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Introduction

In this PhD-thesis, I show the results of my research project developed
in these last three years. This work is focused on the exploration of the
QCD phase-diagram with an effective field model called PNJL: Nambu-
Jona-Lasinio model with Polyakov Loop interaction. The starting point is
Quantum Chromo-Dynamics (QCD), the theory of strong interactions, which
is characterized by a non-trivial phase diagram. At ordinary conditions of
temperature and density its elementary degrees of freedom, quarks and glu-
ons, are confined into color-singlet objects, the hadrons. Furthermore, while
the QCD Lagrangian is invariant under independent rotations of left/right-
handed fields in flavor space (chiral symmetry), its ground state is not, chiral
symmetry being spontaneously broken and the masses of scalar/pseudoscalar
and vector/pseudovector meson multiplets being different.

QCD provides a beautiful tool to investigate the strongly interacting mat-
ter and then the smallest structures of the universe. Unfortunately, the most
fundamental phenomena, i.e. color confinement and chiral-symmetry break-
ing, happen at small momentum exchange. The above phenomena occur in
the so-called non-perturbative region where perturbation theory fails. Hence
we need new tools to investigate these phenomena from the theoretical point
of view. For this purpose, several theoretical methods are developed and
experimental studies are pursued: lattice-QCD simulations, Effective Field
Theory (EFT) calculations, heavy-ion collision experiments and astrophys-
ical observation about neutron stars. In this thesis I focus on the EFT
approach, presenting the results obtained with a particular low-energy chiral
Lagrangian.

After a general discussion of the main features of QCD, in Sec. 1.5 I intro-
duce the lattice-QCD approach in deeper details. Lattice-QCD simulations
indicate that the confinement-deconfinement transition from a hadron gas
to a plasma of quarks and gluons (QGP) is actually an analytic crossover
at zero/small baryo-chemical potential µB, with a transition temperature Tc
around 155 MeV. Unfortunately, at non-zero baryon density the lattice-QCD
approach does not work. Hence, in order to study the transition in the re-
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gion of non-vanishing chemical potential one has to rely on effective chiral
Lagrangians: in this thesis I focus on the PNJL model, which is introduced
in Sec. 3.

From the experimental side, the deconfined and chirally-symmetric phase
of QCD is studied through relativistic heavy-ion collisions (HIC’s) in ex-
periments carried out at RHIC (BNL) and at the LHC (CERN). After the
collision, for a very short time (τ ∼ 10 fm/c), one expects to produce a hot
fireball of quarks and gluons, which expands and evolves until hadronization
into final particles reaching the detectors.

In order to extract information on the active degrees of freedom, on the
chemical freeze-out parameters (TFO and µFO) of the matter produced in the
collision and on the possible presence of a Critical End-Point (CEP) in the
(µB − T ) plane (the end-point of the first-order phase transition occurring
at large µB and relatively small T ) several thermodynamic observables are
used, described in Sec. 3.2.3. In particular, I discuss in detail the fluctuations
of conserved charges (i.e. baryon-number, strangeness and electric charge),
which are studied using the above mentioned PNJL effective Lagrangian.
The comparison with lattice QCD results is shown in Sec. 4.1.

My thesis is organized as follows. In Chapter 1. I introduce the tools
for the investigation of the QCD phase transition and the main features of
its phase diagram. In Chapter 2 I provide a general introduction on the
phenomenology of heavy-ion collisions. In Chapter 3 the PNJL model is
studied, its mean-field equations are solved numerically and used to explore
the phase diagram of stron interactions. Finally in Chapter 4 I show the
comparisons between Lattice-QCD and the EFT results obtained starting
from the PNJL Lagrangian. Finally, in Chapter 5 I draw my conclusions and
illustrate possible future developments.



4



Contents

1 Quantum Chromo-Dynamics: symmetries and phase diagram 9
1.1 The Quantum-Chromo-Dynamics Lagrangian . . . . . . . . . 9
1.2 Global Symmetries and Conserved charge of QCD . . . . . . . 13

1.2.1 UV (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 UA(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 SUV (Nf ) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 SUA(Nf ) . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Asymptotic freedom . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Phase diagram of QCD . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Yang-Mills action on the lattice . . . . . . . . . . . . . 23
1.5.2 Lattice-QCD at T = 0 . . . . . . . . . . . . . . . . . . 25
1.5.3 Lattice-QCD at finite Temperature . . . . . . . . . . . 27
1.5.4 Lattice-QCD at finite chemical-potential . . . . . . . . 30

1.6 Effective Field Theory . . . . . . . . . . . . . . . . . . . . . . 34
1.6.1 Linear Sigma-model . . . . . . . . . . . . . . . . . . . . 34
1.6.2 Nambu-Jona-Lasinio Model . . . . . . . . . . . . . . . 37

1.7 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.7.1 Relativistic hydrodynamics: general setup . . . . . . . 47
1.7.2 Speed of sound in an ideal fluid . . . . . . . . . . . . . 51

2 Heavy Ion Collisions 55
2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2 Heavy-Ion Collision basic concepts . . . . . . . . . . . . . . . 58

5



6 CONTENTS

2.2.1 Transverse plane and impact parameter . . . . . . . . . 58
2.2.2 Stopping power . . . . . . . . . . . . . . . . . . . . . . 59
2.2.3 Time evolution . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Soft probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.1 Particle yields . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.2 Momentum distribution and collective flow . . . . . . . 63

2.4 Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.5 Hard probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 PNJL Model 75
3.1 PNJL Effective field theory . . . . . . . . . . . . . . . . . . . 77

3.1.1 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . 77
3.1.2 Regularization scheme . . . . . . . . . . . . . . . . . . 80
3.1.3 Gap equations . . . . . . . . . . . . . . . . . . . . . . . 82
3.1.4 Possible theoretical scenarios . . . . . . . . . . . . . . . 85

3.2 PNJL Thermodynamics . . . . . . . . . . . . . . . . . . . . . 88
3.2.1 Mean field equations . . . . . . . . . . . . . . . . . . . 90
3.2.2 Order parameters . . . . . . . . . . . . . . . . . . . . . 96
3.2.3 Thermodynamic Quantities . . . . . . . . . . . . . . . 97
3.2.4 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.1 A briefly introduction to cumulants . . . . . . . . . . . 104
3.3.2 Calculations of cumulants in the PNJL model . . . . . 107

4 Numerical Results 111
4.1 Comparison with lattice data at µB = 0 . . . . . . . . . . . . . 112
4.2 PNJL results at µB 6= 0 . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Order parameters . . . . . . . . . . . . . . . . . . . . . 118
4.2.2 Thermodynamics Observables . . . . . . . . . . . . . . 124
4.2.3 Generalized baryon-number susceptibilities . . . . . . . 127

4.3 Fully symmetric scenario . . . . . . . . . . . . . . . . . . . . . 135
4.3.1 Equation of State and speed of sound . . . . . . . . . . 135
4.3.2 Net baryon-number fluctuations . . . . . . . . . . . . . 137



CONTENTS 7

4.3.3 Phase diagram in the SYM scenario . . . . . . . . . . . 141
4.4 Quasi-Neutral Strangeness Scenario . . . . . . . . . . . . . . . 144

4.4.1 Equation of State and speed of sound . . . . . . . . . . 144
4.4.2 Net baryon-number fluctuations . . . . . . . . . . . . . 146
4.4.3 Phase diagram in the QNS scenario . . . . . . . . . . . 148

4.5 Neutral Strangeness Scenario . . . . . . . . . . . . . . . . . . 153
4.5.1 Equation of State and speed of sound . . . . . . . . . . 154
4.5.2 Fluctuations in the NS scenario . . . . . . . . . . . . . 154
4.5.3 Phase diagram in the NS scenario . . . . . . . . . . . . 158

4.6 HIC Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.6.1 Equation of State and speed of sound . . . . . . . . . . 163
4.6.2 Fluctuations in the HIC scenario . . . . . . . . . . . . 163
4.6.3 Phase diagram in the HIC scenario . . . . . . . . . . . 164

4.7 PNJL with vector interaction . . . . . . . . . . . . . . . . . . 166

5 Conclusions and outlook 169
5.1 Comparison with lattice-QCD calculations . . . . . . . . . . . 169
5.2 The choice of the Polyakov potential . . . . . . . . . . . . . . 170
5.3 Fluctuations of conserved charges . . . . . . . . . . . . . . . . 170
5.4 Comparison of different scenarios . . . . . . . . . . . . . . . . 171
5.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A Meson masses 175

B Moments and cumulants 181

C Matsubara sums and Fermi functions 191

D The Mean Field Equations 195
D.1 Mean Field Equations: getting the system . . . . . . . . . . . 195
D.2 The Hessian matrix of the quark-mass sector of the PNJL model196

E Abbreviations 199

Bibliography 203



8 CONTENTS



Chapter 1

Quantum Chromo-Dynamics:
symmetries and phase diagram

In this chapter I introduce the basic aspects of Quantum Chromo-Dynamics
(QCD), the fundamental theory of strong interactions. In particular I focus
on its local and global symmetries and on its non-trivial phase diagram. I also
introduce the major theoretical tools to study the latter, i.e. lattice-QCD
simulations and Effective Field Theories (EFT).

1.1 The Quantum-Chromo-Dynamics Lagrangian

Today the scientific community agrees that matter is composed of a set of
fermions interacting through the exchange of vector bosons. The elementary
fermions include leptons and quarks. The bounds state of the latter form the
particles feeling the nuclear interaction (hadrons). Quarks interact through
electromagnetic, weak and strong interactions. The latter is responsible for
nuclear binding and for the interaction of the constituents of nuclei. Its
fundamental description is given by Quantum Chromo-Dynamics (QCD).

As in the case of electromagnetism, the guiding principle to describe
strong interactions is the concept of local gauge invariance. However, at
variance with QED, an Abelian gauge group is not sufficient and we need
a more complicated one. We know that to build a nucleon we need three
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quarks. This suggests that we need a triplet instead of a singlet of Dirac
fields with respect to some internal symmetry. In partial analogy with QED,
we impose that the Lagrangian density is invariant under a local rotation of
the triplet Dirac fields belonging to the SU(3) group , i.e.

ψ(x) =

ψ1(x)

ψ2(x)

ψ3(x)

 , ψ(x)→ V (x)ψ(x), V (x) = exp{igαa(x)λa/2} ,

(1.1)
where αa are arbitrary functions of x and λa are hermitian traceless 3 × 3

matrices. One constructs then a Lagrangian invariant under this non-Abelian
symmetry. The mass term involves the quark bi-linear

ψ̄(x)ψ(x)→ ψ̄(x)V †(x)V (x)ψ(x) = ψ̄(x)ψ(x) ⇔ V †(x)V (x) = 1 (1.2)

and is invariant since V (x) belongs to the SU(3) group.
The kinetic term contains the derivative of the Dirac spinor:

ψ̄(x)∂µψ(x)→ ψ̄(x)∂µψ(x) + ψ̄(x)V †(x)∂µV (x)ψ. (1.3)

The above expression is not invariant, therefore one adds a term to preserve
the symmetry:

igAaµ(x)
λa

2
→ igV (x)Aaµ(x)

λa

2
V †(x) + ∂µV (x)V †(x), (1.4)

where the derivative acts only on V (x). Now, in analogy with QED, one
defines the covariant derivative as

Dµ ≡ ∂µ − igAaµ(x)
λa

2
. (1.5)

One gets then the transformation law

Dµψ(x)→ V (x)Dµψ(x) (1.6)
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and one can formally write

Dµ → V (x)DµV
†(x). (1.7)

The matter part of the QCD Lagrangian reads then:

Lmatter = ψ̄(x)(i /D − m̂)ψ(x) (1.8)

and is invariant under local SU(3) transformations. Also the Lagrangian for
the vector fields Aaµ must be invariant under gauge transformations. Let us
consider the transformation of the gauge field strength

F µν ≡ F a
µν

λa

2
≡ i

g
[Dµ, Dν ]→ V (x)[Dµ, Dν ]V

†(x), (1.9)

where the explicit expression of its components is given by

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (1.10)

This term is not invariant but the trace of this term is. The latter however
vanishes, due to the traceless nature of the λa matrices. The first non-trivial
gauge-invariant quantity is the trace of the contraction of two field-strength
tensors. In analogy with QED, the Lagrangian and the action for the gauge
sector read then

LYM = −1

4
F a
µνF

aµν , SYM = −1

4

∫
d4xF a

µνF
aµν . (1.11)

This is the Yang-Mills Lagrangian and, together with the matter part, it
forms the QCD Lagrangian. In order to deal with different flavors of quarks
one writes the Dirac spinor as a vector in flavor space. The complete QCD
Lagrangian reads then:

L = −1

4
F a
µνF

µνa +
∑
f

ψ̄f (i /D −mf )ψf (1.12)

and describes the interaction among quarks mediated by the exchange of
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vector bosons called gluons. Due to the non-Abelian nature of the theory,
the gluons have also a self-interaction.
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1.2 Global Symmetries and Conserved charge

of QCD

The QCD Lagrangian (1.12), beyond the gauge invariance, has several global
symmetries and, as a consequence, it has several conserved charges. In this
section we show all the classical global symmetries of the massless QCD
Lagrangian and we discuss which ones are conserved at the quantum level.
From a general point of view, a global transformation acts at all points of
spacetime in the same way. For example:

U = exp{iα}, U = exp{iαaλa} (1.13)

are global rotations by an angle α for several groups of symmetry. In partic-
ular, in the QCD case, one can consider transformations that act on flavor
space. Furthermore, it is convenient to introduce the left and right compo-
nents of the Dirac spinors:

ψR =
1 + γ5

2
ψ, ψL =

1− γ5

2
ψ

ψR = ψ
1− γ5

2
, ψL = ψ

1 + γ5

2
.

(1.14)

The matter part of the QCD Lagrangian (1.8) in the massless case becomes:

Lmatter = ψR(i /D)ψR + ψL(i /D)ψL . (1.15)

The most general global transformation that leaves the massless QCD La-
grangian unchanged belongs to the following unitary group of transforma-
tions in flavor space:

UR(Nf )⊗ UL(Nf ) = UA(1)⊗ SUA(Nf )⊗ UV (1)⊗ SUV (Nf ), (1.16)

the elements of this group being of the form

U = eiαeiθat
a

eiαγ
5

eiθat
aγ5 . (1.17)



14 CHAPTER 1 QCD:SYMMETRIES AND PHASE DIAGRAM

In the following, I focus on the different sectors of the above group of transfor-
mations and discuss to which conserved charge each invariance corresponds.

1.2.1 UV (1)

The transformation rule for UV (1) reads:

ψ → e−iαψ, ψ → ψeiα . (1.18)

The associated Noether current is called U(1) vector current and reads:

jµ = ψγµψ, (1.19)

leading to the conserved charge

Q =

∫
d3xj0 =

∫
d3x ψ†ψ =

∫
d3x [ψ†RψR + ψ†LψL]. (1.20)

The symbol Q represents the classical conserved charge, in this case Q is
related to the baryon-charge B, in particular B = Q/3. The baryon charge
is the net number of baryons (i.e. baryons minus anti-baryons) in the system.
This quantity is exactly conserved in QCD. In the region of the QCD phase
diagram in which quarks are confined into hadrons, the values of the baryon
charge of the active degrees of freedom are ±1 (baryons) or 0 (mesons); in the
region where quarks are no longer confined into hadrons the active degrees
of freedom carry baryon charge ±1/3 (quarks) or 0 (gluons). Therefore, this
is a very important quantity for the exploration of the QCD phase diagram.

1.2.2 UA(1)

The transformation rule for UA(1) reads:

ψ → e−iαγ
5

ψ, ψ → ψe−iαγ
5

. (1.21)
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Left and right components are rotated by opposite angles (γ5ψR/L = ±ψR/L).
UA(1) invariance is associated to the conservation of the axial charge:

QA =

∫
d3x ψ†γ5ψ =

∫
d3x[ψ†RψR − ψ

†
LψL]. (1.22)

However, though being a symmetry of the classical QCD action, UA(1) is not
a symmetry of the theory, being broken by quantum fluctuations. Hence, the
axial charge QA is not conserved. Quantum anomalies of the axial currents
are responsible for the π0 → γγ decay and for the anomalously large mass of
the pseudoscalar meson η′.

1.2.3 SUV (Nf)

This symmetry corresponds to the invariance under the following transfor-
mation

ψ → eiθat
a

ψ, ψ → ψe−iθat
a

, with ta = τa/2. (1.23)

Here the τa matries belong to SU(Nf ) algebra. In the simplest case, Nf = 2,
they are the Pauli matrices. The conserved charges read:

Qa
V =

∫
d3x ψ†

τa

2
ψ =

∫
d3x[ψ†R

τa

2
ψR + ψ†L

τa

2
ψL]. (1.24)

In the Nf = 2 case, these charges play the role of generators of isospin ro-
tations. The latter is a symmetry of the Lagrangian and of the theory: the
QCD vacuum and particle spectrum are invariant under isospin transforma-
tions. Isospin symmetry is only sligthly broken by the small mass difference
of u and d quarks.

1.2.4 SUA(Nf)

The transformation rule for SUA(Nf ) rotations reads:

ψ → e−iθat
aγ5ψ , ψ → ψe−iθat

aγ5 . (1.25)



16 CHAPTER 1 QCD:SYMMETRIES AND PHASE DIAGRAM

The R and L components are rotated by opposite angles. The classical
conserved charges are called chiral charges and read

Qa
A =

∫
d3x ψ†

τa

2
γ5ψ =

∫
d3x [ψ†R

τa

2
ψR − ψ†L

τa

2
ψL]. (1.26)

This symmetry of the Lagrangian is not realized in nature: the QCD vacuum
is not invariant under chiral rotations. This phenomenon is known as sponta-
neous (or dynamical) chiral symmetry breaking. The chiral charges, applied
to the QCD vacuum do not annihilate it, but create the pseudoscalar mesons,
which can be considered the Goldstone bosons of QCD, associated to the
spontaneous breaking of chiral symmetry. In the high-temperature/density
region of the QCD phase diagram, a phase transition occurs and chiral sym-
metry gets restored. In this work, I will focus on the study of baryon-number
fluctuations around the chiral-restoration transition.
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1.3 Asymptotic freedom

From the QCD Lagrangian (1.12) one easily realizes that the coupling con-
stant between fermions and vector bosons is dimensionless, thus implying
that QCD is a renormalizable theory. The divergent diagrams are usually
regularized through dimensional regularization, as in QED.
The Callan-Symanzik β-function, which describes the evolution of the cou-
pling as a function of the energy scale µ, β(g) = dg

d lnµ
is given by:

β(g) = − b0

(4π)2
g3, b0 = 11− 2

3
nf , (1.27)

here written for the SU(3) gauge group and at the one-loop approximation.
The overall minus sign implies that, for sufficiently small Nf , the theory
is asymptotically free, i.e. that the running coupling tends to zero at large
momenta according to

αs(Q) =
αs(µ)

1 + b0
2π
αs(µ) ln (Q

µ
)

(1.28)

where αs ≡ g2/4π. As shown in Fig.1.1, at high momenta Q αs is small, while
at low momenta αs is big and there exists a value of Q where the coupling
becomes in principle infinitely large. This values of Q is called ΛQCD ∼ 200

MeV. Notice that this divergence of the coupling at low-momentum scale
should be interpreted as a shortcoming of the one-loop perturbative calcula-
tion as αs gets too large.
In QED the running of the electromagnetic coupling is due to the polariza-
tion of the vacuum stemming from the virtual electron-positron pair creation
and this causes the effective electric charge to decrease at large distances. In
QCD, according to Eq. (1.27), the fermions still produce such an effect, but
there are additional corrections due to the gluons self-interaction. Accord-
ingly, the net effect of gluons is opposite in sign. Eq. (1.28) implies that
the coupling becomes strong at low momenta. ΛQCD defines the boundary
between the high energy Q >> ΛQCD (short distance) regime – in which
the coupling is weak and perturbative calculations are possible – and a low
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Figure 1.1: Summary of measurements of α as a function of the energy scale
Q. The respective degree of QCD perturbation theory used in the extraction
of α is indicated in brackets (NLO:next to leading order; NNLO: next to next
to leading order; NNLO+res.: NNLO matched to are summed calculation;
N3LO: next to NNLO) [12].

energy Q . ΛQCD domain in which the coupling is strong and the theory
displays a non-perturbative behavior. The most striking non-perturbative
phenomenon is surely the confinement of quarks and gluons into color-singlet
hadrons. There are interesting attempts to relate confinement to particular
topological objects in the QCD vacuum, like monopoles or vortices, but it
is fair to say that confinement is not yet fully understood. To investigate
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these phenomena other approaches have been developed like Lattice-QCD
calculations and Effective Fields Theories. In the next sections, we outline
these two approaches.



20 CHAPTER 1 QCD:SYMMETRIES AND PHASE DIAGRAM

1.4 Phase diagram of QCD

The phase diagram of QCD is divided into two interesting regions. There is a
“confined region”, in which one finds the ordinary hadronic matter composed
of hadrons and, at high baryon density (∼ 0.17fm−3), of atomic nuclei. In this
region, the elementary particles (quarks and gluon) are confined into hadrons.
At higher temperature and/or baryon density the strongly interacting matter
is deconfined. In this phase, quarks and gluons are not constrained into color-
neutral hadrons but they are free to move, diffusing up to distances much
larger then a typical hadronic size (∼ 1 fm). From lattice-QCD we know

Figure 1.2: A schematic picture of the QCD phase-diagram elaborated from
the picture of Ref [11].

that, at vanishing or small baryochemical potential, the phase transition is
actually a crossover [52]; on the other hand at higher chemical potentials,
one argues that the transition is of the first order, ending with a Critical
End-Point (CEP). In figure 1.2 is show a schematic picture of QCD phase
diagram. Unfortunately, lattice-QCD simulations cannot be extended to the
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region of high chemical potential, due to the sign problem: in the presence of
light dynamical quarks, for non-vanishing baryon density, the euclidean QCD
action, after performing the functional integral over the fermionic field, gives
rise to a complex determinant which prevents the Monte Carlo sampling of
the gauge field configurations. Due to this fact, it is necessary to use effective
models to investigate the phase transition in this region. This approach, of
course, can provide a nice qualitative picture, but quantitative prediction
must be taken with caution.

There are two ways of producing a deconfined system of quarks and glu-
ons. The first one is to excite matter to extremely high temperatures: this is
what is realized in the experiments at the nuclear colliders RHIC and LHC.
The second one is to "pack" nucleons into very dense regions so that they
start overlapping and their partons are no longer confined into a single nu-
cleon: this is what may occur in the core of neutron stars.
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1.5 Lattice QCD

Lattice QCD (lQCD) calculations are a non-perturbative implementation of
field theory using the Feynman path-integral approach. The starting point
is the partition function in Euclidean space-time [48]. In lattice-QCD the
4-dimensional Euclidean space-time is discretized and it is replaced by a
4-dimensional lattice whose spacing provides a natural ultraviolet regulariza-
tion of the theory. Such a partition function reads

Z =

∫
DAµDψDψ e−SE . (1.29)

Here SE is the QCD Action in a Euclidean space-time, in which the temporal
dimension has undergone a Wick rotation:

t→ −iτ, A0 → iA4 . (1.30)

The expectation values of physical observables can be calculated in the usual
way:

〈O〉 =
1

Z

∫
DAµDψDψ Oe−SE . (1.31)

The key of Lattice QCD is that the path integral is evaluated on a discretized
Euclidean space-time and one can perform the computations of expectation
values via a Montecarlo algorithm.
In 1974 Wilson formulated Euclidean gauge theories on the lattice as a tool
to study confinement and carried out a non-perturbative analysis of QCD.
The numerical implementation of the path-integral approach requires the
following five steps:

• the discretization of space-time with lattice unit a: the lattice spacing;

• the transcription of the gauge and fermionic degrees of freedom;

• the construction of the action;

• the definition of the integration measure in the path integral;

• the transcription of the operators used to probe the physics.
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Of these, the construction of the action and of the operators are the most
complex ones.
A point of the grid is called vertex and a line between two points is called
link. The vertex n is connected to the vertex n + µ̂ (µ̂ being the selected
direction) by the operator:

Uµ(n) = eiagt
aAaµ(n). (1.32)

In this formula a is the lattice spacing, g is the coupling constant, ta are the
generator of the SU(N) group (N = 3 in QCD) and Aaµ are the components
of the gauge field.

1.5.1 Yang-Mills action on the lattice

What is the gauge action in the case of the SU(N) group? This section
stretches its derivation and shows how, in the continuum limit, this action
correctly reproduces the Yang-Mills action. The discretized action must be
invariant under gauge transformations. The simplest one is the Wilson ac-
tion:

SW = − 1

g2

∑
n,µν

Re{Tr[Uµν(n)]}, (1.33)

where Uµν ≡ U−ν(n)U−µ(n+ν)Uν(n+µ)Uµ(n), with the link variable defined
in Eq. (1.32). This action is invariant under local gauge transformations due
to the trace over the color degrees of freedom. It is defined on the smallest
path on the lattice: the plaquette. The plaquettes are "squares" of side a.
It is possible to define:

Uµ ≡ eiBµ(n) with Bµ(n) ≡ agtaAaµ(n), (1.34)

where a is the lattice spacing, g the coupling constant and Aaµ, in the con-
tinuum limit, will become the standard vector gauge field of the Yang Mills
theory. One may expand the fields appearing in the Wilson action keeping
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only terms up to order a2 (B being of order a) as follows:

Bν(n+ µ) ∼ Bν(n) + a∇µBν (1.35)

B−µ(n+ ν) ≡ −Bµ(n+ ν) ∼ −Bµ(n)− a∇νBµ, (1.36)

where ∇νf(n) ≡ f(n+ν)−f(n)
a

is the finite-difference derivative on the lattice,
whose continuum limit is the partial derivative. From the above expression
one obtains:

Uµν ∼ e−iBν(n)e−i(Bµ(n)+a∇νBµ(n))ei(Bν(n)+a∇µBν(n))eiBµ(n). (1.37)

Now one can apply the Baker-Campbell-Hausdorff formula; keeping in the
exponent only terms up to O(a2) one finds:

Uµν(n) ∼ e{ia(∇µBν−∇νBµ)+[Bµ,Bν ]} ≡ eia
2gFµν . (1.38)

In the above the Fµν tensor is defined as before:

Fµν ≡ ∇µAν −∇νAµ − ig[Aµ, Aν ] (1.39)

and Aµ ≡ taAaµ. After inserting this result into Eq. (1.33) and expanding in
powers of a, one finds:

SW ∼ −
1

g2

∑
n,µν

Re Tr
(

1 + ia2gFµν −
1

2
a4g2FµνFµν

)
(1.40)

One can always normalize the SU(N) generators to satisfy

Trta = 0 Tr(tatb) =
1

2
δab. (1.41)

while Tr1 gives only an irrelevant constant which can be neglected. In this
way one obtains

SW =
a4

4

∑
n,µν

F a
µνF

a,µν . (1.42)
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In the a → 0 limit one can set
∑

n →
∫

d4x
a4

(for a 4-dimensional lattice)
obtaining:

SW →
1

4

∫
d4xF a

µνF
a,µν . (1.43)

Hence, in the continuum limit one recovers the euclidean Yang-Mills action.
The minus sign in front of the integral in Eq.(1.11) disappears due to the
rotation in the Euclidean space-time. One can conclude that the Wilson
action is the right action for the gauge fields on the lattice.

