Prevalence of Spinal Muscular Atrophy in the Era of **Disease-Modifying Therapies**

An Italian Nationwide Survey

Giorgia Coratti, PhD, Martina Ricci, MD, Anna Capasso, MD, Adele D'amico, PhD, Valeria Sansone, PhD, Claudio Bruno, PhD, Sonia Messina, PhD, Federica Ricci, PhD, Tiziana Mongini, PhD, Michela Coccia, PhD, Gabriele Siciliano, PhD, Elena Pegoraro, PhD, Mara Turri, MD, Massimiliano Filosto, PhD, Giacomo Comi, MD, Riccardo Masson, MD, Lorenzo Maggi, MD, Irene Bruno, PhD, Maria Grazia D'Angelo, PhD, Antonio Trabacca, MD, Veria Vacchiano, MD, Maria Donati, MD, Isabella Simone, MD, Lucia Ruggiero, PhD, Antonio Varone, MD, Lorenzo Verriello, MD, Angela Berardinelli, MD, Caterina Agosto, MD, Antonella Pini, PhD, Maria Antonietta Maioli, PhD, Luigia Passamano, PhD, Filippo Brighina, MD, Nicola Carboni, MD, Matteo Garibaldi, PhD, Riccardo Zuccarino, MD, PhD, Delio Gagliardi, MD, Sabrina Siliquini, MD, Stefano Previtali, MD, PhD, Domenica Taruscio, MD, Stefania Boccia, PhD, Maria Carmela Pera, PhD, Marika Pane, PhD, and Eugenio Mercuri, MD, on behalf of ITASMAC working group

Neurology[®] 2023;100:522-528. doi:10.1212/WNL.000000000201654

Abstract

Objective

Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene. The aim of this study was to assess the prevalence of SMA and treatment prescription in Italy.

Methods

An online survey was distributed to 36 centers identified by the Italian government as referral centers for SMA. Data on the number of patients with SMA subdivided according to age, type, SMN2 copy number, and treatment were collected.

Results

One thousand two hundred fifty-five patients with SMA are currently followed in the Italian centers with an estimated prevalence of 2.12/100,000. Of the 1,255, 284 were type I, 470 type II, 467 type III, and 15 type IV with estimated prevalence of 0.48, 0.79, 0.79 and 0.02/100,000, respectively. Three patients with SMA 0 and 16 presymptomatic patients were also included. Approximately 85% were receiving one of the available treatments. The percentage of treated patients decreased with decreasing severity (SMA I: 95.77%, SMA II: 85.11%, SMA III: 79.01%).

