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Abstract

What makes animal gaits so audibly rhythmic? To answer this question, we recorded

the footfall sound of 19 horses and quantified the rhythmic differences in the tem-

poral structure of three natural gaits: walk, trot, and canter. Our analyses show that

each gait displays a strikingly specific rhythmic pattern and that all gaits are orga-

nized according to small-integer ratios, those found when adjacent temporal intervals

are related by a mathematically simple relationship of integer numbers. Walk and trot

exhibit an isochronous structure (1:1)—similar to a ticking clock—while canter is char-

acterized by three small-integer ratios (1:1, 1:2, 2:1). While walk and trot both show

isochrony, trot has a slower tempo and ismore precise and accurate, like ametronome.

Our results quantitatively discriminate horse gaits based on rhythm, revealing strik-

ing commonalitieswith humanmusic and some animal communicative signals. Gait and

vocal rhythmicity share key features, and the former likely predates the latter; we sug-

gest this supports gait-based hypotheses for the evolution of rhythm. Specifically, the

perception of locomotor rhythmicitymay have evolved in different species under pres-

sure for predator recognition and mate selection; it may have been later exapted for

rhythmic vocal communication.
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INTRODUCTION

Temporal regularities, or rhythm in its broader definition,1 arise in the

most diverse natural domains. The morning song of a cuckoo or the
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chest drumming of a gorilla instinctively resonates in the human per-

ceptual system, raising questions about the adaptive value of a feature

that counteracts timing randomness. Animals’ lives are populated by

multiple rhythms connected to ecological, physiological, or behavioral
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processes. Some evolutionary hypotheses link communicative rhythms

to gait, suggesting that the perception of rhythmic locomotion patterns

might have been a preadaptation for vocal rhythms.2 Since locomo-

tion is characterized by a sequence of movements repeated regularly

and rhythmically over time,3,4 we may hypothesize that the result-

ing sounds are also rhythmic and that rhythmicity depends on gait.

Here, we rhythmically quantify the sound of quadrupedal locomotion

to uncover temporal patterns that align with non-gait rhythms, which

have been documented in the recent literature.

How can gait and vocal rhythms be linked? Although the specific

circuits involved in rhythm production in nonhuman animals are still

partly a mystery,5 some evidence suggests that the same substrates

involved in locomotion may have represented the ancestral form of

rhythms.3,6 Previous literature has highlighted that locomotor pat-

ternsmay play an important role in early brain development, positively

affecting human infant rhythmperception.2 Moreover, from an ecolog-

ical point of view, locomotion-induced sounds produce communicative

signals primarily indicating the presence of a moving individual.7,8 The

ability to perceive and recognize locomotory patterns has considerable

adaptive value and may have represented an important preadapta-

tion to developing rhythmic abilities in our own and other species. In

humans, the transition to a bipedal gait produced more regular and

predictable locomotor sounds; according to some, these sounds may

have laid the foundation for proto-musicality.9,10 Locomotor rhythms

may have constituted one of the building blocks for the production of

rhythmicity at the vocal level.

To understand whether locomotor rhythms might be precursors

to vocal rhythms in our and other species, it is first necessary to

compare temporal patterns between these two different behaviors.

Human music and some animal communicative signals share some key

rhythmic features: the relationships between adjacent temporal inter-

vals correspond to very simple ratios, that is, small-integer ratios.11,12

Small-integer ratios provide a powerful metric to analyze any tempo-

ral sequence of sounds, allowing comparability of rhythmic patterns

across different modalities and species. This study proposes, for the

first time, a quantification of the rhythmicity across three distinct

gaits. Specifically, here we test for the presence of small-integer ratios

in the sounds produced in three natural horses’ gaits: the WALK, a

four-beat gait; the TROT, a two-beat gait with two suspension phases;

and the CANTER, a three-beat gait with a single suspension phase13

(Figure 1A). We recorded the sounds of the steps of 19 adult and

healthy horses and quantified the inter-onset intervals (tk) as those

intervals between two successive footfalls. First, we used a classifica-

tion technique to test whether each gait can be discriminated based

on the relationships across three adjacent tk, that is, we tested if a dis-

tinctive temporal signature characterizes each gait. Next, we tested

whether rhythmic ratios (rk), that is, the normalized ratios between

two adjacent pairs of tk (rk = tk/(tk + tk+1)), fall around small-integer

values.14 Finally, we quantified how rhythmically precise and accurate

the three gaits are.

