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Abstract

For O a bounded domain in Rd and a given smooth function g : O → R, we consider
the statistical nonlinear inverse problem of recovering the conductivity f > 0 in the
divergence form equation

∇ · (f∇u) = g on O, u = 0 on ∂O,

from N discrete noisy point evaluations of the solution u = uf on O. We study the
statistical performance of Bayesian nonparametric procedures based on a flexible class
of Gaussian (or hierarchical Gaussian) process priors, whose implementation is feasible
by MCMC methods. We show that, as the number N of measurements increases, the
resulting posterior distributions concentrate around the true parameter generating the
data, and derive a convergence rate N−λ, λ > 0, for the reconstruction error of the
associated posterior means, in L2(O)-distance.
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1 Introduction

Statistical inverse problems arise naturally in many applications in physics, imaging,
tomography, and generally in engineering and throughout the sciences. A prototypical
example involves a domain O ⊂ Rd, some function f : O → R of interest, and indirect
measurements G(f) of f , where G is a given solution (or ‘forward’) operator of some
partial differential equation (PDE) governed by the unknown coefficient f . A natural
statistical observational model postulates data

Yi = G(f)(Xi) + σWi, i = 1, . . . , N, (1)

where the Xi’s are design points at which the PDE solution G(f) is measured, and
where the Wi’s are standard Gaussian noise variables scaled by a noise level σ > 0. The
aim is then to infer f from the data (Yi, Xi)

N
i=1. The study of problems of this type has

a long history in applied mathematics, see the monographs [17, 28], although explicit
statistical noise models have been considered only more recently [27, 8, 9, 25]. Recent
survey articles on the subject are [5, 4] where many more references can be found.

For many of the most natural PDEs – such as the divergence form elliptic equation
(2) considered below – the resulting maps G are non-linear in f , and this poses vari-
ous challenges: Among other things, the negative log-likelihood function associated to
the model (1), which equals the least squares criterion (see (10) below for details), is
then possibly non-convex, and commonly used statistical algorithms (such as maximum
likelihood estimators, Tikhonov regularisers or MAP estimates) defined as optimisers
in f of likelihood-based objective functions can not reliably be computed by standard
convex optimisation techniques. While iterative optimisation methods (such as Landwe-
ber iteration) may overcome such challenges [23, 44, 28, 29], an attractive alternative
methodology arises from the Bayesian approach to inverse problems advocated in an
influential paper by Stuart [48]: One starts from a Gaussian process prior Π for the
parameter f or in fact, as is often necessary, for a suitable vector-space valued re-
parameterisation F of f . One then uses Bayes’ theorem to infer the best posterior
guess for f given data (Yi, Xi)

N
i=1. Posterior distributions and their expected values can

be approximately computed via Markov Chain Monte Carlo (MCMC) methods (see,
e.g., [13, 12, 6] and references therein) as soon as the forward map G(·) can be eval-
uated numerically, avoiding optimisation algorithms as well as the use of (potentially
tedious, or non-existent) inversion formulas for G−1; see Subsection 2.3.1 below for more
discussion. The Bayesian approach has been particularly popular in application areas
as it does not only deliver an estimator for the unknown parameter f but simultane-
ously provides uncertainty quantification methodology for the recovery algorithm via
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the probability distribution of f |(Yi, Xi)
N
i=1 (see, e.g., [15]). Conceptually related is the

area of ‘probabilistic numerics’ [11] in the noise-less case σ = 0, with key ideas dating
back to work by Diaconis [16].

As successful as this approach may have proved to be in algorithmic practice, for
the case when the forward map G is non-linear we currently only have a limited un-
derstanding of the statistical validity of such Bayesian inversion methods. By validity
we mean here statistical guarantees for convergence of natural Bayesian estimators such
as the posterior mean f̄ = EΠ[f |(Yi, Xi)

N
i=1] towards the ground truth f0 generating

the data. Without such guarantees, the interpretation of posterior based inferences
remains vague: the randomness of the prior may have propagated into the posterior in
a way that does not ‘wash out’ even when very informative data is available (e.g., small
noise variance and/or large sample size N), rendering Bayesian methods potentially
ambiguous for the purposes of valid statistical inference and uncertainty quantification.

In the present article we attempt to advance our understanding of this problem area
in the context of the following basic but representative example for a non-linear inverse
problem: Let g be a given smooth ‘source’ function, and let f : O → R be a an unknown
conductivity parameter determining solutions u = uf of the PDE

{

∇ · (f∇u) = g on O,
u = 0 on ∂O,

(2)

where we denote by ∇· the divergence and by ∇ the gradient operator, respectively.
Under mild regularity conditions on f , and assuming that f ≥ Kmin > 0 on O, standard
elliptic theory implies that (2) has a unique classical C2-solution G(f) ≡ uf . Identifi-
cation of f from an observed solution uf of this PDE has been considered in a large
number of articles both in the applied mathematics and statistics communities – we
mention here [46, 18, 24, 35, 3, 34, 26, 33, 48, 14, 47, 52, 15, 10, 6, 43, 11] and the many
references therein.

The main contributions of this article are as follows: We show that posterior means
arising from a large class of Gaussian (or conditionally Gaussian) process priors for f
provide statistically consistent recovery (with explicit polynomial convergence rates as
the number N of measurements increases) of the unknown parameter f in (2) from
data in (1). While we employ the theory of posterior contraction from Bayesian non-
parametric statistics [50, 51, 19], the non-linear nature of the problem at hand leads
to substantial additional challenges arising from the fact that a) the Hellinger distance
induced by the statistical experiment is not naturally compatible with relevant dis-
tances on the actual parameter f and that b) the ‘push-forward’ prior induced on the
information-theoretically relevant regression functions G(f) is non-explicit (in particu-
lar, non-Gaussian) due to the non-linearity of the map G. Our proofs apply recent ideas
from [38] to the present elliptic situation. In the first step we show that the posterior
distributions arising from the priors considered (optimally) solve the PDE-constrained
regression problem of inferring G(f) from data (1). Such results can then be combined
with a suitable ‘stability estimate’ for the inverse map G−1 to show that, for large
sample size N , the posterior distributions concentrate around the true parameter gen-
erating the data at a convergence rate N−λ for some λ > 0. We ultimately deduce the
same rate of consistency for the posterior mean from quantitative uniform integrability
arguments.

The first results we obtain apply to a large class of ‘rescaled’ Gaussian process
priors similar to those considered in [38], addressing the need for additional a-priori
regularisation of the posterior distribution in order to tame non-linear effects of the
‘forward map’. This rescaling of the Gaussian process depends on sample size N . From
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a non-asymptotic point of view this just reflects an adjustment of the covariance operator
of the prior, but following [16] one may wonder whether a ‘fully Bayesian’ solution of
this non-linear inverse problem, based on a prior that does not depend on N , is also
possible. We show indeed that a hierarchical prior that randomises a finite truncation
point in the Karhunen-Loéve-type series expansion of the Gaussian base prior will also
result in consistent recovery of the conductivity parameter f in eq. (2) from data (1),
at least if f is smooth enough.

Let us finally discuss some related literature on statistical guarantees for Bayesian
inversion: To the best of our knowledge, the only previous paper concerned with (fre-
quentist) consistency of Bayesian inversion in the elliptic PDE (2) is by Vollmer [52].
The proofs in [52] share a similar general idea in that they rely on a preliminary treat-
ment of the associated regression problem for G(f), which is then combined with a
suitable stability estimate for G−1. However, the convergence rates obtained in [52]
are only implicitly given and sub-optimal, also (unlike ours) for ‘prediction risk’ in the
PDE-constrained regression problem. Moreover, when specialised to the concrete non-
linear elliptic problem (2) considered here, the results in Section 4 in [52] only hold
for priors with bounded Cβ -norms, such as ‘uniform wavelet type priors’, similar to
the ones used in [41, 40, 42] for different non-linear inverse problems. In contrast, our
results hold for the more practical Gaussian process priors which are commonly used in
applications, and which permit the use of tailor-made MCMC methodology – such as
the pCN algorithm discussed in Subsection 2.3.1 – for computation.

The results obtained in [43] for the maximum a posteriori (MAP) estimates asso-
ciated to the priors studied here are closely related to our findings in several ways.
Ultimately the proof methods in [43] are, however, based on variational methods and
hence entirely different from the Bayesian ideas underlying our results. Moreover, the
MAP estimates in [43] are difficult to compute due to the lack of convexity of the for-
ward map, whereas posterior means arising from Gaussian process priors admit explicit
computational guarantees, see [22] and also Subsection 2.3.1 for more details.

It is further of interest to compare our results to those recently obtained in [1],
where the statistical version of the Caldéron problem is studied. There the ‘Dirichlet-
to-Neumann map’ of solutions to the PDE (2) is observed, corrupted by appropriate
Gaussian matrix noise. In this case, as only boundary measurements of uf at ∂O are
available, the statistical convergence rates are only of order log−γ(N) for some γ > 0 (as
N → ∞), whereas our results show that when interior measurements of uf are available
throughout O, the recovery rates improve to N−λ for some λ > 0.

There is of course a large literature on consistency of Bayesian linear inverse prob-
lems with Gaussian priors, we only mention [32, 45, 2, 30, 39] and references therein.
The non-linear case considered here is fundamentally more challenging and cannot be
treated by the techniques from these papers – however, some of the general theory we
develop in the appendix provides novel proof methods also for the linear setting.

This paper is structured as follows. Section 2 contains all the main results for the
inverse problem arising with the PDE model (2). The proofs, which also include some
theory for general non-linear inverse problems that is of independent interest, are given
in Section 3 and Appendix A. Finally, Appendix B provides additional details on some
facts used throughout the paper.
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2 Main results

2.1 A statistical inverse problem with elliptic PDEs

2.1.1 Main notation

Throughout the paper, O ⊂ Rd, d ∈ N, is a given nonempty open and bounded set
with smooth boundary ∂O and closure Ō.

The spaces of continuous functions defined on O and Ō are respectively denoted
C(O) and C(Ō), and endowed with the supremum norm ‖ · ‖∞. For positive integers
β ∈ N, Cβ(O) is the space of β-times differentiable functions with uniformly continuous
derivatives; for non-integer β > 0, Cβ(O) is defined as

Cβ(O) =

{

f ∈ C⌊β⌋(O) : ∀|i| = ⌊β⌋, sup
x,y∈O,x 6=y

|Dif(x)−Dif(y)|
|x− y|β−⌊β⌋

<∞
}

,

where ⌊β⌋ denotes the largest integer less than or equal to β, and for any multi-index
i = (i1, . . . , id), D

i is the i-th partial differential operator. Cβ(O) is normed by

‖f‖Cβ(O) =
∑

|i|≤⌊β⌋

sup
x∈O

|Dif(x)|+
∑

|i|=⌊β⌋

sup
x,y∈O, x 6=y

|Dif(x)−Dif(y)|
|x− y|β−⌊β⌋

,

where the second summand is removed for integer β. We denote by C∞(O) = ∩βC
β(O)

the set of smooth functions, and by C∞
c (O) the subspace of elements in C∞(O) with

compact support contained in O.
Denote by L2(O) the Hilbert space of square integrable functions on O, equipped

with its usual inner product 〈·, ·〉L2(O). For integer α ≥ 0, the order-α Sobolev space on
O is the separable Hilbert space

Hα(O) = {f ∈ L2(O) : ∀|i| ≤ α, ∃ Dif ∈ L2(O)}, 〈f, g〉Hα(O) =
∑

|i|≤α

〈Dif,Dig〉L2(O).

For non-integer α ≥ 0, Hα(O) can be defined by interpolation, see, e.g., [37]. For
any α ≥ 0, Hα

c (O) will denote the completion of C∞
c (O) with respect to the norm

‖ · ‖Hα(O). Finally, if K is a nonempty compact subset of O, we denote by Hα
K(O) the

closed subspace of functions in Hα(O) with support contained in K. Whenever there
is no risk of confusion, we will omit the reference to the underlying domain O.