From the Pediatric Neurology (Giorgia Coratti, M.R., A.C., M.C.P., M.D.P., E.M.), Università Cattolica del Sacro Cuore, Rome; Centro Clinico Nemo (Giorgia Coratti, M.R., A.C., M.C.P., M.D.P., E.M.), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Department of Neurosciences (A.D.), Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome; The NEMO Center in Milan (V.S.), Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Italy; Center of Translational and Experimental Myology (C.B.), and Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto Giannina Gaslini; Department of Clinical and Experimental Medicine (S.M.), University of Messina; AOU Città della Salute e della Scienza di Torino (F.R., T.M.), presidio Molinette e OIRM (SS Malattie Neuromuscolari e SC Neuropsichiatria Infantile), Turin; Department of Neurological Sciences (M.C.), AOU Ospedali Riuniti di Ancona; AOU Pisana (Department of Clinical and Experimental Medicine) (G.S.), Neurology Unit, Pisa; Neurology Unit (E.P.), Azienda Ospedale Padova, Padua; Department of Neurology/Stroke Unit (M.T.), Bolzano Hospital, Trentino-Alto Adige; Department of Clinical and Experimental Sciences (M.F.), University of Brescia; NeMO-Brescia Clinical Center for Neuromuscular Diseases (M.F.), Brescia; Neurology Unit (Giacomo Comi), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan; Dino Ferrari Center (Giacomo Comi), Department of Pathophysiology and Transplantation, University of Milan; Fondazione IRCCS Istituto Neurologico Carlo Besta Developmental Neurology Unit (R.M.), Milan; Neuroimmunology and Neuromuscular Disorders Unit (L.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Institute for Maternal and Child Health (I.B.), IRCCS, Burlo Garofolo, Trieste; NeuroMuscular Unit (M.G.D.A.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Scientific Institute IRCCS "E. Medea" (A.T.), Unit for Severe disabilities in developmental Age and Young Adults (Developmental Neurology and Neurorehabilitation), Brindisi; UOC Clinica Neurologica (V.V.), IRCCS Institute of Neurological Sciences of Bologna, Emilia-Romagna; Metabolic Unit (M.D.), A. Meyer Children's Hospital, Florence; Neurology Unit (I.S.), Azienda Ospedaliero-Universitaria, Policlinico Bari "Amaducci", Bari; Department of Neurosciences (L.R.), Reproductive Sciences and Odontostomatology, University of Naples Federico II; Department of Neurosciences (A.V.), Pediatric Neurology, Santobono-Pausilipon Children's Hospital, Naples; Neurology Unit (L.V.), Department of Neurosciences, University Hospital Santa Maria della Misericordia, Udine, Friuli-Venezia Giulia; Department of Child Neuropsychiatry (A.B.), Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia; Dipartimento di Salute della Donna e del Bambino (C.A.), Università di Padova, Padua; IRCCS Istituto delleScienze Neurologiche di Bologna-UOC Neuropsichiatria Infantile (A.P.); Centro Sclerosi Multipla (M.A.M.), P.O. Binaghi, ASSL Cagliari; Cardiomyology and Medical Genetics Unit (L.P.), Università degli Studi della Campania Luigi Vanvitelli Scuola di Medicina e Chirurgia, Napoli; Section of Neurology (F.B.), Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo; Neurology Department (N.C.), Hospital San Francesco of Nuoro; Department of Neuroscience (M.G.), Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Sant'Andrea Hospital; Neuromuscular Omnicentre (NeMO) Trento-Fondazione Serena Onlus (R.Z.), Pergine Valsugana; Pediatric Neurology Unit (D.G.), Pediatric Hospital "Giovanni XXIII", Bari; Child Neuropsychiatry Unit (S.S.), Paediatric Hospital G Salesi, Ancona; Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; National Centre for Rare Diseases (D.T.), Istituto Superiore di Sanità, Rome; and Sezione di Igiene (S.B.), Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy. Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article. The Article Processing Charge was funded by the authors. ITASMAC Working Group coinvestigators are listed at links.lww.com/WNL/C507. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

Correspondence Dr. Mercuri eumercuri@gmail.com

Discussion

The results provide for the first time an estimate of the prevalence of SMA at the national level and the current distribution of patients treated with the available therapeutical options. These data provide a baseline to assess future changes in relation to the evolving therapeutical scenario.

A recent review summarizing epidemiologic data on 5q spinal muscular atrophy (SMA) reported an overall incidence of 8/100,000, with a marked intercountry variability.¹ Type I SMA cases are the most frequent (60%), with type II occurring between 20% and 27% and type III between 12% and 20%.^{1,2}

Because of the reduced survival (approximately 5%–8% at 2 years), there is a large difference between incidence and

Table 1Epidemiologic Characteristics and SMN2 Copies
of Patients with SMA in 35 Italian Reference
Centers