1.5.2 Lattice-QCD at T = 0

The Wilson action in Eq. (1.33), which reduces to the standard Yang-Mills
action in the continuum a → 0 limit, can be used to perform a Montecarlo
sampling of the different gauge-field configurations, getting then the expec-
tation value of the various observables of interest. Nowadays, for instance,
lattice-QCD calculations successfully describe the hadron spectrum.

For the purpose of the present thesis, the main interest in lQCD results
concerns the confinement of quarks, for which there is experimental evidence,
but no first-principle theoretical derivation. For this purpose, the quantity
to evaluate on the lattice is the Wilson loop, defined as

Wγ = Tr
∏
µ,ν∈γ

Uµν . (1.44)

Here γ denotes the considered loop drawn in figure 1.3, followed in coun-
terclockwise direction, and the group elements are ordered as they are en-
countered in going around the contour. The Wilson Loop is gauge invariant
due to the trace over color degrees of freedom. The simplest non-trivial
Wilson Loop is the plaquette. The Wilson Loop essentially measures the re-
sponse of the gauge fields to an external quark-like source passing around its
perimeter. For a time-like loop, this represents the production of an infinitely
heavy quark-antiquark pair at the earliest time separated by the distance R
and then annihilating at the latest time. If the loop is a rectangle of side T in
the time direction and R in the space direction, a transfer matrix argument
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Figure 1.3: Sketch of a Wilson Loop on the lattice grid. The thick line is
the chosen γ contour, the thin lines represent the plaquettes and the dashed
lines the grid.

suggests that, for large T , one has for its expectation value the asymptotic
behavior

〈W (R, T )〉 ∼
T→∞

exp(−V (R)T ), (1.45)

allowing one to identify the quark-antiquark potential V (R). If the inter-
quark energy for large separation grows linearly V (R) ∼

R→∞
σR, then the

expectation value of the Wilson Loop becomes:

〈W (R, T )〉 ∼
T→∞

exp(−σRT ). (1.46)

It decays with the exponential of the area with a coefficient given by the
“string tension” σ of the linear part of the potential. Physically, this area law
represents the action of the world sheet of a flux tube connecting the quark-
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antiquark sources. Exploiting Eq. (1.45) one can extract the QQ̄ potential
from the expectation value of the Wilson loop:

V (R) = − lim
T→∞

1

T
ln〈W (R, T ).〉 (1.47)

The results of this calculation for infinitely massive quark are shown in
Fig.1.4. The QQ̄ potential at large r is linear in r. Quarks are confined,
since it would cost an infinite amount of energy to pull the two heavy quarks
far apart. In the real world, as the QQ̄ separation increases above a given
value, it becomes energetically more convenient to excite a light qq̄ pair from
the vacuum, so that quarks are always confined inside color-neutral mesons.

1.5.3 Lattice-QCD at finite Temperature

One can study QCD on the lattice also at finite temperature. For this pur-
pose, one can use the statistical mechanics approach in the Grand-Canonical
Ensemble, where the system is taken at finite temperature T and in a finite
spatial volume V [61]. We start considering the case of vanishing baryo-
chemical potential, µB = 0. For this purpose, one formally starts from the
partition function (here written for the µB =0 case)

Z = Tre−H/T = e−Ω/T (1.48)

where H is the QCD Hamiltonian and Ω is the grand-canonical thermody-
namic potential. For vanishing baryochemical potential the latter coincides
with the free energy F . Other thermodynamics quantities follow by differ-
entiation of Ω with respect to T or µB.

One can interpret the QCD partition function as a path-integral where
the temporal dimension is compactified and its finite extension is set by
the inverse temperature β ≡ 1/T , imposing appropriate (anti-)periodicity
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Figure 1.4: QQ̄ potential as a function of the distance [55]

conditions on the fields at τ = 0, β. One has:

Tre−βH =

∫
DψDψDAµ exp

{
−
∫ β

0

dτ

∫
d3x L[ψ, ψ,Aµ]

}
. (1.49)

In the lattice time direction β ≡ Nτa (Nτ being the number of temporal
links), whose length plays the role of the inverse temperature, and one im-
poses periodic boundary conditions for the link variables:

Uµ(x, y, z, 1) ≡ Uµ(x, y, z,Nτ + 1). (1.50)
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A particularly interesting Wilson line in the T 6= 0 case is the Polyakov loop
(a closed loop around the temporal direction), defined as

L ≡ 1

Nc

Tr P
Nτ∏
t=1

U4(x, y, z, t). (1.51)

It is gauge invariant due to the trace in color space. The periodic bound-
ary conditions on the link variable entail U4(x, y, z,Nτ + 1) = U4(x, y, z, 1).
Physically, its expectation value is related to the free-energy change of the
system after adding an isolated quark into thermal bath:

〈L〉 = e−∆FQ/T . (1.52)

The possibility of having isolated charges in the theory requires a finite value
of ∆FQ and hence a non-vanishing expectation value of the Polyakov loop.
On the other hand, in the confined phase ∆FQ → ∞ and hence 〈L〉 = 0.
In addition to gauge invariance, SU(N) gauge theories have a global ZN

invariance. It consists in multiplying all links on a given time slice by the
same element z ≡ ei

2π
N
k of ZN . Such a transformation does not change the

action since the latter is expressed in term of plaquettes, which are invariant
under ZN . However, a non-vanishing expectation value of the Polyakov loop,
〈L〉 6= 0, gives rise to spontaneous breaking of the ZN symmetry since the
latter is not invariant, having 〈L〉 → z〈L〉. Thus, in the case of SU(N) pure
gauge theory (light quarks explicitly break ZN symmetry) 〈L〉 can be used
as an order parameter for the transition to the deconfined phase.

On the lattice it is also possible to study the spontaneous breaking and
restoration of chiral symmetry, whose order parameter is the chiral conden-
sate 〈ψψ〉. This physical observable reflects the correlation between quarks
and anti-quarks. In the confined region the correlations are very strong, the
expectation value of the chiral condensate is large and chiral symmetry is
broken; on the contrary, in the deconfined region quarks and anti-quarks are
uncorrelated and the expectation value of the chiral condensate is low or null.

In Fig.1.5 I show the expectation values of the Polyakov loop 〈L〉 and the
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normalized difference of light and strange quark chiral condensates defined
as:

∆l,s(T ) =
〈ψψ〉l(T )−ml/ms〈ψψ〉s(T )

〈ψψ〉l(T = 0)−ml/ms〈ψψ〉s(T = 0)
. (1.53)

The plots show that the deconfinement and chiral restorations occur in the
same range of temperatures as a smooth crossover.

(a) (b)

Figure 1.5: Renormalized Polyakov loop as a function of the temperature
(left panel). Subtracted chiral condensate ∆l,s defined in Eq. (1.53) (right
panel). In both figures, the different symbols correspond to different Nτ =8,
10, 12, 16. The grey band is the continuum limit [13].

1.5.4 Lattice-QCD at finite chemical-potential

For the study of compact stars and of heavy-ion collisions at lower center-of-
mass energy, one has to explore the QCD phase-diagram at finite baryon den-
sity. In the Grand-Canonical Ensemble, this requires setting a non-vanishing
value for the baryochemical potential. The corresponding grand-canonical
partition function is given by:

Z = Tre−(H−µN)/T = e−Ω/T . (1.54)

From Eq. (1.54) one can see that the chemical potential plays the role of an
imaginary part of the gauge fields A4. It means that the Euclidean action
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becomes complex and hence it is not possible to compute the path-integral
through a Montecarlo sampling algorithm. This problem is called sign prob-
lem. In this paragraph we show various attempts to bypass the sign problem
in lQCD.

Taylor Expansion

The simplest idea to bypass the sign problem is to perform a Taylor expansion
of the pressure in powers of µ/T around µ = 0. The coefficients of the
expansion can be calculated using conventional simulations at µ = 0, where
the sign problem is absent [28].

The pressure is related to the grand-canonical partition function by the
usual equation

p =
T

V
lnZ. (1.55)

Due to the CPT symmetry, the pressure is an even function of the chemical
potential. Hence, its Taylor expansion written in dimensionless form contains
only even powers of (µ/T ) and one has:

p(µ, T )

T 4
=
p(µ = 0, T )

T 4
+

+∞∑
n=1

c2n(T )

(2n)!

(
µ

T

)2n

(1.56)

where the coefficients of the expansion are given by

c2n(T ) =
∂2np(µ, T )/T 4

∂(µ/T )2n

∣∣∣∣∣
µ=0

. (1.57)

These coefficients can be identified with the cumulants of the baryon-number
distribution that we will meet in Sec. 3.3.1 studying event-by-event thermal
fluctuations of conserved charges. For the first coefficients one has

c1 = 〈N〉|µ=0 = 0

c2 = (〈N2〉 − 〈N〉2)µ=0 = 〈N2〉|µ=0, c3 = 0

c4 = 〈N4〉|µ=0 − 3〈N2〉2|µ=0

(1.58)
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In Sec. 4.1 I will present a comparison between the lattice data and the
results obtained in the effective models used in this work. The number of
terms contributing to c2n is proportional to the number of ways one can
obtain 2n summing numbers ≤ 2n, hence they grow very rapidly going to
higher-order cumulants. Many of these terms are null but going to higher
orders the Taylor expansion approach requires in any case the calculation of
a large amount of terms. For example, in c8 there are 27 terms and 5 of
these are not null and the calculation takes very long time (see [46] for the
details). Thus, the Taylor series is usually truncated at the 6th − 8th term.
In summary the idea is simple, but the approach is limited to a region of the
phase diagram in which µ/T is sufficiently small and does not allow to obtain
information concerning the existence and location of the Critical End-Point.

Imaginary chemical potential

From the considerations written at the beginning of this section, it is clear
that for an imaginary chemical potential the sign problem would disappear.
One can thus set µ = iµI and perform ordinary simulations employing im-
portance sampling. In particular, one can obtain the transition line Tc(µI)
at imaginary µ. Treating µ as a complex parameter, the transition line for
real µ can then be obtained by analytic continuation. Since Tc is even in µ,
this is particularly straightforward and amounts to map µ2

I → −µ2. Hence
one can follow these steps, as illustrated in Fig. 1.6 from Ref. [4]:

• determine the phase boundary at µ2 < 0;

• parametrize and fit Tc(−µ2)

• obtain the phase boundary at µ2 > 0.

This approach has been carried out during the past decade in great detail.
However, it turns out that at imaginary µ QCD has quite an intricate phase
structure and that the topic is much richer than just applying analytical
continuation around µ2 ∼ 0.

In both the approaches we have just described (Taylor expansion and
imaginary chemical potential), one can compute physical observables at non-
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Figure 1.6: Phase boundary around µ2 = 0 in the T − µ2 plane [4].

vanishing chemical potential. However, lattice calculations are available only
in a quite limited region of the phase diagram, for small values of µ/T .
Beyond these two approaches there are further independent proposals to
bypass the sign problem: for more details see Ref. [4].
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1.6 Effective Field Theory

In this section I intoduce the basic ideas of Effective Field Theories and I
show two notable examples of chiral effective models: the linear sigma model
and the Nambu-Jona-Lasinio model. The second one is very important for
the rest of this work, because it is the starting point for a more advanced
implementation I am going to use.

The basic idea of an Effective Field Theory (EFT) is that, if one is inter-
ested in describing phenomena occurring to a certain (low) energy scale, one
does not need to solve the exact microscopic theory in order to provide useful
predictions. In general, Effective Field Theories are low-energy approxima-
tions of more fundamental theories. Instead of solving the underlying theory,
low-energy physics is described with a set of variables that are suited to the
particular energy region one is interested in. For example, one can use pions
and nucleons instead of the more fundamental quarks and gluons as degrees
of freedom in low-energy processes in hadronic and nuclear physics. This
approach is more convenient since so far we do not know how to solve QCD
in its non-perturbative domain, i.e. for energy scales below 1 GeV [63].

1.6.1 Linear Sigma-model

Section 1.2 deals with chiral symmetry in full generality. This section is
focused on a specific model referring to the Nf = 2 case (for the 3-flavour
case see Ref. [82]): the linear σ model.

First of all one introduces the current operators (expressed in terms of
quark fields) having the quantum number to create/destroy the different light
mesons (pion, sigma, rho and a1):

~π = iΨ̄~τγ5Ψ σ = Ψ̄Ψ ~ρ = iΨ̄~τγµΨ ~a1
µ = Ψ̄~τγµγ5Ψ . (1.59)

Applying a SUA(Nf ) transformation one gets:

~π → ~π− ~θσ σ → σ+ ~θ ·~π ~ρ→ ~ρµ + θ× ~a1
µ ~a1

µ → ~a1
µ + ~θ× ρµ . (1.60)
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Scalar/pseudoscalar and vector/pseudovector mesons are mixed by chiral
transformations. In Sec. 1.2 I showed that the QCD Lagrangian is invariant
under SUA(Nf ) transformations. However, such a chiral invariance is not
found in the spectrum (mπ 6= mσ and mρ 6= ma1): the symmetry is sponta-
neously broken. In order to obtain a Lagrangian invariant under isospin and
chiral transformations SUV (2) × SUA(2), one must take a potential of the
form V = V (~π2 + σ2). In the linear sigma-model, for the latter one chooses:

V (~π2 + σ2) =
λ

4
(π2 + σ2 − f 2

π)2, (1.61)

where ~π and σ will be interpreted as the pion and sigma fields and fπ is
a parameter of the potential which can be identified with the pion decay
constant. This potential is by construction invariant under chiral rotations.
The mesonic Lagrangian reads then

Lσ =
1

2
(∂µ~π · ∂µ~π + ∂µσ · ∂µσ)− V (~π2 + σ2) . (1.62)

Nucleons can be introduced and coupled to mesons preserving the SUV (2)×
SUA(2) symmetry:

LΨ
σ = iΨ̄/∂Ψ− gπΨ̄[iγ5~π · ~τ + σ]Ψ , (1.63)

where Ψ ≡ (p, n)T and gπ is the coupling constant between nucleons and
mesons. They are introduced into the Lagrangian as massless fields, in order
not to break chiral symmetry explicitly. The potential in Eq. (1.61) breaks
chiral symmetry spontaneously (see Fig. 1.7). In fact, the latter displays a
continuous set of minima that form a circle in the π − σ plane: ~π2 + σ2 =

f 2
π . Nature chooses one of these minima and this spontaneously breaks the
SUA(2) symmetry. One can define the meson fields in order for the minimum
of the potential to lie at ~π = 0 and σ = fπ. Fluctuations around the minimum
are then performed,

σ → fπ + s ~π → ~π, (1.64)

and allow one to find the masses of scalar and pseudoscalar mesons. The



36 CHAPTER 1 QCD:SYMMETRIES AND PHASE DIAGRAM

Figure 1.7: The potential responsible for chiral-symmetry breaking.

linear and constant terms in the fluctuations vanish and one gets

V =
1

2
(2λf 2

π)s2 + λfπs(π
2 + s2) +

λ

4
(π2 + s2)2 . (1.65)

As one can see pions remain massless (there is no quadratic term in ~π) and
they are accordingly interpreted as Goldstone bosons. On the other hand
the σ-meson gets a mass: m2

σ = 2λf 2
π . Within the linear sigma model the

nucleons, initially massless, get a mass from chiral-symmetry breaking:

LΨ
σ = Ψ̄[i/∂ −Mn]Ψ− gπΨ̄[iγ5~π · ~τ + s]Ψ, (1.66)

where Mn = fπgπ is the mass acquired by nucleons. Actually, in the Stan-
dard Model quarks are coupled to the Higgs field. Hence, due to this Yukawa
coupling, after the electroweak symmetry-breaking also up and down quarks
acquire a small mass. Hence the linear sigma model Lagrangian must contain
a small term reflecting this explicit breaking of chiral symmetry. Neverthe-
less, the non-vanishing mass of light quarks produces only a small correction
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to the nucleons mass: around 95% of the nucleons mass is due to chiral sym-
metry breaking. It is now clear that chiral-symmetry restoration/breaking
is a very important phenomenon to explore and one needs to develop the
theoretical tools to investigate it.

1.6.2 Nambu-Jona-Lasinio Model

Today QCD has been accepted as the fundamental theory of strong interac-
tions. Due to asymptotic freedom, predictions are possible in the kinematic
range of large momentum transfer, where scattering processes are calculated
with success. In this regime the coupling is small; hence the wealth of per-
turbative techniques that have been developed for the study of quantum
electrodynamics may be confidently extended to describe QCD processes.

In contrast, away from large momentum transfer, or equivalently at large
distances, QCD is not so well understood, although techniques (e.g. lQCD
simulations) exist to perform first-principle calculations for some observables.
Most of the quantities remain, however, out of reach and can only be mea-
sured in dedicated experiments. The problem lies in the fact that the coupling
constant becomes large and a perturbative approach cannot be applied. Be-
side lattice-QCD calculations – in any case limited to some quantities – one
has to rely on the description provided by Effective Field Theories.

A simple Lagrangian involving partonic degrees of freedom is the Nambu
-Jona-Lasinio (NJL) model and this section is devolved to introduce this
model. For more details I refer the reader to Ref. [63]. In its original form,
this model was constructed as a pre-QCD theory of nucleons that interact
via an effective two-body contact interaction. Today this is reinterpreted as
a theory with quark degrees of freedom. Of primary importance is the fact
that the Lagrangian density of this model is constructed respecting the global
symmetries of QCD, in particular isospin and chiral symmetry. The NJL
model allows one to describe the spontaneous breaking of chiral symmetry,
which is essential for the comprehension of the lightest hadrons.

The NJL model has, of course, its shortcomings. The interaction between
quarks is assumed to be point-like, so that the theory is not renormalizable.
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Hence, an upper cutoff on the momenta is necessary for the regularization of
the UV divergent integrals. A second shortcoming of the NJL model, phys-
ical rather than mathematical, is that its local interaction does not confine
quarks. In this thesis, the NJL model will be generalized to include also
the coupling with the so-called Polyakov fields (PNJL model), in order to
introduce some features of confinement. However, its solution will be used
both as a benchmark and as a starting point to look for the solutions of the
PNJL mean-field equations.

NJL Lagrangian

The NJL Lagrangian is written in order to preserve the global SU(Nf )V ×
SU(Nf )A × U(1)V symmetry of QCD. The Lagrangian in the 3-flavour case
reads

L = iψ/∂ψ +
1

2
G

8∑
a=0

[(ψλaψ)2 + (ψiλaγ5ψ)2]+

+K{det[ψ(1 + γ5)ψ] + det[ψ(1 + γ5)ψ]}.

(1.67)

Here λa (with a = 1, ..., 8) are the Gell-Mann matrices in flavour space,
λ0 ≡

√
2/31 and the determinant is taken in flavour space. G and K are the

coupling constant for the 4-fermion and 6-fermion interactions. The latter
explicitly breaks the UA(1) symmetry, reflecting somehow the axial anomaly
of QCD. The calculations are usually performed in mean-field approximation.
In this case, the six-fermion term can be reduced to an effective four-fermion
vertex, which can then be handled in the usual way. While there is little
technical difference in the handling of the two- and three-flavor models, the
six-fermion interaction vertex brings new physics with it. As we shall see,
the flavor-mixing nature of this interaction leads to the mixing of the pure η0

and η8 modes to form the physical η and η′ mesons, the latter characterized
by a much larger mass. As above mentioned, in a 4-dimension spacetime the
NJL-theory is not renormalizable: the coupling constant [G] = [E]−2 and
K = [E]−4 are not dimensionless. The divergent integrals are regularized
by an ultraviolet cutoff Λ. The coupling constant and the cutoff are the
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free parameters of the model. They are fixed by the values of some physical
observables like the pion mass and decay constant.

NJL gap equation

This paragraph is devolved to illustrate the mean-field approximation and
the mass gap equation. In principle, the mean-field approximation is a self-
consistent resummation involving two different terms: the Hartree (direct)
and Fock (exchange) terms. One can draw the resummed propagator of a
quark interacting with a background due to the presence of all the other
quarks in the system as in Fig. 1.8.

Figure 1.8: Dressed quark propagator in Mean Field Approximation. The
first term is the free propagator, while the second and the third terms are
respectively the Hartree and Fock terms.

In the case of 2+1 flavours, there are two different interaction vertices,
but the 6- fermion vertex can be reduced to an effective 4-fermion interaction
vertex in MF approximation, as shown in Fig. 1.9. One can write the self-
energy arising from the 4-fermion interaction

Σ
(4)
f = iG[Nc +

1

2
]
∑
a

(λa)ff
∑
g

∫
d4p

(2π)4
(λa)ggtrSg(p). (1.68)

Here f and g are flavour indices and tr indicate the trace over the Dirac space
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Figure 1.9: The 6-fermion interaction vertex is reduced to an effective 4-
fermion coupling

of the quark propagator defined in the usual way:

Sf (p) =
/p+mf

p2 −m2
f + iε

, (1.69)

where mf represent the self-consistent mass of the quark of flavour f . Due
to the traceless nature of the Gell-Mann matrices, only the a = 0 term
contributes to the sum. One obtains :

Σ
(4)
f = 2iG[Nc +

1

2
]

∫
d4p

(2π)4
trSf . (1.70)

In the following we consider only the dominant term in the self-energy, i.e.
the Hartree term, proportional to Nc, neglecting the sub-leading Fock term.
The contribution to the self-energy arising from the 6-fermion interaction
vertex reads:

Σ
(6)
f = K[2N2

c + 3Nc + 1]

∫
d4p

(2π)4
trSg

∫
d4p

(2π4)
trSh (f 6= g 6= h). (1.71)

In Mean-Field-Approximation one can rewrite the interaction term of the
Lagrangian as a mass term for the quark:

∆LMF
int = −ψΣψ , (1.72)

for which one can write the following self-consistent gap equation

mf = +2iGNc

∫
d4p

(2π)4
trSf (p) + 2KN2

c

∫
d4p

(2π)4
trSg

∫
d4p

(2π4)
trSh , (1.73)
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where the large-Nc approximation is assumed. It is useful to define the chiral
condensate for flavour f as:

φf ≡ −iNc

∫
d4p

(2π)4
trSf (p). (1.74)

If the Lagrangian contains an explicit mass term, the mass gap equation
becomes:

mf = m0,f − 2Gφf − 2Kφgφh. (1.75)

Here m0,f is the current mass of the quark of flavor f appearing in the La-
grangian. In this case chiral symmetry is explicitly broken, although by a very
small amount, since the current mass of light quarks is much smaller than
the typical effective mass of a valence quark > 300 MeV. From Eq. (1.75)
one gets that light quarks acquire an effective mass and chiral symmetry
is dynamically (or spontaneously) broken. In the chiral limit (m0,f = 0),
from the definition (1.74) and from Eq. (1.75), chiral symmetry is sponta-
neously broken if φ 6= 0. Hence, one can use the chiral condensate as the
order parameter for the chiral phase-transition. Since the explicit symmetry-
breaking introduced by m0,f is small, this remains meaningful also in the
case of non-vanishing currrent quark masses. The next paragraph is focused
on the mesonic spectrum and on what happens to their chiral partners.

NJL hadronic spectrum

For the investigation of the mesonic spectrum predicted by the NJL model
it is useful to rewrite the Lagrangian (1.67) in mean-field approximation in
order to display explicitly the different meson operators:

LMF =iψ/∂ψ+

+
8∑
i=0

{
G−i (ψλiψ)2 + G+

i (ψiγ5λiψ)2
}

+

+
1

2

{
K−(ψλ8ψ)(ψλ0ψ) +K+(ψiγ5λ8ψ)(ψiγ5λ0ψ)+

+K−(ψλ0ψ)(ψλ8ψ) +K+(ψiγ5λ0ψ)(ψiγ5λ8ψ)
}
,

(1.76)
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where G± and K± are the flavour-dependent effective coupling constant, de-
fined as:

G±0 =
1

2
G± 1

3
NcK(itrSs + 2itrSu)

G±1 = G±2 = G±3 =
1

2
G∓ 1

2
NcKitrSs

G±4 = G±5 = G±6 = G±7 =
1

2
G∓ 1

2
NcKitrSu

G±8 =
1

2
G∓ 1

6
NcK(4itrSu − itrSs)

K± = ∓
√

2

6
NcK(itrSu − itrSs) .

(1.77)

Notice that the effective coupling K is responsible for the mixing of the λ0 and
λ8 modes, leading to the η− η′ mass splitting in the pseudoscalar spectrum.
It is particularly interesting to focus on the pseudoscalar sector, since in the
chiral limit these mesons can be interpreted as the Goldstone bosons associ-
ated to the spontaneous breaking of chiral symmetry. The different meson
modes arise from the proper combination of flavour matrices and effective
couplings, as follows:

Ti =



λ3 → G+
3 → π0

1√
2
(λ1 ± iλ2)→ G+

1 ± iG+
2 → π±

1√
2
(λ6 ± iλ7)→ G+

6 ± iG+
7 → K0, K

0

1√
2
(λ4 ± iλ5)→ G+

4 ± iG+
5 → K± .

(1.78)

The effective interaction resulting from the exchange of a meson can be ex-
pressed to leading order in Nc as an infinite sum of terms in the random-
phase approximation (RPA) that is recognized to be a geometric series. In
Fig (1.10) I show the terms included in the series. The bubbles resummed
in the series are called polarization propagators, −iΠJ

I , the index I referring
to the kind of interaction (scalar, pseudoscalar, vector or pseudovector) and
the index J referring to the kind of particle (pion, kaon, sigma, etc...). For
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Figure 1.10: Effective qq̄ scattering amplitude in the random phase approxi-
mation. Only the direct terms are considered.

instance, for the π0, the polarization propagator reads:

− iΠπ0

ps (k) = Tr
∫

d4p

(2π)4

[
iγ5λ3Su(p+

1

2
k)iγ5λ3Su(p− 1

2
k)

]
, (1.79)

where we exploited the exact isospin symmetry mu = md which makes the
overall trace over flavor trivial. The resummation of the RPA series leads
to the following effective interaction mediated by the exchange of a neutral
pion. The effective propagator of the neutral pion reads:

Γπ
0

ps (k) =
2G+

3

1− 2G+
3 Ππ0

ps (k)
. (1.80)

The meson mass is defined as the value of k0 that corresponds to the zero of
the real part of the denominator evaluated at zero spatial momentum

1− 2G+
3 ReΠπ0

ps (mπ, ~k = 0) = 0. (1.81)

Using this methods one can obtain the spectrum of all the pseudoscalar
mesons, as done by Klimt et al. in Ref. [64], and compare it with the PDG
states. The results are shown in Table 1.1 and in Fig. 1.11.

In Appendix A I provide more details on the calculation of meson masses.
The major finding of the NJL model is that, in the chiral limit, the pion
and kaon become massless, while the scalar particles get a mass as in the
Linear Sigma Model. Chiral symmetry is then dynamically broken. One
can conclude that the NJL model is useful to investigate chiral-symmetry
breaking. Actually, in order to reproduce the physical masses of the particles,
one needs in the Lagrangian a small mass term for the quarks which breaks
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Figure 1.11: Pseudoscalar meson spectrum in the NJL model obtained in [64].

explicitly chiral symmetry by a small amount.

