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Abstract 

The investigation of how small molecules interact with their targets is arguably 

the cornerstone of biomedical research. This field is intrinsically multidisciplinary, 

involving many professional figures such as medicinal chemists, biologists, 

physicians, biophysicists, and bioengineers. In the context of bioengineering, 

computational molecular modelling can significantly assist our understanding of 

the molecular phenomena of target-ligand interactions, through the creation and 

simulation of in-silico models that mechanistically explain macroscopic behaviors 

and experimental observations. Computational modelling can be successfully 

applied both when the interaction between a small molecule and its receptor is weak 

– at most one order of magnitude above the thermal energy – and when such an 

interaction is strong – when the energy exceeds the thermal noise level by two or 

more orders of magnitude. At the same time, the modelling methodology must be 

tailored to the specific use case, since not every strategy yields meaningful results 

in any scenario. In this dissertation, the use of molecular modelling is discussed and 

applied for both weak binders with low molecular weight, such as volatile 

anesthetics, and for strong, anionic binders such as Rose Bengal and molecular 

glues. 

In the case of volatile anesthetics, molecular dynamics studies of their 

interaction with cytoskeleton proteins allowed to map many energetically 

equivalent binding hotspots on the tubulin dimer, and to quantify the lifetimes and 

energies of the binding events. The analysis was subsequently extended to assess 

the effect of different anesthetics on the cell membrane in a concentration-

dependent manner. The use of molecular dynamics allowed to predict the diffusion 

of the small molecules within the lipid core of the membrane with atomistic detail, 



 

and to quantify the consequences thereof on membrane structure and behavior, such 

as on the membrane bending stiffness. 

In a different set of investigations, MD simulations were employed to study 

strong binders, whose interactions are governed largely by electrostatic phenomena. 

One example is the anionic dye Rose Bengal, which is a candidate drug for 

photodynamic therapy and whose administration still presents significant 

challenges hindering its wide-scale clinical application. Through all-atom MD 

simulations, RB is herein shown to be unable to diffuse through the cell membrane 

without the presence of protein transporters, due to strong electrostatic interactions 

with the hydrophilic portion of the phospholipid membrane. Similar electrostatic 

interactions were investigated as the main driving force behind the formation of 

complexes between RB and dendrimer nanoparticles, which are promising delivery 

platforms able to overcome the current limitations related to RB-based therapies. 

Similarly, a strong electrostatic interaction is at the basis of the use of molecular 

glues to alter the assembly of biopolymers into custom shapes. Using molecular 

modelling, this strong interaction was elucidated with atomistic detail, highlighting 

how specific glues are able to alter the geometry of tubulin assemblies in order to 

promote the formation of GTP-responsive nanocapsules, which represent 

promising nanoformulations for the delivery of chemotherapeutic agents. 

In summary, the research described in this dissertation shows how molecular 

modelling strategies can be developed and adapted to provide mechanistic 

explanations of molecular phenomena at different ends of the energetic scale. The 

reported results are relevant both at the predictive level, where molecular 

interactions are explored a priori to guide subsequent experimental studies, and at 

the explanatory level, where the macroscopic results obtained in experimental 

settings are explained using atomistic models. Both approaches allowed for the 

improvement of our understanding of how these molecular systems work, paving 

the way for novel rational drug design perspectives. 
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Chapter I 

Intermolecular interactions:  
biophysical signal transducers at 
the microscopic scale 

1.1 Non-covalent interactions: flexible and reversible 
drivers of biological functions 

Many of the biological functions of living systems can be defined as a 
collection of macroscopic and often observable properties which directly derive 
from the interplay of their underlying molecular building blocks, down to the 
single-atom length scale. Following a top-down approach, complex and emergent 
biological functions can be analyzed by building models of their constitutive 
blocks, which can range from in-vitro models such as organelles, static or dynamic 
cell cultures, to in-silico models based on the creation of (nano)mechanical 
atomistic models of proteins, lipids and small molecules in general. At the smallest 
length scales, i.e. when investigating molecular-level properties, biological function 
occurs not only as a direct consequence of the creation and destruction of chemical 
bonds, e.g. during the synthesis and breakdown of macromolecules, but also on the 
complex array of non-covalent interaction which constantly take place in most 
subcellular machineries. This includes phenomena such as the activation of 
receptors by their agonists, the inhibition of cellular pathways by specific small-
molecule inhibitors, the assembly of the cytoskeleton, acting as a scaffold for the 
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overall cell structure, or the assembly of phospholipids into a bilayer, just to name 
a few. While such non-covalent interaction are fundamentally weaker than their 
covalent counterparts in terms of absolute energy associated with bond 
formation/disruption and force required to break the bond1,2, the summation of 
many diverse non-covalent interactions, such as electrostatic or hydrophobic Van-
der-Waals-type interactions, can lead not only to mechanically stable assemblies, 
as in the case of e.g. microtubules, but also to the triggering of complex 
conformational rearrangements, such as in GPCR receptors upon binding their 
agonist. In the biological and chemical context, non-covalent interactions drive 
fundamental processes such as the assembly and structural properties of materials, 
the secondary, tertiary and quaternary structure of proteins, the coupling of base 
pairs in nucleic acids. 

The importance of non-covalent interactions in molecular assemblies is also 
indirectly testified by the exceptional growth and outreach of the scientific interest 
in how molecular building blocks assemble, a quest that nowadays involves many 
different disciplines, such as biomedicine, biophysics and biochemistry, as well as 
materials science3–5. Indeed, obtaining a mechanistic understanding of how the 
interplay of molecular-level interactions unfolds as a driving force for biologically 
relevant phenomena, can empower the design of new materials, the discovery of 
new pharmacological agents, or the optimization of current drug-like molecules. 
Obtaining such an insight is however far from trivial: perhaps the main issue to be 
overcome is the exceptionally small time- and length scale at which such 
interactions take place, which often hinders their direct experimental observation 
with the methodologies available today. While experimental techniques are rapidly 
increasing in space and time resolution, the level of expertise and cost associated 
with ultrahigh-resolution analyses often limits their large-scale deployment and 
restricts their applicability to very specific systems6. To this end, in silico models 
of molecular and atomistic systems can provide fundamental insights into the 
mechanistic underpinnings of molecular machineries, especially when coupled to 
experimental validation.  

Broadly speaking, computational approaches can be distinguished based on 
their level of spatial and temporal accuracy as well as the computational effort 
required (Figure 1.1). As a consequence, the choice of the specific strategy largely 
depends on the system being investigated, and on the resolution required to 
successfully analyze and interpret the phenomena at hand. Starting from the highest 
possible resolution, i.e. the electronic structure of atoms, a first computational 
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strategy is Computational Quantum Mechanics (QM). In the QM approach, 
computational resources are used to directly solve Schrödinger equations related to 
the wave functions describing a given molecular system. Many theories exist to 
describe molecular systems at the quantum level, the most common being 
molecular orbital theory. One drawback of the QM approach derives from the 
complexity in solving the Schrödinger equation for systems containing many 
different atoms with more than one electron, as is the case for most biologically 
relevant (macro)molecules. Many different methodologies exist to tackle the 
complexity of QM calculations, and they might be distinguished into ab initio 
methods, relying solely on the fundamental physical constants as inputs (speed of 
light, masses of the particles, etc.), and semi-empirical methods, which simplify or 
ignore some of the terms and integrals of the QM equations. While such methods 
allow to directly study the motion of the electrons and hence the overall behavior 
of small molecules with great detail, they suffer from a very high computational 
cost, even in the case of semi-empirical approaches, which mostly limits their 
application to small systems, up to 102-103 atoms7.  

 

Figure 1.1. The different time and length scales accessible to in silico and in vitro 
approaches. All-atom molecular dynamics simulations lie in the lower end of molecular 
mechanics approaches, allowing for time resolutions down to the femtoseconds and spatial 
resolutions up to Ångstroms. 
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An alternative - and often complementary - computational strategy to describe 

the structure and dynamics of molecular systems goes under the term Molecular 
Mechanics (MM). In the MM approach, the electronic structure and quantum 
description of atoms is largely ignored in favor of a classical mechanical 
approximation of the molecular system at hand: in the most general MM approach, 
atoms are treated as point masses which interact with each other following a 
potential energy formulated as the sum of classical mechanical potentials (e.g. 
harmonic potentials, coulomb potentials, etc.) each modelling different aspects of 
the systems, such as covalent bond lengths and angles, dihedral angles, electrostatic 
interactions and Van-der-Waals interactions. The detailed description of the MM 
approach for molecular modelling is found in Chapter 2. 

Given the importance of non-covalent interactions in biology and 
pharmacology, this chapter will briefly discuss the different types of non-covalent 
interactions and their biophysical underpinnings, and will introduce the notable 
examples of macromolecular assemblies which were computationally investigated 
in the present work. 

1.1.1 Electrostatic interactions 

Electrostatic interactions between molecules arise from the presence of (partial) 
electric charges distributed across the atoms, and in the context of molecular 
simulations they play a fundamental role to robustly model both the static (or 
structural) features of the molecular systems, e.g. the secondary structure, and 
possible dynamic interactions, e.g. between a protein and a ligand. Such charges 
can be the consequence of the ionization of chemical species, in which case a 
positive or negative charge is acquired by an atom following the loss or gain of 
electrons, or they can be caused by an uneven distribution of electrons in polar 
molecules. In both cases, the charge distribution generates weak electric fields and 
dipoles which in turn may interact with charge distributions and dipoles of nearby 
molecules, thereby determining a non-covalent attractive or repulsive force 
between them. This unequal charge distribution, determined by the difference of 
electronegativity of different atoms, can be modelled in many different ways 
depending on the required precision and on which approximations are acceptable 
within the investigation at hand. One common approach used in macromolecular 
force fields describes the charge distribution as an ensemble of partial charges 
distributed across the given molecule. Many methods exist to calculate such a 
partial charge distribution, with varying degrees of approximation, but it must be 
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underlined how the use of fixed partial charges for atomistic simulations is by its 
very nature an artificial representation of the underlying subatomic phenomena 
governing the interactions within matter. As such, the choice of the method for 
partial charge derivation must be carefully tailored to the specific system under 
investigation, and more importantly it is the responsibility of the modeler to ensure 
that the chosen partial charge calculation method is consistent and compatible with 
the molecular system at hand. Broadly speaking, the most common strategy for the 
determination of partial charges within the molecular mechanics scheme is the so-
called ESP method, which relies on fitting molecular electrostatic potentials 
calculated at a QM level of theory, most frequently using the HF/6-31G* basis set, 
to a classical Coulomb-type model. When a restraint function is applied during the 
fitting procedure, which has the effect of decreasing the magnitude of the calculated 
charges, this approach takes the name of RESP8, and is often chosen for use with 
additive force fields, such as the AMBER FF family. Due to the computational load 
of calculating quantum-level electrostatic potentials, an approximation of the RESP 
method has been developed, called AM1-BCC9, combining AM1 population 
charges with additive bond charge corrections (BCC) that adjust the AM1 charges 
to emulate the 6-31G* potentials.  

Another popular charge derivation method based on QM calculations goes 
under the name of Mulliken charges10, also referred to as Mulliken Population 
Analysis, based instead on the Linear Combination of Atomic Orbitals (LCAO) 
technique followed by the analysis of electron populations of a molecule, where 
partial charges are finally derived for each atom by comparing the electrons on the 
atom in the free state vs. the atom population. On the other hand, since QM-based 
partial charge derivation methods usually involve time consuming calculations, 
other so-called empirical methods have been developed, which allow for a fast 
partial charge calculation at the cost of accuracy and generalizability. Such 
empirical charge derivation methods include the popular Gasteiger charges11, which 
are derived from the electronegativity and connectivity of the atoms in a given 
molecule and which do not take the 3D conformation into consideration. 

In summary, a variety of methods exist to approximate the electronic behavior 
at the atomistic scale as point charges, either by means of some form of post-
processing of QM-level calculations, or through empirical methods which bypass 
the QM scale altogether. Ultimately, the choice of the method depends on the 
specific requirements in terms of computing time and accuracy: a large-scale virtual 
screening campaign designed to process a database of millions of drug-like 
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molecules might not afford the complexity of QM calculations, so an empirical 
approach able to assign charges in (fractions of) seconds can be the best choice. On 
the other hand, a more focused study with the aim of analyzing the behaviour of a 
few molecules on a specific target can greatly benefit from the accuracy provided 
by QM methods such as RESP, since absolute speed might not be the primary issue 
given the limited amount of ligands to be processed. Lastly, the choice of the partial 
charge derivation method should always be coherent with the parameters chosen to 
represent the molecular system (i.e. the force field), since the latter are often 
validated within a specific theoretical framework and might not yield valid results 
unless deployed with a specific charge derivation strategy. 

1.1.2 Weak Van-der-Waals interactions 

The electrostatic description of the interaction arising from uneven charge 
distributions in charged systems is insufficient to provide a complete mechanical 
picture of the non-covalent interactions in biomolecules, despite being fundamental 
to accurately account for e.g. salt-bridge interactions, hydrogen bonding and overall 
secondary structure stability in proteins. This concept is exemplified by the case of 
rare gas systems, which do not interact electrostatically (all multipole moments are 
zero) but most certainly exhibit mutual interactions, since they are able e.g. to 
condense into the liquid phase and to solidify. As a matter of fact, a second family 
of highly relevant interactions in biological systems exist and are referred to as Van-
der-Waals interactions, after the Dutch physicists J. D. Van der Waals, who studied 
the deviations of rare gases from the ideal gas behavior. The term Van-der-Waals 
interactions specifically refers to the resultant of two distinct components of the 
force arising between apolar (portions of) molecules, namely a long-range attractive 
component and a short-range repulsive component. 

The attractive component is related to interactions known as dispersion forces, 
first studied by F. London in the early 30’s12, which are a consequence of temporary 
dipoles induced by the fluctuations of electron clouds, which can in turn trigger the 
formation of instantaneous dipoles within the electron clouds of nearby atoms. 
Dispersion forces are among the weakest intermolecular interactions, but they have 
been shown to play a crucial role in many molecular assemblies13. 

Conversely, the repulsive component is particularly relevant at small inter-
atomic separation, and rapidly decays exponentially as exp(-2r/a0) with a0 being the 
Bohr radius7. This repulsive force is a direct consequence of the Pauli exclusion 
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principle becoming relevant when two atoms are close enough that their electron 
clouds may occupy the same region of space. In this scenario, the Pauli principle 
postulates that two electrons in a system may not have the same set of quantum 
numbers. Hence, the contact between two atoms that are too close is discouraged. 

Overall, despite the fact that Van-der-Waals interactions are energetically 
weaker than both covalent bonds and electrostatic interactions per se, they 
constitute the biophysical basis for many properties of (bio)chemical species, 
including but not limited to their solubility in water and in organic solvents, the 
reciprocal orientation of molecules, the tendency of aggregation and condensation. 
As such, VdW interactions represent a crucial aspect which is well worth 
investigating when studying interactions both of biomolecular assemblies among 
themselves, and between the latter and small molecules, e.g. drugs. Together with 
electrostatic interactions, they provide a model to analyze, quantify and tune 
specific properties of interest (e.g. binding affinity, binding/unbinding kinetics, 
binding specificity, etc.) and play a significant role in the estimation of interaction 
strengths. 

1.2 Macromolecular assemblies of biological interest 

As introduced in the previous section, electrostatic and Van-der-Waals-type 
interactions are the main driving force of many assemblies that play crucial roles in 
biological systems. Indeed, despite the diverse nature of such assemblies, both in 
terms of composition and in terms of biological function, they are all the result of 
highly orchestrated non-covalent interactions that occur on top of the covalent 
scaffold, with specific geometries and peculiar dynamics, which can be readily 
explored with computational techniques such as Molecular Dynamics, with time 
and space resolutions which are still largely inaccessible to experimental 
techniques.  

The main biological assemblies investigated in the research presented herein 
are briefly described in the following, to provide a broad overview of their main 
characteristics and composition. While an exhaustive description of their 
biochemistry is beyond the scope of this work, the aim is to provide the biological 
context for the presented investigations and to highlight the importance as well as 
the power of computational modelling techniques in aiding our understanding of 
the atomistic phenomena beneath their behavior and macroscopic observables. 
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1.2.1 Cytoskeleton filaments 

The cytoskeleton can be defined as the ensemble of biomolecules involved in 
establishing, maintaining, and adapting the mechanical structure of a eukaryotic 
cell. It is composed largely of protein filaments which extend across the cytoplasm 
and allow for structural integrity, cargo trafficking, cell adhesion, and for the active 
motion of cells or organelles such as cilia. Also, the cytoskeleton is a key player in 
cell division, a process in which the cell undergoes drastic morphological changes 
and which thus cannot be possible without highly specific dynamic rearrangements 
of cytoskeleton proteins. 

 Three main types of protein filaments constitute the backbone of the 
cytoskeleton, namely (a) microfilaments; (b) intermediate filaments and (c) 
microtubules.  

Microfilaments are biopolymers of actin, which is the most abundant 
cytoskeleton protein (REF The Cell: a molecular approach). Single monomers of 
actin, which are referred to as globular actin (G-actin), present specific binding sites 
that allow for the longitudinal interaction with other G-actin monomers, to 
reversibly form filaments of up to several micrometers of length and with diameters 
of approximately 7 nm. The reciprocal rotation of adjacent actin monomers in a 
filament, which is of approximately 166°, causes the assembly to coil into a double-
stranded helix, which has a specific polarity caused by the constant orientation of 
actin monomers within the filament. Actin filaments may further assemble into 
networks or bundles, based on their interaction with specific actin-binding proteins. 
The dynamic and reversible polymerization of G-actin into microfilaments is driven 
by non-covalent interactions between actin monomers and between filaments and 
actin-binding proteins. 

Intermediate filaments (IF) encompass a rather heterogeneous group of protein 
polymers with a diameter in the order of 101 nm. They are composed of proteins 
which have been categorized into six different groups based on their amino acid 
compositions, the most important of which are keratins (groups I and II), desmin 
and vimentin (group III), neurofilament proteins (group IV), lamins (group V) and 
nestin (group VI). IFs share a common assembly scheme consisting of a central rod 
domain with an alpha-helix secondary structure, an N-terminal head and a C-
terminal tail. Two central rod domains subsequently further assemble into dimers, 
and subsequently into tetramers, which associate longitudinally into protofilaments 
and laterally into filaments. While generally more stable than actin microfilaments, 
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also IFs are the result of many synergistic electrostatic and Van-der-Waals-type 
interactions between their protein constituents, again highlighting the fundamental 
role of non-covalent interactions in biomolecular assemblies. 

Microtubules (MTs) are the largest class of cytoskeleton filaments, forming 
hollow cylinders with a diameter of around 25 nm composed of adjacent strands of 
consecutive αβ tubulin heterodimers (called protofilaments). They play a key role 
in the cell, where they act not only as a structural scaffold for the overall shape of 
the cell, but also as tracks along which intracellular cargo might be trafficked to 
different locations within the cytoplasm, a process which is driven by motor 
proteins which proceed along the MTs. Also, the dynamics of MTs are responsible 
for the segregation of chromosomes during mitosis, which makes them a target of 
interest for many antimitotic agents14. The stability of MTs is guaranteed by 
electrostatic interactions and hydrogen bonds which stabilize (a) tubulin dimers; (b) 
the protofilaments in the axial directions; (c) the MT wall in the lateral direction. 
Typically, microtubules are composed of 13 protofilaments15, although different 
assemblies have been observed with fewer or more protofilaments across the animal 
kingdom16. Just as actin microfilaments, MTs undergo a dynamic 
polymerization/depolymerization process which goes under the term dynamic 
instability, leading to the continuous alternation between growing and shrinking 
phases: more in detail, protofilaments continuously assemble and disassemble into 
tubulin heterodimers with a specific spatial polarization (as in the case of actin), 
whereby the β subunit of the dimer is oriented towards the plus end and the α 
subunit is oriented towards the minus end. Even during the depolymerization phase, 
which occurs as a consequence of the hydrolysis of GTP into GDP, the MT 
maintains its ability to perform mechanical work17.  

The constitutive protein of MTs, tubulin, is a protein composed of three 
subdomains called the Rossman fold, the intermediate domain and the C-terminal 
domain, and is able to spontaneously self-assemble first into αβ heterodimers, and 
subsequently into protofilaments, through the hydrolysis of Guanosine 
Triphosphate (GTP) into Guanosine Diphosphate (GDP), a process which can occur 
only at the exposed tubulin surface18,19. Tubulin exists in different forms 
characterized by the mutation of single amino acids in the sequence. These take the 
name of isotypes, and living systems present a diversified expression pattern of such 
isotypes depending not only on the species, but also on the specific tissue type and 
cell environment. This abundance of tubulin isotypes together with experimental 
evidence of a wide range of post-translational modifications occurring in tubulin 
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has recently led to the formulation of the so-called tubulin code hypothesis, stating 
that organism are able to tailor the structure and function of microtubules by 
modulating their specific composition and modifications20 . Just as for the 
previously mentioned cytoskeleton filaments, MTs rely on non-covalent 
interactions to maintain their stability and to carry out their specific functions. Their 
unique structural features, including the specific architectural and functional 
characteristics of MTs in the human brain21, together with their responsiveness to 
GTP in the polymerization/depolymerization process, are the starting point for the 
investigations reported in the present work, where the high spatial and temporal 
resolution allowed by Molecular Dynamics has been exploited to shed light on key 
interactions of tubulin dimers with different sets of small molecules which are of 
interest for neuroscience as well as material science. 

1.2.2 Phospholipid membranes 

Phospholipid membranes constitute a prime example of heterogeneous molecular 
assembly with unique mechanical, structural, and functional properties. As 
discussed in the previous paragraph, the structural integrity and mechanical strength 
of the cell is mostly provided by intracellular biopolymers such as the cytoskeleton 
filaments. Thus, at least in mammalian cells, the key design requirement for cell 
membranes is not so much the mechanical robustness per se, but rather the ability 
to function as a highly selective, plastic and dynamic barrier, separating the 
intracellular environment for the exterior aqueous surrounding. In terms of their 
chemical and physical characteristics, membranes are required to interact favorably 
with water on both sides – at the cytoplasmic side and at the extracellular side – 
since both of these environments are composed largely of water. One class of 
biomolecules satisfying such requirements are amphiphiles, i.e., molecules 
possessing both hydrophobic and hydrophilic moieties, and more specifically 
phospholipids, which are molecules composed of two fatty acid chains linked to a 
glycerol group and a polar phosphate headgroup. Many different types of 
phospholipids make up biological cell membranes, and they can be classified based 
on the length of the hydrocarbon chains or the chemical composition of the 
hydrophilic headgroup. In addition, phospholipids can be divided into saturated, 
which only present single C-C bonds in their hydrocarbon tails, or unsaturated, 
containing one or more double C=C bonds. From a mechanical perspective, the 
former type of lipids tends to pack into tighter and more organized bilayers, yielding 
typically higher mechanical strength, decreased fluidity and a higher liquid/gel 
transition temperature, whereas the latter (unsaturated) usually present the opposite 
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behaviour, with a higher fluidity (decreased viscosity) when assembled into bilayers 
due to the distortion of the symmetry of the hydrocarbon tails induced by the double 
bond. 

As anticipated, biological membranes are usually composed of a mixture of 
different phospholipids in different proportions depending both on the species and 
on the specific function (or phenotype) of the cell22–24. The most common types of 
headgroups in eukaryotic cells are serine, ethanolamine, glycerol and choline, while 
the typical lengths of the hydrocarbon chains are between 15 and 18 carbon atoms. 
Overall, the most common phospholipid type in mammalian membranes are 
glycerophospholipids, such as members of the phosphatidylcholine (PC), 
phosphatidylethanolamine (PE) and phosphatidylserine (PS) families. PC 
phospholipids are usually unsaturated, i.e. they present a double C=C bond in one 
of the acyl chains, which increases the fluidity of the membrane. In addition to 
glycerophospholipids, mammalian membranes present two other main components, 
i.e. sterols (mostly cholesterol) and sphingolipids23. Both of these components have 
the mechanical effect of decreasing membrane fluidity and compliance, effectively 
countering the fluidifying effect of unsaturated lipids, thereby conferring increased 
structural stability, bending rigidity and robustness to the membrane. In typical 
mammalian membranes, the percentage of cholesterol with respect to the overall 
lipid composition is around 25 to 30% mol/mol23. Lastly it is worth highlighting 
how the membrane lipid composition can be asymmetric in the two leaflets, 
meaning that the two monolayers composing the membrane can feature different 
proportions and types of lipids based on the specific cell type and function. 

In this highly complex scenario, the experimental investigation of lipid 
membranes has benefitted from remarkable advances in the recent years25: 
techniques such as single-particle tracking26, mass spectrometry, nuclear magnetic 
resonance (NMR)27 and fluorescence correlation spectroscopy28 have effectively 
empowered the study of model membrane systems in terms of both their 
composition and their dynamics. Indeed, the study of cell membranes appears 
crucial to understand fundamental biological mechanisms such as the spontaneous 
and facilitated diffusion of solutes across the membrane, mechanosensing and 
signal transduction from the extracellular environment to the cytoskeleton, the 
conformational dynamics of transmembrane proteins and channels, or processes 
such as endocytosis, phagocytosis and neurotransmitter release, just to name a few. 
Due to the very nature of the membrane, all these processes are intrinsically 
dynamic, meaning that they are the result of a continuous and highly orchestrated 
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motion of lipid molecules, solutes and proteins at the picosecond to millisecond 
timescale. For this reason, in addition to the aforementioned experimental advances, 
molecular modelling and more specifically molecular dynamics has emerged as a 
very powerful tool to obtain molecular-level insights into these highly complex 
systems. This is testified by the ever-increasing number of published studies relying 
on molecular dynamics to investigated specific membrane properties29, ranging 
from simple single-lipid models to complex assemblies including different lipid 
types as well as embedded proteins. In this regard, all of the above-mentioned 
considerations regarding membrane composition, asymmetry and dynamics 
constitute a challenge in the context of the computational modelling and 
investigation of membrane behavior. As a matter of fact, a large part of the 
computational studies published in the last twenty years employed membrane 
models composed of a single lipid type, most commonly 
palmitoyloleoylphosphatidylcholine (POPC) or dipalmitoylphosphatidylcholine 
(DOPC), with simulations including up to 128 lipid molecules and reaching time 
scales of 10-11 s, due to the limitations given by the lipid force fields and by the 
computational resources available at the time29. Nowadays, the increase in 
computational power and the availability of accurate and validated lipid force fields 
allowing for a robust parametrization of a wide range of lipid types, has effectively 
allowed for the modelling and simulation of larger, heterogeneous lipid patches in 
a variety of modelling contexts30,31. This bears the benefit of being able to explicitly 
account for the presence of different lipid species, each with their distinctive 
molecular behavior, as well as to extend the simulation time scales well beyond the 
microsecond, which allows the simulation to capture motions and mechanisms of 
great relevance occurring at longer timescales. 

1.2.3 Engineered constructs in drug design and delivery 

Beyond biomolecules such as proteins and lipids, many other assemblies can be 
successfully investigated exploiting the synergy of combined computational and 
experimental approaches. Indeed, a great number of resources have been invested 
into the design and characterization of custom assemblies with tailored molecular 
properties, based on the goals and requirements of the specific application. 
Examples of this range from materials science applications, where the aim is to 
improve existing materials in terms of e.g. mechanical strength, resistance to high 
temperatures or environmental sustainability throughout the material’s lifecycle, to 
biomedical applications such as the design of novel drug carriers, or even at the 
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interface between these research fields, e.g. for the design of biocompatible 
materials for tissue engineering. 

In the context of drug design, finding innovative means for the targeted delivery 
of medicinal compounds remains in many cases an open challenge, which has the 
potential of not only increasing the therapeutic efficacy of drug-like molecules, but 
also to reduce off-target effects and to improve shelf stability. Especially in the field 
of anticancer therapies, the presence of severe side effects and/or a poor 
understanding of the biomolecular target still constitute major obstacles throughout 
the bench-to-bedside development cycle of drug candidates, leading to estimated 
failure rates of as many as 9 out of 10 compounds32.   

In the research presented in this dissertation, computational modelling strategies 
have been applied to study two main types of engineered platforms for drug 
delivery. The first investigated structure are dendrimers, which are branched 
organic particles of approximately spherical shape with symmetric, radially 
extending branches originating from a central core. These are monodisperse 
structures whose electrostatics, solubility, stability and drug-loading capacity can 
be tuned for specific cargos and deployments33. The combined experimental and 
computational study of custom dendrimers for the delivery of Rose Bengal for 
photodynamic therapy is discussed in detail in section 4.3. The second type of 
nanoformulated constructs for drug discovery investigated herein is represented by 
innovative tubulin-based nanocapsules which have the ability to selectively respond 
to GTP-rich environments. The molecular underpinnings of the assembly of tubulin 
into nanocapsules through the use of molecular glues is reported in section 4.4, 
which also represents an additional example of how molecular modelling can be 
employed to obtain additional atomistic insights which are complementary to 
experimental findings. 

1.3 Computational molecular modelling of ligand-target 
interaction dynamics 

In the context of the macromolecular structures described above, the overarching 
goal of the present work is to illustrate the application of Molecular Mechanics 
methodologies to the investigation of different types of small molecule-target 
interactions, in scenarios where there is an incomplete understanding of specific 
binding sites, or where the ligands are expected to exert a multi-modal and dynamic 
action on their target as opposed to a lock-and-key binding paradigm. Examples of 
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such systems include (a) volatile anesthetics, small gaseous molecules able to cause 
reversible loss of consciousness; (b) molecular glues, which are molecules able to 
alter polymer assemblies through aspecific interactions; (c) nanoparticle-drug 
complexes, where the binding between the nanoparticle and the drug cargo is driven 
by non-covalent and mostly electrostatic interactions. Each of these systems 
requires specific computational approaches and modelling choices: the 
computational strategies and specific methodologies shall be tailored so as to 
capture the relevant mechanisms driving the interactions and to allow the 
mechanistic understanding of the system. As such, there is no one-size-fits-all 
methodology that can be applied to any protein-ligand or target-ligand molecular 
system, but rather a plethora of strategies for the parametrization of the systems, for 
the generation of initial conditions, e.g. the positions of the atoms of both the ligand 
and the target, for improving the sampling throughout the simulation, or for the 
estimation of the strength of a protein-ligand interactions, just to name a few. These 
strategies will be discussed in detail in the following chapters, which will describe 
the how the modelling strategies were chosen and tailored based on the molecular 
system at hand and based on the overall goal of the specific investigation.  

After an in-depth review of the theoretical background of molecular modelling, 
provided in chapter 2, and after the detailed description of the specific 
investigations that were carried out, each with its own modelling approach (chapters 
3 to 4), a birds-eye view is provided in chapter 5, where the different approaches 
and methods for the modelling of small molecule-target interactions are discussed 
in light of the physical and chemical characteristics of the systems under 
investigation, underlining the power of molecular dynamics simulations in this field 
of study. 

All supplementary figures and information mentioned throughout the text are 
included in the appendix, which is included at the end of the document. 



  
 

Chapter II 

Computational Modelling of 
biological systems at the molecular 
scale 

2.1 Introduction and aim 

As anticipated in the previous chapter, a wide range of computational 
methodologies exist to investigate the behavior and dynamics of biomolecular 
systems. The selection of a specific methodology, and thus of a specific theoretical 
foundation for the model being used, mostly depends on the desired resolution, the 
acceptable approximations, and the available computational power. Within the 
scope of the present work, the size of the systems being studied, in the order of 105 
atoms, discourage the use of ab initio approaches, and determined the choice of 
Molecular Mechanics as the overarching methodological framework. An outline of 
the MM theory is provided in the following, together with a brief overview of the 
necessary background in statistical mechanics and the description of the molecular 
force fields and simulation engines used in the present work. 

2.2 Molecular Mechanics 

The broad field of molecular mechanics is erected onto the fundamental idea of 
applying classical Newtonian mechanics to particle systems representing the atomic 
structure of (bio)molecules. The underlying concept postulates that molecules can 
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be modelled as an ensemble of point masses which are interconnected as harmonic 
oscillators, and which additionally interact at longer ranges with coulomb-type and 
Lennard Jones (LJ) potentials progressively decaying at longer ranges. Thus, a 
molecular system can in principle be described mathematically by defining a 
potential energy function (PEF) which only depends on the (reciprocal) positions 
of the particles composing the system, as well as from a set of predefined 
parameters which go under the term Force Field (FF) and which describe e.g. the 
fundamental characteristics of the harmonic potentials describing covalent bonds, 
angles, dihedrals as well as collision radii for non-bonded interactions, etc. In spite 
of the apparent simplicity of this approach, especially when considering the 
complexity of the phenomena occurring at the atomic scale, the molecular 
mechanics paradigm is surprisingly powerful to both provide mechanistic 
explanation to macroscopic observables and make predictions about the interaction 
dynamics of existing and novel molecular systems. Indeed, even though describing 
atomistic systems using classical physics might seem a task deemed to fail, the ever 
increasing number of success stories in which computational molecular modelling 
- based on classical mechanics - has significantly enhanced the mechanistic 
understanding of specific molecular machineries unmistakably confirms the 
relevance of this methdology31. The following paragraphs provide a description of 
the fundamental theoretical background behind molecular mechanics, together with 
an overview of the methodologies employed in this work. 

2.2.1 Fundamentals of Statistical Mechanics  

Statistical mechanics represents the theoretical foundation linking the 
macroscopic observables, i.e. the quantities commonly measured in a laboratory 
setting during experiments, and the properties of the single particles composing the 
system, e.g. the velocities of individual molecules or atoms. In other words, 
quantities that were historically studied as intrinsic properties of the system under 
investigation, e.g. heat, were subsequently shown to be emergent properties, 
originating from the movement of the individual components of the system. As 
such, statistical mechanics can be sees as the theoretical instrument to connect the 
behaviour of atoms to the macroscopic laws of thermodynamics by means of 
statistical methods. Intuitively, this means averaging the detailed microscopic 
properties of the particles to obtain higher-level descriptions which can be directly 
compared to what is measurable macroscopically. 
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 This statistical link, explaining how these fundamentally different levels of 

abstraction can be connected, becomes especially crucial in the context of assisting 
experiments using computational techniques which rely on the simulation of 
ensemble of individual particles, since it allows to bridge the gap between the 
microscopic and the macroscopic and to interpret empirical findings in the light of 
the microscopic behavior of biomolecules.  

The fundamental requirement to allow for such a bottom-up approach, i.e. to 
obtain information about the macroscopic condition of a system starting from the 
collection of its microscopic properties, is to carry out a sampling process. 
Sampling involves the space of all possible physical microstates, e.g. the positions 
and velocities (or momena) of the individual particles, that are accessible to a 
system, which is called the phase space: the grand challenge when performing 
simulations at the microscopic scale is to obtain a representative ensemble of 
conditions of the system, or in other words to sufficiently sample the phase space. 
If we consider the velocities and positions of the particles as the variables defining 
the state of the system, which is to say that we are considering a classical 
mechanical representation, then a system composed of N particles will have a total 
of 6N variables defining its location in the phase space, if these quantities are 
defined in a three-dimensional space. More in general, the degrees of freedom will 
be 2dN, where d is the dimensionality of the input variables. In the case of a 
quantum description of the system, the positions and momenta might instead be 
replaced by the value of the wavefunction. Most importantly, the statistic link 
between the thermodynamic equilibrium properties of the system and the location 
of its individual components in the phase space postulates that multiple discrete 
microstates (e.g., combinations of positions and momenta in the classical 
framework) can give rise to the same thermodynamic macrostate (e.g, the 
temperature, pressure or entropy of the system). The collection of microstates 
corresponding to the same macrostate is also called the statistical ensemble or the 
density of states. The underlying assumption is that given a certain macrostate, any 
corresponding microstate is equiprobable a priori. Mathematically, the connection 
between microscopic properties and macroscopic observables can also be expressed 
by the following equation: 

〈𝐴〉 = &𝐴(𝑝! , 𝑟!)𝜌(𝑝! , 𝑟!)𝑑𝑝!𝑑𝑟! 

( 2.1 ) 
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where 〈𝐴〉 denotes the ensemble average of the property 𝐴(𝑝! , 𝑟!) which is a 
function of the positions, 𝑟!, and the momenta, 𝑝!, and 𝜌(𝑝! , 𝑟!) is a probability 
density function characterizing the ensemble. This probability density depends on 
the energy of the system, E, in a given configuration: 

𝜌(𝑝! , 𝑟!) ∝ 𝑒
"#$%!,'!(

)"*  

( 2.2 ) 

where kB is the Boltzmann constant and T is the absolute temperature. The 
proportionality factor follows the requirement that 𝜌(𝑝! , 𝑟!) is a probability 
density, which is to say that the probabilities of all the microstates must sum to one. 
Mathematically, this implies that a normalization factor, Z, must be defined as: 

𝑍 =1𝑒
"#$%!,'!(

)"*  

( 2.3 ) 

This quantity is called the partition function (or Zustandssumme), whose inverse 
constitutes the proportionality constant in the Maxwell-Botzmann distribution: 

𝜌(𝑝! , 𝑟!) =
1
𝑍 𝑒

"#$%!,'!(
)"*  

( 2.4 ) 

Since the overarching goal is to determine averages of the properties of the system, 
this introduces the problem of exhaustively sampling the individual states to 
determine 𝜌(𝑝! , 𝑟!) to ultimately solve equation ( 2.1 ). Indeed, the analytical 
solution of equation ( 2.3 ) is only feasible in a very limited amount of scenarios. 
However, remembering that the goal is to obtain average quantities, it is useful to 
remember that said averages can be calculated for any given system either by 
observing the evolution of its degrees of freedom over time, and the considering the 
amount of time the system spends in a given state, or by observing many different 
systems, all corresponding to the same macrostate, at the same time. The former 
approach yields the time averages, whereas the latter intuitively corresponds to the 
ensemble averages. A system for which these two quantities coincide for arbitrarily 
long observation times is said to be ergodic. Mathematically: 
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〈𝐴〉+,-+./0+ = 〈𝐴〉12.+ 

( 2.5 ) 

where, starting from equation ( 2.1 ), 〈𝐴〉12.+ can be calculated as: 

〈𝐴〉12.+ = lim
*→4

6𝐴(𝑝!(𝑡), 𝑟!(𝑡))
*

5

𝑑𝑡 

( 2.6 ) 

The quantity in equation ( 2.6 ) is the one calculated during computational 
simulations, where the continuous integral over time dt is replaced by its discrete-
time counterpart, i.e. a sum over the total number of performed timesteps. This 
represents the fundamental theoretical background justifying the use of discrete-
time computer simulations to obtain useful pieces of information regarding the 
thermodynamic state of an atomistic system, which may then be compared to 
macroscopic observables and experiments. Also, it explains the quest towards 
increasingly longer simulation times and/or enhanced sampling techniques, so that 
equation ( 2.5 ) holds and ensemble averages can be inferred. 

2.2.2 Molecular Mechanics: Force Fields  

As anticipated in the introductory section, the term molecular force field refers to 
the ensemble of parameters defining the potential energy function, which is 
generally an additive composition of a set of bonded and non-bonded terms, which 
allows for the prediction of the motion of the particles. This idea can be formalized 
with the following equation: 

𝑉(�⃗�) = 𝑉(𝑟)/6,7+7 + 𝑉(�⃗�),6,"/6,7+7 

( 2.7 ) 

This most general formulation of the potential energy function reported in 
euqation ( 2.7 ) is usually a function of only the positions of the particles, �⃗�. In 
greater detail, the 𝑉(𝑟)/6,7+7 is defined as the composition of classical mechanical 
potentials, most commonly of harmonic type, which describe the oscillations of the 
atoms about their equilibrium bond lengths and angles, as well as terms describing 
the behavior of proper and improper dihedrals: 
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𝑉(𝑟)/6,7+7 = 𝑉(𝑟)/6,7- + 𝑉(𝑟)8,90+- + 𝑉(𝑟)72:+7'80- 

( 2.8 ) 

Conversely, the non-bonded terms of the PEF, which are designed to account 
for the electrostatic and Van-der-Waals interactions between particles that are not 
linked by covalent bonds, can be summarized as: 

𝑉(𝑟),6,"/6,7+7 = 𝑉(𝑟)#0+; + 𝑉(𝑟)<7= 

( 2.9 ) 

The key characteristic distinguishing the different molecular mechanics-based 
approaches is what type of equation is employed to model each of these terms. This 
choice largely depends on the system under investigation and the desired tradeoff 
between speed and accuracy7. In its general form, the potential energy function can 
be written as: 

𝑉 = 1
1
2𝐾2>(

2,>	∈A"

𝑑2> − �̅�2>)B + 1
1
2𝜉2>,)(

2,>,)	∈A"#

𝜃2>) − �̅�2>,))B

+ 1 1𝜓2,>,),0B1 + cosF𝑛𝜙2,>,),0 − 𝜙I2,>,),0JK
,2,>,),0	∈A$#

+ 1 L4𝜀2,> OP
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𝑑2,>
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− P
𝜎2,>
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R
D

S +
𝑞2𝑞>

4𝜋𝜀5𝜀'𝑑2,>
V
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( 2.10 ) 

In equation ( 2.10 ) each term of the bonded and non-bonded potential between any 
two given particles, i and j, has been explicitly described. Briefly, the first term 
models the harmonic potential between bonded atoms, oscillating about an 
equilibrium bond length value of �̅�. The second terms describes the analogous 
behavior for the angle defined between any three bonded particles, i, j and k. The 
third term describes the dihedral rotations about the bonds of quartets of atoms i,j, 
k and l. The last term represents the non-bonded interactions, i.e., the coulomb 
potential between two atoms with charge 𝑞2 and 𝑞>, and the Lennard-Jones potential 
between two atoms i and j, respectively. Taken together, the form of the potentials 
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used to describe the PEF in equation ( 2.7 ) and the set of parameters used in said 
equations (e.g. Kij , �̅�2>, etc. in equation ( 2.10 )) constitute the force field.  

Different force fields are build, optimized and validated for the simulation of 
specific classes of biomolecules in specific thermodynamic conditions, since the 
parameters are usually obtained empirically, with or without the aid of quantum 
mechanics calculations. Thus, the choice of the force field when approaching a 
given molecular modelling problem heavily depends on the system under 
investigation. It is the responsibility of the modeler to opt for parameters and 
simulation methodologies that are coherent with the research being carried out and 
that are validated within its scope, so that sound estimates and predictions can be 
obtained.  

2.2.3 Molecular Dynamics simulations 

As explained in greater detail in section 2.2.1, obtaining robust estimates of 
thermodynamic properties of interest, i.e. emergent properties that depend on the 
population of microscopic states, requires an extended sampling of the latter to 
obtain a representative statistical ensemble. In the context of molecular modelling, 
this directly implies the need of generating a sufficient number of molecular 
conformations to obtain a sufficient degree of sampling of the phase space. In 
practical terms, this means that it is often not enough to extract a specific 
conformation of the system being investigated, e.g. a local minimum of a potential 
energy function as defined in section 2.2.2, to obtain relevant insights into 
molecular interactions. This caveat is moreover implied whenever the overarching 
goal is to characterize the dynamics of the system, which is to say how the different 
molecular players evolve over time under specific conditions.  

To overcome this limitation, different methods have been developed to generate 
ensembles of conformations, i.e. to sample the phase space of a molecular system: 
two widely employed strategies are (a) Monte Carlo (MC) simulations and (b) 
Molecular Dynamics (MD) simulations. As the name suggests, MC simulations 
generate new conformations through random perturbation of the degrees of freedom 
followed by the evaluation of the induced energetic change (which can be 
calculated using the Boltzmann factor described in equation 2.2.). While the MC 
approach historically represents the first method applied for molecular simulations, 
it is not suitable to explore dynamic non-equilibrium properties, since it does not 
include the contribution of the momenta and does not generate an ensemble 
representing the time-evolution (or trajectory) of the system. Also, it has been 
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shown that MC simulations do not allow for a better sampling of the phase space in 
a given amount of time if compared to other techniques such as MD34, and imply 
significant technical hurdles in their implementations – due to e.g. the problem of 
random number generation or due to the internal degrees of freedom in complex 
molecular systems leading to high energetic penalties and high rejections7.  

On the other hand, the Molecular Dynamics (MD) method relies on Newton’s 
equation of motion to iteratively calculate how the molecular system evolves over 
time, starting from the definition of its potential energy (see equation ( 2.10 )). As 
such, MD is said to be a deterministic method, as opposed to MC which is stochastic 
in nature. Mathematically, the foundation of the MD method is that the force acting 
on a given particle, i, is linked to its mass and acceleration as: 

𝑚2
𝑑B𝑟2
𝑑𝑡 = 𝐹2 

( 2.11 ) 

with ri indicating the position of the particle, mi its mass and t is the time. The law 
expressed in equation ( 2.11 ) is a fundamental principle in classical mechanics, and 
as anticipated in section 1.1, the use of this paradigm in place of QM-level 
calculations greatly decreases the computational burden of the simulations, since 
there is no need to explicitly solve Schrödinger’s equations. From a practical 
standpoint, the trajectories can thus be calculated by obtaining the force, Fi, as the 
negative derivative of the PEF (see equation ( 2.10 )), which can subsequently be 
used to recalculate the accelerations, velocities and positions of the particles by 
integrating equation ( 2.11 ). Since computer simulations intrinsically rely on 
numerical solutions, this process is practically solved in discrete time steps, in the 
order of 10-15 seconds. At each step, the forces, positions and velocities on each 
atom are updated and used to progressively obtain the trajectory of the system. 
Finally, provided that the simulation proceeds for a sufficient number of time steps, 
ensemble averages can be calculated by averaging their evolution in time obtained 
through the simulation, as discussed in section 2.2.1, equation ( 2.5 ): 

〈𝐴〉12.+ =
1
𝑇1𝐴(𝑝! , 𝑟!)

*

2EC

 

( 2.12 ) 
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which represents the numerical solution of equation ( 2.6 ), with T being the number 
of simulated timesteps. While the amount of timesteps that can be simulated largely 
depends on the size and parametrization of the system at hand, typical all-atom MD 
simulations can nowadays reach timescales of tens of microseconds, thanks to 
modern HPC resources and GPU acceleration.  

2.3 Methods for binding mode and binding energy 
prediction 

The computational prediction or estimation of the binding energy between a 
macromolecule and a small ligand is a main area of interest within the molecular 
modelling community. Indeed, the quantification of the strength of interaction 
between a drug and a target allows both for the explanation of the effects of small 
molecules on their targets, and the strength thereof, and for the design of improved 
molecular scaffolds which might be characterized by an enhanced binding energy 
to their target of interest and/or a decreased binding energy towards unwanted 
molecular players. Many methods have been developed to provide an estimate or 
prediction of this binding energy, with varying degrees of accuracy and 
computational complexity. The methods employed throughout the present 
dissertation are briefly described in the following paragraph, to provide an 
additional theoretical background to the methodology and to make the reader aware 
of the advantages and disadvantages characterizing their use. Indeed, it can be 
argued that an in-depth comprehension of the approximations and theoretical 
foundations of a given binding energy calculation strategy is what can ultimately 
constitute an important guiding light for the choice of the method in a specific 
application scenario, based on the assumptions that can or cannot be satisfied and 
on the tradeoff between speed and accuracy that can be accepted in each use-case. 

2.3.1 Docking and scoring functions 

The term docking (or molecular docking) refers to a computational methodology 
that is designed to predict how a small molecule might place itself within a specific 
cavity or region on a macromolecular target, e.g. a protein. This placement is called 
the binding mode of the ligand, and constitutes the main output of docking 
computations, together with a rough estimate of the bending affinity.  

Usually, a typical docking algorithm consists of two main phases: (a) the 
placement of the ligand and (b) the scoring of the pose. Different docking tools 
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apply different algorithmic (for the placement) and methodological (for the scoring) 
approaches to each of these stages. In the most common scenario, the inputs 
required for a docking run are (i) the 3D coordinates of the atoms of the target 
biomolecule, such as e.g. a crystallography obtained from the PDB35 or a homology 
model36; (ii) the atomic coordinates of the ligand(s), which should ideally be 
represented in the dominant protonation state under the investigated conditions and 
which should also have the atomic partial charges calculated using one of the 
methods mentioned in section 1.1.1; (iii) the approximate location of the binding 
site, although so-called blind docking approaches exist which search the whole 
target for putative binding37, and which have recently benefitted from the 
application of Machine Learning techniques to enhance their reliability and 
effectiveness38. 