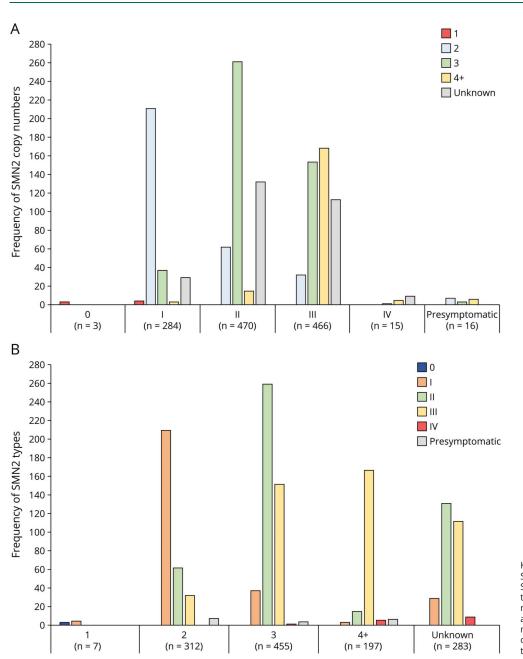
Characteristics	N (%)
Adults	604 (48.13%)
Pediatric	651 (51.87%)
SMA type	1,255 (100%)
Presymptomatic	16 (1.27%)
Туре 0	3 (0.24%)
Туре І	284 (22.63%)
Туре II	470 (37.45%)
Type III	467 (37.21%)
Type IV	15 (1.20%)
SMN2 copy number	
1 SMN2	8 (0.64%)
	SMA 0: 3
	SMA I: 4
	SMA III: 1 (+G287R)
2 SMN2	312 (24.86%)
	SMA I: 211
	SMA II: 62
	SMA III: 32
	PRESYMPTOMATIC: 7
3 SMN2	455 (36.25%)
	SMA I: 37
	SMA II: 261
	SMA III: 153
	SMA IV: 1
	PRESYMPTOMATIC: 3

prevalence data in type I infants. Studies performed before the advent of the new therapies report prevalence values of 0.04-0.28/100,000 for type I and approximately 1.5/100,000 for type II and III.³ The aim of the study was to assess the prevalence for SMA and the number of patients treated with the different therapeutic options across Italian reference centers.

Table 1 Epidemiologic Characteristics and SMN2 Copies of Patients with SMA in 35 Italian Reference Centers (continued)

haracteristics	N (%)
≥4 <i>SMN2</i>	197 (15.70%)
	SMA I: 3
	SMA II: 15
	SMA III: 168
	SMA IV: 5
	PRESYMPTOMATIC: 6
Unknown SMN2	283 (22.55%)
	SMA I: 29
	SMA II: 132
	SMA III: 113
	SMA IV: 9
nodifying therapies	272/284 (95,77%)
	272/284 (95.77%) Nusinersen: 127/272 (46.69%)
nodifying therapies	272/284 (95.77%) Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%)
nodifying therapies	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%)
nodifying therapies	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%) Onasemnogene abeparvovec: 51
nodifying therapies	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%) Onasemnogene abeparvovec: 51. 272 (18.75%)
nodifying therapies Type I	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%) Onasemnogene abeparvovec: 51. 272 (18.75%) Clinical trials: 56/272 (20.59%)
nodifying therapies Type I	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%) Onasemnogene abeparvovec: 51. 272 (18.75%) Clinical trials: 56/272 (20.59%) 400/470 (85.11%)
nodifying therapies Type I	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%) Onasemnogene abeparvovec: 51 272 (18.75%) Clinical trials: 56/272 (20.59%) 400/470 (85.11%) Nusinersen: 163/400 (40.75%)
nodifying therapies Type I	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%) Onasemnogene abeparvovec: 51. 272 (18.75%) Clinical trials: 56/272 (20.59%) 400/470 (85.11%) Nusinersen: 163/400 (40.75%) Risdiplam: 148/400 (37.00%)
nodifying therapies Type I Type II	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%) Onasemnogene abeparvovec: 51. 272 (18.75%) Clinical trials: 56/272 (20.59%) 400/470 (85.11%) Nusinersen: 163/400 (40.75%) Risdiplam: 148/400 (37.00%) Clinical trials: 89/400 (22.25%)
Type II	Nusinersen: 127/272 (46.69%) Risdiplam: 38/272 (13.97%) Onasemnogene abeparvovec: 51 272 (18.75%) Clinical trials: 56/272 (20.59%) 400/470 (85.11%) Nusinersen: 163/400 (40.75%) Risdiplam: 148/400 (37.00%) Clinical trials: 89/400 (22.25%) 369/467 (79.01%)