Throughout, we use the symbols . and & for inequalities holding up to a universal
constant. Also, for two real sequences (aN ) and (bN ), we say that aN ≃ bN if both
aN . bN and bN . aN for all N large enough. For a sequence of random variables ZN

we write ZN = OPr(aN ) if for all ε > 0 there exists Mε < ∞ such that for all N large
enough, Pr(|ZN | ≥ MεaN ) < ε. Finally, we will denote by L(Z) the law of a random
variable Z.

2.1.2 Parameter spaces and link functions

Let g ∈ C∞(O) be an arbitrary source function, which will be regarded as fixed through-
out. For f ∈ Cβ(O), β > 1, consider the boundary value problem

{

∇ · (f∇u) = g on O,
u = 0 on ∂O.

(3)
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If we assume that f ≥ Kmin > 0 on O, then standard elliptic theory (e.g., [20]) implies
that (3) has a classical solution G(f) ≡ uf ∈ C(Ō) ∩ C1+β(O).

We consider the following parameter space for f : For integer α > 1 + d/2, Kmin ∈
(0, 1), and denoting by n = n(x) the outward pointing normal at x ∈ ∂O, let

Fα,Kmin =

{

f ∈ Hα(O) : inf
x∈O

f(x) > Kmin, f|∂O = 1,
∂jf

∂nj |∂O
= 0 for 1 ≤ j ≤ α− 1

}

.

(4)
Our approach will be to place a prior probability measure on the unknown conductiv-

ity f and base our inference on the posterior distribution of f given noisy observations
of G(f), via Bayes’ theorem. It is of interest to use Gaussian process priors. Such
probability measures are naturally supported in linear spaces (in our case Hα

c (O)) and
we now introduce a bijective re-parametrisation so that the prior for f is supported in
the relevant parameter space Fα,Kmin . We follow the approach of using regular link
functions Φ as in [43].

Condition 1. For given Kmin > 0, let Φ : R → (Kmin,∞) be a smooth, strictly
increasing bijective function such that Φ(0) = 1, Φ′(t) > 0, t ∈ R, and assume that all
derivatives of Φ are bounded on R.

For some of the results to follow it will prove convenient to slightly strengthen the
previous condition.

Condition 2. Let Φ be as in Condition 1, and assume furthermore that Φ′ is nonde-
creasing and that lim inf t→−∞ Φ′(t)ta > 0 for some a > 0.

For a = 2, an example of such a link function is given in Example 24 below. Note
however that the choice of Φ = exp is not permitted in either condition.

Given any link function Φ satisfying Condition 1, one can show (cf. [43], Section 3.1)
that the set Fα,Kmin in (4) can be realised as the family of composition maps

Fα,Kmin = {Φ ◦ F : F ∈ Hα
c (O)}, α ∈ N.

We then regard the solution map associated to (3) as one defined on Hα
c via

G : Hα
c (O) → L2(O), F 7→ G (F ) := G(Φ ◦ F ), (5)

where G(Φ ◦ F ) is the solution to (3) now with f = Φ ◦ F ∈ Fα,Kmin . In the results to
follow, we will implicitly assume a link function Φ to be given and fixed, and understand
the re-parametrised solution map G as being defined as in (5) for such choice of Φ.

2.1.3 Measurement model

Define the uniform distribution on O by µ = dx/vol(O), where dx is the Lebesgue
measure and vol(O) =

∫

O dx, and consider random design variables

(Xi)
N
i=1

iid∼ µ, N ∈ N. (6)

For unknown f ∈ Fα,Kmin , we model the statistical errors under which we observe
the corresponding measurements {G(f)(Xi)}Ni=1 by i.i.d. Gaussian random variables
Wi ∼ N(0, 1), all independent of the Xi’s. Using the re-parameterisation f = Φ ◦F via
a given link function from the previous subsection, the observation scheme is then

Yi = G (F )(Xi) + σWi, i = 1, . . . , N, (7)

6



where σ > 0 is the noise amplitude. We will often use the shorthand notation Y (N) =
(Yi)

N
i=1, with analogous definitions for X(N) and W (N). The random vectors (Yi, Xi)

on R×O are then i.i.d with laws denoted as P i
F . Writing dy for the Lebesgue measure

on R, it follows that P i
F has Radon-Nikodym density

pF (y, x) :=
dP i

F

dy × dµ
(y, x) =

1√
2πσ2

e−[y−G (F )(x)]2/(2σ2), y ∈ R, x ∈ O. (8)

We will write PN
F = ⊗N

i=1P
i
F for the joint law of (Y (N), X(N)) on RN ×ON , with Ei

F ,
EN

F the expectation operators corresponding to the laws P i
F , P

N
F respectively. In the

sequel we sometimes use the notation PN
f instead of PN

F when convenient.

2.1.4 The Bayesian approach

In the Bayesian approach one models the parameter F ∈ Hα
c (O) by a Borel probability

measure Π supported in the Banach space C(O). Since the map (F, (y, x)) 7→ pF (y, x)
can be shown to be jointly measurable, the posterior distribution Π(·|Y (N), X(N)) of
F |(Y (N), X(N)) arising from data in model (7) equals, by Bayes’ formula (p.7, [19]),

Π(B|Y (N), X(N)) =

∫

B
eℓ

(N)(F )dΠ(F )
∫

C(O) e
ℓ(N)(F )dΠ(F )

any Borel set B ⊆ C(O), (9)

where

ℓ(N)(F ) = − 1

2σ2

N
∑

i=1

[Yi − G (F )(Xi)]
2 (10)

is (up to an additive constant) the joint log-likelihood function.

2.2 Statistical convergence rates

In this section we will show that the posterior distribution arising from certain priors
concentrates near any sufficiently regular ground truth F0 (or, equivalently, f0), and
provide a bound on the rate of this contraction, assuming the observation (Y (N), X(N))
to be generated through model (7) of law PN

F0
. We will regard σ > 0 as a fixed and

known constant; in practice it may be replaced by the estimated sample variance of the
Yi’s.

The priors we will consider are built around a Gaussian process base prior Π′, but to
deal with the non-linearity of the inverse problem, some additional regularisation will
be required. We first show how this can be done by a N -dependent ‘rescaling’ step as
suggested in [38]. We then further show that a randomised truncation of a Karhunen-
Loeve-type series expansion of the base prior also leads to a consistent, ‘fully Bayesian’
solution of this inverse problem.

2.2.1 Results with re-scaled Gaussian priors

We will freely use terminology from the basic theory of Gaussian processes and measures,
see, e.g., [21], Chapter 2 for details.

Condition 3. Let α > 1+d/2, β ≥ 1, and let H be a Hilbert space continuously imbed-
ded into Hα

c (O). Let Π′ be a centred Gaussian Borel probability measure on the Banach
space C(O) that is supported on a separable measurable linear subspace of Cβ(O), and
assume that the reproducing-kernel Hilbert space (RKHS) of Π′ equals H.
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As a basic example of a Gaussian base prior Π′ satisfying Condition 3, consider
a Whittle-Matérn process M = {M(x), x ∈ O} indexed by O and of regularity α
(cf. Example 25 below for full details). We will assume that it is known that F0 ∈ Hα(O)
is supported inside a given compact subset K of the domain O, and fix any smooth cut-
off function χ ∈ C∞

c (O) such that χ = 1 on K. Then, Π′ = L(χM) is supported on the
separable linear subspace Cβ′

(O) of Cβ(O) for any β < β′ < α − d/2, and its RKHS
H = {χF, F ∈ Hα(O)} is continuously imbedded into Hα

c (O) (and contains Hα
K(O)).

The condition F0 ∈ H that is employed in the following theorems then amounts to the
standard assumption that F0 ∈ Hα(O) be supported in a strict subset K of O.

To proceed, if Π′ is as above and F ′ ∼ Π′, we consider the ‘re-scaled’ prior

ΠN = L(FN ), FN =
1

Nd/(4α+4+2d)
F ′, (11)

Then ΠN again defines a centred Gaussian prior on C(O), and a basic calculation (e.g.,
Exercise 2.6.5 in [21]) shows that its RKHS HN is still given by H but now with norm

‖F‖HN = Nd/(4α+4+2d)‖F‖H ∀F ∈ H. (12)

Our first result shows that the posterior contracts towards F0 in ‘prediction’-risk
at rate N−(α+1)/(2α+2+d) and that, moreover, the posterior draws possess a bound on
their Cβ-norm with overwhelming frequentist probability.

Theorem 4. For fixed integer α > β + d/2, β ≥ 1, consider the Gaussian prior ΠN in
(11) with base prior F ′ ∼ Π′ satisfying Condition 3 for RKHS H. Let ΠN (·|Y (N), X(N))
be the resulting posterior distribution arising from observations (Y (N), X(N)) in (7), set
δN = N−(α+1)/(2α+2+d), and assume F0 ∈ H.

Then for any D > 0 there exists L > 0 large enough (depending on σ, F0, D, α, β, as
well as on O, d, g) such that, as N → ∞,

ΠN (F : ‖G (F )− G (F0)‖L2 > LδN |Y (N), X(N)) = OPN
F0
(e−DNδ2N ), (13)

and for sufficiently large M > 0 (depending on σ,D, α, β)

ΠN (F : ‖F‖Cβ > M |Y (N), X(N)) = OPN
F0
(e−DNδ2N ). (14)

Following ideas in [38], we can combine (13) with the regularisation property (14)
and a suitable stability estimate for G−1 to show that the posterior contracts about f0
also in L2-risk. We shall employ the stability estimate proved in [43, Lemma 24] which
requires the source function g in the base PDE (3) to be strictly positive, a natural
condition ensuring injectivity of the map f 7→ G(f), see [46]. Denote the push-forward
posterior on the conductivities f by

Π̃N (·|Y (N), X(N)) := L(f), f = Φ ◦ F : F ∼ ΠN (·|Y (N), X(N)). (15)

Theorem 5. Let ΠN (·|Y (N), X(N)), δN and F0 be as in Theorem 4 for integer β > 1.
Let f0 = Φ ◦ F0 and assume in addition that infx∈O g(x) ≥ gmin > 0. Then for any
D > 0 there exists L > 0 large enough (depending on σ, f0, D, α, β,O, gmin, d) such
that, as N → ∞,

Π̃N (f : ‖f − f0‖L2 > LN−λ|Y (N), X(N)) = OPN
f0

(e−DNδ2N ), λ =
(α+ 1)(β − 1)

(2α+ 2 + d)(β + 1)
.
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We note that as the smoothness α of f0 increases, we can employ priors of higher
regularity α, β. In particular, if F0 ∈ C∞ = ∩α>0H

α, we can let the above rate N−λ

be as closed as desired to the ‘parametric’ rate N−1/2.
We conclude this section showing that the posterior mean EΠ[F |Y (N), X(N)] of

ΠN (·|Y (N), X(N)) converges to F0 at the rate N−λ from Theorem 5. We formulate this
result at the level of the vector space valued parameter F (instead of for conductivities
f), as the most commonly used MCMC algorithms (such as pCN, see Subsection 2.3.1)
target the posterior distribution of F .

Theorem 6. Under the hypotheses of Theorem 5, let F̄N = EΠ[F |Y (N), X(N)] be the
(Bochner-) mean of ΠN (·|Y (N), X(N)). Then, as N → ∞,

PN
F0

(

‖F̄N − F0‖L2 > N−λ
)

→ 0. (16)

The same result holds for the implied conductivities, that is, for ‖Φ ◦ F̄N − f0‖L2

replacing ‖F̄N − F0‖L2, since composition with Φ is Lipschitz.