The goal of the first phase, i.e. the ligand placement, is to sample the 
conformational space of the ligand when the latter is placed within the defined 
binding site, i.e. to generate an ensemble of conformations which explore the 
possible reciprocal interactions between the ligand and the target. Broadly 
speaking, the algorithms designed to perform this conformational search can be 
stochastic, based on matching, or systematic. Stochastic search algorithms, as the 
name suggests, use approaches such as evolutionary strategies or Monte Carlo 
(MC) methods to randomly generate new ligand conformations by stochastically 
altering its different degrees of freedom, e.g. bond rotations, in the hopes of 
exhaustively sampling the conformation space and thus to find a satisfactory 
solution to the placement problem. On the other hand, placement methods which 
are based on matching rely on the concept of shape complementarity between the 
small molecule and the target binding site, to extract likely ligand conformations 
and discard incompatible placements. Also, matching algorithms can include 
considerations regarding the chemical compatibility of interacting atoms, e.g. 
hydrogen bonding or π-stacking, to further refine the conformational search. Lastly, 
systematic approaches aim at exhaustively sampling the conformational space of 
the ligand along all its degrees of freedom to obtain the most representative 
statistical ensemble of binding poses and ultimately extract the most favorable ones. 
Based on the specific strategy that is being adopted, systematic methods can be 
further categorized into (a) exhaustive algorithms, which progressively explore all 
possible rotations of all the dihedrals in the query ligand; (b) methods that are based 
on ensembles, i.e. that first generate representative populations of ligand 
conformations which are subsequently placed rigidly within the target cleft; (c) 
fragment-based methods, which individually place sub-groups of ligand atoms 



34 Computational Modelling of biological systems at the molecular scale 

 
within the binding site and only subsequently reconnect them to form the original 
query ligand. 

Whatever the strategy to generate new conformations of the ligand in the 
binding site, these must subsequently be scored. The general goals of scoring are: 
(a) providing a rough estimate of the putative binding energy associated to a specific 
conformation; (b) discarding conformations that are unreasonable from a 
biophysical standpoint (e.g., due to atomic clashes); (c) providing a quantitative 
ranking of the ensemble of conformations. The scoring function shall thus take the 
positions of the atoms as the only input, which is the result of the previous ligand 
placement phase, and provide a quantitative estimate (a number) of the "goodness" 
of the pose as an output. 

One possible approach to the scoring problem is to rely on the already-
described force fields, i.e. to use equations such as ( 2.10 ) to obtain an estimate of 
the potential energy as a function of atomic positions. This approach satisfies the 
above-mentioned input/output requirement, but is not the most computationally 
efficient in a context where speed is often a key issue, such as massive virtual 
screening campaigns39 which should be able to dock up to 106 molecules in 
reasonable amounts of computation time. In addition, while MD forcefields 
generally deal with the minima of the energy profiles in the phase space, the goal 
of docking is rather to approximate the binding free energy, which also depends on 
factors such as the temperature40. For these reasons, a second, more popular 
approach to scoring is to define so-called empirical scoring functions. These are 
conceptually similar to force fields, in the sense that they provide an energetic 
estimate starting from the atomic positions, but are explicitly optimized to weigh 
the different contributions of intermolecular interactions to the binding free energy, 
to account for the above-mentioned differences. Intuitively, empirical scoring 
functions divide the final binding energy into contributions yielded by e.g. 
hydrogen bonding, electrostatics, Van der Waals interactions, etc., weighted by 
specific coefficients that are obtained in order to match experimental results and to 
implicitly account for the temperature.  

As an example, in the AutoDock-Vina docking program, which was used in the 
research described herein, the scoring function is the result of the combination of 
knowledge-based potential energy formulations and empirical scoring 
approaches40. For a given conformation, i, it takes the following form: 
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𝑠2 = 𝑔(𝑐2 − 𝑐2,1'8%) 

( 2.13 ) 

where: 

𝑐2 = 𝑐2,1'8 + 𝑐2,1+' =1𝑓1&,1'(𝑟2>)
2F>

 

( 2.14 ) 

In equation ( 2.13 ) 𝑐2,1'8% represents the intramolecular contribution to scoring 
of the best binding pose. The conformation-dependent term c, formalized in 
equation ( 2.14 ), is the sum of the intra- and inter-molecular contributions, and is 
given by the sum over all possible atom pairs with possible reciprocal 
displacements. 𝑓1&,1' represents the interaction between an atom of type ti and an 
atom of type tj, and is given by:  

𝑓1&,1'F𝑟2>J = 𝑒"G
7&'
5.IJ

(

+ 𝑒"G
7&'"K
B J

(

+ 𝛿2> + ℎ2> + 𝜂2> 

( 2.15 ) 

Where dij is the surface distance (dij = rij − Rti − Rtj) with R indicating the VdW 
radius for the specific atom type. The terms 𝛿2>, ℎ2> and 𝜂2> represent the steric 
repulsion term, hydrophobic term and hydrogen bonding term, respectively. These 
are defined based on the inter-atomic distances: 

𝛿2> = a
𝑑2>B 	, 𝑖𝑓	𝑑2> < 0
0	, 𝑖𝑓	𝑑2> ≥ 0	  

( 2.16 ) 

ℎ2> = g
1, 𝑖𝑓	𝑑2> < 0.5Å
0, 𝑖𝑓	𝑑2> > 1.5	Å

1.5 − 𝑑2> , 𝑖𝑓	0.5 ≤ 𝑑2> ≤ 1.5
 

( 2.17 ) 
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𝜂2> =

⎩
⎨

⎧ 1, 𝑖𝑓	𝑑2> < −0.7	Å
0, 𝑖𝑓	𝑑2> > 0

−q
𝑥
0.7s

, 𝑖𝑓	0.7 ≤ 𝑑2> ≤ 0
 

( 2.18 ) 

Finally, the function g of equation ( 2.13 ) is conformation-independent, and is 
given by: 

𝑔(𝑐2,1+') =
𝑐2,1+'

1 + 𝑤𝑁'61
 

( 2.19 ) 

Where Nrot is the number of rotatable bonds (excluding hydrogen atoms), and w is 
the weight.  

This scoring function represents an example which combines the advantages of 
knowledge-based scoring and empirical fitting. A further refinement of scoring can 
be obtained when different scoring approaches are combined, an approach called 
consensus scoring. In consensus scoring, the generated poses are scored according 
to N different scoring methods, and the final results are compared. The final 
combination of the different scores can be obtained e.g. by means of a weighted 
sum or by consensus given a certain threshold. Consensus scoring can improve the 
accuracy of docking and aid in the rejection of decoys in a virtual screening process, 
at the expense of an increased computational cost due to the repeated scoring. 
Depending on the specific implementation and research question, this cost might 
however be negligible or acceptable. 

Whatever the method for ligand placement and scoring, one important aspect 
must be held in mind when choosing the computational strategy for a modelling 
problem, which is the goal under which each method was developed and the 
conditions in which it was validated. In other words, its applicability domain must 
be understood, to avoid overinterpreting the results (in the best case) or improperly 
using a specific method thereby obtaining meaningless results (in the worst case). 
In the case of docking, the modeler should keep in mind that it is a computational 
strategy designed to screen rather large libraries of small molecules with high 
computational efficiency, and it is tuned to be able to retrieve promising drug-like 
compounds for a given druggable binding site and to mimic experimental binding 
poses for a given protein-ligand complex. Also, its search and scoring methods are 
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developed in order to be able to retrieve a reasonable binding pose that is consistent 
with the biophysical characteristics of the binding site, and to consistently discard 
conformations that are grossly overlapping with the target atoms or that are unlikely 
to properly fit. Also, most docking scoring functions are unable to effectively 
discriminate between binding modes whose energy differs by less than one order of 
magnitude41. Although many evolutions and variations of docking exist, nowadays 
often aided by machine learning38,42,43, the aforementioned tasks can be regarded as 
the core application scenario of docking. Indeed, when the goal of a modelling task 
is beyond the scope of docking, e.g., when a more precise estimate of the binding 
affinity is desired, when complex induced-fit phenomena are expected to take place, 
or when the ligand-target interaction dynamics is under investigation, one should 
recur to most advanced strategies, e.g. through the use of Molecular Dynamics. A 
more detailed discussion regarding possible suggested strategies and workflows for 
different modeling tasks is provided in chapter 5.  

2.3.2 MM/PBSA and MM/GBSA 

As anticipated in section 2.3.1, docking can be a fundamental strategy to perform 
rapid screening experiments on large compound libraries, or to provide a first 
estimate of likely inter-molecular interactions of ligands in a specific binding site. 
However, the result given by the scoring function is often a gross approximation of 
the true binding energy between a ligand and e.g. a protein, as observed 
experimentally, due to the approximations and assumptions beneath the method and 
the speed requirements which often hinder more accurate computations. 

More refined binding energy estimation methods exist that rely on the extensive 
sampling of the ligand conformations provided by classical or enhanced sampling 
molecular dynamics simulations. Of course, the gain in accuracy comes at a cost, 
which is the need to perform MD simulations of the ligand-target complex covering 
a sufficient amount of timesteps. This not only bears the additional complexity of 
properly parametrizing the target and the ligand, which is a step that often requires 
extensive validation, but also requires computational resources and time which are 
orders of magnitude greater compared to docking, when considering the 
performance on a single ligand-target complex (days vs. seconds). However, when 
the focus is on a limited amount of targets and/or ligands, this added cost is often 
affordable, and it is also often superseded by the fact that many additional insights 
can be obtained from MD simulations other than binding affinity estimates (e.g., 
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kinetic information, conformational characteristics of the target, principal motions 
and fluctuations, etc.).  

One popular strategy to estimate the binding free energy between a ligand and 
a target is called the Molecular Mechanics/Poisson-Boltzmann Surface Area 
solvation, or MM/PBSA for short. This method, whose accuracy lies in the middle 
between docking simulations and more advanced, statistical-mechanics-based 
strategies such as alchemical perturbation (AP)44, was employed in the research 
described in this dissertation, and is briefly explained in the following. 

The MM/PBSA41 method belongs to the family of so-called end-point 
strategies. The term refers to the fact that they only require sampling of the end 
states, which is to say the bound conformation of the ligand-target complex as well 
as the free ligand and the free target, without any explicit sampling of the binding 
pathway. It is arguably one of the most popular methods to estimate binding free 
energies45,46, due to its fairly easy implementation and reasonable computational 
efficiency if compared to e.g. AP. In the MM/PBSA method, the predicted binding 
affinity, ΔGLMNOMNP, is given by: 

ΔGLMNOMNP = 〈ΔGQ"R〉 −	〈ΔGQ〉 − 〈ΔGR〉 = 	ΔESS − 𝑇ΔS + ΔGT 

( 2.20 ) 

In equation ( 2.20 ), the binding energy ΔGLMNOMNP is calculated as the difference 
between the contribution of the target-ligand complex, the contribution of the target 
alone and the contribution of the ligand alone. This quantity can be calculated as 
the sum between a first term given by the molecular mechanics energy, ΔESS, as 
well as the contribution given by conformational entropy, 𝑇ΔS, and a second term 
representing the differences in free energy of solvation following ligand binding. 
From a technical standpoint, each of the three terms on the right-hand side of 
equation ( 2.20 ) is calculated with a specific approach. 

The energetic contribution given by molecular mechanics, ΔESS, can be 
calculated using the MM force field as the difference in average energies in the 
bound and in the free state: 

ΔESS = ΔESS)*+,- − ΔESS./00 

( 2.21 ) 
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The entropic term, 𝑇ΔS, can be calculated using normal mode analysis (NMA), 

or disregarded altogether if the focus is on the enthalpic contribution. Finally, the 
difference in free energy due to solvation, ΔGT, can be again obtained as the 
difference between the bound and the free states: 

ΔGT = ΔGA123 − ΔGT4 − ΔGT5 

( 2.22 ) 

where the subscript T-L indicates the target-ligand complex, L the free ligand 
and T the free target. ΔGT is the result of polar and non-polar contributions, the 
former of which are calculated using the Poisson-Boltzmann equation (or, as an 
alternative, the Generalized Born model, in which case the method is called 
MM/GBSA), whereas the latter, non-polar, contributions are calculated from the 
solvent-accessible surface area (SASA). 

Despite being arguably more accurate than a docking scoring function, the 
MM/PBSA method contains several approximations designed to improve the 
computational efficiency, such as the use of an implicit model of the solvent. This 
can introduce crude inaccuracies, partly due to the fact that in most scenarios the 
input snapshots used for MM/PBSA calculations stem from MD simulations 
performed with an explicit solvent, which is then removed prior to MM/PBSA. 
Thus, since the energy function used to obtain the MD trajectory is not consistent 
with the one used in MM/PBSA, which uses the PBSA implicit solvent model, the 
introduced inconsistency can have significant repercussions on the estimate of the 
binding affinity. Nevertheless, the efficiency of the MM/PBSA method, together 
with the possibility of applying it after performing MD simulations (with the above-
mentioned caveat in mind) and the option to decompose the binding energy into 
individual contributions of single residues, have made it a widely employed 
technique to obtain energetic insights between the interaction of small molecules 
and biomolecular targets, as well as to perform comparative studies between 
different ligands and/or different targets and thereby spot key molecular 
interactions able to enhance or weaken the binding process. 

 



  
 

Chapter III 

Molecular modelling and 
simulation of anesthetics 

3.1 Introduction1 

The very definition of human consciousness has baffled philosophers, spiritualists, 
and modern scientific scholars alike for a long time, but is yet to be found with 
consensus. The underlying issue is the lack of understanding of where and how 
consciousness arises in the brain. A first, pragmatic step toward understanding 
consciousness is to inspect the role of general anesthesia (GA), whose mechanism 
is still an enigma in spite of the fact that its discovery dates back to 1860. Indeed, 
GA is routinely used for reversibly extinguishing consciousness prior to and during 
surgery, but without a clear knowledge of its mechanisms of action, especially at 
the cellular and molecular levels. Scientific inquiries aimed at defining the neural 
correlates of consciousness, and hence the susceptibility thereof to general 
anesthetics, have been conducted at all investigative levels, from molecular/genetic 

 
1 Part of the work described in this chapter has been published in the following authored 

scientific publications: 
Zizzi, Eric A., et al. "Insights into the interaction dynamics between volatile anesthetics and 

tubulin through computational molecular modelling." Journal of Biomolecular Structure and 
Dynamics 40.16 (2022): 7324-7338. 

Zizzi, Eric A., et al. "Alteration of lipid bilayer mechanics by volatile anesthetics: Insights from 
μs-long molecular dynamics simulations." Iscience 25.3 (2022): 103946. 

Cavaglià, Marco, et al. "Alteration of Consciousness by Anaesthetics: A Multiscale Modulation 
from the Molecular to the Systems Level." Journal of Consciousness Studies 29.5-6 (2022): 21-49. 
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to systems biology, but with inconclusive results. From a molecular point of view, 
this type of investigation is complicated by the fact that in spite of their diverse 
molecular structures and different putative molecular targets, all general anesthetics 
consistently induce reversible loss of consciousness and memory47. Indeed, GA 
represents an extraordinary clinical procedure that allows for a temporary and 
reversible manipulation of the person’s consciousness level in a dose-dependent 
manner and with only minor variations among subjects and a similar mode of action 
in humans as well as animals. Thus, exploring the relationship between general 
anesthesia and the associated field of neuroscience becomes intriguing. 
Understanding the mechanisms underlying anesthesia may help to resolve the 
mysteries surrounding consciousness. At the same time, understanding the cellular 
and molecular mechanisms involved in consciousness could help the design and 
development of new anesthetic agents and psychoactive mood-altering drugs. It 
may also explain what mechanism of neuronal processing mediates the qualitative 
feeling associated with subjective experience. What exactly is measured or 
monitored during general anesthesia? Could there be a more reliable measure of 
consciousness when patients are under the influence of General Anesthesia? The 
so-called Hard Problem in answering any question related to consciousness is the 
nature of reality that one experiences 48. The complexity of brain structure, function, 
and behavior further explains the broad spectrum of neuroscience research, ranging 
from philosophy to quantum physics 49. While consciousness at present is not 
known to be directly measurable or even observed, modern science continues to 
seek quantitative measurements of its possible neural correlates. Current 
neuroscience research related to the investigations of general anesthetics, is being 
conducted at different biological levels, from the whole organism (to determine 
clinical effects such as changes in the cardiac and respiratory rhythms, blood 
pressure, sweat production, tears or pupil dilation), to the cellular level (to identify 
cortical/neural mechanisms and pathways), and deeper to the molecular level (in 
order to identify and characterize both the sites and microscopic mechanisms of 
action of anesthetic molecules).  

As extensively described in the upcoming sections, the unique chemical and 
physical characteristics of anesthetic molecules, together with the inconclusive 
theories of anesthetic action formulated to this date, justify the application of 
molecular modelling strategies in the search for mechanistic explanations for their 
molecular-level effects at the smallest scale of investigation. Section 3.2 provides a 
brief background on the class of volatile anesthetics (VA), their physical and 
chemical characteristics, as well as their unique idiosyncrasies in the context of 
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modern pharmacology. Section 3.3 describes a comparative investigation of 
microtubules (MT) as putative molecular targets for different types of anesthetics 
using computational modelling strategies, ranging from docking to molecular 
dynamics. Section 3.4 reports the computational investigation of the effects of VAs 
on the phospholipid membrane at different concentrations, providing atomistic 
insights into the consequences of VA partitioning on overall membrane structure 
and geometry as well as mechanical stiffness. 

3.2 Volatile Anesthetics: outliers in modern pharmacology 

General anesthetics are a unique class of drugs in modern medicine. They are able 
to reversibly suspend conscious brain activity while sparing most of the other brain 
functions with extraordinary selectivity. This, along with their analgesic and 
amnesic properties, has effectively made them a cornerstone of modern surgery, yet 
little is known about their molecular mechanism of action. This is partly due to the 
high chemical and physical diversity of available VAs, which range from single-
atom gases such as Xenon, to more complex molecules such as halogen-substituted 
ethers and even steroids. Also, this issue encompasses a rather large subset of open 
questions at many different scales: research failed to determine a single biological 
site of action capable of explaining not only the clinical manifestation of general 
anesthetics, but also the lack of any anesthetic effects in certain molecules with 
similar physicochemical properties50.  In the past decades, several different theories 
of anesthetic action have been proposed with the aim of explaining anesthetic 
behavior despite this lack of structural similarity, starting from the Meyer-Overton 
correlation between the lipid solubility of VAs and their clinical potency (in terms 
of Minimum Alveolar Concentration, MAC). This theory paved the way towards 
what is known as the lipid theory, which postulates that the main mechanism of 
action of anesthetics lies in the alteration of the structure of lipid bilayers – in 
particular cell membranes – in a non-specific fashion 51. Some shortcomings of this 
hypothesis, including the lack of any anesthetic effect of other lipid-altering factors, 
e.g. temperature, steered the interest of research around anesthesia towards finding 
specific molecular targets – i.e. proteins – which could explain the clinical effects 
of VAs. Indeed, an increasing amount of evidence points toward ion channels 
located in the Central Nervous System as relevant targets for anesthetics, starting 
from the works of Franks and Lieb 52,53. A detailed review of molecular targets of 
anesthetics can be found in Campagna et al. 54. Interestingly, despite the increasing 
evidence of interactions with ion channels, the exact mechanism of action remains 
unclear, and researchers failed to agree on the most-relevant effectors of anesthesia 
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at clinically relevant VA concentrations. Most recently, after further studies 
highlighted significant involvement of cytoskeletal proteins based on post-
anesthetic-exposure proteomic alterations 55–57, investigations focused on possible 
involvements of the cytoskeleton, specifically microtubules (MTs), in the processes 
of memory formation, consciousness and side effects of anesthesia.  

3.3 Elucidating the interaction between volatile 
anesthetics and human tubulin assemblies2 

3.3.1 Abstract 

General anesthetics, able to reversibly suppress all conscious brain activity, have 
baffled medical science for decades, and little is known about their exact molecular 
mechanism of action. Given the recent scientific interest in the exploration of 
microtubules as putative functional targets of anesthetics, and the involvement 
thereof in neurodegenerative disorders, the present work focuses on the 
investigation of the interaction between human tubulin and four volatile anesthetics: 
ethylene, desflurane, halothane and methoxyflurane. Interaction sites on different 
tubulin isotypes are predicted through docking, along with an estimate of the 
binding affinity ranking. The analysis is expanded by Molecular Dynamics 
simulations, where the dimers are allowed to freely interact with anesthetics in the 
surrounding medium. This allowed for the determination of interaction hotspots on 
tubulin dimers, which could be linked to different functional consequences on the 
microtubule architecture, and confirmed the weak, Van der Waals-type interaction, 
occurring within hydrophobic pockets on the dimer. Both docking and MD 
simulations highlighted significantly weaker interactions of ethylene, consistent 
with its far lower potency as a general anesthetic. Overall, simulations suggest a 
transient interaction between anesthetics and microtubules in general anesthesia, 
and contact probability analysis shows interaction strengths consistent with the 
potencies of the four compounds. 

 
2 Part of the work described in this paragraph has been published in: 
Zizzi, Eric A., et al. "Insights into the interaction dynamics between volatile anesthetics and 

tubulin through computational molecular modelling." Journal of Biomolecular Structure and 
Dynamics 40.16 (2022): 7324-7338. 

Contribution of the author: study design, creation of computational models and simulations, 
data analysis and interpretation. 
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3.3.2 Introduction 

The theory elaborated in the 1980s by Penrose and Hameroff proposed to 
explain consciousness as the result of quantum resonance in the microtubule 
bundles extending to a neuron and eventually an entire brain, and is referred to as 
the ‘Orch OR’ theory 58, later expanded to what is known as the Quantum Mobility 
theory 50, based on computational evidence of alterations in the oscillation 
frequencies of π-electrons in aromatic amino acids of microtubules in the presence 
of anesthetics, with possible long-term effects also on MT polymerization. While 
the Orch OR theory has not been confirmed experimentally yet, the binding of 
anesthetics to tubulin is known to occur experimentally 59, and interactions between 
the latter and anesthetic agents are of particular interest due to potential implications 
in (a) Post-operative cognitive dysfunction (POCD), which is associated with 
microtubule instability and the separation of microtubule-associated protein (MAP) 
tau from MTs 60,61; (b) memory formation, a process relying on synaptic plasticity 
62–64 which is impaired during general anesthesia and has been linked in previous 
computational studies to the microtubule lattice 21; (c) the unique spatial 
organization of microtubules in neurons 65,66 and their putative ability to create 
specific conduction pathways, hypothesized to be involved in information 
processing 21,67–69; (d) clinical decisions regarding anesthesia in patients undergoing 
chemotherapy or with neurodegenerative comorbidities, both of which can imply 
pathological or drug-induced alterations of the microtubule cytoskeleton 
respectively, which might be influenced by the simultaneous presence of 
anesthetics 70,71.  

These considerations support the investigation of microtubules, and their 
constitutive protein tubulin, as a putative target for anesthetic molecule interactions. 

Indeed, volatile anesthetics (VAs) exhibit many different chemical structures 
and cover a wide range of molecular weights, from single atoms such as Xenon to 
heavier halogen-substituted ethers such as Sevoflurane. Among these, Halothane 
(2-bromo-2-chloro- 1,1,1-trifluoroethane) is a volatile haloalkane with a MAC of 
0.74% 72. Experimentally, it has been found to alter the genetic expression of 
tubulin 56 and to directly bind to it 59. Also, it is known to alter the polymerization 
rate of tubulin in microtubules in vivo 73,74, and thus is of particular interest in the 
context of VA-tubulin interaction. Conversely, Desflurane (2-(difluoromethoxy)-
1,1,1,2-tetrafluoroethane) is a poorly soluble, fluorinated ether with a slightly 
higher MAC value of 6% in oxygen 75, also causing alterations in tubulin expression 
after exposure in vivo 55. Methoxyflurane (2,2-dichloro-1,1-difluoro-1-
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methoxyethane) is a potent anesthetic gas, also belonging to the class of 
halogenated methyl ethyl ethers, with a MAC value of just 0.16% 76, and now 
mostly abandoned as a general anesthetic due to the nephrotoxicity of its 
metabolites 77. It has been shown, just as Halothane, to influence the polymerization 
of tubulin in vitro and significantly alter the axonal microtubule structure 78. Lastly, 
ethylene (or ethene) is the simplest alkene and has a comparably low molecular 
weight of just 28.054 g/mol. It is highly volatile and with a MAC value of as much 
as 67% 79, but it is not used as a general anesthetic due to its very low potency. 

The four above-mentioned VAs were chosen for our investigation not only due 
to experimental evidence of interaction with tubulin, but also to cover a wide range 
of clinical potencies (MAC values of 0.16% for Methoxyflurane up to 67% for 
ethylene), and to include molecules belonging to different classes (namely, ethers, 
alkanes and gases as classified in 75).  

 To investigate the effect of said anesthetics on the cytoskeleton network, in the 
present work tools provided by Computational Molecular Modeling, namely 
Homology Modelling, Molecular Dynamics and Molecular Docking were deployed 
to provide new insights into their interaction at an atomic scale as those tools have 
widely demonstrated their value in investigating the molecular basis of biological 
effects 80–87. 

3.3.3 Materials and Methods  

Homology Modelling of human tubulin isotypes 

Due to the lack of experimentally determined 3D structures for most human tubulin 
isotypes, αβ-tubulin dimers were modeled according to previous tubulin modelling 
protocols based on crystallographic data for bovine and porcine tubulin 88,89. 
Following the nomenclature also found in Leandro-García et al. (2010)90, human 
isotypes βVI (Beta-1, Class VI, Gene TUBB1), βIIa (Beta 2A, Gene TUBB2A) and 
βIVa (Beta 4A, Gene TUBB4) were chosen for this analysis; βIVa and βIIa were 
chosen due to their highest reported expression in the brain tissue with respect to 
other tubulin isotypes (46% and 30%, respectively); βVI was chosen as a non-brain-
specific control90. Manually annotated and reviewed amino acid sequences for 
human tubulin isotypes αIa, βVI, βIIa and βIVa were downloaded from the UniProt 
database (accession codes Q71U36, Q9H4B7, Q13885 and P04350, respectively). 
Since the goal was to model human tubulin in its dimeric form, the 3J6F91 entry 
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from the Protein Data Bank (www.rcsb.org) was selected as a template, consisting 
of a minimized structure of GDP-bound microtubules with a resolution of 4.9 Å. 
First, the alpha and beta tubulin isotypes were modeled as single monomers. To do 
so, sequence alignment to the 3J6F target was carried out using UCSF Chimera 
software92 and missing residues were modelled using modeller 9.2193. Then, the 
homology model was built using modeller 9.21 with the options of building models 
with hydrogens, using thorough optimization and performing loop refinement. All 
models were built including their C-terminal domains. The generated models were 
evaluated based on the GA341 and zDOPE score, inspected manually by visual 
comparison to the target structure, and further checked using the packages 
PROCHECK94, WHATCHECK95, ERRAT96 and Verify-3D97. A further quality 
assessment was carried out using the QMEAN score98,99 implemented in the 
SWISS-MODEL server36. The same general protocol was subsequently used to 
generate αIa-β-tubulin dimers for every β isotype mentioned, since data regarding 
β tubulin isotype expression is readily available in the literature and the present 
interaction study was also aimed at assessing differences between β tubulin 
isotypes. 

Molecular Docking 

To evaluate putative binding sites for anesthetic molecules of interest, 
conformations for each tubulin dimer were extracted every 10 ns from the second 
halves of each of three 100ns MD simulations of the tubulin dimer with each VA 
and exported in pdb format, yielding 18 protein snaphots for each of the three 
dimers, each simulated with one of the four anesthetics, for a total of 18 snapshots 
* 3 isotypes * 4 anesthetics = 216 protein snapshots. AutodockTools 100 was 
subsequently used to add Gasteiger charges information and export the snapshots 
in pdbqt format. The 4 anesthetics were obtained in 3D-SDF format from the 
DrugBank database (www.drugbank.ca), energy minimized with explicit 
hydrogens and exported in pdbqt in AutodockTools, again assigning Gasteiger 
charges. Docking was performed in AutoDock-Vina 101, which accounts for ligand 
flexibility by continuously rotating rigid parts of the ligands around rotatable bonds 
and keeping the protein rigid. The search box, centered at the center of mass (COM) 
of the dimer was built in order to encompass the whole dimer and perform blind 
docking, and the center of the search box was conserved at the COM of the dimer 
in all blind docking runs, for all anesthetics. For all docking runs, the 
exhaustiveness was set to of 64 and the maximum number of binding modes to be 
generated was left at the program’s default setting of 9 poses per run, providing a 
good compromise between speed and pose sampling. With 9 conformations 
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generated in each docking run, repeated for a total of 216 protein snapshots as 
discussed above, a total of 9*216=1944 docked conformations were generated, 162 
for each anesthetic-isotype pair. Considering the low affinity difference between 
predicted poses, around tenths of kcal/mol, all of these 162 docking poses were 
analyzed for each ligand-isotype blind docking run. To facilitate the analysis and 
comparison of individual docking results, said 162 binding poses obtained from 
blind docking for each isotype-VA pair were exported in pdb format with the dimer, 
and residues within 6 Å of the ligand were extracted using GROMACS, and saved 
along with the corresponding predicted affinity of the pose into a simple text file. 
A custom MATLAB code was subsequently deployed to count the occurrence of 
each residue across all the 162 poses of each docking run, and the 50 most recurring 
residues were deemed as involved in binding sites with the highest consensus, given 
the negligible difference in affinity among different docking poses, below the noise 
level of kBT, and further analyzed. The predicted binding affinity of each anesthetic 
for each tubulin dimer is also reported, as mean ± standard deviation of all output 
poses.  

To check and refine the above-described blind docking approach, a local 
docking validation has been carried out as exhaustively explained in the 
Supplementary Information. 

Molecular Dynamics 

For molecular dynamics simulations tubulin isotypes βVI, βIIa, βIVa were chosen 
for investigation, each in its dimeric form with αIa tubulin. Each dimer was 
completed with GTP, GDP and the Mg2+ ion from the 3J6F template, and each was 
simulated both without anesthetics, and separately with halothane, desflurane, 
methoxyflurane and ethylene present in the surrounding solvent at a concentration 
of 10 mM, which experimentally showed polymerization inhibition of microtubules 
102 and is at the upper end of the range of clinical concentrations for more potent 
volatile anesthetics. It is to be noted that data regarding intracellular concentration 
of volatile anesthetics during general anesthesia is fairly dispersed, reporting 
concentrations ranging from a few mM103 up to hundreds of mM 104, possibly due 
to the large differences in potency between different compounds. Overall, a total of 
15 systems for Molecular Dynamics simulations were obtained – 3 isotypes times 
4 anesthetics + control without anesthetics– and each was simulated in three 
replicates by re-initializing velocities from the Maxwell distribution at 300K at the 
beginning of the NVT equilibration. The Visual Molecular Dynamics 105 (VMD) 
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environment was used for visual inspection of the systems and trajectories and for 
further roto-translational corrections. GROMACS 2019.1 106 was used for MD 
simulations, specifically with the AMBER ff99SB-ILDN force field 107. Molecular 
3D structures for the 4 volatile anesthetics were obtained in 3D-SDF format from 
DrugBank 108, energy minimized with explicit hydrogens, and their topologies, just 
as for GTP and GDP, were generated through the ANTECHAMBER 109 package 
employing the AM1-BCC charge method 110 and the general AMBER force field. 
The MD system was configured in GROMACS in a dodecahedral box with xyz 
periodic boundary conditions and a minimum distance between the protein and the 
box edge of 1.0 nm, to avoid interaction with periodic images. All the systems were 
solvated with TIP3P explicit water and neutralized with counterions. Moreover, a 
physiological ionic strength of 0.1 M was imposed by adding appropriate amounts 
of Na+ and Cl- ions. In the case of systems with anesthetics, a custom script was 
deployed to add an appropriate number of molecules given the target concentration 
of 10 mM. The minimization was carried out using the steepest descent method, 
with 1000 kJ/(mol*nm) maximum force and no restriction on maximum steps. All 
subsequent steps, namely equilibration in NVT and NPT ensembles along with the 
production NPT simulations were carried out remotely on HPC resources. The NVT 
and NPT equilibrations were carried out at T=300K and P=1.0 bar, respectively, 
with the protein restrained and a total of 100 ps each. In the case of NVT, the 
modified Berendsen thermostat111 was used with τ constant of 0.1, while NPT 
equilibration was carried out using the Parrinello-Rahman barostat 112 with isotropic 
coupling and a τ constant of 2.0. For both NVT and NPT equilibrations, PME 113 
Electrostatics were used, with an interpolation order of 4 and an FFT grid spacing 
of 0.16 nm. Production simulation followed in the NPT ensemble, without any 
restraint, for 100 ns per replica with a 2 fs timestep and coordinate saving set every 
1000 steps, i.e. every 2 ps. The stability of the tubulin dimer during the simulation 
was determined by the RMSD of the protein backbone followed by cluster analysis, 
both carried out in GROMACS. 

Analysis 

Structural Effects 

The structural effects on the dimer in the presence of the VAs were evaluated by 
analyzing the RMSF with and without anesthetic molecules, as calculated with 
GROMACS excluding the highly fluctuating C-terminal regions, and separately for 
the alpha and beta subunit of the dimer. Structural effects were further assessed 
using cluster analysis on each simulation, as implemented in the gmx cluser tool of 
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GROMACS, using the single linkage method with 0.15 nm RMSD cutoff. Effects 
on secondary structure were assessed using DSSP 3.0.0 114 after extracting 
snapshots every 100 ps from the last 50 ns of each simulation. 

Contact Probability 

To quantitively assess the interaction between each of the four anesthetics and the 
tubulin dimer, the raw trajectory was analyzed: for each frame, the minimum 
distance between each residue and any ligand molecule in the solvent was 
calculated with GROMACS. A custom script subsequently calculated the per-
residue contact probability by averaging interactions in each frame between 
residues and ligands. Following previous computational work 87, the ligand was 
considered to be in close contact with a residue whenever its distance to that residue 
fell below 2.8 Å, corresponding roughly to the diameter of a water molecule, and at 
the end the overall probability of contact with the anesthetic was obtained for each 
residue over the whole trajectory consisting of the concatenation of the last 50 ns 
of each of the 3 replicates. The individual contribution of the second half (50ns) of 
each replica of a given system to the per-residue contact probability was also 
calculated and is reported in the Supplementary Information. Residence times of 
each contact event were calculated by counting the number of consecutive frames 
in which the ligand stayed within 5 Å of a given residue. This cutoff was chosen to 
include consecutive frames in which the ligand briefly repositions itself, 
temporarily increasing its distance to the residue above the 2.8 Å cutoff used for 
contact probability calculation, but effectively staying in the same binding pocket. 
To efficiently compare contact areas between different isotypes and different 
anesthetics, the system was analyzed in a spherical coordinate system, built as 
follows: the position of each dimer was aligned with a custom VMD script so that 
the origin of the cartesian coordinate system relocated to the center of mass of the 
dimer, between the alpha and beta subunit: this way, residues belonging to the alpha 
subunit had coordinate z > 0, residues on the beta subunit had z < 0 and residues at 
the alpha-beta interface had z @ 0. Subsequently, another custom VMD script 
rotated the dimer so that the x axis was parallel to the vector connecting the Cα of 
residues α128Q and α285Q, which are known to be involved in lateral contacts 
between adjacent protofilaments 18. This allowed to broadly discriminate between 
residues located towards the abluminal side of the microtubule, residues located 
towards the luminal side and residues involved in lateral contacts, based on their y 
coordinate (y > 0 corresponds to residues facing the outer surface of the MT, y < 0 
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residues facing the lumen and y @ 0 residues involved in lateral contacts between 
adjacent protofilaments), as highlighted in Figure 3.1.  

 

Figure 3.1. (a) Schematic representation of the phi angle from a top view of the tubulin 
dimer, which represents the azimuthal position in the xy plane, around the z axis: positive 
values correspond to the outer side of the protofilament while negative values correspond 
to the inner side; (b) Schematic representation of the theta angle from a side view of the 
tubulin dimer. Elevation theta represents the angular position between the z axis and the xy 
plane: negative values correspond to the beta subunit (shown in orange), while positive 
angles represent residues on the alpha subunit (shown in pink). 

To better represent and interpret the data, the geometrical center of each residue 
was determined using the MDAnalysis115,116 toolbox for python, and its (x,y,z) 
Cartesian coordinates subsequently transformed into spherical coordinates with an 
ad-hoc python script. In this new system, the elevation angle theta was calculated 
starting from the xy-plane, so that θ > 0 corresponds to points with z > 0 and vice 
versa. The φ angle on the other hand represents the azimuth, i.e. the rotation around 
the original z axis. A 3D rendering of the tubulin dimer in this new spherical 
coordinate system is shown in Supplementary Video S1. Residues were represented 
in this new coordinate system, with the radial coordinate ignored. As a matter of 
fact, since contact in the 100ns trajectories only occurs on the surface, there is no 
chance of radial ambiguity and a single couple of (θ, φ) always identifies a single 
surface residue in this spherical approximation, except for the highly fluctuating C-
terminus, which was checked for contact by visual inspection of the trajectories. To 
further enhance this representation, the surface on the tubulin dimer has been 
divided into sectors on the theta-phi plane. Instead of plotting the contact 
probability of individual residues, the contact probability was evaluated on a per-
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sector basis: contact was recorded on a given sector of the dimer surface in a frame 
of the MD trajectory if any of the residues within that sector were within 2.8 Å of 
any anesthetic molecule. Contact counts were subsequently normalized to the total 
number of frames to yield the contact probability. The resulting coordinate system, 
as previously discussed, implies that the four quadrants qualitatively represent 
distinct areas on the dimer, as reported in Table 3.1. 

Table 3.1. Quadrants on the (theta,phi) plane and corresponding gross locations on the 
dimer. 

Quadrant θ φ Subunit MT surface 
I > 0 > 0 Alpha Abluminal 
II < 0 > 0 Beta Abluminal 
III < 0 < 0 Beta Luminal 
IV > 0 < 0 Alpha Luminal 

 

After qualitatively assessing the location of highly interacting residue groups in this 
representation and checking for recurring interaction patterns across different 
anesthetics and different tubulin isotypes, each trajectory was further analyzed 
manually, and the regions of interaction inspected and reported. The main binding 
clefts where interaction consistently occurred across different replicas 
(corresponding to dark areas on the contact probability maps) were precisely 
defined – in terms of residues forming the clefts – and reported. Their location is 
also reported in the previously mentioned coordinate system to aid their visual 
localization on the dimer and allow for a direct comparison with overall contact 
probabilities. 

To statistically assess whether the differences in per-residue contact probability 
between the four tested ligands for a given isotype were significant, a one-way 
ANOVA was used, testing the null hypothesis that the means of the contact 
probabilities for each group (i.e. with each of the four ligands) are equal, rejected 
at p<0.05. This allowed to determine if at least one of the ligands had a significantly 
different probability of interacting with the tubulin dimer. To further compare the 
contact probabilities of Ethylene, the weakest molecule used as a control reference, 
versus the contact probabilities of the other three ligands (Desflurane, Halothane 
and Methoxyflurane), Dunnett’s Test was used with a significance threshold of 
p<0.05. 
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MM/PBSA Binding Energy estimation 

 To provide a further quantitative assessment of the interaction between the 
four simulated anesthetics and the tubulin dimer, MM/PBSA 117 estimations of 
binding energies were performed for all four tested anesthetics. More in detail, for 
each of the four anesthetics, the following workflow was adopted: starting from the 
contact maps obtained from the MD simulations with anesthetics, the main binding 
clefts were identified as described above. Subsequently, the concatenated 
trajectories containing the last 50 ns at equilibrium of each of the three replicas, 
from which the contact probability maps were built as described previously, were 
iteratively filtered for frames where the given anesthetic was present in the cleft. 
This was repeated for all anesthetics and for all clefts, so that sub-trajectories were 
generated for each ligand and each cleft, representing different snapshots of the 
bound state. These trajectories were used for MM/PBSA calculations using the pbsa 
tools included in AmberTools 20 118, after converting GROMACS trajectories and 
topologies into their respective amber counterparts using ParmEd. Calculations 
were performed using one every two frames. The final binding affinity and the 
contributions of the VDWAALS, EEL, ENPOLAR and EDISPER components are 
also reported on the same, sectorized (θ,φ) plots as the contact probability maps, to 
provide a direct comparison and a visual localization of the different clefts. 

Plots and Figures 

Data plots for RMSD and RMSF distributions were generated using the Grace 
package. Three-dimensional representations of the tubulin dimers were rendered in 
VMD and in MOE, while auxiliary figures for the spherical coordinate system were 
assembled in Microsoft PowerPoint. The animated 3D-view of the tubulin dimer 
within its spherical coordinate system, with the theta and phi angles highlighted, 
was generated using a 3D rendering of the dimer in Blender 2.80 and is available 
in the Supplementary Information. Sectorized contact probability plots, residue 
count histograms from docking runs and MM/PBSA binding energy maps and their 
corresponding decomposition maps were generated in MATLAB. Detailed, 3D 
views of docking pose ensembles and of interesting MD contact sites on the dimer 
and Ramachandran plots reported in Appendix, Figure S.3.2, were generated in 
MOE 2019.01 119. 
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3.3.4 Results 

Homology Modelling 

Modeller 9.21 120 was used to build homology models for human isotpyes βVI, βIIa 
and βIVa in dimeric for with α1a tubulin, starting from the 3J6F PDB template. The 
four modeled sequences αIa, βVI, βIIa and βIVa shared an identity with the 
respective 3J6F templates of 99.32% (sequence Q71U36), 80.80% (sequence 
Q9H4B7), 99.06% (sequence Q13885) and 97.19% (sequence P04350) 
respectively. The obtained models all showed comparable zDOPE scores 
fluctuating around -1.55 ± 0.1 for β tubulin and -1.49 for the α1a isotype. 
PROCHECK 94 validation reported more than 94% of residues in most favoured 
regions and no residue in disallowed regions for every isotype modeled. QMEAN4 
values for the three modelled α-β dimers were -1.56 for αβVI, -1.49 for αβIIa and -
1.67 for αβIVa, respectively, while the 3J6F template dimer had a QMEAN4 value 
of -0.37. The quality of the models was confirmed through the tools Verify-3D 97, 
WHAT_CHECK 95 and ERRAT 96 as shown in detail in the Supplementary 
Material. 

Docking 

Firstly, blind docking was performed for all isotypes with all anesthetics by 
setting the grid box geometry so as to encompass the whole dimer, centered at the 
COM of the latter. Across all the 162 blind docking poses determined for each 
anesthetic-isotype pair, the average predicted binding affinities are shown in Table 
3.2. Data points are reported in kcal/mol, as mean ± standard deviation. 

Table 3.2. Predicted binding affinities in kcal/mol with each anesthetic, reported as mean 
and standard deviation calculated among the 162 docking poses for each isotype-anesthetic 
pair. 

 Isotype 
 αβVI (kcal/mol) αβIIa (kcal/mol) αβIVa (kcal/mol) 
Ethylene -2.00 ± 0.14 -2.00 ± 0.16 -2.01 ± 0.15 
Desflurane -5.15 ± 0.24 -5.02 ± 0.22 -5.02 ± 0.23 
Halothane -4.45 ± 0.26 -4.14 ± 0.17 -4.45 ± 0.34 
Methoxyflurane -4.22 ± 0.18 -4.26 ± 0.30 -4.25 ± 0.26 
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Overall, blind docking yielded binding affinity ranges consistent with 

combinations of hydrophobic Van der Waals-type interactions. Ethylene 
consistently showed very low affinity values hovering around -2.00 kcal/mol with 
little differences among different poses on the same snapshot and among different 
snapshots of the same isotype (as seen by the comparatively low std. dev.), along 
with little differences between isotypes. The differences in affinity between the 
other three ligands were more subdued, and with a slightly higher std. dev., 
highlighting how some docking poses and sites were predicted to be more 
energetically favorable for hosting these molecules with respect to others. Overall, 
Desflurane reported the best predicted affinity across all three isotypes, while the 
predicted affinities for Halothane and Methoxyflurane were comparable. 

 

Figure 3.2. Ensemble of docking poses on the αβVI dimer, with individual poses shown in 
grey: (a) Desflurane; (b) Halothane; (c) Methoxyflurane and (d) Ethylene. The largest 
clusters of recurring poses are highlighted in blue, clusters of poses with highest average 
predicted binding affinity (most negative) are highlighted in orange. 

In terms of binding sites, isotype αβVI (shown in Figure 3.2) featured with 
Desflurane a large number of docking poses around βILE368, βLEU250, 
βALA314, βILE236, βLEU253 and βASP249, while the binding site with highest 
predicted affinity was located around αPHE202, αALA201 and αMET203. In the 
case of Halothane, the most frequently involved residues were αTRP21, αALA65, 
αPRO63, αGLY17, αPHE67, with the best overall affinity at the sites around 
αGLU168, αVAL137, αLEU167 and αPHE202. Methoxyflurane consistently 
docked as Desflurane near βLYS252, βLEU253, βALA254, βALA314, βASP249, 
βMET257, βILE316, βASN247, an area delimited at the top by αASN101 at the 
inter-monomer interface, with peaks of highest affinity around βARG251, αALA99 
and αSER178. Ethylene did not show specific preferred binding sites, but docked 
with slightly more frequency around αPHE138, αVAL235 and αPHE169, with best 
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affinities at the sites around βILE368 and αTRP388. In the case of isotype αβIIa 
with Desflurane, the most recurring sites were two, located between αTYR172, 
αSER187, αHIS139, αSER140, αSER170, and αPHE141, with one of them, 
involving also αTHR190 and αTHR191, αGLU168, and αTHR194 also showing 
the lowest average affinity across the poses. With Halothane, the frequent locations 
were at βARG251, αPHE141, αSER187 and αPRO173, with low-energy sites 
around αLEU92, αILE122, αALA65, αARG121, αGLU90, αGLN91, αPRO63, 
αVAL62 and αVAL66. Methoxyflurane frequently docked at αPHE141, αSER147, 
αTHR194, αGLY142, αTHR190 and αTHR191, with the highest affinities 
predicted around βPHE294, βTYR310 and βVAL313, βMET293. Ethylene again 
was not predicted to have preferred sites, with a slightly higher count of poses 
around αTRP388, αMET203, αPHE267, αALA201 and αPHE202, αPRO173. A 
lower-energy binding site was predicted around βPHE294, also found in the 
previous case. Lastly, docking of Desflurane to isotype αβIVa predicted three 
recurring binding sites around αILE384, between βVAL236, βTHR237 and 
βGLU198, and near αTHR239 and αLEU136 respectively, with the latter also with 
comparatively high affinity across the different sampled poses, especially in poses 
in close contact with αPHE138 or αPHE135. Halothane frequently docked into a 
cleft lined by αLEU92, αPHE67, αGLN91, αVAL14, αVAL78, αPHE87 and 
αASN18. The binding site with lowest average binding energy was instead located 
between βVAL333, βGLN334, βMET330 and βVAL349. Docking of 
Methoxyflurane frequently accommodated the ligand in a cleft lined by βALA248, 
βASP249, βLEU240, βLEU253, βLYS252, βASN247, βLEU250 and βILE368, 
which was also predicted in 102, with high-affinity sites located instead surrounded 
by αGLY81, αPHE67, αPHE87, αTHR82, αTYR83, αVAL78 and αARG84. Lastly, 
ethylene frequently docked into a broader area delimited by αTRP21, αHIS8, 
αPHE67, αTYR24, αGLY17 and αVAL235. Poses near αHIS8 were also the ones 
with lowest mean energy, along with poses docked to a second site near αTHR150. 
For a graphical summary of frequently found residues across all docking poses, 
along with the mean predicted affinity associated with the respective poses, see 
supplementary information. 

To check and further refine the ligand-protein binding estimation, a second set 
of local docking runs was performed, which confirmed data and trends reported 
from blind docking (see the Appendix and Supplementary Table ST3.1). 

Overall, the binding sites found by docking were generally lined by a majority 
of hydrophobic residues, which again suggests a predominantly hydrophobic 
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interaction, consistent with the predicted affinity estimates. In blind docking, 
isotype αβVI showed putative interactions on both subunits, isotype αβIIa had more 
overall binding poses on the alpha subunit, and isotype βIVa showed a similar 
number of binding poses on both subunits. The results from blind docking, and their 
subsequent validation through local docking refinement, confirmed the main 
drawbacks of docking techniques in the context of ligands interacting with low 
affinity, possibly within multiple, energetically equivalent binding sites on the 
dimer simultaneously. This level of investigation is not accessible to plain docking. 
Overall, the lack of an experimentally known set of binding sites against which to 
perform docking, along with the mentioned methodological drawbacks such as the 
inaccuracy of predicted affinity121, especially in the context of the systems under 
investigation in the present work, justified a more detailed analysis of the sites of 
interaction through the use of Molecular Dynamics, in the light of the low 
interaction strength and absence of evidence for a specific, ‘lock-and-key’-type 
binding site for anesthetics. Indeed, the adopted molecular dynamics approach 
allows for a more efficient sampling of multiple, simultaneous, low-affinity binding 
sites on the dimer surface, by simulating the dimer with a fixed anesthetic 
concentration in the solvent. This enables the statistical investigation of the most 
explored areas, which is not feasible through docking alone.  