In the next chapter, starting from the NJL model, we present a more
complex Effective Field Theory that considers also the interaction between
quarks and a background color field. The latter will be used to investigate
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mπ mK mη mη′

MeV MeV MeV MeV

NJL predictions 139 498 509 969
PDG Mass 139 495 548 958

Table 1.1: Pseudoscalar meson masses predicted in the NJL model in Ref
[64] compared to their PDG values.

the spontaneous breaking/restoration not only of chiral symmetry, but also
of the center symmetry introduced in Sec. 1.5.
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1.7 Hydrodynamics

This section is devolved to introduce some important concepts related to the
hydrodynamic description of the QGP. The section is based on Refs. [57, 93,
98].

First of all, why is hydrodynamics relevant for the description of the
Quark-Gluon Plasma? The only experimental way, available today, to study
QCD under extreme conditions are heavy ion-collision experiments. Sec. 2
is devoted to describe this kind of experiments. The basic idea is that, af-
ter the collision, a hot and dense system of deconfined quarks and gluons
is formed, which undergoes a rapid expansion and cools down. In light of
its simplicity, one would like to describe such an expansion in terms of rela-
tivistic hydrodynamics (RHD). Hydrodynamics is applicable if the medium
is locally thermalized (or close to local thermal equilibrium if viscous cor-
rections are considered), condition which occurs if entropy is maximized and
the microscopic collision time-scale is shorter than the macroscopic evolution
time-scale. Since the fireball created in the heavy-ion collision is small and
expands very fast, it seems that the above conditions are hardly satisfied.
Surprisingly, several observables in relativistic heavy-ion collisions at RHIC
and at the LHC are nicely reproduced by relativistic hydrodynamics, assum-
ing that the fireball undergoes a collective expansion driven by pressure gra-
dients: the hadron transverse-momentum spectra in central and non-central
collisions; the anisotropy of their azimuthal distribution in non-central colli-
sions, quantified by the elliptic-flow coefficient v2(pT ) and its dependence on
the hadron rest mass; higher-order flow harmonics... All these observables
are correctly described by hydrodynamic models for transverse momenta up
to about 2 GeV [65].

From these observations one can infer that the Quark-Gluon Plasma cre-
ated in heavy-ion collisions thermalizes very rapidly and must be strongly
interacting. Therefore, the QGP is a strongly coupled plasma that behaves
as an almost perfect fluid. For its description, perturbative QCD is not ap-
plicable and one needs a non-perturbative approach like lattice-QCD or an
Effective Field Theory. Hydrodynamics can be considered an effective theory
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for the study of long-wavelength excitations of the system.

1.7.1 Relativistic hydrodynamics: general setup

Hydrodynamics describes a many-particle system in terms of a few fields
obeying some conservation laws: the density of conserved charges ni(x) (if
present), the energy density ε(x), the pressure P (x) and the collective fluid
four-velocity uµ(x). We start considering the four-velocity, which is written
as:

uµ = γ

(
1

~v

)
with γ ≡ 1√

1− ~v2
, (1.82)

which reduces to uµ ≈ (1, ~v) in the non-relativistic limit (NRL). In the lo-
cal rest frame (LRF) uµ = (1,~0). The four-vector uµ only contains three
independent components, since it obeys the relation:

u2 = uµgµνu
ν = 1, (1.83)

arising from the metric tensor gµν = diag(1,−1,−1,−1) used in this thesis.
As mentioned above, hydrodynamic equations have the form of conserva-

tion laws for the energy, the momentum and, in the case of QCD, the baryon
number (also strangeness and electric charge are conserved, but one usually
neglects them in solving the equations).

In order to obtain the RHD equations, one must start from the energy-
momentum tensor T µν for a relativistic fluid. Here we consider only the
ideal case, neglecting dissipative effects. Hence, T µν just depends on the
hydrodynamic degrees of freedom, namely two scalar quantities (ε, p) and
one four-vector (uµ). Since T µν must be symmetric and transform as a tensor
under Lorentz transformations, its most general form is

T µν = ε(c0g
µν + c1u

µuν) + p(c2g
µν + c3u

µuν). (1.84)

In order to fix the coefficients, in the local rest frame, one requires the T 00

component to represent the energy density ε of the fluid and the spatial
components to be proportional to the pressure, T ij = pδij. This implies
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c0 = 0, c1 = 1, c2 = −1 and c3 = 1. Hence, the energy-momentum tensor
reads:

T µν = εuµuν − p∆µν , (1.85)

where the transverse projector ∆µν is defined as:

∆µν = gµν − uµuν . (1.86)

This operator has the following properties:

• ∆µνuµ = ∆µνuν = 0

• ∆µν∆α
ν = ∆µα.

∆µν acts then as a projection operator on the space orthogonal to the fluid
four-velocity uµ.

If there are no external sources (isolated system), the energy momentum
tensor is conserved:

∂µT
µν = 0. (1.87)

It is useful to project these equations along the directions parallel and per-
pendicular to the fluid four-velocity. For the parallel direction one finds

uν∂µT
µν = uµ∂µε+ (ε+ p)∂µu

µ = 0, (1.88)

while for the orthogonal direction one gets

∆α
ν∂µT

µν = (ε+ p)uµ∂µu
α −∆µα∂µp = 0. (1.89)

It is convenient to introduce the comoving derivative D = uµ∂µ and the
perpendicular derivative ∇α = ∆µα∂µ. The RHD equations written in a
Lagrangian form become then:

Dε+ (ε+ p)∂µu
µ = 0

(ε+ p)Duα −∇αp = 0.
(1.90)

In the absence of conserved charges (which is approximately the case in
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heavy-ion collisions at the highest energies, with almost vanishing baryon
number) these are the fundamental equations for a relativistic ideal fluid.
This is a system of 4 independent equations with 5 unknowns: the 3 inde-
pendent components of uµ, the pressure and the energy density. One needs
another equation to close the system: the Equation of State (EoS) p = p(ε).
The equation of state depends on the nature of the system and, in this case,
on the interaction between quarks and gluons. Due to the non-perturbative
nature of these interactions, an analytic calculation of the EoS around the
deconfinement transition starting from the QCD Lagrangian is infeasible.
One needs a non-perturbative approach: Lattice QCD (Sec. 1.5 is devoted
to this topic) or an Effective Field Theory (as described in Sec. 1.6).

The meaning of Eq.(1.90) becomes more transparent in the non-relativistic
limit (|~v| � 1). One finds:

D = uµ∂µ ∼ ∂t + ~v · ~∂ +O(|~v|2), ∇i = ∆iµ∂µ ∼ −∂i − viu0∂0 +O(|~v|2).

(1.91)
In this limit, ∇i reduces to (minus) the spatial derivative and pressure is
much lower than the energy density ε ≡ ρ + εth, which is dominated by the
mass density ρ, much larger than the thermal energy density and playing the
role of the inertial term. The set of Eqs. (1.90) becomes then:

(∂t + vk∂k)ε = −(ε+ P ) (~∇·~v),

ρ(∂t + vk∂k)~v = −~∇P.
(1.92)

The first equation contains a double information: the mass conservation

(∂t + vk∂k)ρ = −ρ (~∇·~v)

and the evolution of the thermal energy density

(∂t + vk∂k)εth = −(εth + P ) (~∇·~v),

which decreases both due to the dilution arising from the expansion of the
system and due to the work done during the expansion (hence the role
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of the pressure). The second equation is the Euler equation and repre-
sents momentum conservation. This equation implies that an initial pres-
sure anisotropy leads to an asymmetry in the fluid flow and hence in the
momentum-distribution of final state particles.

The fireball produced in heavy-ion collisions is surrounded by the vacuum,
which has zero pressure, while at its center one has the thermal pressure of a
relativistic plasma. Considering the dynamics in the transverse plane, if the
pressure gradient is isotropic the expansion is equal in all directions and one
has simply a radial flow. On the contrary, if one has an initial deformation,
in the final-state particles one can detect an elliptic flow or a triangular flow
and so on.

The anisotropy in the initial pressure gradients is due to the asymmetric
shape of the overlapping region of the colliding nuclei. This asymmetry arises
both from the non-zero impact parameter (which will be introduced in Sec. 2)
and from the fluctuations in the position of the nucleons in the nuclei. This
topic will be treated in detail in Sec. 2.

If in the system there are some conserved charges, e.g. baryon number,
associated to the conserved currents Jµi = niu

µ ( the latin index i labels the
particular conserved charge) one has to consider new continuity equations:

∂µJ
µ
i = Dni + ni ∂µu

µ = 0. (1.93)

In full generality, in heavy-ion collisions the conserved charges are baryon
number, electric charge and strangeness, although one usually considers only
baryon number. Approximating the QGP as an ideal fluid, there is no energy
dissipation and also entropy is conserved. In this case, one can write a
continuity equation also for the entropy current, defined as Sµ = suµ, where
s is the entropy density in the local rest-frame of the fluid. The conservation
equation reads then:

∂µS
µ = Ds+ s ∂µu

µ = 0. (1.94)

Both baryon and entropy densities get diluted due to the expansion of the
system expressed by the rate ∂µuµ. One can combine Eq. (1.93) for the
baryon density and Eq. (1.94) for the entropy density in order to define a
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new conserved quantity, the entropy per baryon σ ≡ s/nB, that obeys the
equation

Dσ = 0. (1.95)

During the evolution of the system, both the entropy and the baryon density
can change, but their ratio in each fluid-cell followed along its motion remains
constant. In heavy-ion collisions, one produces a system which – neglecting
dissipative effects due to viscosity, heat conduction and charge diffusion –
undergoes an approximate isentropic expansion moved by pressure gradients
along trajectories of constant entropy per baryon: the higher the center-of-
mass energy of the collision, the higher the s/nB ratio.

One can define other conserved quantities used in theoretical calculations
as constraints to satisfy fixing the values of the respective chemical potentials.
One can define the electric charge per baryon ξ ≡ nQ/nB and the strangeness
number per baryon η = ns/nB. These two quantities can be used to fix the
electric-charge and strangeness chemical potentials. In heavy-ion collisions,
assuming that the non-zero charges arise from the partial stopping of the
matter of the colliding nuclei, one has ξ = 0.4 and η = 0.0.

1.7.2 Speed of sound in an ideal fluid

Starting from the relativistic Euler equation (1.90) and considering that the
evolution of an ideal fluid occurs along trajectories of constant entropy per
baryon σ ≡ s/nB, one can see that the speed of sound, defined as

c2
s(ε, σ) ≡ ∂P

∂ε

∣∣∣∣
σ

, (1.96)

is responsible for the fluid acceleration, since it maps the energy-density gra-
dient of the initial condition into a pressure gradient. In fact, in HIC’s the
viscosity and hence entropy production is found to be very low; then, in first
approximation, one can neglect it and assume that the system evolves at a
fixed value of σ. One has still to show that the quantity defined in Eq. (1.96)
is actually the squared speed of sound. The hydrodynamics evolution of the
fluid is driven by Eqs. (1.90). For small perturbations around the configu-



52 CHAPTER 1 QCD:SYMMETRIES AND PHASE DIAGRAM

ration of a fluid at rest at global equilibrium (P = Peq + δP , ε = εeq + δε),
neglecting quadratic terms in the fluctuations, one obtains:

∂tδε = −heq∂iv
i (1.97)

heq∂tv
i = −∂iδP, (1.98)

where heq ≡ (Peq + εeq) is the enthalpy density of the unperturbed system.
One can consider the pressure as a function of the energy density ε and of
the entropy-per-baryon σ. Since in the absence of dissipation σ is constant,
the pressure fluctuation can be written as:

δP =
∂P

∂ε

∣∣∣∣
σ

δε ≡ c2
sδε. (1.99)

and hence one has
∂tδP = c2

s∂tδε = −c2
sheq∂iv

i. (1.100)

After taking a second time derivative and using Eq. (1.98), one gets:

∂2

∂t2
δP = c2

s∇2δP. (1.101)

This is the d’Alembert wave equation, here for the particular case of a sound
wave. Then one can conclude that cs, defined in Eq. (1.96), can be identified
with the speed of sound of a relativistic fluid. The speed of sound maps
then a density gradient into a pressure gradient, which – if the evolution of
the system can be described by hydrodynamics – is responsible for the fluid
acceleration.

Eq. (1.96) gives the value of the speed of sound along a line of constant
entropy per baryon. For practical purposes, it may be more useful to treat
the speed of sound as a function of temperature and chemical potential as
independent variables. One has:

c2
s(T, µ) =

n2χTT − 2snχTµ + s2χµµ
h(χTTχµµ − χ2

Tµ)
, (1.102)

where n is the baryon density, s is the entropy density and the symbols χx,y
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represent the following quantities:

χTT =
∂2P

∂T 2

∣∣∣∣
µ

, χTµ =
∂

∂µ

∣∣∣∣
T

∂P

∂T

∣∣∣∣
µ

, χµµ =
∂2P

∂µ2

∣∣∣∣
T

. (1.103)
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Chapter 2

Heavy Ion Collisions

In this section I introduce the the motivations to use relativistic heavy-
ion collisions for the study of the properties of hadronic matter at high
temperature/density, focusing on what kind of observables are available in
these experiments. This chapter is based on Ref.‘[30].

2.1 Motivations

In the past 50 years proton-proton and nucleus-nucleus collisions at higher
and higher relative velocities have been studied in greater and greater de-
tails. These studies have been conducted because they may give us a more
complete understanding of how particles are produced in high-energy colli-
sions in QCD. This is a fundamental question that long predates QCD as
Heisenberg [89] and Heitler et al [50] wrested with it in the 1930s and 1940s,
Fermi [36] and Landau [66] did so in the 1940s and 1950s and Feynman [39]
tried his hand in the 1960s. One can now gain new insight into these old
questions by studying high-energy collisions in a new regime in which ex-
periments have new knobs to dial, including the size of each of the colliding
nuclei, the impact parameter, the final-state multiplicity and more.

Heavy-ion collision recreate a system of matter that filled the Universe
few moments after the Big Bang. It has been understood since the 1970s
[33, 68] that when the universe was only a few microseconds old it was filled

55
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with matter at temperatures above ΛQCD and protons, neutrons and any
hadrons were melt in a soup of quarks and gluons. Starting in the late 1990s,
and culminating in classic works in the 2000s [15, 62], it became clear from
first-principles lattice-QCD calculations at vanishing baryon density that the
transition from the primordial hot deconfined QCD matter to the ordinary
hadronic matter, which occurred in the first few microseconds after the Big
Bang, proceed via continuous crossover, not as a first-order phase transition.
One of the major goals of ultra-relativistic heavy ion-collisions (HIC’s) is to
use these experiments to recreate droplets of Big Bang in the laboratory.

One of the most important discoveries of HIC experiments is around the
QCD transition that this matter – a few trillions of degrees hot – is an almost
ideal fluid: the primordial matter is not a weakly-coupled system of quarks
and gluons as originally expected but, on the contrary, it is a strongly-coupled
system. The material property that quantifies the ideal fluid behaviour of
a system made up of ultra-relativistic constituents is the ratio of its shear
viscosity η to its entropy density s. The η/s ratio plays a central role in
the equation of hydrodynamics, where it governs for instance the amount of
entropy produced within the fluid as a sound wave propagates through it.
The η/s ratio for the fluid of quarks and gluons produced in HIC’s is close
to the universal lower bound 1/4π conjectured by the gauge-gravity duality
[87]. Such a small value of η/s justifies the estimate of the initial entropy
of the system obtained from the final multiplicity of produced particles. In
Chapter 4 this will be used to evaluate the adiabatic trajectories followed by
the fireball in HIC’s at different center-of-mass energies.

The main idea of HIC’s is that two heavy nuclei collide at very high
center-of-mass energy and after the collision a new state of matter called
Quark-Gluon Plasma (QGP) is produced. This system is composed of quarks
and gluons no longer confined into hadrons. The created system evolves in
time and a large amount of particles (∼ 103−104 at the LHC) is found in the
detectors. From the overall abundance and the relative yields of produced
particles and their angular and momentum distribution it is possible to ex-
tract some information about the QGP and the QCD phase-diagram. This
section is devolved to show which observables are experimentally accessible
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and which information can be extracted from their measurement.
One can scan the phase diagram of QCD starting from high energy heavy-

ion collisions and move toward lower and lower collision energies, in which
the initial baryon number carried by the incident nuclei provides a larger and
larger contribution to the matter formed in the collision. High-energy AA
experiments are under way at the LHC (Large Hadron Collider) at CERN
in Geneva. Instead, lower energy AA studies were performed in the past at
the SPS (Super Proton Synchrotron) [7] at CERN and are currently ongoing
at the RHIC (Relativistic Heavy Ion Collider) Beam Energy Scan (BES)
at Brookhaven National Laboratory (BNL) in New York. Extension of this
program to even lower collision energies are planned at FAIR (Facility for
Antiproton and Ion Research), an infrastucture devoted to the exploration
of the high baryon-density region of the phase diagram which will be built at
the GSI, in Darmstadt. The project devoted to this exploration is the CBM
(Compressed Baryon Matter) experiment, where the projectile will have an
energy of 10− 45A GeV. This energy will allow one to create, in fixed-target
collisions, the highest experimentally accessible net baryon densities, up to 10
times that of ground-state nuclear matter [53]. Other experiments about the
exploration of the QCD phase-diagram at high baryon density are foreseen
at the Nuclotron-Based Ion Collider Facility (NICA) in Dubna, Russia [101],
and at the Japan Proton Accelerator Research Complex (J-PARC) in Tokai,
Japan. The central question that these experiments aim to answer is whether
the continuous crossover between the QGP fluid and hadronic matter turns
into a first-order phase transition. The values of baryochemical potential µB
and temperature where this occurs represent the coordinates of the Critical
End Point (CEP) in 2-D QCD phase diagram. In Chapter 3 a theoretical
model is introduced in order to explore the possible existence of this CEP.
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2.2 Heavy-Ion Collision basic concepts

This section is devoted to introduce some basic concepts useful to describe
the system produced in HIC’s.

2.2.1 Transverse plane and impact parameter

The first two important concepts are the transverse plane and the reaction
plane. The first one is orthogonal to the beam direction, the second one is
generated by the beam direction and the vector that joins the centres of the
colliding ions, as shown in Fig. 2.2.

In the study of heavy ion-collisions the only two quantities under di-
rect experimental control are the ion species and the energy of the colliding
beams. The energies are known to high precision. However, knowing the col-
liding ions is not equivalent to know the system arising from the collision. In
fact, the two nuclei can collide either head-on or peripherally. The parame-
ter that describes these different kinds of collisions is the impact parameters
b, i.e. the transverse distance between the centers of mass of the two nu-
clei. One can focus only on the distance in the transverse plane because the
ions are highly contracted due to the large Lorentz γ factor (γ ∼ 102 − 103

at RHIC and LHC, respectively) and they look like two-dimensional disks;
in common language they are called pancakes. Low values of b correspond
to high-centrality events, large impact parameters correspond to peripheral
ones. The main important differences between central and peripheral col-
lisions are the number of participant or wounded nucleons (the number of
nucleons that collide at least once) and, as a consequence, the number of
binary collisions. The nucleons that do not collide with the others are called
spectators and they continue travelling along the beam pipe and hence their
number can in principle be directly measured through a devoted very forward
detector. From this quantity one can determine the number of wounded nu-
cleons (Nspec +Npart = AL +AR, Ai being the mass number of the two ions).
In Fig. 2.1 an example of PbPb collision at the LHC is drawn.
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Figure 2.1: An example of a PbPb collision at the LHC with impact pa-
rameter b ∼ 7 fm. The number of participants (solid) refers to the nucleons
that collide at least once with any other nucleon, whereas the number of bi-
nary collisions counts all the overlapping blue/red nucleon pairs. Spectator
nucleons (dashed) do not collide. [30]

2.2.2 Stopping power

Only the nucleons in the overlapping region of the two nuclei, the red bubble
in Fig. 2.2, take part in the collision. At not so high energy (γ . 10) a lot
of participant nucleons are stopped in the collision region and their presence
can influence the experimental results, as we will discuss in the following:
theoretical models must take this into account. At LHC energy there is es-
sentially no stopping and the created system has vanishing baryon density;
at the highest center-of-mass energies achieved at RHIC few participants are
stopped and the system has small baryon density. Today a new experimental
facility to study HIC’s at high baryon-density is under construction at the
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Figure 2.2: Illustration of a HIC: the reaction plane (left panel) and trans-
verse plane (right panel) are shown [54].

GSI in Darmstadt, allowing the exploration of a different region of the QCD
phase-diagram.

2.2.3 Time evolution

The time evolution of the fireball created in a heavy-ion collision is schemat-
ically shown in Fig. 2.3. One has first of all the rare hard processes involving
high-momentum exchange occurring at the level of the individual nucleon-
nucleon collisions before the formation of any medium, in which one produces
high-pT partons and heavy quarks. They go through the system and perform
a tomography of QGP. The associated experimental observables are open
heavy-flavour particles (e.g. D and B mesons), quarkonia and jets. These
observables are the so-called hard probes.

Considering now the evolution of the bulk medium, one has an initial pre-
equilibrium stage in which the energy stored in the colour-fields is converted
into particles. After about 1 fm/c the system approaches local thermal equi-
librium; at this stage quarks and gluons are free to move and exchange energy
and momentum before the formation of confined states. The system expands
and the temperature decreases until reaching the critical temperature Tc, at
which quarks and gluons get confined into hadrons. Due to its rapid ex-
pansion the system immediately reaches chemical freeze-out, after which its
chemical composition, i.e. the yields of the different hadron species, no longer
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Figure 2.3: A cartoon depicting the space-time history of the QGP as gen-
erated in a heavy-ion collision at LHC energies. The overlay on the right
shows the lab-frame evolution [99].

changes. Now, this Hadron-Resonance Gas made of mesons, baryons and res-
onances is still subject to elastic interactions, in which the different particles
exchange energy and momentum. After about 10-15 fm/c the gas is so rar-
efied that the particles no longer interact and their energy and momenta get
fixed: the kinetic freeze-out is thus achieved.
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2.3 Soft probes

In this section I introduce the so called soft probes. These objects carry
important information about the chemical composition and the collective
motion of the system produced in HIC’s.

2.3.1 Particle yields

In HIC experiments, beside the momentum spectra, one measures the yields
of the different particle species. In Fig. 2.4 we show the multiplicity of several
light hadrons as a function of the center-of-mass energy

√
sNN . At low

√
sNN

many nucleons are stopped in the region of the collision, hence the produced
fireball has a large baryon number and the multiplicity of detected particles
is dominated by protons (neutrons, having zero electric charge, cannot be
directly measured); the number of anti-protons at that energy is low because
of their large mass and of baryon-number conservation. Pions are the second
most abundant particles at low energy, the different number of π− compared
to π+ is due to the isospin conservation. The different multiplicity of kaons
is caused by the different quark content of the two species. For K+ one needs
only an new anti-strange quark (hence the production of a ss̄ pair) since light
up-quarks are present in the colliding ions; instead, for K− one needs both a
ū antiquark an a strange quark, both of them not present in the colliding ions,
and hence the production of a uū and a ss̄ pair. The same argument holds
for the Λ/Λ̄ hyperons. Furthermore, as above mentioned, the production of
a Λ hyperon requires the exctitation of a ss̄ pair; the s-quark gives rise to
the Λ hyperon, while the s̄-antiquark can recombine with a u quark from the
medium contributing to the excess of K+ mesons. At high

√
sNN incoming

nucleons are not stopped and the particle multiplicity is dominated by pions
because of their small mass; furthermore, the symmetry between matter and
antimatter is recovered, since there is no stopping of the incoming matter
and all the detected particles are produced during the collision. The system
created at low

√
sNN is characterized by high baryon density (a lot of nucleons

are stopped) and hence by a high value of the baryochemical potential µB;
instead the system created at high center-of-mass energy is characterized by
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Figure 2.4: Particle multiplicity as a function of
√
sNN measured at different

heavy-ion facilities. At high energy the number of produced particles and
anti-particles is equal, while at low energy one detects more particles: this
asymmetry is due to the stopped nucleons

.

low baryon density. One can see that at LHC energies the number of protons
is the same as the number of anti-protons (µB = 0).

2.3.2 Momentum distribution and collective flow

One important observable measured in HIC’s is the transverse momentum
distribution of produced particles. This quantity is often plotted in terms
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Figure 2.5: Transverse-mass distribution of identified particles measured by
the STAR collaboration in Au-Au and p-p collisions [24].

of the so called transverse mass, defined as m2
T = p2

T + m2, where pT is the
particle transverse momentum.

In Fig. 2.5 I show this observable for several identified particles (pions,
kaons and protons) measured by the STAR experiment in A-A and p-p colli-
sions. In p-p collisions the particle distribution is compatible with a Hagedorn
one.

dN

mTdmT

∝ e−mT /Tslope . (2.1)

One can extract the value of Tslope from a fit, finding a result around 160 MeV.
This quantity is universal for all particle species and for all values of

√
sNN

and is called Hagedorn temperature TH : the larger amount of available energy
is used to produce more particles, not to increase their momentum. On the
contrary, in A-A collisions Tslope is not universal but grows with m. In fact,
in nuclear collisions a collective motion appears, that can change the shape of
the distribution, explaining the harder spectrum found for heavier particles.
In this case the relation between Tslope and the freeze-out temperature Tfo
reads

Tslope = Tfo +
1

2
m v2

T,flow. (2.2)
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Here vT,flow is the collective transverse velocity of the medium, which gets
larger and larger as

√
sNN increases. Actually, a real hydrodynamic calcula-

tion is needed for a correct interpretation of the experimental data.

In more peripheral events, with non-negligible impact parameter, the fire-
ball is not azimuthally symmetric, but it dispalys an initial elliptic deforma-
tion, as shown in Fig. 2.6a. The presure gradient is asymmetric and bigger
along the reaction plane than in the direction orthogonal to it. This pressure
anisotropy is the cause of a complex collective motion. A convenient way
of characterizing the angular pattern of this anisotropic flow is to perform a
Fourier expansion of the invariant single-particle momentum distribution:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

{
1 + 2

+∞∑
n=1

vn cos [n(φ− ψRP)]

}
. (2.3)

The first non-trivial term of the expansion (one has v1 = 0 for a symmetric
rapidity window) is the n = 2 harmonic, the so-called elliptic flow, and its
coefficient v2 can be measured and compared to the results of hydrodynamic
simulations, turning out to be a major feature of the azimuthal particle
distribution. The comparison is shown in Fig. 2.6b.

(a) Cartoon of a peripheral collision. (b) Comparison between experimental data at
RHIC and hydrodynamics simulations.

