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We study the statistics of free-surface turbulence at large Reynolds numbers produced by direct
numerical simulations in a fluid layer at different thickness with fixed characteristic forcing scale. We
observe the production of a transient inverse cascade, with a duration which depends on the thickness
of the layer, followed by a transition to three-dimensional turbulence initially produced close to the
bottom, no-slip boundary. By switching off the forcing, we study the decaying turbulent regime
and we find that it cannot be described by an exponential law. Our results show that boundary
conditions play a fundamental role in the nature of turbulence produced in thin layers and give
limits on the conditions to produce a two-dimensional phenomenology.

I. INTRODUCTION

Many geophysical and astrophysical flows are confined in thin layers of small aspect ratio either by material bound-
aries or by physical mechanisms which constrain the motion, such as rotation or stratification. The vertical extension
(thickness) of such layers can be much smaller than the typical horizontal scales, while being at the same time much
larger than the dissipative viscous scales. As a consequence, turbulent flows in those quasi-two-dimensional geometries
display a rich phenomenology with both three-dimensional (3D) features at small scales and two-dimensional (2D)
properties at large scales.

Remarkably, numerical simulations have shown that a physical confinement is not necessary to observe a two-
dimensional phenomenology. Even fully periodic simulations in a box with large aspect ratio L. < L, = L, forced
at intermediate scales, produce a split energy cascade in which a fraction of the energy flow to large scales (as in a
pure 2D flow) and the remaining part goes to small scales producing the 3D direct cascade [1-3]. In this case, the key
parameter which controls the relative flux of energy in the two cascades is the ratio S = L, /Ly between the confining
scale and the characteristic scale of the forcing L.

The transition from a fully 3D forward cascade to the bidirectional cascade occurs at a critical value S3p which
is not universal and depends on the details of the forcing. Early numerical simulations with pure 2D forcing [1, 2]
reported a critical value S3p ~ 1/2, while recent studies[4] showed that the threshold S3p decreases as the forcing
becomes more three dimensional. In the limit S — 0 of very small thickness, vertical motion is suppressed by viscosity
and the flow fully recovers the 2D dynamics. Numerical simulations of a model of thin fluid layers[5] showed that the
transition to the pure 2D regime occurs when the thickness of the box L, is such that the viscous damping rate v/L?
is of the same order of the shear rate at the forcing scale Uy /L. This correspond to a threshold Sap ~ (/Rey, where
Rey = UjLy /v is the forcing Reynolds number. The splitting of the energy cascade is observed when Sop < S < S3p,
and it is associated with a partial conservation of the enstrophy in the intermediate range of scales Ly < ¢ < L, [6].

The effects of the transition from 3D to partial or complete 2D dynamics are important for several statistics,
including the chaoticity of the flow [7]. Moreover, since at larger scale the flow becomes more two-dimensional, the
inverse cascade of energy in thin layer proceeds until it reaches the largest scale and produces a large-scale structure,
called the condensate [8-12].

The development of a bidirectional energy cascade with constant fluxes both toward large and small scales has been
observed in a in a variety of contexts, including rotating stratified turbulence [13-15] and magnetohydrodynamics
(MHD) [16, 17]. In MHD the split of the cascade is induced by the presence of a strong uniform magnetic field. In
geophysical flows, the critical thickness for the split of the energy cascade is increased by the presence of solid body
rotation [18] and reduced by stable density stratification [19]. We remark that the presence of an inverse cascade, and
the formation of large scale structures has been observed also in the case of turbulent Rayleigh-Benard convection
in horizontally extended domains when the flow is forced by a constant heat flux [20, 21] and independently on the
boundary conditions for the velocity.

The phenomenology of the split energy cascade



changes in the presence of confining physical boundaries, as in the case of laboratory experiments performed in a
thin layer of fluid confined by gravity [22-24]. The bottom (and lateral) boundary of the tank produces a boundary
layer which dissipates a relevant fraction of the energy injected in the system [22; 25] and thus reduces the turbulent
flux, in particular in the case of a single layer of fluid [23]. Experiments with a double layer, in particular of immiscible
fluids, reduce the damping rate induced by the bottom wall, and produce an inverse cascade of energy [23, 26].

In numerical simulations of turbulent thin layers with no-slip boundary conditions (BC) the development of a viscous
boundary layer alters significantly the behavior of the flow with respect to the case of periodic BC. In particular, in
the limit S — 0 of very small thickness, one expects that the flow is completely suppressed by the viscous friction
with the boundary, and therefore it does not recover the phenomenology of 2D turbulence.