Protein Ligand binding dynamics  

Molecular Dynamics stability analysis 

First, the stability of all the simulations was checked by examining the RMSD over 
each 100ns trajectory. All three isotypes had reached a plateau after about 50 ns, 
with the αβIVa dimer in the presence of Desflurane being the only case with slightly 
more accentuated fluctuations up to about 70 ns. See Supplementary Figure S3 for 
the complete RMSD details. Potential energy plots for all simulated systems are 
reported in Supplementary Figure S4.  

Protein-Ligand interaction dynamics 

Molecular Dynamics simulations allow to overcome the limitations of the docking 
approach in the context of low-affinity ligands, such as the volatile anesthetics 
investigated in the present work, which interact simultaneously in multiple sites on 
the tubulin dimer. Simulating the dimers in the presence of VAs in the surrounding 
solvent at a fixed concentration enables a more significant sampling of frequent 
interaction clefts, including simultaneous interaction in multiple, low-affinity 
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binding sites, and provides a quantitative assessment thereof, which is precluded to 
single-ligand docking in the case of weak binding events.  

Per-residue contact probabilities extracted from MD simulations show 
preferential interaction with specific residues for each anesthetic and for each 
isotype. The contact probability plots, reported in the Supplementary Information, 
visually highlight how the different anesthetics interact with partially different 
strengths and in specific locations, both on the same tubulin isotype and across 
different isotypes, albeit some commonly involved residues emerge. Ethylene 
clearly displays lower overall contact probabilities, in a manner consistent both with 
its considerably lower potency in clinic and with the significantly lower predicted 
affinities in blind and local docking runs. To better highlight the actual location 
where binding occurs, both longitudinally along the major axis of the dimer (i.e. on 
which subunit and how far from the inter-monomer interface), and 
circumferentially around said axis (i.e. where around the dimer), the contact 
probabilities are reported on a sectorized spherical coordinate system in terms of 
theta and phi angles, where elevation theta discriminates between subunits and 
azimuth phi locates residues around the dimer (see details described in the Methods 
section). Such contact maps highlight the patterns of interaction between each 
anesthetic and specific tubulin isotypes and provide qualitative information about 
preferential binding location both around the dimer (luminal vs. abluminal side in 
the MT) and longitudinally along the major axis (top α-subunit vs. α-β interface vs. 
bottom β-subunit). The resulting high-probability contact areas are shown in Figure 
3.3 for the most highly interacting isotype, namely αβIVa, which is also the most 
highly expressed in the brain. 

To visualize the proximity of tryptophan residues, which is a key requirement 
of the Quantum Mobility theory of anesthetic action67, also in comparison to 
previous computational work50 predicting aromatic amino acids as functional 
targets of anesthetics on tubulin, the location of Trp residues on the tubulin dimer 
in this spherical coordinate representation is shown as orange crosses on the 
heatmaps in Supplementary Figure S3.8 in the Appendix. 
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Figure 3.3. Per-area contact probability for isotype αβIVa, the one with the most overall 
interactions, with all the tested ligands. (a) Ethylene; (b) Desflurane; (c) Halothane and (d) 
Methoxyflurane. Color scale is 0 to 1, i.e. 0% to 100% probability of interaction with any 
residue within a given area. The main recurring interaction clefts are also highlighted, with 
the subscript differentiating the four ligands. 

Briefly, Desflurane interacts substantially on the β subunit of isotype αβVI, 
both on the luminal and abluminal side of the dimer, along with different inter-
monomer transient contact clefts. A distinct interaction zone also emerges on 
subunit alpha laterally (where φ is close to 0), enclosed by residues α293ASN on 
helix αH9 and α334THR on helix αH10. On isotype αβIIa, interaction was recurring 
more markedly on the α subunit mainly at the same lateral contact area already seen 
in the previous case between H9 and H10. Minor contact probabilities were also 
recorded on the luminal side of the alpha subunit, and on the abluminal and lateral 
area of subunit beta. The interaction is similar on isotype αβIVa (Figure 3.3B), with 
a high probability of residence laterally between H9 and H10 subunit alpha, with 
the addition of recurring interaction on the β subunit, laterally in close proximity to 
the exchangeable GTP binding site, between helix H6 and the start of H7, near 
residues β208TYR, β221THR and β225LEU, and transiently on the rest of the 
surface. Halothane showed slightly lower overall contact probabilities, especially 
on isotype αβIIa. A high probability of residence is again visible on the α subunit’s 
H9-H10 lateral contact zone on all three simulated isotypes. Interaction sites were 
more abundant on isotype βIVa (Figure 3.3C), a substantial fraction of which on 
the luminal side of the dimer, with two distinct clusters on the α and β subunit and 
the addition of an interaction site on the lateral contact area of the β subunit, a semi-
closed cleft defined by residues β231ALA and β227HIS belonging to helix H7 and 
capped by the sidechain of β276ARG of loop S7-H9 which folds over the ligand 
molecules (up to two halothane molecules at the same time seen during the 
simulation). Methoxyflurane, the most potent anesthetic – i.e. the one with the 
lowest MAC – showed the highest number of high-probability contact sites for all 
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three simulated isotypes, with the addition of the highest overall residence times 
(and thus contact probabilities). Interaction was ubiquitous on isotype αβVI, with 
contacting residues localized on both subunits and on either side, luminal and 
abluminal. Isotype αβIIa showed mostly overlapping areas of preferential 
residence. The interaction with isotype αβIVa (Figure 3.3D) was recorded both on 
the luminal and abluminal sides of both the α and β subunit. Notably, this isotype 
showed a unique interaction area located on the luminal side of the beta subunit, in 
a binding site near βGLY79 at the end of helix H2. The lateral contact area towards 
the top of the α subunit was again involved in numerous contacts with 
methoxyflurane on all three isotypes.  

 

Figure 3.4. Contact probabilities of Ethylene with all three simulated isotypes (left to right: 
αβVI, αβIIa, αβIVa), which is visibly lower than the amount of contact of the other three 
anesthetics. 

Ethylene (Figure 3.4) showed a much weaker overall interaction with the tubulin 
dimer, visible both during the simulations themselves and on the contact probability 
analysis. With the exception of a more frequent interaction on isotype αβIIa, on the 
abluminal site of the α-β inter-monomer interface (a cleft between H11 and H12, 
on H11’, lined by residues β413MET, β415GLU, β409VAL, β418PHE and 
β408TYR), residence on the surface of the dimer was transient and with very low 
overall probability, demonstrating how the ligand spends most of the simulation 
time floating freely in the solvent. This is consistent not only with the significantly 
lower predicted affinities through docking and low molecular weight of the 
molecule, but also with the much lower efficacy as a volatile anesthetic if compared 
to the other compounds. 
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In summary, the analysis of the described interaction hotspots, i.e. the areas with 
highest contact probabilities visible as dark zones in Figure 3.3 and Figure 3.4, 
pinpoints the location of specific transient binding clefts. These were characterized 
in detail, and are marked in Figure 3.3, numbered progressively and with the 
subscript indicating the involved anesthetic. The detailed description of the main 
binding clefts, with their adopted nomenclature and the list of involved residues, is 
provided in Table 3.3 for isotype αβIVa. The corresponding table for isotypes αβVI 
and αβIIa is provided in the Supplementary Information. 

 

Table 3.3. Binding clefts for isotype αβIVa for all the simulated anesthetics 

Ligand Cleft Residues 

Desflurane 

CD1 αILE335, αLYS336, αILE332, αASN329, αVAL328, 
αPRO325, αGLY350, αPHE351, αVAL353, αILE355 

CD2 αGLU90, αGLN91, αPRO89, αLEU125, αLYS124 
CD3 βARG306, βPRO305, βPHE294, βASN295, βALA296, 

βASN337, βSER339 
CD4 βASN204, βGLU205, βTYR208, βVAL175, βTHR221, 

βTYR222, βPRO220 

Halothane 

CH1 αILE335, αLYS336, αILE332, αASN329, αVAL328, 
αPRO325, αGLY350, αPHE351, αVAL353, αILE355 

CH2 αGLU90, αGLN91, αPRO89, αLEU125, αLYS124, αILE75, 
αVAL78, αARG79, αARG84 

CH3 βARG306, βPRO305, βPHE294, βASN295, βALA296, 
βASN337, βSER339 

Methoxy-
flurane 

CM1 αILE335, αLYS336, αILE332, αASN329, αVAL328, 
αPRO325, αGLY350, αPHE351, αVAL353, αILE355 

CM2 αSER287, αGLU290, αALA294, αILE276, αLYS280, 
αALA281, αGLU284 

CM3 αTHR82, αTYR83, αARG84, αARG79, αPHE87 
CM4 βASP74, βGLY71, βPRO70, βPRO87, βASN89, βPHE90, 

βVAL91, βMET73, βVAL76 
CM5 βARG390, βPHE389, βMET415, βASN414, βASP417 

Ethylene CE1 βPRO182, βALA185, βVAL170, βSER168, βSER188, 
βVAL189 

 

The interaction sites are distinct with each anesthetic but with notable overlaps, the 
most important of which is a vast binding area located on the upper part of the α 
subunit in the lateral PF-PF contact zone, and comprising clefts CD1, CH1 and CM1 
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in all isotypes and CM2 (isotype αβIVa and αβVI) and CD2 (isotype αβVI). Every 
anesthetic, except ethylene, stuck to a cleft in this area for a significant portion of 
the simulation, on all three isotypes. As discussed, this cleft is in fact formed by 
two distinct hydrophobic patches located at the proximity of helices H9 and H10, 
respectively, the latter located towards the top of the alpha subunit, thus actually on 
the longitudinal dimer-dimer interface. The first area, corresponding to clefts C1 
and shown in Figure 3.5A, largely consists of a hydrophobic patch delimited on the 
lower part by the start of the S7-H9 loop and the final residues of S7, and on the 
upper part by helix H9 and the last residues of the S7-H9 loop, able to accommodate 
lipophilic ligands. 

 

Figure 3.5. Rendering of the two sites on the alpha subunit. (a) cleft CM2 near helix H9 
(shown in green ribbons); (b) cleft CM1 near helix H10 (shown in green ribbons), at the top 
of the dimer. The ligand shown in purple is Methoxyflurane, as extracted from a snapshot 
of the simulation with isotype αβVI. Rendering includes molecular surface in transparency, 
with lipophilic areas shown in green and hydrophilic areas shown in blue. Labels indicate 
nearby residues forming the cleft. 

The second cleft, which corresponds to cleft CM1 shown in Figure 3.5B, is a nearby, 
mostly lipophilic patch located at the top of the alpha subunit and formed by helix 
H10 at the top and delimited by sheet S9 at the bottom. 

The broader picture of the binding patterns highlights how contact probabilities for 
each residue change with different ligands (ANOVA p<0.0001 for all three 
isotypes), more specifically pointing towards a clearly weaker interaction of 
Ethylene with all three isotypes, with mean contact probabilities significantly lower 
than the other three anesthetics (Dunnett’s multiple comparisons test: p<0.0001 for 
all isotypes and ligands, except αβIIa with Halothane vs. Ethylene p=0.0015), and 
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a global contact probability peak of 0.27 only with isotype αβIIa. Ethylene also 
showed a substantially lower predicted binding energy, coherently with the 
previous finding. Also, Methoxyflurane shows the most ubiquitous interactions 
with high overall contact probabilities during the simulation, peaking at 0.48 with 
αASN329 on isotype αβIVa, located in cleft CM1 (also visible as a darker area in 
Figure 3.3). Desflurane and Halothane show similar interaction patterns, both in 
terms of locations and probabilities, consistent with interactions in sterically 
compatible lipophilic patches located around the dimer. Notably, some interaction 
occurs on the side of the dimer facing the MT lumen (corresponding to the lower 
part of the graphs in Figure 3.3, Figure 3.4 and Figure 3.6 where φ<<0), especially 
on isotype αβIVa with methoxyflurane. Whether the MT lumen remains actually 
accessible to these ligands when the MT is assembled requires further 
investigations, but given the dimensions of these anesthetics, this appears to be 
feasible. 

Protein-Ligand interaction energies 

Binding energies for each anesthetic were predicted using the MM/PBSA method 
implemented in AmberTools, separately for each of the clefts reported in Table 3. 
Overall, predicted binding energies for Desflurane ranged from -7.10 ± 3.58 
kcal/mol (isotype αβVI, cleft CD1) to -14.89 ± 6.83 kcal/mol (isotype αβVI, cleft 
CD4). In the case of Halothane, energies ranged from -6.31 ± 3.16 kcal/mol (isotype 
αβIIa, cleft CH1) to -12.91 ± 3.17 kcal/mol (isotype αβIVa, cleft CH3). 
Methoxyflurane featured binding energies from -7.13 ± 3.80 kcal/mol (isotype 
αβVI, cleft CM1) to -14.55 ± 4.39 kcal/mol (isotype αβIIa, cleft CM2). Lastly, in 
comparison, the predicted energies of Ethylene ranged from a minimum of -4.43 ± 
0.97 kcal/mol (isotype αβIVa, cleft CE1) to a maximum of -6.72± 1.74 kcal/mol 
(isotype αβIIa, cleft CE1). The detailed map containing only the interaction clefts 
for all four ligands on isotype αβIVa is reported in Figure 3.6, where color intensity 
represents the predicted binding energy. The latter are also reported for all clefts 
and all ligands in Figure 3.7 as means with standard deviations. The decomposition 
of binding energies into VDWAALS, EEL, ENPOLAR and EDISPER components 
is reported for isotype αβIVa in Supplementary Figure S3.9 and shows the relative 
contribution of each term to the overall calculated binding energy, separately for 
each anesthetic and each binding site. 
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Figure 3.6. Per-area MM/PBSA binding energy estimate for isotype αβIVa, the one with 
the most overall interactions, with all the tested ligands. Left to right: Ethylene; Desflurane; 
Halothane; Methoxyflurane. Color scale is -4 kcal/mol to -14 kcal/mol. The different clefts 
are highlighted in the figure. 

 

Figure 3.7. MM/PBSA binding energy estimates for isotype αβIVa with all the simulated 
ligands. Left to right: Ethylene; Desflurane; Halothane; Methoxyflurane. Data reported as 
mean with standard deviation bars for all clefts determined for each ligand. 

Rather than representing definitive estimations for binding affinities, the collected 
data do however allow for a quantitative comparison between clefts and between 
different ligands, and show how the predicted binding energy is dependent of the 
specific surface cleft the ligand interacts with; the energy ranges and standard 
deviations yielded by MM/PBSA calculations are explainable with the transient 
nature of surface contacts inside the reported clefts, which do not allow, in the time 
scales investigated in the present work, for the formation of a protein-ligand 
complex which remains stable throughout the simulation. Rather, local alterations 
of sidechain arrangements permit the temporary accommodation of dissolved 
ligand in specific clefts, with average residence times as reported below. 
Interestingly, while all anesthetics tend to preferentially sample specific locations 
of the dimer surface, as discussed in the contact probability analysis and shown in 
Figure 3.4, Figure 3.5, Supplementary Figure S3.6 and Supplementary Figure S3.7, 
the actual clefts where they eventually accommodate into are not always exactly 
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the same, as detailed in Table 3.3. Binding clefts for isotype αβIVa for all the 
simulated anesthetics and visible in Figure 3.6. In the case of isotype αβIVa, all 
ligands interact in the same cleft C1, whereas cleft C2 is largely the same for 
Desflurane and Halothane, but slightly shifted for Methoxyflurane, where it 
corresponds to cleft C3. The latter also featured three additional clefts C2 (near C1), 
C4 and C5 where no consistent binding emerged for the other anesthetics. 
Desflurane also showed a specific binding cleft, C4, located at the bottom of subunit 
beta towards the polymerization interface. This data confirms at the same time both 
the consistency of some binding sites, able to accommodate different ligands, and 
the existence of interaction areas which are selective towards some of the 
anesthetics. Also, as visible in Figure 3.6 and Figure 3.7, Ethylene consistently 
showed the weakest predicted binding energy – and with lowest standard deviation 
– and the existence of only one weak binding site, in line with the previous contact 
probability analysis highlighting only negligible interaction.  

Residence Times 

Residence times were generally consistent with the reported contact probabilities: 
on isotype αβVI, Desflurane (Supplementary Figure S3.22A) showed residence 
times in high-probability contact areas between 8 and 25 ns. Interestingly, the area 
with highest reported contact probability featured at the same time short average 
residence times, which is indicative of frequent short contacts, as opposed to stable 
binding. Halothane (Supplementary Figure S3.22D) featured residence times 
between 3 and 25 ns near highly interacting residues, again with the area of peak 
probability showing frequent contacts of 7.5 ns on average. Methoxyflurane 
(Supplementary Figure S3.22G) consistently showed average residence times 
between 6 and 24 ns near residues with high reported contact probabilities, most of 
them being above 15 ns where contact probability was the highest. As for the 
previous ligands, it showed an area on the alpha chain with frequent and short 
contacts (between 2 and 7 ns on average), as seen by the high reported per-residue 
contact probabilities, up to 0.37. Ethylene on the other hand (Supplementary Figure 
S3.22L) featured residence times consistently below 5 ns, in good agreement with 
the low reported contact probabilities. On isotype αβIIa the average residence times 
of Desflurane (Supplementary Figure S3.22B) spanned from 5 to 12 ns in areas with 
high contact probability. Again, high-probability contact residues on the alpha 
chain featured short mean residence times, below 10 ns, despite contact 
probabilities up to 0.35. Residence times for Halothane (Supplementary Figure 
S3.22E) were between 7 and 22 ns on average around highly interacting residues, 
with the same area of short contacts below 10 ns on the alpha chain, with contact 
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probabilities up to 0.22. Methoxyflurane (Supplementary Figure S3.22H) featured 
the highest mean residence times, up to 23 ns and consistently above 12 ns in areas 
with high contact probability of up to 0.41. Ethylene (Supplementary Figure 
S3.22M) confirmed the short residence times seen in the previous isotype, below 7 
ns in most of the interacting residues, and with a maximum below 8 ns in the area 
with the highest contact probability (0.27). Lastly on isotype αβIVa, Desflurane 
(Supplementary Figure S3.22C) interaction lasted on average up to 25 ns on chain 
alpha, and spanning from 4 to 19 ns in most other areas with high contact 
probability. Interestingly, the residue group with highest contact probability (0.56) 
also showed low average residence times, below 5 ns, indicative again of frequent 
short contacts, i.e. lower stability inside the cleft. Halothane (Supplementary Figure 
S3.22F) residence times were higher on average, between 10 and 25 ns in most 
interaction areas. Also, contact probability peaks correspond to higher average 
residence times in all cases except one, near β295ASP, where a contact probability 
of 0.48 corresponded to mean residence times of 12 ns. In the case of 
Methoxyflurane (Supplementary Figure S3.22I), areas with high contact probability 
corresponded to average residence times of the ligand between 4 and 25 ns, while 
the highest-probability cleft interacted on average for 14 ns. Finally, average 
residence times of ethylene (Supplementary Figure S3.22N) never topped 5 ns, in 
agreement with the comparably low contact probability (0.21 at most). 
Interestingly, most areas with high contact probability showed particularly low 
residence times, below 1 ns, indicative of the lack of stable binding clefts. 

Conformational Analysis 

The RMSF analysis in the presence and absence of anesthetic molecules, 
respectively, focused on differences in C-alpha backbone fluctuations, for each of 
the three dimers. It is reported in detail in the Supplementary Information. Overall, 
different isotypes show slightly different behaviors in the presence of different 
anesthetics: The β M loop was destabilized on isotype αβVI with Desflurane and 
Methoxyflurane, while it showed decreased mobility in isotype αβIIa with 
Halothane, Methoxyflurane and Ethylene and in isotype αβIVa with halothane. A 
visible increase in fluctuations is reported in the area of residues 235-245 on the 
beta chain of isotype αβIIa in the presence of Methoxyflurane and Desflurane. The 
same isotype showed a similar spike in RMSF around residue 320 in the presence 
of Desflurane and Ethylene. Isotype αβIVa showed increased fluctuations on the β 
subunit at residues 325 to 340 with anesthetics compared to the control condition, 
which was not evident for the αβVI and αβIIa dimers. Overall, no major 
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conformational changes were observed over the course of the simulations: cluster 
analysis of the trajectories, performed with a 0.15 nm cutoff, both with and without 
anesthetics, yielded a single dominant conformation for each run. In terms of 
secondary structure, possible alterations were assessed quantitively using DSSP, 
comparing the secondary structure in the control simulations with the secondary 
structure in the ligand-bound state, separately for each binding site. As shown in 
Figure 3.8 for isotype αβIVa, no significant secondary structure alteration emerges 
throughout the dimer upon ligand binding in the different clefts. Differential 
interaction with different anesthetics might thus not be directly related to major 
conformational changes of the tubulin dimer. 

 

Figure 3.8. DSSP average Secondary Structure of the dimer in the control simulation 
without any ligands (“Neat”) vs. in the ligand-bound states, differentiated between different 
binding clefts. No significant alterations emerge. 

3.3.5 Discussion 

Blind docking of anesthetics to tubulin dimers αβVI, αβIIa and αβIVa highlighted 
low binding affinities compatible with a combination of hydrophobic interactions 
with surrounding residues. What emerges is a substantially indistinguishable 
predicted affinity between Halothane and Methoxyflurane, at a thermal noise level 
of kBT, while affinity of Desflurane was predicted to be minimally better with 
respect to all three isotypes. What is consistently predicted is a much weaker affinity 
of Ethylene to all three isotypes, barely completing docking runs successfully and 
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averaging at around -2.00 kcal/mol in every run. The important hint provided by 
blind docking experiments points toward the lack of a precise binding site, rather a 
preference for specific hydrophobic pockets of the tubulin dimers, able to 
transiently accommodate the anesthetic molecules. This underlined the weakness 
of the docking approach alone in the case of weak binders which interact at multiple 
sites simultaneously, and warranted a more thorough investigation of the 
interaction, in its dynamic nature, by simulating the dimer in the presence of 
anesthetic agents in the surrounding medium at fixed concentration.  

Analysis of residue groups on the dimer surface with high probability of contact 
with each anesthetic confirmed that the tested compounds do not seem to have a 
single, specific binding site on the target, but they do, however, stay in contact with 
the dimer for prolonged times in specific clefts. These areas are partially 
overlapping for all isotypes and all tested VAs, with the notable exception of 
Ethylene, the weakest among the four, which showed a tendency to remain floating 
in the solvent rather than sticking to the dimer surface. The transient residence of 
volatile anesthetics may alter local mobility of residue sidechains with functional 
consequences on the MT, especially in the light of the high amount of predicted 
contact both in the luminal and lateral side of the tubulin dimers, where adjacent 
protofilaments assemble, as well as on the dimer-dimer polymerization interface. 
Contact probability, directly correlated to residence time at specific locations, 
confirmed similar interactions of Desflurane and Halothane, and a slightly 
increased interaction of Methoxyflurane with all isotypes. Moreover, the 
significantly weaker interactions of Ethylene emerged, consistent both with blind 
docking affinity estimates and with clinical potencies. Above all, the existence of 
different binding clefts, some of which shared between different anesthetics, some 
specific to a particular ligand, was confirmed. MM/PBSA predicted binding 
energies that were comparable, within error, between Desflurane, Halothane and 
Methoxyflurane, but again visibly lower for Ethylene, in agreement with the much 
lower contact probability. 

Most notably, the three VAs Desflurane, Halothane and Methoxyflurane interacted 
in all the simulations of all three isotypes on the upper portion of the alpha subunit, 
predominantly in two lipophilic patches located near helices H9 and H10, an area 
corresponding in spherical coordinates to values of φ close to 0 and θ between 0.75 
and 1.25. The patch around H9 is located on the lateral PF-PF contact area of the 
dimer, and might alter PF assembly in the presence of ligands, while the lipophilic 
pocket at helix H10, at the top of subunit alpha, might have functional consequences 



68 Molecular modelling and simulation of anesthetics 

 
on tubulin polymerization in the process of dimer-dimer assembly. Ethylene did not 
show any interaction within these pockets. 

Contact probability heatmaps also hint at how some high probability interaction 
zones were located near tryptophan residues, especially in the case of Halothane 
and Methoxyflurane on the alpha subunit in the area where αTRP21 is localized, 
i.e. 0.7<θ<1.1 and 0<φ<1 in the spherical coordinate system (Supplementary Figure 
S3.8). The quantitative assessment of the involvement of Tryptophans in the 
interaction with anesthetic molecules requires further, more detailed work, possibly 
with higher-resolution methodologies. A direct role of tryptophan residues in the 
analyzed binding clefts was not confirmed with the methodologies used in the 
present work. 

The interaction between volatile anesthetics and tubulin has been evaluated 
synergistically both through blind docking and Molecular Dynamics. The former 
approach confirmed the weak and transitory nature of putative binding sites 
suggested by previous research102, by failing to highlight a single specific region of 
interaction and consistently reporting low predicted affinities across the different 
binding pockets. This consideration, along with the known limitations of blind 
docking121, and the lack of single, high-affinity binding site following the more 
traditional lock-and-key paradigm for the investigated ligands, justified a more in 
depth analysis of the interaction through the use of molecular dynamics. In this last 
approach, the three different αβ-tubulin dimers have been simulated in the presence 
of a fixed concentration of anesthetics in the surrounding medium. To account for 
the dynamic nature of the interaction, hotspots of interaction have been determined 
on the dimer by sampling the contact probability between tubulin and anesthetic 
molecules on different portions of the dimer surface. Subsequently, precise binding 
clefts were determined from the contact map for further binding energy estimation. 
First, this clearly showed that interaction does feature preferential areas on the 
dimer surface and does not occur randomly. Rather, it appears to be driven mostly 
by the lipophilicity of the tested VAs. Secondly, it highlighted differences in 
interaction mostly between different anesthetics rather than between different 
tubulin isotypes: a given anesthetic tends to interact with specific areas of the dimer 
for tens of nanoseconds, and interaction may occur in close proximity of key 
functional residues of the microtubule. The areas of interaction were reproduced 
consistently, although with different residence times, in the different replicas, 
despite the low affinity of VAs for tubulin and the lack of a single, high-affinity 
binding site. There is no predicted preference of the simulated anesthetic agents for 
a specific tubulin isotype. More interestingly, a consistent amount of interaction is 
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predicted to occur on the luminal surface of the assembled microtubule. Whether 
this area is accessible to volatile anesthetics and under which conditions, along with 
the functional and structural consequences of this on the microtubule structure, 
warrants further computational and experimental research. Since larger molecules, 
such as paclitaxel or epothilone, are known to bind on the luminal surface of 
microtubules due to the diffusion through the nanopores formed between 
neighboring tubulin dimers, a similar ability to reach the microtubule lumen appears 
entirely possible. 

3.3.6 Conclusions 

The present work computationally investigated the interaction between four distinct 
Volatile Anesthetics with different clinical potencies with human tubulin dimers, 
through Molecular Docking and Molecular Dynamics. The simulated isotypes are 
highly homologous, but each features a unique distribution across different organs 
and tissues, and the interaction of VAs with each of them appeared to be similar, 
but not identical. Results confirmed the absence of a lock-and-key type of 
interaction, and highlighted transient interactions on specific hotspots of the tubulin 
dimer, i.e. hydrophobic patches able to transiently accommodate the ligands. 
Methoxyflurane, the most potent among the tested VAs, showed the highest contact 
probability on all three simulated isotypes, while Ethylene, the weakest VA, had 
the lowest predicted binding affinity in Docking, the lowest overall contact 
probability in molecular dynamics simulations, and the lowest predicted binding 
energy in MM/PBSA calculations. These findings are consistent with previous 
works exploring the weak interaction between tubulin and anesthetics59,73,78,122,123. 
No distinct preference for a specific isotype emerges, while different anesthetics 
did show different interaction hotspots on the dimer surface, with only partial 
overlaps between them, the most notable of which is composed of two hydrophobic 
patches at the top of the alpha subunit, which interacted with all VAs except 
ethylene for a significant fraction of the simulations. Whether VAs can actually 
disrupt or alter microtubule assembly and dynamics, and how this process may 
occur, demands further investigations. While this process may not be directly 
involved in the primary mode of action of General Anesthetics, several 
considerations underline the importance of possible VA-tubulin interactions in the 
clinical context, including the abundance and peculiar anisotropic spatial 
organization of tubulin and microtubules in the brain; the role of microtubules in 
disorders such as POCD; putative cross-interactions with MT-targeting 
chemotherapies in oncological patients; side-effects in the presence of 
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neurodegenerative diseases involving an altered MT cytoskeleton. In this context, 
effects of anesthetics could be of significance in the clinical setting and are worth 
exploring further. 
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3.4 Characterization of the modulation of cell membrane 

mechanics by volatile anesthetics3 

3.4.1 Abstract 

Very few drugs in clinical practice feature the chemical diversity, narrow 
therapeutic window, unique route of administration and reversible cognitive effects 
of volatile anesthetics. The correlation between their hydrophobicity and their 
potency and the increasing amount of evidence suggesting that anesthetics exert 
their action on transmembrane proteins, justifies the investigation of their effects 
on phospholipid bilayers at the molecular level, given the strong functional and 
structural link between transmembrane proteins and the surrounding lipid matrix. 
Molecular dynamics simulations of a model lipid bilayer in the presence of 
ethylene, desflurane, methoxyflurane and the non-immobilizer 1,2-
dichlorohexafluorocyclobutane (also called F6 or 2N) at different concentrations 
highlight the structural consequences of VA partitioning in the lipid phase, with a 
decrease of lipid order and bilayer thickness, an increase in overall lipid lateral 
mobility and area-per-lipid, and a marked reduction in the mechanical stiffness of 
the membrane, that strongly correlates with the compounds’ hydrophobicity. 

3.4.2 Introduction 

In most research works, the two approaches to explaining anesthesia mentioned in 
paragraph 3.2 – namely the lipid theory and the receptor theory – are largely 
regarded as irreconcilable. What seems often overlooked however, is the intimate 
connection between transmembrane receptors such as ion channels and their 
surrounding lipid environment, which highlights the duality, rather than the 
contrast, of the two theories. Indeed, the membrane-spanning portions of integral 
membrane proteins are known to be affected by the surrounding lipids, so that the 
conformational characteristics of specific sections of the transmembrane regions 
may change in response to alterations of the lipid bilayer. It has been shown for 
example that bilayer thickness can directly influence protein activity 124,125. 

 
3 Part of the work described in this paragraph has been published in: 
Zizzi, Eric A., et al. "Alteration of lipid bilayer mechanics by volatile anesthetics: Insights from 

μs-long molecular dynamics simulations." Iscience 25.3 (2022): 103946. 
Contribution of the author: study design, creation of computational models and simulations, 

data analysis and interpretation. 
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Conversely, there is increasing experimental evidence that the presence of proteins 
embedded in the membrane has profound effects on the latter’s stabilization, 
mediated mainly by hydrophobic interactions 126. At higher scales, the reciprocal 
interaction of the membrane’s lipid environment and embedded proteins has also 
been shown to be mediated by so-called lipid rafts 127, which are sub-μm domains 
of spatially organized lipids, typically sphingomyelin and cholesterol 128–130. 

It appears thus entirely reasonable that an interaction of increasingly hydrophobic 
compounds, such as VAs, within biological membranes might have significant 
effects on membrane organization and structure, but at the same time this cannot 
happen without altering the energetic landscape of the interactions between 
membranes and transmembrane receptors. The idea that small solutes such as VAs 
bear the potential of altering the mechanics and thermodynamics of the lipid bilayer, 
with possible consequences on the dynamics of embedded proteins, was already 
introduced in the work of Cantor 131, who elegantly discussed the possible relevance 
of lateral pressure profiles within the lipid bilayer and suggested the mechanistic 
link between anesthetics, the lipid bilayer and embedded ion channels 132. Indeed, 
earlier molecular dynamics simulations by Huang et al. had predicted a possible 
structural effect of anesthetics within the phospholipid bilayer, in the form of an 
increased lateral diffusion of lipids and an increase in the overall fluidity of the 
bilayer 133. More recently, following earlier speculations suggesting a role of lipid 
rafts in anesthesia 134–136, Pavel et al. demonstrated a membrane-mediated effect of 
anesthetics, whereby the anesthetic-induced alteration of lipid raft organization is 
able to modulate the sensitivity of channel proteins to anesthetics 137. In addition to 
these considerations, the direct effect of anesthetics on transmembrane receptors 
might be exerted within the transmembrane portion of the receptors rather than on 
the intracellular or extracellular domains alone and might thus be connected to the 
ability of compounds to partition inside the membrane and laterally diffuse within 
the lipid phase prior to interacting directly with cryptic, hydrophobic sites on the 
target. As a matter of fact, compounds that are more soluble in oil-like media, as is 
the case for VAs as shown by the Meyer-Overton correlation, tend to partition 
inside the membrane rather than in aqueous solutions, and vice versa. 

In the context of investigating the properties of lipid bilayers, a vast literature exists 
exploring the behavior of model phospholipid membranes in different physical 
contexts and the structural and functional link between membranes and embedded 
proteins and peptides. Indeed, it is well-known that the structure of phospholipid 
bilayers has strong functional consequences 138. The structural parameters usually 
reported in both experimental and computational studies include (a) the Area-per-
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Lipid (APL), which can be calculated from molecular densities or geometrically 
from the membrane patch surface; (b) the bilayer thickness δ, which is directly 
related to the APL; (c) deuterium order parameters (SCD), which provide 
quantitative evidence of lipid chain order and the membrane rigidity resulting from 
this; (d) direct measures of the mechanical characteristics of the membrane, such as 
the bilayer bending modulus (Kc). Due to the limitations, both methodological and 
economical, of experimental settings aimed at investigating such properties for a 
vast array of model membranes in different physical and biochemical contexts, 
computational approaches such as molecular dynamics (MD) have proven a 
valuable tool for exploring and rationalizing the structural characteristics and 
interaction phenomena within model bilayers at the molecular level. While a great 
number of computational investigations employed single-component lipid patches 
133,139,140, mostly of phosphatidylcholines (PCs) or phosphatidylethanolamines 
(PEs), recent advances in lipid force fields 141–145 and the increasing power of 
computational resources have paved the way for the simulation of complex, 
composite bilayers formed by multiple lipid species and varying cholesterol 
concentrations, both at all-atom (AA) and coarse-grained (CG) resolutions146. 

 

Figure 3.9. Visual overview of the simulated systems. Left: visualization of the three 
simulated VAs (1) ethylene, (2) desflurane, (3) methoxyflurane, and the nonimmobilizer 
(4) F6. Right: visualization of the membrane system in its explicit TIP3P water box with 
ions and ligands omitted for clarity. P atoms highlighted in green, POPC lipids in pink, 
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Cholesterol in light grey, POPE in purple, POPS in dark green, PSM in bright green. Length 
scale in Ångstrom reported below for reference, centered at the membrane core region. 

With this in mind, the present work focuses on investigating the interaction between 
volatile anesthetics and a composite model mammalian cell membrane through the 
use of computational molecular modelling, to explore the effects of VAs on lipid 
bilayers. With the goal of exploring the effect of a chemically and physically diverse 
set of hydrophobic compounds spanning a wide range of clinical potencies, we 
carried out simulations with desflurane (2-(difluoromethoxy)-1,1,1,2-
tetrafluoroethane), a fluorinated ether with a MAC of 6% 75, methoxyflurane (2,2-
dichloro-1,1-difluoro-1-methoxyethane), a potent halogenated methyl ethyl ether 
with a MAC value of 0.16%, now largely abandoned in the light of its 
nephrotoxicity 76, and ethylene, which is only mildly anesthetic with a MAC value 
of 67% 79. Simulations were also carried out with F6 (1,2-
dichlorohexafluorocyclobutane), a widely investigated nonimmobilizer which does 
not follow the Meyer-Overton correlation in that it does not induce complete 
anesthesia as would be expected from its lipophilicity, but it has been demonstrated 
to induce amnesia 147–149.  

A graphical summary of the model membrane and of the simulated VAs is reported 
in Figure 3.9.  

3.4.3 Materials and Methods 

System Setup 

To overcome the intrinsic simplifications of single-component bilayers, and to 
account for the presence of cholesterol, which has a well-documented ordering 
effect on membranes 150 with profound consequences on their mechanical 
properties 151,152, we chose to simulate a composite asymmetrical lipid patch 
representative of the mammalian cell membrane, as first described by Zachowski 
(1993) 153 and employed in computational studies by Klähn and Zacharias 154 and, 
more recently, Shahane et at. 155, composed of POPC (1,2-palmitoyl-oleoyl-sn-
glycero-3-phosphocholine), POPE (1-Palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine), POPS (1,2-palmitoyl-oleoyl-sn-glycero-3-phosphoserine), 
PSM (palmitoylsphingomyelin) and Cholesterol (CHOL). The detailed amounts of 
the lipids in the two leaflets are reported in Table 3.4.  
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Table 3.4. Number of different lipid molecules in the two leaflets of the model mammalian 
membrane. 

Lipid Inner Leaflet Outer Leaflet Total 
POPC 40 106 146 
POPE 132 34 166 
POPS 82 8 90 
PSM 10 116 126 
CHOL 136 136 272 
Total 400 400 800 

 

Bilayer systems were assembled using the Membrane Builder156–158 tool of 
CHARMM-GUI159, with a fixed number of 50 TIP3P waters per lipid to ensure 
adequate lipid hydration even at higher ligand concentrations, and a physiological 
NaCl concentration of 0.15M. In addition to the control simulation without any 
anesthetic, different systems were set up by randomly inserting desflurane, 
methoxyflurane, ethylene and F6 (1,2-Dichlorohexafluorocyclobutane) 
respectively in the surrounding aqueous solvent at 12.5%, 25% and 50% 
anesthetic/lipid molar ratios, for a total of 10 simulated systems, using the insert-
molecules tool of GROMACS 2020.4160. The higher concentrations (25%, 50%), 
while not intended to be representative of clinical concentrations, were included to 
enhance the sampling of the lipid-anesthetic interaction and to accelerate ligand 
partitioning, as seen in previously published studies161–163. The 12.5% concentration 
on the other hand is more representative of clinical scenarios, with the molar ratio 
of e.g. Halothane at MAC being in the range of 5%164 to 14%165. The detailed 
composition of each simulated system is reported in Table 3.5 below. 

Table 3.5. Components of each simulation system 

System Lipids Water 
molecules 

Cl- 
ions 

Na+ 
ions 

VA 
molecules 

Total 
Molecules 

C 800 40000 96 186 0 41082 
E12.5 800 39754 96 186 100 40936 
E25 800 39527 96 186 200 40809 
E50 800 39062 96 186 400 40544 

D12.5 800 39414 96 186 100 40596 
D25 800 38892 96 186 200 40174 
D50 800 37749 96 186 400 39231 
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M12.5 800 39210 96 186 100 40392 
M25 800 38484 96 186 200 39766 
M50 800 36755 96 186 400 38237 

F6 12.5 800 39149 96 186 100 40331 
F6 25 800 38381 96 186 200 39663 
F6 50 800 36486 96 186 400 37968 

 

Simulation Protocol 

Simulations were carried out in GROMACS 2020.4160 using the CHARMM36 
force field145, which is well-validated for membrane simulations over a wide range 
of lipid compositions138, according to the following protocol: after an initial 5000-
step energy minimization, systems were equilibrated stepwise with gradually 
decreasing harmonic restraints (from 1000 to 0 kJ ´ mol-1 ´ nm-1), first in the NVT 
ensemble for 250 ps with a conservative timestep of 1 fs, using the Berendsen 
thermostat with a coupling time constant of 1 ps and a reference temperature of 
303.15K, which is above the phase-transition temperature for the studied lipid 
mixture, and subsequently in the NPT ensemble for 125 ps with the same 1 fs 
timestep, followed by a further simulation of 375 ps with a 2 fs timestep, using the 
Berendsen thermostat with the same parameters as before and the Berendsen 
barostat 166 with semi-isotropic pressure coupling at 1 atm with a coupling time 
constant of 5 ps. Overall, systems underwent 750 ps of equilibration, and were 
subsequently simulated for production runs for a total of 1 μs each in the NPT 
ensemble, using the Nosé-Hoover thermostat 167 with a time constant of 1 ps and a 
reference temperature of 303.15K, and the Parrinello-Rahman barostat 112, with 
semi-isotropic pressure coupling at 1 atm with a time constant of 5 ps. Bonds 
involving hydrogens were constrained using the LINCS algorithm 168, while the 
Particle Mesh Ewald (PME) algorithm 113 was used for electrostatics, with a cutoff 
radius of 1.2 nm, and a cutoff of 1.2 nm was used for Van der Waals interactions, 
with a force-switch modifier from 1.0 to 1.2 nm. The first 250 ns of the production 
MD runs were regarded as additional structural equilibration, while the remaining 
750 ns were used for the subsequent analyses described below, in line with previous 
literature regarding the computational simulation of biological lipid bilayers 155,169. 
Properties were sampled every 200 ps, unless otherwise specified. Molecular 
visualizations were generated using the VMD software package 105. 
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Structural Analyses 

Geometric Area-per-Lipid (gAPL), Bilayer Thickness (δ) and water permeation 
were calculated using the MDAnalysis 170 library for Python 171. Briefly, the gAPL 
was calculated as the xy area of the simulation box divided by the number of lipids 
in each membrane leaflet (N=400) and is reported in Å2. To calculate the bilayer 
thickness, the position of all P atoms of each leaflet was extracted and their average 
z coordinate calculated for each leaflet. Bilayer thickness was calculated as the 
distance between the avg. z coordinates the P atom cloud. Water permeation events 
were calculated by tracking individual water molecules throughout the simulation. 
Density distribution profiles along the z coordinate were calculated using the gmx 
density tool. Acyl chain deuterium order parameters, SCD, for the sn1 and sn2 chains 
of each lipid were calculated to directly quantify structural effects on the packing 
of the membranes’ hydrophobic core. Order parameters were calculated following 
equation (1), using the gmx order tool: 

𝑆UV =
1
2
〈3𝑐𝑜𝑠B𝜃 − 1〉 (1) 

where θ is defined as the angle between the bilayer normal and the vector C-D 
between the given carbon atom and the bound hydrogen atom, as sampled from the 
equilibrium MD simulations172. Unsaturated lipid chains were accounted for 
following the methodology described in Pluhackova et al.142. 

To quantify the tendency of ligands to partition inside the bilayer, which can bear 
profound consequences on protein-ligand interaction affinity and kinetics on 
transmembrane protein targets, the ligand molal concentration inside the lipid 
bilayer was calculated as follows. MDAnalysis was used to extract the number of 
ligand molecules whose center-of-mass z coordinate lied between the two P-atom 
point clouds, i.e. between the two layers delimiting each leaflet’s boundary. These 
ligands were regarded as being embedded inside the membrane. The remainder of 
the ligands was considered outside of the membrane. The molality of the anesthetics 
inside the membrane was calculated as number of moles of embedded ligands 
divided by the total weight of the membrane in kg. 

To calculate the bilayer bending modulus, Kc, for each simulated system, the 
methodology proposed by Khelashvili and colleagues173 was employed, leveraging 
on the relationship between the splay modulus, χ12, and the macroscopic bending 
modulus: in this approach, an improved ability of adjacent lipids to change the 
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reciprocal orientation of their hydrophobic tails with respect to the local membrane 
normal, which is quantified by their splay angle (α), is associated to a decreased 
membrane bending rigidity. Briefly, this approach first calculates the Potential of 
Mean Force (PMF) of the distribution of splay angles sampled during equilibrium 
MD simulations, normalized with respect to the probability distribution of a non-
interacting particle system174, denoted here P0(α), as shown in equation (2): 

𝑃𝑀𝐹(𝛼) = −𝑘W𝑇	𝑙𝑛
𝑃(𝛼)
𝑃5(𝛼)

(2) 

where T represents the system temperature and kB the Boltzmann constant. The 
overall splay modulus, which is linked to the bilayer bending modulus as: 

𝐾; = 2𝑘. = 2𝜒CB (3) 

can be calculated by means of a quadratic fit of the PMF obtained from Eq. (2) 
175,176. 

In the present work, we employed the python implementation previously 
demonstrated by Johner et al.177 to first extend the trajectories to neighboring 
periodic images, followed by wrapping the trajectory around the central unit cell 
and re-aligning. Finally, the provided python modules were used to calculate the tilt 
and splay angle distributions for all lipids and subsequently extract the membrane 
elastic properties of interest following the above-mentioned methodology. We refer 
to 177 and references therein for a more complete theoretical background of the 
methodology and details on the python implementation relying on the 
OpenStructure178 toolkit. 

Quantification and statistical analysis 

For a more accurate estimation of the error of the sampled properties179–182, the 
equilibrium part of the MD simulations (i.e. the last 750 ns) was further divided 
into 250-ns long trajectory blocks, in line with previous literature reporting findings 
in μs-long MD simulations of complex lipid membranes155,169. First, the block 
average of each structural property was calculated for each block as the arithmetic 
mean of the data points of the given property p within the block: 

�̅�> =
1
𝑁/
1𝑝2

!6

2EC

(4) 
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where �̅�> denotes the mean within the j-th block of property p and Nb is the number 
of samples composing the j-th block. The final estimate of the ensemble average 
〈𝜇〉 of the given property p is given by the arithmetic mean of the block averages: 

〈𝜇〉 =
1
𝑛
1�̅�>

,

>EC

(5) 

where n is the total number of blocks. Then, the experimental standard deviation of 
the mean,	σXIII, of each property was calculated as: 

𝜎YIII = �
∑ (�̅�> − 〈𝜇〉)B,
>EC

𝑛 − 1
(6) 

where �̅�> is the arithmetic mean of a given property over the j-th block and n is the 
number of blocks. Finally, the estimate of the standard deviation is given by:  

𝜎Y =
σXIII
√𝑛

(7) 

This quantity is the reported standard deviation, represented as error bars on the 
plots, and was also used to calculate 95% confidence intervals which are reported 
throughout the text and in shaded colors on the plots, unless where explicitly 
specified. 

3.4.4 Results 

Potent VAs alter the membrane structure upon partitioning 

To quantitatively assess both the quality of the membrane model itself and the effect 
of volatile anesthetics on overall membrane structure, the geometric Area per Lipid 
(gAPL) and Bilayer Thickness (δ) were evaluated and are reported for all systems 
in detail in Table 3.6. The former is a crucial parameter influencing lipid diffusion 
profiles, lipid chain order and overall membrane elastic properties. It also represents 
a metric to assess the reached equilibrium of membrane simulations, along with the 
closely related bilayer thickness. The control simulation without any ligands 
yielded an average gAPL of 42.89 Å2 (95% CI: 42.83 – 42.95 Å2) and an average 
bilayer thickness of 46.85 Å (95% CI: 46.81 – 46.89 Å), and proved consistent both 
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with previous computational studies of membranes with similar lipid composition 
and comparable cholesterol content154,155,183 and with experimental data on 
cholesterol-enriched membranes 184, although it is to be noted that bilayer thickness 
heavily depends on the specific bilayer composition 185 and experimental data of 
membranes with the exact lipid composition of the present model is, to the best of 
our knowledge, not available. Nevertheless, the reduced gAPL and δ values are 
consistent with the high cholesterol content (~ 34%) inducing membrane 
condensation, as demonstrated in earlier literature151,186–188. 

 

Figure 3.10. Distribution of the bilayer thickness (δ) and geometric area per lipid (gAPL). 
Control simulation vs. ethylene (A), desflurane (B), methoxyflurane (C) and F6 (D) at 
increasing concentrations. Marginal axes show the individual data distributions collected 
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in the last 750 ns of the simulations. Control simulation without anesthetics shown in grey, 
12.5% concentration in red, 25% in blue and 50% in green. 

Figure 3.10 shows the effect of increasing ligand concentrations on both gAPL and 
thickness. In the case of ethylene (Figure 3.10A) no significant effect of ligand 
concentration on bilayer thickness is observed (from 46.85 Å to 46.52 Å), with only 
a mild increase in area per lipid, which reaches 45.16 Å2 with 50% ethylene. 
Desflurane (Figure 3.10B) and methoxyflurane (Figure 3.10C) on the other hand 
induce a marked reduction in bilayer thickness down to 45.67 Å with 50% 
desflurane and 45.16 Å with 50% methoxyflurane, despite the steric hindrance of 
the high number of ligand molecules partitioned within the membrane. At the same 
time, these two anesthetics induce a marked increase in gAPL, up to 48.18 Å2 and 
48.53 Å2 for systems with 50% desflurane and methoxyflurane, respectively. 
Overall, the latter two ligands induce a progressive reduction of membrane 
thickness, along with a lateral spreading of the lipids on the xy plane, both in a 
fashion proportional to ligand concentration. This effect is totally absent for 
ethylene concentrations up to 25%, with only a mild increase in gAPL induced at 
50% and no measurable thickness reduction effect. These results are in agreement 
with earlier computational studies reporting a significant lateral expansion and 
simultaneous thickness contraction induced in lipid membranes by halothane, 
another VA,  over a wide range of molar fractions 163,189,190. Lastly, simulations with 
the nonimmobilizer F6 (Figure 3.10D) highlight a reduction in bilayer thickness 
(from 46.85 Å to 45.52 Å with 50% F6) comparable to the simulations with 
desflurane and methoxyflurane, whereas the increase in gAPL is more subdued at 
higher concentrations, reaching at most 46.44 Å2 with 50% F6. 