Methods


The study includes data from all the 36 centers identified by the Italian government as referral centers for SMA. Approval was granted by the Ethics Committee of Fondazione Gemelli (26/05/2020 N.1894). An online survey was performed to obtain an estimate of the number of patients currently followed and treated. Data were manually collected from hospital medical records from all patients with a diagnosis of 5qSMA attending the centers. Survey completion rate was 100%. Period prevalence was calculated as the proportion of persons affected by SMA in one year divided by the Italian population at 2021 (59.258.000 persons). A global identifier number was used to avoid patients

being recorded more than once. Requests for anonymized data not published within this article should be addressed to the principal investigator (EM). Details on methodology can be found in the eMethods (links.lww.com/WNL/C506).

Results

There were 1,255 patients with 5qSMA (604 adults and 651 children) across the centers. The estimated prevalence for all cases of SMA, including presymptomatic patients, was 2.12/100,000 inhabitants. SMN2 copies were available in 972 of the 1,255 (77.45%) (Table 1 and Figure 1).

Figure 1 Frequency of SMN2 Copy Numbers in Patients With SMA

Key to figure: (A) Frequency of SMN2 copy numbers according to SMA type and (B) frequency of SMA types according to SMN2 copy number. The patient with SMA III and SMN1copy = 1 + G287R was not included in the figure because of its role as positive modifier of the SMA phenotype.

Downloaded from https://www.neurology.org by Universit degli Studi di Torino on 31 December 2024

Type I: this included 284 patients. The estimated prevalence is 0.48/100,000. Of the 284, 272 were treated with the new therapies. Figure 2 shows details of the therapies distribution and patients who switched from one therapy to another.

Type II: this included 470 patients. The estimated prevalence is 0.79/100,000.Of the 470, 400 patients were treated with the new therapies;

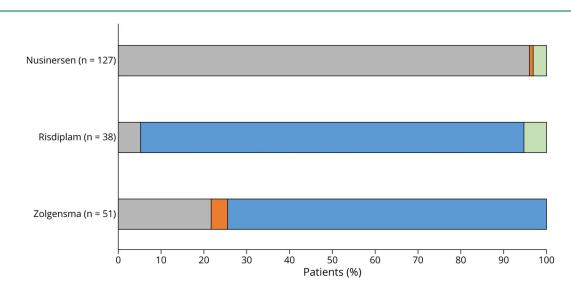
Type III: this included 467 patients. The estimated prevalence is 0.79/100,000. Of the 467, 369 were treated with the new therapies. Table 1 reports details of the distribution in all SMA types (0-IV).

Discussion

Our nationwide survey includes 1255 patients with SMA with an estimated prevalence of 2.12/100.000 (CI 95% = 0.013-0.029). This value is higher than the one (1.81, CI 95% = 0.010 - 0.026)recorded in 2016 by the Institutional National Registry of Rare Diseases of the ISS. The higher number was only partially influenced by presymptomatic patients because neonatal screening was limited to 2 of the 20 Italian regions. In contrast, the large number of adults previously lost at follow-up, going back to the centers to discuss the new treatments,⁴ may have contributed. The estimated prevalence of type I was 0.48/100,000. This is higher than previously reported (0.04–0.28),³ reflecting the higher survival rate beyond 2 years compared with the 5%-8% reported in natural history studies.⁵⁻⁷ Our results confirmed previous findings of a strong association between SMN2 copy number and severity of SMA. In our nationwide cohort, copy number was available in nearly 80%, this value reflecting the ongoing effort to obtain this information in patients in whom this was not available.