In this work we systematically study the turbulent flow in a thin layer by extensive direct numerical simulations
of the Navier-Stokes equations in a box with no-slip BC at the bottom, and a free-slip BC at the top, similarly
to laboratory experiments of free-surface turbulence. Simulations are done at high resolution and large Reynolds
numbers which allows the development of a fully 3D turbulent motion. The forcing scale Ly is fixed, and we vary the
ratio S by changing the thickness L, of the box. We find that, in the range of parameters explored here, the thin layer
is unable to sustain an inverse cascade of energy. We observe a transient inverse cascade, of duration which depends
on the thickness S, but the 3D motion in the bottom boundary layer eventually propagates to the full layer and the
flow becomes fully three-dimensional with the inverse cascade being suppressed. We also study the decaying regime
of our systems, and we find a complex behavior which cannot be described by a simple exponential law.

The remaining of this paper is organized as follows. In Sec. II, we present the details of the numerical simulations.
Section III is devoted to the evolution of the global quantities of the flow, while Sec. IV discusses small scale statistics
and in particular the presence of a direct or inverse cascade. In Sec. V, we report the results of the decaying simulations
and finally Sec. VI is devoted to the conclusions.

II. MODELS AND DIRECT NUMERICAL SIMULATIONS

We consider the 3D Navier-Stokes equations for an incompressible velocity field u(x,t) = (u, v, w) (with V-« = 0)
in a domain of dimension L, x Ly X L,

%—?—i—u-Vu:—Vp—FVVQu—i—f, (1)
where the constant density has been adsorbed into the pressure p and v is the kinematic viscosity. The two-dimensional
forcing f is restricted to the two horizontal (x,y) components (2D2C) f(x) = (fz(z,y), fy(z,y),0). It is Gaussian,
white in time, and in Fourier space is confined in a narrow cylindrical shell of wavenumbers centered around ky =
2n/L; = 8. One reason to have a 2D forcing is that it is independent on the thickness of the flow and therefore we
use the same forcing for all the simulations at different L,.. Moreover, thanks to the delta-correlation in time, the
rates of injection of energy ¢ is fixed and does not depend on L, or on the properties of the flow.

Boundary conditions are periodic in the horizontal direction (z,y) while, to simulate free-surface turbulence, we
impose a no-slip BC at the bottom z = 0 and a free-slip BC at the top z = L,. We have therefore u = v =w =0 at
z = 0 while d,u = 0,v =0 and w =0 at z = L,. We remark that these BC have been previously used for numerical
studies of free-surface turbulence [27].

The equations of motion are solved numerically on a cubic grid with uniform spacing in all directions. We use the
flow solver Fugjin, an in-house code, extensively validated and used in a variety of problems [28-33], based on the
(second-order) finite-difference method for the spatial discretization and the (second-order) Adams-Bashforth scheme
for time marching. See also https://groups.oist.jp/cffu/code for a list of validations. Simulations are performed
at a fixed horizontal resolution and varying the vertical resolution depending on S with a constant viscosity and energy
input (see Table I). Additional simulations at different viscosities (not discussed here) produced similar results. All
the simulations start from an initial zero-velocity field and reach a statistically stationary states characterized by a
constant energy. Another set of simulations starts from these asymptotic states and study the decaying regime by
switching off the forcing. We remark that since (f;) = 0 (the average is defined over the (z,y) planes) we have no
mean flow (u;) =0 and we will consider the statistics of the fluctuating velocity field only.

III. LARGE-SCALE PROPERTIES OF THE FLOW

The 2D2C random forcing initially produces a two-dimensional flow. Since it cannot transfer energy to small scale,
energy dissipation during this first phase is negligible and the kinetic energy grows approximatively as F(t) ~ e;t.
After this phase, vertical motions start to develop and eventually produce a three-dimensional turbulence with a



Run# N, S L./L. Eap E. Re
1 16 0.03125 256 3.9 0.001 1580
2 32 0.0625 128 7.8 0.07 2250
3 48 0.09375 85.3 9.9 0.22 2550
4 64 0.125 64 11.6 0.41 2780
5 96 0.1875 42.7 12.6 0.68 2920
6 128  0.25 32 13.9 0.96 3100
7 160 0.3125 25.6 124 1.1 2940
8 512 1.0 8 12,5 2.1 3060
9 1024 20 4 12,5 2.7 3100