MATERIALS AND METHODS

Study subjects and recordings

We recorded and analyzed the threemost common horse gaits:WALK,

TROT, and CANTER (Figure 1A). Regarding speed (m/s), WALK is the

slowest of the three gaits. It is a four-beat gait, meaning each hoof

strikes the ground separately. The sequence of the hooves hitting the

ground is left hind, left front, right hind, right front.15 TROT is a two-

beat gaitwhere diagonal pairs of legsmove together (left hind and right

front together, followed by right hind and left front together15). CAN-

TER is a three-beat gait faster than the trot but slower than the gallop.

It has a distinctive sequence of footfalls: one hind leg, the diagonal pair

of front and the other hind leg, and finally, the other front leg followed

by a suspension phase.13,16 We recorded 19 individuals who had been

previously declared healthy, based on a thorough clinical examination

aimed at detecting signs of lameness. Animals were audio recorded

performingWALK, TROT, and CANTER on a firm surface to clearly dis-

tinguish the sound of hooves striking the ground.We recorded 1min of

walk, 1 min of trot, and 1 min of canter for each animal, excluding the

transition phases between gaits. The horses were ridden by the same

riderwhoperformed the recordings byholding anAudioMoth recorder

(LabMaker). We recorded shod horses of both sexes (7 females and 12

males), and various breeds, ranging in age from 4 to 28 years and with

the height of the withers ranging between 128 and 180 cm.

Acoustic analysis

We used the software Praat 6.0.5617 to analyze the sound recordings.

We created a Praat TextGrid to annotate the footstep sounds. Par-

ticularly, we annotated the sound produced by the hoof striking the

ground at the peak of maximum intensity, excluding the transitional

phases between gaits. Using a Python script, we then extracted and

exported the time series of footsteps from different TextGrids into

a .csv datasheet.18 The inter-onset intervals (tk) were calculated as the

time interval between two successive footsteps. The rhythmic ratios

(rk) were calculated by dividing each tk by its duration plus the duration

of the following interval:14 rk = tk/(tk + tk+1). Rhythmic ratios serve to

describe local relationships between pairs of adjacent tk values.

Uniform manifold approximation projection and
random forest classification

In order to represent the temporal structure of three adjacent tk
for each gait in a two-dimensional space while preserving the local

structure of the data, we performed a dimensionality reduction via

uniform manifold approximation projection (UMAP; umap package

in R), a nonlinear dimensionality reduction method.19 Dimensionality
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F IGURE 1 (A) Sequence of footfalls inWALK, TROT, and CANTER; tk represents the interval between successive footfalls. (B) Distribution of
tk values per gait. Peak values are shown on the curve. (C) Ternary plot representation of three adjacent intervals. (D) UMAP visualization of three
adjacent intervals, classified based on actual labels (left) versus supervisedmachine learning (right). (E) Confusionmatrix, overall accuracy, and
ROC curves describe the high performance of the supervised classificationmethod.

reduction is useful for simplifying the visualization of complex data,

such as time series, and facilitates classification algorithms; indeed,

high-dimensional data can be harder to interpret than reduced ones,

and sometimes redundant or irrelevant dimensions can obscure

meaningful patterns. The obtained coordinates (V1 and V2, serving

as the x and y axes to plot the observations), which recapitulated

the relationships existing between three adjacent tk, were used to

perform a supervised classification model. We used the gait type as

the classification factor for random forests (randomForest; no. of trees

= 1000). We extracted 70% of the data to create a Random Forest

classifier in the training phase, and the remaining 30%was used to test

the model. The model provided an estimated out-of-bag (OOB) error,

which predicts the expected error of the model on one side and the

correctly predicted values on the bootstrapped data on the other side.



4 ANNALSOF THENEWYORKACADEMYOF SCIENCES

The model also provided an estimated confusion matrix based on the

training performance. The relevance of each variable (V1 and V2) was

determined via the importance function (randomForest R package). We

verified that the number of trees was sufficient by plotting the error

ratio against thenumber of trees. For the test phase,weused the predict

function (randomForest R package). Receiver operating characteristic

(ROC) curveswereplotted and the areaunder curve (AUC) valueswere

extracted for each level of gait with the performance function (ROCR R

package). The percentage of true positives was calculated to quantify

the total accuracy of the model, that is, the number of observations

in which the true label matched the predicted one. To assess whether

the structure of the temporal intervals data was better explained by

the gait or the individual, in parallel, we constructed a Random Forest

accounting for interindividual differences: in other words, the second

model included the same parameters but this time the supervised

approachwas based on the individual identity instead of gait.