2.2.2 Extension to high-dimensional Gaussian sieve priors

It is often convenient, for instance for computational reasons as discussed in Subsection
2.3.1, to employ ‘sieve’-priors that are concentrated on a finite-dimensional approxima-
tion of the parameter space supporting the prior. For example a truncated Karhunen-
Loeve-type series expansion (or some other discretisation) of the Gaussian base prior
Π′ is frequently used [14, 22]. The theorems of the previous subsection remain valid if
the approximation spaces are appropriately chosen.

Let us illustrate this by considering a Gaussian series prior based on an orthonormal
basis {Ψℓr, ℓ ≥ −1, r ∈ Zd} of L2(Rd) composed of sufficiently regular, compactly
supported Daubechies wavelets (see Chapter 4 in [21] for details). We assume that
F0 ∈ Hα

K(O) for some K ⊂ O, and denote by Rℓ the set of indices r for which the
support of Ψℓr intersects K. Fix any compact K ′ ⊂ O such that K ( K ′, and a cut-off
function χ ∈ C∞

c (O) such that χ = 1 on K ′. For any real α > 1 + d/2, consider the
prior Π′

J arising as the law of the Gaussian random sum

Π′
J = L(χF ), F =

∑

ℓ≤J,r∈Rℓ

2−ℓαFℓrΨℓr, Fℓr
iid∼ N(0, 1), (17)

where J = JN → ∞ is a (deterministic) truncation point to be chosen. Then Π′
J defines

a centred Gaussian prior that is supported on the finite-dimensional space

HJ = span{χΨℓr, ℓ ≤ J, r ∈ Rℓ} ⊂ C(O). (18)

Proposition 7. Consider a prior ΠN as in (11) where now F ′ ∼ Π′
J and J = JN ∈

N is such that 2J ≃ N1/(2α+2+d). Let ΠN (·|Y (N), X(N)) be the resulting posterior
distribution arising from observations (Y (N), X(N)) in (7), and assume F0 ∈ Hα

K(O).
Then the conclusions of Theorems 4-6 remain valid (under the respective hypotheses on
α, β, g).

A similar result could be proved for more general Gaussian priors (not of wavelet
type), but we refrain from giving these extensions here.

2.2.3 Randomly truncated Gaussian series priors

In this section we show that instead of rescaling Gaussian base priors Π′,Π′
J in a

N−dependent way to attain extra regularisation, one may also randomise the dimen-
sionality parameter J in (17) by a hyper-prior with suitable tail behaviour. While this

9



is computationally somewhat more expensive (by necessitating a hierarchical sampling
method, see Subsection 2.3.1), it gives a possibly more principled approach to (‘fully’)
Bayesian regularisation in our inverse problem. The theorem below will show that such
a procedure is consistent in the frequentist sense, at least for smooth enough F0.

For the wavelet basis and cut-off function χ introduced before (17), we consider
again a random (conditionally Gaussian) sum

Π = L(χF ), F =
∑

ℓ≤J,r∈Rℓ

2−ℓαFℓrΨℓr, Fℓr
iid∼ N(0, 1) (19)

where now J is a random truncation level, independent of the random coefficients Fℓr,
satisfying the following inequalities

Pr(J > j) = e−2jd log 2jd ∀j ≥ 1; Pr(J = j) & e−2jd log 2jd , j → ∞. (20)

When d = 1, a (log-) Poisson random variable satisfies these tail conditions, and for
d > 1 such a random variable J can be easily constructed too – see Example 28 below.

Our first result in this section shows that the posterior arising from the truncated se-
ries prior in (19) achieves (up to a log-factor) the same contraction rate in L2-prediction
risk as the one obtained in Theorem 4. Moreover, as is expected in light of the results
in [51, 45], the posterior adapts to the unknown regularity α0 of F0 when it exceeds the
base smoothness level α.

Theorem 8. For any α > 1 + d/2, let Π be the random series prior in (19), and
let Π(·|Y (N), X(N)) be the resulting posterior distribution arising from observations
(Y (N), X(N)) in (7). Then, for each α0 ≥ α and any F0 ∈ Hα0

K (O), we have that
for any D > 0 there exists L > 0 large enough (depending on σ, F0, D, α,O, d, g) such
that, as N → ∞,

Π(F : ‖G (F )− G (F0)‖L2 > LξN |Y (N), X(N)) = OPN
F0
(e−DNξ2N ),

where ξN = N−(α0+1)/(2α0+2+d) logN . Moreover, for HJ the finite-dimensional sub-
spaces in (18) and JN ∈ N such that 2JN ≃ N1/(2α0+2+d), we also have that for suffi-
ciently large M > 0 (depending on D,α)

Π(F : F ∈ HJN , ‖F‖Hα ≤M2JNαNξ2N |Y (N), X(N)) = 1−OPN
F0
(e−DNξ2N ). (21)

We can now exploit the previous result along with the finite-dimensional support of
the posterior and again the stability estimate from [43] to obtain the following consis-
tency theorem for F0 ∈ Hα0 if α0 is large enough (with a precise bound α0 ≥ α∗ given
in the proof of Lemma 12).

Theorem 9. Let the link function Φ in the definition (5) of G satisfy Condition 2. Let
Π(·|Y (N), X(N)), ξN be as in Theorem 8, assume in addition g ≥ gmin > 0 on O, and
let Π̃(·|Y (N), X(N)) be the posterior distribution of f as in (15). Then for f0 = Φ ◦ F0

with F0 ∈ Hα0

K (O) for α0 large enough (depending on α, d, a) and for any D > 0 there
exists L > 0 large enough (depending on σ, f0, D, α,O, gmin, d) such that, as N → ∞,

Π̃(f : ‖f − f0‖L2 > LN−ρ|Y (N), X(N)) = OPN
f0

(e−DNξ2N ), ρ =
(α0 + 1)(α− 1)

(2α0 + 2 + d)(α + 1)
.

Just as before, for f0 ∈ C∞ the above rate can be made as close as desired to N−1/2

by choosing α large enough. Moreover, the last contraction theorem also translates into
a convergence result for the posterior mean of F .

10



Theorem 10. Under the hypotheses of Theorem 9, let F̄N = EΠ[F |Y (N), X(N)] be the
mean of Π(·|Y (N), X(N)). Then, as N → ∞,

PN
F0

(

‖F̄N − F0‖L2 > N−ρ
)

→ 0. (22)

We note that the proof of the last two theorems crucially takes advantage of the
‘non-symmetric’ and ‘non-exponential’ nature of the stability estimate from [43], and
may not hold in other non-linear inverse problems where such an estimate may not
be available (e.g., as in [38, 1] or also in the Schrödinger equation setting studied in
[40, 43]).

Let us conclude this section by noting that hierarchical priors such as the one studied
here are usually devised to ‘adapt to unknown’ smoothness α0 of F0, see [51, 45]. Note
that while our posterior distribution is adaptive to α0 in the ‘prediction risk’ setting of
Theorem 8, the rate N−ρ obtained in Theorems 9 and 10 for the inverse problem does
depend on the minimal smoothness α, and is therefore not adaptive. Nevertheless, this
hierarchical prior gives an example of a fully Bayesian, consistent solution of our inverse
problem.

2.3 Concluding discussion

2.3.1 Posterior computation

As mentioned in the introduction, in the context of the elliptic inverse problem consid-
ered in the present paper, posterior distributions arising from Gaussian process priors
such as those above can be computed by MCMC algorithms, see [13, 12, 6], and com-
putational guarantees can be obtained as well: For Gaussian priors, [22] establish non-
asymptotic sampling bounds for the ‘preconditioned Crank-Nicholson (pCN)’ algorithm,
which hold even in the absence of log-concavity of the likelihood function, and which
imply bounds on the approximation error for the computation of the posterior mean.
The algorithm can be implemented as long as it is possible to evaluate the forward map
F 7→ G (F )(x) at x ∈ O, which in our context can be done by using standard numerical
methods to solve the elliptic PDE (3). In practice, these algorithms often employ a
finite-dimensional approximation of the parameter space (see Subsection 2.2.2).

In order to sample from the posterior distribution arising from the more complex
hierarchical prior (19), MCMC methods based on fixed Gaussian priors (such as the
pCN algorithm) can be employed within a suitable Gibbs-sampling scheme that ex-
ploits the conditionally Gaussian structure of the prior. The algorithm would then
alternate, for given J , an MCMC step targeting the marginal posterior distribution
of F |(Y (N), X(N), J), followed by, given the actual sample of F , a second MCMC
run with objective the marginal posterior of J |(Y (N), X(N), F ). A related approach
to hierarchical inversion is empirical Bayesian estimation. In the present setting this
would entail first estimating the truncation level J from the data, via an estimator
Ĵ = Ĵ(Y (N), X(N)) (e.g., the marginal maximum likelihood estimator), and then per-
forming inference based on the fixed finite-dimensional prior ΠĴ (defined as in (19) with

J replaced by Ĵ). See [31] where this is studied in a diagonal linear inverse problem.

2.3.2 Open problems: Towards optimal convergence rates

The convergence rates obtained in this article demonstrate the frequentist consistency of
a Bayesian (Gaussian process) inversion method in the elliptic inverse problem (2) with
data (1) in the large sample limit N → ∞. While the rates approach the optimal rate
N−1/2 for very smooth models (α→ ∞), the question of optimality for fixed α remains

11



an interesting avenue for future research. We note that for the ‘PDE-constrained regres-
sion’ problem of recovering G (F0) in ‘prediction’ loss, the rate δN = N−(α+1)/(2α+2+d)

obtained in Theorems 4 and 8 can be shown to be minimax optimal (as in [43, Theorem
10]). But for the recovery rates for f obtained in Theorems 6 and 10, no matching
lower bounds are currently known. Related to this issue, in [43] faster (but still possibly
suboptimal) rates are obtained for the modes of our posterior distributions (MAP esti-
mates, which are not obviously computable in polynomial time), and one may loosely
speculate here about computational hardness barriers in our non-linear inverse problem.
These issues pose formidable challenges for future research and are beyond the scope of
the present paper.

3 Proofs

We assume without loss of generality that vol(O) = 1. In the proof, we will repeatedly
exploit properties of the (re-parametrised) solution map G defined in (5), which was
studied in detail in [43]. Specifically, in the proof of Theorem 9 in [43] it is shown that,
for all α > 1 + d/2 and any F1, F2 ∈ Hα

c (O),

‖G (F1)− G (F2)‖L2(O) . (1 + ‖F1‖4C1(O) ∨ ‖F2‖4C1(O))‖F1 − F2‖(H1(O))∗ , (23)

where we denote by X∗ the topological dual Banach space of a normed linear space X .
Secondly, we have (Lemma 20 in [43]) for some constant c > 0 (only depending on d, O
and Kmin),

sup
F∈Hα

c

‖G (F )‖∞ ≤ c‖g‖∞ <∞. (24)

Therefore the inverse problem (7) falls in the general framework considered in Appendix
A below (with β = κ = 1, γ = 4 in (32) and S = c‖g‖∞ in (33)) ; in particular Theorems
4 and 8 then follow as particular cases of the general contraction rate results derived in
Theorem 14 and Theorem 19, respectively. It thus remains to derive Theorems 5 and 6
from Theorem 4, and Theorems 9 and 10 from Theorem 8, respectively.

To do so we recall here another key result from [43], namely their stability estimate
Lemma 24: For α > 2 + d/2, if G(f) denotes the solution of the PDE (3) with g
satisfying infx∈O g(x) ≥ gmin > 0, then for fixed f0 ∈ Fα,Kmin and all f ∈ Fα,Kmin

‖f − f0‖L2(O) . ‖f‖C1(O)‖G(f)−G(f0)‖H2(O), (25)

with multiplicative constant independent of f .