Table 3.6. Average geometrical Area per lipid, bilayer thickness and frequency of water 
permeation for all simulated systems. 95% confidence intervals are reported in square 
brackets for block-averaged quantities. 

System gAPL [Å2] Bilayer Thickness (δ) [Å] 

Water 
permeation 
frequency 
[H2O/μs] 

C 42.89 [42.83 – 42.95] 46.85 [46.81 – 46.89] 16 

E12.5 43.40 [43.36 – 43.44] 46.77 [46.71 – 46.83] 40 
E25 43.90 [43.80 – 44.00] 46.74 [46.68 – 46.80] 37 

E50 45.16 [45.12 – 45.20] 46.52 [46.46 – 46.58] 112 
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D12.5 44.93 [44.81 – 45.05] 46.17 [46.03 – 46.31] 75 
D25 46.47 [46.41 – 46.53] 45.91 [45.89 – 45.93] 163 

D50 48.18 [46.49 – 49.87] 45.67 [45.45 – 45.89] 285 

M12.5 45.12 [45.08 – 45.16] 45.88 [45.87 – 45.89] 64 

M25 46.86 [46.83 – 46.89] 45.40 [45.38 – 45.42] 160 
M50 48.53 [46.92 – 50.14] 45.16 [44.89 – 45.43] 391 

F6 12.5 44.95 [44.81 – 45.09] 45.97 [45.89 – 46.05] 93 

F6 25 46.85 [46.65 – 47.05] 45.39 [45.28 – 45.50] 206 
F6 50 46.44 [45.30 – 47.58] 45.52 [45.09 – 45.95] 155 

The increase in gAPL induced by ligand partitioning came alongside an increase in 
spontaneous water permeation through the membrane, reported as the number of 
water molecules crossing the bilayer per microsecond in Table 3.6: throughout the 
control simulation a water permeation frequency of 16 water molecules/μs was 
observed, whereas this frequency increased to up to 285 molecules/μs and 391 
molecules/μs in the case of 50% desflurane and 50% methoxyflurane, respectively. 
Conversely, just as for gAPL and bilayer thickness, more subdued differences were 
observed with ethylene, with at most 112 molecules/μs at the highest concentration 
of 50%. Throughout the simulations with F6, a permeation frequency of up to 206 
molecules/μs was observed at 25% simulated fraction, with a slightly lower 
frequency of 155 molecules/μs at 50% concentration, consistent with the trends of 
gAPL and bilayer thickness. Despite the increase in spontaneous permeation 
frequency with increasing ligand concentrations, no pore formation was observed 
throughout the whole set of simulations, with no disruption of the overall structural 
integrity of the bilayer. 

Anesthetics and nonimmobilizers are predicted to have specific localization areas 
within the bilayer 

The partitioning of ligands inside the lipid bilayer not only plays a crucial role in 
ligand-receptor interaction with transmembrane proteins191, but can also 
significantly alter the bilayer’s structural and mechanical properties163,190,192,193. 
The analysis of the density distributions of the different membrane components and 
of the ligands along the z coordinate highlights a marked tendency of the four 
ligands to partition inside the bilayer in specific hydrophobic regions. 
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Figure 3.11. Density distributions of lipid headgroups (blue), glycerol backbone (red), lipid 
tails (green) and anesthetics (black). (A) control simulation, (B) with 50% ethylene, (C) 
with 50% desflurane, (D) with 50% methoxyflurane and (E) with 50% F6. Shaded colors 
represent 95% confidence intervals. 

Figure 3.11 reports the density distributions for the control simulation (Figure 
3.11A) and the simulations at the highest concentration of ethylene (Figure 3.11B), 
desflurane (Figure 3.11C), methoxyflurane (Figure 3.11D) and F6 (Figure 3.11E). 
The corresponding plots for 12.5% and 25% ligand concentrations, which highlight 
the same qualitative distribution pattern, are reported in Supplementary Figures 
S3.23 and S3.24 in the Appendix, respectively. For desflurane and methoxyflurane, 
three main areas of localization clearly emerge: the main peak is located at the 
bilayer center, corresponding to the minimum of lipid tail density. This is consistent 
with the hydrophobic nature of these compounds, and explains why the massive 
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ligand partitioning inside the membrane does not result in a simultaneous increase 
in bilayer thickness, as would be expected by the effect of steric hindrance and 
molecular volume alone. Indeed, due to the low lipid tail density in the membrane 
core, resulting in less occupied molecular volume, many freely diffusing 
hydrophobic species are known to temporarily localize in this region, including 
cholesterol during flip-flop transitions194. The secondary peaks on the other hand 
are located near the membrane-water interface, immediately below the glycerol 
groups. This is in agreement with earlier computational findings by Pohorille et al., 
who predicted this very area of localization to be involved in the molecular 
mechanism of anesthesia195–197. Interactions of volatile anesthetics near the water-
lipid interface region have also been reported in the past by Tang and Xu, who 
employed MD simulations to evaluate the effect of halothane on a gramicidin A 
channel protein embedded in a DMPC bilayer140. While these earlier simulations 
employed more simplistic membrane models composed of a single lipid type, and 
investigated remarkably lower timescales, the localization near the water/lipid 
interface is herein predicted to partially occur also in our composite, cholesterol-
enriched membrane model, albeit not as predominantly as the localization at the 
membrane core. On the contrary, in the case of F6, the localization at the interface 
appeared comparable to that at the membrane core, resulting in a different density 
pattern with respect to the other compounds, with no predominant peak at the 
membrane core. These findings are consistent with the different effects observed 
for F6 on gAPL with respect to the VAs. 

Quantitative measures of the tendency of ligands to reside inside the lipid bilayer 
with respect to the aqueous solvent are reported in literature in the form of either 
ligand equilibrium partition coefficients191 – usually calculated as the ratio between 
the ligand concentration in the solvent and the concentration within the membrane 
– or directly as molar198 or molal199 ligand concentration inside the membrane. 
Whatever the metric, these quantities depend, among others, on the chemical and 
physical nature of the ligand itself, in particular its hydrophobicity and the presence 
of hydrophilic moieties, on the temperature of the membrane, i.e. its phase state, 
and on the membrane cholesterol concentration191.  
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Figure 3.12. Molal concentration of the four simulated ligands inside the bilayer. 
Concentrations calculated as number of moles of anesthetic per kilogram of membrane. 
Error bars on the histograms represent the error estimate after block averaging. 

To provide a direct quantitative measurement of the amount of ligand able to 
dissolve into the membrane, Figure 3.12 reports the molal concentration reached by 
the four simulated ligands within the lipid bilayer. Results confirm that the 
concentration of ligands inside the membrane increases with increasing amounts of 
simulated ligand molecules, as expected by the physical characteristics of these 
compounds. One notable exception is represented by F6 (dotted bars in Figure 
3.12), whose concentration inside the bilayer is comparable to that of the other 
compounds at 12.5% and 25% simulations, reaching up to 0.35 mol/kg (at 25% 
simulated molar fraction, 95% CI 0.33 – 0.37), but showing no further increase in 
the case of 50% simulations, plateauing at 0.30 mol/kg (95% CI 0.20 – 0.40) and 
with a considerable amount of ligand aggregating in the water phase without 
entering the membrane. Also, the analysis of ligand concentration inside the 
membrane highlights that ethylene (white bars in Figure 3.12) also partitioned 
inside the bilayer, albeit at lower rates in the 12.5% and 25% simulations. 
Conversely, when simulated at 50% molar fraction, the reached concentration 
(0.535 mol/kg, 95% CI: 0.529-0.541) is comparable to the one of desflurane 
(patterned bars in Figure 3.12, 0.621 mol/kg, 95% CI: 0.385-0.856) and 
methoxyflurane (shaded bars in Figure 4, 0.596 mol/kg, 95% CI: 0.355-0.837). 
Also, it is worth noting how the considerable number of ligands present at 50% 
molar fraction leads to greater fluctuations in ligand partitioning in the case of the 
latter two ligands, but not in the case of ethylene. This is a consequence of the key 
differences in behavior between ethylene and the other simulated ligands: firstly, 
ethylene does not form aggregates in the water phase even at 50% concentration as 
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opposed to the other three ligands. Indeed, desflurane and methoxyflurane are 
observed to enter the membrane in the form of aggregates of up to tens of molecules, 
while F6 forms aggregates at 50% concentration that are partially unable to enter 
the bilayer and remain in the water phase throughout the simulations, resulting in 
lower overall membrane partitioning (see dotted bars in Figure 3.12). Secondly, 
ethylene did not show the secondary localization areas below the glycerol groups 
inside the membrane (see Figure 3.11), which are instead present for the other three 
ligands, but rather preferably positions itself at the membrane core, making ligand 
exchange between the membrane and the water phase less frequent. 

VAs and F6 decrease lipid chain order already at 12.5% molar fraction 

Deuterium order parameters SCD represent a quantitative measurement of lipid 
packing and provide insights into the mobility of the hydrophobic chains. Data for 
POPC from the control simulation without ligands (Figure 3.13, blue lines) is in 
good agreement with recently published results of compositionally similar, 
cholesterol- and sphingomyelin-enriched POPC/POPE membranes 183, and 
confirms the membrane-ordering effect induced by cholesterol. Conversely, in the 
presence of desflurane (Figure 3.13B and F) and methoxyflurane (Figure 3.13C and 
G), the mechanical consequence of ligand partitioning within the hydrophobic core 
as well as below the glycerol groups is a reduction in acyl chain order parameters, 
with a trend proportional to the ligand concentration (Figure 3.13). This behavior is 
also present in the simulations with F6, (Figure 3.13D and h), with the exception of 
simulations at 50% molar fraction, where the effect of the ligand on lipid chain 
order is comparable within error to that at 25% concentration. This is coherent with 
the finding that there are no remarkable differences in the concentration reached by 
F6 within the bilayer at 25% and 50% simulated molar fraction (see results above), 
hence a comparable effect on lipid packing is not unexpected. 
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Figure 3.13. Lipid tail order parameters for POPC sn1 (top row) and sn2 (bottom row) 
chains, with different ligands. (A) and (E) ethylene; (B) and (F) desflurane; (C) and (G) 
methoxyflurane;(D) and (H) F6. For the corresponding data for POPE, POPS and PSM see 
Supplementary Information. Shaded intervals correspond to 95% confidence intervals. 

The effect on lipid order is more subdued in the case of ethylene (Figure 3.13A and 
D), where the decrease in SCD is particularly evident only at 50% concentration, 
with only marginal reductions (< 0.01) at lower ligand concentrations. These trends, 
reported in Figure 3.13 for POPC, are analogous for the other lipid species included 
in the employed membrane model (see the Appendix), and hint at a membrane-
destabilizing effect of ligand partitioning, with consequences on overall bilayer 
mechanics. 

Desflurane, methoxyflurane and F6 decrease membrane bending rigidity in a 
concentration-dependent manner 

In the light of the ligands’ tendency to partition inside the lipid bilayer, and of the 
structural consequences thereof observed by the analysis of area per lipid, bilayer 
thickness and acyl chain order parameters, a more specific quantification of the 
bilayer’s mechanical characteristics was carried out by directly determining the 
bilayer bending modulus using a previously proposed methodology relying on the 
analysis of lipid splay. 

The bilayer bending modulus for the control simulation is 88.80 kT (95% CI: 87.16 
– 90.44), and while a direct comparison with other computational and experimental 
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studies is often not trivial due to the differences in membrane composition, 
temperature and methodology, this result is remarkably consistent with earlier 
studies of membranes with similar cholesterol content (around 0.3 molar fraction) 
which induces structural condensation of the lipid phase yielding a considerable 
increase in membrane stiffness and a shift towards the liquid-ordered phase 173,200. 
Furthermore, the obtained value for the control simulation agrees with earlier 
literature reporting experimentally determined stiffness values for plasma 
membrane vesicles (PMVs, Kc = 99.75 kT), which are representative systems of the 
pure plasma membrane in vitro (see 201 and references therein).  

 

Figure 3.14. Effect of ligands on membrane stiffness. (A) Bilayer bending modulus in kT 
units for the different systems. Control system represented as 0% ligand concentration. 
Error bars represent the error estimate after block averaging, omitted when smaller than the 
datapoint for clarity. (B) Correlation between anesthetic lipophilicity (in terms of the 
logarithm of the octanol/water partition coefficient, log(Ko/w)) and the decrease in 
membrane bending modulus in kT units, ΔKc. Error bars represent the error estimate after 
block averaging, omitted when smaller than the datapoint for clarity. 

The trend of reduction of bilayer bending stiffness at increasing anesthetic 
concentrations is visible in Figure 3.14A. At 12.5% anesthetic concentration, the 
presence of desflurane, methoxyflurane and F6 leads to a reduction in monolayer 
bending stiffness by 12.01%, 19.44% and 11.78%, respectively, compared to a mere 
2.10% reduction with ethylene. At 25% anesthetic concentration, the bending 
stiffness is reduced by 20.80% and 26.95% by desflurane and methoxyflurane, 
respectively, and by 20.20 % with F6, compared to a limited 2.48% reduction 
caused by ethylene. Lastly, in the simulations with 50% anesthetic molar fraction, 
the bending stiffness is reduced by 28.38% with desflurane and 28.30% by 
methoxyflurane, while the effect of F6 remains again comparable to the 25% 
simulation, yielding a reduction of the bilayer bending modulus of 19.98%. Only at 
this higher concentration does ethylene lead to a noticeable reduction in bending 
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stiffness by 15.32%. This is consistent with order parameter results, which showed 
a decrease in lipid tail packing in the presence of ethylene only at 50% concentration 
(see Figure 3.13).  

Overall, the trends in reduction in membrane bending stiffness are consistent with 
the hydrophobicity of these compounds. From the analysis of the data from the 
12.5% concentration simulations, which is the closest to clinical concentrations, a 
linear relationship emerges between the lipophilicity of the ligands – quantified by 
the octanol/water partition coefficient log(Ko/w) – and the reduction in bilayer 
stiffness (ΔKc) observed in simulations (R2 = 0.95, Figure 3.14B). Interestingly this 
relationship seems to hold true also for F6, which is not an anesthetic but a 
convulsant with amnesic properties, supporting the hypothesis that the alteration of 
bilayer mechanics might not be per se the mechanistic cause of anesthesia, but 
might be implicated in some of the effects caused by these compounds, especially 
at supra-clinical concentrations. 

3.4.5 Discussion 

In the present work, we employed long all-atom molecular dynamics simulations 
to assess the structural effects of the volatile anesthetics desflurane, 
methoxyflurane, ethylene, a low-potency control, and the nonimmobilizer F6 on a 
model composite lipid bilayer composed of POPC, POPE, POPS, PSM and 
cholesterol. Anesthetics rapidly partition inside the bilayer, reaching intra-
membrane concentrations of approximately 0.6 molal, while F6 is unable to reach 
concentrations higher than 0.3 molal even when simulated at 50% ligand/lipid 
molar fraction. Desflurane and methoxyflurane preferentially localize at the 
membrane core region and immediately below the glycerol groups of the bilayer, 
with structural consequences on both area per lipid and bilayer thickness. Indeed, 
the partitioning of ligands causes a contraction in bilayer thickness while at the 
same time reducing lateral condensation and causing an increase in area per lipid 
and in spontaneous water permeation, albeit with no pore formation or disruption 
of overall membrane integrity. The convulsant F6 shows a different localization 
pattern within the membrane, with preferential interaction below the lipid/water 
interface and a less prominent residency at the membrane core region, but with 
similar structural effects with respect to the aforementioned VAs. The structural 
rearrangement of the membrane has direct consequences on its mechanical 
properties, as testified by a progressive reduction in lipid hydrocarbon chain 
packing. The reduced energetic cost of splaying adjacent lipid tails caused by ligand 
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partitioning leads to a reduction in bilayer bending rigidity in a fashion proportional 
to ligand concentration. These structural effects are not observed for ethylene at a 
molar ratio of up to 0.25 with respect to the lipids, with only marginal effects at 0.5 
molar ratio. Consistently with these considerations, ethylene also constitutes the 
least hydrophobic among the three studied VAs. It is to be underlined how the non-
immobilizer F6 caused a comparable reduction in bilayer bending rigidity despite 
its lack of potency as a general anesthetic. Hence, also bearing in mind that the 
simulated concentrations are above the typical concentrations reached in clinical 
settings, these findings shed light on important aspects of anesthetic-membrane 
interactions. Firstly, the two potent VAs and the nonimmobilizer F6 studied herein 
have, even at the smallest studied concentration, the capacity to alter the energetic 
landscape of a model mammalian lipid bilayer, which results in profound changes 
of its mechanical characteristics in terms of a marked reduction in bending stiffness 
and an overall shift towards a liquid-disordered phase, as shown by the reduction 
in thickness, the increase in APL, the increase in spontaneous water permeation and 
the reduction of lipid chain order. This effect appears as antagonistic to the role of 
cholesterol, which induces instead a shift towards the liquid-ordered phase and an 
overall increase in membrane rigidity200. Interestingly, VAs and cholesterol seem 
to have instead a similar effect in the context of lipid raft microdomains, whose 
number and size has been recently shown to increase with both anesthetics and 
cholesterol137 . Given the fundamental role of the cell membrane not only in overall 
cell mechanics and structural stability, but also in the function of several 
transmembrane proteins, including important ion channels thought to be directly 
involved in anesthesia or its side effects53,202–205, it appears entirely reasonable that 
bilayer alterations might be, directly or indirectly, involved in some of the effects 
exerted by VAs and F6, in the same way in which cholesterol is a crucial modulator 
of membrane mechanics and essential for many membrane functions. As a matter 
of fact, a hybrid protein/lipid mechanism based on the alteration of the physics of 
the lipid membrane has been recently proposed by Pavel et al., who described and 
demonstrated in vivo the indirect effect of volatile anesthetics on membrane-
embedded channel proteins by means of an alteration of sphingomyelin lipid 
rafts137. Despite failing to highlight any effect of VAs on pure DOPC liposomes, 
employed as a model system of the pure membrane, the research provided further 
evidence for the key role of membrane biophysics in the molecular mechanisms of 
anesthetics, and supports the speculation that anesthetics directly interact with the 
phospholipid membrane, with diversified effects not only at different time and 
length scales, e.g. on local lipid arrangement vs. on larger-scale lipid microdomains, 
but also at different concentrations, e.g. clinical vs. supra-clinical. Indeed, not only 
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does the alteration of the surrounding lipid environment bear the potential of 
altering the function of channel proteins, e.g. by modifying the energetic cost of key 
functional motions, but the rapid partitioning of VAs into the hydrophobic core 
might also be an essential prerequisite for anesthetics to reach cryptic hydrophobic 
binding sites of such proteins within regions embedded in the membrane, which are 
inaccessible from the external water phase. In this sense, the findings reported 
herein do not clash with earlier evidence of a direct action of anesthetics on ion 
channels206,207, which is still debated to be the final mechanism of action causative 
of anesthesia. Instead, the computational predictions provide a quantification of the 
interaction between VAs and the lipid phase and the mechanical alterations of the 
latter at increasing VA concentrations. This mechanism might thus be necessary, 
but arguably not sufficient, for a compound to exhibit anesthetic potency, thereby 
explaining both the Meyer-Overton correlation and outliers thereof such as 
nonimmobilizers, featuring considerable hydrophobicity but low to no anesthetic 
potency. This is confirmed by analyzing the effect on bilayer mechanics of the 
nonimmobilizer F6, which is herein predicted to alter membrane behavior in a 
similar manner to potent anesthetics. This further suggests that the alteration of the 
lipid membrane per se is unlikely to be the sole mechanistic cause of anesthesia as 
a whole. Rather, it might be a biophysical mechanism involved in some of the 
effects that are exerted both by anesthetic agents and nonimmobilizers such as F6, 
which has been shown e.g. to induce convulsions and amnesia in vivo. Also, the 
direct action on membrane mechanics might rather provide a mechanistic basis to 
explain the side effects of anesthetics, which arise at higher concentrations and are 
in common with convulsants208,209. Indeed, given the exacerbation of the alteration 
of bilayer structure and mechanics predicted herein at such higher concentrations – 
0.25 and 0.5 molar fractions –, it is reasonable that such a mechanism might be 
involved in the molecular basis of the side effects of VAs at supra-clinical 
concentrations. 

3.4.6 Conclusions 

The molecular mechanisms of general anesthesia are to this day an unsolved 
medical puzzle. While recent literature generally considers transmembrane proteins 
as the main functional target of volatile anesthetics, the Meyer-Overton correlation 
clearly hints at the ability of these compounds to interact with the lipid bilayer of 
cell membranes, even if the final functional action is not exerted directly on the 
membrane itself. Long molecular dynamics simulations of the three VAs ethylene, 
desflurane and methoxyflurane and of the nonimmobilizer F6 confirm the strong 
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tendency of these ligands to partition within the hydrophobic environment of a 
model membrane, and allowed to quantify the structural effects this determines: a 
reduction in bilayer thickness, a decrease in lipid chain order and a reduction of 
membrane stiffness, with a trend proportional to the amount of partitioned ligands. 
Given the strong correlation observed between the compounds’ lipophilicity and 
the reduction in the membrane bending modulus caused by their inclusion within 
the membrane, it appears that the phospholipid membrane might be a key 
component in determining some of the effects of anesthetics on channel proteins, 
by altering their structural and mechanical characteristics in the presence of VAs 
with possible consequences on embedded protein function and on the intracellular 
link between the membrane and the cytoskeleton. Moreover, the remarkable 
tendency to dissolve in the lipid phase followed by lateral diffusion within the 
membrane, might be an essential step to reach key functional hydrophobic binding 
pockets in transmembrane proteins, which would be inaccessible from the aqueous 
solvent, such as some transmembrane domains which have been shown to bind 
anesthetics206. These considerations are well in line not only with the strong 
relationship between potency and hydrophobicity, but also with the most recent 
theories indicating ion channels as ultimate targets for general anesthetics, and 
pointing at the lipid environment of the membrane as a first transducer of anesthetic 
action137. At the same time, the functional distinction between general anesthetics 
and compounds without any anesthetic effect but high lipophilicity, such as F6, 
might involve processes and molecular players downstream of the interaction with 
the membrane. This concept highlights how the lipid-centered and the protein-
centered theories of anesthetic action are not, in fact, irreconcilable, but might rather 
be two aspects of a composite mechanism, which sees the interaction with the lipid 
membrane as a necessary but perhaps not sufficient condition. A more thorough 
analysis of how this occurs and to which extent, especially as to where the 
discrimination between general anesthetics and non-anesthetic Meyer-Overton 
outliers takes place, as well as of the effect of the membrane alteration on the 
cytoskeleton linked at the intracellular interface, certainly warrants further 
computational and experimental investigations, and seems well worth pursuing 
further. 

3.4.7 Limitations of the Study 

• While the membrane model employed in this work is a multi-component 
membrane which accounts for the major lipid constituents of mammalian 
cell membranes, it still represents a simplified representation, especially in 
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the context of neural membranes which include several types of different 
phosphatidylcholines, phosphatidylethanolamines, sphingomyelins, 
phosphatidylserines, glycolipids, cerebrosides and phosphatidylinositols, 
just to name a few. Building increasingly realistic models of cellular 
membranes is an active topic of research and requires major computational 
efforts, often demanding the use of coarse-grained modelling and extended 
parameter validations to accurately capture the physical and chemical 
characteristics of the simulated species. 

• The present work focuses on the effects of three different VAs of different 
chemical structure and spanning a wide range of clinical potencies. 
However, several other VAs exist that were not included in the present 
work, and are very well worth investigating in further studies. Also, we 
herein included a compound that would be expected to have high potency 
as an anesthetic based on its hydrophobicity and structural similarity to 
actual VAs, but actually lacks any anesthetic effect, namely F6. Given the 
comparable effect of this compound on pure membrane mechanics, further 
investigations are needed to explore downstream events (e.g. the interaction 
with transmembrane proteins) that would ultimately set apart potent 
anesthetics from hydrophobic nonimmobilizers and other similar negative 
controls. 



  
 

Chapter IV 

Investigation of non-covalent 
molecular assemblies for drug 
delivery using molecular 
simulations 

4.1 Introduction4 

As discussed in section 1.2.3, many drugs and drug-like molecules that are currently 
both approved for clinical use or still under investigation in the context of anticancer 
therapy present significant shortcomings limiting their scope and efficacy. Such 
shortcomings can be broadly categorized into (a) delivery shortcomings, whereby 
the accumulation of the compound in the target tissue is insufficient, or (b) off-
target and systemic toxicity, when the action of the compound is also exerted in 

 
4 Part of the work described in this chapter has been published in the following authored 

scientific publications: 
Sztandera, Krzysztof, et al. "Noncovalent interactions with PAMAM and PPI dendrimers 

promote the cellular uptake and photodynamic activity of rose bengal: the role of the dendrimer 
structure." Journal of Medicinal Chemistry 64.21 (2021): 15758-15771. 

Uchida, Noriyuki, et al. "Reconstitution of microtubule into GTP-responsive nanocapsules." 
Nature Communications 13.1 (2022): 5424. 

Sztandera, Krzysztof, et al. “Cellular uptake of rose bengal is mediated by OATP1B1/1B3 
transporters”, Bioelectrochemistry (2023): 108449. 
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healthy tissue, which often determines a significant physical and psychological 
burden on both patients and caregivers. Ideally, innovative pharmaceutical 
solutions, including those for anticancer therapy, would tackle both these 
interconnected issues, by means of customized drug delivery platforms which not 
only effectively deliver the small molecules to their targets, but also limit their 
accumulation and potentially nefarious effects elsewhere.  

The goal of the present chapter is to illustrate how such goals can be effectively 
tackled with the help of computational molecular modelling and molecular 
dynamics, which can be employed in synergy with experimental techniques to gain 
important insights into the molecular interactions of small molecules with key 
components such as cell membranes and nanocarriers, e.g. dendrimers or 
nanocapsules, to ultimately assist the definition and optimization of therapeutic 
strategies which can overcome the current limitations described above. Employing 
in-silico modelling with atomistic resolutions can improve our understanding of 
how drugs interact with their surroundings, as well as the dynamics of such 
processes, enabling the so-called computer-aided design and optimization of both 
improved therapeutic agents and specialized delivery platforms, even when the 
interactions of such molecules with their surroundings are aspecific and occur on 
multiple potential binding sites. 

Section 4.2 reports a combined experimental and computational study of the 
mechanisms of cellular permeation of Rose Bengal, highlighting the need for 
protein transporters and the lack of spontaneous membrane diffusion, which was 
explored using molecular dynamics. Section 4.3 expands the scope of the 
investigation of RB by reporting the findings regarding how the photosensitizer 
interacts with dendrimers, which are organic nanoparticles that can form stable but 
reversible molecular complexes with RB, thereby acting as promising nanocarriers. 
The comparative study of the molecular-level interactions between stoichiometric 
RB and different types of dendrimers was carried out with the help of molecular 
dynamics simulations. In section 4.4 the application of computational molecular 
modelling techniques to study nanoformulations for drug delivery is extended to 
the case of custom GTP-responsive nanocapsules for anticancer therapy, assembled 
through the use of molecular glues. Molecular modelling and dynamics allowed to 
shed light on how the molecular glues alter tubulin conformations to allow for the 
stabilization of the latter into capsules, which were experimentally shown to 
selectively collapse and release the payload in response to GTP, with potential 
applications in precision oncology. 
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4.2 Mechanisms for cellular uptake of Rose Bengal5 

Rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein, RB) is a water-
soluble, dianionic fluorescein derivative that functions as an organic fluorescent 
dye and belongs to the xanthene family of synthetic dyes210. Originally used as a 
wool colorant, RB has been subsequently approved as a food dye, and is also used 
in ophthalmology to stain damaged conjunctiva and cornea211. Indeed, RB is 
currently approved as an ocular diagnostic tool, and has been designated by the 
Food and Drug Administration (FDA) for the treatment of several types of cancers 
and skin conditions 212. Due to its fluorescent properties and high yield of singlet 
oxygen, RB has been proposed as a photosensitizer in photodynamic therapy213–216. 
However, its shortcomings include its hydrophilic nature, negative charge, 
tendency to aggregate, and short half-life time, which hinder the transmembrane 
cellular uptake of RB, and consequently, the efficiency of RB treatments217. Such 
shortcomings justify the investigation of the molecular mechanisms through which 
RB interacts with the cellular environment, with the overarching goal of both 
understanding how the dye is able to cross cell membranes, and to design novel 
nanocarriers which can improve its uptake and efficacy for photodynamic therapy. 

4.2.1 Abstract 

Due to its fluorescent properties and high yield of singlet oxygen, rose bengal (RB) 
is one of the most promising photosensitizers for cancer treatment. However, the 
negative charge of RB molecule may significantly hamper its intracellular delivery 
by passive diffusion through the cell membrane. Thus, specific membrane protein 
transporters may be needed. The organic anion transporting polypeptides (OATPs) 
family are a well-characterized group of membrane protein transporters, 
responsible for cellular uptake of a number of drugs. To our knowledge, this is the 
first study that evaluates cellular transport of RB mediated by the OATP transporter 
family. First, electrified liquid-liquid interface, together with biophysical analysis 
and molecular dynamics simulations were used to characterize the interaction of 
RB with several models of a cellular membranes. These experiments proved that 

 
5 Part of the work described in this paragraph has been published in: 
Sztandera, Krzysztof, et al. “Cellular uptake of rose bengal is mediated by OATP1B1/1B3 

transporters”, Bioelectrochemistry (2023): 108449. 
Contribution of the author: creation of computational models and simulations of lipid bilayer 

patches, data analysis and interpretation. 
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RB interacts only with the membrane’s surface, without spontaneously crossing the 
lipid bilayer. Evaluation of intracellular uptake of RB by flow cytometry and 
confocal microscopy showed significant differences in uptake between liver and 
intestinal cell line models differing in expression of OATP transporters. The use of 
specific pharmacological inhibitors of OATPs, together with Western blotting and 
in silico analysis, indicated that OATPs are crucial for cellular uptake of RB. 

4.2.2 Introduction 

One of the first obstacles hindering the wide-scale clinical application of RB for 
photodynamic therapy lies in the fact that the mechanisms of its cellular uptake 
remain poorly understood; for this reason, the investigation of nanocarriers to 
overcome such obstacles has recently seen a great rise in scientific interest210.  

The three main pathways of transmembrane transport of low molecular weight 
compounds are as follows: diffusion, assisted transport, and active transport. The 
type of transport depends on the properties of the compound such as its shape, 
charge, and size. The cell membrane components contain negatively charged 
phosphate groups; therefore, hydrophilic and negatively charged molecules require 
membrane protein transporters for cellular entry 218. The organic anion transporting 
polypeptide (OATP) family is a well-characterized group of membrane protein 
transporters, coded by solute carrier family (SLC) genes. OATPs are multi-specific 
transporters that mediate the transport of various compounds including xenobiotics 
(OATP1A2) and prostaglandins (OATP2A1). This transport is ATP- and sodium-
independent; however, the exact mechanism remains under evaluation219. Inhibition 
of OATP activity may lead to drug-drug interactions220. To date, more than 300 
OATPs have been reported, 11 of which are expressed in human tissues. OATPs 
are divided into six families according to their amino acid sequence; they consist of 
643 to 724 amino acids and possess 12 transmembrane domains 219. Depending on 
the type, OATPs occur primarily in the brain, heart, testis, kidney, and liver, where 
they are located mainly in epithelial cells.  

To the best of our knowledge, this is the first study that combines the 
experimental evaluation of cellular transport of RB mediated by the OATP 
transporter family to a computational study of the interaction between RB and cell 
membranes using Molecular Dynamics (MD). Biophysical analysis showed that RB 
at low concentrations could not interact with negatively charged micelles, at the 
same time interacting to a limited extent with the cell membrane surface; this latter 
aspect was confirmed by MD simulations. Therefore, it was concluded that RB 
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cannot cross the cellular membrane, suggesting the requirement for membrane 
transporters. Evaluation of intracellular uptake of RB by flow cytometry and 
confocal microscopy showed significant differences in uptake between cancer cell 
lines expressing different levels of OATP transporters. The application of specific 
pharmacological inhibitors of OATPs, together with Western blotting and in silico 
analysis, indicated that OATPs are crucial for cellular uptake of RB. 

4.2.3 Materials and Methods 

The detailed experimental methodology, including the construction of the 
electrified liquid-liquid interface, the hydrodynamic diameter measurements, the 
details of the cell cultures, the fluorescence anisotropy measurements, the 
intracellular uptake inhibition assay and the cytotoxicity studies are reported in the 
original publication and in section 4.2.1 of the Appendix. The detailed 
computational methodology is discussed in the following. 

MD simulations of lipid bilayers in the presence of RB molecules were carried 
out using GROMACS 2021.3 221 and the CHARMM36 force field 222. Graphical 
visualizations of molecular systems were assembled using the Visual Molecular 
Dynamics (VMD) software package 223. 

System Construction 

To obtain atomistic insights into the interaction between RB and the lipid 
membrane, we built a computational model of the lipid bilayer and carried out a set 
of Molecular Dynamics (MD) simulations in the presence and absence of RB. To 
account for the intrinsic heterogeneity of cell membranes, we chose to construct 
and simulate a multi-component lipid bilayer composed of POPC (1,2-palmitoyl-
oleoyl-sn-glycero-3-phosphocholine), POPE (1-Palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine), POPS (1,2-palmitoyl-oleoyl-sn-glycero-3-phosphoserine), 
PSM (palmitoylsphingomyelin) and Cholesterol (CHOL). This specific 
composition, which is representative of a mammalian cell membrane, was 
described in detail in earlier literature 224,225 and employed in the previous 
computational study investigating the interaction between volatile anesthetics and 
the cell membrane226. The precise composition of the simulated membrane is 
reported in Table 4.1 below: 
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Table 4.1. Number of different lipid molecules in the two leaflets of the membrane model. 

Lipid Inner Leaflet Outer Leaflet Total 
POPC 20 53 73 
POPE 66 17 83 
POPS 41 4 45 
PSM 5 58 63 

CHOL 68 68 136 
Total 200 200 400 

The bilayer model was constructed and simulated following a previously 
published protocol. Briefly, the bilayer was assembled using the Membrane Builder 
227,228 of CHARMM-GUI 229, using 50 TIP3P water molecules per lipid to ensure 
full hydration and sufficient solvent for the addition of rose bengal. A concentration 
of 0.15 NaCl was imposed. The simulations with rose bengal were setup by 
randomly inserting 1 or 10 RB molecules for the two systems respectively (1RB 
and 10RB) in the aqueous solvent, corresponding to a mole fraction with respect to 
the lipids of 0.025% and 2.5%. This latter higher concentration, corresponding to 
roughly 7 mM concentration, was included to enhance the sampling of 
membrane:RB interaction and possible permeation events. The final compositions 
of the simulated systems are reported in Table 4.2: 

Table 4.2. Components of each simulation system. 

System Lipids Water 
molecules 

Cl- 
ions 

Na+ 
ions 

RB 
molecules 

Molecules Atoms 

C 400 20000 47 92 0 20539 104076 
1RB 400 19953 46 93 1 20493 103978 
10RB 400 19670 37 102 10 20219 103516 

 

Simulation Protocol  

The systems were simulated using GROMACS 2021.3 and parametrized with the 
CHARMM36 force field230. Rose bengal was parametrized using CGenFF version 
4.6 231,232. Energy minimization and NVT/NPT equilibrations were carried out 
following the recommended CHARMM-GUI protocol, as described in detail in a 
previous study 226. After equilibration for 250 ps in the NVT ensemble at 303.15K 
and in the NPT ensemble for 500 ps at T=303.15 K and p=1 atm, systems were 
simulated for production MD runs for a total of 1 μs each in the NPT ensemble, 
using semi-isotropic Parrinello-Rahman pressure coupling 233 at 1 atm and the 
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Nosé-Hoover thermostat 234 at a reference temperature of 303.15 K. Electrostatic 
interactions were described using the Particle Mesh Ewald (PME) algorithm 235 
with a cutoff of 1.2 nm. Van-der-Waals interactions were also cutoff at 1.2 nm, with 
the addition of a force-switch modifier from 1.0 nm to 1.2 nm. All bonds involving 
hydrogen atoms were constrained using the LINCS algorithm 236.  

Out of the total of 1 μs of production MD simulations, the first 250 ns were 
regarded as additional structural equilibration and excluded from the subsequent 
analyses. The remaining 750 ns of the simulations were analyzed, and the properties 
of interest were sampled every 200 ps (unless otherwise stated). The visualizations 
of the molecular systems reported herein were generated using the VMD software 
223. 

Structural and Statistical Analyses 

The methodology for the determination of the structural membrane properties 
reported in this chapter, and the statistical analysis thereof, follows the same 
procedure described in Chapter 3. In addition to this, to obtain further insights into 
the energetic landscape of the RB-lipid interaction, we obtained an estimate of the 
binding free energy between the single RB molecule and the outer bilayer interface 
using the MM/PBSA methodology237. Briefly, frames of the membrane/RB 
complex were extracted every 10 ns from the equilibrium phase (last 750 ns) of the 
1RB simulation, for a total of 75 uncorrelated snapshots. These frames, divided into 
three blocks spanning 250 ns each (25 snapshots per block), were used for the 
MM/PBSA analysis using the gmx_MMBPSA237,238 tool to calculate the total free 
energy of interaction between the RB molecule and the lipids. Since no ligand 
permeation occurs throughout the MD simulations, and thus the RB molecule stays 
solvated in water even while in contact with the lipid headgroups, the continuum 
solvent model used in the MM/PBSA approach remains applicable to approximate 
the contribution of solvation to the interaction strength239. The obtained total free 
energy, ΔGTotal, is reported together with the 95% confidence interval determined 
after block averaging as described in Chapter 3. 

The complete set of computational modelling data, including all the necessary 
input files to reproduce the simulations, are available on Zenodo at 
https://zenodo.org/record/7861624.  

 



Mechanisms for cellular uptake of Rose Bengal 101 

 
4.2.4 Results and Discussion 

As observed in previous studies of RB using spectroelectrochemical methodology 
(AC-modulated voltammetry involving fluorometric measurements) by Kakuchi et 
al., RB can undergo an interfacial ion transfer reaction with transient interfacial 
adsorption when doubly charged 240,241. Figure 4.1B shows a series of cyclic 
voltammograms (CVs) of increasing RB concentrations (always initially added to 
the aqueous phase), starting from 10 µM. Observed signals at approx. -0.120 V 
(negative peak current corresponding to the transfer of the doubly charged RB anion 
from the aqueous to the organic phase) and approx. -0.05 V (positive peak current 
corresponding to the transfer of the doubly charged RB anion from the organic to 
the aqueous phase) indicate that the electrochemically triggered ion transfer is 
reversible (the forward and reversed peak current ratio approaches unity). This was 
further confirmed by calibration curves where the negative and positive peak 
currents were plotted as a function of the RB aqueous phase concentration, which 
were linear over the studied concertation range (10–80 µM). This provides a 
voltammetric detection sensitivity (0.230 for positive and -0.252 A·M-1) with the 
expected order of magnitude, with similar absolute values expected for the revisable 
reaction 242,243. Using the linear fit parameters, we additionally calculated the limit 
of detection and limit of quantification of RB for voltammetric detection at the 
electrified liquid-liquid interface. Obtained electroanalytical parameters are 
summarized in Table 4.3. 

 
Figure 4.1. (A) The electrochemical cell used to study interfacial behavior of RB (RE: 
reference electrode, CE: counter electrode, aq: aqueous phase, org: organic phase). (B) CVs 
recorded for increasing concentrations of RB initially added to the aqueous phase. 
Concentrations ranged from 10 to 80 µM and the scan rate was 20 mV/s. (C) Calibration 
curves plotted based on the positive (-0.05 V) and negative (-0.12 V) peak current signals 
from CVs depicted in (B). Linear fit equations are placed next to the corresponding 
calibration curve. 
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The carboxylic group and phenolic site present within the xanthene-based 

moiety of the RB chemical structure are the acid-base centers responsible for 

molecule ionization. At acidic pKa values, pKa1 = 1.89 and pKa2 = 3.93 244, RB is 

expected to be negatively charged within the full conventional pH scale, which is 

further depicted on a concentration fraction diagram in Figure 4.2A. At pH < 1, the 

non-dissociated RB fraction predominates; as the pH increases, the concentration 

of monoanionic RB species reaches its maximum value with a concentration 

fraction slightly exceeding 80% at pH 2.9. Further aqueous phase alkalization 

changes the RB speciation. At pKa2, the concertation of monoanionic RB is equal 

to the concentration of doubly anionic species. From approximately pH 6.3 

onwards, only doubly charged RB species are expected to be present in the bulk of 

the aqueous phase. Thus, the aqueous phase was fixed at pH 7 to perform the scan 

rate dependency allowing the calculation of the diffusion of interfacially active 

species (Figure 4.2 B and C). Using the Randles-Sevcik equation, which is valid for 

reversible ion transfer reactions, the aqueous phase diffusion coefficient was 

calculated as 1.55 ± 0.60 cm2/s (experiment performed in triplicate). 

 
Figure 4.2. (A) Concentration fraction diagram plotted for RB using pKa1 = 1.89 and pKa2 
= 3.93. (B) CVs recorded in the presence of 50 µM RB in the aqueous phase at different 
scan rate values (5, 10, 15, 20, 25, 30, and 35 mV/s). (C) Ionic current values for the 
interfacial transfer of RB plotted as the square root of the scan rate. The linear fit equation 
is given next to the corresponding dependencies. 

Table 4.3. Summary of electroanalytical, physicochemical, and pharmacochemical 
parameters extracted from the voltammetric study. 

Analytical, physicochemical, and pharmacochemical parameters of RB 



Mechanisms for cellular uptake of Rose Bengal 103 

 
Sensitivity6 (+) / A·M-1 0.230  / V -0.095 

Sensitivity (-) / A·M-1 0.252 7 / kJ·mol-1 21.8 

LOD8 (+) / µM 8.91 logPDCE9 3.26 

LOD (-) / µM 2.18 D10 (+) / cm2·s-1 0.35 ± 0.07 

LOQ11 (+) / µM 29.70 D (-) / cm2·s-1 1.55 ± 0.60 

LOQ (-) / µM 7.26 z12 (pH = 7) -2 

 
Figure 4.3. (A) CVs recorded in the presence of 100 µM RB and 50 µM TMA+Cl- in the 
aqueous phase at three different aqueous phase pH values, which were as follows: 4.09 
(solid black line), 6.1 (dash-dot red line), and 9.0 (dashed blue line). (B) Ionic partition 
diagram for double anionic RB. The boundary lines affected by the RB extraction pKa are 
marked with the solid red line. The theoretical ionic portion diagram for RB is marked with 
the dotted blue lines. For more details, see the discussion section 245–248 

Finally, the CVs recorded at different pH values (Figure 4.3A; pH = 4.1, 6.1, 

and 9.0) were used to plot the ion partition diagram (Figure 4.3B). Here, solid red 

 
6 Taken as the slope of the calibration curve plotted as the ion transfer current vs the 

corresponding concentration.  
7 Free Gibbs energy of ion transfer reaction is given as = . 
8 Calculated using the limits of detection (LOD) = 3SD·S-1 where SD is the standard deviation 

of the calibration curve intercept and S is the slope (sensitivity value). 
9 Calcualted using logPDCE = -( )·(2.303 )-1 where F is the Faraday constant, 

R is the gas constant, and T is the temperature in K. 
10 Calculated using the Randles-Sevcik equation; the error was derived from three independent 

experiments. 
11 Calculated using the LOD = 10SD·S-1. 
12 Charge was derived from the concertation fraction diagram.  
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lines correspond to the equivalent concentration boundary lines that were plotted 

using equations developed in 245. 

Boundary line 1 corresponds to a situation where the concentration of RB2- in 

the aqueous phase is equal to the concentration of RB2- in the organic phase: 

(2)   

Boundary line 2 describes a scenario where the aqueous concentration of RB2- 

is equal to the organic phase concentration of RB- and is given by: 

(3)    

      

Finally, boundary line 3 is predicted with the following equation: 

(4)   

The presence of RB in the aqueous phase lies above boundary line 1, 

corresponding to a potential difference of -0.095 V. As the pH decreases from 7 

toward pKa = 3.93, the fraction of doubly charged RB species decreases and the 

 shifts toward more negative potential values, finally giving a signal (Figure 

4.3A, black solid line recorded at pH 4.1) that is partly overlaid with the potential 

window limiting ion transfer. Since complex splitting voltammetric signals 

expected for chemical species with more than one ionizable functional group were 

not observed, we concluded that the points marked within boundary line 3 (Figure 

4.3B) were due to the facilitated transfer of protons by the monoanionic RB species, 

which may partition to the organic phase (the logPDCE for RB- is expected to be 

lower than 3.26 calculated for RB2-), and are overlaid with the simple RB2- ion 

transfer reaction. From the ion partition diagram, the extraction pKa value, defined 

as the apparent pKa of RB- dissolved in the organic phase, was found to be 

approximately 7.05. Therefore, we can conclude that the interfacial transfer of RB 

follows a simple ion transfer reaction. The logPDCE value indicates that RB displays 
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moderate hydrophobicity; thus, its affinity for the hydrophobic domains of the 

lipidic membrane cannot be neglected. 

To further investigate the interactions of RB with membrane models, we first 

analyzed the interactions of RB with negatively charged micelles comprised of LPS 

using DLS measurements. Changes in the size or disruption of LPS micelles were 

used as a measure of RB-membrane interactions. LPS-based soft objects were 

visible as two distribution peaks (a smaller peak at 20 nm and a bigger peak at 140 

nm (see Appendix, Supplementary Figure S4.1)), with the latter attributed to LPS 

micelles 249. The addition of RB up to 50 µM did not change the sizes of the 

distribution curves; however, further increases in the RB concentration (100 µM 

and 200 µM) changed the sizes of the distribution curves, revealing a smaller sized 

peak. This change suggests that RB addition dissociated the LPS micelles and that 

a threshold concentration of RB must be exceeded to change the size of negatively 

charged micelles. However, it should be emphasized that the concentrations of RB 

used for this analysis are significantly higher than the concentrations used in our 

previous cytotoxicity studies 213,216.  

Next, using fluorescence anisotropy measurements of two fluorescent probes 

(DPH and TMA-DPH), we measured changes in membrane fluidity in various 

layers of the cell membrane. DPH binds to the hydrophobic part and TMA-DPH 

binds to hydrophilic part of the bilayer 250. The subsequent addition of RB resulted 

in an increase in only TMA-DPH fluorescence anisotropy, indicating stiffening of 

the cellular membrane due to the interaction of RB with the hydrophilic part of the 

membrane (Figure 4.4B). Here it should be noted here that the limitation of the 

method did not allow the study of the impact of higher concentrations of RB. These 

results suggest that RB does not possesses the ability to diffuse into deeper layers 

of the cellular membrane.  
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Figure 4.4. Changes in fluorescence anisotropy of (A) DPH and (B) TMA-DPH 
incorporated in the membranes of HepG2, Hep3B, HT-29, and Caco-2 cells with increasing 
concentrations of RB (0.5 to 10 µM in PBS, pH 7.4, 37 °C). 

RB molecules carry two ionizable groups (-OH and -COOH) that are 
predominantly found in the deprotonated form (indicated as O- and CO2-, 
respectively) at physiological pH values. This consideration, together with the DPH 
and TMA-DPH results, led us to hypothesize that RB might interact with the 
positive surface charge of lipid membranes through electrostatic interactions, 
without being able to penetrate spontaneously inside the lipid phase.  