Comparison of tk durations

We compared the median individual tk durations of walk and trot

using a paired t-test (t.test function20). We tested the normality of

distributions with Shapiro−Wilk tests (shapiro.test function21).

Small-integer ratios test

We followed a methodology commonly used in animal acoustic com-

munication to evaluate the occurrence of small-integer ratios in the

footsteps timing sequences.12,14 To test the significance of the peaks

of the rk distribution, we divided the ratio distribution into on-integer

and off-integer ratio ranges. The on-integer ratio ranges were cen-

tered around three small-integer ratios: 1:2, 1:1 (corresponding to

isochrony), and 2:1. We centered the off-integer ratio ranges around

1/3.5 (or 0.285), 1/2.5 (or 0.400), 1-(1/2.5) (or 0.600), and 1-(1/3.5)

(or 0.710). The on-integer ratio boundaries were 1/3.25 (or 0.308)

and 1/2.75 (or 0.364) for the 1:2 ratio range; 1/2.25 (or 0.444) and

1-(1/2.25) (or 0.555) for isochrony; and 1-(1/2.75) (or 0.637) and 1-

(1/3.25) (or 0.693) for the 2:1 category.We counted the occurrences of

rk within specific off- and on-ratio ranges. We used generalized linear

mixed models (GLMMs; package glmmTMB22) to test if the numeros-

ity of on-integer ratios data points was significantly higher than that of

off-integer ratios for each rhythmic category (1:2, 1:1, and 2:1).We ran

two GLMMs, one for the WALK and one for TROT, fitting a negative-

binomial distribution. In both models, we treated the count of rk as

the response variable, defined the specific bin in which the rk fell (1:1

on, 1:1 off, 1:2 on, 1:2 off, 2:1 on and 2:1 off) as a fixed factor, and

included the horse identity as a random factor.We also entered an off-

set variable to weight the rk numerosity on the width of the bin on the

probability density curve. Since each CANTER motion cycle is charac-

terized by three steps and a suspension phase, corresponding to two

successive tk, we tested for small-integer ratios at the motion cycle

level. In other words, the last tk corresponds to the suspension phase

and is defined by the last beat of a motion cycle and the first of the

successive one. For each stride cycle, we thus calculated three rk: the

first one does not include the suspension phase (rk1 = t1/(t1+t2)), the
second one includes the suspension phase (rk2 = t2/(t2+t3)), and the

third one considers the last tk of a motion cycle and the first of the suc-

cessive one (rk3 = t3/(t3+t1’)). We tested the significance of 1:1, 1:2,

and 2:1 rhythmic categories separately with three GLMMs. We used

the rk as the response variable, and we considered the specific bin (on-

vs. off-integer) as a fixed factor and the rk type (rk1, rk2, rk3), depend-

ing on the specific phase of the motion cycle. The horse identity was

used as a random factor. We chose a Poisson distribution for CANTER

models and we checked for zero-inflation and overdispersion (pack-

age performance23). For all described GLMM models, we conducted a

likelihood ratio test by comparing the fullmodel, containing all predic-

tors, with a nullmodel that included only the random factor and offset

to assess its significance. The R summary function returned p-values

for each predictor and the emmeans package, the p-adjustment (Tukey

method), and pairwise comparisons.24 We checked the normality and

homogeneity of residuals by inspecting the residuals’ distribution and

the qqplot (a function provided by R.Mundry).

Visualization

To visualize the rhythmic structure across different gaits and individ-

uals, we considered four different representations. The density plot

of tk values (Figure 1B) displays the overall distribution of inter-onset

intervals. The ternary plots (Figure 1C) show the rhythmic structure on

the scale of three adjacent tk values, representing the relative propor-

tions of the three tk, ranging from 0 to 100, along the triangle axes. The

relationship across three adjacent tk has been investigated through

dimensional reduction (UMAP) and supervised classification models

(Random Forest): the derived two-dimensional space is represented

in Figure 1D, and the performance of machine learning in Figure 1E.