3.1 Proofs for Section 2.2.1

Proof of Theorem 5. The conclusions of Theorem 4 can readily be translated for
the push-forward posterior Π̃N (·|Y (N), X(N)) from (15). In particular, (13) implies, for
f0 = Φ ◦ F0, as N → ∞,

Π̃N (f : ‖G(f)−G(f0)‖L2 > LδN |Y (N), X(N)) = OPN
f0

(e−DNδ2N ); (26)

and using Lemma 29 in [43] and (14) we obtain for sufficiently large M ′ > 0

Π̃N (f : ‖f‖Cβ > M ′|Y (N), X(N)) ≤ ΠN (F : ‖F‖Cβ > M |Y (N), X(N)) = OPN
f0

(e−DNδ2N ).

(27)
From the previous bounds we now obtain the following result.
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Lemma 11. For ΠN (·|Y (N), X(N)), δN and F0 as in Theorem 4, let Π̃N (·|Y (N), X(N))
be the push-forward posterior distribution from (15). Then, for f0 = Φ ◦ F0 and any
D > 0 there exists L > 0 large enough such that, as N → ∞,

Π̃N (f : ‖G(f)−G(f0)‖H2 > Lδ
(β−1)/(β+1)
N |Y (N), X(N)) = OPN

F0
(e−DNδ2N ).

Proof. Using the continuous imbedding of Cβ ⊂ Hβ, β ∈ N, and (27), for some M ′ > 0
as N → ∞,

Π̃N (f : ‖f‖Hβ > M ′|Y (N), X(N)) = OPN
F0
(e−DNδ2N ).

Now if f ∈ Hβ with ‖f‖Hβ ≤M ′, Lemma 23 in [43] implies G(f), G(f0) ∈ Hβ+1, with

‖G(f0)‖Hβ+1 . 1 + ‖f0‖β(β+1)

Hβ <∞, ‖G(f)‖Hβ+1 . 1 + ‖f‖β(β+1)

Hβ < M ′′ <∞;

and by the usual interpolation inequality for Sobolev spaces [37],

‖G(f)−G(f0)‖H2 . ‖G(f)−G(f0)‖(β−1)/(β+1)
L2 ‖G(f)−G(f0)‖2/(β+1)

Hβ+1

. ‖G(f)−G(f0)‖(β−1)/(β+1)
L2 .

Thus, by what precedes and (26), for sufficiently large L > 0

Π̃N (f : ‖G(f)−G(f0)‖H2 > Lδ
(β−1)/(β+1)
N |Y (N), X(N))

≤ Π̃N (f : ‖G(f)−G(f0)‖L2 > L′δN |Y (N), X(N)) + Π̃N (f : ‖f‖Hβ > M ′′|Y (N), X(N))

= OPN
F0
(e−DNδ2N ),

as N → ∞.

To prove Theorem 5 we use (25), (27) and Lemma 11 to the effect that for any
D > 0 we can find L,M > 0 large enough such that, as N → ∞,

Π̃N (f : ‖f − f0‖L2 > Lδ
β−1
β+1

N |Y (N), X(N))

≤ Π̃N (f : ‖G(f)−G(f0)‖H2 > L′δ
β−1
β+1

N |Y (N), X(N)) + Π̃N (f : ‖f‖Cβ > M |Y (N), X(N))

= OPN
F0
(e−DNδ2N ).

Proof of Theorem 6. The proof largely follows ideas of [38] but requires a slightly
more involved, iterative uniform integrability argument to also control the probability of
events {F : ‖F‖Cβ > M} on whose complements we can subsequently exploit regularity
properties of the inverse link function Φ−1.

Using Jensen’s inequality, it is enough to show, as N → ∞,

PN
F0

(

EΠ[‖F − F0‖2L2 |Y (N), X(N)] > N−λ
)

→ 0.

For M > 0 sufficiently large to be chosen, we decompose

EΠ[‖F − F0‖L2 |Y (N), X(N)] = EΠ[‖F − F0‖L21‖F‖
Cβ≤M |Y (N), X(N)]

+ EΠ[‖F − F0‖L21‖F‖
Cβ>M |Y (N), X(N)]. (28)
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Using the Cauchy-Schwarz inequality we can upper bound the expectation in the second
summand by

√

EΠ[‖F − F0‖2L2 |Y (N), X(N)]
√

ΠN (F : ‖F‖Cβ > M |Y (N), X(N)).

In view of (14), for all D > 0 we can choose M > 0 large enough to obtain

PN
F0

(

EΠ[‖F − F0‖2L2 |Y (N), X(N)]ΠN (F : ‖F‖Cβ > M |Y (N), X(N)) > N−2λ
)

≤ PN
F0

(

EΠ[‖F − F0‖2L2 |Y (N), X(N)]e−DNδ2N > N−2λ
)

+ o(1).

To bound the probability in the last line, let BN be the sets defined in (34) below, note

that Lemma 16 and Lemma 23 below jointly imply that ΠN (BN ) ≥ ae−ANδ2N for some
a,A > 0. Also, let ν(·) = ΠN (· ∩ BN )/ΠN (BN ), and let CN be the event from (40), for
which Lemma 7.3.2 in [21] implies that PN

F0
(CN ) → 1 as N → ∞. Then

PN
F0

(

EΠ[‖F − F0‖2L2 |Y (N), X(N)]e−DNδ2N > N−2λ
)

≤ PN
F0

(∫

C(O) ‖F − F0‖2L2

∏N
i=1 pF /pF0(Yi, Xi)dΠN (F )

Π(BN )
∫

BN

∏N
i=1 pF /pF0(Yi, Xi)dν(F )

e−DNδ2N > N−2λ, CN
)

+ o(1)

≤ PN
F0

(

∫

C(O)

‖F − F0‖2L2

N
∏

i=1

pF /pF0(Yi, Xi)dΠN (F ) > N−2λae(D−A−2)Nδ2N

)

+ o(1)

which is upper bounded, using Markov’s inequality and Fubini’s theorem, by

1

a
e−(D−A−2)Nδ2NN2λ

∫

C(O)

‖F − F0‖2L2EN
F0

(

N
∏

i=1

pF
pF0

(Yi, Xi)

)

dΠN (F ).

Taking D > A + 2 (and M large enough in (28)), using the fact that EN
F0

(
∏N

i=1

pF /pF0(Yi, Xi)
)

= 1, and that EΠN‖F‖L2 < ∞ (by Fernique’s theorem, e.g., [21,
Exercise 2.1.5]), we then conclude

PN
F0

(

EΠ[‖F − F0‖2L21‖F‖
Cβ>M |Y (N), X(N)] > N−λ

)

→ 0, N → ∞. (29)

To handle the first term in (28), let f = Φ ◦F and f0 = Φ ◦ F0. Then for all x ∈ O,
by the mean value and inverse function theorems,

|F (x) − F0(x)| = |Φ−1 ◦ f(x)− Φ−1 ◦ f0(x)| =
1

|Φ′(Φ−1(η))| |f(x)− f0(x)|

for some η lying between f(x) and f0(x). If ‖F‖Cβ ≤M then, as Φ is strictly increasing,
necessarily f(x) = Φ(F (x)) ∈ [Φ(−M),Φ(M)] for all x ∈ O. Similarly, the range of f0
is contained in the compact interval [Φ(−M),Φ(M)] for M ≥ ‖F0‖∞, so that

|Φ−1 ◦ f(x)− Φ−1 ◦ f0(x)| ≤
1

minz∈[−M,M ] Φ′(z)
|f(x)− f0(x)| . |f(x)− f0(x)|

for a multiplicative constant not depending on x ∈ O. It follows

‖F − F0‖L21‖F‖
Cβ≤M . ‖f − f0‖L21‖F‖

Cβ≤M ,
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and
EΠ[‖F − F0‖L21‖F‖

Cβ≤M |Y (N), X(N)] . EΠ̃[‖f − f0‖L2 |Y (N), X(N)].

Noting that for each L > 0 the last expectation is upper bounded by

LN−λ + EΠ̃
[

‖f − f0‖L21‖f−f0‖L2>LN−λ |Y (N), X(N)]

≤ LN−λ +

√

EΠ̃[‖f − f0‖2L2 |Y (N), X(N)]

√

Π̃N (f : ‖f − f0‖L2 > LN−λ|Y (N), X(N)),

we can repeat the above argument, with the event {F : ‖F‖Cβ > M} replaced by the
event {f : ‖f − f0‖L2 > LN−λ}, to deduce from Theorem 5 that for D > A + 2 there
exists L > 0 large enough such that

PN
F0

(

EΠ̃[‖f − f0‖2L2 |Y (N), X(N)]Π̃N (f : ‖f − f0‖2L2 > LN−λ|Y (N), X(N)) > N−λ
)

. e−(D−A−2)Nδ2NN2λ

which combined with (29) and the definition of δN concludes the proof.

3.2 Sieve prior proofs

The proof only requires minor modification from the proofs of Section 2.2.1. We only
discuss here the main points: One first applies the L2-prediction risk Theorem 14 with a
sieve prior. In the proof of the small ball Lemma 16 one uses the following observations:
the projection PHJ (F0) ∈ HJ of F0 ∈ Hα

K defined in (61) satisfies by (63)

‖F0 − PHJ (F0)‖(H1(O))∗ . 2−J(α+1);

hence choosing J such that 2J ≃ N1/(2α+2+d), and noting also that ‖PHJ (F0)‖C1 ≤
‖F0‖C1 <∞ for all J by standard properties of wavelet bases, it follows from (23) that

‖G (F0)− G (PHJ (F0))‖L2 . ‖F0 − PHJ (F0)‖(H1)∗ . N−(α+1)/(2α+2+d) = δN .

Therefore, by the triangle inequality,

ΠN (F : ‖G (F )− G (F0)‖L2 ≥ δN/q) ≥ ΠN (F : ‖G (F )− G (PHN (F0))‖L2 ≥ q′δN ).

The rest of the proof of Lemma 16 then carries over (with PHJ (F0) replacing F0), upon
noting that (60) and a Sobolev imbedding imply

sup
J∈N

EΠ′

J‖F‖2C1 <∞, as well as ‖F‖Hα ≤ c‖F‖HJ for all F ∈ HJ

for some constant c > 0 independent of J . Moreover, the last two properties are
sufficient to prove an analogue of Lemma 17 as well, so that Theorem 14 indeed applies
to the sieve prior. The proof from here onwards is identical to the ones of Theorems 4-6
for the unsieved case, using also that what precedes implies that supJ E

Π′

J ‖F‖2L2 <∞,
relevant in the proof of convergence of the posterior mean.

3.3 Proofs for Section 2.2.3

Inspection of the proofs for rescaled priors implies that Theorems 9 and 10 can be
deduced from Theorem 8 if we can show that posterior draws lie in a α-Sobolev ball
of fixed radius with sufficiently high frequentist probability. This is the content of the
next result.
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Lemma 12. Under the hypotheses of Theorem 9, there exists α∗ > 0 (depending on
α, d and a) such that for each F0 ∈ Hα0

K (O), α0 > α∗, and any D > 0 we can find
M > 0 large enough such that, as N → ∞,

Π(F : ‖F‖Hα ≤M |Y (N), X(N)) = 1−OPN
F0
(e−DNξ2N ).

Proof. Theorem 8 implies that for all D > 0 and sufficiently large L,M > 0, if JN ∈
N : 2JN ≃ N1/(2α0+2+d) and denoting by

AN = {F ∈ HJN : ‖F‖Hα ≤M2JNα
√
NξN , ‖G (F )− G (F0)‖L2 ≤ LξN},

then as N → ∞
Π(AN |Y (N), X(N)) = 1−OPN

F0
(e−DNξ2N ). (30)

Next, note that if F ∈ HJN , then by standard properties of wavelet bases (cf. (64)),
‖F‖Hα . 2JNα‖F‖L2 for all N large enough. Thus, for PHJN

(F0) the projection of F0

onto HJN defined in (61),

‖F‖Hα ≤ ‖F − PHJN
(F0)‖Hα + ‖PHJN

(F0)‖Hα . 2JNα‖F − F0‖L2 + ‖F0‖Hα ,

and a Sobolev imbedding further gives ‖F‖L∞ ≤ M ′2JNα
√
NξN , for some M ′ > 0.