TABLE I. Parameters of the simulations. N is the resolution in the z direction, S = L./Ly the thickness in the z direction
(in units of the forcing scale Ly), L, /L. aspect ratio of the computational box, Eap and E. are the energies of the horizontal
and vertical component of the velocity in the stationary state (the total energy is E = Eap + E.). The Reynolds number is
defined as Re = VELg/v. For all the runs L, = L, = 27 with a resolution N, = N, = 4096. The viscosity is v = 9.8 x 107*
and the random forcing is active on the scale Ly = L, /8 with a fixed energy input e = 50.

transfer of energy to small scales where it is dissipated. As a consequence, the kinetic energy of the flow reaches a
(statistically) stationary state. This is clearly shown in Fig. 1 where we plot the time evolution of the total kinetic
energy E and of the vertical component E, for the Run 6. For ¢ < 0.3, the vertical kinetic energy is negligible and the
total energy grows at the input rate. After ¢ ~ 0.4, vertical motion sets in and the turbulent transfer to small scales
produces a viscous dissipation, which reduces the energy which eventually reaches a stationary state. We remark
that in this stationary state the vertical kinetic energy is still much smaller than the horizontal one (see Fig. 1 and
Table I).
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FIG. 1. Time evolution of the total kinetic energy E (red line) and of the vertical kinetic energy E. (blue line) for the forced
run 6 at S = 0.25. The black dashed line represents the growth rate due to the energy input, €;¢. Inset: Time evolution of the
total kinetic energy E for all the runs. Thickness S (and Run number) increases from bottom (red) to top (black) lines. The
black dashed line represents ert.

From Fig. 1 we can clearly distinguish two phases in the turbulent flow: a two-dimensional regime at initial times
and a three-dimensional regime at late times. This picture is observed (with quantitative differences) for all the
simulations at different thickness as shown in the inset of Fig. 1. The fact that kinetic energy reaches a constant
value indicates that, for any thickness, the flow is unable to sustain an inverse cascade (which would keep the energy
increasing). The reason why the energy split scenario (in which both a direct and an inverse energy cascades are
present) is not observed in our simulations is the main result of our work and will be discussed in details below.

From Fig. 1 we observe that the asymptotic value of the energy at long time grows with the thickness, more rapidly
for lower values of S. This is shown more clearly in Fig. 2 together with the dependence of E,/E on S in stationary
conditions. We see that for S < 0.3 the long-time limit of the energy has a strong dependence on S, while for larger
values of the thickness, F reaches an almost constant plateau. The inset of Fig. 2 displays the dependence of the
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ratio E,/E with the thickness. In this case we observe a growth for all the values of S, indicating that the presence
of the bottom boundary affects the vertical motion even at S =~ 1. We remark that the flow remains anisotropic also
at large S as F,/FE < 1/3.

FIG. 2. Asymptotic kinetic energy E as a function of the thickness S. Inset: ratio E./F as a function of S.

Since the flow has no mean velocity, (u) = 0, it is natural to consider the vertical profiles of the rms velocities,
i.e. Upms(2) = (u(x)?)'/2, where the average is over the horizontal (z,%) planes. The different boundary conditions
on the horizontal (u,v) and vertical w components, together with the 2D forcing, produce different profiles for the
horizontal and vertical components.
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FIG. 3. Vertical profile of the horizontal velocity fluctuations u,ms. The inset shows the behavior close to the boundary at
z = 0. Colors as in the inset of Fig. 1.

Fig. 3 shows the vertical profiles of one component of the horizontal velocity w,,,s in stationary conditions. We
observe, close to z = 0, a boundary layer region, strongly affected by the presence of the bottom wall, where velocity
fluctuations increase rapidly with z. For larger values of z (and not too small S) horizontal velocity fluctuations
saturates to an approximately constant value which increases with S. In these cases, we observe that close to the
upper boundary z = L., the horizontal velocity fluctuations increase. This is a consequence of the free-slip boundary
conditions and has been already observed in free-surface channel flow [27, 34]. A possible explanation of this effect
is obtained from a Taylor expansion of the velocity field close to the surface z = L,. Introducing, for simplicity of
notation, the shifted variable Z = L, — z (such that the free surface is at Z = 0), boundary conditions imply for one
horizontal component of the velocity u(x) = ug(z,y) + uz(x,y)Z? + O(Z*). Therefore, the variance of the velocity
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FIG. 4. Vertical profile of the vertical velocity fluctuations w;ms. Colors as in the inset of Fig. 1.