The survey also allowed to establish the number of treated patients and of possible therapeutic changes over time. The high number of patients currently treated with nusinersen largely reflects the fact that this was the first drug to be approved and the only available option for more than 3 years. At the time of the survey, risdiplam was only available for compassionate use and onasemnogene abeparvovec could only be prescribed to type I infants younger than 2 years and with a weight below 13.5 Kgs. The percentage of treated patients decreased with decreasing severity. Further follow-up will allow to establish how these numbers will change with the recent commercial availability of risdiplam.

Our results establish for the first time the national prevalence of SMA also subdivided according to types, in the era of disease-modifying therapies. Our nationwide registry will allow to monitor changes over time and to capture the evolving scenario due to changes in the drug labels and to a wider distribution of neonatal screening.


Acknowledgment

The authors are grateful to the ITASMAC working group. Doctor Pera MC is supported by GR-2018-12365706 (Italian Health Ministry). The work was partially funded from Biogen that are supporting the Italian registry. Funders had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Study Funding

Doctor Pera MC is supported by GR-2018-12365706 (Italian Health Ministry). This research was partially supported by GR-2018-12365706 and Biogen that are supporting the Italian registry. Funders had no role in the study design; in the collection,

Figure 2 Distribution of Patients With SMA I Among Available Treatments

Colour key: Blue = Switched from nusinersen to risdiplam/onasemnogene abeparvovec, Orange = Switched from risdiplam to nusinersen/onasemnogene abeparvovec, Green = Switched from onasemnogene abeparvovec to risdiplam/nusinersen, Gray = Remained on the same treatment, no switch was recorded.

analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Disclosure

G. Coratti, V. Sansone, A. D'Amico, C. Bruno, S. Messina, R. Masson, A. Trabacca, L. Maggi, M.A. Donati, M.C. Pera, F. Ricci, T. Mongini, M. Pane, E. Mercuri report personal fees from BIOGEN S.R.L., Roche, AveXis, and Novartis outside the submitted work; G.P. Comi reports personal fees from Roche and Novartis Gene Therapies outside the submitted work; G. Coratti reports personal fees from Genesis Pharma and Biologix outside the submitted work; I. Bruno reports personal fees from Biogen outside the submitted work; E. Pegoraro reports from personal fees from Biogen and Roche; M. Ricci, A. Capasso, M. Coccia, V. Vacchiano, G. Siciliano, N. Carboni, M. Turri, M. Filosto, G. D'angelo, R Zuccarino, D. Gagliardi, I. Simone, L. Ruggiero, A. Varone, L. Verriello, A. Berardinelli, C. Agosto, A. Pini, M.A. Maioli, S. Siliquini, M. Garibaldi, S. Previtali, F. Brighina, L. Passamano, D. Taruscio, S. Boccia have nothing to disclose. Go to Neurology.org/N for full disclosures.

Publication History

Received by *Neurology* July 1, 2022. Accepted in final form October 19, 2022. Submitted and externally peer reviewed. The handling editor was Anthony Amato, MD, FAAN.

Name	Location	Contribution
Giorgia Coratti PhD	Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, ItalyCentro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy	Major role in the acquisitior of data, designed and conceptualized the study, analyzed the data, and drafted the manuscript for intellectual content
Martina Ricci MD	Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, ItalyCentro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy	Designed and conceptualized the study, analyzed the data, and drafted the manuscript for intellectual content
Anna Capasso MD	Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, ItalyCentro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy	Designed and conceptualized the study, analyzed the data, and drafted the manuscript for intellectual content
Adele D'Amico PhD	Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy	Designed and conceptualized the study, analyzed the data, and drafted the manuscript for intellectual content
Valeria Sansone PhD	The NEMO Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy	Major role in the acquisitior of data and revised the manuscript for intellectual content