Now letting f = Φ◦F and f0 = Φ◦F0, by similar argument as in the proof of Theorem
6 combined with monotonicity of Φ′, we see that for all N large enough

‖F − F0‖L2 ≤ 1

Φ′(−M ′2JNα
√
NξN )

‖f − f0‖L2 .

Then, using the assumption on the left tail of Φ in Condition 2, and the stability
estimate (25),

‖F − F0‖L2 . (2JNα
√
NξN )a‖f‖Hα‖G(f)−G(f0)‖H2 .

Finally, by the interpolation inequality for Sobolev spaces [37] and Lemma 23 in [43],

‖G(f)−G(f0)‖H2 . ‖G(f)−G(f0)‖(α−1)/(α+1)
L2 ‖G(f)−G(f0)‖2/(α+1)

Hα+1

. ξ
(α−1)/(α+1)
N (‖G(f)‖Hα+1 + ‖G(f0)‖Hα+1)2/(α+1)

. ξ
(α−1)/(α+1)
N (1 + ‖f‖α2+α

Hα )2/(α+1).

so that, in conclusion, for each F ∈ AN and sufficiently large N ,

‖F‖Hα . 1 + 2JNα(2JNα
√
NξN )a‖f‖Hαξ

α−1
α+1

N (1 + ‖f‖α2+α
Hα )

2
α+1 .

The last term is bounded, using Lemma 29 in [43], by a multiple of

ξ
α−1
α+1

N 2JNα(2JNα
√
NξN )2α

2+2α+a = N
−

(α0+1)(α−1)

(2α0+2+d)(α+1)N
2α3+(2+d)α2+(1+a+d)α+ad/2

2α0+2+d

the last identity holding up to a log factor. Hence, if

α0 > α∗ :=
[2α3 + (2 + d)α2 + (1 + a+ d)α+ ad/2](α+ 1)

(α− 1)

then we conclude overall that ‖F‖Hα . 1 + o(1) as N → ∞ for all F ∈ AN , proving
the claim in view of (30).

Replacing β by α in the conclusion of Lemma 11, the proof of Theorem 9 now
proceeds as in the proof of Theorem 5 without further modification. Likewise, Theorem
10 can be shown following the same argument as in the proof of Theorem 6, noting that
for Π the random series prior in (19), it also holds that EΠ‖F‖2L2 <∞.
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A Results for general inverse problems

Let O ⊂ Rd, d ∈ N, be a nonempty open and bounded set with smooth boundary,
and assume that D is a nonempty and bounded measurable subset of Rp, p ≥ 1. Let
F ⊆ L2(O) be endowed with the trace Borel σ-field of L2(O), and consider a Borel-
measurable ‘forward mapping’

G : F → L2(D), F 7→ G (F ).

For F ∈ F , we are given noisy discrete measurements of G (F ) over a grid of points
drawn uniformly at random on D,

Yi = G (F )(Xi) + σWi, i = 1, . . . , N, Xi
iid∼ µ, Wi

iid∼ N(0, 1), (31)

for some σ > 0. Above µ denotes the uniform (probability) distribution on D and
the design variables (Xi)

N
i=1 are independent of the noise vector (Wi)

N
i=1. We assume

without loss of generality that vol(D) = 1, so that µ = dx, the Lebesgue measure on D.
We take the noise amplitude σ > 0 in (31) to be fixed and known, and work under

the assumption that the forward map G satisfies the following local Lipschitz condition:
for given β, γ, κ ≥ 0, and all F1, F2 ∈ Cβ(O) ∩ F ,

‖G (F1)− G (F2)‖L2(D) . (1 + ‖F1‖γCβ(O)
∨ ‖F2‖γCβ(O)

)‖F1 − F2‖(Hκ(O))∗ (32)

where we recall that X∗ denotes the topological dual Banach space of a normed linear
space X . Additionally, we will require G to be uniformly bounded on its domain,

S := sup
F∈F

‖G (F )‖L∞(D) <∞. (33)

As observed in (23), the elliptic inverse problem considered in this paper falls in this
general framework, which also encompasses other examples of nonlinear inverse prob-
lems such as those involving the Schrödinger equation considered in [40, 43], for which
the results in this section would apply as well. It also includes many linear inverse
problems such as the classical Radon transform, see [43].

A.1 General contraction rates in Hellinger distance

Using the same notation as in Section 2.1.2, and given a sequence of Borel prior prob-
ability measures ΠN on F , we write ΠN (·|Y (N), X(N)) for the posterior distribution of
F |(Y (N), X(N)) (arising as after (9) and (10)). We also continue to use the notation
pF for the densities from (8) now in the general observation model (31) (and implicitly
assume that the map (F, (y, x)) 7→ pF (y, x) is jointly measurable to ensure existence
of the posterior distribution). Below we formulate a general contraction theorem in
the Hellinger distance that forms the basis of the proofs of the main results. It closely
follows the general theory in [19] and its adaptation to the inverse problem setting in
[38] – we include a proof for conciseness and convenience of the reader.

Define the Hellinger distance h(·, ·) on the set of probabilities density functions on
R×D (with respect to the product measure dy × dx) by

h2(p1, p2) :=

∫

R×D

[

√

p1(y, x)−
√

p2(y, x)
]2

dydx.

For any set A of such densities, let N(η;A, h), η > 0, be the minimal number of
Hellinger balls of radius η needed to cover A.

17



Theorem 13. Let ΠN be a sequence of prior Borel probability measures on F , and
let ΠN (·|Y (N), X(N)) be the resulting posterior distribution arising from observations
(Y (N), X(N)) in model (31). Assume that for some fixed F0 ∈ F , and a sequence
δN > 0 such that δN → 0 and

√
NδN → ∞ as N → ∞, the sets

BN :=
{

F : E1
F0

[

log
pF0(Y1, X1)

pF (Y1, X1)

]

≤ δ2N , E
1
F0

[

log
pF0(Y1, X1)

pF (Y1, X1)

]2

≤ δ2N

}

, (34)

satisfy for all N large enough

ΠN (BN ) ≥ ae−ANδ2N , some a,A > 0. (35)

Further assume that there exists a sequence of Borel sets AN ⊂ F for which

ΠN (Ac
N ) . e−BNδ2N , some B > A+ 2 (36)

for all N large enough, as well as

logN(δN ;AN , h) ≤ CNδ2N , some C > 0. (37)

Then, for sufficiently large L = L(B,C) > 4 such that L2 > 12(B ∨ C), and all
0 < D < B −A− 2, as N → ∞,

ΠN (F ∈ AN : h(pF , pF0) ≤ LδN |Y (N), X(N)) = 1−OPN
F0
(e−DNδ2N ). (38)

Proof. We start noting that by Theorem 7.1.4 in [21], for each L > 4 satisfying L2 >
12(B ∨ C) we can find tests (random indicator functions) ΨN = ΨN (Y (N), X(N)) such
that as N → ∞

EN
F0
ΨN → 0, sup

F∈AN :h(pF ,pF0 )≥LδN

EN
F (1−ΨN) ≤ e−BNδ2N . (39)

Next, denote the set whose posterior probability we want to lower bound by

ÃN = {F ∈ AN : h(pF , pF0) ≤ LδN};

and, using the first display in (39), decompose the probability of interest as

PN
F0

(

ΠN (Ãc
N |Y (N), X(N)) ≥ e−DNδ2N

)

= PN
F0

(

ΠN (Ãc
N |Y (N), X(N)) ≥ e−DNδ2N ,ΨN = 0

)

+ PN
F0

(

ΠN (Ãc
N |Y (N), X(N)) ≥ e−DNδ2N ,ΨN = 1

)

= PN
F0

(

ΠN (Ãc
N |Y (N), X(N)) ≥ e−DNδ2N ,ΨN = 0

)

+ o(1).

Next, let ν(·) = ΠN (· ∩BN )/ΠN (BN) be the restricted normalised prior on BN , and
define the event

CN =
{

∫

BN

N
∏

i=1

pF
pF0

(Yi, Xi)dν(F ) ≥ e−2Nδ2N

}

, (40)

for which Lemma 7.3.2 in [21] implies that PN
F0
(CN ) → 1 as N → ∞. We then further

decompose

PN
F0

(

ΠN (Ãc
N |Y (N), X(N)) ≥ e−DNδ2N ,ΨN = 0

)

= PN
F0

(

ΠN (Ãc
N |Y (N), X(N)) ≥ e−DNδ2N ,ΨN = 0, CN

)

+ o(1)
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and in view of condition (35) and the above definition of CN , we see that

PN
F0

(

ΠN (Ãc
N |Y (N), X(N)) ≥ e−DNδ2N ,ΨN = 0, CN

)

= PN
F0

(
∫

Ãc
N

∏N
i=1 pF /pF0(Yi, Xi)dΠN (F )

∫

F

∏N
i=1 pF /pF0(Yi, Xi)dΠN (F )

≥ e−DNδ2N ,ΨN = 0, CN
)

≤ PN
F0

(
∫

Ãc
N
(1− ΨN)

∏N
i=1 pF /pF0(Yi, Xi)dΠN (F )

∫

BN

∏N
i=1 pF /pF0(Yi, Xi)dν(F )

≥ ΠN (BN)e−DNδ2N , CN
)

≤ PN
F0

(

∫

Ãc
N

(1−ΨN )

N
∏

i=1

pF
pF0

(Yi, Xi)dΠN (F ) ≥ ae−(A+D+2)Nδ2N

)

.

We conclude applying Markov’s inequality and Fubini’s theorem, jointly with the fact
that for all F ∈ F

EN
F0

[

(1−ΨN )

N
∏

i=1

pF
pF0

(Yi, Xi)
]

= EN
F0

[

(1 −ΨN)

N
∏

i=1

dP 1
F

dP 1
F0

(Yi, Xi)
]

= EN
F [1 −ΨN ],

to upper bound the last probability by

1

a
e(A+D+2)Nδ2N

(

∫

Ac
N

EN
F [1−ΨN ]dΠN (F ) +

∫

{F∈AN :h(pF0 ,pF )>LδN}

EN
F [1−ΨN ]dΠN (F )

+

∫

{F∈Ac
N :h(pF0 ,pF )>LδN}

EN
F [1−ΨN ]dΠN (F )

)

≤ 1

a
e(A+D+2)Nδ2N

(

2ΠN (Ac
N ) +

∫

{F∈AN :h(pF0 ,pF )>LδN}

EN
F [1−ΨN ]dΠN (F )

)

. e−(B−A−D−2)Nδ2N = o(1)

as N → ∞ since B > A +D + 2, having used the excess mass condition (36) and the
second display in (39).

A.2 Contraction rates for rescaled Gaussian priors

While the previous result assumed a general sequence of priors, we now derive explicit
contraction rates in L2−prediction risk for the specific choices of priors considered in
Section 2.2. We start with the ‘re-scaled’ priors of Section 2.2.1.

Theorem 14. Let the forward map G satisfy (32) and (33) for given β, γ, κ,≥ 0 and
S > 0. For integer α > β + d/2, consider a Gaussian prior ΠN constructed as in (11)
with scaling Nd/(4α+4κ+2d) and with base prior F ′ ∼ Π′ satisfying Condition 3 with
RKHS H. Let ΠN (·|Y (N), X(N)) be the resulting posterior arising from observations
(Y (N), X(N)) in (31), assume F0 ∈ H and set δN = N−(α+κ)/(2α+2κ+d).