Thus, we next used all-atom MD simulations to obtain additional insights into 
how RB interacts with lipid bilayers at the molecular level. MD simulations with a 
mammalian phospholipid bilayer model, representative of the cell membrane, in the 
presence of RB molecules in the surrounding aqueous solvent, revealed a strong 
interaction between RB and hydrophilic lipid heads. After an initial equilibration 
phase, RB rapidly formed stable interactions with the membrane outer surface 
(Figure 4.5A and B); no subsequent spontaneous permeation events were observed 
at either low (1 RB molecule) or high (10 RB molecules) RB concentrations 
throughout the 1 μs MD sampling time period (see ESA2 and ESA3). 
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Figure 4.5. Results of MD simulations of the lipid bilayer with RB. (A) Snapshot of the 
initial conditions of the MD simulation with 10 RB molecules (in red), with ligands 
dispersed in the solvent. (B) Snapshot of the same MD trajectory with 10 RB molecules at 
the end (t = 1 μs) of the simulation, showing the system had reached equilibrium. Lipids 
are shown in gray, with phosphorus headgroups highlighted in cyan. (C) The distributions 
of the gAPL (x axis) and bilayer thickness (y axis) in the control simulation (gray), at low 
RB concentration (red), and at high RB concentration (blue) are shown. Marginal axes 
show the individual distributions. (D) Density profiles of lipid headgroups (blue), glycerol 
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groups (red), acyl chains (green), and RB (black) in the high-concentration simulation (10 
RB). The plot is centered at the bilayer core, where z = 0. (E-H) Radial distribution 
functions highlighting the distances between RB CO2- groups and lipid head nitrogen 
atoms (E) and phosphorus (G) atoms, in addition to the distances between RB O- groups 
and lipid head nitrogen (F) and phosphorus (H) atoms. Shaded intervals in panels (E-H) 
represent 95% confidence intervals calculated from block averaging. 

The analysis of the geometrical parameters of the membrane, i.e., the 
membrane thickness (δ) and the geometric area per lipid (gAPL), provided an initial 
assessment of both the quality of the simulated bilayer and of the effects of RB on 
membrane structure (Figure 4.5C). Indeed, the gAPL is a parameter that is directly 
linked to the molecular order and diffusion pattern of the lipids, and together with 
the membrane thickness constitutes a quantitative measurement of the equilibrium 
of the simulations. As shown in Table 3.1, the control simulation without RB 
yielded an average gAPL value of 42.82 Å2 (95% CI: 42.67 – 42.97) and an average 
thickness value of 46.87 Å (95% CI: 46.76 – 46.98). These values are consistent 
both with earlier simulations using the same membrane model 224–226 and with 
experimental data describing lipid bilayers with a comparable cholesterol content 
(approximately 34%) 251, thus confirming the convergence of the bilayer 
simulation. 

Table 4.4. gAPL and bilayer thickness calculated from the MD simulations (95% CIs are 
reported in square brackets). 

System gAPL (Å2) Bilayer Thickness (δ) (Å) 

Control 42.82 [42.67 – 42.97] 46.87 [46.76 – 46.98] 

1 RB 42.78 [42.66 – 42.90] 46.98 [46.88 – 47.08] 

10 RB 42.72 [42.56 – 42.88] 46.90 [46.78 – 47.02] 

 

The addition of up to 10 RB molecules in the simulation box, in random initial 
positions in the aqueous solvent, resulted in no remarkable effect on membrane 
geometry in terms of gAPL and thickness, which is consistent with the lack of 
membrane permeation events (Figure 4.5C). 

The density profile analysis of different membrane components in the presence 
of RB with respect to the z axis provides additional information regarding 
membrane geometry and the exact localization of RB. As shown in Figure 4.5D and 
Supplementary Figure S4.7, the addition of RB in the simulations did not alter the 



Mechanisms for cellular uptake of Rose Bengal 109 

 
overall density profiles of the different lipid groups, and the position of the density 
peaks of RB molecules confirmed that they were localized in close proximity to 
lipid headgroups in the aqueous phase throughout the simulation. 

Furthermore, the effects of RB on the overall mobility of the lipid chains and 
lipid packing were analyzed using deuterium order parameters, SCD. The control 
simulation results were in good agreement with previously published MD 
simulation results of membranes with similar lipid compositions252, confirming the 
quality of the membrane model and highlighting the ordering effect induced by 
cholesterol in lipid bilayers. As shown in Supplementary Figure S4.7, the addition 
of RB and its interaction with the membrane surface did not significantly alter lipid 
order parameters, which remained comparable, within error, to those of the control 
simulation at both low and high RB concentrations.  

Overall, MD simulations of RB with the lipid bilayer suggest no remarkable 
effect of RB on bilayer geometry and packing, both at low (1 RB) and high (10 RB) 
concentrations. The exact nature of the interaction of RB with the polar headgroups 
of lipids was investigated by calculating radial distribution functions (RDFs) 
between the ionized groups of RB, i.e., the deprotonated CO2- and O- groups, and 
the positively charged P+ and N+ atoms on the lipid heads. The RDF is related to 
the probability of finding two given atom groups at a given distance with respect to 
each other. The results suggest a strong interaction of the deprotonated groups of 
RB with positively charged amine groups in the lipid heads (Figure 4.5E and F), as 
highlighted by the presence of substantial RDF peaks below 5 Å for both CO2- and 
O- of RB with respect to the lipid N+ species. Conversely, peaks were localized at 
slightly higher distances (between 5 and 15 Å) when calculated with respect to lipid 
P+ atoms. The corresponding results for the simulation at low RB concentration 
(Supplementary Figure S4.8) revealed the same overall trend, with RB ionized 
groups in close proximity to lipid head N+ atoms. These results suggest that the 
largely deprotonated CO2- and O- groups of RB at physiological pH values rapidly 
form an electrostatic interaction with the membrane surface, maintaining the 
anchoring of RB to the bilayer and hindering its penetration into the hydrophobic 
membrane core. To further explore this hypothesis, we quantified the strength of 
the interactions between the RB molecule and the lipid headgroups using the 
MM/PBSA approach. RB interacts with the solvent-exposed portion of the lipid 
bilayer with a predicted total free energy of -75.54 kcal/mol [95% CI: -80.04 to -
71.05 kcal/mol], which is of the same order of magnitude of previously reported 
predictions of RB-protein binding253. While the aim of this method is not to 
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accurately quantify the energy barrier preventing the RB from penetrating the 
bilayer (e.g. due to the lack of the entropic contribution), the negative binding free 
energy values that were obtained, resulting from the overall interactions between 
RB and the lipid headgroups, are about 10-fold above the thermal noise level (0.6 
kcal/mol at room temperature) and thus indicative of its resistance to spontaneous 
membrane crossing, caused by strong electrostatic effects between the charged 
groups of the ligand and the hydrophilic portion of the membrane.  

Indeed, the results obtained from the MD simulations are consistent with the 
those obtained with the DPH and TMA-DPH probes, which suggested close 
proximity of RB to the hydrophilic part of the lipid bilayer, with a negligible 
interaction with the aliphatic core and no membrane permeation. 

4.2.5 Conclusions 

RB is a promising photosensitizer for anticancer photodynamic therapy. Previous 
and current scientific efforts have focused on using nanocarriers to transport this 
photosensitizer inside cells, since the success of RB treatment depends on its 
cellular uptake and intracellular accumulation. Interestingly, the mechanism of 
cellular entry of RB has remained unclear. In the present study, electrochemical 
studies performed at the junction between two immiscible electrolyte solutions, as 
well as model DLS and fluorescence polarization assays, showed that RB displays 
moderate-to-no interactions with hydrophobic domains of the lipid bilayers. These 
observations were strengthened by molecular modeling, showing that RB can 
interact with the membrane surface, but cannot cross cellular membranes by itself, 
indicating the necessity for membrane protein transporters. In vitro experiments 
showed a significant difference in intracellular uptake and phototoxicity between 
hepatocellular carcinoma and colorectal cancer cell lines, which differ in their 
expression of OATP transporter family proteins. Further studies using specific 
inhibitors of OATP transporters revealed their crucial role in transporting RB into 
cells. The results reveal the previously unknown importance of OATP transporters 
in facilitating RB uptake, which could have implications for photodynamic therapy 
with RB and lead to the development of effective RB delivery systems. 
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4.3 Dendrimeric nanoparticles as candidate nanocarriers 

for Rose Bengal13 

As discussed in the previous section, photodynamic therapy (PDT) is one of the 
most promising methods for the treatment of basal cell carcinoma and different 
types of skin cancer 254. This highly specific approach is primarily based on the 
application of a light-sensitive compound (so-called photosensitizer, PS), which 
upon excitation with light of a certain wavelength generates reactive oxygen species 
(ROS). This, in turn, leads to the oxidation of cellular nucleic acids, lipids, and 
proteins, disrupting cell signaling cascades or gene regulation, ultimately activating 
several cell death pathways 255. Such specific mechanism enables treatment to be 
targeted precisely to the area of a neoplastic lesion upon direct application of PS 
and light 256. Thus, the benefits of PDT are its non-invasiveness and lack of adverse 
side effects. However, the level of damage and the mechanisms of cell death depend 
not only on the clinical setup (e.g., time of irradiation and light intensity), but also 
on the properties, concentration, and subcellular localization of PS257. 
Consequently, to take full advantage of the potential of PDT, it is essential to select 
the appropriate phototoxic drug.  

The ideal PS should have the following properties: maximum absorbance 
between 650 and 850 nm, high efficiency of free radical production, low 
photodegradation, and non-toxicity in the dark. Additionally, PSs should have long 
half-lives and efficient cellular uptake, enabling sufficient intracellular 
accumulation to trigger a toxic effect 212,257. Despite many years of research, 
clinically used PSs, such as Rose Bengal, remain far from perfect, due to the 
aforementioned shortcomings. 

4.3.1 Abstract 

Rose bengal is an anionic dye considered as a potential photosensitizer for 
anticancer photodynamic therapy. The clinical utility of rose bengal is hampered by 
its short half-life, limited transmembrane transport, aggregation, and self-

 
13 Part of the work described in this paragraph has been published in: 
Sztandera, Krzysztof, et al. "Noncovalent interactions with PAMAM and PPI dendrimers 

promote the cellular uptake and photodynamic activity of rose bengal: the role of the dendrimer 
structure." Journal of Medicinal Chemistry 64.21 (2021): 15758-15771. 

Contribution of the author: creation of computational models and simulations of dendrimer 
nanoparticles, data analysis and interpretation. 
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quenching; consequently, efficient drug carriers that overcome these obstacles are 
urgently required. In this study, we performed multilevel in vitro and in silico 
characterization of interactions between rose bengal and cationic poly(amidoamine) 
(PAMAM) and poly(propyleneimine) (PPI) dendrimers of the third and fourth 
generation and assessed the ability of the resultant complexes to modulate the 
photosensitizing properties of the drug. We focused on explaining the molecular 
basis of this phenomenon and proved that the generation- and structure-dependent 
binding of the dye by the dendrimers increases the cellular uptake and production 
of singlet oxygen and intracellular reactive oxygen species, leading to an increase 
in phototoxicity. We conclude that the application of dendrimer carriers could 
enable the design of efficient photodynamic therapies based on rose bengal. 

4.3.2 Introduction 

Due to its high efficiency of singlet oxygen generation 258, RB is considered a 
good candidate to serve as a PS in anticancer PDT. However, the potential use of 
RB in the photodynamic therapy of neoplasms is limited mainly by its short half-
life, hydrophilic nature, and tendency to aggregate. RB is negatively charged at 
physiological pH, hindering transmembrane transport and preventing the 
accumulation of clinically relevant intracellular concentrations. Its half-life (~30 
min) further limits distribution and tissue accumulation; consequently, multiple 
dosing may be needed to reach the optimal therapeutic effect. In addition, RB forms 
aggregates in solution, which affects the spectral properties of the dye and causes a 
decrease in its photodynamic activity, including the ability to generate singlet 
oxygen and other ROS 212.  

To overcome the limitations associated with photo-instability, poor 
biodistribution, and cellular uptake, the use of the appropriate RB formulation or 
delivery system may be a promising approach. Clinically used lipidic and organic 
formulations of PSs may yield unpredictable distribution patterns, allergic 
reactions, hypersensitivity, and systemic toxicity 259. To overcome these problems, 
researchers have turned to the field of nanotechnology, which has the potential to 
generate nanoscale particles with precisely defined features 210,260. Here, dendrimers 
are a class of nanoparticles that has been studied comprehensively both in vitro and 
in vivo in the context of anticancer drug delivery 261–263. These sphere-shaped, 
water-soluble polymers of symmetrical, well-defined structure protect drugs from 
degradation, extend their half-life, promote intracellular transport 264, and provide 
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semi-specific accumulation in tumor regions; the latter phenomenon is referred to 
as the enhanced permeability and retention (EPR) effect 265.  

The three-dimensional architecture and chemical composition of dendrimers 
offers several options for the attachment of drugs. In particular, therapeutics can be 
physically entrapped inside the dendritic scaffold or linked by non-covalent 
interactions or covalent bonds, both on the surface and within the dendrimer 
structure 266. In the context of PDT, an additional advantage is that optimized 
release of PS from the carrier at the target site is not required for the cytotoxic effect, 
so long as the nanocarrier does not limit the diffusion of molecular oxygen 210. 
However, although dendrimer:drug conjugates are generally more stable in 
solutions and in vivo, the use of covalent linkers can drastically alter the 
photosensitive properties of PS, thus decreasing its phototoxicity 254. Therefore, 
numerous studies on the use of nanoparticles, including dendrimers, as RB carriers 
have focused on non-covalent interactions 212, demonstrating the efficient 
intracellular uptake and superior photodynamic properties of such formulations 
215,267,268. Because complex formation is usually based on ionic interactions, the 
process itself, as well as the physicochemical and biological properties of 
dendrimer:drug complexes, are greatly influenced by pH, ionic strength, buffer 
composition, and most importantly by the structure of the dendritic carriers 269,270.  

In this study, we focused on well-characterized and commercially available 
cationic poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers 
of the 3rd (G3) and 4th (G4) generation. We took a holistic approach, performing an 
in-depth characterization of dendrimer:RB interactions both in vitro and in silico, 
and performed further assessment of the multilevel biophysical and biological 
activity of the resultant complexes: singlet oxygen generation, cellular uptake, 
intracellular ROS production, and phototoxicity. To the best of our knowledge, this 
is the first attempt to compare the ability of cationic dendrimers of different types 
and generations to serve as carriers for anionic RB, and to link the dendrimer 
structure to the activity of complexes. 

4.3.3 Materials and Methods 

The detailed experimental methodology, including the employed materials and 
reagents, the spectrofluorometric and zeta potential methods, the preparation of the 
dendrimer:RB complexes, the singlet oxygen and ROS generation assays, the cell 
culture and cellular uptake methodology, and all the related statistical analyses, are 
reported in the original publication and in the appendix. The detailed computational 
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methodology describing the modelling of the complexes using Molecular 
Mechanics is reported in the following. 

Molecular Dynamics Studies 

System setup 

Initial configurations for PAMAM and PPI dendrimers were built using the 
Dendrimer Builder Toolkit (DBT) 271 and the General Amber Force Field (GAFF) 
272. The protonation state was chosen based on neutral pH, as reported previously 
271,273–275. Under these conditions, the amine groups in the external layers of 
PAMAM dendrimers were fully protonated, whereas all the primary amines present 
at the periphery and the tertiary amines in alternating layers of the PPI dendrimers 
were protonated, resulting in 2/3 protonation according to the Ising Model 276,277. 
The assigned protonation states resulted in a total charge of +32, +64, +42, and +84 
for PAMAM G3, PAMAM G4, PPI G3, and PPI G4, respectively. RB was 
described by the GAFF forcefield, and partial charges were assigned using the 
AM1-BCC charge method (see also Supplementary Figure S4.22 in the Appendix) 
278. Topology and parametrization were constructed using antechamber and 
GROMACS tools 279,280. 

Single-dendrimer conformational dynamics 

Each dendrimer was positioned in a dodecahedral box filled with TIP3P 
(transferable intermolecular potential 3P) water molecules 281 and ions to 
neutralize the system charge at a physiological NaCl concentration (0.15 M). Each 
system was energy-minimized using the steepest descent energy minimization 
algorithm (2000 steps). After randomly initializing atom velocities following a 
Maxwell–Boltzmann distribution, a 100 ps position-restrained molecular dynamics 
(MD) was performed in the canonical ensemble (NVT) at 300 K using the v-rescale 
algorithm 282 for temperature coupling. Then, an NPT position-restrained MD was 
executed for 500 ps using the v-rescale thermostat 282 and the Berendsen barostat 
283 to equilibrate temperature (300 K) and pressure (1 atm), respectively. Finally, 
an unrestrained 200 ns MD simulation was performed in the isothermal–isobaric 
ensemble (NPT) at 300 K and 1 atm using the v-rescale and Parrinello–Rahman 
coupling algorithms 233,282. The GROMACS 2020 package was used for all MD 
simulations 221. Long-range electrostatic interactions were calculated at every step 
with the Particle mesh Ewald method 284 with a cutoff radius of 1.2 nm; the same 
cutoff was also applied to Lennard–Jones interactions. The simulation time step 
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was 2 fs, using the LINCS (LINear Constraint Solver) algorithm 236. To ensure the 
reproducibility of the data, a second replicate was performed after re-initializing 
velocities after the minimization step and following the same simulation protocol 
as described above. The final 50 ns of MD simulations were considered as a single 
ensemble trajectory representing the structural stability of each treated system. 

Dendrimer:RB complexation and interaction dynamics 

The final configuration from the aforementioned equilibrium ensembles was 
extracted for each dendrimer type. The structure was again inserted into a 
dodecahedral box, and 10 RB molecules were added in random positions around 
the dendrimer to obtain a 1:10 molar concentration ratio. The box was filled with 
TIP3P water molecules and NaCl at a physiological concentration (0.15 M) to 
neutralize the system charge. The systems were then simulated using the same 
simulation protocol described in the previous section. Two replicates were 
performed to ensure data reproducibility, and the last 50 ns of these MD simulations 
were considered as a single ensemble trajectory representing the structural stability 
of each investigated system. 

Simulation analysis 

As reported previously 271,273,275,285, the geometrical characterization of the 
investigated dendrimers was evaluated using the radius of gyration (RoG), which 
measures the size of the dendrimers, and three main geometrical descriptors (Ix/Iy, 
Ix/Iz and δ) that evaluate the shape of the dendrimers. In more detail, we calculated 
the three principal momenta of inertia (Ix, Iy, Iz) and derived two aspect ratios (Ix/Iy 
and Ix/Iz) and asphericity (δ) as defined by Rudnick and Gaspari 286:  

 

 

(1) 

where 𝐼C = 𝐼Z + 𝐼[ + 𝐼\, 𝐼B = 𝐼Z𝐼[ + 𝐼[𝐼\ + 𝐼Z𝐼\, and angle brackets denote time 
averaging. In this formulation, the closer to zero the value of δ, the more spherical 
the molecule.  

The volumes of dendrimer internal cavities were calculated as described 
previously 287,288. First, volumes associated with accessible surface areas (Vsasa) 
were calculated at different probe radii. Then, a linear fitting on the cubic root 
values of Vsasa was performed at different probe radii, starting from 0.4 nm. The 
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deviation of the calculated volume from the aforementioned fitting line, at a probe 
radius of 0.3 nm, provides an estimate of the volumes of internal voids. Internal 
cavities have been evaluated both for the neat dendrimer systems and for the 
dendrimer:RB complexes. In the latter case, to ensure a consistent comparison, the 
volumes of dendrimer cavities were evaluated after removing RB molecules from 
the complex snapshots, thus excluding the volume occupied by RB molecules from 
the calculations. This ensures that we evaluated the actual structural effects on the 
dendrimer itself, rather than the volume occupancy of RB. 

We also analyzed the dendrimer:RB complexes by comparing electrostatic 
potentials in the absence and presence of bound RB using the APBS package 289. 
Specifically, the nonlinear Poisson–Boltzmann equation was applied using single 
Debye–Huckel sphere boundary conditions on a 200 × 200 × 200 grid with a 
spacing of 1 Å centered at the Center of Mass (CoM) of the molecular system. The 
relative dielectric constants of the solute and the solvent were set to 4 and 78.4 
289,290, respectively. The ionic strength was set to 150 mM, and the temperature was 
fixed at 300 K.  

Visual inspection of simulations and all molecular renderings was carried out 
with the Visual Molecular Dynamics (VMD) package 223.  

4.3.4 Results 

In vitro evaluation of dendrimer:RB complexation 

To characterize complex formation between the tested dendrimers and RB, we 
exploited their characteristic properties, i.e., dye fluorescence and the zeta potential 
of nanoparticles in solution. Spectrofluorometric studies revealed that the addition 
of dendrimer to RB solution caused a sharp reduction in dye fluorescence. 
Subsequent titration caused progressive quenching of RB fluorescence until a red 
shift of the emission wavelength from 564 to 575 nm was observed, with a 
subsequent increase in the fluorescence signal (Figure 4.6), indicating polarity 
changes in the vicinity of the chromophore molecule 291. Based on this 
phenomenon, the F564/F575 ratio was calculated and plotted vs. the RB:dendrimer 
molar ratio. Using Job’s method 292, we approximated the stoichiometry of binding 
in fully saturated complexes as 1:27 for PPI G3:RB, 1:33 for PPI G4:RB, 1:20 for 
PAMAM G3:RB, and 1:34 for PAMAM G4:RB (Figure 4.6, insets). This outcome 
was confirmed by the measurement of changes in the zeta potential of dendrimers 
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during titration with RB. Upon addition of subsequent portions of RB to the 
solution, the initial positive zeta potential of the dendrimers began to decrease until 
it reached a plateau at approximately –30 mV, indicating full saturation of the 
polymers with PS. Based on the titration curves, we determined the stoichiometry 
of the formed complexes; the resultant values were similar to those obtained by 
spectrofluorometric analyses: 1:21 for PPI G3:RB, 1:33 for PPI G4:RB, 1:22 for 
PAMAM G3:RB, and 1:26 for PAMAM G4:RB (Figure 4.7).  

For the following experiments, the 1:10 dendrimer:RB molar ratio was used to 
ensure the stability of the complex and to maintain its positive surface potential, as 
positively charged nanoparticles have a greater ability to cross the barrier of 
biological membranes 293,294. 

 

Figure 4.6. Changes in the fluorescence spectrum of RB (1 µM) upon titration with (A) PPI 
G3, (B) PPI G4, (C) PAMAM G3, (D) PAMAM G4, maintaining a dendrimer:RB molar 
ratio of 1:50 to 1:1. The insets show the determination of the stoichiometry of complexes 
fully saturated with RB, using Job’s method based on the plots of F564/F575 vs. 
RB:dendrimer molar ratio. Data are presented as means ± SD; n = 3. 
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Figure 4.7. Titration curves for the measurements of zeta potential: effects of titration of 
10 μM solutions of (A) PPI G3, (B) PPI G4, (C) PAMAM G3, (D) PAMAM G4 dendrimers 
with RB, maintaining the dendrimer:RB molar ratio of 1:1 to 1:50. Analysis of the course 
of titration curves allowed us to use Job’s method to determine the stoichiometry of 
complexes fully saturated with RB. Data are presented as means ± SD; n = 3. 

In vitro photodynamic and phototoxic properties of RB and dendrimer:RB 

complexes 

Singlet oxygen generation assays using the ABDA probe showed that the tested 
compounds were able to increase the singlet oxygen levels. At the highest 
concentration tested, free RB caused a ~3-fold increase in singlet oxygen generation 
relative to the control, slightly less than for the case of complexes with dendrimers 
of the 4th generation (~4-fold for PAMAM G4 and ~6-fold for PPI G4). On the 
other hand, complexes of RB with dendrimers of the 3rd generation caused a greater 
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increase in the generation of singlet oxygen (~16-fold for PAMAM G3 and ~19-
fold for PPI G3), significantly exceeding the effect observed with free PS (Figure 
4.8). Free dendrimers did not generate singlet oxygen (data not shown). 

 
Figure 4.8. Singlet oxygen generation by RB and dendrimer:RB complexes in a 1:10 molar 
ratio. Singlet oxygen generation assay was performed using the ABDA probe as an 
indicator. Data are presented as a percentage of the singlet oxygen generation in the control 
sample containing only ABDA probe, means ± SD, n = 4. *Statistically significant 
difference vs. free RB (p < 0.05). ×Statistically significant difference between generations 
of dendrimers of the same type (p < 0.05). 

The cytotoxicity of tested compounds was evaluated in three basal cell 
carcinoma cell line models, as basal cell carcinoma is the most common form of 
skin cancer and the most frequently occurring form of cancer overall 295,296. The 
complexes revealed higher phototoxicity relative to free RB (Figure 4.9A and 
Figure S4.10 in the Appendix), and this trend was maintained in all tested cell lines: 
RB in complex with PPI dendrimers was more toxic than RB in complex with 
PAMAM dendrimers, regardless of the generation. Cells treated with the free RB 
solution exhibited the highest viability. We did not observe cytotoxicity of free 
dendrimers or dark toxicity of RB and dendrimer:RB complexes (data not shown). 
The cell lines exhibited a range of susceptibilities to all treatments, with AsZ cells 
being the most susceptible (e.g., PPI:RB complexes in highest RB concentration 
reduced the viability of AsZ cells to ~ 20%; in the case of BsZ cells, viability was 
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~30%, and for CsZ cells, ~50% [Figure 4.9A and Appendix Figure S4.10]). 
Accordingly, we used AsZ for intracellular ROS production and cellular uptake 
assays. 

 

Figure 4.9. (A) Phototoxic effect of RB and dendrimer:RB complexes in 1:10 molar ratio 
in AsZ cells. Cell viability was determined using MTT assay. Data are presented as 
percentages of the viability of control (untreated) cells; means ± SD; n = 6. *Statistically 
significant difference vs. free RB; p < 0.05. ×Statistically significant difference vs. 
dendrimers of different type, regardless of generation; p < 0.05. (B) ROS production in 
AsZ cells triggered by RB and dendrimer:RB complexes in 1:10 molar ratio upon 
irradiation, determined with the use of 2′,7′ dichlorodihydrofluorescein diacetate 
(H2DCFDA) probe. Data presented as percentage of intracellular ROS generation in 
control (untreated) cells; means ± SD; n = 4. *Statistically significant difference vs. free 
RB; p < 0.05. ×Statistically significant difference vs. dendrimers of different type, 
regardless of generation; p < 0.05. (C) Uptake of RB and dendrimer:RB complexes in 1:10 
molar ratio by AsZ cells, as determined by flow cytometry assay. Data are presented as 
percentage of cells in the population exhibiting RB-associated fluorescence; means ± SD; 
n = 5. For statistical analysis, see Table S1. 

The outcome of the intracellular ROS production assay coincided with the 
results of the cytotoxicity evaluation (Figure 4.9B). The tested compounds induced 
production of ROS, with PPI:RB complexes exerting the greatest effect. The 
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activity of the PAMAM:RB complexes was significantly lower but still exceeded 
the effect observed for free PS. The phenomenon was independent of the generation 
of dendrimers. Free dendrimers did not generate ROS (data not shown). 

Complexation of RB with the tested dendrimers significantly increased the 
intracellular concentration of PS (Figure 4.9C). The PPI G4 dendrimer turned out 
to be the most effective carrier, with PAMAM G3 being the least efficient, but even 
in the latter case, the uptake of RB was almost 2-fold higher than when AsZ cells 
were treated with free PS. The effects of the PPI G3 and PAMAM G4 dendrimers 
were similar and intermediate between the PPI G4 and PAMAM G3. Overall, when 
comparing dendrimers of the same type, 4th generation dendrimers had a greater 
ability to transport RB intracellularly than 3rd generation dendrimers. When 
comparing dendrimers of the same generation, PPI dendrimers were more efficient 
carriers than PAMAM dendrimers. 

Molecular modelling 

Single-dendrimer conformational dynamics 

We assessed the geometrical properties of dendrimers over the last 50 ns of two 
independent 200 ns MD simulations. The RoG, which represents a reliable metric 
for assessing the overall size of a dendrimer, and shape descriptors aspect ratio and 
asphericity (δ), were calculated as described in the Experimental Section. 
Geometrical properties of the two MD replicas were averaged over the last 50 ns of 
simulation, with snapshots taken every 2 ps (Table 4.5). The data obtained were in 
close agreement with in silico and experimental data from the previous literature 
for all the simulated systems (as reported in detail in the Appendix in Table ST4.4), 
confirming that the dendrimer structures were well equilibrated.  

Table 4.5. Radius of gyration (RoG), aspect ratios, and asphericity values for the simulated 
dendrimers, presented as means ± SD. 

 RoG [nm] Ix/Iy Ix/Iz δ 

PAMAM G3 1.460 ± 0.058 0.708 ± 0.128 0.581 ± 0.087 0.026 ± 0.012 

PAMAM G4 1.859 ± 0.064 0.839 ± 0.086 0.705 ± 0.069 0.012 ± 0.006 

PPI G3 1.284 ± 0.024 0.792 ± 0.080 0.685 ± 0.068 0.013 ± 0.006 

PPI G4 1.590 ± 0.020 0.826 ± 0.050 0.746 ± 0.042 0.008 ± 0.003 
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Figure 4.10 shows the probability density function (PDF) of the RoG during 

the last 50 ns of MD replicas, highlighting the greater flexibility of PAMAM 
dendrimers relative to PPI dendrimers. Time series of the RoG during the entire 
simulations are reported in Appendix Figure S4.11. 

 

Figure 4.10. Probability density function (PDF) of the radius of gyration during the last 50 
ns of two independent MD simulations. 

Dendrimer:RB complexation and interaction dynamics 

To assess the structural effects of RB on each dendrimer type and analyze the mode 
of dendrimer:drug interaction, dendrimer structures from the previous equilibration 
were simulated in the presence of 10 RB molecules (maintaining a 1:10 
dendrimer:RB stoichiometry). MD trajectories showed early and stable 
complexation of all 10 RB molecules after ≤ 16 ns, with no unbinding events 
observed throughout the 200 ns simulations (see also Appendix Figures S4.12, 
S4.13, S4.14).  

We again assessed the structural effects of RB on the dendrimers again using 
RoG, aspect ratios, and asphericity measures, but we observed no remarkable 
effects upon ligand complexation (see Figures S4.15 and S4.16 in the Appendix). 
Similarly, the particle density of dendrimers with respect to the dendrimer central 
core was not remarkably altered in the presence of RB molecules (see Appendix 
Figure S4.17). 
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The radial distribution function (RDF) of the RB with respect to the dendrimer 

core (Figure 4.11) revealed that PPI dendrimers had a greater ability to internalize 
RB molecules. On the other hand, drug molecules were more exposed to the 
external solvent when bound to PAMAM dendrimers. It is worth mentioning that, 
despite this difference in ligand internalization, we observed no marked differences 
in the dendrimer:RB interaction surface among the dendrimers examined (see 
Appendix Figure S4.18). 

 

Figure 4.11. Radial distribution function (RDF) of RB with respect to the dendrimer central 
core for (A) PAMAM and (B) PPI dendrimers; dotted lines represent the radius of gyration 
for each dendrimer. 

The RDFs for the external amino groups, water molecules, chlorine and sodium 
ions are shown in Figure 4.12, in the presence and absence of RB, to compare the 
effects of the drug inclusion. The RDF trends of the external amines were unaltered 
in the presence of the RB for PPI dendrimers, confirming the more rigid behavior 
of these dendrimers (green and blue lines in Figure 4.12A and Figure 4.12E). On 
the other hand, the RDF peaks of external amines of PAMAM dendrimers changed 
markedly upon drug complexation (black and red lines in Figure 4.12A and Figure 
4.12E), suggesting a major conformational change in the dendrimer structure. The 
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reduced values of water molecules RDF in the internal layers are also indicative of 
the fact that these molecules are forced out by the entrance of RB, especially in the 
case of PPI dendrimers (Figure 4.12B and Figure 4.12F). Similarly, the presence of 
RB leads to the ejection of chlorine ions from the internal layers of the dendrimers 
of the 3rd generation (Figure 4.12C and Figure 4.12G). The positively charged 
sodium ions on the other hand were not noticeably displaced with respect to the 
dendrimer core in the presence of RB if compared to the neat systems (Figure 4.12D 
and Figure 4.12H). 

 

Figure 4.12. Radial Distribution Functions of external amines (A, E), TIP3P water (B, F), 
chlorine ions (C, G) and sodium ions (D, H) with respect to the dendrimer core from the 
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concatenated trajectory of the last 50 ns of simulation of two independent MD replicas in 
the absence (A, B, C, D) and presence (E, F, G, H) of RB. 

We further assessed the structural characteristics of both the free dendrimers 
and their complexes with RB molecules by analyzing hydrogen bonds (H-bonds). 
As highlighted in Figure 4.13A, PAMAM dendrimers of both G3 and G4 are able 
to form an intramolecular network of H-bonds, mainly due to the presence of 
acceptor oxygen atoms within their underlying chemical structure 297. No 
intramolecular network of hydrogen bonds was observed for PPI dendrimers. 
Interestingly, the number of intramolecular H-bonds in PAMAM dendrimers did 
not seem to be influenced by the presence of RB. H-bonding between dendrimers 
and the surrounding water was more prominent in PAMAM dendrimers than in PPI 
dendrimers, with only a marginal decrease caused by RB complexation (Figure 
4.13B).  

 

Figure 4.13. (A) Number of internal H-bonds in each dendrimer investigated. (B) Number 
of H-bonds between dendrimers and surrounding water molecules. (C) Number of H-bonds 
between dendrimers and RB. Data are presented as means ± SD across the last 50 ns of two 
200 ns replicas. 

Overall, PPI dendrimers formed fewer H-bonds with the solvent than PAMAM 
dendrimers, whereas 4th generation dendrimers formed more H-bonds with the 
solvent, as expected from the increase in the number of surface amino groups. 
Finally, PAMAM dendrimers formed significantly more H-bonds with RB than PPI 
dendrimers, with no difference between dendrimer generations (Figure 4.13C). 
Overall, PAMAM dendrimers formed the largest number of H-bonds internally, 
with both solvent and with RB molecules.  

Void volume analysis revealed that the presence of RB reduces the internal 
volumes of PAMAM dendrimers, whereas internal cavities of PPI dendrimers were 
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not altered by the drug (Figure 4.14, see also Figure S4.19 in the Appendix). 
Specifically, the ratios between the void volumes in the presence and absence of 
RB were 0.82 for PAMAM G3, 0.77 for PAMAM G4, 0.98 for PPI G3, and 0.97 
for PPI G4. 

 

Figure 4.14. Volumes of dendrimers’ internal cavities. Solid colors refer to simulations of 
the free dendrimer systems, whereas shaded colors refer to simulations of the 
dendrimer:RB complexes. 

Finally, we investigated the surface electrostatic potential of the complexes by 
extracting frames from the dendrimer:RB simulations and evaluating the dendrimer 
electrostatic potential in the presence of RB (Figure 4.15). We observed 
predominantly positive potential up to 5 kT/e on the dendrimer surface for all 
simulated systems; only PAMAM G3 had a prominent number of neutral surface 
patches (Figure 4.15A), indicating the ability of RB to locally neutralize the surface 
electrostatic potential of this specific dendrimer more effectively than for other 
systems. Overall, dendrimers of the 4th generation (Figure 4.15B and Figure 4.15D) 
were characterized by a more positive surface potential even in the presence of 
bound RB, whereas 3rd generation dendrimers (Figure 4.15A and Figure 4.15C) had 
a more neutral surface potential resulting from the shielding effect of bound RB. 
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Figure 4.15. Front and side electrostatic maps for dendrimer:RB complexes (1:10): (A) 
PAMAM G3; (B) PAMAM G4; (C) PPI G3; (D) PPI G4. Potential isocontours (obtained 
by solution of the NLPBE at 150 mM ionic strength with a solute dielectric of 4 and solvent 
dielectric of 78.4) in the range from +5 kT/e (blue) to -5 kT/e (red). 

4.3.5 Discussion 

Photodynamic therapy (PDT), which relies on the use of a PS and a light source to 
induce singlet oxygen and ROS formation in the presence of molecular oxygen, is 
a promising therapeutic strategy against basal cell carcinoma. The use of 
dendrimers as drug carriers has the potential to overcome the known drawbacks of 
currently investigated PSs, such as self-quenching, short half-life, and suboptimal 
cellular uptake. In this work, we performed an in-depth characterization of the 
complexes of cationic poly(amidoamine) (PAMAM) and poly(propyleneimine) 
(PPI) dendrimer of the 3rd and 4th generation with anionic rose bengal. A combined 
in vitro and in silico approach allowed for a complementary characterization of the 
effects of the dendrimers’ physical and chemical properties on their interactions 
with RB, and ultimately on the phototoxic activity of the latter. Interestingly, most 
previous research concentrated on RB as a model molecule, which, due to its 
spectral properties, was used to study interactions with dendrimers (usually 
PAMAM, less often PPI and other types of macromolecules) 268,298–303. 
Significantly fewer studies have analyzed the phototoxic activity of the 
dendrimer:RB complexes 215,267,268. 
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The PAMAM and PPI dendrimers used in this study were inspected at atomic 

resolution at the single-dendrimer level. The analysis of neat dendrimer trajectories 
yielded geometrical shape descriptors consistent with the existing literature 
271,273,275,285,304–316 in terms of RoG, asphericity, and aspect ratios, implying well-
converged simulations. Both types of dendrimers are spherical in shape. In general, 
G3 dendrimers have a smaller radius and smaller internal cavities than G4 
macromolecules. When comparing dendrimers of the same generation, PPIs are 
smaller, more rigid, and more compact than PAMAMs. PAMAM dendrimers form 
intramolecular H-bonds (more in the case of generation 4), whereas PPI dendrimers 
do not; moreover, PAMAM dendrimers form more hydrogen bonds with water than 
PPI dendrimers. 

In our initial studies of the formation of dendrimer:RB complexes and the 
determination of their stoichiometry, we analyzed the changes in the spectral 
properties of the dye upon complexation. As a result of titration of the RB solution 
with dendrimers, the fluorescence intensity of RB decreased, followed by a red shift 
of the maximum spectrum and subsequent increase in fluorescence. A similar red 
shift of both RB absorbance 301 and fluorescence 302 most often indicates the binding 
of the dye to the dendrimer surface 291. We exploited this phenomenon to determine 
binding stoichiometry. As we expected, G4 dendrimers could bind more RB 
molecules (approx. 35 per dendrimer molecule) than G3 dendrimers (20–25 RB 
molecules per dendrimer molecule), likely due to differences in the dendrimers’ 
volume and the level of protonation 276,312,317. The interactions of RB with the 
cationic phosphorus dendrimer were analyzed in an analogous manner, but the 
binding stoichiometry was significantly lower. This is probably due to the use of a 
different buffer (HEPES vs. PBS), since it has been shown that the buffer 
composition has a significant influence on the formation of the complex 302,317 
Furthermore, stoichiometry was affected by NaCl concentration; consistent with 
our hypothesis, this indicates the essential role of electrostatic interactions in the 
formation of complexes between anionic RB and cationic dendrimers 302. These 
results were confirmed by Fourier transform infrared spectroscopy (FTIR). 
Additionally, RB does not form complexes with anionic phosphorus dendrimers 303. 
Other research groups also identified electrostatic interactions as the main driving 
force for the formation of complexes between RB and surface-modified PAMAM 
and PPI dendrimers 268,301, and also reported a strong influence of the type of solvent 
on the binding stoichiometry 268. 
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The determined stoichiometry of the PAMAM:RB and PPI:RB complexes was 

confirmed by titration of the dendrimer solutions with RB with the accompanying 
measurement of the zeta potential. The findings roughly coincided with those of the 
spectrofluorimetric method, with minor variations attributable to differences in the 
specificities of the two techniques. The results indicated that complexes fully 
saturated with RB exhibit negative zeta potential values. Assuming a surface 
binding mechanism, we can conclude that in the final stages of titration, anionic RB 
molecules completely covered the outer layer of positively charged dendrimers 270. 
In light of these observations, in subsequent investigations we set a sub-saturation 
concentration of RB (namely, 1:10 dendrimer:RB molar ratio), which retained a 
residual positive surface charge for increased cellular uptake and decreased 
aggregation of complexes 294.  

Our molecular investigation of 1:10 dendrimer:RB complexes was carried out 
in silico, allowing the characterization of the binding mechanism and its effect on 
dendrimer geometry. Previous computational investigations of PPI:RB complexes 
clearly demonstrated the potential of atomistic simulations to complement 
experimental analyses by elucidating dendrimer:RB interaction dynamics 318. 
Herein, we extended the computational approach to substantially longer timescales, 
as well as to different dendrimer types and generations, and expanded the analysis 
by including a higher number of ligands as well as by randomizing their initial 
placement in the solvent. Although these differences hinder a direct comparison of 
the present and earlier results, the strong complexation of RB with positively 
charged dendrimers is confirmed. Indeed, MD simulations revealed short 
complexation times, below 16 ns, and the ability of the investigated dendrimers to 
carry all 10 RB molecules, with no subsequent unbinding event detected over 200 
ns in each MD replica, suggesting binding energies significantly exceeding thermal 
fluctuation (kT) and a strong tendency of RB to bind to each type of dendrimer. 
This behavior was primarily driven by electrostatics, consistent with previous 
observations. Interestingly, despite the predominant role of electrostatic 
interactions, we also observed formation of H-bonds between dendrimers and RB, 
more strongly in the case of PAMAM than PPI. 

The binding of RB did not significantly affect the geometrical characteristics 
of the dendrimers, and the estimated dendrimer:RB interaction areas were similar 
in all investigated systems. The volumes of the internal cavities decreased in the 
case of PAMAM dendrimers while remaining unchanged for PPI dendrimers. This 
was also reflected in the arrangement of the surface amino groups, which was 
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influenced by RB binding only for PAMAM dendrimers. The attachment of RB 
also caused the displacement of water molecules (more evident in case of PPI 
dendrimers) and negatively charged chlorine ions (in the case of G3 dendrimers) 
from the inside of the dendritic scaffolds. 

Notably, we found that RB has the ability to penetrate the structure of 
dendrimers, positioning itself preferentially inside the scaffold rather than on the 
surface. Comparison of these findings with the previously discussed fluorescence 
red shift indicates that the dendrimer:RB binding mechanism is more complex than 
indicated solely by spectrofluorimetric studies. Overall, the in silico investigation 
highlighted the greater ability of PPI dendrimers to internalize RB molecules within 
the inner dendrimer branches (see RDF data, Figure 4.11B). The size of the 
dendrimers and the specific arrangement of the RB molecules also influenced the 
surface potential of the complexes, which was significantly reduced (to values close 
to neutral) in the case of G3 dendrimers. Given the characteristics of the surface 
potential, it is plausible that interactions among multiple dendrimers occur in the 
presence of RB. This idea is consistent with preliminary data concerning interacting 
systems consisting of two dendrimers and 20 RB molecules, in which G3 
complexes exhibited a marked tendency to engage in dendrimer–dendrimer 
interactions (see Appendix, Figure S4.21). Interestingly, the complexes with PPI 
G4 also showed a tendency to aggregate during longer measurement times, which 
was consistent with the results of the analysis of the hydrodynamic diameter of the 
complexes by dynamic light scattering (DLS) (Table ST4.5, Appendix). 

Our approach allowed us to highlight significant differences in complex 
formation and interaction patterns as a function of dendrimer type and generation. 
Because the photodynamic properties of RB are determined by several factors, 
including the chemical environment, it seems reasonable that these observed 
differences could significantly influence the ultimate cytotoxic effect. 

Because the level of singlet oxygen generation is thought to be directly related 
to the efficacy of photodynamic therapy 319, we assessed the activity of tested 
compounds in this regard. RB complexes with G3 dendrimers exhibited 
significantly higher production of singlet oxygen, whereas the effect of G4 
dendrimers was only slightly higher than that of free RB. At the same time, free 
dendrimers did not generate singlet oxygen. A similar effect was previously 
observed for supramolecular complexes of PSs and various polymers 320, including 
RB and cationic dendrimers 215. On the other hand, no increase in singlet oxygen 
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production was observed in the case of RB complexed with anionic half-generation 
PAMAM dendrimers 267; for PEG2000-modified PPI and PAMAM G4 dendrimers, 
the singlet oxygen level was reduced upon encapsulation of RB. In the latter case, 
however, the effect was attributed to RB aggregation and quenching due to the high 
local concentration of PS inside dendrimers (approx. 180 RB molecules per 
dendrimer) 268. Such complexes exhibited no increase in phototoxic activity 
(relative to free RB) in HeLa cells. These observations underlie the influence of 
both the dendrimer:RB interaction and their molar ratio on the ultimate 
photodynamic effect. 

The increase in singlet oxygen production can be explained by the 
immobilization of RB by the nanoparticle in more than one dimension, translating 
into a change in optical properties. Analysis of the Jablonski diagram reveals that 
excited RB can return to the ground state through photon emission or the transition 
to the triplet excited state responsible for singlet oxygen generation 254. Considering 
the decrease in fluorescence during RB binding by the tested dendrimers, it is likely 
that in this case the second process is favored 321. Nanoparticles can affect the 
fluorescence of the dye in solution in several ways, including the internal 
fluorescence filter effect, dynamic quenching, static quenching, surface 
enhancement, and modulation of the quantum yield of the fluorophore. These 
phenomena are related to the binding-induced conformational changes in the 
structure of PS 322,323. Furthermore, the patterns of interaction between the dye, 
nanoparticle, and solvent can significantly affect aggregation, causing changes in 
the behavior and properties of PS in the vicinity of different nanoparticles 
suspended in the same solvent. 

Indeed, the effect of dendrimer binding on RB-triggered singlet oxygen 
generation might be directly linked to the fact that RB tends to aggregate under 
physiological conditions 324 due to π-stacking, and that PS aggregation has a 
detrimental effect on singlet oxygen generation due to self-quenching of excited 
states 325. Hence, better encapsulation of individual RB molecules by dendrimers 
would lead to a reduction in RB–RB aggregation and thus of self-quenching, 
yielding more efficient generation of singlet oxygen.  

From this standpoint, the difference in the generation of singlet oxygen by G3 
and G4 complexes is worth noting and remains difficult to explain at this stage of 
our research. The difference may be associated with better prevention of RB 
aggregation and improved stabilization of the excited state by G3 dendrimers. 
Further stabilization of the transition state might also be achieved through complex–
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complex interactions. In addition, given the observed displacement of anions from 
inside the G3 dendrimers caused by RB, we can assume that anions play an active 
thermodynamic role in RB binding; thus the latter might be more favored for G3 
than G4 dendrimers. Such a binding strength- and mode-dependent production of 
singlet oxygen by PSs has already been observed during interactions with DNA 326. 
These observations highlight the need for further biophysical analyses, including 
confirmation using more direct, probe-independent methods of singlet oxygen 
detection; such techniques are currently under development in our lab. 

Surprisingly, the results of the singlet oxygen generation assay were not 
reflected in our studies of cellular models. In these analyses, we observed the 
highest phototoxic activity in basal cell carcinoma models using PPI:RB 
complexes, regardless of generation. A similar lack of dependence on generation 
was observed in the case of PAMAM:RB complexes, whose cytotoxicity was 
intermediate between the action of PPI:RB complexes and free RB. It should be 
emphasized that in the tested concentration range, free dendrimers did not exhibit 
phototoxicity, and no dark toxicity was observed for any of the compounds 
examined. Similar results were obtained when analyzing the production of 
intracellular ROS. Because the cellular factor is the most important difference 
between the singlet oxygen generation assay and subsequent studies, we 
hypothesized that the differences observed in cellular models are related to another 
crucial aspect of RB application: cellular uptake and subcellular localization. 
Indeed, dendrimer:RB complexes were able to deliver PS intracellularly much more 
effectively than intracellular transport of free RB 215. 

The efficiency of the intracellular transport of complexes perfectly matched the 
differences in their surface potential, evaluated based on the APBS electrostatic 
map analysis (Figure 4.15) of dendrimer:RB MD simulations: the PAMAM G3:RB 
complex with the surface electrostatic potential closest to neutral was the least 
efficient carrier, whereas the most cationic PPI G4:RB complex had the greatest 
intracellular transport capacity. These observations are consistent with reports of 
the efficient crossing of cell membranes by positively charged nanoparticles, and 
allow us to predict the behavior of complexes depending on their surface potential 
293,294,327,328. 

The different delivery capacities of the investigated dendrimers may also be 
related to their chemical composition, as well as mechanical and structural 
properties. In this regard, PAMAM and PPI dendrimers exhibited differences in 
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flexibility throughout the MD simulations, with PPIs exhibiting higher rigidity than 
PAMAMs. This behavior was emphasized by (i) the RDF, which showed that that 
external amines of PPI dendrimers were not affected by the presence of RB; (ii) the 
RoG, which indicated that PAMAM dendrimers were more flexible; and (iii) the 
void volume, which revealed that the volumes of PPI internal cavities were not 
affected by the inclusion of the drug. Thus, the rigid and compact structure of PPI 
dendrimers may favor the intracellular delivery of RB. 