close to the surface has the expression
(u?) = (ug) + 2(uouz) Z* + O(Z*). (2)

Assuming that the energy dissipation rate averaged over horizontal planes is independent on z (which is verified in
our simulation for values of z not too close to the bottom plane), we expect that (¢) = —av(uV2u) > 0, where the
positive constant a depends on the details of the flow (a = 3 for isotropic turbulence). By Taylor expansion we can
write

uVu ~ (ug + ux Z%)(0? —i—(’); + 0%) (uo + u2 Z%) . (3)
Averaging (3) over (z,y) and using integration by part on the z and y derivatives, we obtain at the leading order
(uV2u) = —{((0,u)?) — {(Byu)?) + 2(ugua) + O(Z%) ~ —¢/v < 0. (4)

This expression suggests that, in the absence of cancellations of leading terms, (ugug) x —e/v < 0 and therefore,
from (2), that (u?) deceases moving away from the free surface as observed in Fig. 3. A parabolic fit of the velocity
variance close to z = L, is quantitatively consistent with the above predictions. Close to the bottom boundary with
no-slip BC we observe that the extension of the boundary layer region is weakly dependent on S, as it is shown in
the inset of Fig. 3.

Vertical profiles of the vertical velocity fluctuations are shown in Fig. 4. At variance with the horizontal components,
here the velocity (and therefore its fluctuations) vanishes also at the upper free surface. The maximum value of
fluctuations is observed approximately in the middle of the domain, even if, due to the different boundary conditions,
the profiles are not symmetric with respect the central plane z = L, /2. The ratio of the lines plotted in Fig. 4 and
in Fig. 3 gives the profile of the anisotropy of the velocity field. Even for the largest values of S, we have that in the
central part of the domain w5 /tprms =~ 0.5.

IV. SMALL-SCALE STATISTICS AND TRANSIENT INVERSE CASCADE

As discussed in the previous Section, the 2D2C forcing produces initially a two-dimensional flow. This flow is
non-stationary, as shown in Figs. 1, and eventually develops instabilities which result in a three-dimensional motion.
In order to better understand and characterize this transition, we study the small scale statistics of the turbulent flow
at different times and horizontal planes. We consider here the run at S = 2 for which the results are more clear, but
a similar scenario is observed for the simulations at other thickness also.

Figure 5 shows the horizontal spectra (computed on the (x,y) plane) of the full velocity field in two different depth
z and at different times. Both at z = L, /4 and at z ~ L, (i.e. close to the lower and upper boundary respectively) the
flow initially (at t = 0.2) develops fluctuations at small scales (i.e. at k > ky = 8) with a steep spectrum compatible
with a 2D direct cascade of enstrophy. During this first stage, in which the energy increases approximately with
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FIG. 5. 2D energy spectra for the simulation at S = 2 computed at z = L. /4 (left) and z ~ L, (right) at different times, from
t = 0.2 (light red) to time ¢ = 1.2 (black) with steps At = 0.2. The dashed line represents the Kolmogorov spectrum k=573,

the energy injection (see Fig. 1), the flow transfers some energy at large scale as prescribed by a two-dimensional
phenomenology. At t = 0.4 the flow close to the bottom has already developed a Kolmogorov scaling k~%/3, compatible
with a 3D direct cascade, while the spectrum of the flow close to the surface is still steep (second line from bottom in
both plots). At later times ¢t > 0.6, spectra display a Kolmogorov scaling in both planes.
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FIG. 6. (Left) 2D energy spectra from the simulation at S = 2 at time ¢ = 0.4 computed at different planes from z = L. /8
(clear red) to z ~ L. (black). The dashed line represents the Kolmogorov spectrum k~°/3. (Rigth) Two-dimensional energy
fluxes on the (z,y) planes z/L, = 3/4 (continuous lines) and z/L, = 1/4 (dash-dotted lines) at ¢ = 0.3 (red lines) and ¢ = 1.2
(blue lines).