Then for any D > 0 there exists L > 0 large enough (depending on σ, F0, D, α, and
β, γ, κ, S, d) such that, as N → ∞,

ΠN (F : ‖G (F )− G (F0)‖L2(D) > LδN |Y (N), X(N)) = OPN
F0

(e−DNδ2N ), (41)

and for sufficiently large M > 0 (depending on σ,D, α, β, γ, κ, d)

ΠN (F : ‖F‖Cβ > M |Y (N), X(N)) = OPN
F0
(e−DNδ2N ). (42)
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Remark 15. Inspection of the proof (cf. after (45)) shows that if κ = 0 in (32), then
the RKHS H in Condition 3 can be assumed to be continuously imbedded in Hα(O)
instead of Hα

c (O). The same remark in fact applies for κ < 1/2.

Proof. In view of the boundedness assumption (33) on G , we have by Lemma 23 below
that for some q > 0 (depending on σ, S)

E1
F0

[

log
pF0(Y1, X1)

pF (Y1, X1)

]

∨ E1
F0

[

log
pF0(Y1, X1)

pF (Y1, X1)

]2

≤ q‖G (F0)− G (F )‖2L2(D).

Hence, for BN the sets from (34) we have {F : ‖G (F0) − G (F )‖L2(D) ≤ δN/q} ⊆
BN , which in turn implies the small ball condition (35) since by Lemma 16 below
(premultiplying, if needed, δN by a sufficiently large but fixed constant)

ΠN (F : ‖G (F )− G (F0)‖L2(D) ≤ δN/q) & e−ANδ2N

for some A > 0 and all N large enough. Next, for all D > 0 and any B > A +D + 2,
we can choose sets AN as in Lemmas 17 and 18 and verify the excess mass condition
(36) as well as the complexity bound (37). Note that ‖F‖Cβ ≤M for all F ∈ AN . We
then conclude by Theorem 13 that for some L′ > 0 large enough

ΠN (F ∈ AN : h(pF , pF0) ≤ L′δN |Y (N), X(N)) = 1− OPN
F0
(e−DNδ2N )

yielding the claim for some appropriate L > 0 using the first inequality in (57).

The following key lemma shows that the (non-Gaussian) prior induced on the re-
gression functions G (F ) assigns sufficient mass to a L2-neighbourhood of G (F0).

Lemma 16. Let ΠN , F0 and δN be as in Theorem 14. Then, for sufficiently large c > 0
there exists A > 0 (depending on c, F0, α, β, γ, κ, d) such that

ΠN (F : ‖G (F )− G (F0)‖L2(D) ≤ cδN) & e−ANδ2N (43)

for all N large enough.

Proof. Since F0 ∈ H, ‖F0‖Cβ <∞ by a Sobolev imbedding. Let M > ‖F0‖Cβ ∨ 1 be a
fixed constant. Using (32), we obtain for some k > 0

ΠN (F : ‖G (F )− G (F0)‖L2(D) ≤ cδN )

≥ ΠN (F : ‖F − F0‖(Hκ)∗ ≤ ckM−γδN , ‖F − F0‖Cβ ≤M)

= ΠN (F : F − F0 ∈ C1 ∩ C2),

where
C1 := {F : ‖F‖(Hκ)∗ ≤ ckM−γδN}, C2 := {F : ‖F‖Cβ ≤M}.

Then, recalling that the RKHS HN of ΠN coincides with H with RKHS norm ‖ · ‖HN

given in (12), now with scaling Nd/(4α+4κ+2d) =
√
NδN , we can use Corollary 2.6.18 in

[21] to lower bound the last probability by

e−‖F0‖
2
HN

/2ΠN (C1 ∩ C2) = e−
1
2Nδ2N‖F0‖

2
HΠN (C1 ∩C2)

≥ e−
1
2Nδ2N‖F0‖

2
H

(

ΠN (C1)−ΠN (Cc
2)
)
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To upper bound ΠN (Cc
2), note that by construction of ΠN

ΠN (Cc
2) = Pr(‖F ′‖Cβ > MNδ2N ), F ′ ∼ Π′.

By Condition 3, F ′ defines a centred Gaussian Borel random element in a separable
measurable subspace C of Cβ , and by the Hahn-Banach theorem and the separability
of C, ‖F ′‖Cβ can then be represented as a countable supremum

‖F ′‖Cβ = sup
T∈T

|T (F ′)|

of actions of bounded linear functionals T = (Tm)m∈N ⊂ (Cβ)∗. It follows that the col-
lection {Tm(F ′)}m∈N is a centred Gaussian process with almost surely finite supremum,
so that by Fernique’s theorem [21, Theorem 2.1.20]

E‖F ′‖Cβ = E sup
m∈N

|Tm(F ′)| <∞; τ2 := sup
m∈N

E|Tm(F ′)|2 <∞.

We then apply the Borell-Sudakov-Tirelson inequality [21, Theorem 2.5.8] to obtain for
all N large enough,

Pr
(

‖F ′‖Cβ ≥M
√
NδN

)

≤ Pr
(

‖F ′‖Cβ ≥ E‖F ′‖Cβ +M
√
NδN/2

)

≤ e−
1
8 (M/τ)2Nδ2N .

(44)

We proceed finding a lower bound for the prior probability of C1, which, by con-
struction of ΠN , satisfies

ΠN (F ∈ C1) = Π′(F ′ : ‖F ′‖(Hκ)∗ ≤ ckM−γ
√
Nδ2N ).

For any integer α > 0 and any κ ≥ 0, letting Bα
c (r) := {F ∈ Hα

c , ‖F‖Hα ≤ r}, r > 0,
we have the metric entropy estimate:

logN(η;Bα
c (r), ‖ · ‖(Hκ)∗) . (r/η)d/(α+κ) ∀η > 0; (45)

see the proof of Lemma 19 in [43] for the case κ ≥ 1/2, and Theorem 4.10.3 in [49] for
κ < 1/2 (in the latter case, we note in fact that the estimate holds true also for balls in
the whole space Hα). Hence, since H is continuously imbedded into Hα

c , letting BH(1)
be the unit ball of H, we have BH(1) ⊆ Bα

c (r) for some r > 0, implying that for all
η > 0

logN(η;BH(1), ‖ · ‖(Hκ)∗) ≤ logN(η;Bα
c (r), ‖ · ‖(Hκ)∗) . η−d/(α+κ). (46)

Then, for all N large enough, the small ball estimate in Theorem 1.2 in [36] yields

− logΠ′(F ′ : ‖F ′‖(Hκ)∗ ≤ ckM−γ
√
Nδ2N )

. (cM−γ
√
Nδ2N)−2 d

α+κ (2−d/(α+κ))−1

= (Mγ/c)
2d

2α+2κ−d [N−(α+κ−d/2)/(2α+2κ+d)]−
2d

2α+2κ−d

= (Mγ/c)
2d

2α+2κ−dNδ2N .

Thus, for k′ > 0 a fixed constant, we obtain the lower bound

ΠN (F : ‖G (F )− G (F0)‖L2(D) ≤ cδN)

≥ e−
1
2Nδ2N‖F0‖

2
H

(

e−k′(Mγ/c)
2d

2α+2κ−d Nδ2N − e−
1
8 (M/τ)2Nδ2N

)

& e−ANδ2N
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having taken c > 0 large enough (satisfying k′(Mγ/c)
2d

2α+2κ−d < 1
8 (M/τ)2), and where

A = 1
2‖F0‖2H + k′(Mγ/c)

2d
2α+2κ−d .

We now construct suitable approximating sets for which we check the excess mass
condition (36).

Lemma 17. Let ΠN and δN be as in Theorem 14. Define for any M,Q > 0

AN = {F : F = F1 + F2 : ‖F1‖(Hκ)∗ ≤ QδN , ‖F2‖H ≤M, ‖F‖Cβ ≤M}. (47)

Then for any B > 0 and for sufficiently large M,Q (both depending on B,α, β, γ, κ, d),
for all N large enough,

ΠN (Ac
N ) ≤ 2e−BNδ2N . (48)

Proof. By (44), taking M &
√
B, we obtain for all N large enough that ΠN (F :

‖F‖Cβ ≤ M) ≥ 1 − e−BNδ2N . Thus, the claim will follow if we can derive a similar
lower bound for

ΠN (F : F = F1 + F2 : ‖F1‖(Hκ)∗ ≤ QδN , ‖F2‖H ≤M)

= Π′(F ′ : F ′ = F ′
1 + F ′

2, ‖F ′
1‖(Hκ)∗ ≤ Q

√
Nδ2N , ‖F ′

2‖H ≤M
√
NδN),

having used that Nd/(4α+4κ+d) =
√
NδN . Using Theorem 1.2 in [36] as after (46), we

deduce that for some q > 0

− logΠ′(F ′ : ‖F ′‖(Hκ)∗ ≤ Q
√
Nδ2N ) ≤ q(Q

√
Nδ2N )−

2d
2α+2κ−d

so that for any Q > (B/q)−(2α+2κ−d)/(2d)

− logΠ′(F ′ : ‖F ′‖(Hκ)∗ ≤ Q
√
Nδ2N ) ≤ B(

√
Nδ2N )−

2d
2α+2κ−d = BNδ2N . (49)

Next, denote

MN = −2Φ−1(e−BNδ2N )

where Φ is the standard normal cumulative distribution function. Then by standard
inequalities for Φ−1 we have MN ≃

√
BNδN as N → ∞, so that taking M &

√
B

implies

Π′(F ′ : F ′ = F ′
1 + F ′

2, ‖F ′
1‖(Hκ)∗ ≤ Q

√
Nδ2N , ‖F ′

2‖H ≤M
√
NδN )

≥ Π′(F ′ : F ′ = F ′
1 + F ′

2, ‖F ′
1‖(Hκ)∗ ≤ Q

√
Nδ2N , ‖F ′

2‖H ≤MN).

By the isoperimetric inequality for Gaussian processes [21, Theorem 2.6.12], the last
probability is then lower bounded, using (49), by

Φ(Φ−1[Π′(F ′ : ‖F ′‖(Hκ)∗ ≤ Q
√
Nδ2N )] +MN ) ≥ Φ(Φ−1[e−BNδ2N ] +MN) = 1− e−BNδ2N ,

concluding the proof.

We conclude with the verification of the complexity bound (37) for the sets AN .

Lemma 18. Let AN be as in Lemma 17 for some fixed M,Q > 0. Then,

logN(δN ;AN , h) ≤ CNδ2N ,

for some constant C > 0 (depending on σ,M,Q, α, β, γ, κ, d, S) and all N large enough.
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Proof. If F ∈ AN , then F = F1 + F2 with ‖F1‖(Hκ)∗ ≤ QδN and ‖F2‖Hα ≤ M ′, the
latter inequality following from the continuous imbedding of H into Hα

c . Thus, recalling
the metric entropy estimate (45), if

{H1, . . . , HP } ⊂ Bα
c (M

′), P ≤ e−qδ
−d/(α+κ)
N = e−qNδ2N , q > 0,

is a δN -net with respect to ‖ · ‖(Hκ)∗ , we can find Hi such that ‖F2 −Hi‖(Hκ)∗ ≤ δN .
Then, using the second inequality in (57) below and the local Lipschitz estimate (32),

h(pF , Hi) . ‖G (F )− G (Hi)‖L2(D)

. (1 + ‖F‖γ
Cβ ∨ ‖Hi‖γCβ )‖F −Hi‖(Hκ)∗ .

Recalling that if F ∈ AN then also ‖F‖Cβ ≤ M , and using the Sobolev imbedding of
Hα into Cβ to bound ‖Hi‖Cβ , we then obtain

h(pF , Hi) . ‖F −Hi‖(Hκ)∗ . ‖F − F2‖(Hκ)∗ + ‖F2 −Hi‖(Hκ)∗ . δN .

