solution for the scope of our development. Altering low-
level parameters in the hardware can provide sub-millisecond accu-
racy. However, it could thwart the entire wearable operation, parti-
cularly while using RTOS for the following points. (1) Timer-critical
subroutines: waiting a certain amount of time before performing a
task or triggering an event would fail as the device change could
affect operation timing, causing them to happen earlier or later than
expected. (2) Event synchronization: Events and semaphores/signals
used to synchronize tasks and communicate between them fail
because device time change may affect them, causing tasks to
wait longer or shorter than expected. (3) Multi-task scheduling:
multi-tasks work based on time-slicing concepts when the device
time or clock is altered, which would eventually miss critical inter-
rupts or send untimely signals. (4) Time-stamped data: in some

devices, data is time-stamped to record when it was created or
updated. Changing the device time may affect the accuracy of these
time stamps, causing data to appear out of order or with incorrect
time stamps.

The connection interval, a fundamental parameter of all Blue-
tooth stack communications, influences the temporal shift or delay.
The connection interval has a minimal value of 7.5 ms, and raising it
further increases the wearable’s latency (see Supplementary Fig. 1).
This interval is a bottleneck in numerous wearables today for syn-
chronous applications, limiting their functionality to a maximum of
120 Hz (see Supplementary Fig. 8, Parameter comparison). Since
Bluetooth transmission is digital and packet-based (therefore not
pertaining to a continuous analog transmission), it attempts to deliver
the command to the devices more than once in the event of a trans-
mission failure. The two factors mentioned above are predominant in
causing indeterministic temporal shifts that impact mutual synchro-
nization at devices with an average synchronization error of 30 ms, as
depicted in Fig. 3f. This variability is inherently difficult to predict and
remains a significant drawback of Bluetooth, particularly when dealing

Fig. 5 |Multiple device synchronizationusingKiDswhile operating via theUser
Interface with neural network. a A schematic of four KiDs vertically stacked to
illustrate scalability, and b the results show the four KiDs synchronization, where
the artifact or task extraction reveals the level of synchronization from the KiDs
using the trained neural network. MARK 401, MARK 402, MARK 403, MARK 404, and
MARK 11 are the online synchronized labels that were sent via UI to identify cor-
responding tasks demonstrating the synchronization of multiple devices in a

motion-tracking study. These commands were sent to the synchronized network
connectedwith four KiDs. c For illustrative purposes in the spatial and temporal, we
have stacked the four devices, where the fourth device was kept in the opposite
direction. d The multiple limb motion capture can be used for capturing motions,
particularly in real-world settings. KiD, in this method, provides synchronized
motion profiles with the online task or event extraction, where in this case, they
acquired a motion profile for 20 s throughout the entire duration.
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with multiple devices that need to operate in unison. Moreover, when
wearables are interfaced with a general-purpose computer, other
Operating System (OS) related scheduling issues can additionally
contribute to these time shifts because OS’s kernels cannot always be
real-time in all applications.

Our work demonstrates the capability of the NN layer to solve
synchronization issues at the application level. The proposed solution
requires additional Bluetooth-transferred data to acquire clock ticks
for time stamp recording during a command transfer. In this context, a
wearable must draw additional power for every extra communication
the remote system requires. However, our data show that the addi-
tional Bluetooth communication load with each wearable KiD device
was limited and did not impact battery life, which was unvaried com-
pared to the initial design requirements, i.e., 150min acquisition
session.