Appendix 1	(continued)	
Name	Location	Contribution
Claudio Bruno PhD	Center of Translational and Experimental Myology, and Dept. of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto Giannina Gaslini, Genova, Italy	Major role in the acquisitior of data and revised the manuscript for intellectual content
Sonia Messina PhD	Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Federica Ricci PhD	AOU Città della Salute e della Scienza di Torino, presidio Molinette e OIRM (SS Malattie neuromuscolari e SC Neuropsichiatria Infantile), Turin, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Tiziana Mongini PhD	AOU Città della Salute e della Scienza di Torino, presidio Molinette e OIRM (SS Malattie neuromuscolari e SC Neuropsichiatria Infantile), Turin, Italy	Major role in the acquisition of data; revised the manuscript for intellectual content
Michela Coccia MD	Department of Neurologic Sciences, AOU Ospedali Riuniti di Ancona, Ancona, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Gabriele Siciliano PhD	AOU Pisana (Department of Clinical and Experimental Medicine), Neurology Unit, Pisa, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Elena Pegoraro PhD	Neurology Unit, Azienda Ospedale Padova, Padua, Italy	Major role in the acquisition of data; revised the manuscript for intellectual content
Mara Turri MD	Department of Neurology/ Stroke Unit, Bolzano Hospital, Bolzano, Trentino- Alto Adige, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Massimiliano Filosto PhD	Department of Clinical and Experimental Sciences, University of Brescia (Italy); NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia (Italy)	Major role in the acquisition of data and revised the manuscript for intellectual content
Giacomo P. Comi PhD	Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy and Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Riccardo Masson MD	Fondazione IRCCS Istituto Neurologico Carlo Besta Developmental Neurology Unit, Milan, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Lorenzo Maggi MD	Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content

Appendix 1	(continued)	
Name	Location	Contribution
Irene Bruno PhD	Institute for Maternal and Child Health, IRCCS, Burlo Garofolo, Trieste, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Grazia D'angelo PhD	NeuroMuscular Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini (Lecco), Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Antonio Trabacca MD	Scientific Institute IRCCS "E. Medea," Unit for Severe disabilities in developmental age and young adults (Developmental Neurology and Neurorehabilitation), Brindisi, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Veria Vacchiano MD	UOC Clinica Neurologica, IRCCS Institute of Neurologic Sciences of Bologna, Bologna, Emilia- Romagna, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Maria Alice Donati MD	Metabolic Unit, A. Meyer Children's Hospital, 50,139 Florence, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Isabella Laura Simone MD	Neurology unit, Azienda Ospedaliero-Universitaria, Policlinico Bari "Amaducci," Bari, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Lucia Ruggiero PhD	Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Antonio Varone MD	Department of Neurosciences, Pediatric Neurology, Santobono- Pausilipon Children's Hospital, Naples, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Lorenzo Verriello MD	Neurology Unit, Department of Neurosciences, University Hospital Santa Maria della Misericordia, Udine, Friuli-Venezia Giulia, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Angela Berardinelli MD	Department of Child Neuropsychiatry, Fondazione Istituto Neurologico Nazionale C Mondino Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Caterina Agosto MD	Dipartimento di Salute della Donna e del Bambino, Università di Padova, Padua, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Antonella Pini PhD	IRCCS Istituto delleScienze Neurologiche di Bologna- UOC Neuropsichiatria Infantile, Bologna, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content