The density plot of rk (Figure 2A, top) illustrates the distribution of

rk. When the rk observations cluster near integer ratio reference val-

ues (0.33 for 1:2, 0.5 for 1:1, and 0.66 for 2:1) and this is statistically

detectable, this translates into the presence of rhythmic categories

following small-integer ratios. The lollipop plot (Figure 2A, bottom)

highlights the local peak values calculated from the rk density plot of

each individual (findpeaks function, pracma package).

Accuracy and precision around isochrony

For all three gaits, we quantified the accuracy and precision of rk pro-

duction for isochrony, the only small-integer category that was shared

across the three gaits.We calculated the accuracy as the deviance from

isochrony. Considering all rk observations within isochrony bound-

aries (0.4 < rk < 0.6), we calculated the accuracy as the absolute

value of the difference between the observed rk values and the refer-

ence value of isochrony (rk = 0.5). In other words, accuracy quantifies

how close the rk values are to perfect isochrony. Complementarily,
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F IGURE 2 (A) Top: Probability density function of rk; three additional plots for the canter represent the distribution for each phase of the
motion cycle. Bottom: Lollipop plots show the peak values of the ratio density function at the within-individual level. (B) Accuracy and precision of
isochrony for the three gaits.

we estimated precision, as the proximity of rk values to one another,

that is, their spread. For each animal and each gait, the precision was

calculated as the difference of the third quartile of rk values distribu-

tion from the first quartile of the rk distribution (i.e., the interquartile

range), all within isochrony boundaries (0.4 < rk < 0.6). Practically, the

wider the interquartile range of rk distribution, the higher the spread,

the lower the precision. To analyze the differences in precision and

accuracy across gaits, we created two separate GLMMs (glmmTMB

package22). The first model used accuracy as the response variable,

while the second used precision. In both models, gait was entered as a

fixed factor and horse identity as a random factor. Using the package

fitdistrplus, we assessed our response variable’s most suitable family

distribution.25 We used a likelihood ratio test to compare the full to the

null model to probe its significance. The R summary function provided

p-values for each predictor, while the emmeans package served for p-

adjustment (Tukeymethod) and pairwise comparisons.24 To ensure the

assumptions of normality and homogeneity of residuals were met, we

examined the distribution of residuals and qqplots (a function provided

by R.Mundry).

RESULTS

Machine learning performance on gait type
discrimination

Our model’s OOB error was 6.92%, meaning that 93.08% of the new

observations were estimated to be correctly classified. The overall

accuracy, that is, the ratio between the number of true positives and

total observations on training and testing, was 97.95% (Figure 1D).

In this performance prediction, WALK’s classification error was esti-

mated to be 0.096, TROT’s 0.086, and CANTER’s only 0.003. The

true positive to false positive (AUC; Figure 1E) ratio in the training

classification was 0.967 for WALK, 0.973 for TROT, and 0.996 for

CANTER.

Machine learning performance on individual
discrimination

To test whether interindividual variability affected the rhythmic struc-

ture of three adjacent tk, we ran an identical machine learning model,

supervised on the basis of individuals instead of gait type. This sec-

ond model showed an estimated OOB error of 81.37%, meaning that

18.63% of the new observations will likely be correctly classified indi-

vidually. The AUC for the 19 individuals had an average of 0.702 ±
0.073. The overall accuracy of themodel was 75.37%.

Comparison of tk durations

We tested if the tk values ofWALK (M = 0.301, SD = 0.051) and TROT

(M = 0.352, SD = 0.062) were different. The values of tk were tested

with a paired t-test that revealed that TROT displayed significantly

longer intervals thanWALK (t=−10.151, df= 18, p< 0.0001).

Peak significance around small-integer ratios

The full GLMM testing for the small-integer ratios differed signifi-

cantly from the null model for both WALK and TROT. In particular,

both WALK and TROT showed significantly more rk falling within the
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TABLE 1 GLMM results for the significance of rhythmic categories spread and deviance.