Figure 2.6: Elliptic Flow in HIC’s.
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The hydrodynamic expansion is driven by the speed of sound according
to

(ε+ P )
dvi

dt
= −∂P

∂xi
, with ~∇P = c2

s
~∇ε (2.4)

and this allows one to get information on the Equation of State (EoS) of the
system. The latter can be calculated with Lattice QCD at vanishing/small
baryon density and with an Effective Field Theory approach at higher baryon
density. In Chapter. 4 I show the results for the EoS and the speed of
sound in the PNJL model. The comparison between experimental data and
theoretical predictions in Fig. 2.6b is good up to 2 GeV. The reason of the
discrepancy between the hydrodynamic predictions and experimental data as
the transverse momentum gets larger, is that for high-momentum particles,
the interaction rate is not sufficient to maintain them in kinetic equilibrium.
The introduction of shear viscosity and the replacement of Eqs. (1.90) with
the Israel-Steward second-order theory (for more details see [56]) produces a
better agreement between theory and experimental data up to a bit larger
transverse momentum.
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2.4 Fluctuations

When one measures an observable in some thermal system, the results would
take different values for different measurements, even if the measurement
is performed with an ideal detector with an infinitesimal resolution. This
distribution of the results of the measurement is referred to as fluctuations.

In HIC’s the study of fluctuations concerns first of all the event-by-event
yields of identified particles. In Fig. 2.7 one shows the net-charge (i.e. the
difference between the number of positive and negative charged particles)
distribution at several centralities and center-of-mass energies (

√
sNN). At

√
sNN = 200 GeV the distribution is symmetric and its maximum is close

to zero. This is due to the fact that, at high energy, there is no stopping
of the incoming nuclear matter and one produces the same number of parti-
cles and anti-particles; this occurs both in central and in peripheral events.
On the contrary, in central collisions at low energy there is more stopping
and the peak of the net-charge distribution is shifted from zero. The dis-

Figure 2.7: The net-charge distribution in Au+Au collisions for
√
sNN from

7.7 to 200 GeV with the kinematic cuts |η| < 0.5 and 0.2 < pT < 2.0
GeV/c for three different centralities (0 - 5%, 30 - 40%, 60 - 70%). The
dashed curve is a Skellam distribution. Results are provided by the STAR
collaboration [17].

tributions can be characterized in terms of their cumulants. The first two
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are the mean M and the variance σ2 (width of the distribution); the third
and fourth cumulants are related to the skewness S and kurtosis κ, quan-
tifying the asymmetry and sharpness of the distribution. These quantities
are related to the first four moments of the distribution, as shown in the
following in Eq. (3.71): for more details on these observables see Sec. 3.3.1
and Appendix B. In Fig. 2.8, taken from [17], one shows 3 combinations of
these observables compared to the predictions of a Skellam distribution. The
Skellam distribution is the distribution of the difference of two Poissonian
stochastic variables and it can describe the net-charge or net proton number
distribution in a classical ideal hadron-resonance gas.

Figure 2.8: (left panel) Beam-energy dependence of (a) σ2/M , (b) Sσ and
(c) κσ2 for the net-charge distribution for a central (0-5%) and peripheral
(70-80%) centrality bin. Results from a Poissonian and a Negative Bino-
mial Distribution (NBD) baseline are superimposed. The value of κσ2 for
a Poissonian distribution is always unity. (Right panel) Collision energy
and centrality dependence of Sσ and κσ2 for the net-proton distribution in
Au+Au and p+p collisions at RHIC. Expectations based on a Skellam distri-
bution (dashed lines in the top panel), on UrQMD (red shaded band) and on
independent particle production (shaded solid band) for the various collision
centralities are shown [17].
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A Skellam is the convolution of two Poisson distributions and reads:

Sλ1,λ2(m) =
∑
m1,m2

δm,m1−m2Pλ1(m1)Pλ2(m2). (2.5)

The figure shows that, if higher order cumulants are considered, the system
deviates from the predictions of a Hadron-Resonance Gas for certain values
of the center-of-mass energy and one wonders whether one can interpret such
a deviation as a signature of the crossing of the Critical End-Point.

From the theoretical point of view it is possible to calculate the fluc-
tuations of net-charge and net-baryon number of the system at null/small
chemical potential using lattice QCD taking higher order derivatives of the
pressure with respect to the appropriate chemical potentials, but at high
baryon density one needs an Effective Field Theory approach. In Chapter 3
we introduce an effective field model for this purpose.
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2.5 Hard probes

The QGP formation in relativistic heavy ion collisions affects the production
of hard particles: high−pT hadrons, heavy-flavor particles and quarkonia.
They arise from high-energy partonic hard events described by pQCD occur-
ring during the crossing of the two nuclei and they scale with the number of
binary nucleon-nucleon collisions. The suppression of their yields (or momen-
tum distributions) in AA collisions is quantified by the nuclear modification
factor:

RAA =
NAA

〈Ncoll〉Npp

, (2.6)

representing the ratio of particle yields (or kinematic distribution) in AA
collisions with respect to the pp benchmark, rescaled by the average number
of independent nucleon-nucleon collisions. An RAA 6= 1 indicates a derivation
from the pure Ncoll-scaling and hence the presence of medium effects.

One usually considers the case of the transverse-momentum spectrum
of charged particles. The corresponding RAA is plotted, for various collision
centralities, in Fig. 2.9. As it can be seen, one always gets RAA < 1. Actually,
at very low pT (< 2 GeV) one has a violation of the Ncoll scaling, since in
this kinematic region particle production is proportional to Npart. Hence, one
must focus on the high-pT region, where the energy loss suffered by the hard
parton in the hot deconfined medium is responsible for the quenching of the
distribution.

Also quarkonium production gets suppressed in high-energy nuclear col-
lisions. This effect , interpreted as arising from the Debye screening of the
QQ̄ interaction in the deconfined phase, was proposed by Matsui and Satz
in 1986 [74]. Fig. 2.10 clearly displays strong indications of the suppression
of the excited states of bottomonium Υ(2S) and Υ(3S), as can be seen from
the di-muon invariant mass spectra in pp and PbPb collisions measured by
CMS.

Further information on parton energy-loss can be obtained not only from
single-particle observables but also from two-particle correlations. In the first
stage of the fireball evolution, hard processes occur in which pairs of high-
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Figure 2.9: The nuclear modification factor RAA for charged particles mea-
sured by the ALICE collaboration in PbPb collisions at

√
sNN = 2.76 TeV

with three different centrality selections [67].

momentum back-to-back partons are produced. The two partons propagate
through the medium and interact with its constituents. In QCD a high-
energy parton gives rise to a jet of collimated hadrons in the final state. Thus,
in p-p collisions one can observe two jets in opposite azimuthal directions:
if one measures a jet at a certain angle φ, one measures also another jet at
an angle shifted by π, φ′ = φ+π. Hence, taken a high-pT trigger hadron,
one will measure a lot of particles associated to it at angles ∆φ ≈ 0 and
∆φ ≈ π. In Fig. 2.11 the dark bars show the experimental results for pp
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(a) pp collion (b) PbPb Collision

Figure 2.10: Di-muon invariant-mass distributions in pp and PbPb collisions
at
√
sNN = 2.76 TeV measured by the CMS collaboration [9].

collisions, in which two peaks are clearly visible. On the contrary in AA

Figure 2.11: Two-particle azimuthal correlations in p-p (dark bars), d-Au
(red points) and A-A (blue stars) collisions measured by the STAR collabo-
ration. The p-p data show two peaks in opposite directions, while the A-A
data display only one peak, because the second one is quenched by the pres-
ence of the medium.
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collisions one can have a suppression of the away-side jet. At the level of
the two-particle correlations displayed in Fig. 2.11 one observes a complete
quenching of the away-side peak. The picture is the following: if two hard
partons are produce near the border of the fireball, one goes out immediately
and fragments in the vacuum, while the other one flies through the medium,
interacts with its constituents and loses a lot of energy. The result is that
the second peak in Fig. 2.11 gets suppressed, since the particles associated
with the trigger hadron either have lost a lot of energy or have been moved
to larger angles. From the suppression of jets and high-momentum hadrons
one can extract further independent information on the size, temperature
and transport coefficients of the medium.
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Chapter 3

PNJL Model

As discussed in the previous chapter, for the description of the microscopic
interactions that occur in the fireball and for the determination of the EoS
necessary for the hydrodynamic simulations at non-zero baryon density one
needs an Effective Field Theory compatible with lattice-QCD results at zero
baryochemical potential.

For this purpose, during my PhD, I have focused my research on the
Nambu-Jona-Lasinio model with Polyakov-loop corrections (PNJL model)
with 2 light flavours (up and down) and 1 heavier quark (strange). The
latter is an Effective Field Theory that can describe the low-energy interac-
tion between quarks and, as discussed in the following, provide a dynamical
mechanism for the breaking/restoration of chiral symmetry, embodying at
the same time an effective confinement of quarks into color-singlet hadrons.
The PNJL model is used in this thesis for the study of the chiral and de-
confinement transitions, for the exploration of the QCD phase-diagram at
high baryochemical potential and for the determination of the position of
the Critical End Point (CEP) in such a Phase Diagram.

This chapter is organized as follow. In the next section I show the most
general PNJL Lagrangian and I describe the symmetries and properties of the
model. The regularization scheme used in this work and the fixing of the free
parameters are also dealt with. Eventually, I discuss the different scenarios
based on the possible relations among the three quark chemical potentials. In

75
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Sec. 3.2 I introduce the Mean-Field approximation of the model, presenting
the grand-canonical thermodynamic potential associated to the PNJL La-
grangian and its minimization with respect to the order parameters. In the
end, in Secs. 3.2.3 and 3.3.1 I discuss the different thermodynamic quantities
and the fluctuations of conserved charges, displaying their derivation from
the grand-canonical potential.
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3.1 PNJL Effective field theory

The PNJL effective model is based on the assumption that the only relevant
gluon degree of freedom is the temporal component A0 of the gauge field,
which is replaced by the effective Polyakov field defined in the following.
Moreover, the model includes several point-like quark vertices with quantum
numbers suited to give rise to mesonic excitations in the different channels.
In this section, I present the general formalism of the PNJL model and I
discuss how the Polyakov potential is introduced, how the free parameters of
the model are fixed and, finally, the different physical scenarios explored in
the finite-density case.

3.1.1 Lagrangian

The results presented in this thesis are obtained within the framework of an
extended SUf (3) PNJL Lagrangian, with 2+1 quark flavours. The quarks are
coupled to a temporal background gauge field, more conveniently expressed
in terms of the Polyakov loop [41–43]. The most general PNJL Lagrangian
reads:

L =ψ̄(i /D − m̂)ψ +
1

2
GS

8∑
a=0

[
(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2

]
−

− 1

2
GV

8∑
a=0

[
(ψ̄γµλ

aψ)2 + (ψ̄γµγ5λ
aψ)2

]
+

+K{det[ψ̄(1 + γ5)ψ] + det[ψ̄(1− γ5)ψ]} − U(Φ[A], Φ̄[A];T )

(3.1)

Here, ψ = (u, d, s)T is the quark-field in flavour space, with three flavours
(Nf = 3) and tree colours (Nc = 3, not written explicitly), m̂ = diag(mu,md,ms)

is the current-mass matrix of the quarks, λa are the SUf (3) Gell-Mann ma-

trices (a = 0, 1, ..., 8) in flavour space, with λ0 ≡
√

2
3
1. The covariant deriva-

tive is defined as Dµ ≡ ∂µ − iAµ, with Aµ = δµ0A
0 (the so-called Polyakov

Gauge); in Euclidean notation A0 = iAE4 . The usual QCD coupling g is
absorbed in the definition of Aµ(x) ≡ gAµa(x)λ

a

2
, where Aµa(x) is the SUc(3)

gauge field. The constants GS and GV are the coupling constants for the
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scalar/pseudoscalar and vector/axial-vector interaction respectively, K is the
coupling constant for the six-fermion vertex responsible for the explicit break-
ing of the UA(1) symmetry. This last term is relevant to reproduce the correct
masses of the pseudoscalar meson-octet and the η − η′ splitting.

Clearly, this Lagrangian is the generalization of the usual NJL Lagrangian
of Ref. [63] already introduced in the previous chapters. As mentioned
above, in this Lagrangian there are both 4-fermion and 6-fermion interac-
tions, which provide independent contributions to the quark self-energy in
the Hartree-Fock approximation. The last term in the Lagrangian is the ef-
fective Polyakov potential, which accounts for the gluon self-interaction. This
object is a function of the Polyakov fields and of the temperature; in the next
paragraph we discuss its functional form and its properties. It is easy to prove
that the above PNJL Lagrangian – in the limit of vanishing current-mass of
the quarks – is invariant under UV (Nf ) ⊗ SUA(Nf ) transformations. Then
it is a convenient tool to study the dynamic breaking/restoration of chiral
symmetry and the confinement/deconfinement transition.

Polyakov Potential

The Polyakov loop field Φ appearing in the potential term U in the La-
grangian is related to the gauge field through the following gauge-invariant
average of the Polyakov line

Φ(~x) ≡ 〈〈l(~x)〉〉 =
1

Nc

Trc〈〈L(~x)〉〉, (3.2)

where

L(~x) ≡ P exp

[
i

∫ β

0

dτA4(~x, τ)

]
. (3.3)

In the above, the symbol P represents the path-ordering of the operators
appearing in the expansion of the exponential. The Polyakov loop is the
order parameter used to identify the spontaneous breaking/restoration of
the Z3 (the center of the SUc(3) group) symmetry of QCD, related to the
deconfinement phase transition: the Z3 symmetry is broken in the deconfined
phase (Φ→ 1) and restored in the confined one (Φ→ 0), as discussed in [1,
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88, 100].

Here, it is important to make some remarks about the applicability of
the PNJL model. An explicit gluon dynamics is absent in the model. The
effects of gluons are hidden in the low-energy effective point-like interaction
of quarks, in the potential U and in the coupling of quarks with the static
background Polyakov-loop field Φ (see details in Refs. [51, 91]). This sce-
nario cannot be expected to work outside a limited range of temperatures.
Indeed, at large enough temperatures one expects that transverse gluons
start to be active thermodynamic degrees of freedom, but they are not taken
into account in the PNJL model. Since, as concluded in Ref.[75], transverse
gluons start to contribute significantly to the thermodynamics for T > 2.5Tc,
where Tc is the deconfinement temperature, we can assume that the range of
applicability of the model is roughly limited to T . 2Tc.

One must provide an explicit expression for the effective potential U for
the complex Φ field compatible with the Z3 symmetry of the Lagrangian and
allowing the spontaneous breaking of the latter. Its coefficients must depend
explicitly on the temperature (see e.g. Ref. [42, 86, 91, 94, 96]). Several
parametrizations can be found in the literature. One possible parametriza-
tion for the Polyakov potential is the polynomial one of Ref. [91]. One has:

U(Φ, Φ̄;T )

T 4
= −b2(T )

2
ΦΦ̄− b3

6
(Φ3 + Φ̄3) +

b4

4
(Φ̄Φ)2, (3.4)

where

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (3.5)

Another possible parametrization is the logarithmic one proposed in [94]:

U(Φ, Φ̄;T )

T 4
= −a(T )

2
Φ̄Φ + b(T ) ln[1− 6Φ̄Φ + 4(Φ3 + Φ3)− 3(Φ̄Φ)2], (3.6)

where

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

and b(T ) = b3

(
T0

T

)3

. (3.7)
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Polynomial a0 a1 a2 a3 b3 b4

6.75 −1.95 2.625 −7.44 0.75 7.5

Logarithmic a0 a1 a2 b3

3.51 −2.47 15.22 −1.75

Table 3.1: Parameters of the Polyakov potential U

These parameters have been fixed in order to reproduce the results of lattice-
QCD simulations for the expectation value of the Polyakov loop and for the
various thermodynamic quantities in the pure gauge sector [59, 60]. The
parameter T0 is the critical temperature for the deconfinement phase transi-
tion in the pure-gauge theory: it was fixed to 270 MeV, according to lattice
findings. Different criteria for fixing T0 are available in the literature, like
in Ref. [43], where an explicit Nf dependence of T0 is proposed using renor-
malization group arguments. In this work, following Ref. [49], I fix T0 = 182

MeV.

3.1.2 Regularization scheme

The Lagrangian (3.1) contains several point-like interaction terms that pro-
duce divergent integrals in the quark self-energy, in the thermodynamic quan-
tities and in the calculation of mesonic masses. This kind of interactions in
(3+1)D space-time makes the (P)NJL model a non-renormalizable theory
with dimensionful couplings. A non-renormalizable model is not unique per
se, but it depends on the regularization scheme chosen to perform the cal-
culations preserving the symmetries of the theory. On the contrary, in a
renormalizable theory the regularization is just a way of making divergent
quantities finite in the intermediate calculations, but then any dependence
on the ultraviolet regulator disappears in the final result.

The simplest regularization scheme in the (P)NJL model is the intro-
duction of a three-momentum ultraviolet cutoff in the divergent integrals,
as done in the original paper by Nambu–Jona-Lasinio [80]. The different
regularization schemes proposed in the literature are: non-covariant three-
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momentum cutoff, four-momentum cutoff in Euclidean space, regularization
in proper time and the Pauli-Villars methods. In all cases the value of the
UV cutoff is one of the parameters of the model, together with the current
quark masses mf and the coupling constants Gi and K. In this thesis the
simple three-momentum ultraviolet cutoff is adopted. The free parameters of
the model are fixed (in the case of a simple scalar/pseudoscalar interaction)
to reproduce the masses and decay constants of pions (mπ, and fπ) and kaons
(mK and fK). Here I show how the ultraviolet cutoff is used to regularize the
divergent integrals. The point-like interactions give rise to several terms in
the mass gap-equation represented diagrammatically in Fig. 3.1. The bub-

Figure 3.1: Feynman diagrams for the PNJL mass gap-equation

bles in the figure, after the rotation to imaginary time and summation over
the Matsubara frequencies, represent the following integral

Ii =

∫
d3p

(2π)3

Mi

Ei

[
1− f i+Φ (p, µi)− f i−Φ (p, µi)

]
, (3.8)

where i is the quark flavor index, Mi is the dressed quark mass, Ei =√
p2 +M2

i is the single-particle energy, the functions f i±Φ are the modified
Fermi functions defined in Sec. 3.1.3. These functions are exponentially sup-
pressed for |p| → +∞. The first term in the integral diverges quadratically.
To regularize the integral, the ultraviolet cutoff Λ is introduced. One then
obtains

Ii =

∫ Λ

0

dpp2

2π2

Mi

Ei
−
∫

d3p

(2π)3

Mi

Ei

[
f i+Φ (p, µi) + f i−Φ (p, µi)

]
. (3.9)

The divergent part of the integral is regularized by the three-momentum
cutoff (that breaks the Lorentz invariance). This criterium is adopted for all
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divergent integrals.

3.1.3 Gap equations

In this thesis the values of the couplings GS, GV and K, of the current
masses mi (i = u, d, s) of the quarks and of the UV cutoff Λ are fixed by
the values of the pion and kaon masses (mπ = 139 MeV, mK = 495 MeV)
and of the pion and kaon decay constants (fπ = 93.3MeV, fK = 96.3MeV)
at zero temperature. In the case of non-zero vector interaction GV 6= 0 one
sets its value in order to reproduce also the spectrum of the lightest vector
mesons. Notice that the presence of a vector interaction induces a mixing of
the pseudoscalar and axial-vector channels in the quark-antiquark scattering
matrix, so that all the parameters have to be refitted. The set of parameters
is collected in Table 3.2 (for more details see Ref.[34]).

Λ (MeV) GSΛ2 KΛ5 GV /GS mu/d (MeV) ms (MeV)

602.3 3.67 −12.36 0 5.5 140.7
750 3.647 −8.79 1.05 3.6 87.0

Table 3.2: Values of free parameters in the quark sector of the PNJL model
adopted in this thesis with and without vector interaction.

In order to study in the grand-canonical ensemble a system composed by
a large amount of particles that carry conserved charges (baryon number,
electric charge and strangeness in the case of strong interactions) one should
add a new term to the Lagrangian (3.1) which allows one to derive the proper
thermodynamic potential. One has

LGC
PNJL = LPNJL + ψ†µ̂ψ, (3.10)

where µ̂ = diag(µu, µd, µs) is the chemical potential matrix. This matrix is
diagonal in flavor space and it is associated to the conservation of the separate
quark flavors i. As discussed in the following, this term can be absorbed in
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the covariant derivative as:

Dν = ∂ν − iAνδ0
ν − iµ̂γνδ0

ν . (3.11)

It means that one can consider the chemical potential as a correction to the
temporal components of the gauge field.

Self-energy and Gap equations

In this thesis I use the Hartree-Fock approximation to calculate the self-
energy of quarks that propagate in a static background Polyakov field, as
introduced in Sec. 1.6.2. The resulting propagators are used to study the
thermodynamics of the PNJL model.

Following Ref. [63] one can rewrite the Lagrangian (3.10) in terms of
a self-energy arising from the 4-fermion and 6-fermion interaction terms as
follows:

L = ψ̄(i /D − m̂)ψ − ψ̄Σ(4)ψ − ψ̄Σ(6)ψ − U(Φ, Φ̄;T ). (3.12)

The two contributions to the self-energy of the quarks of flavour i read

Σ(4) = 2iGSNcTrSi (3.13)

and
Σ(6) = K(2N2

c + 3Nc + 1)(TrSj)(TrSk) i 6= j 6= k, (3.14)

respectively, where Si is the quark propagator of flavour i in coordinate space
evaluated at zero separation. This leads to the bilinear terms in the Hartree-
Fock mean-field Lagrangian

− ψ̄j[2iGSNcTrSj]ψj (3.15)

and

− ψ̄i[K(2N2
c + 3Nc + 1)(TrSj)(TrSk)]ψi i 6= j 6= k (3.16)

where i, j, k are the flavor indices. The total quark self-energy in the Hartree-
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Fock approximation, for a given quark flavour i, is then

Σi = 2iGSNcTrSi +K(2N2
c + 3Nc + 1)TrSjTrSk i 6= j 6= k. (3.17)

For more details see Ref. [63]. Assuming that GNc ∼ O(1) and KN2
c ∼ O(1),

a consistent 1/Nc expansion requires setting

Σ = Mi −mi = 2iGNcTrSi + 2KN2
cTrS

jTrSk i 6= j 6= k. (3.18)

One can define φi ≡ −iNcTrSi and then the quark gap-equations read

Mi = mi − 2Gφi − 2Kφjφk i 6= j 6= k. (3.19)

In this calculation, the vector interaction does not enter explicitly. This is
due to the the fact that the expectation value of the spatial components
〈ψ̄γiλaψ〉, of relevance in the mean-field approximation, vanishes and the
one of the diagonal elements of the temporal part 〈ψ̄γ0λaψ〉 (a = 0, 3, 8)
contributes simply to a shift of the chemical potential of the various quark
flavours. In the mean field approximation one obtains then:

µ̂i = µi − 2GV ni, ni = 〈ψ†iψi〉. (3.20)

Here i is the flavour index and ni is the density of quarks of flavour i. At
finite quark density, besides the 3 gap equations connecting the effective
masses with the chiral condensates, there are other 3 equations connecting
the densities with the chemical potentials. Notice that, in light of the shift of
the chemical potentials in Eq. (3.20), in the presence of a vector interaction
it is convenient to run the numerical code using temperature and density
as independent variables instead of temperature and chemical potential as
in the scalar/pseudoscalar case. A standard thermal-field-theory calculation
provides the following form of the equations for the chiral condensate φi and
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the quark density ni:

φi(T, µ̂i) ≡ −Nc

∫
dpp2

2π2

Mi

Ei

[
θ(Λ− p)− f i+Φ (p, T, µ̂i)− f i−Φ (p, T, µ̂i)

]
(3.21)

ni(T, µ̂i) ≡ 2Nc

∫
dpp2

2π2

[
f i+Φ (p, T, µ̂i)− f i−Φ (p, T, µ̂i)

]
. (3.22)

Here θ(Λ − p) is the Heaviside theta function that regularizes the divergent
vacuum integral and f i±Φ are the modified Fermi functions arising from the
coupling of the quarks with the background Polyakov field defined as:

f+i
Φ (Ei, T, µ̂i) =

Φe−β(Ei−µ̂i) + 2Φ̄e−2β(Ei−µ̂i) + e−3β(Ei−µ̂i)

1 +Nc(Φ + Φ̄e−β(Ei−µ̂i))e−β(Ei−µ̂i) + e−3β(Ei−µ̂i)
(3.23)

f−iΦ (Ei, T, µ̂i) =
Φ̄e−β(Ei+µ̂i) + 2Φe−2β(Ei+µ̂i) + e−3β(Ei+µ̂i)

1 +Nc(Φ̄ + Φe−β(Ei+µ̂i))e−β(Ei+µ̂i) + e−3β(Ei+µ̂i)
. (3.24)

Here I set β ≡ 1/T . For more details on the derivation of these formulas one
can see Appendix C.

3.1.4 Possible theoretical scenarios

In this thesis I explore the QCD phase-diagram in terms of the tempera-
ture and chemical potential. In the PNJL model with 2+1 light flavours
there are three different chemical potentials, each one related to a different
species of quark. Moreover, it is possible to rewrite these quark chemical
potentials in terms of conserved-charge chemical potentials. The conserved
charges considered in this work are the net baryon number (B), the electric
charge (Q) and the net strangeness number (S). The term net indicates that
they arise from the difference of the number of quarks and anti-quarks, that
carry opposite charges. The relations between quark chemical potentials and
conserved-charge chemical potentials are shown below and arise from the
baryon number, electric charge and strangeness of each quark flavour (notice
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that, for historical reasons, the strangeness of a s quark is -1):

µu =
1

3
µB +

2

3
µQ (3.25)

µd =
1

3
µB −

1

3
µQ (3.26)

µs =
1

3
µB −

1

3
µQ − µS . (3.27)

One must pay attention to the difference between µs and µS. The first one
is the chemical potential associated to strange quarks, the second one is the
chemical potential associated to net-strangeness number.

From a general point of view, the QCD phase-diagram is a 4-dimensional
space (3 independent chemical potentials and the temperature). In order to
simplify the exploration of this space it is useful to fix the values of two of
the above chemical potentials according to the physical constraints posed by
the system one is considering (e.g. heavy-ion collisions, compact stars...).
One can refer to this choices as different theoretical scenarios. In this thesis
4 different theoretical scenarios are explored:

• Fully-symmetric scenario µQ = 0, µS = 0

All quark chemical potentials are equal, the phase diagram is a plane
spanned by the axis of baryo-chemical potential µB and the one of
temperature. This is the most common scenario found in the literature.

• Quasi-Neutral-Strangeness scenario µQ = 0, µS = 1
3
µB

The up and down quark chemical potentials (as well as their current
masses) are equal and then also their self-consistent effective masses.
The strange quark chemical potential is zero. Again there is only one
independent chemical potential: the net-baryon one µB. In the pure
NJL model this scenario would correspond to a situation of zero net-
strangeness, since there would be an equal density of strange quarks and
antiquarks. Notice that at finite baryon density the zero-strangeness
scenario does not corresponds to µS = 0, since a fraction a particles
carrying baryon number carry also non-zero strangeness. However, in
the PNJL model, in this scenario the net-strangeness density does not
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vanish, since the Polyakov fields mix the various chemical potentials as
discussed in Sec. 3.2.1.

• Neutral-strangeness scenario µQ = 0, µS | nS = 0

We still take the up and down chemical potentials (and current masses)
equal, but now we impose the constraint of vanishing net-strangeness
density. This means that in solving the mean-field equations one must
impose a new condition, nS = 0, that promotes the net-strangeness
chemical potential to an implicit function of µB and T defining the
surface µS = µS(T, µB). In the NJL model this scenario coincides with
the previous one due to the absence of mixing induced by the Polyakov
fields.