On its own, more efficient singlet oxygen generation is insufficient to explain 
the ultimate effects on cell viability, as the efficacy of PDT also depends on cellular 
uptake and subcellular location of PS 329. Indeed, because the generation of singlet 
oxygen outside the cell is unlikely to significantly affect cell viability due to the 
limited lifespan of singlet oxygen molecules 329, the ability of dendrimers to 
efficiently cross the cell membrane might be a decisive factor. Therefore, the 
observed cytotoxic effect, likely related to the production of intracellular ROS, may 
be the result of an increase in cellular RB uptake and production of singlet oxygen. 
The latter effect, in turn, may differ significantly between cellular and extracellular 
systems, due to the difference in light penetration and the changes in properties of 
the complexes upon transfer from a buffer with a limited composition into culture 
medium and subsequently into the cell interior. 

4.3.6 Conclusions 

The joint effects of dendrimer structural and mechanical properties, the tendency of 
RB to penetrate the dendrimer, and the dendrimer surface electrostatics are crucial 
factors determining the ability of complexes to induce cell death. Based on our 
results, we conclude that cationic PAMAM and PPI dendrimers can serve as 
efficient carriers of RB in photodynamic therapy. Due to their structural properties, 
the patterns of interaction with RB, and the characteristic features of the 
dendrimer:RB complexes, PPI dendrimers outperform PAMAM dendrimers, 
providing the most efficient uptake in the case of PPI G4, and significantly 
increasing generation of singlet oxygen in the case of PPI G3. Particular attention 
should be paid to the selection of appropriate drug and dendrimer concentrations, 
ensuring a uniform distribution of RB within the structure of the dendrimer, thus 
preventing aggregation of the PS, and allowing the maintenance of a positive 
surface charge of the delivery system. 
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4.4 Tailoring tubulin assemblies as GTP-responsive drug 

delivery nanocapsules14 

As described in the previous section, the design of nanoformulations for drug 
delivery purposes can greatly benefit from the support given by molecular 
modelling, provided that atomistic information about the system under 
investigation is available, which is often the case. Indeed, the simulation of 
nanoparticle-drug complexes at the atomistic scale, which can realistically reach 
the microsecond time scale with today’s computational resources, can not only 
allow for the mechanistic understanding of experimental results, but also assist the 
design of novel and/or improved formulations based on the predicted and desired 
biophysical characteristics. This approach can be applied not only to organic 
synthetic nanoparticles, as shown in the previous examples, but also to 
biomolecules such as proteins, which can be reengineered for the specific purpose 
of drug delivery. This latter approach, e.g. tailoring the characteristics of selected 
protein assemblies to optimize payload delivery, bears many benefits. Firstly, the 
choice of biomolecules instead of synthetic constructs greatly enhances the intrinsic 
biocompatibility of the delivery platform as opposed to solutions which require ad-
hoc shielding solutions to avoid severe adverse effects330–332. Also, it allows for the 
exploitation of the extensive pre-existing experimental and computational 
knowledge regarding proteins and protein-ligand interactions. This aspect is 
particularly relevant from a molecular modelling perspective, since many validated 
strategies are available to construct reliable computational models of proteins and 
small molecules which are able to accurately capture their underlying interactions 
and dynamics. Lastly, specific protein systems can be highly selective towards 
specific targets and/or environments without the need of complex additional 
functionalizations. One example is tubulin, a highly abundant cytoskeleton protein 
whose polymerization and depolymerization dynamics selectively respond to the 
presence of Guanosine Triphosphate (GTP) and its hydrolyzation into Guanosine 
Diphosphate (GDP), making it a potential candidate building block for custom, 
GTP-responsive delivery constructs. 

 
14 Part of the work described in this paragraph has been published in: 
Uchida, Noriyuki, et al. "Reconstitution of microtubule into GTP-responsive nanocapsules." 

Nature Communications 13.1 (2022): 5424. 
Contribution of the author: creation of computational models and simulations of tubulin sheets 

and molecular glues, data analysis and interpretation. 
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In the research described in this section, we explored the assembly of custom 
tubulin constructs into selective drug carriers against cancer and RNA-virus-
induced disease. 

4.4.1 Abstract 

Nanocapsules that collapse in response to guanosine triphosphate (GTP) have the 
potential as drug carriers for efficiently curing diseases caused by cancer and RNA 
viruses because GTP is present at high levels in such diseased cells and tissues. 
However, known GTP-responsive carriers also respond to adenosine triphosphate 
(ATP), which is abundant in normal cells as well. Here, we report the elaborate 
reconstitution of microtubule into a nanocapsule that selectively responds to GTP. 
When the tubulin monomer from microtubules is incubated at 37°C with a mixture 
of GTP (17mol%) and non-hydrolysable GTP* (83 mol%), a tubulin nanosheet 
forms. Upon addition of photoreactive molecular glue to the resulting dispersion, 
the nanosheet is transformed into a nanocapsule. Cell death results when a 
doxorubicin-containing nanocapsule, after being photochemically crosslinked for 
properly stabilizing its shell, is taken up into cancer cells that overexpress GTP. 

4.4.2 Introduction 

An ideal nanocarrier for drug delivery would be the one that can selectively collapse 
to release preloaded drugs in response to endogenous reporters overexpressed in 
disease tissues333–341. Since adenosine triphosphate (ATP) is known to be present at 
high levels in cancer tissues342, ATP-responsive nanocarriers might be a promising 
candidate335–339. In 2013, using partially modified biomolecular machine 
chaperonin GroEL as a monomer, we succeeded in developing a one-dimensional 
supramolecular polymer that can be depolymerized by the action of ATP to release 
its cargo335. However, ATP is also present in normal cells at rather high 
concentrations (>1 mM)343, and thus disease- selective drug delivery using ATP as 
the endogenous reporter cannot always be ensured. 

In the present work, we developed a nanocarrier (CLNCGTP/GTP*; Figure 4.16e) that 
selectively responds to guanosine triphosphate (GTP). GTP is an intracellular 
molecule involved in many essential biological processes344–357, such as cell 
division, nucleotide synthesis, and cell signaling. In the cell division process, the 
tubulin heterodimer (THD), which constitutes microtubules (MTs), uses GTP as an 
energy source to induce its polymerization and depolymerization347–352. GTP is also 
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used as a component for the self-replication of RNA viruses358–361 such as 
coronaviruses. Notably, GTP is abundant in certain diseased cells (1.5–4.5 mM)362 
such as rapidly proliferating cancer cells363 and RNA virus-infected cells364, 
whereas the concentration of GTP, unlike that of ATP, is negligibly low in normal 
cells (<0.3 mM)365. Therefore, GTP-responsive nanocarriers have the great 
potential to efficiently cure cancer and RNA virus-induced diseases including 
coronavirus disease 2019 (COVID-19)361. Although GTP-responsive carriers have 
already been reported, those carriers also respond to ATP337. So far, nanocarriers 
capable of responding solely to GTP have never been reported. 
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Figure 4.16. Strategy used to prepare THD-based GTP-responsive CLNCGTP/GTP*. a 
Schematic illustrations of tubulin heterodimers (THDs) hybridized with GTP (THDGTP), its 
nonhydrolysable analogue GTP* (THDGTP*), and GDP (THDGDP) at its β-tubulin unit. b 
Schematic illustration of two self-assembling modes of THD into microtubules (MTs). 
MTGTP depolymerizes into THDGDP upon GTP hydrolysis. THDGDP rehybridizes with GTP 
after a GTP treatment, facilitating the formation of MTGTP. In contrast, MTGTP* does not 
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undergo depolymerization. c Molecular structures of photoreactive molecular glues 
(GlueCO2-, GlueCO2-Me, and GlueFITC) bearing three guanidinium ions (Gu+) and 
benzophenone (BP) groups at their periphery and CO2-, CO2Me, and FITC groups at the 
focal core. d The molecular glue covalently binds to the protein surface at its photoexcited 
BP groups after the noncovalent adhesion via a Gu+/oxyanion multivalent salt-bridge 
interaction. e Schematic illustration of the multistep procedure for the synthesis of 
crosslinked nanocapsules (CLNCGTP/GTP*) from MTGTP. MTGTP is depolymerized into 
THDGDP, which is incubated with a mixture of GTP* (83 mol%) and GTP (17 mol%) to 
form nanosheet NSGTP/GTP*. Upon treatment with GlueCO2-, NSGTP/GTP* is transformed into 
spherical nanocapsules (NCGTP/GTP*), which are further exposed to UV light, affording 
CLNCGTP/GTP*. Upon addition of GTP, CLNCGTP/GTP* collapses through the conformational 
change of the THD units induced by GTP hydrolysis. 

The nanocapsule (NC) that selectively responds to GTP to release a preloaded 
drug consists of THD. As shown in Figure 4.16a, THD is composed of α-tubulin 
(green) and β-tubulin (cream), both of which bind to GTP. Notably, GTP attached 
to the α-tubulin unit is neither hydrolysable into GDP nor replaceable with other 
nucleoside phosphates. In contrast, GTP attached to the β-tubulin unit is known to 
be hydrolysable to GDP, which can be replaced with, e.g., GTP*, a nonhydrolysable 
GTP analogue (guanylyl 5’-α,β-methylenediphosphonate), affording THDGTP* (for 
convenience, only variable nucleoside phosphates attached to the β-tubulin unit are 
shown as a subscript). Both THDGTP and THDGTP*, when heated at 37 °C, have been 
reported to self-assemble into microtubules MTGTP and MTGTP*, respectively 
(Figure 4.16b)366,367. Although MTGTP depolymerizes into THDGDP synchronously 
with the hydrolysis of hybridized GTP to GDP, MTGTP* does not depolymerize into 
THDGDP* because of the non-hydrolysable nature of GTP*. Therefore, our original 
motivation was to tackle a challenge of modulating the stability of MTs against 
depolymerization by changing the THDGTP/THDGTP* molar ratio. However, we 
unexpectedly found that the coassembly of THDGTP and THDGTP* at a certain 
mixing molar ratio resulted in the formation of a leaf-like 2D nanosheet (NS) rather 
than MT (Figure 4.16e). Because of the increasing importance of 2D objects368,369, 
this finding prompted us to functionalize NS using the molecular glue 
technology370–372, which we developed for noncovalently functionalizing 
biomolecules such as proteins, nucleic acids, and phospholipid membranes, and 
also inorganic materials. Molecular glues are designed to carry multiple 
guanidinium ion (Gu+) groups and strongly adhere to such biomolecules under 
physiological conditions by taking advantage of a multivalent salt-bridge 
interaction with their oxyanionic functionalities (Figure 4.16d). For this purpose, 
we chose GlueCO2- (Figure 4.16c) and incubated it with NS. To our surprise, NS 
was transformed into a spherical nanocapsule NC (Figure 4.16e). Using its 
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photochemically modified version (CLNCGTP/GTP*; Figure 4.16e), we successfully 
encapsulated and delivered doxorubicin (DOX)373, an anticancer drug, into GTP-
overexpressing cancer cells to cause cell death. 

4.4.3 Materials and Methods 

All-atom molecular dynamics (MD) simulations were performed using 
AmberTools20118 to create the molecular systems and the GROMACS 2020.5 
package106 to carry out the simulations, as described in greater detail below. The 
Visual Molecular Dynamics (VMD) package105 was used to create all MD-related 
visualizations and images. 

Folding of GlueCO2– in aqueous solution 

An atomistic molecular model of GlueCO2– was created and parameterized 
according to the general AMBER force field (GAFF)272. As a first step, one 
GlueCO2– molecule was placed in the center of a periodic simulation box filled with 
explicit TIP3P water molecules281. Neutralizing chloride (3) and sodium (1) counter 
ions were added to neutralize the system and to reach 0.15 M of ionic strength. 
After preliminary minimization, the system was initially heated to 37 °C via 1 ns of 
MD simulation conducted in NVT (constant N: number of atoms, V: volume, T: 
temperature) conditions. Then, GlueCO2– was equilibrated for 200 ns of MD 
simulations under constant NPT (N: number of atoms, P: pressure, T: temperature) 
periodic boundary conditions at 37 °C and 1 atm using a 2 fs time step and a 1.2 nm 
cut-off. 

Arrangements of GlueCO2– and THDGTP*: 

The [THDGTP*]3 system was obtained from a full MT model built using the Protein 
Data Bank (PDB) structure for THDGTP* (PDB code: 3J6E)91. Missing residues in 
the THDGTP* structure were compensated from another THD structure (PDB code: 
1TUB)18. In the [THDGTP*]3 system, 30 equivalents of pre-equilibrated (folded) 
GlueCO2– molecules were placed randomly in a periodic simulation boxes. As a 
control, the [THDGTP*]3 system without GlueCO2– was also simulated. All MD 
simulations have been conducted in explicit TIP3P water molecules and in the 
presence of the necessary number of counterions to neutralize the systems. 
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Adhesions of GlueCO2– on THDGTP*: 

After preliminary minimization, all systems were first heated during two short MD 
runs under NVT (1 ns) and NPT (1 ns) periodic boundary conditions, during which 
the atoms of the THDGTP* were restrained (position restraint of 1000 kJ/mol/nm2). 
During these phases, the system reached the simulation temperature of 37 °C, and 
the solvent density inside the simulation box was preadjusted. After this preliminary 
equilibration, each system underwent a short MD simulation (20 ns) under NVT 
conditions at 37 °C while the THDGTP* was maintained at a fixed position to allow 
GlueCO2– to approach the THDGTP* surface. Then, all restraints were removed, and 
all systems underwent 200 ns of MD simulation under NPT periodic boundary 
conditions at 37 °C and 1 atm. The AMBER99-ILDN force field was used to treat 
the protein topology107. A cut-off of 1.2 for both electrostatic and van der Waals 
interactions was used in the MD simulations. The Particle-Mesh Ewald method was 
applied to treat with a 1.2 nm cut-off for the Lennard-Jones interactions284. A v-
rescale thermostat282 with a coupling time step of 0.1 ps and Parrinello-Rahman 
barostat112 with a reference pressure of 1 atm and coupling time step of 5.0 ps were 
used during the MD runs. The effects of GlueCO2– on the hydrophobicity and total 
solvent-accessible surface area of the THDGTP* surface were calculated with the 
GROMACS gmx sasa tool. Electrostatic potentials of the THDGTP* surface 
depending on the binding GlueCO2- were studied using the Adaptive Poisson- 
Boltzmann Solver (APBS) software package374. All data have been extracted from 
the equilibrated phase MD trajectories. 

Interactions of GlueCO2–: 

To quantify the strength of the interactions of GlueCO2–, the radial distribution 
functions g(r) between key groups in the glues and in the tubulins were extracted 
from the MD trajectories. High and sharp peaks at short distances in g(r) identify a 
high relative probability to find groups close to each other during the MD. This 
identifies the presence of strong and persistent interactions between groups, while 
no evident peaks and g(r) values <1 typically indicate no, or negligible, interactions. 
To assess the glue-tubulin interactions, g(r) curves were calculated between (i) the 
Gu+ groups of GlueCO2– and the anionic amino acids (aspartic acid and glutamic 
acid) of THDGTP*, (ii) the Gu+ groups of GlueCO2– and the OH groups of neutral 
amino acids (serine, threonine, and tyrosine) of THDGTP*, and (iii) the CO2– groups 
of GlueCO2– and the cationic amino acids (lysine and arginine) of THDGTP*. In 
addition, the g(r) were calculated to investigate the nature of GlueCO2–-to-GlueCO2– 
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interactions. To this end, we estimated the g(r) for CO2– vs. Gu+ groups belonging 
to different GlueCO2– molecules in the simulated systems. Complete modeling data, 
structures and parameters used for, and extracted from simulations are available at 
https://zenodo.org/record/7070651#.Yx80t9JBxkg. 

Reconstitution of MTGTP into CLNCGTP/GTP* 

THDGTP was obtained by purification from porcine brain375 by two cycles of 
polymerization and depolymerization in PIPES buffer (100 mM PIPES, 2 mM 
MgSO4, 0.5 mM GTP, 4 µg ml–1 leupeptin, and 0.4 mM PefaBlock, pH 6.8). A 
solution of THDGTP (5.8 mg ml–1) in PIPES buffer (100 mM PIPES, 5 mM MgCl2, 
2 mM MgSO4, 1.5 mM GTP, and 10% DMSO, pH 6.8) was incubated at 37 °C for 
30 min to afford MTGTP. The reaction mixture was centrifuged at 17,900 × g for 20 
min at 24 °C. The resulting precipitate was dissolved in PIPES buffer (100 mM 
PIPES, 100 µM MgCl2, and 20 µM GDP, pH 6.8) and incubated at 4 °C for 3 h to 
afford THD376. Subsequently, THD (0.3 mg ml–1) thus obtained was incubated in 
PIPES buffer (100 mM PIPES, 1 mM MgCl2, 250 µM GTP*, and 50 µM GTP, pH 
6.8) at 4 °C for 60 min and then at 37 °C for 30 min to afford NSGTP/GTP*. NSGTP/GTP* 
(13 µg ml–1) was incubated in a solution of GlueCO2- (100 µM) in PIPES buffer (14 
mM PIPES, 1 mM MgCl2, and 200 µM GTP*, pH 6.8) at 37 °C for 30 min. The 
reaction mixture was exposed to UV light at 300 nm for 2 min, affording 
CLNCGTP/GTP*. FITC-labeled NSGTP/GTP* and CLNCGTP/GTP* were prepared using 
FITC-labeled THDGDP (14% labeling rate)375 under conditions that were otherwise 
identical to those listed above. Prior to the NMR measurement of the NSGTP/GTP* 
sample, unbound GTP and GTP* were removed by centrifugation (286,000 × g) of 
the reaction mixture at 37 °C for 60 min. Zeta potentials of NSGTP/GTP* (1.3 µg ml–
1) and NCGTP/GTP* (1.3 µg ml–1) were measured at 37 °C in PIPES buffer. 

GTP-responsiveness of CLNCGTP/GTP* 

A solution of CLNCGTP/GTP* (12 µg ml–1) in PIPES buffer (9 mM PIPES, 0.9 mM 
MgCl2, and 180 µM GTP*, pH 6.8) was incubated in the presence of GTP (0.1 mM, 
0.2 mM, 0.5 mM, and 1 mM), ATP (0.5 mM), CTP (0.5 mM), and UTP (0.5 mM) 
at 37 °C for 100 min. For the evaluation of the GTP hydrolysis activities of 
CLNCGTP/GTP* (12 µg ml–1) and THDGDP (12 µg ml–1), Biomol GreenTM reagent (100 
µl) was added to the reaction mixtures, incubated for 30 min at room temperature 
and subjected to electronic absorption spectroscopy at 620 nm. 
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Preparation of CLNCGTP/GTP*⊃NPAu 

CLNCGTP/GTP*⊃NPAu was prepared after the incubation of a mixture of NSGTP/GTP* 
(13 µg ml-1), GlueCO2- (100 µM), and gold nanoparticles (NPAu; 14 pM) in PIPES 
buffer (14 mM PIPES, 1 mM MgCl2, and 200 µM GTP*, pH 6.8) at 37 °C for 30 
min, followed by UV irradiation at 300 nm for 2 min. For the asymmetric field flow 
fractionation analysis, a sample solution of CLNCGTP/GTP*⊃NPAu in PIPES buffer 
was subjected to ultra-filtration (1500 × g) for 5 min using a regenerated cellulose 
membrane (cutoff MW = 5000) prior to analysis. PEG-coated NPAu was used to 
avoid nonspecific adhesion of THD377. 

GTP-triggered release of DOX from CLNCGTP/GTP* 

CLNCGTP/GTP*⊃DOX was prepared after the incubation of a mixture of NSGTP/GTP* 
(13 µg ml-1), GlueCO2- (100 µM), and DOX (10 µM) in PIPES buffer (14 mM 
PIPES, 1 mM MgCl2, and 400 µM GTP*, pH 6.8) at 37 °C for 30 min, followed by 
UV irradiation at 300 nm for 2 min. The reaction mixture was incubated with GTP 
(1 mM) at 37 °C for 100 min and then subjected to ultrafiltration (2400 × g) using 
a regenerated cellulose membrane (cutoff MW = 5000) for 10 min. The resulting 
residue was subjected to fluorescence spectroscopy (λext = 470 nm). A reference 
sample without GTP was likewise prepared. 

Intracellular delivery 

Hep3B cells (3.0 × 103 cells/well) plated onto an 8-well chambered cover glass 
were incubated in EMEM containing 10% FBS at 37 °C with 5% CO2 for 24 h. The 
cell samples were rinsed twice with D-PBS prior to use. Typically, the cells were 
treated with FITC-labeled CLNCGTP/GTP* (0.5 µg ml–1) and incubated at 37 °C with 
5% CO2 for 2.5 h. Then, the cells were rinsed twice with D-PBS and further 
incubated at 37 °C for 1.5 h (4-h incubation in total) or 21.5 h (24-h incubation in 
total) with 5% CO2 in EMEM containing 10% FBS. Analogous cell samples treated 
with FITC-labeled THDGDP (0.5 µg ml–1), FITC-labeled NSGTP/GTP* (0.5 µg ml–1), 
CLNCGTP/GTP* (0.5 µg ml–1) with NaN3 (5 mM)378, CLNCGTP/GTP*⊃DOX 
([CLNCGTP/GTP*]= 2.6 µg ml–1, [DOX] = 2 µM), CLNCGTP/GTP* (2.6 µg ml–1), and 
DOX (2 µM) were likewise prepared. For a cell viability assay using 
CLNCGTP/GTP*⊃DOX, CLNCGTP/GTP*, and DOX, the cell samples were incubated with 
Cell Counting Kit-8 reagents (10 µl) for 30 min, and subjected to electronic 
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absorption spectroscopy at 450 nm. Hep3B cell samples treated with Tween 20 
(0.2%) were used as a positive control. 

Statistics and reproducibility 

All experiments including the preparation of CLNCGTP/GTP*, the investigation of its 
GTP-responsive collapse, and the intracellular delivery using CLNCGTP/GTP* were 
performed at least three times to check the reproducibility. 

Further details of the experimental methodologies are reported in the Appendix 
section 4.4.1. 

4.4.4 Results 

Reconstitution of MTGTP into NCGTP/GTP* 

Figure 4.16e illustrates the overall procedure for the synthesis of NCGTP/GTP* from 
microtubule MTGTP. As a typical example of the procedure depicted in the flow 
chart in Figure 4.17a, a 1,4-piperazinediethanesulfonic acid (PIPES) buffer (pH 6.8) 
solution of MTGTP (5.8 mg ml–1, Figure 4.17c) was cooled at 4 °C, whereupon 
MTGTP underwent complete depolymerization within 3 h to yield THDGDP 
quantitatively (Figure 4.17d)379. As observed by dynamic light scattering (DLS), 
the characteristic polydisperse feature of one-dimensional (1D) MTGTP (Figure 
4.17b, gray) changed to a monodisperse feature with a reduced hydrodynamic 
diameter of 8 nm (Figure 4.17b, blue). Then, THDGDP (0.3 mg ml–1) was immersed 
in a PIPES buffer solution of a mixture of GTP and GTP* (300 µM in total) with a 
GTP* content of 83 mol% at 37 °C for 30 min. Under the present conditions, 
THDGDP was converted via the exchange events of GDP → GTP and GDP → GTP* 
into a mixture of THDGTP and THDGTP*, which then spontaneously coassembled 
into NSGTP/GTP* (Figure 4.17e). The small-angle X-ray scattering (SAXS) profile of 
NSGTP/GTP* showed that its scattering intensity was proportional to q–2 in a small q 
region, which is characteristic of two-dimensional (2D) structures (Appendix, 
Supplementary Fig. S4.36). As determined by atomic force microscopy (AFM), the 
average thickness of leaf-like NSGTP/GTP* was 5 nm (Figure 4.17f). Here, the content 
of GTP* in the mixture of GTP and GTP* employed for the assembly of THDGDP 
was critical for its successful transformation into NSGTP/GTP*. When the content of 
GTP* ranged from 85–100 mol%, THD preferentially assembled into MT rather 
than NS (Appendix, Supplementary Fig. S4.37), whereas THD barely assembled 
when its GTP* content was in the range of 0–70 mol% (Appendix, Supplementary 
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Fig. S4.38). Namely, the optimum THDGTP/ THDGTP* molar ratio for the 
coassembly into NS is narrow, roughly with a GTP* content of 70–85 mol%. By 
means of nuclear magnetic resonance (NMR) spectroscopy in DMSO, NSGTP/GTP* 
prepared at a GTP* content of 83 mol% was found to contain 65 mol% of THDGTP* 
(Appendix, Supplementary Fig. S4.39). It is known that MTGTP and MTGTP*, 
prepared from THDGTP and THDGTP*, respectively, are formed by edge-closing of 
NSGTP and NSGTP* as transient precursors376. Note that the longer axis of THDGTP 
is shorter than that of THD380. We suppose that this mismatch possibly affords 
unfolded NSGTP/GTP* rather than folded MTGTP/GTP*. Indeed, when THDGTP* (GTP* 
content of 83 mol%) was coassembled with THDGTPγS (THD hybridized with 
guanosine 5’-O-(3-thiotriphosphate), GTPγS), whose length is likewise shorter than 
THDGTP380, NSGTPγS was formed (Appendix, Supplementary Fig. S4.40), whereas 
the coassembly of THDGTP and THDGTPγS (GTPγS content of 83 mol%), whose 
longer axes are close in length to each other380, resulted in MTGTP/GTPγS (Appendix, 
Supplementary Fig. S4.41). NSGTP/GTP* was transformed into NCGTP/GTP* when it 
was incubated with GlueCO- (100 µM) in PIPES buffer at 37 °C for 30 min (Figure 
4.16e). This anomalous transformation was accompanied by a large change in the 
hydrodynamic diameter from 65 nm (Figure 4.17b, green) to 660 nm (Figure 4.17b, 
orange) with a slight increase in the zeta potential from –42.2 to –39.0 mV. 
Transmission electron microscopy (TEM) showed that the newly formed object 
NCGTP/GTP* was a hollow sphere (Figure 4.17g). When MTGTP* and THDGDP instead 
of NSGTP/GTP* were likewise treated with GlueCO2-, ill-defined agglomerates resulted 
(see Appendix, Supplementary Figs. S4.42 and S4.43). 
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Figure 4.17. Reconstitution of MT into CLNCGTP/GTP*.a A typical synthetic procedure for the 
preparation of CLNCGTP/GTP*. b DLS profiles of MTGTP (gray), THDGDP (blue), NSGTP/GTP* 
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(green), NCGTP/GTP* (orange), and CLNCGTP/GTP* (red) in PIPES buffer. c–e TEM images of 
MTGTP (5.8 mg ml–1; c), THDGDP (0.3 mg ml–1; d), and NSGTP/GTP* (0.3 mg ml–1; e). f AFM 
image of NSGTP/GTP* (0.3 mg ml–1) and its height profile. g, h TEM images of NCGTP/GTP* 
(13 µg ml–1; g) and CLNCGTP/GTP* (13 µg ml–1; h). All TEM samples were negatively stained 
with uranyl acetate. Inset scale bars, 250 nm. 

Photochemical crosslinking of NCGTP/GTP* 

The physical stability of NCGTP/GTP* is important for its utilization as a carrier for 
drug delivery. Through several different experiments, we noticed that NCGTP/GTP* 
immediately collapsed upon incubation with albumin or serum in buffer, indicating 
its insufficient stability as a drug carrier. Here, we would like to point out a great 
advantage of GlueCO2- and its homologues that their multiple benzophenone (BP) 
groups upon photoexcitation enable covalent crosslinking with adhering proteins 
(Figure 4.16d). Successful examples so far reported include microtubule and 
kinesin371, whose dynamic behaviors could be attenuated by the reaction with 
photoexcited molecular glues. 

In the present work, by using fluorescent FITC-appended GlueFITC (Figure 
4.16c, FITC; fluorescein isothiocyanate) derived from GlueCO2-, we first confirmed 
that GlueCO2- has a sufficient photoreactivity with the constituent (THD) of 
NCGTP/GTP*. As shown in Supplementary Fig. S4.44 (available in the Appendix), the 
reaction mixture, after being exposed to UV light (300 nm) in PIPES buffer, showed 
the presence of a fluorescence-emissive covalent adduct between THDGDP and 
GlueFITC in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE). Then, we investigated whether this photochemical approach can provide 
NCGTP/GTP* with a sufficient physical stability by crosslinking the shell. Thus, a 
PIPES buffer solution of NCGTP/GTP* was exposed to UV light for 2 min, where 
TEM (Figure 4.17h) and AFM imaging results (Appendix, Supplementary Fig. 
S4.45) and DLS profiles (Figure 4.17b, red) showed that crosslinked (CL) CLNCGTP/ 

GTP* was spherical and remained intact even upon incubation with albumin (0.1 mg 
ml–1) or serum (0.01%) (see Appendix, Supplementary Figs. 4.46 and 4.47). 
CLNCGTP/GTP*, when prepared using GlueFITC instead of GlueCO2-, was fluorescent 
(Appendix, Supplementary Fig. S4.48), indicating the presence of the molecular 
glue in CLNCGTP/GTP*. 

Computational simulation of the assembly of NSGTP/GTP* 

Considering that tubulin nanosheets NSGTP/GTP* are, on average, 0.04 µm2 wide and 
4.2 nm thick, the formation of NCGTP/GTP* (surface area; ~6.2 µm2, membrane 
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thickness; 50 nm) requires at least 1000 pieces of NSGTP/GTP* to assemble. Note that 
GlueCO2- carrying both Gu+ and CO2- groups in its structure can self-assemble via 
their salt-bridge interaction. In the initial stage of the transformation of NSGTP/GTP* 
into NCGTP/GTP*, we postulate that a certain number of GlueCO2- molecules utilize 
their Gu+ groups to form a salt-bridged network with the surface CO2 groups on 
NSGTP/GTP* (Figure 4.16d) as well as the focal-core CO- group in GlueCO2-. This 
adhesion event can lower the surface charge density of NSGTP/GTP* and enhance its 
hydrophobic stacking, which is secured by possible reorganization of the salt-
bridged polymeric networks on NSGTP/GTP* (Figure 4.16e). We performed all atom 
molecular dynamics (MD) simulations381 to explore the adhesion of GlueCO2- and 
the effect of this event on the tubulin assembly. From a full MT model (PDB code: 
3J6E), we obtained its partial structure composed of three laterally assembled 
THDGTP* units ([THDGTP*]3) as a model of NS (Figure 4.18a). 
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Figure 4.18. MD simulation of the adhesion events of GlueCO2- onto the surface of 
THDGTP*.a Three laterally assembled THDGTP* units ([THDGTP*]3) in MTGTP* as a partial 
model of NS. b An equilibrated MD snapshot of GlueCO2-. c, d The outer (c) and inner (d) 
views of [THDGTP*]3 hybridized with 30 equivalents of GlueCO2-. e, f The outer (e) and inner 
(f) views of [THDGTP*]3 with its electrostatic surface potential in the absence (upper) and 
presence (lower) of 30 equivalents of hybridized GlueCO2-. Negative and positive potential 
areas are colored in red and blue, respectively. g The percentage of hydrophobic solvent-
accessible surface area in the absence (47.5 ± 0.5; red) and presence (56.7 ± 2.0; blue) of 
30 equivalents of hybridized GlueCO2-. Bars represent mean values ± SD from 2000 data 
points. h, i [THDGTP*]3 observed from the top view (h) and its angle distributions (i) in the 
absence (red) and presence (blue) of 30 equivalents of hybridized GlueCO2-. j Radial 
distribution functions g(r) of the Gu+ groups in GlueCO2- with carboxylates (blue) and non-
ionic hydroxyl groups (gray) on the [THDGTP*]3 surface, and the carboxylate at the focal 
core of GlueCO2- (red). k Schematic illustration of a possible adhesion event of GlueCO2- 
onto NSGTP/GTP* and its effects on the features of NSGTP/ GTP*. The Gu+ groups in GlueCO2- 
form a salt bridge with carboxylates on the NSGTP/GTP* surface and at the focal core of 
GlueCO2-, and the GlueCO2--based polymeric network thus formed through this process 
increases the hydrophobicity of the NSGTP/GTP* surface, making NSGTP/GTP* more flatten. 

The MD simulation suggested that GlueCO2- adopts a globular conformation in 
aqueous media with a hydrodynamic diameter of 1.5 nm (Figure 4.18b, see also 
Appendix Supplementary Fig. S4.49). When exposed to 30 equivalents of GlueCO2- 
(Figure 4.18c, d), [THDGTP*]3 enhances its hydrophobic nature (Figure 4.18e, f) as 
a result of the surface charge neutralization by adhering GlueCO2-. In the solvent-
accessible surface area of [THDGTP*]3, the hydrophobic dominancy increases from 
48% to 57% (Figure 4.18g). Notably, when GlueCO2- was allowed to adhere onto 
[THDGTP*]3, the molecular simulations suggested that [THDGTP*]3 adopts a slightly 
more flattened conformation, characterized by a distribution angle with an average 
value of ~156° (Figure 4.18h, i, blue), compared with that of native [THDGTP*]3 
(red). The simulations also showed that, even after the GlueCO2- adhesion, 
[THDGTP*]3 preserved a certain level of flexibility (Figure 4.18i). We also calculated 
radial distribution functions g(r) between the charged groups of GlueCO2- and the 
amino acid residues of [THDGTP*]3. Supposedly, the CO- groups in aspartic acid and 
glutamic acid are interactive with the Gu+ groups in GlueCO2-, while the cationic 
groups in lysine and arginine are interactive with the focal CO2- group in GlueCO2-. 
As expected, the g(r) data revealed that the Gu+ groups in GlueCO2- are largely 
populated near the CO2- groups on the [THDGTP*]3 surface (Figure 4.18j, blue), 
whereas they are scarcely populated around the polar but nonionic hydroxyl groups 
in serine, threonine, and tyrosine (Figure 4.18j, gray). Meanwhile, the focal CO- 
group in GlueCO2- is not populated around the cationic groups on the [THDGTP*]3 
surface (see Supplementary Fig. S4.50 in the Appendix). The computational 
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calculation also showed that multiple adhering GlueCO2- molecules can interact and 
self-assemble via a salt-bridge interaction between their Gu+ and CO- groups 
(Figure 4.18j, red), which results in forming a dense Gu+/CO- salt-bridged 
polymeric network on the [THDGTP*]3 surface (Figure 4.18k). This may promote 
the self-assembly of flexible NSGTP/GTP and stabilize them in the gently curved 
multilayered configuration of NCGTP/GTP*, as observed experimentally382,383. As a 
control experiment, the use of GlueCO2-Me (Figure 4.16c) having a focal ester group 
instead of its ionized form for the transformation of NSGTP/GTP* into NCGTP/GTP* 
resulted in an ill-defined agglomerate (Appendix, Supplementary Fig. S4.51). 

GTP-responsiveness of CLNCGTP/GTP* 

We investigated whether photochemically stabilized CLNCGTP/GTP* is responsive to 
GTP or not. Notably, the concentrations of both extracellular and intracellular GTP 
are lower than 0.3 mM in normal cells365. However, as already described in the 
introductory part, rapidly proliferating cancer cells and RNA virus-infected cells 
contain GTP in a concentration range of 1.5–4.5 mM362. Therefore, drug-loaded 
CLNCGTP/GTP*, when taken up into such GTP-rich environments, might selectively 
collapse to release its preloaded guest. Upon incubation for 100 min at 37 °C in 
PIPES buffer with 0.2 mM GTP, CLNCGTP/GTP* still maintained its spherical shape, 
as observed by TEM (Figure 4.19a). However, when the GTP concentration was 
increased to 0.5 mM, CLNCGTP/GTP* gradually collapsed (Figure 4.19b), displaying 
a polydisperse DLS profile in 100 min (Figure 4.19c, green). This minimum 
concentration threshold is important for achieving the error-free delivery to GTP-
enriched sites. We added Biomol GreenTM as a phosphoric acid (PO-) detector to a 
mixture of CLNCGTP/GTP* and GTP (1 mM), and successfully detected PO- by means 
of electronic absorption spectroscopy, indicating that CLNCGTP/GTP* has a GTPase 
activity (Figure 4.19d). Although THDGTP*, the constituent of CLNCGTP/GTP*, has no 
GTPase activity, the product upon incubation of THDGTP* with GTP for 1 h in 
PIPES buffer at 37 °C showed a GTPase activity comparable to that of THDGTP 
(Supplementary Fig. S4.52, Appendix), indicating the conversion of THDGTP* into 
THDGTP. Thus, under the GTP-rich conditions described above, GTP* in 
CLNCGTP/GTP* is likely replaced with GTP to afford CLNCGTP, which possibly 
collapses along with the hydrolysis of GTP in a manner analogous to the 
depolymerization of MTGTP. Of particular importance, CLNCGTP/GTP* remained 
intact to the treatment with other triphosphates (0.5 mM), such as ATP, cytosine 
triphosphate CTP, uracil triphosphate UTP (Figure 4.19e, and Appendix 
Supplementary Figs. S4.53 and S4.54). 
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Figure 4.19. GTP-triggered collapse of CLNCGTP/GTP*. a, b TEM images of CLNCGTP/GTP* after 
a 100-min incubation with GTP at its concentrations of 0.2 mM (a) and 0.5 mM (b). c DLS 
profiles of CLNCGTP/GTP* (8.7 µg ml–1) in PIPES buffer after a 100-min incubation with GTP 
at its concentrations of 0 mM (red), 0.2 mM (orange), 0.5 mM (green), and 1 mM (blue). d 
GTPase activities of THDGDP (left) and CLNCGTP/GTP* (right) in PIPES buffer. The data was 
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obtained from three biologically independent samples (n = 3). e DLS profiles of 
CLNCGTP/GTP* (8.7 µg ml–1) in PIPES buffer after a 100-min incubation with 1 mM of ATP 
(red), CTP (orange), and UTP (green). f TEM image of CLNCGTP/GTP*⊃NPAu ([CLNCGTP/GTP*] 
= 13 µg ml–1, [NPAu] = 13 pM). g CLSM images of FITC-labeled CLNCGTP/GTP*⊃DOX 
([CLNCGTP/GTP*]= 13 µg ml–1, [DOX] = 10 µM) incubated without (upper panel) and with 
(lower panel) 1 mM GTP at 37 °C for 100 min. Micrographs display locations of FITC (i, 
green) and DOX (ii, red), and their merged images (iii). Scale bars, 2.0 µm. h Fluorescence 
intensities at 590 nm (λext = 470 nm) of residual DOX obtained after 20, 50, and 100-min 
incubations of a PIPES solution of CLNCGTP/GTP*⊃DOX with 1 mM GTP, followed by 
ultrafiltration. Red bars represent mean values ± SD from three different samples. 

Guest encapsulation into CLNCGTP/GTP* 

How to stably encapsulate guests inside nanocarriers is one of the important 
subjects for drug delivery. By using gold nanoparticles (NPAu; 14 pM, diameter 50 
nm) as a guest, we succeeded in obtaining NPAu-encapsulated CLNCGTP/GTP* by 
adding GlueCO2- (100 µM) to a PIPES buffer solution of a mixture of NSGTP/GTP* 
(13 µg ml–1) and NPAu at 37 °C. After 30-min incubation, the resulting mixture was 
exposed for 2 min to UV light (300 nm) for crosslinking. Using TEM (Figure 4.19f) 
and asymmetric field flow fractionation analysis (reported in the Appendix in 
Supplementary Fig. S4.55), we confirmed that CLNCGTP/GTP* encapsulated NPAu 
(CLNCGTP/GTP*⊃NPAu) in its hollow sphere. We also confirmed that CLNCGTP/GTP*, 
when treated with GTP, indeed released its preloaded guest. For this purpose, we 
first prepared FITC-labeled THDGDP with a mixture of GTP and GTP* (GTP* 
content: 83 mol%) in PIPES buffer, and further incubated the resulting fluorescent 
NSGTP/GTP* with GlueCO2- in the presence of doxorubicin (DOX) for 30 min. Then, 
the mixture was exposed for 2 min to UV light (300 nm) for transforming 
NCGTP/GTP*⊃DOX into CLNCGTP/GTP*⊃DOX, which was confirmed by confocal 
laser scanning microscopy (CLSM) to carry both FITC and DOX dyes (reported in 
the Appendix in Supplementary Fig. S4.56, green and red, respectively). When 
CLNCGTP/GTP*⊃DOX was incubated with 1 mM GTP in PIPES buffer for 100 min, 
DOX, as observed by CLSM, became much less fluorescent, indicating the 
disruption of CLNCGTP/GTP* to release DOX (Figure 4.19g, (i)–(iii), lower panel). 
Upon incubation for 20 min, 50 min, and 100 min, the residues obtained by 
ultrafiltration (cutoff molecular weight = 5000) of the reaction mixtures contained 
73%, 53%, and 21% of the total amount of preloaded DOX, respectively (Figure 
4.19h), while in the absence of GTP, DOX was not released (Figure 4.19g, (i)–(iii), 
upper panel). 
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Intracellular drug delivery with CLNCGTP/GTP* 

As a proof-of-concept study, we investigated whether FITC-labeled CLNCGTP/GTP* 
can be taken up by human hepatocellular carcinoma Hep3B cells (Figure 4.20a). 
The cells were incubated in Eagle’s minimum essential medium (EMEM) 
containing CLNCGTP/GTP* (0.5 µg ml–1) for 2.5 h, rinsed with Dulbecco’s phosphate-
buffered saline (D-PBS), and further incubated in EMEM containing 10% fetal 
bovine serum (FBS) for 1.5 h. CLSM (Figure 4.20b (i), left panel) together with 
flow cytometry analysis (Figure 4.20c) revealed that most of the cells took up FITC-
labeled CLNCGTP/GTP*. Upon subsequent incubation for 21.5 h in EMEM (10% 
FBS), the entire cytoplasm eventually became fluorescent (Figure 4.20b (ii), right 
panel) as a possible consequence of the collapse of incorporated CLNCGTP/GTP*. In 
sharp contrast, FITC-labeled THDGDP and NSGTP/GTP*, the intermediates for 
constructing CLNCGTP/GTP*, were scarcely taken up into Hep3B cells (see Appendix, 
Supplementary Figs. S4.57 and S4.58).  
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Figure 4.20. Intracellular drug delivery using CLNCGTP/GTP*.a Schematic illustration of the 
uptake of FITC-labeled CLNCGTP/GTP* into Hep3B cells. b Bright field (upper row) and 
CLSM images displaying FITC (middle row, green) in Hep3B cells and their merged 
images (lower row). The cells were incubated in EMEM containing CLNCGTP/GTP* (0.5 µg 
ml–1) for 2.5 h, rinsed with D-PBS, and further incubated in EMEM (10% FBS) for 1.5 h 
(i) and 21.5 h (ii). Scale bars, 20 µm. c Flow cytometry profiles showing FITC fluorescence 
of Hep3B cells (n > 660) incubated without (blue) and with FITC-labeled CLNCGTP/GTP* for 
2.5 h, rinsed with D-PBS, and further incubated in EMEM (10% FBS) for 1.5 h (i, orange) 
and 21.5 h (ii, green). d Schematic illustration of the cellular uptake of CLNCGTP/GTP*⊃DOX. 
e Bright field (upper row) and CLSM images displaying DOX (middle row, red) in Hep3B 
cells and their merged images (lower row). The cells were incubated in EMEM containing 
CLNCGTP/GTP*⊃DOX ([CLNCGTP/GTP*] = 2.6 µg ml–1, [DOX] = 2 µM) for 2.5 h, rinsed with 
D-PBS, and further incubated in EMEM (10% FBS) for 1.5 h (iii) and 21.5 h (iv). Scale 
bars, 20 µm. f, g Flow cytometry profiles (f) showing DOX fluorescence of Hep3B cells (n 
> 390) and their normalized viabilities (g) determined using Cell Counting Kit-8 (n = 3). 
The cells were incubated without (blue) and with DOX (2 µM; orange), and 
CLNCGTP/GTP*⊃DOX ([CLNCGTP/GTP*] = 2.6 µg ml–1, [DOX] = 2 µM; red) for 2.5 h in EMEM, 
and then rinsed with D-PBS, followed by incubation in EMEM (10% FBS) for 21.5 h. 
Statistical significance was examined by two-sided Student’s t test (*p = 0.0094 < 0.01). 
Bars represent mean values ± SD from three different samples. 

The high intracellular uptake of FITC-labeled CLNCGTP/GTP* is possibly due to a salt-
bridge interaction between the Gu+ groups in adhering GlueCO2- and cell-surface 
oxyanionic groups384. We confirmed that the intracellular uptake was little affected 
by the presence of endocytosis inhibitor NaN3378, suggesting that the incorporation 
of CLNCGTP/GTP* into Hep3B cells was caused via an endocytosis-independent direct 
pathway (Appendix, Supplementary Fig. S4.59). For the drug delivery application 
of CLNCGTP/GTP*, we conducted a cell viability assay with CLNCGTP/GTP*⊃DOX. 
When treated with CLNCGTP/GTP*⊃DOX ([CLNCGTP/GTP*]= 2.6 µg ml–1, [DOX] = 2 
µM) in EMEM (Figure 4.20d) for 2.5 h, Hep3B cells took up DOX as observed by 
CLSM after a subsequent incubation in EMEM (10% FBS) for 1.5 h (Figure 4.20e 
(iii), left panel), and then died within next 21.5 h to form an ill-defined agglomerate 
(Figure 4.20e (iv), right panel). We also confirmed that Hep3B cells took up a larger 
amount of DOX in CLNCGTP/GTP* (Figure 4.20f, red) than DOX alone (Figure 4.20f, 
orange). Accordingly, CLNCGTP/GTP*⊃DOX successfully lowered the cell viability 
to 30 ± 6% (Figure 4.20g, red), whereas that caused by DOX alone was only 48 ± 
15% (Figure 4.20g, orange). As expected, the cell viability decreased as the 
concentration of CLNCGTP/GTP*⊃DOX was increased (Appendix, Supplementary 
Fig. S4.60), while the viability upon incubation with CLNCGTP/GTP*⊃DOX did not 
substantially increase when the incubation time was shortened from 2.5 h to 1.0 h 
(Appendix, Supplementary Fig. S4.61). This is likely caused by the GTP-selective 
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collapse of CLNCGTP/GTP*. The intracellular delivery of CLNCGTP/GTP*⊃DOX was 
also successful with other cell lines such as A549 cell and HeLa cell 
(Supplementary Fig. S4.62 in the Appendix). We also confirmed that neither the 
coexistence of THDGDP nor THDGDP/GlueCO2- enhanced the efficacy of DOX 
(Appendix, Supplementary Fig. S4.63). Together with the noncytotoxic nature of 
CLNCGTP/GTP* (Figure 4.20g, green) and its stability in a range of pH at tumor tissue 
(Figure 4.17h)377, these results allow us to expect that CLNCGTP/GTP* may have the 
potential to deliver preloaded drugs into cancer cells using GTP as an endogenous 
reporter. 

4.4.5 Discussion and Conclusions 

Here, we have documented the successful reconstitution of MTGTP into a GTP-
responsive nanocarrier. MTGTP is depolymerized into THDGDP, which is incubated 
with a mixture of GTP* and GTP (content of GTP*: 70–85 mol%), thereby 
facilitating the in situ coassembly of the resulting THDGTP* and THDGTP monomers 
to form NSGTP/GTP*. Subsequently, NSGTP/GTP* is treated with molecular glue 
GlueCO2-  to be transformed into spherical NCGTP/GTP*, followed by UV exposure to 
afford crosslinked CLNCGTP/GTP* capable of stably encapsulating guests. In GTP-
rich environments, CLNCGTP/GTP* collapses and releases preloaded guests through 
the transformation of CLNCGTP/GTP* into CLNCGTP followed by the hydrolysis of its 
bound GTP into GDP, analogous to the depolymerization of MTGTP. Using 
CLNCGTP/GTP*, we successfully delivered DOX into cancer cells that overexpress 
GTP, and caused cell death more efficiently than DOX alone. Most importantly, 
CLNCGTP/GTP* is a drug carrier that can selectively collapse in response to GTP rather 
than ATP that is abundant in normal cells. Since cells infected with RNA viruses 
such as coronavirus produce a large amount of GTP in their self-replication process, 
GTP is an endogenous reporter for RNA virus-infected cells. In vivo utilization of 
CLNCGTP/GTP* for curing RNA virus-induced diseases such as COVID-19 is one of 
the interesting subjects worthy of further investigation.



  
 

Chapter V 

Conclusions and future perspectives 

5.1 Concluding remarks 

Molecular modelling constitutes a very powerful toolbox to mechanistically 
explore the interactions of small molecules and selected biomolecular targets, both 
of weak (e.g. Van-der-Waals and hydrophobic interactions) and of strong (e.g. 
between charged molecules) nature. Using all-atom molecular dynamics 
simulations, one can obtain crucial insights into the biophysical interactions of the 
investigated systems with resolutions in time and in space that are largely 
inaccessible to experimental methods. As such, computational methodologies such 
as those described in this work should be thought of as a support to experimental 
evidence, i.e. to assist researchers in better understanding and exploiting the 
molecular mechanisms through which small molecules exert their effects, in 
contexts such as medicinal chemistry, enhanced drug delivery and materials 
science. 