The interpretation of these results is that two-dimensional turbulence, which is initially produced by the 2D2C
forcing, is transient and the flow develops a three-dimensional direct cascade starting from the layers closer to the
bottom boundary. In this sense, the transition from 2D to 3D flow is not uniform in space, but proceeds from the
bottom layer towards the top layer. This is clearly shown in Fig. 6, where we plot the energy spectra computed on
different horizontal planes in the domain at the intermediate time ¢t = 0.4. It is clear that, while the upper layers (at
z ~ L,) have a steep spectra compatible with a direct 2D cascade, the lower layers close to the bottom have already
developed a 3D cascade with a Kolmogorov spectrum.

To improve our undestanding of the transition, we computed the two-dimensional energy flux II(k) on the (z,y)
planes at different depth z. By definition, II(k) represents the energy flux due to the nonlinear terms. It is positive



(negative) in presence of a direct (inverse) energy cascade to small (large) scales. For a fully two-dimensional flow,
TI(k) vanishes at large k because of energy conservation (and also II(0) = 0 since there is no flux from k < 0).

The energy flux for the simulations at S = 2 at two different times and two planes is shown in Fig. 6. At short time
t = 0.3 the flow in the upper plane z/L, = 3/4 displays a clear inverse cascade with a negative flux for wavenumbers
k < kr = 8. At the lower layer z/L, = 1/4 we observe a split of the energy flux with about half of the energy
transferred to small scales and half to large scales. At late time ¢t = 1.2 the inverse cascade is suppressed and all the
energy is transferred to small scales. We remark that, since the energy is in principle not conserved on the (x,y)
planes, the fluxes do not vanishes at large k.

The transition from 2D to 3D dynamics at different layers is confirmed by the analysis of structure functions (SF)
in physical space, in particular by the third-order SF which contains information about the flux of energy [35].

From the longitudinal velocity increments duy, (¢, z,t) = (u(x +£,t) —u(x,t)) - £/ where £ is a vector on the (z,y)
plane, we define the SF of order p as

Sp(t; 2) = (duf (¢, ,1)) (5)

where, as in Section I, the average is over the plane (z,y) and time. We remark that three-dimensional turbulence is
characterized by a negative third-order SF corresponding to a direct cascade of turbulent fluctuations to small scales.
In particular, in 3D homogeneous-isotropic turbulence one has S3(¢) = —(4/5)ef [36]. In two dimensions one has,
on the contrary, an inverse cascade of turbulent fluctuations at scales larger than L; with a positive third-order SF
given, in homogeneous-isotropic conditions, by S5(¢) = (3/2)ef [35].
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FIG. 7. Horizontal longitudinal third-order velocity structure functions S3(¢;z) computed at three times of the simulation,
t = 0.2 (red lines), ¢ = 0.4 (blues lines) and ¢ = 0.6 (green lines). Continuous lines correspond to z = 3/4L., dashed line to
z =1/2L, and dash-dotted line to z = 1/4L,. Simulation at S = 2.

In Fig. 7 we plot the horizontal third-order longitudinal velocity SF at three different times and at three different
depth corresponding to z/L, = 1/4,1/2,3/4. At short time, ¢ = 0.2 the SF is positive, corresponding to an inverse
energy cascade, at all the three depths considered, consistent with the spectrum shown in Fig. 4. At the intermediate
time ¢ = 0.4 (which still correspond to the growing phase of the total energy, see inset of Fig. 1), the SF in the upper
layer (continuous line) is still positive, while it becomes negative in the lower layer close to the bottom boundary
(dash-dotted line). At the intemediate layer the SF change sign with the scale and at large scales is still positive.
This confirms the picture in Fourier space observed in Fig. 6. At time ¢ = 0.6, which corresponds to the peak of the
kinetic energy in Fig. 1, the SFs become negative for all the depth considered, indicating a complete transition to 3D
turbulence in the whole domain. This is at variance to what observed in simulations in fully periodic domains where,
for intermediate values of S, it is observed an inverse cascade at large scales together with a direct cascade at small
scales, both in stationary conditions [2]. Remarkably, laboratory experiments in a conducting fluid show a similar
phenomenology with the transion from positive to negative third-order SF [37].

The physical interpretation of these results, which are qualitatively confirmed also for the other simulations at
smaller S, is that the 2D2C forcing initially produces a quasi two-dimensional flow, which is turbulent (positive S3(¢))
in the whole domain. As the energy increases, the friction on the bottom boundary induces vertical motions which
make the flow three-dimensional (negative S5(¢)) starting from the lower layers. Eventually, at longer times, the whole



flow becomes three dimensional, turbulent fluctuations are dissipated by viscosity and the kinetic energy decreases to
reach a stationary state.