• Heavy-Ion Collision scenario µQ | nQ/nB = 0.4, µS | nS = 0

Taking the baryo-chemical potential µB and the temperature T as in-
dependent variables, µQ and µS are obtained solving the self-consistent
mean-field equations setting the physical constraints nQ/nB = 0.4 and
nS = 0. This is the scenario closer to the situation at nuclear colliders,
the ratio between the net-electric-charge density and net-baryon den-
sity being fixed to the proton-to-nucleon ratio in the 208

82 Pb and 197
79 Au

nuclei used in heavy-ion collisions and the initial net-strangeness being
zero. Due to the conservation of B, Q and S, the produced fireball
has the same ratios among conserved charges as the stopped incoming
matter. In this case, the up and down quarks do not have the same
density and effective mass.

In Sec. 4 I show the results of calculations of various thermodynamic quan-
tities in the different scenarios just discussed and how the phase diagram of
the corresponding systems changes.
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3.2 PNJL Thermodynamics

In order to explore the behaviour of a hot and dense system composed of
a large number of particles, it is useful to introduce some thermodynamics
concepts. In particular the concept of Grand Canonical Ensemble: a statis-
tical ensemble that is used to represent the possible states of a mechanical
system of particles that are in thermodynamic equilibrium with a reservoir.
The system is open, in the sense that it can exchange particles and energy
with the external environment. The number of particles and energy are not
conserved exactly but only their average values are. This concept is useful
for the study of the QGP, because the system created in HIC’s is large, the
detector does not cover the full solid angle and hence the measured particles
can fluctuate event-by-event. As discussed in the previous section, in this
case the conservation of particle number has to be interpreted as referring to
the net number of quarks of different flavours.

From a mathematical point of view, the Grand Canonical Ensemble is
described by the grand canonical partition function

Z = Tr
{
e−β(H−µN)

}
, (3.28)

where H is the Hamiltonian of the system and N is the number of particles.
In the relativistic case one has to replace

µN −→
∑
i

µiQi, (3.29)

where the index i refers to the different charges conserved by the Lagrangian
of the system. For the present general discussion I consider the case of a
single conserved charge. Starting from the grand canonical partition function
defined in Eq. (3.28), one can derive all the different thermal averages:

〈E〉 =
1

Z
Tr
{
He−β(H−µN)

}
(3.30)

〈N〉 =
1

Z
Tr
{
Ne−β(H−µN)

}
(3.31)
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These two equations can be rewritten in terms of partial derivatives of Z.
Defining µ̃ ≡ µ/T one has

〈E〉 = − ∂

∂β
logZ

∣∣∣∣
µ̂

(3.32)

〈N〉 =
∂

∂µ̃
logZ

∣∣∣∣
T

. (3.33)

It is useful to introduce a new function called grand-canonical thermody-
namic potential Ω:

Ω ≡ −T logZ. (3.34)

The latter will be the quantity to minimize to derive the mean-field equations
and which will be used as the starting point for the study of the thermody-
namics of the PNJL model

Grand Canonical Potential in the PNJL model

From the complete PNJL Lagrangian of Eq. (3.10) it is possible to obtain
the grand-canonical thermodynamic potential, for instance via the method of
coupling constant integration explained by Fetter and Walecka in Ref. [38].
The grand canonical potential is an extensive quantity, directly proportional
to the volume of system. It is useful to factorize this trivial dependence,
introducing the grand canonical potential density ω ≡ Ω/V . In full general-
ity, the grand-canonical potential density of the PNJL model in mean-field
approximation reads

ω(Φ, Φ̄, φi, ni;T, µi) = U [Φ, Φ̄;T ] +GS

∑
i=u,d,s

φ2
i −GV

∑
i=u,d,s

n2
i + 4Kφuφdφs

− 2
∑
i=u,d,s

∫
Λ

d3p

(2π)3

{
NcEi + T

[
zi+Φ (Ei, T, µ̂i) + zi−Φ (Ei, T, µ̂i)

]}
; ,

(3.35)

where, in order to deal with the case of non-vanishing vector coupling GV ,
the effective chemical potentials µ̂i ≡ µi − 2GV ni are introduced. Here two
new function zi±Φ , related to the modified Fermi functions already discussed,
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are introduced. Their analytic expression is:

zi+Φ (Ei, T, µ̂i) = log
{

1 +Nc(Φ + Φ̄e−β(Ei−µ̂i))e−β(Ei−µ̂i) + e−3β(Ei−µ̂i)
}

(3.36)

zi−Φ (Ei, T, µ̂i) = log
{

1+Nc(Φ̄+Φe−β(Ei+µ̂i))e−β(Ei+µ̂i) +e−3β(Ei+µ̂i)
}
. (3.37)

From a mathematical point of view, the grand canonical potential density ω is
a function of 12 variables: the temperature, 3 quark chemical potentials (µi),
3 chiral condensates (φi), 3 quark densities (ni) and 2 Polyakov fields (Φ̄, Φ).
However, not all of them are really independent. For instance, minimizing
the thermodynamic potential with respect to the quark densities ni, one gets
back Eq. (3.22), connecting flavour densities and chemical potentials. Notice
that, depending on the considered scenario, it may be more convenient to use
as independent variables either the quark chemical potentials µi, or the quark
densities ni ≡ 〈ψ†iψi〉 or the effective chemical potentials µ̂i. Furthermore,
applying physical constraints like the knowledge of the nS/nB and nQ/nB

ratios, only one of the chemical potentials (the one associated to baryon
number) is really independent of the others. One is left with 7 independent
variables. At fixed temperature T and baryochemical potential µB one can fix
the physical values of the other 5 variables by minimizing the grand-canonical
potential with respect to the quark condensates φi and the Polyakov fields Φ

and Φ̄. The equations obtained in this way are called Mean Field Equations
(MFE’s) and they will be discussed in the following section.

3.2.1 Mean field equations

As discussed in the previous section, the grand canonical thermodynamic
potential depends on two kinds of variables: the internal ones (chiral conden-
sates, Polyakov fields and quark densities) and the external ones (chemical
potentials and temperature). The physical values of the internal variables
are obtained by minimizing the grand canonical potential Ω. From the mini-
mization one obtains a system of 8 (5 in the case of only scalar/pseudoscalar
interaction, in which the quark densities do not enter explicitly into the eval-
uation of the other quantities) coupled equations. Together they form the
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set of mean-field equations. In the following I show the MFE’s for the case
GV = 0. In this case the internal variables are the 3 chiral condensates and
the 2 Polyakov fields; the quark densities are not involved in the minimiza-
tion of the thermodynamic potential and can be calculated a posteriori from
Eq. (3.22). When one performs the derivative of Ω defined in Eq. (3.35)
with respect to the chiral condensates, one obtains a coupled system of 3
equations. It is possible to reorganize the system as follows

2G(φu + 2NcIu) + 2Kφs(φd + 2NcId) + 2Kφd(φs + 2NcIs) = 0

2G(φd + 2NcId) + 2Kφs(φu + 2NcIu) + 2Kφu(φs + 2NcIs) = 0

2G(φs + 2NcIs) + 2Kφu(φd + 2NcId) + 2Kφd(φu + 2NcIu) = 0,

(3.38)

where the quark mass integral Ii defined as

Ii ≡
∫

Λ

d3p

(2π)3

Mi

Ei
[1− f i+Φ (Ei, T, µi)− f i−Φ (Ei, T, µi)] (3.39)

was introduced. In the above the effective quark mass of flavour i is expressed
in terms of all the quark condensates according to the definition in Eq. (3.19).
It is clear that the system is solved if all the brackets are zero. It is possible
to prove this using Gauss method for a coupled system of equations. The
procedure is not difficult but is boring and is shown in Appendix D.
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The system of MFE’s becomes then:

φu + 2Nc

∫
Λ

d3p
(2π)3

Mu

Eu
[1− f+u

Φ (Eu, µu)− f−uΦ (Eu, µu)] = 0

φd + 2Nc

∫
Λ

d3p
(2π)3

Md

Ed
[1− f+d

Φ (Ed, µd)− f−dΦ (Ed, µd)] = 0

φs + 2Nc

∫
Λ

d3p
(2π)3

Ms

Es
[1− f+s

Φ (Es, µs)− f−sΦ (Es, µs)] = 0

∂U
∂Φ

+ 2Nc
T 3

∑
i

∫
Λ

d3p
(2π)3

[g+i
Φ + g−iΦ ] = 0

∂U
∂Φ̄

+ 2Nc
T 3

∑
i

∫
Λ

d3p
(2π)3

[h+i
Φ̄

+ h−i
Φ̄

] = 0 .

(3.40)

In writing this system I have introduced the following new functions

f+i
Φ (Ei, µi) ≡ −

T

Nc

∂

∂Ei
z+i

Φ (Ei, µi) =

=
Φe−β(Ei−µi) + 2Φ̄e−2β(Ei−µi) + e−3β(Ei−µi)

1 +Nc(Φ + Φ̄e−β(Ei−µi))e−β(Ei−µi) + e−3β(Ei−µi)

(3.41)

f−iΦ (Ei, µi) ≡ −
T

Nc

∂

∂Ei
z−iΦ (Ei, µi) =

=
Φ̄e−β(Ei+µi) + 2Φe−2β(Ei+µi) + e−3β(Ei+µi)

1 +Nc(Φ̄ + Φe−β(Ei+µi))e−β(Ei+µi) + e−3β(Ei+µi)

(3.42)

g+i
Φ (Ei, µi) ≡

1

Nc

∂

∂Φ
z+i

Φ (Ei, µi) =

=
e−β(Ei−µi)

1 +Nc(Φ + Φ̄e−β(Ei−µi))e−β(Ei−µi) + e−3β(Ei−µi)

(3.43)

g−iΦ (Ei, µi) ≡
1

Nc

∂

∂Φ
z−iΦ (Ei, µi) =

=
e−2β(Ei+µi)

1 +Nc(Φ̄ + Φe−β(Ei+µi))e−β(Ei+µi) + e−3β(Ei+µi)

(3.44)
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h+i
Φ (Ei, µi) ≡

1

Nc

∂

∂Φ̄
z+i

Φ (Ei, µi) =

=
e−2β(Ei−µi)

1 +Nc(Φ + Φ̄e−β(Ei−µi))e−β(Ei−µi) + e−3β(Ei−µi)

(3.45)

h−iΦ (Ei, µi) ≡
1

Nc

∂

∂Φ̄
z−iΦ (Ei, µi) =

=
e−β(Ei+µi)

1 +Nc(Φ̄ + Φe−β(Ei+µi))e−β(Ei+µi) + e−3β(Ei+µi)
.

(3.46)

Notice that in the Φ → 1 and Φ̄ → 1 limit, i.e. when confinement ef-
fects are absent, the functions f±iΦ reduce to standard Fermi distributions for
quarks/antiquarks of flavour i.

To solve these equations one needs a numerical implementation, but it is
possible to extract some analytical properties of the internal variables. The
most important are:

1. Φ(µi = 0) = Φ̄(µi = 0)

2. ∂φi
∂µi

∣∣∣∣
µi=0

= 0

3. Φ(−µi) = Φ̄(µi)

4. φi(µi) is an even function of µi

The last two proprieties are the realization of the CPT symmetry in the
PNJL model. These analytical proprieties provide a check of the correct
numerical solution of the system.

The MFE’s perform a reduction of the grand-canonical thermodynamic
potential density as shown in the follow diagram:

{φi,Φ, Φ̄}
MFE′s−−−→ {φi(T, µi),Φ(T, µi), Φ̄(T, µi)}

ω : R9 → R
MFE′s−−−→ ω̄ : R4 → R

(3.47)

The internal variables are promoted to real functions of the external variables
and the grand canonical potential density now depends only on external
variables. The relation of the general grand canonical potential and the
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minimized one is given by

ω̄(T, µi) ≡ ω(φi,Φ, Φ̄;T, µi)|MFE’s . (3.48)

If one could solve the MFE’s analytically, one would know the dependence of
the chiral condensates and of the Polyakov fields on the external variables, as
well as the analytic expression of the minimized grand canonical potential.
Unfortunately this is not possible and the analytic form of ω̄ is not known. It
is important to take this into account when performing higher order deriva-
tives of the mean-field grand canonical potential density with respect to the
external variables, taking into account both the explicit dependence and the
one contained in the internal variables.

Numerical Algorithm
To find the solution of the MFE’s at fixed values of temperature and chem-
ical potentials I developed a numerical code based on the Newton-Raphson
algorithm. In this algorithm, an important role is played by the Jacobian
matrix of the coupled system of equations. Its expression, in the absence of
a vector/axial-vector interaction, is shown below:

J =



1− 2GC1,1 −2KφsC1,1 −2KφdC1,1 −C1,4 −C1,5

2KφsC2,2 1− 2GC2,2 −2KφuC2,2 −C2,4 −C2,5

−2KφdC3,3 −2KφuC3,3 1− 2GC3,3 −C3,4 −C3,5

− 2GC1,4−

− 2KφsC2,4−

− 2KφdC3,4

− 2KφsC1,4−

− 2GC2,4−

− 2KφuC3,4

− 2KφdC1,4−

− 2KφuC2,4−

− 2GC3,4

∂2U(Φ,Φ̄,T )
∂Φ2 − C4,4

∂2U(Φ,Φ̄,T )

∂Φ∂Φ̄
− C4,5

− 2GC1,5−

− 2KφsC2,5−

− 2KφdC3,5

− 2KφsC1,5−

− 2GC2,5−

− 2KφuC3,5

− 2KφdC1,5−

− 2KφuC2,5−

− 2GC3,5

∂2U(Φ,Φ̄,T )

∂Φ∂Φ̄
− C4,5

∂2U(Φ,Φ̄,T )
∂Φ2 − C5,5





3.2. PNJL THERMODYNAMICS 95

In the above matrix I introduced the following functions (i = 1, 2, 3):

Ci,i =
Nc

π2

{∫ Λ

0

dp
p4

E3
i

−
∫ +∞

0

dp
p4 −M4

i

E3
i

[
f+i

Φ (Ei, µi) + f−iΦ (Ei, µi)
]}

Ci,4 =
Nc

π2

∫ +∞

0

dp p2Mi

Ei

[
c+i

Φ (Ei, µi) + c−iΦ (Ei, µi)
]

Ci,5 =
Nc

π2

∫ +∞

0

dp p2Mi

Ei

[
d+i

Φ (Ei, µi) + d−iΦ (Ei, µi)
]
,

(3.49)

where

c+i
Φ (Ei, µi) =

e−β(Ei−µi) − 3Φ̄e−3β(Ei−µi) − 2e−4β(Ei−µi)

(1 +NcΦe−β(Ei−µi) +NcΦ̄e−2β(Ei−µi) + e−3β(Ei−µi))2

c−iΦ (Ei, µi) =
2e−2β(Ei+µi) + 3Φ̄e−3β(Ei+µi) − e−5β(Ei+µi)

(1 +NcΦe−β(Ei+µi) +NcΦ̄e−2β(Ei+µi) + e−3β(Ei+µi))2

d+i
Φ (Ei, µi) =

2e−2β(Ei−µi) + 3Φe−3β(Ei−µi) − e−5β(Ei−µi)

(1 +NcΦe−β(Ei−µi) +NcΦ̄e−2β(Ei−µi) + e−3β(Ei−µi))2

d−iΦ (Ei, µi) =
e−2β(Ei+µi) − 3Φe−3β(Ei+µi) − 2e−4β(Ei+µi)

(1 +NcΦe−β(Ei+µi) +NcΦ̄e−2β(Ei+µi) + e−3β(Ei+µi))2

(3.50)

and

C4,4 =
N2
c

T 3π2

∑
i

∫ +∞

0

dp
{[
g+i

Φ (Ei, µi)
]2

+
[
g−iΦ (Ei, µi)

]2}
C5,5 =

N2
c

T 3π2

∑
i

∫ +∞

0

dp
{[
h+i

Φ̄
(Ei, µi)

]2
+
[
h−i

Φ̄
(Ei, µi)

]2}
C4,5 =

N2
c

T 3π2

∑
i

∫ +∞

0

dp
{
g+i

Φ (Ei, µi)h
+i
Φ̄

(Ei, µi) + g−iΦ (Ei, µi)h
−i
Φ̄

(Ei, µi)
}
.

(3.51)

An important observation is that the Jacobian matrix of the system is not the
Hessian matrix for the grand canonical potential density. Using the Newton-
Raphson algorithm it is possible to obtain the solution of the system via
an iterative approach, until reaching the desired accuracy. Moreover, it is
possible to obtain the numerical error of solution. Let εi be the numerical
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accuracy for the i-th equation; then, the numerical error of the solution xj
reads:

δxj = (J−1)jiεi . (3.52)

3.2.2 Order parameters

In the first chapter of this thesis I discussed the spontaneous breaking/restoration
of two global symmetries of the QCD action: the SUA(Nf ) chiral-symmetry
and the Z3 symmetry, the latter linked to the deconfinement of quarks. For
their study one introduces two order parameters that can acquire a non-
vanishing expectation value as one varies the temperature and the chemi-
cal potentials. The two order parameters are the chiral condensate and the
Polyakov Loop. In the following I present some properties of these quantities.

Chiral condensate

The spontaneous breaking of chiral symmetry accounts for about 98% of the
dressed mass of the quarks. From Eq. (3.19) one can infer that, for a big and
negative value of the chiral condensates, the effective quark masses are large
and chiral symmetry is dynamically broken. When the chiral condensates
become small, the quark masses approach their current values and chiral
symmetry gets almost restored: only the explicit breaking due to the small
current masses of the quarks survives. The chiral condensate is a meaningful
order parameter even in the presence of a small explicit symmetry breaking
in the Lagrangian. How the chiral condensate varies as a function of the
temperature and chemical potentials defines the order of the phase transition.
If it is a smooth function, the transition is actually a crossover and for the
estimate of the transition temperature one can choose the inflection point
of the chiral condensate. If, instead, the chiral condensate is a function
with a jump discontinuity, one has a first-order transition. The transition
temperature corresponds to the location of this discontinuity.
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Polyakov loop

The confinement/deconfinement transition is linked to the breaking of the
center symmetry of the SUc(3) group. The natural order parameter of this
transition is the Polyakov loop. One can remember that the single Polyakov-
loop is not invariant under Z3 rotations and its average value is related to
the free energy FQ of an isolated quark:

〈P 〉 ∝ e−βFQ . (3.53)

Hence, the Polyakov loop is invariant under a Z3 transformation only if its
expectation value vanishes, which occurs when FQ → +∞. This happens in
the confined region, where an infinite amount of energy is needed to add an
isolated quark into the system. In the deconfined region one needs only a
very small amount of energy to create an isolated quark, i.e. FQ → ∞ and
hence 〈P 〉 → 1, so that the Z3-symmetry is broken. One can conclude that
a null value of the Polyakov loop and, as a consequence, a null value of the
Polyakov fields in the PNJL Lagrangian, indicate the absence of free quarks
in the system. Instead, a value of the Polyakov fields close to unity indicates
the deconfinement of quarks. As for the chiral condensate, the behaviour of
the Polyakov field as a function of the temperature and chemical potentials
marks the kind of transition of the system.

These two are the only linearly independent order parameters. In the
study of the QCD phase-diagram it can be convenient in numerical calcu-
lations (for instance on the lattice) to introduce other quantities used as
order parameters (since closer to some experimental observable or display-
ing a sharper behaviour). In the crossover region, depending on the above
choice one can obtain slightly different transition temperatures. However, all
of them are related to the chiral condensate and to the Polyakov fields.

3.2.3 Thermodynamic Quantities

The grand canonical potential Ω, calculated in the mean-field approximation,
is a function of the temperature T and of the quark chemical potentials µi
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or alternatively of the ones associated to the conserved charges of the theory
µB, µQ, µS. The relation among these two sets of chemical potentials is
defined in Eq. (3.25). From this function it is possible to calculate all the
thermodynamics quantities of interest, which we summarize in this section.
It is convenient to subtract from the thermodynamic potential density its
vacuum value at T = µi = 0, since the latter is not observable. In this case,
by definition, the pressure and energy density of the vacuum vanish. One
can define

∼
ω(T, {µi}) ≡ ω̄(T, {µi})− ω̄(T = 0, {µi = 0}). (3.54)

From the latter one derives all other thermodynamic quantities

P (T, {µi}) = −∼ω(T, {µi}) (3.55)

s(T, {µi}) =
∂P (T, {µi})

∂T

∣∣∣∣
µi

(3.56)

nj(T, {µi}) =
∂P (T, {µi})

∂µj

∣∣∣∣
T

(3.57)

ε = −P + Ts+
∑
i=u,d,s

µini . (3.58)

In this work, beside the above thermodynamic quantities, also the specific
heat, the trace anomaly and the subtracted chiral condensate are calculated.
In the following, these quantities are introduced.

Equation of State, speed of sound and isentropic lines

As already discussed, in the study of the fireball created in HIC’s a lot of
information, of particular relevance for the hydrodynamic expansion of the
system, is carried by the Equation of State P = P (ε, nB) and by the speed of
sound. The EoS closes the system of hydrodynamic equations; in Chapter 4
I show some results for the EoS along different isentropic trajectories. The
squared speed of sound c2

s governs the response of the system to the initial
energy-density gradients, leading to the collective acceleration of the fireball.
Moreover, in a non-dissipative system, the fireball evolves along trajectories
of constant entropy per baryon σ ≡ s/nB. Along these lines the calculation
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of the speed of sound is particularly easy. The squared speed of sound reads

c2
s =

∂P

∂ε

∣∣∣∣
σ

, (3.59)

which differs from its non-relativistic expression since the partial derivative
(at constant entropy per baryon) is taken with respect to the energy density
rather than the mass density. In the numerical results in Sec. 4 I will show
the comparison between the speed of sound calculated in the PNJL model
and the one provided by lattice-QCD calculations.

Specific heat

The specific heat at constant volume in the grand canonical ensemble is
defined as

CV = T

(
∂S

∂T

)
V,N

(3.60)

whose physical meaning can be understood from

T∆S + µ∆N = ∆E + P∆V . (3.61)

Keeping N and V constant, the increase in thermal energy of the system can
only come from the heat exchange with a reservoir – not from an exchange
of particles – and, at the same time, all this heat flux is converted into
disordered thermal motion and not into work. Since one assumes V to be
constant, one can consider the heat-capacity per unit volume

cV ≡
CV
V

= T

(
∂s

∂T

)
n

. (3.62)

Employing the temperature and the chemical potential as independent vari-
ables requires introducing some Jacobians. One has

(
∂s

∂T

)
n

=
∂(s, n)

∂(T, n)
=

∂(s, n)

∂(T, µ)

∂(T, n)

∂(T, µ)

, (3.63)
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which leads to

cV = T


(
∂s

∂T

)
µ

−

(
∂N

∂T

)2

µ(
∂N

∂µ

)
T

 (3.64)

One can intuitively characterize the QCD deconfinement transition as
the sudden liberation around a certain temperature of many new degrees of
freedom, giving rise to a rapid increase in the energy density and entropy
density, ideally with an infinite slope at the CEP. This rapid rise would then
manifest as a peak (or even a divergence) in the specific heat, which could
serve as an indicator for the pseudo-critical (or critical) temperature.

Numerical results for the specific heat obtained in the PNJL model and
their comparison with lattice-QCD findings are shown in the following chap-
ter.

Trace Anomaly

In a thermodynamic system composed of massless non-interacting particles
(Stefan-Boltzmann gas), like one expects to be the case for a QGP at asymp-
totically high temperature, the EoS is very simple: ε = 3P . This is the EoS
for a conformal fluid, in which there is no mass scale. In the fluid rest frame
the stress-energy tensor is diagonal and its trace in this limit, due to the
particular form of the EoS, is null: ε − 3P = 0. In the presence of interac-
tion this is in general not true and the trace of the stress-energy tensor can
be used to quantify how much the system is far from the Stefan-Boltzmann
limit. A comparison between the PNJL calculations and lattice results for
this quantity, written in dimensionless units as (ε − 3P )/T 4, is shown in
Chapter 4.

Subtracted chiral condensate

As above discussed, the chiral condensate of light quarks can be used as an
order parameter to identify the chiral transition. However, in lattice QCD,
one must deal with renormalized quantities with a well defined continuum
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limit. For this purpose, an important quantity calculable from the solution
of the MFE’s and suited to a comparison with lattice-QCD calculations is
the subtracted chiral condensate ∆l,s. This quantity is the difference between
the chiral condensates of light and strange quarks, normalized to its value at
zero temperature, in the vacuum. Its expression is

∆l,s ≡
φl(T, µi)− φs(T, µi)mu/ms

φl(T = 0)− φs(T = 0)mu/ms

. (3.65)

This quantity measures how much the system is far from the restoration of
chiral symmetry. In chapter 4 I shown the comparison between PNJL results
for this quantity and lattice-QCD data.

3.2.4 Phase Diagram

Employing lattice-QCD simulations, it is possible to explore the QCD phase
diagram at null/small chemical potential. In this region, one finds that the
transition is a smooth crossover and the order parameters display, at most,
a steep but continuous variation which occurs within a broad range of tem-
peratures around Tc ∼ 155 MeV [18, 22], the chiral transition a bit below the
deconfinement one. At higher chemical potential, the transition is supposed
to become become a first-order one and the order parameters are discontinu-
ous. Along the first-order transition line in the µB−T plane, the hadronic and
quark phases coexist in the same volume in thermal, chemical and mechanical
equilibrium, corresponding to two different degenerate minima of the thermo-
dynamic potential. It means that there are portions of volume occupied by
hadronic matter and other portions of volume occupied by deconfined quarks
and gluons. The region where this happens is called coexistence region. Here
the system cannot exist as a single homogeneous stable phase and the tran-
sition occurs via the nucleation of bubbles of the new phase surrounded by
the matter in the old one. It is however possible to have metastability. This
occurs in the region where the grand canonical potential has two different
local minima corresponding to different values of the order parameters and
of the dynamical quark masses. In this region the system, depending on its
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evolution, can remain in the local minimum
To find the stationary points of Ω, one can use the eigenvalues of the

Hessian matrix. In particular, if all the eigenvalues are strictly positive the
point is a local minimum; on the contrary, for all eigenvalues strictly nega-
tive the point is a local maximum. For eigenvalues of different sign one has
a saddle point. For given values of temperature and chemical potentials, the
stable phase of the system corresponds to the absolute minimum of Ω. In the
presence of two minima, the minimum with the lower value is called stable
minimum, the other one is the metastable minimum. Below the transition
line in the µB−T plane the stable minimum corresponds to the confined
chirally-broken phase, instead above the transition line the stable minimum
corresponds to the deconfined chirally-restored phase. The first-order transi-
tion line starts from the chemical potential axis and ends at the Critical End
Point. The position of this point is today a matter of debate.

Unfortunately, due to the introduction of the Polyakov fields, the PNJL
grand canonical potential has only saddle points. In this work, to study
the coexistence region I consider the Hessian matrix corresponding to the
second derivatives of the grand canonical potential with respect to the chiral
condensates. This matrix is completely defined (positive or negative); then
one can find the local/global minima of Ω. In Appendix D the Hermitian
matrix used in the calculation is shown.
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3.3 Fluctuations

This section is devoted to introduce the issue of fluctuations, previously men-
tioned in Sec. 2, from the theoretical point of view and to show how it is pos-
sible to calculate these quantities in the framework of the PNJL with 2+1
flavours.