It follows that {H1, . . . , HP } also forms a q′δN -net for AN in the Hellinger distance for
some q′ > 0, so that

logN(δN ;AN , h) ≤ logN(δN/q
′;Bα

c (M), ‖ · ‖(Hκ)∗) . Nδ2N .

A.3 Contraction rates for hierarchical Gaussian series priors

We now derive contraction rates in L2-prediction risk in the inverse problem (31), for
the truncated Gaussian random series priors introduced in Section 2.2.3. The proof
again proceeds by an application of Theorem 13.

Theorem 19. Let the forward map G satisfy (32) and (33) for given β, γ, κ ≥ 0
and S > 0. For any α > β + d/2, let Π be the random series prior in (19), and
let Π(·|Y (N), X(N)) be the resulting posterior distribution arising from observations
(Y (N), X(N)) in (31). Then, for each α0 ≥ α, any F0 ∈ Hα0

K (O) and any D > 0
there exists L > 0 large enough (depending on σ, F0, D, α, β, γ, κ, S, d) such that, as
N → ∞,

Π(F : ‖G (F )− G (F0)‖L2(D) > LξN |Y (N), X(N)) = OPN
F0

(e−DNξ2N ), (50)

where ξN = N−(α0+κ)/(2α0+2κ+d) logN . Moreover, for HJ the finite-dimensional sub-
spaces from (18) and JN ∈ N such that 2JN ≃ N1/(2α0+2κ+d), we also have that for
sufficiently large M > 0 (depending on D,α, β, d)

Π(F : F ∈ HJN , ‖F‖Hα ≤M2JNαNξ2N |Y (N), X(N)) = OPN
F0
(e−DNξ2N ). (51)

We begin deriving a suitable small ball estimate in the L2-prediction risk.

Lemma 20. Let Π, F0 and ξN be as in Theorem 19. Then, for sufficiently large q > 0
there exists A > 0 (depending on q, F0, α, β, γ, κ, d) such that

Π(F : ‖G (F )− G (F0)‖L2(D) ≤ qξN ) & e−ANξ2N (52)

for all N large enough.
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Proof. For each j ∈ N, denote by Πj the Gaussian probability measure on the finite
dimensional subspace Hj in (18) defined as after (19) with the series truncated at j.
For JN ∈ N : 2JN ≃ N1/(2α0+2κ+d), note

2JNd log 2JNd ≃ Nd/(2α0+2κ+d) logN = Nξ2N , (53)

so that, recalling the properties (20) of the random truncation level J , for some s > 0,

Pr(K = JN ) & e−2JNd log 2JNd ≥ e−sNξ2N

for all N large enough. It follows

Π(F : ‖G (F )− G (F0)‖L2 ≤ qξN ) ≥ ΠJN (F : ‖G (F )− G (F0)‖L2 ≤ qξN ) Pr(K = JN )

& ΠJN (F : ‖G (F )− G (F0)‖L2 ≤ qξN )e−sNξ2N .

Next, let

PHJN
(F0) = χ

∑

ℓ≤JN ,r∈Rℓ

〈F0,Ψℓr〉L2Ψℓr

be the ‘projection’ of F0 onto HJN . Since F0 ∈ Hα0

K ⊂ Cβ by a Sobolev imbedding, it
follows using (32) and standard approximation properties of wavelets (cf. (63)),

‖G (F0)− G (PHJN
(F0))‖L2(D) . ‖F0 − PHJN

(F0)‖(Hκ)∗ . 2−JN (α0+κ) = N−
α0+κ

2α0+2κ+d ,

which implies by the triangle inequality that

ΠJN (F : ‖G (F )− G (F0)‖L2 ≤ qξN )

≥ ΠJN (F : ‖G (F )− G (PHJN
(F0))‖L2 ≤ qξN − ‖G (F0)− G (PHJN

(F0))‖L2)

≥ ΠJN (F : ‖G (F )− G (PHJN
(F0))‖L2 ≤ q′ξN ).

Using again that Hα imbeds continuously into Cβ as well as (32) and (62), we can lower
bound the last probability by

ΠJN (F : ‖G (F )− G (PHJN
(F0))‖L2(D) ≤ q′ξN , ‖F − PHJN

(F0)‖Hα(O) ≤ ξN )

≥ ΠJN (F : ‖F − PHJN
(F0)‖(Hκ(O))∗ ≤ q′′ξN , ‖F − PHJN

(F0)‖Hα(O) ≤ ξN )

≥ ΠJN (F : ‖F − PHJN
(F0)‖Hα(O) ≤ q′′′ξN ),

which, by Corollary 2.6.18 in [21] and in view of (59) is further lower bounded by

e
− 1

2 ‖PHJN
(F0)‖

2
HJN ΠJN (F : ‖F‖Hα ≤ q′′′ξN ) ≥ e−s′‖F0‖

2
Hα0 ΠJN (F : ‖F‖Hα ≤ q′′′ξN ).

Now since f 7→ χf, χ ∈ C∞(O), is continuous on Hα(O),

ΠJN (F : ‖F‖Hα ≤ q′′′ξN ) = Pr
(
∥

∥

∥
χ

∑

ℓ≤JN ,r∈Rℓ

2−ℓαFℓrΨℓr

∥

∥

∥

Hα
≤ q′′′ξN

)

≥ Pr

(

dim(HJN
)

∑

m=1

Z2
m ≤ tξ2N

)

for some t > 0, where Zm
iid∼ N(0, 1), and where we have used the wavelet charac-

terisation of the Hα(Rd) norm. To conclude, note that the last probability is greater
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than

Pr
(

√

dim(HJN ) max
m≤dim(HJN

)
|Zm| ≤

√
tξN

)

≥ Pr
(

max
m≤dim(HJN

)
|Zm| ≤ t′N−

α0+κ

2α0+2κ+dN−
d/2

2α0+2κ+d

)

=
∏

m≤dim(HJN
)

Pr
(

|Zm| ≤ t′N−
α0+κ+d/2

2α0+2κ+d

)

.

Finally, a standard calculation shows that Pr(|Z1| ≤ t) & t if t→ 0, and hence the last
product is lower bounded, for large N , by

(

t′N−
α0+κ+d/2

2α0+2κ+d

)dim(HJN
)

= edim(HJN
) log

(

t′N
−

α0+κ+d/2
2α0+2+d

)

≥ e−t′′2JNd logN = e−t′′′Nξ2N .

In the following lemma we construct suitable approximating sets, for which we check
the excess mass condition (36) and the complexity bound (37) required in Theorem 13.

Lemma 21. Let Π, ξN and JN be as in Theorem 8, and let HJN be the finite dimen-
sional subspace defined in (18) with J = JN . Define for each M > 0

AN =
{

F ∈ HJN , ‖F‖Hα ≤M2JNαNξ2N

}

. (54)

Then, for any B > 0 there exists M > 0 large enough (depending on B,α, β, d) such
that, for sufficiently large N

Π(Ac
N ) ≤ 2e−BNξ2N . (55)

Moreover, for each fixed M > 0 and all N large enough

logN(ξN ;AN , h) ≤ CNξ2N (56)

for some C > 0 (depending on σ, α, β, γ, κ, S, d).

Proof. Letting Zm
iid∼ N(0, 1), noting ‖F‖2Hα ≤ 22JNα

∑

ℓ≤JN ,r∈Rℓ
F 2
ℓr for all F ∈ HJN

(cf. (59)) and using (53) and (20), we have for sufficiently large N

Π(Ac
N ) ≤ Pr(J > JN ) + Pr

(

∑

ℓ≤J∧JN ,r∈Rℓ

F 2
ℓr ≤MNξ2N

)

≤ e−2JNd log 2JNd

+ Pr
(

∑

m≤dim(HJN
)

Z2
m > MNξ2N

)

≤ e−BNξ2N + Pr
(

∑

m≤dim(HJN
)

(Z2
m − 1) > M̄Nξ2N

)

for any constant 0 < M̄ < M2 − 1, since dim(HJN ) . 2JNd ≃ Nd/(2α+2+d) = o(Nξ2N ).
The bound (55) then follows applying Theorem 3.1.9 in [21] to upper bound the last
probability, for any B > and for sufficiently large M and M̄ , by

e
−

M̄2(Nξ2N )2

4dim(HJN
)+M̄Nξ2

N ≤ e−BNξ2N .
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We proceed with the derivation of (56). By choice of JN , if F ∈ AN then ‖F‖2Hα .

N (2α)/(2α+2κ+d)Nξ2N . Hence, by the second inequality in (57), using (32) and the
Sobolev imbedding of Hα into Cβ , if F1, F2 ∈ AN then

h(pF1 , pF2) . ‖G (F1)− G (F2)‖L2(D)

. (1 + (N
α

2α+2κ+d

√
NξN )γ)‖F1 − F2‖(Hκ)∗

. N
αγ

2α+2κ+d (
√
NξN )γ

√

∑

ℓ≤JN ,r∈Rℓ

(F1,ℓr − F2,ℓr)2.

Therefore, using the standard metric entropy estimate for balls BRp(r), r > 0, in
Euclidean spaces [21, Proposition 4.3.34], we see that for N large enough

logN(ξN ;AN , h) . logN
(

ξNN
−αγ

2α+2κ+d (
√
NξN )−γ ;B

R
dim(HJN

)(M
√
NξN ), ‖ · ‖

R
dim(HJN

)

)

≤ dim(HJN ) log
3M

√
NξN

ξNN
αγ

2α+2κ+d (
√
NξN )−γ

. Nξ2N .

A.4 Information theoretic inequalities

In the following lemma (due to [7]) we exploit the boundedness assumption (33) on G

to show the equivalence between the Hellinger distance appearing in the conclusion of
Theorem 13 and the L2-distance on the ‘regression functions’ G (F ).

Lemma 22. Let the forward map G satisfy (33) for some S > 0. Then, for all F1, F2 ∈
F

1− e−S2/(2σ2)

4S2
‖G (F1)−G (F2)‖2L2(D) ≤ h2(pF1 , pF2) ≤

1

4σ2
‖G (F1)−G (F2)‖2L2(D). (57)

Proof. Note h2(pF1 , pF2) = 2− 2ρ(pF1 , pF2), where

ρ(pF1 , pF2) :=

∫

R×D

√

pF1(y, x)pF2(y, x)dydx

is the Hellinger affinity. Using the expression of the likelihood in (8) (with D instead of
O), the right hand side is seen to be equal to

∫

R×D

1√
2πσ2

e−{[y−G (F1)(x)]
2−[y−G (F2)(x)]

2}/(4σ2)dydx

=

∫

D

e−{[G (F1)(x)]
2+[G (F2)(x)]

2}/(4σ2)
[

∫

R

e−y2/(2σ2)

√
2πσ2

ey[G (F1)(x)+G (F2)(x)]/(2σ
2)dy

]

dx

=

∫

D

e−{[G (F1)(x)]
2+[G (F2)(x)]

2}/(4σ2)e[G (F1)(x)+G (F2)(x)]
2/(8σ2)dx

having used that the moment generating function of Z ∼ N(0, σ2) satisfies EetZ =

eσ
2t2/2, t ∈ R. Thus, the latter integral equals

∫

D

e−{[G (F1)(x)]
2+[G (F2)(x)]

2−2G (F2)(x)G (F2)(x)}/(8σ
2)dx = Eµe−{G (F1)(X)−G (F2)(X)}2/(8σ2).
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To derive the second inequality in (57), we use Jensen’s inequality to lower bound
the expectation in the last line by

e−Eµ{G (F1)(X)−G (F2)(X)}2/(8σ2) = e
−‖G (F1)−G (F2)‖

2
L2(D)

/(8σ2)
.