In synchronized networks, many Bluetooth-based wearables are
connected and work together to obtain event-oriented sensor data.
The NN inside the software interface can be configured to be
autonomously trained with the device parameters (by automating
supervised learning tasks through the UI) and thus sending the
commands on time for synchronization without any additional
human effort, providing intrinsic scalability with the number of
devices linked to a remote PC. Our work demonstrates an
application-level solution for Bluetooth-based device synchroniza-
tion without an undue burden on their hardware. With the devel-
opment of the presented UI and the given NN-based solution, we
demonstrate the possibility for unsynchronized wearable devices to
operate in unison to enable multiple-limb, multi-person event-
oriented motion capturing. The network can output high-frequency
motion profiles captured at 200 Hz from multiple limbs without
requiring sophisticated laboratory equipment. Thanks to the repor-
ted technology, in perspective, we could even connect hetero-
geneous wearable nodes using only standard Bluetooth technology
through limited hardware additions (that is, the possibility of
extracting the system clock tick) and a full application-level syn-
chronization, thus easily providing improved sensor fusion (i.e., with
electroencephalogram or electrocardiogram Bluetooth-based sen-
sors) for the benefit of the scientific community.

Methods
The research was approved by the local ethical committee (Comitato
Etico Regionale della Liguria, under application Prot. IIT_ERC_I-
MOVEU_01) and was carried out in accordance with the principles of
the revised Helsinki Declaration23.

Motion capturing experiment
To effectively perform motion capture with a participant, the
experiment has been divided into three steps, which are as follows:
(1) Pre-experiment phase—The participant is thoroughly informed
about the task that needs to be performed. Before attaching KiD to
the participants’ limbs, the device must be fully charged, the internal
storage should be cleared, and it must be linked to the UI on the
remote system. The neural network inside the UI will train the KiDs
automatically and keep them ready for acquisition (see Supplemen-
tary Methods, “KiD Software flow chart”). (2) Motion capturing phase
—An evaluator can use the UI to control the data collection. The
START command initiates capturing, and the STOP command termi-
nates the acquisition. The UI can start and stop the experiment and
transmit the markers to identify tasks using the MARK command for
extracting necessary artifacts. (3) Post-analysis phase—Finally, fol-
lowing data acquisition, the KiD is removed and wired to the remote
system via micro USB for downloading the motion profile. Once the
data has been transferred to the system, it can be associated with a
machine learning technique or mathematical models to derive neu-
roscience outputs.

Low-level parameter evaluation
Device sampling frequency (f) is a crucial low-level parameter to indi-
cate the data/samples a sensor could acquire in one second. Not all
devices operate at the same frequency due to several factors, such as
the aging of the internal electronic components affected by tem-
perature, power dissipation, and crystal drifts. The true value of the
sampling frequency can be found while collecting samples for a spe-
cific time. By using the total of sample data from the device (i.e., the
count of stored data si in the device memory captured within
the START and STOP commands, where i is 1…3 represents a device
number identifier) and capture event time (Ti), we can calculate the
device sampling frequency fi = si/Ti. The mean value (μ) and the stan-
dard deviation (σ) for device sampling frequency can be obtained over
an iteration of experiments.

Evaluating wireless communication channel
During motion capture, KiDs were worn on a human limb and layered
vertically, one on the other, to create the hand sequence (a hand
motion that has to be captured), ensuring they had similarmotion data
to depict synchronization better. To evaluate the frequency drift
among KiDs, we wrote a function that periodically reads the time from
the devices and the remote system to obtain synchronization errors.
For instance, we can read the time from the connected devices every
60,000ms for an experiment. The functionwas repeatedover time for
several iterations to obtain statistical results, and this automated task
was performed in the laboratory at a room temperature of 20–25 °C.

Bluetooth communication is a two-way transmission, i.e., any sent
message always has an acknowledgment. For instance, let the remote
system and device that communicate with each other using BLE
transmit data. Two distinct events (one on the remote system and the
other on the device) can occur, (1) two time-stamps on the remote
systemwhile sending TA and receiving TD amessage at the system local
time (RTCof the system) and (2) another two time-stamps at thedevice
while receiving TB and acknowledging TC the message at device local
time (RTC of the device). Time stamps indicate the occurrence time of
events among the devices and the system. A synchronization event is
the sequential transmission of multiple messages between wearables
and a remote system to perform a synchronous task or activity. For
illustration, let us consider a synchronization event having imessages,
their acquired time stamps can be written as: {TA

i ,T
B
i ,T

C
i ,T

D
i }. Let us

consider transmission and reception as a time-bound operation.
Hence, the time of execution at master is given as rA(t) and slave as
rB(t), computed using Eq. (1),

tADi =
TA
i +T

D
i

2
; tBCi =

TB
i +T

C
i

2
, ð1Þ

rADðtÞ= tADi ,tADi�1, � � � tAD2 ,tAD1 ; rBCðtÞ= tBCi ,tBCi�1, � � � tBC2 ,tBC1 :