GLMMmodels

Full versus null Post-hoc comparisons

Chisq DF p Contrast Estimate SE Z ratio p

WALK 7897.417 5 <0.0001 11off− 11on −0.834 0.032 −25.742 <0.0001

TROT 10463.150 5 <0.0001 11off− 11on −3.757 0.119 −31.523 <0.0001

CANTER, rk1 = t1/(t1+t2) 567.257 5 <0.0001 11off− 11on −0.714 0.0724 −9.859 <0.0001

CANTER, rk2 = t2/(t2+t3) 326.356 5 <0.0001 12off− 12on −0.354 0.090 −4.143 <0.001

CANTER, rk3 = t3/(t3+t1’) 222.817 5 <0.0001 21off− 21on −0.322 0.087 −3.713 0.003

Deviance 1743.258 2 <0.0001 WALK—TROT 0.713 0.019 36.844 <0.0001

WALK—CANTER −0.184 0.023 −8.180 <0.0001

TROT—CANTER −0.897 0.025 −35.432 <0.0001

Spread 47.391 2 <0.0001 WALK—TROT 0.953 0.126 7.572 <0.0001

WALK—CANTER 0.081 0.099 0.814 0.694

TROT—CANTER −0.872 0.127 −6.879 <0.0001

Note: Onlymeaningful post-hoc comparisons are reported.

on-isochrony boundaries than off-isochrony boundaries (Table 1 and

Figure 1F, top). The three full GLMMs testing for the small-integer

ratios in the three phases of CANTER also significantly differed from

the null ones. The first phase (rk1 = t1/(t1+t2)) of CANTER showed

significantly more rk falling within the on-isochrony boundaries than

inside theoff-isochronyboundaries. The secondphase (rk2 = t2/(t2+t3))
showed a significant peak around 1:2. The third phase (rk3 = t3/(t3+t1’))
showed a significant peak around 2:1 (Table 1).

Visualization

The distributions of tk values show a single peak value at 0.287 s for

WALK and 0.360 s for TROT. In the CANTER, two peaks were found

at 0.148 and 0.267 s (Figure 1B). The ternary plots show a single

cluster around 1:1:1 for both WALK and TROT, and three clusters of

points corresponding to 1:1:2, 1:2:1, and 2:1:1 (Figure 1C). The distri-

butions of rk show a single peak value at 0.499 for WALK and 0.500

for TROT. In the CANTER, we found three peaks at 0.359, 0.445, and

0.670 (Figure 2A, top). The lollipop plot suggests that WALK produces

only one peak (maximum) in the vicinity of 1:1 in 12 out of 19 individ-

uals. TROT produces only one peak in the vicinity of 1:1 in 17 out of

19 individuals; CANTER produces two or three peaks in 17 out of 19

individuals (Figure 2A, bottom).

Accuracy and precision differences among gaits

Both full models testing for differences in deviance (accuracy) and

spread (precision) on the basis of gait differed from the null models.

Accuracy around isochrony changed among the three gaits, with CAN-

TER showing the highest deviance from isochrony, that is, the lowest

accuracy, and TROT showing the lowest values, that is, the highest

accuracy. The precision around isochrony was lower in WALK and

CANTER than in the TROT, as rhythmic ratios showed higher values of

spread (Table 1 and Figure 2B).

DISCUSSION

WALK and TROT tk values showed a unimodal distribution. The CAN-

TER followed a bimodal distribution, suggesting two durational classes

of tk (Figure 1B). The relationships between three adjacent tk, dis-

played by the ternary plots (Figure 1C), were gait specific, with a single

cluster around a 1:1:1 ratio for WALK and TROT, and three clusters

(1:1:2, 1:2:1, and 2:1:1 ratios) for CANTER. These findings confirm that

WALK and TROT are characterized by successive intervals of similar

duration.15 In the CANTER, a longer interval is associated with the

phase of themotion cycle characterized by the suspension phase.13

Using amachine-learning classification approach, we found that the

rhythmic patterns of three successive tk were significantly different

(a) across gaits (Figure 1D,E), with an overall classification accuracy of

97.95%, and (b) across individuals, with an accuracy of 75.37%. Elastic

andmechanical constraints arising from the individual morphology can

influence the rawdurations of tk, their relationships, and thus the over-

all locomotor pattern. In other species, gait can be used as a proxy to

detect individual identity26; in our case, horses are social animals that

may gain a decisive adaptive advantage from individual recognition of

gait sound. While our models showed an individual-specific rhythmic

pattern, they also clearly evidenced that gait type better explained the

differences in rhythmicpatterns than interindividuality. In otherwords,

the relationships across three adjacent tk were sufficient to differenti-

ate gaits. Gaits show different rhythms, with a potential adaptive role:

the sounds of different gaits signal a conspecific’s speed,27 aiding in

collectivemovement and coordination, which is essential for predation

response and interindividual synchronization.28,29

Each gait not only had its specific rhythmic signature, but their

temporal intervals were also related by small-integer ratios linking
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two adjacent tk (Table 1). In particular, WALK and TROT showed an

isochronous pattern: all intervals had the same duration. By contrast,

CANTER showed three different rhythmic ratios resulting from dif-

ferent phases of the motion cycle, corresponding to 1:1, 1:2, and 2:1

small-integer ratios (Figure 2A). Specifically, the first and second tk
had equal duration, while the third lasted twice as long. The identi-

fied patterns for the three gaits contained slight individual shifts in

peak position with respect to the reference value of the small inte-

ger but rarely in the number of categories (bottom row of Figure 2A).

The small-integer ratios found in horse gaits are the same as those

identified in other species’ vocalization,30 suggesting that temporal

structures in animal locomotion are remarkably similar to those of

other animals’ vocal emissions. Moreover, small-integer ratios in gaits

could explain why humans perceive such patterns as rhythmic; some

rhythmic features transcend musicality and animal communicative

signals.

The analysis of ratios revealed a clear difference between CAN-

TER, with three small-integer rhythmic categories, and WALK and

TROT, both displaying an isochronous sequence. But which rhythmic

features distinguish WALK from TROT? To assess the regularity of

rhythms and its role in gait discrimination, we quantified the rhyth-

mic accuracy and precision: we found that TROT showed the highest

accuracy and precision values around isochrony. One reason for that

could lie in that TROT shows a simpler spatial arrangement and sym-

metrical limb coordination pattern, with mirrored alternation of two

limbs, giving fewer opportunities for symmetry breaking compared

to the WALK (four-beat) and CANTER (three-beat with a suspension

phase).31 If we consider TROT to have the simplest locomotor pat-

tern and exhibiting the highest dynamical stability, corresponding to

the easiest small-integer ratio (1:1), then the lower interval variability

stands to reason.32 Also, each gait can be performed in a certain speed

range, but it has been shown that minimal interstride variability can be

reached at a specific optimal speed.27 Indeed, speed might affect the

accuracy and precision of gaits. Since Figure 1B suggests that the ani-

mals showed less variability in speed at TROT than WALK, this would

explain TROT’s higher rhythmic regularity. However, further research

is required to better explore the connection between rhythmic regu-

larity and locomotor speed. Our results suggest that the discrimination

between WALK and TROT, which exhibit an isochronous pattern, can

be based on the higher regularity of TROT and the faster tempo of

WALK.

CONCLUSION

This study quantified the rhythmic characteristics of horse gaits.

Each gait has its own rhythmic signature, potentially allowing gait

recognition. Overall, the sound of horse locomotion shows high period-

icity, supporting evolutionary hypotheses: in species needing efficient

endurance locomotion, maintaining a regular pace is energetically

adaptive and has probably been reinforced by proximate rewards

throughout evolution.9 Crucially, we show that horse locomotion

shares a crucial rhythmic property with animal vocalizations and

human music, that is, small-integer ratios. Our findings reveal that

locomotor patterns exhibit the same rhythmic key features found

in communicative signals of other species, supporting the gait-based

hypothesis of rhythm, which posits that the ability to keep a regu-

lar gait may predate the evolution of complex rhythmic behaviors.2

In species showing rhythmic vocalizations, this might be the result

of a bidirectional coupling between locomotion and respiration, as

a groundwork for a link between respiration and phonation33: since

phonation is a highly expensive process, the energetic advantage of

coupling movement and breathing could be reflected in shaping the

vocal signal on the same time grid. The specific neural circuits involved

in rhythm perception and production across species and their sen-

sitivity to early sensory experience have yet to be elucidated.5 Still,

the functional and anatomical connections between spinal- and supra-

spinal regions in locomotion3 suggest that these rhythms may have

represented the ancestral form of rhythms in taxa that also show

rhythmic communicative displays, as already proposed for humans.9
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