As already discussed, fluctuations are related to the impossibility of ob-
taining the same value for a given observable in a series of repeated mea-
surements. One can refer to the distribution of the results of the set of mea-
surements as fluctuations. In contrast to standard observables, fluctuations
are sometimes regarded as the noise associated with the measurement and
thus are obstacles; however, fluctuations can sometimes become invaluable
physical observables. Here, in order to spur the motivations of the reader,
I list three examples of the physics in which fluctuations play a crucial role
[19].

• Brownian Motion
In 1827 Brown discovered that small objects, such as pollen, floating
on water show a quick and random motion. Due to this motion, the
position of the pollen after a long several time duration fluctuates even
if the initial position is fixed. Einstein attributed the origin of this
phenomenon to the thermal motion of water molecules [3]. This pre-
diction was confirmed by Perrin, who calculated the Avogadro constant
based on this picture [84]. These works contributed to the proof of the
existence of molecules and atoms.

• Cosmic Microwave Background
As a remnant of the Big Bang and as a result of its transparency to
radiation, our Universe has a 2.7 K thermal radiation called cosmic
microwave background (CMB) [2]. The temperature of this radiation
is uniform in all directions, but has tiny fluctuations at different an-
gles. These fluctuations are related to the quantum fluctuations of the
primordial Universe. The spectrum of these fluctuations carries infor-
mation about the primordial Universe. For example, our Universe has
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started with an inflational expansion 13.8 billion years ago. In other
words, one can see the hot primordial Universe behind the fluctuations
of the CMB [21].

• Shot Noise
The current in a resistor R generally fluctuates, even if no voltage is
applied. The current has a thermal noise proportional to T/R which is
called the Johnson-Nyquist noise [58],[81]. On the other hand, there is a
noise which occurs when a voltage is applied and which is proportional
to the average current 〈I〉. When a circuit has a potential barrier
the variance of the above noise is proportional to ê〈I〉, where ê is the
electric charge of the elementary degrees of freedom carrying electric
current. This noise is called shot noise [97]. From the analysis of
the fluctuations in particular electric systems, for example circuits at
very low temperature, one can quantify the electric charge carried by
the elementary degrees of freedom. This procedure led for instance to
discover that the elementary degrees of freedom in superconductivity
are the Cooper pairs, with the electric charge of two electrons, and that
in the fractional quantum Hall effect the elementary charges become
fractional.

These three examples tell us that the fluctuations are powerful tools to diag-
nose the microscopic physics and investigate the elementary active degrees
of freedom in the system although they are macroscopic observables. Fur-
thermore, they can be used to trace back the history of a system, like in the
analysis of CMB fluctuations.

3.3.1 A briefly introduction to cumulants

Fluctuations are mathematically represented by probability distribution func-
tions. For example, if one repeats a measurement of an observable in an equi-
librated medium many times, the result of the measurement would fluctuate
event by event. This distribution is nothing other than the fluctuation. One
usually starts from a probability distribution P (x) for a continuous stochastic
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variable x, satisfying the normalization condition
∫
P (x)dx=1. A probabil-

ity distribution can be characterized by its moments. The n-th moment of a
distribution is defined as:

〈xn〉 =

∫
xnP (x)dx. (3.66)

To calculate the moments of a given probability distribution it is convenient
to introduce the moment generating function:

G(θ) =

∫
eθxP (x)dx (3.67)

The moments are given by the derivatives of G(θ) evaluated at θ = 0:

〈xn〉 =
dn

dθn
G(θ)

∣∣∣∣
θ=0

. (3.68)

For many practical purposes, it is more convenient to use cumulants rather
than moments to characterize a probability distribution. One defines the
cumulant generating function as

K(θ) = logG(θ) . (3.69)

The cumulants of order n-th is then defined as

〈xn〉c =
dn

dθn
K(θ)|θ=0. (3.70)

The cumulants are useful to describe the non-Gaussianity of the distribution.
For more information about this topic see Appendix B. The relation between
the first four cumulants of a distribution and its first four moments is shown
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below:

〈x〉c = 〈x〉 ≡M

〈x2〉c = 〈x2〉 − 〈x〉2 = 〈(δx)2〉 ≡ σ2

〈x3〉c = 〈x3〉 − 3〈x〉〈x2〉+ 2〈x〉3 = 〈(δx)3〉

〈x4〉c = 〈x4〉 − 4〈x3〉〈x〉+ 12〈x2〉〈x〉2 − 3〈x2〉2 − 6〈x〉4 = 〈(δx)4〉 − 3〈(δx)2〉2 .
(3.71)

To estimate how much a probability distribution deviates from a Gaussian
one can use two ratios of cumulants, the skewness γ and the kurtosis κ,
defined as

γ ≡ 〈x
3〉c

〈x2〉 32
=
〈x3〉c
σ3

(3.72)

κ ≡ 〈x
4〉c
〈x2〉2

=
〈x4〉c
σ4

. (3.73)

These two quantities express the asymmetry and the sharpness of the distri-
bution per unit of standard deviation. In other words, they are the third and
the fourth the cumulants of renormalized stochastic variable x̃ = x/σ. For a
Gaussian distribution, one has γ = κ = 0. In the next section I present the
calculation of the cumulants of QCD conserved charges considered in this
thesis.
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3.3.2 Calculations of cumulants in the PNJL model

In this section I focus on the study of baryon-number fluctuations, but the
treatment can be easily generalized to other conserved charges like electric
charge and strangeness. In statistical mechanics, cumulants of extensive
variables are also extensive quantities, but in HIC’s one wants to avoid in-
troducing a source of systematic uncertainty connected to the volume of the
system, only indirectly accessible. Hence it is useful to define cumulants
per unit volume. These quantities are called generalized susceptibilities and
they are calculated starting from the pressure of the system. The nth-order
generalized susceptibility χnB is defined in full generality as

χnB(T, µB) =
∂nP (T, µB)/T 4

∂(µB/T )n

∣∣∣∣
T

, (3.74)

where µB is the baryochemical potential and we have used the temperature to
make the quantities dimensionless. In the following, in our calculations based
on the PNJL model, the pressure is evaluated in mean-field approximation
where

P (T, µi) = P [Φ(T, µi), Φ̄(T, µi), φi(T, µi), ;T, µi]MFE . (3.75)

Hence in taking the derivatives one must consider also the implicit depen-
dence on the chemical potentials hidden in the chiral condensates and in the
Polyakov fields, imposing furthermore the constraints ∂P/∂φi = ∂P/∂Φ =

∂P/∂Φ̄ = 0 set by the mean-field approximation. In the above the functions
Φ(T, µi), Φ̄(T, µi) and φi(T, µi) are the solutions of the MFE’s. Since they
are not known analytically, but arise from the self-consistent numerical solu-
tion of the MFE’s, it is more convenient to perform higher-order derivatives
in Eq. (3.74) numerically, evaluating the incremental ratio of the pressure at
µB/T and µB/T + h. The first-order susceptibility provides the baryon den-
sity of the system, according to the thermodynamic identity nB = ∂P/∂µB,
and due to the MFE’s for its derivation one must simply consider the explicit
dependence on the chemical potentials. In HIC’s the volume of the system
undergoes an expansion and is different event-by-event. For these reasons
one would like to deal with volume-independent observables. One can define
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particular combinations of cumulants which do not depend on the system
volume and which correspond to ratios of the generalized susceptibilities just
introduced. These observables are:

γBσ
3
B

M
=
χ3
B(T, µB)

χ1
B(T, µB)

, (3.76)

κBσ
2
B =

χ4
B(T, µB)

χ2
B(T, µB)

. (3.77)

In the above, the mean, variance, skewness and kurtosis are obtained sub-
stituting the net baryon number to the continuous variable x in Eqs. (3.71).
Experimentally the net baryon number is replaced by the net proton distri-
bution, since neutrons cannot be detected. Eqs. (3.76) and (3.77) allow one
to access the temperature and baryochemical potential at chemical freeze-
out. Assuming that net-particles (i.e. particles minus antiparticles) follow
a Skellam distributions (i.e. the difference of two Poissonian distributions),
net baryon number cumulants are given by

〈Nn
B,net〉c = Bn[〈N〉+ (−1)n〈N〉], (3.78)

where N counts the number of active degrees of freedom carrying baryon
charge B. One gets then

χn+2
B

χnB
=
〈Nn+2

B,net〉c
〈Nn

B,net〉c
=
Bn+2[〈N〉+ (−1)n〈N〉]
Bn[〈N〉+ (−1)n〈N〉]

= B2, (3.79)

In the confined region the correct elementary degrees of freedom are hadrons
and baryon number is carried by baryons, which have unitary baryon charge
B = 1. In the deconfined region the degrees of freedom carrying baryon
number are quarks, hence B = 1/3. This means that the above ratios of
cumulants decrease by a factor 9 when one goes through the transition line
(or crossover band). In chapter 4 this topic is widely treated.

Fluctuations of conserved charges might provide an insight on the QGP
thermal properties and on the nature of the chiral transition. In fact, one
expects that near the transition the fluctuations become larger and larger
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as the latter gets sharper when approaching the CEP where from a continu-
ous crossover it turns into a first-order. These quantities are experimentally
accessible through the fluctuations of detected particles, at variance with
the chiral condensates and the Polyakov fields. In this thesis I use the sus-
ceptibilities associated to the QCD conserved charges and calculated along
lines of constant temperature, chemical potential or entropy-per-baryon to
explore, in several scenarios, the QCD phase diagram. The results of these
calculations are shown in the following chapter.
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Chapter 4

Numerical Results

In this part of my thesis I show the numerical results obtained in the PNJL
effective model. First of all, in Sec. 4.1, I compare the PNJL results at zero
chemical potential for several thermodynamic quantities and for the order
parameters of the transition with the lattice data. Afterwards, I show the
results of the MFE’s at finite chemical potential with two different versions
of the Polyakov potential: logarithmic and polynomial.

In the second part of this chapter I consider isentropic trajectories of
relevance for the BES undergoing at RHIC and for future experiments at SPS,
NICA and FAIR. The corresponding values of s/nB are estimated starting
from the data provided by the STAR collaboration in [14] and [8]. I study
the values taken by the Equation of State, by the speed of sound and by the
generalized susceptibilities during the isentropic evolution of the system until
the estimated freeze-out point, looking for differences among cases in which
the QCD transition occurs via a smooth crossover, via a first-order transition
or crossing a possible CEP. These results are shown for four different scenarios
in Secs. 4.3-4.6, trying to get closer and closer to the situation met in HIC’s.
Finally, in Sec. 4.7 I show the results of the exploration of the PNJL phase
diagram in the presence of a vector interaction.

111
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4.1 Comparison with lattice data at µB = 0

In this section I compare the results for various thermodynamic quantities
calculated at µB = 0 in the PNJL model with a polynomial and logarithmic
Polyakov potential and lattice data: pressure, speed of sound, specific heat,
trace anomaly and subtracted chiral condensate ∆l,s. The parameters of
the PNJL model are collected in Tables 3.1 and 3.2 and have been fixed in
order to reproduce the properties of the light pseudoscalar mesons. These
quantities and the predictions for the scalar meson mass and the dressed
quark masses in vacuum are collected in Table 4.1.

The two different Polyakov potentials produce a different behaviour near
the transition. The agreement with lattice data is not always good from
the quantitative point of view, but overall the PNJL model produces a good
qualitative description of the phase transition. Asymptotically, both in the
PNJL model and in lattice-QCD, all quantities for high temperatures tend
to their Stefan-Boltzmann limit, the pressure more slowly, dispaying a ∼20%
deviation in the considered temperature range.

Fitted quantities mπ mK mη′ fπ

Value [MeV] 135 497.7 957.8 92.4

Predictions mσ ml ms

Value [MeV] 728.9 367.7 549.5

Table 4.1: The fitted quantities used to fix the model parameters and the
predictions of the present PNJL calculation with the parameter set in Tables
3.1 and 3.2.

In Fig. 4.1 I display the pressure of the system: the qualitative behaviour
of the PNJL curves is similar to the one of lattice-QCD results, although
there are quantitative differences: PNJL curves overshoot lattice data at
high temperature; moreover the inflection point of the lQCD curve does not
coincide with the one of the PNJL calculations. This, probably, is due to the
fact that the PNJL model has only a few free parameters used to reproduce
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Figure 4.1: Comparison between the results of the PNJL model with a poly-
nomial (red line) and a logarithmic (blue line) Polyakov potential and the
lattice-QCD [23] data (black points) for the pressure of the system at µB = 0.

the meson spectrum at T = 0 and not the thermodynamic quantities, for
which it provides genuine predictions, but not necessarily in close quantitative
agreement with the fundamental theory.

In Fig.4.2a I show the heat-capacity per unit volume, defined in Sec. 3.2.3.
One can observe that the logarithmic version of the Polyakov potential pro-
duces two separated peaks, while the polynomial one gives rise to a single
peak but higher than the others. This is due to the fact that, in the PNJL
model, the crossover temperatures for the deconfinement and chiral tran-
sitions are not equal, although close to each other. With the polynomial
potential the two temperatures are closer than in the logarithmic case. On
the contrary, the lattice data do not shown any peak; this difference between
PNJL and lattice-QCD results can mean that the PNJL model produces a
sharper crossover.

Another difference between the polynomial and logarithmic Polyakov po-
tentials is shown in the speed of sound plot in Fig. (4.2b). The minimum in
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(a) Heat capacity per unit volume.
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(b) Squared speed of sound.

Figure 4.2: Comparison between the results of the PNJL model with a poly-
nomial (red line) and a logarithmic (blue line) Polyakov potential and the
lattice-QCD [23] data (black points) for the heat capacity per unit volume
(a) and the squared speed of sound at µB = 0 (b).

the logarithmic case is sharper and is reached through two well defined knees
in the curve. Notice that lattice data display a milder drop of c2

s around the
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crossover temperature.
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Figure 4.3: Comparison between the results of the PNJL model with a poly-
nomial (red line) and a logarithmic (blue line) Polyakov potential and the
lattice-QCD [23] data (black points) for the trace anomaly at µB = 0.

In Fig. 4.3 I show the trace anomaly (ε−3P )/T 4. This quantity measures
how far the system is from an ideal gas of relativistic non-interacting massless
particles, for which the Equation of State is ε = 3P . This is also known as the
conformal-fluid limit, since it is what one expects for a theory with no mass
scale different from the temperature. Both lattice data and PNJL results
show a maximum around the same temperature, although in the PNJL model
the latter is much more pronounced.

Finally, in Fig. 4.4 I show the subtracted chiral condensate ∆l,s in two dif-
ferent plots. This quantity, defined in Eq. (3.65), measures how far the system
is from chiral-symmetry restoration. The definition in Eq. (3.65) is used in
lattice-QCD calculations in order to deal with a properly renormalized dimen-
sionless quantity. Being the quantity normalized to the vacuum result, theo-
retical calculations at low temperature provide values close to unity, while at
high temperature ∆l,s drops to zero, signalling chiral-symmetry restoration.
In the PNJL model, the inflection point occurs around a temperature about
30 MeV larger than in continuum-extrapolated lattice-QCD calculations. In
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(a) The subtracted chiral condensate ∆l,s as a function of the temperature.
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(b) The subtracted chiral condensate ∆l,s as a function of the T/Tc.

Figure 4.4: Comparison between the results of the PNJL model with a poly-
nomial (red line) and a logarithmic (blue line) Polyakov potential and the
lattice-QCD [13] data (black points) for the subtracted chiral condensate at
µB = 0.

figure 4.4a the PNJL predictions are far from lattice data; this shortcoming
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can be explained as due to the different transition temperature Tc in the two
calculations. As mentioned before, the transition temperature of the NJL
model is about 30 MeV higher than lattice data, hence in Fig. 4.4b I show
the comparison as a function of the reduced temperature T/Tc: the results of
the two approaches look in much better agreement, although the transition
in the PNJL model is a bit sharper.

In the next section there are still comparisons between results for differ-
ent thermodynamic quantities obtained with the logarithmic and polynomial
potentials. On the contrary, in Secs. 4.3-4.7 I focus on the search for the
Critical End-Point and I use only the polynomial Polyakov Potential.
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4.2 PNJL results at µB 6= 0

In this section I display the results of the PNJL model in the case of finite
baryochemical potential, µB 6= 0. These calculations are performed in the
fully symmetric scenarios (all quark chemical potentials are equal to µB/3)
with two different parameterizations of the Polyakov potential (logarithmic
and polynomial). The solution of the MFE’s provides the values of the order
parameters of the deconfinement and chiral transitions, i.e. the Polyakov
fields and the quark condensates, respectively.
One can then evaluate the various thermodynamics quantities like the pres-
sure, the entropy density and the baryon density. In the rest of this section
I’m going to display these results, together with the ones for the generalized
susceptibilities.

4.2.1 Order parameters

The behaviour of the order parameter defines the order of a phase transition.
Here, I show the order parameters of the deconfinement and chiral transitions
as functions of the temperature for different values of the baryochemical
potential µB.

In Figs. 4.5 and 4.6 I show the mean-field results for the Polyakov fields
in the logarithmic and polynomial versions of the Polyakov potential. The
difference between the two cases is that, with the logarithmic potential, the
expectation values of the Polyakov fields approach unity from below, while
in the other version they overshoot unity as already observed in Ref. [69],
probably approaching it from above at very high temperatures, beyond the
theoretical limits of validity of the PNJL model.

In Figs. 4.7 and 4.8 I show the chiral condensates for light (up and down)
and strange quarks normalized to their values in the vacuum in the logarith-
mic and polynomial versions of the Polyakov potential.

All the order parameters in Figs. 4.5-4.8 are smooth until µB = 862

MeV. After this value of chemical potential the order parameters have a
jump discontinuity around T ∼ 122 MeV for both versions of the Polyakov
potential. Then the possible Critical End-Point is approximately located
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around TCEP = 122 and µCEPB = 862 MeV.
It is useful to identify the position of the CEP in the QCD phase dia-

gram studying the behaviour of quantities with a more direct connection with
experimental observables, like fluctuations of conserved charges. In this con-
nection, in Sec.4.2.3 I display the results for the baryon-number generalized
susceptibilities obtained in the PNJL model.
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(a) Polyakov field with the logarithmic Polyakov potential.
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(b) Adjoint Polyakov field with the logarithmic Polyakov potential.

Figure 4.5: Expectation values of the Polyakov fields in the PNJL model at
different baryochemical potentials: µB = 0 (red line), 540 MeV (green line),
630 MeV (blue line), 720 MeV (orange line), 810 MeV (magenta line), 862
MeV (brown line), 900 MeV (black line).
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(a) Polyakov field with the polynomial Polyakov potential.
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(b) Adjoint Polyakov field with the polynomial Polyakov potential.

Figure 4.6: Expectation values of the Polyakov fields in the PNJL model at
different baryochemical potentials: µB = 0 (red line), 540 MeV (green line),
630 MeV (blue line), 720 MeV (orange line), 810 MeV (magenta line), 862
MeV (brown line), 900 MeV (black line).
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(a) Light-quark chiral condensate normalized to its vacuum value, with the loga-
rithmic Polyakov potential.
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(b) Strange-quark chiral condensate, normalized to its vacuum value, with the
logarithmic Polyakov potential.

Figure 4.7: Mean-field results for the chiral condensates in the PNJL model
(with logarithmic Polyakov potential) for several values of the baryochemical
potential: µB = 0 (red line), 540 MeV (green line), 630 MeV (blue line), 720
MeV (orange line), 810 MeV (magenta line), 862 MeV (brown line), 900 MeV
(black line).
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(a) Light-quark chiral condensate normalized to its vacuum value, with the poly-
nomial Polyakov potential.
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(b) Strange-quark chiral condensate normalized to its vacuum value, with the
polynomial Polyakov potential.

Figure 4.8: Mean-field results for the chiral condensates in the PNJL model
(with polynomial Polyakov potential) for several values of the baryochemical
potential: µB = 0 (red line), 540 MeV (green line), 630 MeV (blue line), 720
MeV (orange line), 810 MeV (magenta line), 862 MeV (brown line), 900 MeV
(black line).
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4.2.2 Thermodynamics Observables
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(c) Net-Baryon density

Figure 4.9: Mean-field results for the pressure, entropy density and baryon
density in the PNJL model (with logarithmic potential) as functions of the
temperature for different values of the baryochemical potential: µB = 0 (red
line), 540 MeV (green line), 630 MeV (blue line), 720 MeV (orange line), 810
MeV (magenta line), 862 MeV (brown line), 900 MeV (black line).
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(a) Pressure
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(b) Entropy density
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(c) Net-Baryon density

Figure 4.10: Mean-field results for the pressure, entropy density and baryon
density in the PNJL model (with polynomial potential) as functions of the
temperature for different values of the baryochemical potential: µB = 0 (red
line), 540 MeV (green line), 630 MeV (blue line), 720 MeV (orange line), 810
MeV (magenta line), 862 MeV (brown line), 900 MeV (black line).

Pressure, entropy density and baryon density in the PNJL model are plot-
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ted in Fig. 4.9, which refers to the case of logarithmic Polyakov potential and
in Fig. 4.10, which refers to the case of polynomial Polyakov potential. For
all values of the chemical potential at low-temperature, both the pressure
and the entropy density are negligibly small. This reflects the fact that the
temperature is so low to make the thermal excitation of quarks, dressed by
their dynamical mass, very unlikely. An important role is also played by the
Polyakov fields Φ and Φ̄, which in the confined phase suppress the contribu-
tion of states with one or two quarks to the thermodynamics of the medium.
The pressure gets steeper and steeper progressively as the baryochemical po-
tential increases and above a certain value of µB a temperature for which the
derivative of the curve is discontinuous appears. The nature of the transition
has changed, becoming first-order. Concerning the entropy density, where
the pressure curve has a non-derivable point the entropy density shows a
jump discontinuity. This fact is in agreement with the statistical mechanics
definition of the entropy density as s ≡ (∂P/∂T )µ: the two different values
of the entropy density refer to the two different phases which coexist in ther-
mal, chemical and mechanical equilibrium. Similar considerations hold for
the baryon density, also shown in Fig. 4.9. This observable is very important
for the study of the deconfinement transition. The baryochemical potential
µB describes the excess of quarks over antiquarks: for a given temperature,
the larger µB the larger the baryon density of the system. However, for the
same reasons discussed above, for low temperature the baryon density is very
small. Above a certain value of chemical potential (µCEPB ), as the temperature
increases also the baryon density shows a discontinuity, where the dynamical
masses of the quarks suddenly drop and where the Polyakov fields no longer
suppress the excitation of coloured quarks. Below µCEPB , the transition is a
smooth crossover while above this value it is first order. The presence of two
degenerate minima of the thermodynamic potential Ω, corresponding to the
same value of the pressure, signals the occurrence of a first-order transition.
It is possible to draw a first-order line in the phase diagram, which ends at
the Critical End-Point. In the present implementation of the PNJL model,
from the above plots, one obtains µCEPB ∼ 862 MeV and TCEP ∼ 122 MeV.
A more accurate determination of the location of CEP is performed in the
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following paragraph using the Logarithmic Polyakov Potential and in the fol-
lowing sections with the Polynomial Polyakov Potential in several scenarios.
For a determination of the CEP location of closer phenomenological interest,
it is useful to study fluctuations of conserved charges like net-baryon number,
as explained in Sec. 3.3.1. In the following I show some results about these
quantities.

4.2.3 Generalized baryon-number susceptibilities

In this section I present some results for higher-order baryon number suscepti-
bilities obtained in the fully symmetric scenario in which all quark chemical
potentials are equal to µB/3 with the logarithmic parameterization of the
Polyakov potential. A summary of these results was shown in Ref. [78]. Be-
sides various higher-order susceptibilities, I also show their ratios as functions
of the temperature for several values of the baryochemical potential µB. At
variance with the Polyakov fields, the quark condensates and the previous
thermodynamic quantities, generalized susceptibilities – being functions not
only of the order parameters but also of their derivatives – display divergences
in correspondence of the CEP.

2nd-order susceptibility
In Fig. 4.11 one can see the plot of the 2nd-order baryon-number sus-

ceptibility χ2
B as a function of the temperature for different values of the

baryochemical potential µB. According to the definition of generalized sus-
ceptibilities introduced in Sec. 3.3.1, one has

χ2
B(µB, T ) ≡ ∂2(P/T 4)

∂(µB/T )2

∣∣∣∣
T

. (4.1)
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In mean-field approximation this corresponds to:

χ2
B(µB, T ) =

d(nB/T
3)

d(µB/T )

∣∣∣∣
T

=

=

(
∂(nB/T

3)

∂(µB/T )
+
∂(nB/T

3)

∂Φ

∂Φ

∂(µB/T )
+

+
∂(nB/T

3)

∂Φ̄

∂Φ̄

∂(µB/T )
+
∂(nB/T

3)

∂φi
∂φi

∂(µB/T )

)
T

. (4.2)

Here the “total derivative” with respect to (µB/T ) means that, beside the
explicit dependence on µB, one must consider also the implicit dependence
contained in the order parameters Φ, Φ̄ and φi. From the analytic proprieties
of Eq.(3.2.1), at null baryochemical potential, one gets:

χ2
B(µB = 0, T ) =

(
∂nB/T

3

∂µB/T

∣∣∣∣
T

)
µB=0

=
2

3π2T 3

∑
i

∫ +∞

0

dpp2F(p, T )

F(p) =
e−βEiΦ(1 + 4e−βEi + 3Φe−2βEi − 5e−3βEi − 8e−4βEi)

(1 + 3e−βEiΦ(1 + e−βEi) + e−3βEi)2
(4.3)

At vanishing chemical potential, χB2 is an increasing function of the tem-
perature without any particular structure except some changes of slope. The
curve has an inflection point around Tc ∼ 155 MeV in correspondence with
the transition from confined to deconfined phase.

At finite chemical potential, χ2
B starts displaying a local maximum as-

sociated to the chiral transition: in fact, in Eq. (4.2) the derivatives of the
chiral condensates appear, which become larger and larger as the crossover
gets sharper and the transition approaches the CEP. As the baryochemical
potential grows, the peak increases and moves to lower temperatures follow-
ing the critical line in the phase diagram. At a given µB, the position of the
peak can be used as an estimator for the temperature of the chiral transi-
tion. Notice that the deconfinement transition occurring at a slightly smaller
temperature leaves a much milder signature on χ2

B, giving rise simply to a
double change of curvature on the left of the peak associated to the chiral
transition.
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Figure 4.11: Second-order baryon-number susceptibility as a function of the
temperature in the PNJL model (with logarithmic potential) for different
values of the baryochemical potential: µB = 0 (red line), 540 MeV (green
line), 630 MeV (blue line), 720 MeV (orange line), 810 MeV (magenta line),
862 MeV (brown line), 900 MeV (black line).