Name	Location	Contribution
Maria Antonietta Maioli PhD	Centro Sclerosi Multipla, P.O. Binaghi, ASSL Cagliari, Cagliari, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Luigia Passamano PhD	Cardiomyology and Medical Genetics Unit, Università degli Studi della Campania Luigi Vanvitelli Scuola di Medicina e Chirurgia, Napoli, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Filippo Brighina MD	Section of Neurology, Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Nicola Carboni MD	Neurology Department, Hospital San Francesco of Nuoro, Nuoro, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Matteo Garibaldi PhD	Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Riccardo Zuccarino MD	Neuromuscular Omnicentre (NeMO) Trento-Fondazione Serena Onlus, Pergine Valsugana, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Delio Gagliardi MD	Pediatric Neurology Unit, Pediatric Hospital "Giovanni XXIII", Bari, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Sabrina Siliquini PhD	Child Neuropsychiatry Unit, Paediatric Hospital G Salesi, Ancona, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Stefano Previtali PhD	Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy	Major role in the acquisition of data and revised the manuscript for intellectual content
Domenica Taruscio MD	National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy	Designed and conceptualized the study, analyzed the data, and revised the manuscript fo intellectual content
Stefania Boccia PhD	Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy	Analyzed the data and revised the manuscript for intellectual content
Maria Carmela Pera PhD	Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, ItalyCentro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy	Designed and conceptualized the study, analyzed the data, and drafted the manuscript for intellectual content
Marika Pane PhD	Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, ItalyCentro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy	Designed and conceptualized the study, analyzed the data, and drafted the manuscript for intellectual content

Name	Location	Contribution
Eugenio Mercuri MD, PhD	Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, ItalyCentro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy	Major role in the acquisitior of data, designed and conceptualized the study, analyzed the data, and drafted the manuscript for intellectual content

Appendix 2 Coinvestigators

Coinvestigators are listed at links.lww.com/WNL/C507.

References

- Verhaart IEC, Robertson A, Leary R, et al. A multi-source approach to determine SMA incidence and research ready population. J Neurol. 2017;264(7):1465-1473. doi: 10.1007/s00415-017-8549-1
- Ogino S, Wilson RB, Gold B. New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. *Eur J Hum Genet.* 2004;12:1015-1023. doi: 10.1038/sj.ejhg.5201288
- Verhaart IEC, Robertson A, Wilson IJ, et al. Prevalence, incidence and carrier frequency of Sq-linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis. 2017;12(1):124. doi: 10.1186/s13023-017-0671-8
- Sansone VA, Coratti G, Pera MC, et al. Sometimes they come back: new and old spinal muscular atrophy adults in the era of nusinersen. *Eur J Neurol.* 2020;28(2): 602-608. doi: 10.1111/ene.14567
- Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. *Neurology* 2014;83(9):810-817. doi: 10.1212/wnl.000000000000741
- Kolb SJ, Coffey CS, Yankey JW, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82(6):883-891. doi: 10.1002/ana.25101
- Wijngaarde CA, Stam M, Otto LAM, et al. Population-based analysis of survival in spinal muscular atrophy. *Neurology* 2020;94(15):e1634–e1644. doi: 10.1212/ wnl.00000000009248

The Neurology® Null Hypothesis Online Collection...

Contributing to a transparent research reporting culture!

The *Neurology* journals have partnered with the Center for Biomedical Research Transparency (CBMRT) to promote and facilitate transparent reporting of biomedical research by ensuring that all biomedical results–including negative and inconclusive results–are accessible to researchers and clinicians in the interests of full transparency and research efficiency.

Neurology's Null Hypothesis Collection is a dedicated online section for well conducted negative, inconclusive, or replication studies. View the collection at: *NPub.org/NullHypothesis*

Disputes & Debates: Rapid Online Correspondence

The editors encourage comments on recent articles through Disputes & Debates:

Access an article at *Neurology.org/N* and click on "MAKE COMMENT" beneath the article header.

Before submitting a comment to Disputes & Debates, remember the following:

- Disputes & Debates is restricted to comments about articles published in *Neurology* within 6 months of issue date, but the editors will consider a longer time period for submission if they consider the letter a significant addition to the literature
- Read previously posted comments; redundant comments will not be posted
- Your submission must be 200 words or less and have a maximum of 5 references; the first reference must be the article on which you are commenting
- You can include a maximum of 5 authors (including yourself)