Hence
h2(pF1 , pF2) ≤ 2

[

1− e
−‖G (F1)−G (F2)‖

2
L2(D)

/(8σ2)
]

,

whereby the claim follows using the basic inequality 1− e−z/c ≤ z/c, for all c, z > 0.
To deduce the first inequality we follow the proof of Proposition 1 in [7]: note that

for all 0 ≤ z1 < z2

e−z1 ≤ z1
z2
e−z2 +

(

1− z1
z2

)

=
e−z2 − 1

z2
z1 + 1.

Then taking z1 = {G (F1)(X)− G (F2)(X)}2/(8σ2) and z2 = S2/(2σ2),

Eµe−{G (F1)(X)−G (F2)(X)}2/(8σ2) ≤ e−S2/(2σ2) − 1

4S2
‖G (F1)− G (F2)‖2L2(D) + 1

which in turn yields the result.

The next lemma bounds the Kullback-Leibler divergences appearing in (34) in terms
of the L2-prediction risk.

Lemma 23. Let the observation Yi in (31) be generated by some fixed F0 ∈ F . Then,
for each F ∈ F ,

E1
F0

[

log
pF0(Y1, X1)

pF (Y1, X1)

]

=
1

σ2
‖G (F0)− G (F )‖2L2(D),

and

E1
F0

[

log
pF0(Y1, X1)

pF (Y1, X1)

]2

≤ 2(S2 + σ2)

σ4
‖G (F0)− G (F )‖2L2(D).

Proof. If Y1 = G (F0)(X1) + σW1, then

log
pF0(Y1, X1)

pF (Y1, X1)

= − 1

2σ2
{[G (F0)(X1) + σW1 − G (F0)(X1)]

2 − [G (F0)(X1) + σW1 − G (F )(X1)]
2}

=
1

2σ2
{G (F0)(X1)− G (F )(X1)}2 +

1

σ
W1{G (F0)(X1)− G (F )(X1)}.

Hence, since EW1 = 0 and X1 ∼ µ,

E1
F0

[

log
pF0(Y1, X1)

pF (Y1, X1)

]

= Eµ
[ 1

2σ2
{G (F0)(X1)− G (F )(X1)}2

]

=
1

2σ2
‖G (F0)− G (F )‖2L2(D).

On the other hand,
[

log
pF0(Y1, X1)

pF (Y1, X1)

]2

=
[ 1

2σ2
{G (F0)(X1)− G (F )(X1)}2 +

1

σ
W1{G (F0)(X1)− G (F )(X1)}

]2

≤ 2
[ 1

2σ2
{G (F0)(X1)− G (F )(X1)}2

]2

+ 2
[ 1

σ
W1{G (F0)(X1)− G (F )(X1)}

]2

=
2S2

σ4
{G (F0)(X1)− G (F )(X1)}2 +

2

σ2
W 2

1 {G (F0)(X1)− G (F )(X1)}2,
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whence the second claim follows since EW 2
1 = 1.

B Additional background material

In this final appendix we collect some standard materials used in the proofs for conve-
nience of the reader.

Example 24. Take

φ : R → (0,∞), φ(t) =
1

1− t
1{t<0} + (1 + t)1{t≥0},

and let ψ : R → [0,∞) be a smooth compactly supported function such that
∫

R
ψ(t)dt =

1. Define for any Kmin ∈ (0, 1)

Φ(t) = Kmin +
1−Kmin

ψ ∗ φ(0) ψ ∗ φ(t), t ∈ R. (58)

Then it is elementary to check that Φ is a regular link function that satisfies Condition
2 (with a = 2).

Example 25. For any real α > d/2, the Whittle-Matérn process with index set O and
regularity α − d/2 > 0 (cf. Example 11.8 in [19]) is the stationary centred Gaussian
process M = {M(x), x ∈ O} with covariance kernel

K(x, y) =

∫

Rd

e−i〈x−y,ξ〉
Rdµ(dξ), µ(dξ) = (1 + ‖ξ‖2

Rd)
−αdξ, x, y ∈ O.

From the results in Chapter 11 in [19] we see that the RKHS of (M(x) : x ∈ O) equals
the set of restrictions to O of elements in the Sobolev space Hα(Rd), which equals,
with equivalent norms, the space Hα(O) (since O has a smooth boundary). Moreover,
Lemma I.4 in [19] shows that M has a version with paths belonging almost surely to
Cβ′

for all β′ < α − d/2. Let now K ⊂ O be a nonempty compact set, and let M be
a Cβ′

-smooth version of a Whittle-Matérn process on O with RKHS Hα(O). Taking
F ′ = χM implies (cf. Exercise 2.6.5 in [21]) that Π′ = L(F ′) defines a centred Gaussian
probability measure supported on Cβ′

, whose RKHS is given by

H = {χF, F ∈ Hα(O)},

and the RKHS norm satisfies that for all F ∈ Hα(O) there exists F ∗ ∈ Hα(O) such
that χF = χF ∗ and

‖χF‖H = ‖F ∗‖Hα(O).

Thus if F ′ = χF is an arbitrary element of H, then

‖F ′‖Hα = ‖χF ∗‖Hα . ‖F ∗‖Hα = ‖F ′‖H,

which shows that H is continuously embedded into Hα
c (O).

Remark 26. Let {Ψℓr, ℓ ≥ −1, r ∈ Zd} be an orthonormal basis of L2(Rd) composed
of S-regular and compactly supported Daubechies wavelets (see Chapter 4 in [21] for
construction and properties). For each 0 ≤ α ≤ S, we have

Hα(Rd) =
{

F ∈ L2(Rd) :
∑

ℓ,r

22ℓα〈F,Ψℓr〉2L2(Rd) <∞
}

,
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and the square root of the latter series defines an equivalent norm to ‖ · ‖Hα(Rd). Note
that S > 0 can be taken arbitrarily large.

For any α ≥ 0 the Gaussian random series

F̄j =
∑

ℓ≤j,r∈Rℓ

Fℓr2
−ℓαΨℓr, Fℓr

iid∼ N(0, 1)

defines a centred Gaussian probability measure supported on the finite-dimensional
space H̄j spanned by the {Ψℓr, ℓ ≤ j, r ∈ Rℓ}, and its RKHS equals H̄j endowed with
norm

‖H̄j‖2H̄j
=

∑

ℓ≤j,r∈Rℓ

22ℓαH2
ℓr = ‖H̄j‖2Hα(Rd) ∀H̄j ∈ H̄j

(cf. Example 2.6.15 in [21]). Basic wavelet theory implies dim(H̄j) . 2jd.
If we now fix compact K ′ ⊂ O such that K ( K ′, and consider a cut-off function

χ ∈ C∞
c (O) such that χ = 1 on K ′, then multiplication by χ is a bounded linear

operator χ : Hs(Rd) → Hs
c (O). It follows that the random function

Fj = χ(F̄j) =
∑

ℓ≤j,r∈Rℓ

Fℓr2
−ℓαχΨℓr, Fℓr

iid∼ N(0, 1)

defines, according to Exercise 2.6.5 in [21], a centred Gaussian probability measure
Πj = L(Fj) supported on the finite dimensional subspace Hj from (18), with RKHS
norm satisfying

∥

∥

∥
χ
(

∑

ℓ≤j,r∈Rℓ

HℓrΨℓr

)
∥

∥

∥

Hj

≤
∥

∥

∥

∑

ℓ≤j,r∈Rℓ

HℓrΨℓr‖H̄j
=

√

∑

ℓ≤j,r∈Rℓ

22ℓαH2
ℓr. (59)

Arguing as in the previous remark one shows further that for some constant c > 0,

‖Hj‖Hα(O) ≤ c‖Hj‖Hj ∀Hj ∈ Hj . (60)

Remark 27. Using the notation of the previous remark, for fixed F0 ∈ Hα
K(O), consider

the finite-dimensional approximations

PHj (F0) =
∑

ℓ≤j,r∈Rℓ

〈F0,Ψℓr〉L2χΨℓr ∈ Hj , j ∈ N. (61)

Then in view of (59), we readily check that for each j ≥ 1

‖PHj (F0)‖Hj ≤
√

∑

ℓ≤j,r∈Rℓ

22ℓα〈F0,Ψℓr〉2L2 ≤ ‖F0‖Hα(O) <∞. (62)

Also, for each κ ≥ 0, and any G ∈ Hκ(O), we see that (implicitly extending to 0 on
Rd\O functions that are compactly supported inside O)

〈F0 − PHj (F0), G〉L2(O) = 〈F0 − PHj (F0), χ
′G〉L2(Rd)

where χ′ ∈ C∞
c (O), with χ′ = 1 on supp(χ). We also note that, in view of the

localisation properties of Daubechies wavelets, for some Jmin ∈ N large enough, if
ℓ ≥ Jmin and the support of Ψℓr intersects K, then necessarily supp(Ψℓr) ⊆ K ′, so that

χΨℓr = Ψℓr ∀ℓ ≥ Jmin, r ∈ Rℓ.
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Therefore, for j ≥ Jmin, by Parseval’s identity and the Cauchy-Schwarz inequality

〈F0 − PHj (F0), χ
′G〉L2(Rd)

=
∑

ℓ′>j,r′∈Rℓ

2ℓα〈F0,Ψℓ′r′〉L2(Rd)2
ℓ′κ〈χ′G,Ψℓ′r′〉L2(Rd)2

−ℓ′(α+κ)

≤ 2−j(α+κ)

√

∑

ℓ′>j,r′∈Rℓ

22ℓα〈F0,Ψℓ′r′〉2L2(Rd)

√

∑

ℓ′>j,r′∈Rℓ

22ℓκ〈χ′G,Ψℓ′r′〉2L2(Rd)

≤ 2−j(α+κ)‖F0‖Hα(O)‖χ′G‖Hκ(Rd).

It follows by duality that for all j large enough

‖F0 − PHj (F0)‖(Hκ(O))∗ . 2−j(α+κ)‖F0‖Hα(O). (63)

We conclude remarking that

‖F‖Hα(O) . 2jα‖F‖L2(O), ∀F ∈ Hj , j ≥ Jmin. (64)

Indeed, let j ≥ Jmin, and fix F ∈ Hj ; then

F = PHJmin
(F ) + (F − PHJmin

(F )) =
∑

ℓ≤Jmin,r∈Rℓ

FℓrχΨℓr +
∑

Jmin<ℓ≤j,r∈Rℓ

FℓrΨℓr.

But as HJmin is a fixed finite dimensional subspace, then we have ‖PHJmin
(F )‖Hs(O) .

‖PHJmin
(F )‖L2(O) ≤ ‖F‖L2(O) for some fixed multiplicative constant only depending

on Jmin. On the other hand, we also have

‖F − PHJmin
(F )‖2Hα(O) =

∑

Jmin<ℓ≤j,r∈Rℓ

22ℓαF 2
ℓr

≤ 22jα‖F − PHJmin
(F )‖2L2(O) ≤ 22jα‖F‖2L2(O),

yielding (64).

Example 28. Consider the integer-valued random variable

J = ⌊log2(φ−1(T )1/d)⌋+ 1, T ∼ Exp(1),

where φ(x) = x log x, x ≥ 1. Then for any j ≥ 1

Pr(J > j) = Pr(φ−1(T ) ≥ 2jd) = Pr(T ≥ 2jd log 2jd) = e−2jd log 2jd .

On the other hand, since e−2jd(1−2−d) log 2(j−1)d → 0 as j → ∞,

Pr(J = j) = Pr(2(j−1)d ≤ φ−1(T ) < 2jd) = e−2(j−1)d log 2(j−1)d

+ 1− e−2jd log 2jd − 1

≥ e−2(j−1)d log 2(j−1)d

(1− e−2jd(1−2−d) log 2(j−1)d

) & e−2jd log 2jd .
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