At the same time however, not every computational approach is suitable for 
any molecular system. This means that the final choice of the specific in-silico 
methodology to apply remains demanded to the experience of the modeler. From 
static approaches such as molecular docking, to plain and enhanced-sampling 
molecular dynamics simulations and even to most recent machine learning 
methods, the choice might seem overwhelming. As exemplified through the 
research works reported herein, the choice of the method depends on the 
characteristics of the molecular system being investigated, as well as on the 
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experimental evidence at hand and timescale of the phenomena to be observed or 
predicted. The following paragraph is intended to serve as a concise reference 
handbook to provide starting points for modelling the interaction between small 
molecules, such as drugs, and biomolecular targets of interest, including proteins 
and membranes.   

5.2 Best practices for molecular modelling of specific and 
aspecific modulation mechanisms 

5.2.1 Specific small-molecule / target interactions 

Whenever for a given small molecule an exact interaction site is known, e.g. from 
an experimentally solved 3D structure deposited in the PDB database, or by 
experimental findings such as mutagenesis, the ligand-target interaction can be said 
to be specific. This usually means that this exact binding site(s) must be found by 
the ligand, and must be able to properly accommodate the latter, for it to exert its 
therapeutic (or toxic) action. In the context of molecular simulations, this warrants 
a detailed preliminary study of the location, biophysical characteristic and 
accessibility of the target binding site, which might demand extended or even 
enhanced-sampling molecular dynamics simulations to ensure the availability of a 
sufficient ensemble of conformations. Furthermore, the computational 
investigation of how a given small molecule acts on such a specific binding site 
heavily depends on the initial conditions of the simulations, i.e. on where and how 
the ligand is placed on the target. In the case of a lack of an experimentally solved 
structure for the system under investigation, e.g. when key interacting residues are 
known from experiments but the crystal structure of complex is not yet solved, a 
valid strategy can be to perform the initial placement of the small molecule by 
means of molecular docking, thereby generating an ensemble of biophysically 
sensible and energetically similar binding poses. These shall be evaluated carefully 
and manually whenever possible, to ensure that conformations contrasting with the 
chemical/physical characteristics of the binding environment or that are incoherent 
with experimental findings are discarded. This docking-based strategy is in most 
cases computationally inexpensive, allowing for the generation of many putative 
binding conformations for up to millions of ligands, at the cost of a sub-optimal 
accuracy warranting extensive post-processing. Other, more refined approaches 
exist which are based on combinations of molecular dynamics simulations with 
enhanced sampling techniques, such as Funnel Metadynamics385, but these are 
usually targeted towards binding free energy calculations and rarely used to obtain 
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starting conformations in computational drug discovery pipelines, due to their 
significant computational cost. 

However the initial placement of the ligand is obtained, if possible, the generated 
starting poses should be analyzed by an expert biophysicist or medicinal chemist, 
who can further help with the extraction of realistic or plausible binding poses based 
on experience. 

Once the initial ligand placement is obtained, the effects of the presence of the 
ligand in a given binding site can be explored through plain or enhanced-sampling 
molecular dynamics simulations, depending on the timescales at which the ligand 
exerts its downstream cascade of molecular events. Starting from the less 
computationally demanding approaches, plain molecular dynamics simulations of 
the ligand-target complex spanning time scales of up to tens of microseconds, 
depending on the size of the system, can be employed to analyze the conformational 
events triggered by the ligand, e.g. through cluster analysis of the MD trajectories 
or dimensionality reduction techniques such as PCA386 or FMA387. Motions and 
conformational biases can be compared between simulations with and without the 
ligand placed in the binding site, or even against simulations where specific binding 
site residues are mutated, to obtain useful insights into the molecular events 
triggered by the ligand. If the sampling provided by classic molecular dynamics is 
insufficient, enhanced sampling techniques can be employed, such as 
metadynamics. This latter approach is particularly useful if some information 
regarding the conformational rearrangements caused by the ligand is known, so that 
the most suitable set of collective variables can be chosen. This can bias the MD 
simulation towards the exploration of states that are along or near the pathway of 
target activation, so as to explore this region of the phase space more effectively, at 
the expense of an increase in the computational cost and in the complexity of setting 
up the simulation. Lastly, plain and enhanced sampling MD simulations can provide 
useful data to estimate the binding energy between the ligand and the target, starting 
from simple (and arguably rough41,46,388) approaches such as MM/GBSA and 
MM/PBSA389,390 all the way to more refined methodologies such as funnel 
metadynamics385, free energy perturbation391 or thermodynamic integration392, 
depending on the needs and on the availability of computational resources. Docking 
scores should generally be avoided as absolute estimates of binding free energies, 
since the scoring functions are tailored towards the enrichment of libraries of 
candidate compounds rather than towards the accurate estimation of the free energy 
of binding, in line with the simplifications and approximations of this method. 
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5.2.2 Aspecific small-molecule / target interactions 

Molecular modelling strategies can also be proficiently applied in the case of 
systems where small molecules interact aspecifically with their target. Aspecific 
binding herein refers to molecular assemblies where the binding between a ligand 
and its target is not restricted to a well-defined binding site, which might be also 
characterized by a preferential reciprocal ligand-target orientation. Rather, there 
also exist scenarios in which: 

a. the formation of a complex between a macromocule and one (or many) 
ligand(s) can take place in various, energetically equivalent binding 
locations, with no unique binding pocket; 

b. the investigation is focused on molecular assemblies involving small 
molecules such as gases or solvents, whose binding energy is difficult to 
quantify using a static approach; 

c. molecular transporters such as nanoparticles are being investigated, which 
usually do not present a single well-defined binding site but rather an 
ensemble of anchor points for the cargo; 

d. the interest lies in dynamic processes, such as diffusion, e.g. in the case of 
the permeation of ligands through the cell membrane. 

In similar scenarios, which we might define one-vs-many or many-vs-many 
interaction studies, conventional strategies such as those described in paragraph 
5.2.1 might not be adequate to perform a proper sampling of the interaction. Indeed, 
since these aspecific binding scenarios are conceptually different from the previous 
example of a ligand binding within its specific binding site, relying entirely on 
strategies such as docking, which usually requires an a priori definition of the 
binding site, might yield inconclusive results regarding the binding process, on top 
of the already discussed limitations regarding the estimation of the binding free 
energy using static approaches (see paragraph 2.3). Thus, a different computational 
strategy should be employed, which would ideally account not only for the presence 
of multiple interaction locations, but also for the dynamic nature thereof, given that 
multiple binding and unbinding events might occur, especially with low-affinity 
ligands. One feasible strategy in this context is to rely on the intrinsically dynamic 
information provided by MD to be able to sample the time evolution of ligand 
binding and unbinding processes. The difference with respect to the specific 
binding studies described in section 5.2.1 is that instead of considering a single 
ligand instance that is initialized in or near a putative binding site, the approach 



Conclusions and future perspectives 161 

 
should consider an ensemble of ligands – e.g. a predefined concentration – which 
are simulated together with the target and initialized randomly at a given 
concentration in the solvent at the beginning of the simulation. This approach, 
sometimes referred to as flooding molecular dynamics393,394, allows for an extensive 
exploration of the interaction surface of the target by the ligands in solution, which 
can then be used to reconstruct the probability density of the ligand and thus high-
probability regions of interactions on the target. This ligand occupancy map can 
finally not only highlight preferential anchor points when there is no information 
regarding the binding site location393, but also shed light on the nature of the 
noncovalent interaction between ligand and receptor. In the case of low-affinity 
ligands with reduced molecular weights, e.g. the volatile anesthetics investigated in 
chapter 3, such an approach can provide valuable information regarding the stability 
of the binding events as well as the conformational consequences of the presence 
of a given solute at specific concentrations on the receptor. It also represents a 
valuable strategy to assess the permeability of cell membranes to specific ligands, 
as well as the effect of the latter on membrane stability, shape and mechanics, as 
shown in the research described in paragraphs 3.4 and 4.2. Lastly, it represents an 
effective approach to study the interaction between strong ionic ligands to carriers 
such as nanoparticles, as discussed in paragraphs 4.3 and 4.4.  

5.3 Conclusions and future perspectives 

In summary, computational molecular modelling represents a rich toolbox which 
can improve our understanding of how biological systems behave at the 
microscopic scale. The scope of molecular modelling nowadays spans a large 
amount of subfields ranging from materials science to drug design and discovery, 
covering a vast amount of (bio)molecular assemblies and mechanisms, from 
detailed protein-ligand binding studies to massive virtual screening campaigns, 
from the study of the dynamics of carbohydrates to computational lipidomics.  

As highlighted in the present dissertation, the choice of a specific 
methodological approach is highly dependent on the system under investigation. In 
the context of bioengineering, the combination of molecular docking and molecular 
dynamics can provide key insights into how small molecules influence their 
surroundings, which can not only drive the development of improved drugs and 
drug delivery systems, but also shed light on the mechanistic underpinnings of 
specific molecular events. The computational study of the interaction between small 
molecules and their targets can be predictive, meaning that it is deployed to estimate 
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quantitative features such as e.g. the binding affinity prior to performing 
experiments, or explanatory, indicating the use of computational models to explain 
the macroscopic observations of experimental settings. The research reported 
herein provides examples of both these aims, highlighting how both in the case of 
weak and of strong binding events appropriate computational protocols can be 
developed and deployed to obtain new knowledge, by exploiting the remarkably 
high spatial and temporal accuracy of all-atom models. Provided that rational 
modelling choices are made, meaning that the theoretical requirements and 
assumptions of the employed methods are satisfied by the system under 
investigation (see sections 2.3, 5.2.1, and 5.2.2), molecular modelling greatly 
improves our understanding of the mechanisms of action of small molecules and 
helps in the design of novel chemical formulations able to overcome current 
limitations and drawbacks in a variety of scenarios. It is thus entirely reasonable to 
expect computational molecular modelling to play a fundamental role in the future 
of personalized medicine and healthcare, at the intersection between 
bioengineering, physics, (medicinal) chemistry, computer science, and medicine. 
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Supervision of 14 B.Sc. final projects and 1 M.Sc. thesis  

 

6.4 PhD Courses 

6.4.1 Acquired Hard Skills 

Course Name Year Hours 

Computing@PoliTO Workshop 2020 4 
Multiscale modelling and coarse-graining for flow and 
transport PDEs 2020 12 

ICTP-SISSA-CECAM Workshop on Molecular Dynamics 
and its Applications to Biological Systems 2020 20 

BioExcel Winter School 2020 30 
VIRTUOUS Transfer of Knowledge – Omics, Machine 
Learning and Molecular Modelling Targeting Taste and 
Nutrition 

2020 12 

Planning, management, and analysis of chemical and 
laboratory research 2021 15 

Meccanica Statistica non Estensiva 2021 10 

6.4.2 Acquired Soft Skills 

Course Name Year Hours 

Enterpreneurial Finance 2021 5 
L’uso delle risorse e dei servizi digitali UniTo per la ricerca 
bibliografica in campo umanistico 2020 6 

Project Management 2020 5 
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Responsible research and innovation, the impact on social 
challenges 2021 5 

Research Integrity 2021 5 

Thinking Out of the Box 2022 1 
Personal Branding 2022 1 

Design Thinking, Processes and Methods 2022 2 
Communication 2022 5 

Public Speaking 2022 5 

 

6.5 International Conferences and Workshops 

Event Contribution Year 

ICTP-SISSA-CECAM Workshop on Molecular 
Dynamics and its Applications to Biological Systems 

Attendee 2020 

First VIRTUOUS Transfer of Knowledge Workshop Oral Pres. 2020 

Second VIRTUOUS Trasfer of Knowledge Worskhop Attendee 2022 
CANCERTO - Nanoscience In Cancer Immunotherapy 
2021 

Poster 2021 

BioExcel Winter School on Biomolecular Simulations Poster 2020 
III Annual Symposium: L'era delle 3R: modelli in 
silico, in vitro e in vivo per promuovere la ricerca 
traslazionale 

Poster 2021 

8th Annual CCPBioSim Conference - Frontiers in 
Biomolecular Simulation 2022 

Poster 2022 

AIDD 2022 Spring School Attendee 2022 
The TWCF Banff Workshop - Experimental Testing of 
the Orch OR Theory of Consciousness 

Oral Pres. 2022 

26th Congress of the European Society of 
Biomechanics 

Poster 2021 
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6.6 International Exchange Periods 

Period Host Instituion Country 

02/2020 – 03/2020 MissingTech Sagl. Switzerland 
10/2020 – 12/2020 InSyBio PC Greece 

05/2022 – 06/2022 MissingTech Sagl. Switzerland 
02/2023 – 04/2023 University of Ottawa Canada 
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Appendix to Chapter 3 

Molecular modelling and 
simulation of anesthetics 
3.1 Elucidating the interaction between volatile 

anesthetics and human tubulin assemblies 

 
Supplementary Figure S3.1 The Meyer-Overton correlation, highlighting the strict 
relationship between anesthetic potency (in terms of Minimum Alveolar Concentration) 
and solubility in olive-oil-like, lipid media. 

3.1.1 Detailed Docking Protocol and Results 

For blind docking, snapshots of the tubulin dimers were extracted from the 
molecular dynamics simulations with the respective ligands every 10ns in the last 
50ns of the simulations. Blind docking was performed in Autodock-Vina after 
preparing the dimer snapshots and the ligands in AutoDockTools, adding Gasteiger 
charges, and saving them in pdbqt format, using the prepare_receptor4.py and 
prepare_ligand4.py scripts, respectively. For each isotype-anesthetic pair, the 
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search box was centered at the center of mass of the given snapshot and was built 
to encompass the whole dimer, including the C-terminal tails. Docking was 
performed with the exhaustiveness set to 64, and with the default setting of 9 
maximum generated poses per run. For each anesthetic-isotype pair, all sampled 
poses were analyzed to obtain an average estimate of the binding energies, which 
is reported in the main text. The binding sites which were most frequently found by 
blind docking, as well as the ones with highest mean predicted affinity were further 
validated using a second set of local docking runs, carried out as follows: for each 
isotype-anesthetic pair, the dominant conformations have been extracted from the 
cluster analysis of each of the three 100-ns MD simulations, excluding the highly-
fluctuating C-terminal tails; clustering was performed with an RMSD cutoff of 0.15 
nm using GROMACS, and resulted in one dominant tubulin conformation for each 
individual simulation, i.e. three conformations for each isotype-anesthetic pair. 
Extracted conformations were converted into pdbqt with the same methodology 
used for blind docking, assigning Gasteiger charges, again using the 
prepare_receptor4.py script included in AutoDockTools, and used as targets for 
docking. For each isotype-anesthetic pair, on each of the aforementioned targets, 
the grid box has been iteratively centered to encompass the residues forming the 
binding sites found from blind docking runs (most frequent and highest avg. affinity 
sites). To achieve this, the optimal grid box geometry was determined dynamically 
using the AutoGridFR program1 by supplying the list of residues forming the site, 
with the grid spacing set to 1.0 Å as required by Autodock-Vina, and with an 
additional padding of 2 Å. Local docking was again carried out in Autodock-Vina, 
with the same settings as for the blind docking runs (except for the grid box 
geometry), namely a maximum of 9 generated poses per run, with exhaustiveness 
set to 64. Finally, the best conformation for each anesthetic on each isotype has 
been extracted, along with the predicted affinity, which is reported in table ST1 
below. 

Supplementary Table ST3.1. Predicted binding affinities in kcal/mol with each anesthetic 
after local docking validation. The affinity of the best overall binding pose is reported.  

 Isotype 
 αβVI (kcal/mol) αβIIa (kcal/mol) αβIVa (kcal/mol) 
Ethylene -2.1 -2.5 -2.2 
Desflurane -5.6 -5.5 -5.9 
Halothane -4.4 -4.3 -4.8 
Methoxyflurane -4.4 -4.8 -4.6 
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Local docking validation confirmed that Ethylene is consistently predicted to 

interact with a considerably lower affinity to all three isotypes with respect to the 
other three compounds, completing docking runs at -2.5 kcal/mol at best on isotype 
αβΙΙa, in the cleft formed by αTRP388, αMET203, αPHE267, αALA201, αPHE202 
and αPRO173. For the other three anesthetics, the trends provided by the blind 
docking estimates were confirmed: the highest-affinity pose for Desflurane was 
located on isotype αβIVa in the cleft formed by αTHR239, αLEU136, αPHE138 
and αPHE135 . Halothane and Methoxyflurane showed again comparable predicted 
affinities, with the best poses scoring both -4.8 kcal/mol, on isotype αβIVa in the 
case of Halothane and isotype αβΙΙa for Methoxyflurane. Overall, the local docking 
runs confirmed the results obtained from blind docking, and further underlined how 
the docking approach on its own is not sufficient to provide insights into the 
interaction mechanism. This is expected, due to the low predicted affinity and the 
lack of classical lock-and-key mechanism, with a single, strong binding site in the 
systems under investigation. Rather, the possible simultaneous interactions of 
multiple ligand molecules in multiple binding sites on the tubulin dimer and the 
weak nature of the interactions themselves justify the investigation through 
Molecular Dynamics and contact probability analysis, which provides a more in-
depth understanding on where and how much interaction occurs on the dimer, and 
yields more robust quantitative data in this scenario. 

3.1.2 Homology Models 

In detail, the three simulated isotypes βVI, βIIa and βIVa featured 94.9%, 
94.7% and 95.0% residues in those regions, respectively. Since it is agreed upon2 
that a fair quality model should feature more than 90% of residues in most favoured 
regions, the models generated in the present work are of good quality. For 
comparison, the 3J6F template used for modelling showed 91.4% of residues in the 
most favoured regions and 0.1% in generally disallowed regions. 
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Supplementary Figure S3.2. Ramachandran plots for the modeled dimers αβVI (A), αβIIA 
(B) and αβIVa (C). 

The Verify-3D analysis reported an averaged 3D-1D score higher than 0.2 for 
every isotype modeled, which means the models passed the Verify-3D test. Dimers 
with isotypes βVI, βIIa and βIVa specifically showed 94.12%, 96.09% and 94.97% 
of residues with scores greater than 0.2 respectively, with only the highly variable 
C-terminal regions partly falling below that threshold. 

The WHAT_CHECK verification confirmed the goodness of the models, 
reporting a Ramachandran Z-score of 0.869, 1.120 and 0.917 for the three studied 
dimers αβVI, αβIIA, αβIVa along with normal bond length and angle variations.  

Finally, the ERRAT quality factors were compared with thresholds indicative 
of good quality models3. The results consisted of quality factors above 88 for every 
α-tubulin isotype and above 90 for every modeled β-tubulin isotype. The three 
subsequently simulated dimers αβVI, αβIIa, αβIVa scored respectively 88.86, 91.36 
and 90.18 for their α chains and 90.18, 90.18 and 92.49 for their β chains, hence 
confirming high model quality.  

3.1.3 Molecular Dynamics 
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Supplementary Figure S3.3. RMSD plots for each individual replica of all simulated 
systems. Black line = replica 1, red line = replica 2, green line = replica 3. Columns 
represent isotypes, starting on the left with αβVI: a) without ligands, d) with Desflurane, g) 
with Halothane, j) with methoxyflurane, m) with Ethylene. Middle column is isotype αβIIa 
b) without ligands, e) with Desflurane, h) with Halothane, k) with methoxyflurane, n) with 
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Ethylene. Right column is isotype αβIVa c) without ligands, f) with Desflurane, i) with 
Halothane, l) with methoxyflurane, o) with Ethylene. 

 

Supplementary Figure S3.4. Potential Energy plots for each individual replica of all 
simulated systems. Columns represent simulations of different isotypes, starting on the left 
with αβVI, middle column is isotype αβIIa, right column is isotype αβIVa. Rows 
correspond to simulations with different ligands (top to bottom): without ligands; with 
ethylene, with desflurane, with halothane and with methoxyflurane. 
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Supplementary Figure S3.5. RMSF plots for each simulated isotype with and without 
anesthetics. Panels are as follows: A: αβVI dimer, chain alpha, B: αβVI dimer, chain beta, 
C: αβIIa dimer, chain alpha, D: αβIIa dimer, chain beta, E: αβIVa dimer, chain alpha, F: 
αβIVa dimer, chain beta. 

  

A B

C D

E F



214 Appendix to Chapter 3 

 
3.1.4 Per-residue contact probabilities 

 

Supplementary Figure S3.6. Per-residue contact probability for chain A of each isotype. 
Each plot reports contact probabilities with desflurane (black), halothane (red), 
methoxyflurane (green) and ethylene (blue). The latter shows the lowest overall contact 
probabilities, consistent with notably lower potency as a general anesthetic. Desflurane has 
an exclusive area of interaction on isotype αβVI between residues 390 and 420. Single-
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residue contact probabilities are comparable among the first three anesthetics, with 
methoxyflurane showing more ubiquitous interactions on this subunit. 

 

Supplementary Figure S3.7. Per-residue contact probability for chain B of each isotype. 
Each plot reports contact probabilities with desflurane (black), halothane (red), 
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methoxyflurane (green) and ethylene (blue). The latter shows the lowest overall contact 
probabilities, consistent with notably lower potency as a general anesthetic, with a single 
spike in contact probability only on isotype αβIIa around residues 400 to 410. Single-
residue contact probabilities are comparable among the first three anesthetics, with 
methoxyflurane showing more ubiquitous interactions on the beta chain of subunits αβVI 
and αβIIa. Isotype αβIVa interestingly has peak contact probabilities of above 0.4 for 
desflurane, halothane and methoxyflurane, the latter having exclusive areas of interaction 
on all three tested isotypes. 

3.1.5 Proximity of Tryptophan residues 

 

Supplementary Figure S3.8. Sectorized contact probability heatmaps for each simulated 
isotype (rows) with each anesthetic (columns). A: desflurane. B: halothane. C: 
methoxyflurane. D: ethylene. Tryptophan residue locations highlighted as orange crosses 
on the heatmaps. Color scale is 0 to 1 contact probability. 

3.1.6 Binding Clefts 

Supplementary Table ST3.2. Frequent binding clefts for isotypes αβVI and αβIIa 

 Ligand Cleft Residues 

αβ
V

I 

Desflurane 
CD1 αPRO325, αVAL328, αASN329, αILE332, αLYS352, αVAL353, 

αALA247  

CD2 αGLU290, αTHR292, αASN293, αALA331, αTHR334, 
αILE335, αLYS338 
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CD3 βGLU412, βASN413, βASP417, βVAL419, βGLU383, 
βSER382, βARG380, βASN379 

CD4 
βVAL175, βGLU181, βPRO182, βALA185, βMET170, 
βPRO171, βSER172, βPRO173, βASP203, βGLU205, 
βARG380, βHIS384 

CD5 βSER78, βSER79, βILE76, βTHR72, βGLN11, βASN14, 
βGLN15, βALA18 

Halothane 

CH1 αPRO325, αVAL328, αASN329, αILE332, αLYS352, αVAL353, 
αALA247 

CH2 βLYS174, βVAL175, βASP177, βTHR219, βPRO220, 
βTHR221, βTYR222 

CH3 αPHE87, αLEU86, αTYR83, αTRP21, αGLU22, αCYS25 

Methoxy-
flurane 

CM1 αPRO325, αVAL328, αASN329, αILE332, αLYS352, αVAL353, 
αALA247 

CM2 αPRO274, αVAL275, αILE276, αGLU290, αILE291, αALA294, 
αCYS295, αALA299 

CM3 βALA275, βGLY360, βPRO358, βLEU228, βHIS227 
CM4 βGLU288, βLEU289, βSER285, βLEU284, βALA283 

CM5 βPRO173, βVAL175, βSER176, βASP177, βTHR178, βHIS384, 
βMET388, βALA387 

Ethylene CE1 βARG307, βARG306, βVAL381, βASN379 

αβ
II

a 

Desflurane 

CD1 αLYS326, αASP327, αASN329, αALA330, αALA333, 
αGLY354, αLYS352 

CD2 αALA65, αVAL66, αARG64, αGLN91, αLEU92, αILE122, 
αLEU125 

CD3 βGLU383, βTHR386, βPHE389, βSER413, βGLU412, βTHR409 

CD4 βALA231, βSER230, βLEU228, βHIS227, βLEU361, βLEU273, 
βTHR274 

Halothane 

CH1 αLYS326, αASP327, αASN329, αALA330, αALA333, 
αGLY354, αLYS352 

CH2 αGLU90, αGLN91, αLEU92, αLEU125 

CH3 βSER78, βGLY79, βASP74, βGLY71, βPHE92, βGLY93, 
βPHE90 

CH4 βMET403, βGLY400, βTHR399, βTYR398 

Methoxy-
flurane 

CM1 
αLYS326, αASN329, αALA330, αALA333, αLYS336, 
αTHR337, αASN356, αGLY354, αLYS352, αPHE351, 
αGLY350, αLEU317, αGLN342, αVAL344 

CM2 βGLY308, βASN337, βTYR340, βVAL333, βASP295, 
βSER296, βPHE294 

CM3 βHIS227, βLEU228, βSER230, βALA231, βSER275, βTHR274, 
βLEU273, βARG276 

Ethylene CE1 βTHR409, βGLU410 

 

3.1.7 MM/PBSA Binding Energy Decomposition maps 
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Supplementary Figure S3.9. MM/PBSA binding energy decomposition into the four main 
components for isotype αβIVa with all simulated ligands. VDWAALS represents the Van 
der Waals interaction not including 1-4 terms; EEL are electrostatic interactions not 
including 1-4 terms; ENPOLAR and EDISPER are the non-polar contributions. 
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3.1.8 Frequent Docking Interactions 

 

Supplementary Figure S3.10. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked desflurane pose on the αβVI dimer (bars). 
Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 
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Supplementary Figure S3.11. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked ethylene pose on the αβVI dimer (bars). 
Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 

 

Supplementary Figure S3.12. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked halothane pose on the αβVI dimer (bars). 
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Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 

 

Supplementary Figure S3.13. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked methoxyflurane pose on the αβVI dimer 
(bars). Corresponding mean predicted affinity of all binding poses where the given residue 
was within 6 Å reported as a red line. 
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Supplementary Figure S3.14. Residue occurrence across all calculated docking poses, 
calculated as residues within 6 Å of each docked desflurane pose on the αβIIa dimer (bars). 
Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 

 

Supplementary Figure S3.15. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked ethylene pose on the αβIIa dimer (bars). 
Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 
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Supplementary Figure S3.16. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked halothane pose on the αβIIa dimer (bars). 
Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 

 

Supplementary Figure S3.17. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked methoxyflurane pose on the αβIIa dimer 
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(bars). Corresponding mean predicted affinity of all binding poses where the given residue 
was within 6 Å reported as a red line. 

 

Supplementary Figure S3.18. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked desflurane pose on the αβIVa dimer (bars). 
Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 
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Supplementary Figure S 3.19. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked ethylene pose on the αβIVa dimer (bars). 
Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 

 

Supplementary Figure S3.20. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked halothane pose on the αβIVa dimer (bars). 
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Corresponding mean predicted affinity of all binding poses where the given residue was 
within 6 Å reported as a red line. 

 

Supplementary Figure S3.21. Residue occurrence across all calculate docking poses, 
calculated as residues within 6 Å of each docked methoxyflurane pose on the αβIVa dimer 
(bars). Corresponding mean predicted affinity of all binding poses where the given residue 
was within 6 Å reported as a red line. 

3.1.9 Comparison with avg. residence times 



Characterization of the modulation of cell membrane mechanics 
by volatile anesthetics 

227 

 

 

Supplementary Figure S7.22. Comparison between per-residue average residence times 
(solid black line) and contact probabilities (solid red line). First column refers to isotype 
αβVI with Desflurane (A), Halothane (D), Methoxyflurane (G) and Ethylene (L). Second 
column refers to isotype αβIIa with Desflurane (B), Halothane (E), Methoxyflurane (H) 
and Ethylene (M). Last column is isotype αβIVa with Desflurane (C), Halothane (F), 
Methoxyflurane (I) and Ethylene (N). 

3.2 Characterization of the modulation of cell membrane 
mechanics by volatile anesthetics 

3.2.1 Density Profiles 
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Supplementary Figure S3.23. Density profiles of control simulations (A) and ligands at 
12.5% molar ratio: (B) Ethylene; (C) Desflurane; (D) Methoxyflurane; (E) F6. Densities of 
lipid headgroups, glycerol groups, hydrophobic lipid tails and ligands are highlighted. 
Shaded areas represent 95% confidence intervals. 
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Supplementary Figure S3.24. Density profiles of control simulations (A) and ligands at 
25% molar ratio: (B) ethylene; (C) desflurane; (D) methoxyflurane; (E) F6. Densities of 
lipid headgroups, glycerol groups, hydrophobic lipid tails and ligands are highlighted. 
Shaded areas represent 95% confidence intervals. 

3.2.2 Order Parameters 
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Supplementary Figure S3.25. Lipid tail order parameters for POPE sn1 and sn2 chains, 
with different ligands: (A) and (D) ethylene; (B) and (E) desflurane; (C) and (F) 
methoxyflurane; (G) and (H) F6. Shaded intervals correspond to 95% confidence intervals. 
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Supplementary Figure S3.26. Lipid tail order parameters for POPS sn1 and sn2 chains, with 
different ligands: (A) and (D) ethylene; (B) and (E) desflurane; (C) and (F) methoxyflurane; 
(G) and (H) F6. Shaded intervals correspond to 95% confidence intervals. 
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Supplementary Figure S3.27. Lipid tail order parameters for PSM sphingosine chain and 
acyl chain, with different ligands: (A) and (D) ethylene; (B) and (E) desflurane; (C) and 
(F) methoxyflurane;(G) and (H) F6. Shaded intervals correspond to 95% confidence 
intervals. 
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Appendix to Chapter 4 

Investigation of non-covalent 
molecular assemblies for drug 
delivery using molecular 
simulations 
4.1 Dendrimeric nanoparticles as candidate nanocarriers 

for Rose Bengal 

4.1.1 Experimental Materials and Methods 

Materials 

RB, fetal bovine serum (FBS), penicillin/streptomycin solution, trypsin-EDTA 
solution, ABDA probe [9,10-antherachenediyl-bis(methylene) dimalonic acid], 
MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide], and 
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) were purchased 
from Sigma-Aldrich (Taufkirchen, Germany). Dulbecco’s phosphate buffered 
saline without calcium and magnesium (DPBS) was purchased from Biowest 
(Nuaillé, France). HBSS (Hanks' Balanced Salt Solution) and 154 CF culture 
medium were obtained from Gibco/ThermoFisher Scientific (Waltham, MA, USA). 
Chelex 100 Resin was obtained from Bio-Rad (Hercules, CA, USA). H2DCFDA 
(2′,7′ dichlorodihydrofluorescein diacetate) was purchased from 
Invitrogen/ThermoFisher Scientific. Dimethyl sulfoxide (DMSO) was purchased 
from POCH (Gliwice, Poland). Murine basal cell carcinoma lines (AsZ, BsZ, CsZ) 
were provided by Dr. Ervin Epstein (Children’s Oakland Research Institute, 
Oakland, CA, USA).  

Poly(propyleneimine) (PPI) dendrimers of the 3rd and 4th generation* with 32 
or 64 primary amino surface groups, respectively, were obtained from Symo-Chem 
(Eindhoven, the Netherlands). Poly(amidoamine) (PAMAM) dendrimers of the 3rd 
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and 4th generation with 32 and 64 primary amino surface groups, respectively, were 
obtained from Sigma-Aldrich. 

*According to 4 the nomenclature for Tomalia-type PAMAM dendrimers can 
be used for PPI dendrimers. Hence, we adopted the suggested classification, 
describing commercially available PPI dendrimer of the 5th generation (DAB-Am-
64) as 4th generation, and 4th generation (DAB-Am-32) as 3rd generation. 

Methods 

Spectrofluorimetric and zeta potential studies on the interaction between PAMAM 

or PPI dendrimers and RB 

Fluorescence (F) emission spectra were obtained on an LS 55 fluorescence 
spectrometer (PerkinElmer, Waltham, MA, USA) at a constant temperature of 
25°C. All samples were prepared in HEPES buffer (10 mM, pH 7.4) and measured 
in quartz cuvettes. The excitation wavelength was set to 525 nm, and spectra were 
recorded between 540 and 650 nm. Excitation and emission slits were 5 and 7.5 nm, 
respectively. RB solution in a constant concentration of 1 µM was titrated with 
dendrimer solutions in concentrations ranging from 0.02 to 1 µM in order to 
maintain the molar ratio of dendrimer:RB complexes between 1:50 and 1:1. The 
experiments were performed in three independent replicates. To determine the 
stoichiometry of the polymer:dye complexes, plots of F564/F575 vs. RB:dendrimer 
molar ratio were evaluated using Job's method. 

Zeta potential measurements were performed using electrophoretic mobility 
assays on a Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, UK) at a 
constant temperature of 25°C. All samples were prepared in HEPES buffer (10 mM, 
pH 7.4). Dendrimer solutions of constant concentration (10 µM) were placed in 
DTS 1070 folded capillary cells, and their zeta potentials were measured. The 
solutions were subsequently titrated with RB solution to obtain final RB 
concentrations ranging from 10 to 500 µM, corresponding to dendrimer:RB molar 
ratios of 1:1 to 1:50. The experiments were performed in three independent 
replicates. Analysis of the titration curves for all studied systems enabled the 
evaluation of the stoichiometry of complexes as follows: decreasing dependence of 
dendrimer zeta potential on dendrimer:RB mixture stoichiometry was extrapolated 
to the intersection with the eventual zeta potential value of fully saturated 
dendrimer, and binding stoichiometry was determined from the intersection point 
(Job's method). 
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Preparation of complexes for further in vitro studies 

Dendrimers were dissolved in double-distilled water to a final concentration of 40 
µM. Dendrimer solutions were prepared fresh and used on the same day. RB 
(dissolved in double-distilled water) was added to the dendrimer solutions in a 
dendrimer:RB molar ratio of 1:10 (to a final RB concentration of 400 µM). This 
molar ratio ensures complete complexation of RB molecules by all tested 
dendrimers. The mixtures were stirred for 0.5 h at ambient temperature. Stock 
solutions were prepared just before the experiments. 

 

Singlet oxygen generation assay 

The singlet oxygen generation was studied using the ABDA probe (final 
concentration: 5 μM) as an indicator. Solutions of RB, PAMAM G3:RB, PAMAM 
G4:RB, PPI G3:RB, PPI G4:RB, and free dendrimers in the highest concentration 
used for complex formation (0.1 µM) were prepared in 10 mM HEPES. The 
complexes were prepared at RB concentrations of 0.125, 0.25, 0.5, 0.75, and 1 μM. 
Upon sample preparation, 100 μL of each solution was transferred to a 96-well 
black plate. All measurements were performed on a fluorescence microplate reader 
(Fluoroskan Ascent FL, ThermoFisher Scientific) at an excitation wavelength of 
355 nm and an emission wavelength of 430 nm. Samples were mixed before each 
measurement. The first measurement was recorded without ABDA probe to 
determine whether RB, dendrimers, or their complexes exhibit any fluorescence in 
this range. Following the first measurement, ABDA was added to each well, and 
the fluorescence of the probe without irradiation was measured. Next, the plate was 
immediately placed under a Q.Light Pro Unit lamp (Q.Light, Rorschach, 
Switzerland) equipped with a filter emitting visible light in the wavelength range 
385−780 nm. Fluorescence was measured in 5 min intervals during irradiation for 
5–60 min. The experiments were performed in four independent replicates. The 
slopes of the fluorescence curves were considered to be a measurement of singlet 
oxygen generation. The results were presented as percentages of the singlet oxygen 
generation in the control sample (HEPES buffer irradiated with probe). 

 

Cell culture 
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AsZ, BsZ, and CsZ (murine basal cell carcinoma) cell lines were cultured in 154 
CF medium with 5% penicillin/streptomycin, 0.05 mM calcium, and 2% Chelex-
purified, heat-inactivated FBS. Cells were cultured in T-75 culture flasks at 
37°C/5% CO2 and subcultured every 2 or 3 days. Cells were harvested using 0.25% 
(w/v) trypsin/0.03% (w/v) EDTA. The number of viable cells was determined by 
Trypan blue exclusion assay on a Countess Automated Cell Counter (Invitrogen, 
Carlsbad, CA, USA).  

Cytotoxicity studies 

AsZ, BsZ, and CsZ cells were seeded in 96-well transparent plates at a density 
of 3 × 104 cells per well in 90 µL medium and incubated for 24 h before 
experiments. Then, using stock solutions (according to 2.2.2), the samples 
(PAMAM G3:RB, PAMAM G4:RB, PPI G3:RB PPI G4:RB, and free RB 
solutions) were prepared in HEPES buffer and added to the cells to obtain final RB 
concentrations of 0.25, 0.5, 0.75, and 1 μM. Cytotoxicity of free dendrimers was 
also evaluated at the highest concentration used for the preparation of complexes. 
Cells were incubated with tested compounds for 5 h (37°C, 5% CO2). The medium 
was replaced with DPBS, and the cells were irradiated with visible light using the 
Q.Light Pro Unit lamp (Q.Light) for 30 min. Immediately after irradiation, DPBS 
was replaced with fresh culture medium, and the cells were incubated for 24 h (post-
PDT incubation). So-called “dark” toxicity (without irradiation) was evaluated in 
parallel. 

The cell viability was measured by MTT assay. MTT was added to the wells at 
a final concentration of 0.5 mg/mL, and the plates were incubated for 2 h (37°C, 
5% CO2). After incubation, formazan crystals were dissolved in DMSO, and the 
absorbance was read at 570 nm using the PowerWave HT Microplate 
Spectrophotometer (BioTek, Winooski, VT, USA). Experiments were performed in 
six independent replicates. Cell viabilities are presented as percentages of the 
viability in the untreated control. 

ROS generation assay 

An H2DCFDA probe was used to investigate the intracellular production of ROS. 
For this purpose, AsZ cells were seeded in 96-well black plates at a density of 1 × 
104 cells per well in 90 µL medium. After incubation for 24 h, the samples 
(PAMAM G3:RB, PAMAM G4:RB, PPI G3:RB PPI G4:RB, and free RB 
solutions) were prepared in HEPES buffer and added to the cells to obtain final RB 



Dendrimeric nanoparticles as candidate nanocarriers for Rose 
Bengal 

237 

 
concentrations of 0.25, 0.50, 1, or 2 μM. ROS-generating activity of free dendrimers 
was also evaluated at the highest concentration used for preparation of complexes. 
Cells were incubated with tested compounds for 5 h (37°C, 5% CO2). Medium 
containing the tested compounds was removed, a 2 μM solution of H2DCFDA in 
HBSS was added to each well, and the plates were incubated for the next 20 min in 
the dark (37°C, 5% CO2). Next, the cells were washed with HBSS, and background 
fluorescence (excitation: 485 nm; emission: 530 nm) of nonirradiated cells 
submerged in 100 μL HBSS was measured on a PowerWave HT Microplate reader 
(BioTek). The cells were then irradiated using Q.Light Pro Unit lamp (Q.Light Pro 
Unit) for 30 min, and 2',7'-dichlorofluorescein (DCF) fluorescence was measured. 
The experiments were performed in four independent replicates. ROS level was 
calculated as DCF fluorescence intensity and was presented as a percentage of the 
ROS production in control samples (without treatment). Each measurement was 
corrected by subtraction of the background fluorescence intensity (before 
irradiation). 

 

Cellular uptake assay 

AsZ cells were seeded into 24-well plates at a density of 1 × 105 cells per well and 
incubated for 24 h (37ºC, 5% CO2). Next, RB, PAMAM G3:RB, PAMAM G4:RB, 
PPI G3:RB, and PPI G4:RB (5 μM final concentration of RB) were added to each 
well, and the cells were incubated with the compounds for up to 4 h. Following 
incubation, the compounds were removed, and the cells were washed with DPBS 
and detached using trypsin-EDTA solution. Fresh culture medium was added to the 
cells, and the samples were gently mixed and collected for measurements. To 
estimate cellular uptake, the fluorescence of the samples was measured using flow 
cytometry (LSRII, Becton Dickinson, Franklin Lakes, NJ, USA). The excitation 
and emission filters were 520 and 570 nm, respectively. The experiments were 
performed in five independent replicates. The results are presented as the 
percentage of cells in the population that internalized RB. 

 

Statistical analysis 

Statistical significance was tested using two-way ANOVA for concentrations and 
compound series followed by post-hoc Tukey’s test for pairwise difference testing. 
In all tests, p-values < 0.05 were considered statistically significant. Data were 
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collected from at least three independent experiments and presented as arithmetic 
means ± SD. 
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4.2 Mechanisms for cellular uptake of Rose Bengal 

4.2.1 Experimental Materials and Methods 

Materials 

RB, fetal bovine serum, penicillin/streptomycin solution, trypsin-EDTA 
solution, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 
bromide), lipopolysaccharides from Escherichia coli O111:B4 (LPS), cyclosporin 
A, rifampicin, budesonide, pravastatin, naringin, taurocholic acid, allura red, and 
ritonavir were purchased from Sigma-Aldrich (Taufkirchen, Germany). Dulbecco’s 
phosphate buffered saline with no calcium and magnesium (DPBS) was purchased 
from Biowest (France). DMEM and RPMI culture media was obtained from Gibco, 
Thermo Fisher Scientific (Waltham, Massachusetts, USA). Dimethyl sulfoxide 
(DMSO) was purchased from POCH (Gliwice, Poland). Cell lines (HepG2, Hep3B, 
HT-29, and Caco-2) were obtained from ATCC. For the experiments involving the 
electrified liquid-liquid interface, the aqueous phase was a solution of 10 mM NaCl 
(analytical grade, POCH) or Britton-Robinson buffer (mixture of phosphoric acid, 
boric acid, and acetic acid, at equimolar concentrations of 10 mM), which was pH 
adjusted with 1 M HCl or 1 M NaOH. The organic phase solvent was 1,2-
dichloroethane (1,2-DCE, 99%, Sigma). 
Bis(triphenylphosphoranylidene)ammonium tetrakis(4-chlorophenyl)borate was 
used as the organic phase background electrolyte salt, was synthesized from 
bis(triphenylphosphoranylidene)ammonium chloride (BTPPACl; 97%, Sigma-
Aldrich) and potassium tetrakis(4-chlorophenyl)borate (>98%, Sigma-Aldrich); its 
concentration was maintained at 5 mM in all measurements. 

Electrified liquid-liquid interface 

The behavior of RB at the electrified liquid-liquid interface was studied in a 
traditional four-electrode cell (glass tube equipped with two Luggin capillaries) 
with the Autolab 302n potentiostat. Two reference (Ag/AgCl wires) and two 
counter (Pt wires) electrodes were used to measure the interfacial potential drop and 
impose interfacial potential difference, respectively. The organic phase reference 
electrode was additionally immersed in the 10 mM BTPPACl and 10 mM NaCl 
aqueous solution placed into the longer Luggin capillary. The organic phase counter 
electrode was insulated with the glass within the section remaining in direct contact 
with the aqueous phase. Potentiostatic cyclic voltammetry was employed as the 
electroanalytical tool. The experiential scan rate was 20 mV/s unless indicated 
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otherwise. The recorded ionic current corresponded to the following: transfer of the 
anion from the aqueous to the organic phase (negative current); transfer of the anion 
from the organic to the aqueous phase (positive current); transfer of the cation from 
the organic to the aqueous phase (negative current); and transfer of the cation from 
the aqueous to the organic phase (positive current). 

Hydrodynamic diameter measurements 

Measurements of hydrodynamic diameter were performed by the Dynamic 
Light Scattering method (DLS) on a Zetasizer Nano ZS instrument (Malvern 
Instruments Ltd, Malvern, UK). LPS (from E. coli) was dissolved in PBS (10 mM, 
pH 7.4) to a final concentration of 100 μg/mL. The solutions were placed in low 
volume sizing cuvettes (ZEN0112, Malvern Instruments Ltd., Malvern, UK) and 
the size of the formed micelles was measured. RB solution was then added to obtain 
given concentrations and the hydrodynamic diameter was measured immediately. 
The data were analyzed using Malvern software. 

Cell culture 

The Caco-2, HepG2, and Hep3B cell lines were cultured in DMEM medium, 
and the HT-29 cell line was cultured in RPMI medium. Both media contained 1% 
penicillin/streptomycin and 10% heat-inactivated FBS. Cells were cultured in T-75 
culture flasks at 37 °C/5% CO2 and sub-cultured every 3 days. Cells were harvested 
using 0.25% (w/v) trypsin-0.03% (w/v) EDTA. The number of viable cells was 
determined with the Trypan blue exclusion assay on a Countess Automated Cell 
Counter (Invitrogen, Carlsbad, CA, USA).  

Fluorescence anisotropy 

HT-29, Caco-2, HepG2, and Hep3B cells were used to analyze changes in 
fluorescence anisotropy. Following trypsinization, 1 × 106 cells in PBS (10 mM, 
pH 7.4) were placed in quartz cuvettes. Next, 1,6-diphenyl-1,3,5-hexatriene (DPH) 
and 1-(4-(trimethyloamino)phenyl)-6-phenylhexa-1,3,5-triene (TMA-DPH) were 
added to the cells at final concentration of 2.5 µM and incubated for 30 min at 37 
°C. The fluorescence anisotropy of DPH and TMA-DPH was measured using a 
PerkinElmer LS-50B spectrofluorometer (Waltham, Massachusetts, USA). 
Measurements were performed in PBS (10 mM, pH 7.4) at 37 °C. The excitation 
and emission wavelengths were set to 348 and 426 nm for DPH and 358 and 428 
for TMA-DPH. Increasing concentrations of RB dissolved in HBSS (10 mM, pH 



Mechanisms for cellular uptake of Rose Bengal 241 

 
7.4) was added to the sample, and the anisotropy of fluorescence was measured 
again.  

Fluorescence anisotropy was calculated using Perkin Elmer software and 
Jablonski’s equation: 

r = (IVV − GIVH)/(IVV + GIVH) 

where r is fluorescence anisotropy, and IVV and IVH are the vertical and 
horizontal fluorescence intensities, respectively, to the vertical polarization of the 
excitation light beam. G = IVH/IVV (grating correction factor) corrects the 
polarization effects of the monochromator. 

Intracellular uptake inhibition assay 

Cells were seeded into 24-well plates at a density of 1 × 105 cells/well and 
incubated for 24 h (37 ºC, 5% CO2). Next, the cells were treated with RB (5 μM 
final concentration) for up to 3 h. For the inhibition assay, cells were pre-incubated 
with inhibitors (50 μM final concentration) for 1 h. Following incubation, the 
compounds were removed, and the cells were washed with DPBS and detached 
using trypsin-EDTA solution. Following the addition of fresh culture medium, 
samples were gently mixed and collected for measurements. To estimate cellular 
uptake, fluorescence was measured using flow cytometry (LSRII, Becton 
Dickinson, Franklin Lakes, NJ, USA). The excitation and emission filters were 520 
and 570 nm, respectively. The results are presented as the percentage of cells in the 
population that internalized RB. 

Confocal microscopy 

Caco-2, HT-29, HepG2, and Hep3B cells were seeded into black 96-well plates 
with a transparent glass bottom at a density of 1 × 104 cells/well followed by 24 h 
of incubation in standard conditions. The medium was replaced with 100 μL fresh 
culture medium containing RB (5 µM) and plates were incubated for 4 h in the dark 
(37 ºC, 5% CO2). Cells were subsequently washed with DPBS and fixed with 4% 
formaldehyde solution for 15 min. Phalloidin–Atto 633 (1:400) was then added to 
each well for 20 min to stain F-actin in the cell membrane. Cells were washed with 
DPBS and 5 µM Hoechst 33342 was added to the cells for an additional 15 min to 
stain nuclear DNA. Following incubation, cells were washed with DPBS and 
submerged in 100 µL of fresh DPBS. Images were taken with a Leica TCS SP8 
confocal microscope. 
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Cytotoxicity studies 

Caco-2, HepG2, Hep3B, and HT-29 cells were seeded into 96-well plates at a 
density of 1.5 × 104 cells/well. After 24 h of incubation (37 °C, 5% CO2), 100 μL 
of fresh culture medium containing different concentrations of RB was added to the 
cells and incubated for 5 h (37 ºC, 5% CO2). The medium was then replaced with 
DPBS, and cells were irradiated for 30 min (2.4 J/cm2/min) with the Q. Light Pro 
Unit lamp. Immediately after irradiation, DPBS was replaced with fresh culture 
medium, and cells were incubated for 24 h as a post-photodynamic therapy 
incubation. Additionally, the “dark” toxicity (without irradiation) and cytotoxicity 
of inhibitors were evaluated.  