Actually, a synchronized message timing follows the relationship
rAD(t) − rBC(t) ≈0; that is, the clock frequency α and device offset β
remains constant (α ≈ 1, β ≈0). Compactly, this can be expressed as
shown in the following Eq. (2),

rADðtÞ=αrBCðtÞ+β: ð2Þ

In the real world, several non-idealities determine these hardware
parameters α and β, thus impacting synchronization, as discussed
previously,

rAD* ðtÞ=αrBCðtÞ+ β: ð3Þ

CSPs always linearize the relationship between a genericmasterM
and a slave S, in particular, rM(t) and rS(t), thus allowing fine-tuning of
the device operational parameters (device clock) for synchronization.
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However, tuning operational parameters in a device in real-timewould
eventually lead to taskerror or unprecedented timing error that affects
functionality, as many crucial functions rely on the device clock.
Therefore, the synchronization error (τ from Eq. (3) and (4)) can be
computedbyfinding thedifferencebetween timestamp [rM(t)] and the
estimated value of it [r*M ðtÞ] and suitably compensate for this on the
next message, in our case,

τ = rADðtÞ � r*BCðtÞ: ð4Þ

However, BLE is packet-based and non-continuous and never
adopts a similar topology as that of wireless networks; that is, wireless
networks have deterministic delays, which can be linearized. Specific
properties ofBLE that require the re-transmission of lost packets affect
device latency. Therefore, the time difference between the connection
interval and device latency remains a non-deterministic jitter (γ see Eq.
(5)). Considering the previous constraint, Eq. (2) can be rewritten as,

rADðtÞ=αrBCðtÞ+β + γ: ð5Þ

To observe this time-shift pattern and estimate the non-linear
parameter above, we use a non-linear estimator that coherently
recognizes any underlying relationship between two or more nodes.
Here, the neural network is a three-layer perceptron with 20 Neurons,
trained beforehand to the experiment with each time stamp of rAD and
rBC. From the time-stamp series, the neural network can thoroughly
assess any non-idealities from both BLE and device that cause device
offset,

r*ADðtÞ= vðtÞrBCðtÞ: ð6Þ

Here, the neural network layer (see Supplementary Methods,
“Neural Network concepts”) operates as a virtual clock v(t), as shown
in Eq. (6)24, which is a software clock for each node to implement
device time (see Supplementary Methods, “Implementation techni-
que”). The virtual clock layer computes the time difference between
nodes to understand their underlying relationship and suitably
compensates for the delay using Eq. (4). Here, the primary goal of the
algorithm is to have a synchronization error lower than the data
capture interval.

The training data sets are acquired from the training experiment
when the devices are operating without any delays and adjusted at
various situationswithin a 50mrange automaticallyby theUI. The root
mean square error (RMSE) function is used in Python to train the
model. RMSE calculates the input with the target values obtained from
the KiD at various intervals using the TIME command. The error factor
gradually reduces upon every epoch until it is minimized, thus reach-
ing a suitable value that is good for synchronization. The three-layer
neural network is designed to feature 20 hidden neurons. Further, this
trained virtual clock layer is validated using the test data to verify
appropriate operation before experimentation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study are included in the manuscript and
the SupplementaryMaterial. Source data are provided with this paper.

Code availability
Supplementary Code files showhow to interface the wearable devices,
carry out experiments, and gather data from the local system. Addi-
tionally, the supplementary material offers comprehensive illustra-
tions of the methods to implement it on a wearable device.
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