Around µB = 862 MeV, the curve displays a divergence. The discontinu-
ity temperature is the first estimator of the Critical End-Point temperature
TCEP1 ≈ 122 MeV. This is due to the fact that χB2 depends on the derivatives
of the order parameters, which diverge around the CEP. At higher chemical
potential, the fluctuations are discontinuous but no longer divergent. This
difference is crucial to distinguish between the CEP and the first-order tran-
sition line. Indeed, the phase transition, when the system is at the CEP, is
of second-order and the derivatives of the order parameters are divergent;
on the other hand, along the first-order transition line, their derivatives are
discontinuous but finite [45, 95].

3rd-order susceptibility
In Fig. 4.12 I plot the 3rd-order baryon-number susceptibility as a function

of the temperature. The qualitative structure of the curves is essentially given
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Figure 4.12: Third-order baryon-number susceptibility as a function of the
temperature in the PNJL model (with logarithmic potential) for different
values of the baryochemical potential: µB = 0 (red line), 540 MeV (green
line), 630 MeV (blue line), 720 MeV (orange line), 810 MeV (magenta line),
862 MeV (brown line), 900 MeV (black line).

by the chiral transition. The main feature of the curves is the presence of a
positive maximum and a negative minimum separated by a sudden change
of sign, associated to the peak of χ2

B. When the baryochemical potential
grows the maximum and the minimum move to lower temperatures, get more
pronounced and the change of sign gets steeper. This is in agreement with
the peak in χ2

B getting sharper and sharper. The location of the zero of χ3
B is

the second estimator for the chiral transition temperature. Around µB = 862

MeV an essential discontinuity appears. The position of the discontinuity is
the second estimator of the Critical End-Point temperature TCEP2 ≈ 122

MeV.

4th-order susceptibility
The plot of the 4th-order baryon-number susceptibility as a function of

temperature, for different values of µB, is shown in Fig. 4.13. The main
feature of the curves is the presence of a more and more pronounced negative
minimum as µB gets larger, associated to the sharper and sharper peak of
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Figure 4.13: Fourth-order baryon-number susceptibility as a function of the
temperature in the PNJL model (with logarithmic potential) for different
values of the baryochemical potential: µB = 0 (red line), 540 MeV (green
line), 630 MeV (blue line), 720 MeV (orange line), 810 MeV (magenta line),
862 MeV (brown line), 900 MeV (black line).

χ2
B, which has a negative curvature as a function of µB. As the baryochemical

potential increases, the minimum moves to lower temperatures, following the
crossover line in the phase diagram. The position of this minimum is a third
estimator for the chiral transition temperature. At µB = 862 MeV there is an
essential discontinuity that can be used as a third estimator of the Critical
End-Point temperature TCEP3 ≈ 122 MeV.

Ratio of generalized susceptibilities: χ4
B/χ

2
B

The ratio of the 4th and 2nd-order baryon-number susceptibilities is related
to the kurtosis via Eq. (3.77) and, in the classical limit, turns out to be
proportional to the square of the baryon charge carried by the active degrees
of freedom in the system, according to Eq. (3.79). At low temperature,
the baryon charge of the active degrees of freedom is unitary: quarks are
confined into hadrons and particles carrying baryon number have B = 1.
In the PNJL model this is implemented through the Polyakov fields, which
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Figure 4.14: χ4
B/χ

2
B as a function of temperature at zero baryochemical po-

tential.

suppress coloured combinations of quarks, leaving only colourless clusters of
3 quarks or antiquarks to contribute to the thermodynamics of the system.
At high temperature, the baryon charge of the active degrees of freedom is
1/3 (free quarks and antiquarks). As one can see in Fig. 4.14, the value of
the kurtosis at high temperature is around 1/9 and at low temperature its
value is around 1: the PNJL model correctly captures the active degrees of
freedom of the system. Beside these two flat regions, the kurtosis has two
local maxima, associated to the deconfinement of quarks and to the chiral
transition, which, in the present implementation of the PNJL model, occur
at two slightly different temperatures T dec

c ∼ 155 MeV, T χc ∼ 192 MeV. These
two estimators of the pseudo-critical temperature are in agreement with the
positions of the inflection point of the Polyakov fields and of the light chiral
condensate in Figs. 4.5 and 4.7.

The study of the kurtosis can be extended to finite chemical potential. In
Fig. 4.15 I show the corresponding results, which still display the correct low-
temperature behaviour associated to the effective confinement of the quark
colour charges. The χ4

B/χ
2
B ratio has an essential discontinuity around µB =
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Figure 4.15: χ4
B/χ

2
B as a function of the temperature for different values of

the baryochemical potential: µB = 0 (red line), 540 MeV (green line), 630
MeV (blue line), 720 MeV (orange line), 810 MeV (magenta line), 862 MeV
(brown line), 900 MeV (black line).

862 MeV and T = 122 MeV, in agreement with other observables. Notice
that both χ4

B and χ2
B have an essential discontinuity at the CEP, but higher-

order susceptibilities have a stronger dependence on the diverging correlation
length.

Ratio of generalized susceptibilities: χ3
B/χ

1
B

The second important ratio of generalized susceptibilities is χ3
B/χ

1
B and

it is related to the skewness by Eq. (3.77). At µB = 0, the skewness is
zero. At finite chemical potential also χ3

B/χB is proportional to the squared
baryon charge of the active degrees of freedom. In fact, the curves plotted
in Fig. 4.16 start from 1 at low temperature (where coloured quark states
are suppressed), then show some bumps due to deconfinement and chiral
transitions and eventually converge at high temperature to 1/9 (where quarks
are active degrees of freedom). At µB = 862 MeV an essential discontinuity
appears at T ≈ 122 MeV, in agreement with other observables.

In conclusion, from the study of the divergences of the above general-
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Figure 4.16: χ3
B/χ

1
B as a function of temperature for different values of the

baryochemical potential: µB = 0 (red line), 540 MeV (green line), 630 MeV
(blue line), 720 MeV (orange line), 810 MeV (magenta line), 862 MeV (brown
line), 900 MeV (black line).

ized susceptibilities, one can affirm that the Critical End-Point is located at
CEP ≈ (862, 122) MeV. The two crossover temperatures at zero chemical
potential are T χc = 192 MeV and T dec

c = 155 MeV.
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4.3 Fully symmetric scenario

The matter produced in HIC’s, if dissipative effects are negligible, evolves
along isentropic trajectories of constant entropy per baryon. In this section
I explore the phase diagram of the PNJL model along these adiabatic lines
focusing on the Equation of State, the speed of sound and the baryon-number
fluctuations. I also identify the crossover/first-order transition line and the
location of the CEP. In the presence of a first-order transition, I also display
the metastability region. In this sections calculations are performed in the
fully symmetric scenario (SYM), in which all quark chemical potentials are
equal: µu = µd = µs = µB/3.

4.3.1 Equation of State and speed of sound

In heavy-ion collisions, one produces a system which – neglecting dissipative
effects due to viscosity, heat conduction and charge diffusion – undergoes
an approximate isentropic expansion moved by pressure gradients along tra-
jectories of constant entropy per baryon (s/nB = const), the higher the
center-of-mass energy of the collision the higher the s/nB ratio. Hence, in
performing theoretical calculations of experimental relevance, the quanti-
ties of physical interest must be evaluated along the above trajectories. To
compute the entropy density and the net-baryon density, one can use the
equations given in Appendix C. To find the points that belong to an isen-
tropic trajectory, one starts from a point in the phase diagram of a given
entropy per baryon; one looks for the next point along a small circle cen-
tered around the first one corresponding to the same value of s/nB and then
iterates the procedure. Some interesting theoretical studies about isentropic
lines are Ref.[35, 37, 83].In these works are introduced a vectors interaction
in the Lagrangian and is explored the phase transition with the presence of
a magnetic field.

In order to provide results of phenomenological relevance, we need to esti-
mate both the entropy-per-baryon ratio S/B and the initial entropy density
of the system arising from the heavy-ion collisions at the various nucleon-
nucleon center-of-mass energies explored in the BES at RHIC, from 7.7 GeV
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to 200 GeV. We start estimating the initial entropy density s0, assuming that
its value is proportional to the measured rapidity density of charged particles
dN ch/dη. For Au-Au collisions at

√
sNN = 200 GeV the value s0 = 84 fm−3,

once inserted in the initial condition of hydrodynamic calculations, was shown
to satisfactorily reproduce soft-hadron distributions [71] and, later on, it was
widely employed in the literature, e.g. [16, 25]. Taking τ0 = 1 fm/c as an
estimate of the initial thermalization time and integrating over the transverse
plane the profile provided by a Glauber calculation one gets dS/dy ≈ 4700

for the entropy per unit rapidity in central Au-Au collisions; taking into ac-
count that, for a pion gas around the chemical freeze-out temperature, one
has S & 4N , this compares well with the observed rapidity density of charged
particles [20]. The initial entropy density s0 at lower center-of-mass energies
is obtained rescaling the estimate at

√
sNN = 200 GeV according to the lower

values of dN ch/dy [5, 6]. Also the S/B ratio at the various center-of-mass
energies is estimated from the yields of identified hadrons – π±, K±, p/p –
quoted in Refs. [5, 6], still assuming that each particle carries about 4 unit
of entropy. Our results for s0 and S/B are collected in Table 4.2, where we
also quote the values of the kinetic freeze-out temperatures obtained in [5, 6]
through a blast-wave fit of the transverse-momentum distributions of identi-
fied hadrons.

Along these isentropic lines, then, it is interesting to evaluate the physical
quantities entering hydrodynamics calculations, as discussed in Sec. 1.7. For
this reason, one can focus on the Equation of State and on the squared speed
of sound c2

s, which can be derived from the latter. In Fig. 4.17 I plot the
EoS calculated along various isentropic trajectories, corresponding to values
of s/nB of interest for HIC’s at RHIC center-of-mass energies. In this figure
one can see that, employing logarithmic scales for the axis, the curves have
an approximate straight-line behaviour, except in a very limited region of
energy density around the chiral crossover where the EoS looks softer. The
softening of the EoS is particularly evident for small values of the entropy-
per-baryon ratio, corresponding to small center-of-mass energies of the HIC’s
and to large stopping of the matter of the colliding nuclei. Anyway, the EoS’s
are smoothly increasing functions of ε (hence c2

s > 0) for all the values of
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√
sNN [GeV] s0 [fm−3] S/B T fo

kin

7.7 29.6 17.5 116
11.5 35.3 26.7 118
19.6 43.0 45.8 113
27.0 45.8 56.8 117
39.0 47.6 84.3 117
62.4 60.2 123.9 99
130 70 277.6 98
200 84 331.6 89

Table 4.2: Estimate of the initial entropy density and of the entropy per
baryon in Au-Au collisions at different center-of-mass energies. We also quote
the kinetic freeze-out temperature obtained in Refs. [5, 6] through a blast-
wave-fit.

entropy per baryon of phenomenological interest I explored. This means that,
for these values of s/nB, the system changes phase smoothly and no first-
order transition appears. One does not have bubbles of deconfined matter in
a hadronic background or vice versa.

In Fig. 4.18 I plot the squared speed of sound c2
s for several values of

s/nB. The curves are positive and smooth for all the considered values of
entropy per baryon. This means that in this domain the system changes
phase smoothly, with a crossover and not with a first-order transition. One
observes that, around the crossover region, c2

s displays a minimum, which
gets deeper as s/nB decreases. Moreover, from Eq. (2.4) one can see that
the system decreases the acceleration of its expansion and that there is a
value of temperature for which such an acceleration is minimal. The squared
speed of sound, as one expects, at high temperature converges to the Stefan-
Boltzmann limit c2

s = 1/3. This fact suggests that, at very high temperature,
the QGP can be approximated as a gas of free massless particle.

4.3.2 Net baryon-number fluctuations

In Fig. 4.19 the ratios of higher-order net baryon-number susceptibilities
(χ4

B/χ
2
B and χ3

B/χ
1
B) for the different isentropic trajectories are displayed.
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Figure 4.17: Equation of State P (ε, s/nB) evaluated along isentropic tra-
jectories for several values of s/nB in the fully symmetric scenario for the
entropy per baryon values: s/nB = 331.6 (red line), 277.6 (magenta line),
123.9 (orange line), 84.3 (green line), 56.8 (cyan line), 45.8 (blue line), 26.7
(purple line), 17.5 (indigo line).

One can see that these quantities display huge fluctuations around the tran-
sition temperature, which get larger and larger as the entropy per baryon
decreases. However, the various susceptibilities remain continuous functions.
This means that the CEP and the first-order region are not achieved for these
values of s/nB, representative of the collisions during the Beam Energy Scan
(BES) at RHIC. The growth of fluctuations is easy to understand if one re-
members the link between the generalized susceptibilities and the cumulants
of the distributions of conserved charges and their different dependence on
the correlation length of the order parameter, which is stronger for higher-
order susceptibilities. In particular, the χ3

B/χ
1
B ratio is proportional to the

skewness, that represents the asymmetry of the distribution. The χ4
B/χ

2
B

ratio is proportional to the kurtosis, which quantifies how tailed the distri-
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Figure 4.18: Squared speed of sound c2
s evaluated along isentropic trajectories

for several values of s/nB in the fully symmetric scenario entropy per baryon
values: s/nB = 331.6 (red line), 277.6 (magenta line), 123.9 (orange line),
84.3 (green line), 56.8 (cyan line), 45.8 (blue line), 26.7 (purple line), 17.5
(indigo line).

bution is. In this case, the distribution of interest is the net-baryon number
distribution. Isentropic trajectories corresponding to lower values of s/nB
pass closer to the CEP and hence, around the crossover, are characterized by
a larger correlation length. Equivalently, the crossover for them is steeper.
This explains the huge fluctuations and sharp peaks of the χ3

B/χ
1
B and χ4

B/χ
2
B

ratios around the transition temperature.

Notice also the expected values close to 1 and 1/9 in the low and high-
temperature limits, respectively.
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Figure 4.19: Ratios of higher-order baryon-number susceptibilities along isen-
tropic trajectories for several values of s/nB in the SYM quark chemical po-
tential scenario: s/nB = 331.6 (red line), 277.6 (magenta line), 123.9 (orange
line), 84.3 (green line), 56.8 (cyan line), 45.8 (blue line), 26.7 (purple line),
17.5 (indigo line).
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4.3.3 Phase diagram in the SYM scenario

From the stationary points and the rapid oscillations of the baryon-number
susceptibilities one can define the transition line between the phases of broken
and restored chiral symmetry and identify, through their divergences, the
CEP predicted by the model.
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Figure 4.20: Phase diagram of the PNJL model in the SYM scenario µu =
µd = µ2 = µB/3. The black dotted curve represents the chiral crossover line,
the black solid curve is the fist-order transition line, the two black dashed
lines are the borders of the metastability regions. The colored lines are
the isentropic trajectories for several values of s/nB: 331.6 (red line), 277.6
(magenta line), 123.9 (orange line), 84.3 (green line), 56.8 (cyan line), 45.8
(blue line), 26.7 (purple line), 17.5 (indigo line).

In Fig. 4.20 I show the phase diagram of the model together with several
isentropic trajectories that correspond to the entropy per baryon representa-
tive of HIC’s at the RHIC Beam-Energy Scan [6, 32]. The curves have been
plotted down to the kinetic freeze-out temperatures estimated in Au-Au col-
lisions at RHIC from the momentum distributions of the detected particles
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and quoted in Table 4.2. For more information about this topic see [79]. As
one can see, for all values of s/nB the isentropic trajectories display a change
of direction around the crossover line, but this bend is sharper for higher val-
ues of the chemical potential. All the adiabatic trajectories pass through the
crossover region, where the chiral transition occurs smoothly and there is no
coexistence of two different phases. The present implementation of the PNJL
model predicts that the current experiments carried out with the BES pro-
gram at RHIC are not able to reach the QCD CEP. This might be achieved
only through the collisions of heavy nuclei at lower center-of-mass energies,
characterized by a larger stopping of the incoming nucleons. For this pur-
pose, experiments were performed in the past at AGS [14] and SPS [8], a rich
physics program is scheduled for the present and the near future at SPS [76]
and new infrastructures like NICA [10] and FAIR are under construction.

In order to compare the results for the transition line of this effective
chiral model with the findings of lattice-QCD simulations, one can fit the
small µB region of the PNJL crossover line (up to µq = 100 MeV or, in other
words, up to µB = 300 MeV) with a quartic polynomial in the dimensionless
variable µB/T 0

c , where T 0
c ≡ Tc(µB = 0) is the pseudo-critical temperature

of the model (still referring to the chiral phase transition) at zero chemical
potential:

Tc(µB)

T 0
c

= 1− κ2

(µB
T 0
c

)2

− κ4

(µB
T 0
c

)4

+O
[(µB
T 0
c

)6
]
. (4.4)

From the PNJL model in the SYM scenario one obtains:

T 0
c = (186.5± 0.1)MeV, κ2 = (170± 3)10−4, κ4 = (−17± 3)10−4. (4.5)

These results will be compared with lattice-QCD predictions in Chapter 5.

The two dashed lines in Fig. 4.20 are the boundaries of the metastability
region, where the thermodynamic potential has two local minima that corre-
spond to the “hadronic” (broken chiral symmetry) and quark (restored chiral
symmetry) phases. The solid line is the first-order transition line, where the
two minima have the same value, i.e. the two phases have the same pressure
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and can coexist in mechanical equilibrium. This means that, along the first-
order line, a certain volume of the system is occupied by the quark phase
and the rest by bubbles of hadronic matter or vice versa. When drawn in the
density-temperature plane, the first order line is the border of a coexistence
region in which the system cannot exist as a single stable phase. Depending
on the cases, it is however possible that the medium remains as a whole in a
local metastable minimum. This occurs if the nucleation rate of bubbles of
the new stable phase is not fast enough compared to the expansion rate of
the system. One has then super-heating or super-cooling.

The first-order line, characterized by the presence of two degenerate min-
ima of the thermodynamic potential, ends at the CEP. In the SYM scenario
for the quark chemical potentials (i.e. µQ = µS = 0 for the conserved charges)
with the polynomial Polyakov potential, the CEP is found at TCEP = 120

MeV and µCEPB = 863 MeV.
From a general point of view, the phase diagram is a four-dimensional

space and the CEP’s form an hypersurface defined by TCEP(µS, µQ) and
µCEP
B (µS, µQ). One interesting question is what kind of surface the one

spanned by the CEP’s is. It can be an open or a closed surface. In the
first case for any value of µS and µQ there exists, somewhere, a CEP. In
the second case the CEP exists only in some specific region of the 4D phase
diagram.
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4.4 Quasi-Neutral Strangeness Scenario

Here I repeat the study performed in Sec. 4.3, extending it to the Quasi-
Neutral Strangeness (QNS) scenario. The QNS condition is obtained setting
the electric-charge chemical potential µQ to zero, so that µu = µd, and impos-
ing a vanishing strange-quark chemical potential, i.e. µs = 0, which entails
the following relation:

µS = 1/3µB when µQ = 0 . (4.6)

In the NJL model, these conditions lead to a vanishing strange-quark density,
but in the PNJL model this does not occur. This fact is due to the presence
of the Polyakov fields that provide a mixing of the flavours, as evident in
Eq.( 3.40). In this scenario, therefore, the strange-quark density is small as
compared to the one of up and down quarks, but not null.

4.4.1 Equation of State and speed of sound

In this scenario I calculate the same isentropic trajectories considered for the
SYM case, plus two new adiabatic lines at lower values of s/nB, in order
to display what happens when the system during its evolution crosses the
first-order line. These two isentropic lines do not correspond to values of
the entropy per baryon representative of current HIC’s at RHIC, but they
are important from the theoretical point of view since they allow one to
appreciate quite general aspects of the behaviour of a strongly interacting
system undergoing a first-order transition. The values of the entropy per
baryon for these two new isentropic lines are s/nB = 5 and s/nB = 2.

As in the SYM scenario, isentopic curves are plotted down to the kinetic
freeze-out temperatures estimated in Au-Au collisions at RHIC from the
momentum distributions of the detected particles and quoted in Table 4.2.
Since the Polyakov fields strongly suppress the contribution of quarks to the
thermodynamics of the system in the confined phase, the latter corresponds
to unrealistically small values of the energy density.

In Fig. 4.21 I show the EoS for a few isentropic trajectories. The first lines
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Figure 4.21: Equation of State P = P (ε, s/nB) in the QNS scenario evaluated
along adiabatic lines corresponding to different values of entropy per baryon
s/nB: 331.6 (red line), 56.8 (blue line), 26.7 (green line), 5 (black line)

are smooth and show just some changes of slope (a flattening followed by a
steepening) for energy densities around 1 GeV/fm3, more evident for lower
s/nB. The last EoS, referring to s/nB = 5, shows an almost flat behaviour in
the region 0.2 . ε . 0.7 GeV/fm3 ending with a non-derivable point, where
its slope suddenly changes. Here the speed of sound displays a discontinuity
and this can be interpreted as a signal of a first-order phase transition. One
can conclude that below some critical value of the entropy per baryon the
system undergoes a first-order phase transition.

In Fig. 4.22 I plot the squared speed of sound along various isentropic
trajectories. The behaviour of the curves is similar to what found in the SYM
scenario, with the minimum of the speed of sound getting deeper and moving
to lower temperatures as s/nB decreases. The last two plots correspond to
the trajectories with s/nB = 5 and s/nB = 2. Here the speed of sound
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Figure 4.22: Squared speed of sound in the QNS scenario along isentropic
trajectories corresponding to different values of s/nB: 331.6 (red line), 277.6
(magenta line), 123.9 (orange line), 84.3 (green line), 56.8(cyan line), 45.8
(blue line), 26.7 (purple line), 17.5 (indigo line), 5 (brown line), 2 (violet
line).

displays a discontinuous behaviour, with a sudden drop as the system cools
down in correspondence of the coexistence phase. Notice that the two curves
crossing the first-order transition approach faster the ideal gas limit at high
temperature.

4.4.2 Net baryon-number fluctuations

In Fig. 4.23 one can see the results for the ratios of baryon-number suscep-
tibilities along adiabatic trajectories passing through the crossover region in
the QNS scenario. The curves display a behaviour very similar to the one
found in the SYM scenario and the same considerations hold to interpret
their main qualitative features. The analysis of the huge peaks and oscilla-



4.4. QUASI-NEUTRAL STRANGENESS SCENARIO 147

100 150 200 250 300
Temperature T [MeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

χ B3  /
χ B1

s /nB = 331.6
s/nB = 277.6
s/nB = 123.9
s/nB = 84.3
s/nB = 56.8
s/nB = 45.8
s/nB = 26.7
s/nB = 17.5

PNJL

100 150 200 250

-2

0

2

4

6

(a) χ3
B/χ

1
B along the isentropic trajectories

100 150 200 250 300
Temperature T [MeV]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

χ B4  /
χ B2

s/nB = 331.6
s/nB = 277.6
s/nB = 123.9
s/nB = 84.3
s/nB = 56.8
s/nB = 45.8
s/nB = 26.7
s/nB = 17.5

PNJL

100 150 200 250
-30

-20

-10

0

10

(b) χ3
B/χ

1
B along the isentropic trajectories

Figure 4.23: Ratios of higher-order baryon-number susceptibilities along isen-
tropic trajectories for several values of s/nB in the QNS scenario: s/nB =
331.6 (red line), 277.6 (magenta line), 123.9 (orange line), 84.3 (green line),
56.8 (cyan line), 45.8 (blue line), 26.7 (purple line), 17.5 (indigo line).
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tions around the chiral crossover can be used to extract the parameters of
the transition and to draw the phase diagram of the model as done for the
SYM scenario.

4.4.3 Phase diagram in the QNS scenario

In figure 4.24 I show two different versions of the phase diagram. The first
one is given in a plane spanned by the temperature and chemical potential,
the second one in a plane spanned by the temperature and quark density. In
the figure I also plot two isentropic lines at low entropy per baryon (s/nB = 5

and 2) which cross the first-order region. In particular, the first isentropic
curve (s/nB = 5) meets the first-order line in the µq−T plane, it flows along
this critical line and it reappears on the other side of the transition line, in
the chirally broken phase. The other one (s/nB = 2) meets the first-order
line but does not enter into the confined region. It means that the system
created at s/nB = 2, once met the first-order line, remains in the coexistence
region.

Also in this case one can perform a fit of the crossover line getting

T 0
c = (187.0±0.1)MeV, κ2 = (143±17)10−4, κ4 = (−1±20)10−4. (4.7)

These results will be compared with lattice-QCD findings in Chapter 5.
The CEP is located where the two borders of the metastable regions meet

the first-order line, i.e. when the termodynamic potential no longer has two
local minima. In the QNS scenario the CEP is found at TCEP = 120.7 MeV
and µCEPB = 875.0 MeV.

The second plot in Fig. 4.24 shows the phase diagram in the nq − T

plane. In this plot, the first-order line encloses the coexistence region. In the
coexistence region no stable homogeneous phase can exist, but a fraction α of
the volume is occupied by the chirally-restored phase and a fraction (1− α)

is occupied by the chirally-broken one. They are characterized by the same
pressure, temperature and chemical potential, expressing the mechanical,
thermal and chemical equilibrium between the two phases. For each T and
µB the value of α, which is determined through a Maxwell construction,
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Figure 4.24: The phase diagram of the PNJL model in the QNS scenario. In
the lower panel densities are measured in units of the nuclear-matter density.
The black dotted curve is the chiral crossover line, the black solid curve is the
first-order line, the two black dashed lines are the borders of the metastable
regions. The colored lines are isentropic trajectories corresponding to several
values of s/nB: 331.6 (red line), 277.6 (magenta line), 123.9 (orange line),
84.3 (green line), 56.8 (cyan line), 45.8 (blue line), 26.7 (purple line), 17.5
(indigo line), 5 (brown line), 2 (violet lines).
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depends on the history and kind of evolution of the system. Usually in
thermodynamics one considers phase transitions occurring along isothermal
lines, however in heavy-ion collisions there is no thermal bath with which
the fireball is in contact. The system follows then an isentropic expansion at
fixed s/nB and one has

s

nB
=
αsQ(T, µB) + (1− α)sH(T, µB)

αnQ(T, µB) + (1− α)nH(T, µB)
, (4.8)

where sQ/H and nQ/H are the entropy and baryon density in the chirally
restored/broken phase. One has α= 1 when the isentrope crosses the high-
density branch of the critical line and α= 0 when it crosses the low-density
branch. Hence, a given value of T and µB does not fix α: one has to specify
also the isentrope followed by the system. Notice that, considering this kind
of evolution, one is implicitly assuming that the nucleation rate of bubbles
of the low-density, chirally-broken phase is larger than the expansion rate
of the fireball and we are not addressing the case of super-heating/cooling,
which occurs if the system remains in a metastable minimum. Establishing
whether this is a realistic assumption or whether the transition occurs via
a different dynamics (spinodal decomposition) would need a deeper study
of the rate of bubble nucleation, requiring in particular the evaluation of
the surface tension of the interface between the two phases [40, 77, 85, 90],
which is out of the scope of the present thesis. For the sake of completeness,
in the second panel of Fig. 4.24, I display the regions in which a homogeneous
metastable phase can exist, extending between the continuous first-order line
and the dashed isothermal spinodal lines. In the region enclosed by the two
isothermal spinodal lines any homogeneous phase is unstable.