V. DECAYING TURBULENCE

In order to better understand the effects of the bottom layer on the turbulent flow, we performed additional
simulations in decaying conditions, i.e. by integrating (1) without the forcing term f. The initial conditions for the
decaying simulations are taken from the forced runs in stationary conditions, i.e. from the last time of the inset of
Fig. 1.

E(t)/E(0)

FIG. 8. Decaying of total kinetic energy in unforced simulations at different thickness S = 0.03125 (red lower line), S =
0.0625 (blue intermediate line), S = 0.125 and S = 0.3125 (green and orange upper lines). Inset: local exponential slope of
log(E(t)/E(0)) for simulations at S = 0.03125 (red upper line), S = 0.0625 (blue intermediate line), S = 0.125 (green lower
line). Dashed lines represent the viscous decay rate A = w2v/(4L2).

The evolution of the energy (normalized with the initial energy E(0)) is shown in Fig. 8 (where the initial time
t = 0 is now the time at which the forcing is switched off). From a qualitative point of view, it is evident that the
decay is faster for thinner layers, indicating the importance of the bottom boundary for the dissipation of energy.
Nonetheless, we see that energy dissipation rate becomes almost independent in the case of thick layers (the lines for
S =0.125 and S = 0.3125 are practically identical).

The lin-log plot of Fig. 8 suggests that, while in the thinnest case S = 0.03125 the long-time decay is with good
approximation exponential, this is not the case for the simulations at larger values of S. This is quantitatively
confirmed by the inset of Fig. 8 where we plot the local rate of exponential decay for three cases. The rate 2 is
obtained by plotting the local slope of log(E(t)/E(0)) vs time, while the dashed lines represent the theoretical viscous
decaying rate of a 2D flow with friction, given by A = v7r?/(4L?) [22]. Tt is clear that, while the flow at S = 0.03125,
after a short transient, reaches the exponential decay with the predicted viscous rate, the other cases with larger
S display a more complex decay law which cannot be simply described by an exponential law and a corresponding
friction coefficient A\. We remark that in these cases the energy decay cannot even be described by a scale invariant,
power-law scaling. A complex decaying law in quasi 2D experiments has been recently reported and interpreted as
different stages of exponential decay with different decaying constant [38]. The results shown in the inset of Fig. 8
indicate that in our case it is difficult to recognize a, even transient, exponential regime and that the interplay of 2D
and 3D motion produces a complex decaying phenomenology.

VI. CONCLUSIONS

We studied the dynamics and statistics of turbulence in a thin layer with no-slip BC on the bottom surface, forced
by a 2D2C forcing. For the range of thickness explored, we find that the flow is unable to sustain an inverse energy
cascade: after a initial transient, the flow develops a three-dimensional direct cascade which starts from the bottom
and eventually propagates in the whole domain. The analysis of the energy spectrum and of the third-order structure



function shows that at intermediate times, a 2D like and a 3D like phenomenologies can coexist at different depth in
the flow. This is in contrast to what observed in homogeneous simulations in the absence of boundaries where the
the flow can sustain simultaneously an inverse cascade of energy to large scales and a direct cascade to small scales
[2]. Moreover, our results are also at odds with several laboratory experiments where an inverse cascade is observed
[23, 24, 26, 39, 40], but mostly in the presence of two layers of fluids (miscible or not). The differences in these cases
are probably due to the fact that the dynamics in the upper layer (where the flow is studied), is partially decoupled
from the lower layer which is affected by the no-slip boundary conditions.

Finally, we studied the decaying behavior of the thin turbulent layer. Also in this case we find differences with
respect to laboratory experiments where the decay of kinetic energy is exponential and therefore it is parameterized
by a single friction coefficient [22]. We observe a clear exponential decay only for the simulation with the thinnest
layer, while in the other cases a more complex decay law is observed. The different behavior in this case can be not
only ascribed to the presence of stratification, but also to the different initial flow conditions between experiments
and simulations.

In this work we have changed only one parameter of the flow (the thickness S), while there are other variables which
can produce a different phenomenology, mainly the viscosity (i.e. the Reynolds number) and the forcing statistics [4].
Further work is therefore needed to uncover the reach phenomenology of turbulent thin layers.
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