Cell viability was measured using the MTT assay. MTT was added to the wells 
(final concentration 0.5 mg/mL) and the plates were incubated for 2 h (37 ºC, 5% 
CO2). After incubation, formazan crystals were dissolved in DMSO, and the 
absorbance was read at 570 nm using a PowerWave HT Microplate 
Spectrophotometer (BioTek, USA). 

In silico analysis 

Amino acid sequences were analyzed with Jalview software. Sequences 
obtained from the Protein Bank (NCBI) were used for the analysis. Tertiary protein 
structures were compared using the Swiss PDB viewer; the structures used for these 
comparisons were obtained from UniProt. 

Western blot analysis 

Cells were lysed in RIPA buffer (with PMSF and PIC) and the lysates were 
separated using SDS-PAGE electrophoresis and transferred to a nitrocellulose 
membrane (Amersham™ Protran®). After blocking with milk, the membrane was 
stained with primary antibodies (PA5106753- OATP1B1/1B3 (1:1000) and 
PA516914- beta-actin (1:10000) - Thermo Fisher Scientific, Waltham, MA, USA) 
at 4 °C overnight. After incubation, membranes were washed with PBS-Tween, and 
HRP-conjugated secondary antibodies were added (Goat anti-Rabbit IgG (H+L) 
Secondary Antibody, HRP (1:200000) Thermo Fisher Scientific, Waltham, MA, 
USA). Protein bands bound to HRP-conjugated secondary antibodies were 
visualized using the SuperSignal™ West Pico chemiluminescent substrate (Thermo 
Fisher Scientific, Waltham, MA, USA) and images were acquired with the 
ChemiDoc-IT2 (UVP, Meranco, Poznan, Poland). Beta-actin was used as the 
loading control. 
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4.2.2 Results 

 

 

Supplementary Figure S4.28. Dissociation of LPS (E. coli) micelles by different 
concentrations of rose bengal. 
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Supplementary Figure S4.29. Confocal micrographs of Caco-2 and HepG2 cell lines: (1) 
Hoechst 33342 (2) rose bengal (3) Phalloidin–Atto 633; (4) merge of channels 1, 2, and 3. 
Scale bar represents 10 µm. 

 
Supplementary Table ST4.3. Comparison of IC50 values for evaluated cell lines 

Cell line IC50 [µM] 

HepG2 5.03 

Hep3B 2.75 
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Caco-2 19.84 

HT-29 20.64 

 
Supplementary Table ST4.4. Statistically significant difference at p < 0.05 between the 
uptake of RB on nontreated cells and after treatment with each inhibitor 
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Supplementary Figure S4.30. Cytotoxic effect of selected inhibitors (50 µM) in (A) HepG2 
and (B) Hep3B cell lines. Cell viability was determined using MTT assay. Data are 
presented as percentages of the viability of control (untreated) cells; means ± SD; n = 3. 

 

>NP_006437.3 solute carrier organic anion transporter family member 
1B1 [Homo sapiens] 

MDQNQHLNKTAEAQPSENKKTRYCNGLKMFLAALSLSFIAKTLGAIIMKSSIIHIERRFEISSSLV
GFIDGSFEIGNLLVIVFVSYFGSKLHRPKLIGIGCFIMGIGGVLTALPHFFMGYYRYSKETNINSS
ENSTSTLSTCLINQILSLNRASPEIVGKGCLKESGSYMWIYVFMGNMLRGIGETPIVPLGLSYIDD
FAKEGHSSLYLGILNAIAMIGPIIGFTLGSLFSKMYVDIGYVDLSTIRITPTDSRWVGAWWLNFLV
SGLFSIISSIPFFFLPQTPNKPQKERKASLSLHVLETNDEKDQTANLTNQGKNITKNVTGFFQSFK
SILTNPLYVMFVLLTLLQVSSYIGAFTYVFKYVEQQYGQPSSKANILLGVITIPIFASGMFLGGYI
IKKFKLNTVGIAKFSCFTAVMSLSFYLLYFFILCENKSVAGLTMTYDGNNPVTSHRDVPLSYCNSD
CNCDESQWEPVCGNNGITYISPCLAGCKSSSGNKKPIVFYNCSCLEVTGLQNRNYSAHLGECPRDD
ACTRKFYFFVAIQVLNLFFSALGGTSHVMLIVKIVQPELKSLALGFHSMVIRALGGILAPIYFGAL
IDTTCIKWSTNNCGTRGSCRTYNSTSFSRVYLGLSSMLRVSSLVLYIILIYAMKKKYQEKDINASE
NGSVMDEANLESLNKNKHFVPSAGADSETHC 

>NP_062818.1 solute carrier organic anion transporter family member 
1B3 isoform 1 [Homo sapiens] 

MDQHQHLNKTAESASSEKKKTRRCNGFKMFLAALSFSYIAKALGGIIMKISITQIERRFDISSSLA
GLIDGSFEIGNLLVIVFVSYFGSKLHRPKLIGIGCLLMGTGSILTSLPHFFMGYYRYSKETHINPS
ENSTSSLSTCLINQTLSFNGTSPEIVEKDCVKESGSHMWIYVFMGNMLRGIGETPIVPLGISYIDD
FAKEGHSSLYLGSLNAIGMIGPVIGFALGSLFAKMYVDIGYVDLSTIRITPKDSRWVGAWWLGFLV
SGLFSIISSIPFFFLPKNPNKPQKERKISLSLHVLKTNDDRNQTANLTNQGKNVTKNVTGFFQSLK
SILTNPLYVIFLLLTLLQVSSFIGSFTYVFKYMEQQYGQSASHANFLLGIITIPTVATGMFLGGFI
IKKFKLSLVGIAKFSFLTSMISFLFQLLYFPLICESKSVAGLTLTYDGNNSVASHVDVPLSYCNSE
CNCDESQWEPVCGNNGITYLSPCLAGCKSSSGIKKHTVFYNCSCVEVTGLQNRNYSAHLGECPRDN
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TCTRKFFIYVAIQVINSLFSATGGTTFILLTVKIVQPELKALAMGFQSMVIRTLGGILAPIYFGAL
IDKTCMKWSTNSCGAQGACRIYNSVFFGRVYLGLSIALRFPALVLYIVFIFAMKKKFQGKDTKASD
NERKVMDEANLEFLNNGEHFVPSAGTDSKTCNLDMQDNAAAN 

Supplementary Figure S 4.31. Amino acid sequences of (A) OATP1B1 and (B) OATP1B3 
transporters used in the alignment. 

 

 

Supplementary Figure S4.32. Alignment of amino acid sequences of OATP1B1 and 
OATP1B3 transporters. 
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Supplementary Figure S4.33. Alignment of amino acid sequence of OATP1B1 and 
OATP1B3 recognized by the antibody used for Western blotting (red). (B) Predicted OATP 
structure based on the amino acid sequence of OATP1B1 (white) and OATP1B3 (green). 
The domain recognized by the applied antibody is marked for OATP1B1 in purple and 
OATP1B3 for in red. 

 

 

Supplementary Figure S4.34. Density profiles of lipid head groups (blue), glycerol groups 
(red), lipid tails (green) and RB (black) with respect to the bilayer center (z=0) for the 
control simulation (A) and the simulation with 1 RB molecule (B). 
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Supplementary Figure S 4.35. Deuterium order parameters, SCD, f the sn1 (left column) 
and sn2 (right column) chains of POPC (A and B), POPE (C and D), POPS (E and F) and 
PSM (G and H). Each plot reports the order parameters as a function of the carbon atom 
index for the control simulation (grey), the simulation with 1 RB (red) and the simulation 
with 10 RB molecules (blue). Shaded colors represent the 95% confidence interval for each 
series calculated after block-averaging. 

 

Supplementary Figure S4.36. Radial distribution functions from the simulation with 1 RB 
molecule, highlighting the distances between RB CO2- groups and lipid head nitrogen 
atoms (A) and phosphorus (C) atoms, and the distances between RB O- groups and lipid 
head nitrogen (B) and phosphorus (D) atoms. Shaded intervals represent 95% confidence 
intervals calculated from block averaging. 
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4.3 Dendrimeric nanoparticles as candidate nanocarriers 

for Rose Bengal 

 

 

Supplementary Figure S4.37. Phototoxic effect of RB and dendrimer:RB complexes in 1:10 
molar ratio, in BsZ and CsZ cells. The viability of cells was determined using MTT assay. 
Data are presented as percentage of viability of control (untreated) cells; mean ± SD; n = 
6. *Statistically significant difference vs. free RB; p < 0.05. ×Statistically significant 
difference vs. dendrimers of different type, regardless of generation; p < 0.05. 

 
Supplementary Table ST4.5. Statistically significant differences (*p < 0.05) in intracellular 
uptake of the tested compounds at the indicated time points. 

  RB PPI G3:RB PPI G4:RB PAMAM 
G3:RB 

PAMAM 
G4:RB 

0.
25

 h
 

RB -   *  
PPI G3:RB  - *   
PPI G4:RB   -   
PAMAM 
G3:RB 

   -  
PAMAM 
G4:RB 

    - 

0.
5 

h 

RB -  *   
PPI G3:RB  - *   
PPI G4:RB   - * * 
PAMAM 
G3:RB 

   -  
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PAMAM 
G4:RB 

    - 
1 

h 

RB - * *  * 
PPI G3:RB  - * *  
PPI G4:RB   - * * 
PAMAM 
G3:RB 

   - * 
PAMAM 
G4:RB 

    - 

2 
h 

RB - * * * * 
PPI G3:RB  - * *  
PPI G4:RB   - * * 
PAMAM 
G3:RB 

   - * 
PAMAM 
G4:RB 

    - 

3 
h 

RB - * * * * 
PPI G3:RB  - * *  
PPI G4:RB   - *  
PAMAM 
G3:RB 

   - * 
PAMAM 
G4:RB 

    - 

4 
h 

RB - * * * * 
PPI G3:RB  - * *  
PPI G4:RB   - *  
PAMAM 
G3:RB 

   - * 
PAMAM 
G4:RB 

    - 

 

Supplementary Table ST4.6. Comparison of RoG values obtained in the present work with 
previously published computational and experimental data. 

  Literature (MD)  Experimental 

System This 
work GAFF CHARMM Other  SANS SAXS 

PAMAM 
G3 

1.460 ± 
0.058 

1.578 ± 
0.0295 
1.216 
1.527 

1.5338 
1.4089 

1.61 ± 
0.0110 
1.45411 
1.9712 
1.6199 

 

1.66613 1.50914 
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PAMAM 
G4 

1.859 ± 
0.064 

2.064 ± 
0.0225 
1.496 

2.1048 

2.06 
±0.0110 
2.143 ± 
0.0115 
2.17 ± 
0.00112 
1.84811 
1.716 
2.6712 

 

2.12913 1.86014 

PPI G3 1.284 ± 
0.024   

1.16 ± 
0.00710 
1.34211 

 1.2417 
1.1618 1.3319 

PPI G4 1.590 ± 
0.020 

1.601 ± 
0.0115 
1.577 ± 
0.02120 

 

1.40 ± 
0.00710 
1.64811 
1.5921 

1.577 ± 
0.02120 

 

1.5617 
1.3918 1.4319 

 

 

Supplementary Figure S4.38. Radius of gyration (RoG) during the first (A) and second (B) 
200 ns replicates of the dendrimer systems. PAMAM G3 is presented in black, PAMAM 
G4 in red, PPI G3 in green, and PPI G4 in blue. Shaded colors show data from all processed 
trajectories, whereas solid colors represent moving averages. 
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Supplementary Figure S 4.39. Starting and final snapshots of the MD simulation from the 
first replica for (A) PAMAM G3, (B) PAMAM G4, (C) PPI G3 and (D) PPI G4 with 10 
RB molecules. 
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Supplementary Figure S 4.40. Distances of the centers of mass of the 10 RB molecules 
with respect to the center of mass of each dendrimer during the first MD replica. Each RB 
molecule is represented with a different color. 
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Supplementary Figure S4.41. Distances of the centers of mass of the 10 RB molecules with 
respect to the center of mass of each dendrimer during the second MD replica. Each RB 
molecule is represented with a different color. 
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Supplementary Figure S4.42. Comparison of average values (± SD) of geometrical 
descriptors in the presence (gray) and absence (white) of RB. (A) Radius of gyration (RoG), 
(B, C) aspect ratios, and (D) asphericity. Data were obtained by averaging over the last 50 
ns of simulation from two MD replicas, with snapshots taken every 2 ps. 

 

Supplementary Figure S4.43. Radius of gyration (RoG) during the first (A) and second (B) 
200 ns replicates of the dendrimer:RB complexes. PAMAM G3:RB complex is presented 
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in black, PAMAM G4:RB in red, PPI G3:RB in green, and PPI G4:RB in blue. Shaded 
colors show data from all processed trajectories, whereas solid colors represent moving 
averages. 

 

Supplementary Figure S4.44. Particle density (number of atoms per unit volume) of the 
investigated dendrimers with respect to the dendrimer central core in the (A) presence and 
(B) absence of RB 

 

 

Supplementary Figure S4.45. Average (± SD) of the interaction area between dendrimers 
and RB molecules during the last 50 ns of the two independent MD replicates. 
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Supplementary Figure S4.46. Linear regression to calculate the volumes of internal cavities 
for (A) dendrimer-only systems and (B) dendrimer:RB complexes. 

 

 

Supplementary Figure S4.47. RDF of (A) the CL- ions and (B) RB molecules with respect 
to the positively charged amines of the simulated dendrimers during the concatenated 
equilibrium trajectory (last 50 ns of each MD replica). 

 
Multiple-dendrimer systems 
 

Snapshots of each of the simulated dendrimers at structural equilibrium were 
extracted from previously described MD simulations and used to build multiple-
dendrimer systems as follows: two copies of each dendrimer configuration were 
juxtaposed to obtain two-dendrimer systems with an inter-dendrimer distance of 2 
nm. The obtained configuration was inserted into a dodecahedral box, and 20 RB 
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molecules were added in random positions around the dendrimer to obtain a 1:10 
dendrimer:RB molar ratio. The systems were solvated, neutralized, and simulated 
following the protocols described in the Materials and Methods.  

During this set of simulations, G3 dendrimers exhibited a marked tendency to 
interact with each other, whereas G4 dendrimers either interacted on longer time 
scales or were unable to interact (Supplementary Figure S4.48). We are well aware 
that the complete characterization of such processes requires a more thorough 
sampling. Accordingly, we wish to emphasize that these results are complementary 
to surface potential data derived from APBS, with more neutral complexes of G3 
dendrimers interacting with each other, and complexes of G4 dendrimers (with 
more positive surface potential) showing only marginal to no interaction. Such 
preliminary data provide be a suitable starting point for future developments aimed 
at a thorough characterization of dendrimer–dendrimer interaction and cell 
internalization mechanisms. 

 

 

Supplementary Figure S4.48. Dendrimer–dendrimer minimum distance during the 200 ns 
MD simulation: G3 dendrimers interact after a few ns of simulation, whereas G4 
dendrimers interact on longer time scales (PPI) or are not able to interact with each other 
(PAMAM). PAMAM G3 is presented in black, PAMAM G4 in red, PPI G3 in green, and 
PPI G4 in blue. Shaded colors show data from all processed trajectories, whereas solid 
colors represent moving averages. On the right, representative snapshots of the structural 
stability are presented for PAMAM G3, PPI G4, and PAMAM G4. 

 
Hydrodynamic diameter measurement 
 

The solutions of complexes prepared as described in the point 4.2.2 of the 
Experimental Section were diluted in HEPES to a final dendrimer concentration of 
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10 µM and placed in the low volume sizing cuvettes (ZEN0112, Malvern 
Instruments Ltd., Malvern, UK). Measurements were performed at 25oC. The data 
were analyzed using the Malvern software. The particle size distribution was 
determined using a multimodal peak analysis, with individual peaks analyzed by 
number. Data were presented as mean ± SD, n = 3 (8 measurements each) 
(Supplementary Table ST4.7). 

 
Supplementary Table ST4.7. Hydrodynamic diameters of dendrimer:RB complexes. Data 
presented as average ± SD, n = 3 (8 measurements each) 

 Hydrodynamic diameter [nm] Polydispersity index (PDI) 
PAMAM G3:RB 232.52 ± 10.11 0.30 ± 0.06 
PAMAM G4:RB 6.20 ± 2.42 0.28 ± 0.10 

PPI G3:RB 311.50 ± 39.95 0.56 ± 0.18 
PPI G4:RB 373.87 ± 59.28 0.60 ± 0.16 

 

 

Supplementary Figure S4.49. Rose bengal (RB) structure with partial charges assigned 
using the AM1-BCC charge method 
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4.4 Tailoring tubulin assemblies as GTP-responsive drug 

delivery nanocapsules 

4.4.1 Materials and Methods 

Materials 

Unless indicated otherwise, all commercial reagents were used as received. Bovine 
serum albumin (BSA), doxorubicin hydrochloride (DOX), uridine-5’-triphosphate 
trisodium salt (UTP), cytidine-5’-triphosphate disodium salt (CTP), guanosine-5’-
triphosphate trisodium salt (GTP), guanosine-5’-diphosphate sodium salt (GDP), 
adenosine-5’-triphosphate disodium salt (ATP), and Dulbecco’s phosphate-
buffered saline (D-PBS) were purchased from Wako Pure Chemical Industries.  
Fluorescein isothiocyanate (FITC) and 1,4-piperazinediethanesulfonic acid 
(PIPES) were purchased from Tokyo Chemical Industry (TCI).  Guanylyl 5’-a, b-
methylenediphosphonate (GTP*) was purchased from Cosmobio.  Foetal bovine 
serum (FBS) was purchased from Thermo Fisher Scientific.  Eagle’s minimal 
essential medium (EMEM) was purchased from Life Technologies.  
Polyacrylamide gel was purchased from Bio-Rad. Biomol GreenTM Reagent was 
purchased from Enzo Life Sciences.  Cell Counting Kit-8 was purchased from 
Dojindo Laboratories.  The human hepatocellular carcinoma Hep3B cell line 
(ATCC® HB-8064TM) was purchased from American Type Culture Collection 
(ATCC).  α-Mercaptoethyl-w-methoxy, polyoxyethylene (PEG-SH, Mw; 5 K) was 
purchased from NOF.  Gold nanoparticles (50 nm in diameter) were purchased from 
Sigma–Aldrich. Polyoxyethylene sorbitan monolaurate (Tween 20) was purchased 
from Nacalai Tesque. 

 

General Procedures 

1H NMR and 13C NMR spectra were recorded on a JEOL model GSX-500 
spectrometer, where chemical shifts (δ in ppm) were determined using CHCl3 (δ 
7.26), CHD2(CD3)SO (δ 2.50), and HDO (δ 4.79) for 1H NMR and CDCl3 (δ 77.2) 
and (CD3) 2SO (δ 39.5) for 13C NMR as internal references.  Matrix-assisted laser 
desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was 
performed with a-cyano-4-hydroxycinnamic acid (CCA), 2,5-dihydroxybenzoic 
acid (DHB), or sinapinic acid (SA) as a matrix and an Applied Biosystems 
Biospectrometry WorkstationTM model Voyager-DETM STR spectrometer or a 
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Bruker model Autoflex SpeedTM spectrometer.  A Horiba model AS-212 compact 
pH metre was used for pH measurements.  Electronic absorption spectra were 
recorded with a Molecular Devices model SpectraMax Paradigm multimode 
microplate detection platform, a Thermo Scientific model NanoDrop 2000c 
spectrophotometer, or a JASCO Model V-570 spectrophotometer.  Fluorescence 
spectra were recorded using a Molecular Devices model SpectraMax Paradigm 
multimode microplate detection platform.  UV exposure for photoreaction was 
performed with a UVP model UVLM-28 UV lamp.  Analyses of images of the 
acrylamide gels were performed using an Amersham Biosciences model Typhoon 
9410 variable image analyser.  

Recycling preparative gel permeation chromatography (GPC) was performed 
with a Japan Analytical Industry model LC908-C60 using a column set consisting 
of JAIGEL 1H-40 and 2H-40. Transmission electron microscopy (TEM) images 
were recorded using a JEOL model JEM-1400 electron microscope operating at an 
anode voltage of 120 kV.  Samples were applied to an electron microscope 
specimen grid covered with a thin carbon support film that had been hydrophilized 
by ion bombardment.  Then, the samples were negatively stained with a saturated 
uranyl acetate solution.  Tapping-mode atomic force microscopy (AFM) of air-
dried samples on a mica surface was performed using an SII Nano Technology 
model NanoNavi S-image.  Small-angle X-ray scattering (SAXS) was carried out 
at BL45XU in SPring-8 (Hyogo, Japan) with a Dectris model Pilatus 3X 300K-W 
detector.  Scattering vector q (q = 4πsinθ/λ; 2θ and λ are the scattering angle and 
wavelength of the incident X-ray beam [1.70 Å], respectively) and the position of 
an incident X-ray beam on the detector were calibrated using several orders of layer 
reflections from silver behenate (d = 58.380 Å).  Dynamic light scattering (DLS) 
measurements were performed with a Malvern model Zetasizer µV light scattering 
spectrometer using an infrared laser (830 nm).  Zeta potential measurements were 
performed using a Malvern model Zetasizer Nano ZSP zeta potential analyser.  
Confocal laser scanning microscopy (CLSM) was performed using a Leica model 

TCS SP8 microscope.  Flow cytometry was performed using a BD model Accuriâ 
C6 flow cytometer.  Asymmetric field flow fractionation was performed using an 
Eclipse model AF4 separation system equipped with a JASCO model UV-2070plus 

variable-wavelength UV-Vis detector.  A regenerated cellulose membrane with a 5 
kD cut-off (Wyatt Technology) and 350 µm spacer to adjust the channel thickness 
was used in combination with PIPES buffer (10 mM PIPES and 1 mM MgCl2, pH 
6.8) as an eluent (detector-flow rate: 1.0 ml min–1 cross-flow rate: gradient from 0.5 
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ml min–1 to 0 ml min–1 for 180 min, transition time: 5 min).  BSA was used as a 
standard for evaluating the concentrations of tubulin heterodimer (THD).  
Ultrafiltration was performed using cellulose-made centrifugal filters (Amicon® 

Ultra-0.5 ml 100K) with a molecular weight cut-off of 100 kDa.  Concentrations of 
FITC molecules and gold nanoparticles were measured by determining the 
absorbance at 490 nm and 540 nm, respectively. 

Synthesis of compounds 

 

 

Supplementary Figure S4.50. GlueCO2H: To a 1,4-dioxane (10 ml) solution of HCl (4 M) 
was added 1 (99 mg, 42 µmol)6, and the mixture was stirred for 4 h at room temperature.  
Compound 1 (99 mg, 42 µmol) was added to a 1,4-dioxane (10 ml) solution containing 
HCl (4 M)6, and the mixture was stirred for 4 h at room temperature.  Hexane (50 ml) was 
added to the reaction mixture, and the mixture was filtered.  The insoluble fraction was 
dissolved in water and then reprecipitated with 1,4-dioxane to enable the isolation of 
GlueCO2H as a yellow solid at a 74% yield (58 mg).  1H NMR (500 MHz, DMSO-d6, 28 
°C): δ (ppm) 3.34–4.64 (br, 66H), 7.17 (br, 6H), 7.53–7.73 (br, 22H), 8.16 (br, 2H), 8.46 
(br, 2H), 11.64 (br, 3H).  13C NMR (125 MHz, DMSO-d6, 28 °C): δ (ppm) 35.7, 47.2, 
49.6, 51.0, 51.4, 62.5, 68.5, 68.8, 69.5, 69.7, 71.7, 108.1, 114.4, 125.5, 127.8, 128.3, 129.1, 
129.9, 131.9, 132.1, 135.6, 137.4, 141.3, 151.7, 157.0, 160.9, 166.6, 194.3.  MALDI-TOF-
MS m/z calculated for C88H112N21O17S [M – 3HCl + H]+; 1734.85, found; 1735.69. 
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Supplementary Figure S4.51. Compound 4:  To a THF (60 ml) solution of a mixture of 2 
(470 mg, 832 µmol)6, 3 (136 mg, 208 µmol)7, and diisopropylethylamine (DIPEA, 181 µl, 
1.7 mmol) was added copper iodide (158 mg, 832 µmol), and the mixture was stirred for 
17 h at room temperature.  Copper iodide (158 mg, 832 µmol) was added to a THF (60 ml) 
solution composed of a mixture of Compound 2 (470 mg, 832 µmol)6, Compound 3 (136 
mg, 208 µmol)7, and diisopropylethylamine (DIPEA, 181 µl, 1.7 mmol), and the mixture 
was stirred for 17 h at room temperature.   The reaction mixture was extracted with AcOEt, 
and washed with saturated aqueous NH4Cl and brine.  A separated organic extract was 
dried over Na2SO4 and filtered off from an insoluble fraction.  The filtrate was subjected 
to recycling preparative GPC using CHCl3 as an eluent to isolate Compound 4 as a green 
solid at a 21% yield (100 mg).  1H NMR (500 MHz, CDCl3, 24 °C): δ (ppm) 1.43–1.46 (s, 
54H), 2.80–2.97 (br, 12H), 3.54–4.13 (br, 48H), 4.47 (br, 6H), 6.90–6.92 (br, 6H), 7.45–
7.75 (br, 26H), 8.73 (s, 3H), 11.43 (br, 3H).  13C NMR (125 MHz, CDCl3, 24 °C): δ (ppm) 
28.1, 28.4, 29.8, 38.7, 49.3, 50.3, 50.8, 52.2, 52.5, 66.9, 68.8, 69.6, 69.9, 70.5, 72.5, 79.5, 
83.1, 108.9, 114.1, 124.1, 125.4, 128.3, 129.8, 130.2, 132.1, 132.6, 138.1, 138.3, 152.3, 
153.0, 156.1, 162.0, 162.5, 163.4, 195.6.  MALDI-TOF-MS m/z calculated for 
C89H114N21O17S [M – 6Boc + H]+; 1748.87, found; 1749.83. 
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Supplementary Figure S4.52. GlueCO2Me:  To a 1,4-dioxane/Et2O (1/1) solution (10 ml) 
of HCl (2 M) was added 4 (6.5 mg 2.8 µmol), and the mixture was stirred for 4.5 h at room 
temperature.  Compound 4 (6.5 mg 2.8 µmol) was added to a 1,4-dioxane/Et2O (1/1) 
solution (10 ml) of HCl (2 M), and the mixture was stirred for 4.5 h at room temperature.   
Then, the reaction mixture was evaporated to dryness under reduced pressure.  The residue 
was dissolved in water and then reprecipitated in 1,4-dioxane to isolate GlueCO2Me as a 
yellow solid with an 83% yield (4.3 mg).  1H NMR (500 MHz, D2O, 27 °C): δ (ppm) 3.54–
3.97 (br, 57H), 4.31 (br, 6H), 4.66 (br, 6H), 6.88–6.90 (br, 8H), 7.49–7.62 (br, 22H), 8.29 
(br, 2H).  13C NMR (125 MHz, DMSO-d6, 27 °C): δ (ppm) 48.0, 49.3, 49.7, 51.3, 52.3, 
66.4, 68.4, 68.7, 69.5, 69.7, 71.9, 108.2, 114.3, 124.1, 124.4, 128.3, 128.3, 128.4, 129.2, 
129.3, 132.1, 137.7, 141.7, 142.7, 151.9, 157.1, 162.0, 165.7, 194.3.  MALDI- MALDI-
TOF-MS m/z calculated for C89H114N21O17S [M – 3HCl + H]+; 1748.87, found; 
1749.22. 

 

Supplementary Figure S4.53. Compound 6:  To a THF (50 ml) solution of a mixture of 2 
(215 mg, 380 µmol), 5 (110 mg, 95 µmol)6, and DIPEA (84 µl, 760 µmol) was added 
copper iodide (72 mg, 380 µmol), and the mixture was stirred overnight at room 
temperature.  Copper iodide (72 mg, 380 µmol) to a THF (50 ml) solution composed of a 

O
O

O

O

N
N

N

N

NH
O

NHBoc
BocN

O

O

O

N
N

N

N

NHO
NHBocBocN

O

O

O

O

N N
N

N N
H

O

NBoc
BocHN

O

OMeO

O
O

O

O

N
N

N

N

NH
O

NH2H2N

O

O

O

N
N

N

N

NHO
NH2H2N

O

O

O

O

N N
N

N N
H

O

NH2
H2N

O

OMeO

HCl

Dioxane

GlueCO2Me4

5

N ON
H

BocHN

NBoc

O

+
2

CuI, DIPEA

THF

6

O
O

O

O

N3

O

O

N3

O

O

O

N3

O N
H

O O NH

S NH

O
O

O

O

N
N

N

N

NH
O

NHBoc
BocN

O

O

O

N
N

N

N

NHO
NHBocBocN

O

O

O

O

N N
N

N N
H

O

NBoc
BocHN

O

O N
H

O O NH

S
OH

O

O
HO

O

NH
OH

O

O
HO

O



Tailoring tubulin assemblies as GTP-responsive drug delivery 
nanocapsules 

267 

 
mixture of Compound 2 (215 mg, 380 µmol), Compound 5 (110 mg, 95 µmol)6, and 
DIPEA (84 µl, 760 µmol), and the mixture was stirred overnight at room temperature.   The 
reaction mixture was extracted with AcOEt, and washed with saturated aqueous NH4Cl 
and brine.  A separated organic extract was dried over Na2SO4 and filtered off from an 
insoluble fraction.  The filtrate was subjected to recycling preparative GPC using CHCl3 
as an eluent to isolate Compound 6 as a yellow solid with a 56% yield (151 mg).  1H NMR 
(500 MHz, DMSO-d6, 23 °C): δ (ppm) 1.35–1.39 (s, 54H), 2.67–2.84 (br, 12H), 3.50–4.13 
(br, 60H), 4.46 (br, 6H), 6.58–6.67 (br, 5H), 7.01-7.17 (br, 9H), 7.52-7.64 (br, 23H), 7.97 
(br, 4H), 8.48 (s, 3H), 10.13 (br, 1H), 11.43 (br, 3H).  13C NMR (125 MHz, CDCl3, 27 
°C): δ (ppm) 28.1, 28.3, 29.7, 31.3, 38.7, 49.5, 50.4, 52.2, 52.5, 67.0, 69.3, 69.5, 70.6, 79.3, 
82.9, 107.1, 114.1, 115.6, 124.0, 124.9, 128.3, 129.8, 130.1, 132.0, 132.6, 138.3, 140.6, 
144.9, 152.2, 153.0, 156.0, 158.6, 162.1, 162.5, 163.5, 195.6.  MALDI-TOF-MS m/z 
calculated for C115H137N24O23S [M – 6Boc + H]+; 2254.00, found; 2254.57. 

 

 

Supplementary Figure S4.54. GlueFITC:  To a 1,4-dioxane (10 ml) solution of HCl (4 M) 
was added 6 (82 mg 29 µmol), and the mixture was stirred for 3 h at room temperature.  
Compound 6 (82 mg 29 µmol) was added to a 1,4-dioxane (10 ml) solution containing HCl 
(4 M), and the mixture was stirred for 3 h at room temperature.  Then, the reaction mixture 
was evaporated to dryness under reduced pressure.  The residue was dissolved in water and 
then reprecipitated in 1,4-dioxane to isolate GlueFITC as yellow a solid at a 61% yield (44 
mg).  1H NMR (500 MHz, DMSO-d6, 24 °C): δ (ppm) 2.72–2.88 (br, 12H), 3.54–4.64 (br, 
66H), 6.59–6.75 (br, 4H), 7.15–7.21 (br, 7H), 7.35 (br, 2H), 7.53–7.73 (br, 23H), 8.12 (br, 
3H), 8.45 (br, 2H), 11.64 (br, 3H).  13C NMR (125 MHz, DMSO-d6, 24 °C): δ (ppm) 35.8, 
47.2, 49.7, 51.1, 51.5, 60.1, 62.6, 68.3, 68.6, 68.9, 69.6, 69.7, 71.8, 102.2, 106.3, 112.8, 
114.6, 127.9, 128.3, 128.4, 129.2, 130.0, 132.0, 132.2, 135.6, 137.5, 139.7, 151.6, 157.0, 
161.0, 162.3, 165.5, 194.4.  MALDI-TOF-MS m/z calculated for C115H136N24O22S [M 
– 3HCl – OH + H]+; 2238.01, found; 2238.04, C115H137N24O23S [M – 3HCl + H]+; 
2254.00, found; 2253.30. 
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1H and 13C NMR spectroscopy 

 

Supplementary Figure S 4.55. 1H NMR spectrum (500 MHz) of GlueCO2H in DMSO-d6 at 
28 °C. 

 

Supplementary Figure S 4.56. 13C NMR spectrum (500 MHz) of GlueCO2H  in DMSO-d6 at 
28 °C. 
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Supplementary Figure S 4.57. 1H NMR spectrum (500 MHz) of GlueCO2Me in D2O at 27 
°C. 

 

Supplementary Figure S 4.58. 13C NMR spectrum (500 MHz) of GlueCO2Me in DMSO-d6 
at 27 °C. 
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Supplementary Figure S 4.59. 1H NMR spectrum (500 MHz) of GlueFITC in DMSO-d6 at 
24 °C. 

 

Supplementary Figure S 4.60. 13C NMR spectrum (500 MHz) of GlueFITC in DMSO-d6 at 
24 °C. 
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MALDI-TOF mass 

 

Supplementary Figure S4.61. MALDI-TOF mass spectrum of GlueCO2H. 

 

Supplementary Figure S4.62. MALDI-TOF mass spectrum of GlueCO2Me. 
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4.4.2 Results 

Characterization of NSGTP/GTP* 

 

 

Supplementary Figure S4.63. SAXS profile of a solution of NSGTP/GTP* (0.3 mg ml–1) 
in PIPES buffer (100 mM PIPES, 1 mM MgCl2, 250 µM GTP*, and 50 µM GTP, pH 6.8).  
The scattering intensity was proportional to q–2 in the small-q region 
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Self-assembly of THD in PIPES buffer containing a high mol% of GTP* 

 

Supplementary Figure S 4.64. a–c, TEM images of a solution of THDGDP (0.3 mg ml–1) in 
PIPES buffer (100 mM PIPES and 1 mM MgCl2, pH 6.8) after an incubation with 
GTP/GTP* (0/250 µM) (a), GTP/GTP* (25/275 µM) (b), or GTP/GTP* (0/300 µM) (c) at 
37 °C for 30 min.  d, DLS profiles of the THD samples incubated with (blue curve) 
GTP/GTP* (0/250 µM), (red curve) GTP/GTP* (25/275 µM), and (green curve) 
GTP/GTP* (0/300 µM). 
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Self-assembly of THD in PIPES buffer containing a low mol% of GTP* 

 

Supplementary Figure S 4.65. a–c, TEM images of a solution of THD (0.3 mg ml–1) in 
PIPES buffer (100 mM PIPES and 1 mM MgCl2, pH 6.8) after an incubation with 
GTP/GTP* (300/0 µM) (a), GTP/GTP* (150/150 µM) (b), or GTP/GTP* (100/200 µM) 
(c) at 37 °C for 30 min.  d, DLS profiles of the THD samples incubated with (blue curve) 
GTP/GTP* (300/0 µM), (red curve) GTP/GTP* (150/150 µM), and (green curve) 
GTP/GTP* (100/200 µM). 
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NMR measurement of NSGTP/GTP* 

 

Supplementary Figure S4.66. 1H NMR spectrum (500 MHz) of NSGTP/GTP* in DMSO-
d6 at 25 °C.  Since two GTP molecules are hybridized to THDGTP, and one GTP and one 
GTP* molecule are hybridized to THDGTP*, the NMR results show that 65% of 
THDGTP* is contained in the NSGTP/GTP*.  Signals marked with blue, magenta, orange, 
red, and green circles are assignable to protons in GTP and GTP*, which are highlighted 
in the corresponding colours. 
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Self-assembly of THD in PIPES buffer containing a mixture of GTPγS and GTP* 

 

Supplementary Figure S 4.67. a, b, TEM image (a) and DLS profile (b) of THD (0.3 mg 
ml–1) after an incubation with GTPγS/GTP* (50/250 μM) at 37 °C for 30 min in PIPES 
buffer (100 mM PIPES and 1 mM MgCl2, pH 6.8). 
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Self-assembly of THD in PIPES buffer containing a mixture of GTP and GTPγS 

 

Supplementary Figure S 4.68. a, b, TEM image (a) and DLS profile (b) of THD (0.3 mg 
ml–1) after an incubation with GTP/GTPγS (50/250 μM) at 37 °C for 30 min in PIPES 
buffer (100 mM PIPES and 1 mM MgCl2, pH 6.8). 
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MTGTP* treated with GlueCO2– 

 

Supplementary Figure S 4.69. a, b, TEM image (a) and DLS profile (b) of MTGTP* (13 
μg ml–1) in PIPES buffer (14 mM PIPES, 1 mM MgCl2, and 0.2 mM GTP*, pH 6.8) after 
an incubation with GlueCO2– (100 μM) at 37 °C for 30 min. 
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THDGDP treated with GlueCO2– 

 

Supplementary Figure S4.70. a, b, TEM image (a) and DLS profile (b) of THDGDP (0.3 
mg ml–1) in PIPES buffer (100 mM PIPES and 1 mM MgCl2, pH 6.8) after an incubation 
with GlueCO2– (100 μM) at 37 °C for 30 min. 
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Photo-induced covalent fixation of GlueFITC onto THDGDP 

 

Supplementary Figure S4.71. a, b, Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS– PAGE) analysis of THDGDP (0.15 mg ml–1; i) and a mixture of 
THDGDP (0.15 mg ml–1) and GlueFITC (10 μM) in PIPES buffer (20 mM PIPES, pH 6.8) 
before (ii) and after (iii) irradiation with 300-nm light for 3 min. The samples were 
visualized by staining with Coomassie Brilliant Blue (a) and by observing the fluorescence 
emission of FITC (λext = 488 nm, λobs = 526 nm; b). c, d, Uncropped version of gel images 
of a (c) and b (d), where green squares indicate cropped area. 
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AFM observation of CLNCGTP/GTP* 

 

Supplementary Figure S4.72. a, b, 2D (a) and 3D (b) AFM images of a solution of 
CLNCGTP/GTP* (13 µg ml–1) in PIPES buffer (14 mM PIPES, 1 mM MgCl2, and 0.2 
mM GTP*, pH 6.8). 
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Stability of NCGTP/GTP* and CLNCGTP/GTP* in the presence of BSA 

 

Supplementary Figure S4.73. a, b, TEM images of a solution of NCGTP/GTP* (13 µg ml–
1; a) and CLNCGTP/GTP* (13 µg ml–1; b) in PIPES buffer (14 mM PIPES, 1 mM MgCl2, 
and 0.2 mM GTP*, pH 6.8) after an incubation with BSA (0.1 mg ml–1) at 37 °C for 30 
min.  c, DLS profiles of NCGTP/GTP* (blue) and CLNCGTP/GTP* (red) after the 
incubation with BSA. 
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Stability of NCGTP/GTP* and CLNCGTP/GTP* in the presence of FBS 

 

Supplementary Figure S4.74. a, b, TEM images of NCGTP/GTP* (13 μg ml–1; a) and 
CLNCGTP/GTP* (13 μg ml–1; b) after an incubation with FBS (0.01%) at 37 °C for 15 
min in PIPES buffer (14 mM PIPES, 1 mM MgCl2, and 0.2 mM GTP*, pH 6.8). c, DLS 
profiles of NCGTP/GTP* (blue) and CLNCGTP/GTP* (red) after the incubation with FBS. 
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Formation of fluorescent NCGTP/GTP* and CLNCGTP/GTP* using GlueFITC 

 

Supplementary Figure S4.75. a, b, TEM images of NCGTP/GTP* (13 μg ml–1; a) and 
CLNCGTP/GTP* (13 μg ml–1; b) prepared using GlueFITC (100 μM) in PIPES buffer (14 
mM PIPES, 1 mM MgCl2, and 0.2 mM GTP*, pH 6.8). c, CLSM observation of 
CLNCGTP/GTP* prepared using GlueFITC (0.5 μg ml–1). (i) Bright field image, (ii) 
fluorescence image (λext = 488 nm, λobs = 505–565 nm), and (iii) a merged image of (i) 
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and (ii). d, DLS profiles of NCGTP/GTP* (blue curve) and CLNCGTP/GTP* (red curve) 
in PIPES buffer. 

MD simulation of the folding of 𝐺𝑙𝑢𝑒U](2 in aqueous solution 

 

Supplementary Figure S4.76. a, b, Snapshot of Glue(CO2- ) before (a) and after (b) the MD 
simulation.  Nitrogen, oxygen, carbon, and hydrogen atoms of GlueCO2H are respectively 
coloured in blue, red, grey, and white.  Water molecules and chloride anions are not shown 
explicitly and are the solution is represented in transparent blue for clarity.  c, Gyration 
diameter of Glue(CO2- ) calculated along 200 ns of MD simulation. 
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MD simulation of the adhesion of 𝐺𝑙𝑢𝑒U](2onto THDGTP* 

 

Supplementary Figure S4.77. Radial distribution functions g(r) of the Gu+ groups in 
GlueCO2– with CO2– groups (blue) and nonionic hydroxyl groups (grey) on 
[THDGTP*]3, and the CO2– group at the focal core of GlueCO2– with cationic groups on 
[THDGTP*]3 (green).  
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NSGTP/GTP* treated with GlueCO2Me 

 

Supplementary Figure S 4.78. a, b, TEM image (a) and DLS profile (b) of NSGTP/GTP* 
(13 μg ml–1) in PIPES buffer (14 mM PIPES, 1 mM MgCl2, and 0.2 mM GTP*, pH 6.8) 
after an incubation with GlueCO2Me (100 μM) at 37 °C for 30 min. 
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GTPase activity of THD depending on hybridization with GTP* 

 

Supplementary Figure S4.79. GTPase activities of THDGTP (left) and THDGTP* (right) 
in PIPES buffer (14 mM PIPES, 1 mM MgCl2, pH 6.8). Red bars represent mean values ± 
SD from three different samples. 
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CLNCGTP/GTP* treated with triphosphates 

 

Supplementary Figure S4.80. a–c, TEM images of CLNCGTP/GTP* (9 μg ml–1) after an 
incubation with 0.5 mM of ATP (a), CTP (b), or UTP (c) at 37 °C for 100 min in PIPES 
buffer (13 mM PIPES, 0.7 mM MgCl2, and 0.1 mM GTP*, pH 6.8). 

 

CLNCGTP/GTP* without addition of GTP 
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Supplementary Figure S4.81. a, b, TEM image (a) and DLS profile (b) of CLNCGTP/GTP* 
(9 μg ml–1) after an incubation at 37 °C for 100 min in PIPES buffer (13 mM PIPES, 0.7 
mM MgCl2, and 0.1 mM GTP*, pH 6.8). 
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Encapsulation of NPAu into CLNCGTP/GTP* 

 

Supplementary Figure S4.82. a, b, TEM images of CLNCGTP/GTP*⊃NPAu 
([CLNCGTP/GTP*] = 13 μg ml– 1, [NPAu] = 13 pM; a) and a mixture of 
CLNCGTP/GTP* (13 μg ml–1) and NPAu (13 pM; b). c, Elution profiles of 
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CLNCGTP/GTP*⊃NPAu (blue), the mixture of CLNCGTP/GTP* and NPAu (red), and 
NPAu (green) obtained using asymmetric field flow fractionation.  
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Encapsulation of DOX into CLNCGTP/GTP* 

 

Supplementary Figure S4.83. CLSM observations of FITC-labelled 
CLNCGTP/GTP*⊃DOX. (i) λext = 488 nm, λobs = 505–520 nm for FITC, (ii) λext = 488 
nm, λobs = 570–645 nm for DOX, and (iii) a merged image of (i) and (ii). 
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Uptake of FITC-labelled THDGDP into Hep3B cells 

 

Supplementary Figure S4.84. a, CLSM images of Hep3B cells after 2.5-h incubation with 
FITC- labelled THDGDP (0.5 μg ml–1) at 37 °C in EMEM and rinsing with D-PBS, 
followed by 1.5-h incubation in EMEM (10% FBS). (i) Bright field image, (ii) fluorescence 
image (λext = 488 nm, λobs = 505–565 nm), and (iii) a merged image of (i) and (ii). b, 
Flow cytometry analysis of the Hep3B cell sample (n = 630).  
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Uptake of FITC-labelled NSGTP/GTP* into Hep3B cells 

 

Supplementary Figure S 4.85. a, CLSM images of Hep3B cells after 2.5-h incubation with 
FITC- labelled NSGTP/GTP* (0.5 μg ml–1) at 37 °C in EMEM and rinsing with D-PBS, 
followed by 1.5-h incubation in EMEM (10% FBS). (i) Bright field image, (ii) fluorescence 
image (λext = 488 nm, λobs = 505–565 nm), and (iii) a merged image of (i) and (ii). b, 
Flow cytometry analysis of the Hep3B cell sample (n = 630).   
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Uptake of FITC-labelled CLNCGTP/GTP* into Hep3B cells treated with an endocytosis 
inhibitor 

 

Supplementary Figure S 4.86. a, CLSM images of Hep3B cells after 2.5-h incubation with 
FITC- labelled CLNCGTP/GTP* (0.5 μg ml–1) in the presence of 5 mM of NaN3 
(endocytosis inhibitor) at 37 °C in EMEM and rinsing with D-PBS, followed by 1.5-h 
incubation in EMEM (10% FBS). (i) Bright field image, (ii) fluorescence image (λext = 
488 nm, λobs = 505–565 nm), and (iii) a merged image of (i) and (ii). b, Flow cytometry 
analysis of the Hep3B cell sample (n = 700). 
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Dose dependency on cytotoxicity of CLNCGTP/GTP*⊃DOX 

 

Supplementary Figure S4.87. Normalized viabilities of Hep3B cells determined using Cell 
Counting Kit-8. Hep3B cells were treated with four different concentrations of 
CLNCGTP/GTP* ⊃ DOX ([CLNCGTP/GTP*] = 1.0 μg ml–1, [DOX] = 0.8 μM; blue), 
([CLNCGTP/GTP*] = 1.6 μg ml–1, [DOX] = 1.2 μM; orange), ([CLNCGTP/GTP*] = 2.1 
μg ml–1, [DOX] = 1.6 μM; red), and ([CLNCGTP/GTP*] = 4.2 μg ml–1, [DOX] = 3.2 μM; 
green) for 2.5 h in EMEM, rinsed with D-PBS, and incubated in EMEM (10% FBS) for 
21.5 h. Bars represent mean values ± SD from three different samples. 
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Incubation time dependency on cytotoxicity of CLNCGTP/GTP*⊃DOX 

 

Supplementary Figure S4.88. Normalized viabilities of Hep3B cell determined using Cell 
Counting Kit-8. Hep3B cells were incubated in EMEM containing 
CLNCGTP/GTP*⊃DOX ([CLNCGTP/GTP*] = 1.6 μg ml–1, [DOX] = 1.2 μM) for 1 h 
(blue) or 2.5 h (red), rinsed with D-PBS, and further incubated in EMEM (10% FBS) for 
21.5 h. Bars represent mean values ± SD from three different samples. 
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Cell line dependency on cytotoxicity of CLNCGTP/GTP*⊃DOX 

 

Supplementary Figure S4.89. Normalized viabilities of HeLa cell (blue), A549 cell 
(orange), and Hep3B cell (red) determined using Cell Counting Kit-8. Cells were incubated 
in EMEM containing CLNCGTP/GTP*⊃DOX ([CLNCGTP/GTP*] = 1.6 μg ml–1, [DOX] 
= 1.2 μM) for 2.5 h, rinsed with D- PBS, and further incubated in EMEM (10% FBS) for 
21.5 h. Bars represent mean values ± SD from three different samples. 
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Effects of encapsulation of DOX in CLNCGTP/GTP*⊃DOX for cytotoxicity test 

 

Supplementary Figure S4.90. Normalized viabilities of Hep3B cells determined using Cell 
Counting Kit-8. Hep3B cells were incubated in EMEM for 2.5 h containing DOX (1.2 μM; 
blue), a mixture of DOX and THDGDP ([DOX] = 1.2 μM, [THDGDP] = 1.6 μg; orange), 
a mixture of DOX, THDGDP, and GlueCO2– ([DOX] = 1.2 μM, [THDGDP] = 1.6 μg, 
[GlueCO2–] = 12.3 μM; red), and CLNCGTP/GTP* ⊃DOX ([CLNCGTP/GTP*] = 1.6 μg 
ml–1, [DOX] = 1.2 μM; green), rinsed with D-PBS, and further incubated in EMEM (10% 
FBS) for 21.5 h. Bars represent mean values ± SD from three different samples. 
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