The phase diagram plotted in terms of the quark density rather than of
the chemical potential reveals how, in both models, the first-order coexis-
tence region extends down to the origin. In the low-temperature regime the
behaviour of the model is then unphysical, since it does not leave room for
the existence of a self-bound homogeneous nuclear-matter phase, which we
know to exist, but whose experimental density nB ≈ 0.16 fm−3 would lie here
in the coexistence region. Furthermore, there is no room for the liquid-gas
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Figure 4.25: Pressure vs specific volume for a few isothermal transformations
in the PNJL model. The isothermal lines cross the phase diagram above
and below the critical isothermal TCEP passing through the CEP. In the
case of a first-order transition I also display the Maxwell construction. The
stationary points of the isothermal curves lie on top of the isothermal spinodal
lines: between them the system gets unstable and cannot be found in a
homogeneous phase, not even metastable.

phase transition of nuclear matter, which is a characteristic feature of strong
interactions in the low-temperature (T . 20 MeV), high-density regime for
low values of the entropy per baryon [26, 44, 47]. This must be viewed as
a shortcoming of the model due to the pure scalar/pseudoscalar interaction
and to the mean field approximation. We expect that the inclusion of a
vector interaction and of hadrons as dynamical degrees of freedom in the
confined, chirally-broken phase should improve the description of this region
of the phase diagram.

Finally, in Fig. 4.25, I show a few isothermal curves for the PNJL model,
plotting the pressure as a function of the specific volume 1/nB. We choose
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values of T either above or below the critical value TCEP. In this last case, in
which a first-order transition occurs, I show also the Maxwell construction.
Notice that the isothermal curves with T < TCEP display two stationary
points. Between the two stationary points, the pressure is a decreasing func-
tion of the density and the system is thus unstable. This part of the curves
actually corresponds to effective quark masses arising from the maximum of
the thermodynamic potential; this is also the region enclosed by the isother-
mal spinodal lines in Fig. 4.24 in which a single homogeneous phase cannot
exist.
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4.5 Neutral Strangeness Scenario

In the Neutral Strangeness (NS) scenario the MFE’s are solved adding a
new equation which sets to zero the net density of strange quarks. One still
assumes exact up-down symmetry, setting µQ = 0. One has

ns(T, µB, µS(T, µB)) = 0. (4.9)

This equation imposes a non-trivial relation between strangeness and bary-
ochemical potential, while the electric-charge chemical potential, as above
mentioned, is fixed to zero.
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Figure 4.26: Neutral-strangeness trajectories along various adiabatic lines
corresponding to different values of s/nB: 331.6 (red line), 277.6 (magenta
line), 123.9 (orange line), 84.3 (green line), 56.8 (cyan line), 45.8 (blue line),
26.7 (purple line), 17.5 (indigo line).

In this scenario the calculation of isentropic trajectories is more complex
than the previous one. In fact at each step, in evaluating the next point of
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the trajectory, besides setting s/nB equal to the desired value one needs to
solve Eq. (4.9) to fix the strangeness chemical potential in order to satisfy the
NS condition. In other words, in the NS scenario the isentropic trajectories
are trajectories in the 3D space (T − µB − µS) and not in the 2D plane
(T − µB). The points in the phase diagram in the µB − T plane have then
different values of strangeness chemical potential. In Fig. 4.26 I show the
NS lines along different isentropic trajectories. Each point of the curves
correspond to a different temperature. One can see that, for all lines, the
values of the strangeness chemical potential are lower than µB/3 (dotted blue
line), which would correspond to the QNS scenario. In this figures one can
observe a double change of direction, after which the NS trajectories become
approximate straight lines with slope 1/3, like for the QNS case.

4.5.1 Equation of State and speed of sound

In Figs. 4.27a and 4.27b I show the Equation of State and the squared speed
of sound of the PNJL model in the NS scenario calculated along different
isentropic trajectories. The curves are qualitatively and quantitatively very
similar to the ones found in the SYM and QNS cases and the same physical
interpretation of their behaviour holds.

4.5.2 Fluctuations in the NS scenario

In the NS scenario, the fluctuations of net baryon number show the same
properties found for the previous two scenarios. Hence here I focus on the
off-diagonal fluctuations of conserved charges. In particular, I consider the ra-
tio between the off-diagonal susceptibility of net-baryon and net-strangeness
number and the second-order strangeness susceptibility. In Fig. 4.28 I show
the numerical results of the PNJL model in mean-field approximation for
this quantity. The off-diagonal susceptibilities I am interested in, related to
the corresponding off-diagonal cumulants of the particle distributions, are
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(b) Squared speed of sound in the NS scenario.

Figure 4.27: Equation of state (upper panel) and squared speed of sound
(lower panel) in the NS scenario along isentropic trajectories corresponding
to different values of s/nB: 331.6 (red line), 277.6 (magenta line), 123.9
(orange line), 84.3 (green line), 56.8 (cyan line), 45.8 (blue line), 26.7 (purple
line), 17.5 (indigo line).
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Figure 4.28: The −χ11
BS/χ

2
S ratio in the NS scenario evaluated along various

adiabatic lines corresponding to different values of s/nB: 331.6 (red line),
277.6 (magenta line), 123.9 (orange line), 84.3 (green line), 56.8 (cyan line),
45.8 (blue line), 26.7 (purple line), 17.5 (indigo line).
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defined as:

〈χnkBS〉 ≡
∂k+n

∂(µB/T )n∂(µS/T )k

[
P (T, µB, µS)/T 4

]∣∣∣∣∣
T

∼ 〈BnSk〉c. (4.10)

In Appendix B I show the relation between the off-diagonal cumulants and
moments of the particle distributions. If the particles obey classical statistics,
the first off-diagonal cumulant is given by:

〈BS〉c =
∑
i

BiSi〈Ni〉 , (4.11)

where the sum runs over all particle species, Bi and Si are the baryon and
strangeness charges carried by the i-th species and 〈Ni〉 is the average num-
ber of particles of species i. This makes very interesting the evaluation of the
ratio χBS/χ2

S = 〈BS〉c/〈S2〉c, whose behaviour can be estimated from the
above equation and whose value provides information on the active degrees
of freedom of the system. In the deconfined phase, strangeness is carried
by s-quarks (with S = −1), which carry also baryon number 1/3. Anti-
quarks provide the same contribution, since the product of their baryon and
strangeness charges is the same. In this case one has then −χBS/χ2

S ∼ 1/3.
This is the asymptotic high-temperature behaviour observed in Fig. 4.28 and
also found in lattice-QCD simulations. The behaviour in the confined phase
is also interesting, since one expects a strong suppression of this quantity,
which is actually observed in lattice-QCD. In the hadronic phase only strange
baryons, quite heavy, carry both non-vanishing B and S, but strangeness
fluctuations in the denominator are mainly driven by kaons, which are much
lighter. Unfortunately in the present implementation of the PNJL model we
cannot capture this aspect of the problem, since hadrons do not contribute
directly to the thermodynamics and the suppression at low temperature is
mainly driven by the coupling with the Polyakov field.
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Figure 4.29: Phase diagram of the PNJL model in the NS scenario. The black
dotted curve is the chiral crossover, the black solid curve is the first-order
transition line, the two black dashed lines are the borders of the metastable
regions. The colored lines are isentropic trajectories corresponding to several
values of s/nB: 331.6(red line), 277.6 (magenta line), 123.9 (orange line),
84.3 (green line), 56.8 (cyan line), 45.8 (blue line), 26.7 (purple line), 17.5
(indigo line).

4.5.3 Phase diagram in the NS scenario

In this section I address the PNJL phase diagram in the Neutral Strangeness
scenario, which is shown in Fig. 4.29. As in the previous two scenarios, the
isentropic lines of current experimental interest are located in the crossover
region. The first-order region could be investigated only with experiments
that produce a system with lower values of entropy per baryon. From the
fluctuations of conserved charges and the inflection points of the order pa-
rameters one can obtain the crossover line. Also in this case one can try
to fit this line with a polynomial containing even powers of µB/T 0

c , like in



4.5. NEUTRAL STRANGENESS SCENARIO 159

Eq. (4.4), obtaining

T 0
c = 186.2 MeV, κ2 = 0.120± 2 κ4 = 0.00047± 70 . (4.12)

These values will be compared with the values of others scenarios in Chap-
ter 5. The first-order transition region and the Critical End-Point are found
through a fine scan at high baryochemical potential. The CEP coordinates
for this scenarios are: TCEP = 121.0± 0.1 and µCEPB = 885.1± 0.1.
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4.6 HIC Scenario

In this section I discuss the scenario which provides the most realistic de-
scription of the matter produced in heavy-ion collisions. In this kind of
experiments, a couple of heavy ions (usually lead or gold) are accelerated up
to the speed of light and made collide. These nuclei do not contain strange
quarks and the proton to nucleon ratio is about 0.4. To perform realistic
theoretical calculations, one needs to introduce these two features. Then one
imposes two new equations in the numerical code:ns(µB, µQ, µS, T ) = 0

nQ(µB, µQ, µS, T )/nB(µB, µQ, µS, T ) = 0.4.
(4.13)

These two equations impose a relation among the strangeness chemical po-
tential, the electric-charge chemical potential, the baryochemical potential
and the temperature. In this scenario the isentropic trajectories are lines
in a 4D space. The conditions in Eqs. (4.13) together with the isentropic
condition s/nB = const., can reduce the number of independent parameters
allowing one to identify a point in the phase space through a single parame-
ter, the temperature. In this scenario the calculation of isentropic curves is
then more complex, since it requires solving a larger number of equations and
since, as above mentioned, adiabatic lines are trajectories in the 4D space
(T − µB − µS − µQ) and not in the 2D plane (T − µB). The points in the
phase diagram in the µB − T plane have different values of strangeness and
electric-charge chemical potential, fixed in order to satisfy the conditions in
Eqs. (4.13). For each isentropic curve one can visualize the relation among
the three chemical potentials as a trajectory in the µB − µQ plane, as done
in Fig. 4.30.

From the baryon number and electric charge of each quark flavour one
can write

nQ
nB
≡ 2nu − nd − ns

nu + nd + ns
, (4.14)

where ni is the net-density of quark of a given flavour. In the Neutral
Strangeness scenario (ns = 0 and µQ = 0, i.e. nu = nd = nl) this ra-
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tio is equal to 0.5. In the HIC scenario, for which nQ/nB = 0.4 and
nu/nd < 1, one expects the electric-charge chemical potential µQ to be neg-
ative. This can be easily understood in the low-density classical limit, for
which nu/nd = exp[(µu−µd)/T ] = exp[µQ/T ], which entails µQ < 0 in order
to have nu/nd < 1. In figure 4.30 I show some trajectories with nQ/nB = 0.4.
As one expects, the electric-charge chemical potential is negative, but two
order of magnitude smaller than the baryochemical potential. As found in
the NS scenario, after the phase transition the relation between the chemical
potentials becomes linear.
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Figure 4.30: Evolution of the electric-charge chemical potential µQ in the
HIC scenario with nQ/nB = 0.4 and nS = 0 along isentropic trajectories
corresponding to different values of s/nB: 331.6 (red line), 277.6 (magenta
line), 123.9 (orange line), 84.3 (green line), 56.8(cyan line), 45.8 (blue line),
26.7 (purple line), 17.5 (indigo line).
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(b) Squared speed of sound in the HIC scenario.

Figure 4.31: Equation of state (upper panel) and squared speed of sound
(lower panel) in the HIC scenario along isentropic trajectories corresponding
to different values of s/nB: 331.6 (red line), 277.6 (magenta line), 123.9
(orange line), 84.3 (green line), 56.8 (cyan line), 45.8 (blue line), 26.7 (purple
line), 17.5 (indigo line).
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4.6.1 Equation of State and speed of sound

In Figs. 4.31a and 4.31b I show the Equation of State and the squared speed
of sound calculated along various isentropic trajectories in the HIC scenario.
The results are very similar to the ones found in the other scenarios both at
a qualitative and quantitative level. In particular, for all values of entropy
per baryon of current experimental relevance, the transition between the two
phases occurs smoothly.

4.6.2 Fluctuations in the HIC scenario
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Figure 4.32: The −χ11
BS/χ

2
S ratio in the HIC scenario evaluated along various

adiabatic lines corresponding to different values of s/nB: 331.6 (red line),
277.6 (magenta line), 123.9 (orange line), 84.3 (green line), 56.8 (cyan line),
45.8 (blue line), 26.7 (purple line), 17.5 (indigo line).

In the HIC scenario, the generalized baryon-number susceptibilities dis-
play the same behaviour found in the first three scenarios. Also in this case,
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from their peaks and fluctuations one can find the crossover line. In this sec-
tion I show the off-diagonal fluctuations of conserved charges. In particular
I focus again on the ratio between the off-diagonal susceptibility of baryon-
number and strangeness and the second-order strangeness susceptibility. In
Fig. 4.32 I show the numerical results, very similar to what found in the NS
scenario and for which the same interpretation holds.

4.6.3 Phase diagram in the HIC scenario
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Figure 4.33: Phase diagram of the PNJL model in the HIC scenario. The
black dotted curve is the chiral crossover, the black solid curve is the first-
order transition line, the two black dashed lines are the borders of the
metastable regions. The colored lines are isentropic trajectories correspond-
ing to several values of s/nB: 331.6(red line), 277.6 (magenta line), 123.9
(orange line), 84.3 (green line), 56.8 (cyan line), 45.8 (blue line), 26.7 (purple
line), 17.5 (indigo line).

In this section I display the PNJL phase diagram in the HIC scenario,
which is shown in Fig. 4.33. As in the previous scenarios, the isentropic
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trajectories currently explored by the experiments are located in the crossover
region. To explore the first-order region, one needs to reach lower values of
entropy per baryon. From the fluctuations of conserved charges and the
derivative of the order parameters one can obtain the crossover line. Also
in this case, one can try to fit this line with a polynomial containing even
powers of µB/T 0

c like in Eq. (4.4), obtaining

Tc(µ)

T 0
c

= 1− 0.0146
( µ
T 0
c

)2

+ 0.00011
( µ
T 0
c

)4

+O
[( µ
T 0
c

)6
]

T 0
c = Tc(µ = 0) = 186.79 MeV .

(4.15)

The first-order region and the Critical End-Point are found through a fine
scan at high baryochemical potential. The CEP coordinates for this scenario
are: TCEP = 118.1 ± 0.1 and µCEPB = 921.0 ± 0.1. These values will be
compared with the ones obtained in other scenarios in Chapter 5.
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4.7 PNJL with vector interaction

In this section I show the results of the exploration of the PNJL phase di-
agram in the presence of a vector/axial-vector interaction. Calculations are
performed in the SYM scenario. The parameters of the model have been
fixed in order to reproduce the properties of pseudoscalar and vector mesons
in the vacuum. Since the vector interaction introduces a mixing between
different channels into the Bethe-Salpeter equation for the quark-antiquark
scattering matrix, this requires refitting all the parameters of the model. For
this purpose, I employ the parameter set given in Ref. [70] and shown in
Table 3.2. In this model, the presence of the vector interaction leads to a
shift of the quark chemical potentials proportional to the net-quark density:

µ̂q = µq − 2GV nq (4.16)

The shift in the effective quark chemical potentials induced by the vector
interaction and the different values of the model parameters produce some dif-
ferences in the phase diagram. In Fig 4.34 I show the comparison of the phase
diagrams of the PNJL model with and without a vector interaction. First
of all, the chiral crossover temperature at zero chemical potential is higher
in the GV > 0 case. Notice however that, from a quantitative point of view,
already the original version of the model, with a pure scalar/pseudoscalar
interaction, overshoots the QCD crossover temperature obtained in lattice
simulations. Also the curvature of the crossover line changes. Performing a
new fit in the vector case one gets:

Tc(µB)

T 0
c

= 1− 0.010
( µ
T 0
c

)2

− 0.0017
(µB
T 0
c

)4

+O
[(µB
T 0
c

)6
]

T 0
c = Tc(µ = 0) = 197.6 MeV

(4.17)

The CEP moves to a higher chemical potential µB and to a lower tempera-
ture. The location of CEP is:

TCEP = 72.1MeV µCEPB = 1098MeV (4.18)
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Figure 4.34: Comparison of the phase diagrams of the PNJL model in the
SYM scenario without (black curves) and with (red curves) vector interac-
tion.

This effect is due to the shifted chemical potential: in fact the quantity
entering the equations is the effective chemical potential µ̂q, but eventually
the phase diagram has to be expressed in terms of the true chemical potential,
receiving a positive correction proportional to the temperature. In particular,
the first-order transition line in the vector case occurs at such a so high
baryochemical potential to produce a region at zero temperature in the nB−T
plane that contains only hadronic matter, as one can see in Fig. 4.35. This
feature, which surely makes the model closer to reality, is not present in the
scalar version of the model, as one can see in Fig. 4.24.
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Figure 4.35: Phase diagram of the PNJL model with vector interaction in
the SYM scenario plotted in the nB − T plane.



Chapter 5

Conclusions and outlook

This chapter is devoted to summarize and compare the numerical results and
features of the different implementations of the PNJL model and to explain
what can be the outlook for the future.

5.1 Comparison with lattice-QCD calculations

The numerical results in Figs. 4.1-4.4 show that the PNJL model allows one
to capture the main features of the chiral and deconfinement transitions and
of their effects on the thermodynamics of the system, but it is not able to
provide an accurate quantitative description of the most recent continuum-
extrapolated lattice-QCD data at zero chemical potential.

This shortcoming of the PNJL model is due to the simplicity of the model,
which – in particular in the present mean-field implementation – misses some
important degrees of freedom: hadrons (which can be obtained as poles of the
quark scattering matrix in the different channels, but whose contribution to
the pressure of the system is not included) at low temperature and transverse
gluons at high temperature. The effective model is able, however, to correctly
describe the qualitative behaviour of the physical observables as a function of
the temperature. In conclusion, one can use the PNJL model as a guidance
to explore general features of the thermodynamics of strong interactions in
regions of the phase diagram today not accessible to lattice-QCD simulations.

169
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5.2 The choice of the Polyakov potential

In the literature there exist more versions of the effective Polyakov potential,
for which the only first-principle constraints are the respect of the global
Z3 symmetry, its spontaneous breaking, and the agreement with pure-gauge
lattice simulation. The two main choices adopted in the literature are the
polynomial potential and the logarithmic potential introduced in Eq. (3.4)
and Eq. (3.5), respectively. In Figs. 4.1-4.4, I compared the predictions ob-
tained with the two versions of the Polyakov potential to lattice-QCD data
at vanishing baryochemical potential. The main difference between the poly-
nomial and the logarithmic potential is that, in the last case, the chiral and
deconfined transitions are separated, the chiral occurring at a temperature
30-40 MeV larger than the deconfinement one. This leads to the appear-
ance of two distinct peaks in some quantities like the specific heat, which are
not observed in lattice-QCD simulations. The polynomial potential still pro-
duces two different crossover temperatures, but much closer to each other. In
Sec. 4.2 I showed the numerical results for several thermodynamic quantities
arising from the solutions of the mean field equations. Quantities involving
derivatives of the order parameters, like fluctuations of conserved charges,
display peaks in correspondence of the deconfinement and chiral transitions,
which do not coincide in the case of a logarithmic Polyakov potential. The
major effect is in any case given by the chiral crossover of the light-quark
condensate.

5.3 Fluctuations of conserved charges

The cumulants of conserved charges, as discussed in Sec. 3.3.1, are useful tools
to diagnose the elementary degrees of freedom of a system and to investigate
the location and kind of phase transition. For the first purpose, one looks at
the asymptotic values of certain ratios of cumulants in a determinate range of
temperature and chemical potential; for the second purpose, one focuses on
the fluctuating behaviour of certain cumulants around the phase transition.

In this thesis I considered several higher-order generalized susceptibilities
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of conserved charges (in most cases baryon number) and their ratios: χnB,
χ3
B/χ

1
B, χ4

B/χ
2
B and also the off-diagonal fluctuations of net-baryon and net-

strangeness number, χ11
BS/χ

2
S. The first quantities were studied through the

entire phase diagram and the corresponding results are shown in Sec. 4.2. Up
to a certain value of baryochemical potential, they show a rapid but smooth
variation of their values around the critical temperature, signalling a steep
but continuous crossover; above a certain chemical potential the cumulants
display a discontinuity at a critical temperature. This fact signals a change in
the order of the phase transition, which from a smooth crossover turns into a
first-order phase transition. The two regimes are separated by a Critical End-
Point, where the transition is of second order, the cumulants of conserved
charges diverge and the correlation length of the fluctuations of the order
parameter is infinite. In all the explored scenarios, only along the isentropic
trajectories of very low entropy per baryon s/nB (much lower than the values
of current experimental interest) the cumulants of conserved charges display
an actual discontinuity, associated to a first-order phase transition.

Concerning the identification of the active degrees of freedom in the dif-
ferent regions of the phase diagram, both the ratios of diagonal cumulants
χn+2
B /χnB and of off-diagonal ones χBS/χ2

S support a picture in which, at high
temperature, baryon number is carried by particles with B = 1/3, while at
low temperature – due to the coupling with the Polyakov field – only clusters
of three quarks with B = 1 are not suppressed by confinement.

5.4 Comparison of different scenarios

In Secs. 4.3-4.6 I showed the results of the exploration of the PNJL phase
diagram in four different scenarios: SYM (µu = µd = µs = µB/3), QNS
(µu = µd, µs = 0), NS (µu = µd, ns = 0) and HIC (ns = 0, nQ/nB =

0.4). These four scenarios reduce the four-dimensional phase diagram to a
two-dimensional plane spanned by the baryochemical potential µB and the
temperature T , imposing some physical constraints. In Table 5.1 I collect
the coordinates of the CEP and the parameters of the fit of the crossover line
according to Eq. (4.4).
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Figure 5.1: Isentropic lines in several scenarios: SYM (blue lines), QNS (red
lines), NS (green lines) and HIC (orange lines). Three values of s/nB are
shown: 331.6 (solid lines), 56.8 (dotted lines) and 17.5 (dashed lines).

Observable SYM QNS NS HIC V

T χ0 [MeV] 186.5 187.0 186.2 186.8 197.6
κ2 0.0170(3) 0.0143(17) 0.012(2) 0.0146(1.4) 0.010
κ4 −0.0017(3) 0.0001(20) 0.00047(7) −0.00011(6) −0.0017
TCEP[MeV] 120.0 120.7 121.0 118.1 72.1
µCEPB [MeV] 863.0 875.0 885.1 921.0 1098

Table 5.1: Parameters of the fit of the crossover line and CEP coordinates
in the PNJL model for the different scenarios explored in this thesis.

From the comparison of the different scenarios, one can see that the
crossover line does not change its shape and the values of the coefficient
of the quadratic term in the fit (κ2) in the last three scenarios are all com-
patible within the numerical uncertainties. Furthermore, the fit parameters
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are compatible with the lattice-QCD results of Refs. [27, 29, 31] summarized
in Table 5.2.

Observable SYM QNS HIC

κ2 0.020(4) 0.0135(20) 0.0153(18)
κ4 / / 0.00032(67)

Table 5.2: Parameters of the fit of the crossover line obtained in lattice-QCD
simulations [27, 29, 31]

The location of the CEP changes in the different scenarios; in particular
the introduction of a non-vanishing strangeness chemical potential µS 6= 0

shifts the CEP to higher baryochemical potential without affecting the crit-
ical temperature. Furthermore, the introduction of a non-vanishing electric-
charge chemical potential µQ 6= 0 shifts the CEP to an even larger bary-
ochemical potential and to a lower temperature. In Fig. 5.1 I display the
differences obtained for the isentropic lines in the different scenarios (the
transition lines referring to the QNS case).

5.5 Outlook

In light of the quite strong sensitivity of the CEP location on the value of the
electric-charge chemical potential previously discussed, it may be interesting
to explore the phase diagram of the PNJL model in regions of high electric-
charge chemical potential, in order to find the values (if they exist) of µQ
for which the CEP disappears. This exploration is of interest in light of the
study of the initial fluctuations of conserved charges in HIC’s, implemented
for instance in the ICCING model presented in Refs. [72, 73]. Different cells
of the fireball created in HIC’s can have different chemical composition, with
a local excess of quarks of a given flavour. Then, during the expansion and
cooling of the system, some cells of the fireball can cross the region around
the CEP (or Critical End-Surface in a 4D phase diagram) and some others
may cross a region of the phase diagram where the CEP is not present.
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Hence, for the future one can plan a scan of the full 4D phase diagram
focusing in particular on large values of the electric-charge and strangeness
chemical potentials, to find the possible borders (if any) of the Critical End-
Surface.



Appendix A

Meson masses

In this appendix I explain the method to obtain the pion and kaon masses in
the vacuum (T = µB = 0) in the NJL model settingmu = md. The equations
are based on Ref. [92]. One can start from the following Lagrangian:

LNJL = Ψ̄(i/∂ − m̂)Ψ +
1

2
G
[
(Ψ̄λaΨ)2 + (Ψ̄iγ5λaΨ)2

]
−

−K
{
det
[
Ψ̄(1 + γ5)Ψ

]
+ det

[
Ψ̄(1 + γ5)Ψ

]}
,

(A.1)

where Ψ and Ψ̄ are the quark spinors and λa (a = 0, ..., 8) are the Gell-Man
matrices in flavour space. In order to obtain effective meson propagators cor-
responding to physical particles it is useful to combine the Gell-Man matrices
to obtain the following meson-interaction vertices:

π0 : λ3 (A.2)

π± :
1√
2

(λ1 ± iλ2) (A.3)

K0, K0 :
1√
2

(λ6 ± iλ7) (A.4)

K± :
1√
2

(λ4 ± iλ5). (A.5)
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It is useful to rewrite the NJL Lagrangian in mean field approximation in
the following form

LNJL = Ψ̄(i/∂ − m̂)Ψ +
8∑

a=0

[
K−a (Ψ̄λaΨ)2 +K+

a (Ψ̄iγ5λaΨ)2
]
+

+ 2K−(ψλ0ψ)(ψλ8ψ) + 2K+(ψiγ5λ0ψ)(ψiγ5λ8ψ) .

(A.6)

The K±a factors are the effective two-body interaction constants, occurring
as an effective point-like vertex. For the calculation of the pion and kaon
masses the relevant effective couplings are K+

3 and K+
4 , defined as:

K+
3 = G+

1

2
iKNctrSs(x, x) (A.7)

K+
4 = G+

1

2
iKNctrSd(x, x) , (A.8)

where Si(x, y) is the propagator of quark i from y to x.

Figure A.1: RPA approximation for the q̄q scattering amplitude.

The quantity which allows one to extract the meson masses in the NJL
model is the q̄q scattering amplitude M(k0, ~k). One can calculate it in
the Random Phase Approximation, diagrammatically displayed in Fig. A.1,
which yields the results:

Mπ(k0, ~k) =
2K+

3

1− 2K+
3 Ππ

qq̄(k0, ~k)
(A.9)

MK(k0, ~k) =
2K+

4

1− 2K+
4 ΠK

qq̄(k0, ~k)
. (A.10)

The term Ππ
qq̄ is the irreducible bubble, which is iterated in the diagrams
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Figure A.2: Irreducible quark-antiquark bubble contributing to the pseu-
doscalar meson propagator. Depending on the considered particle, different
Gell-Mann matrices in flavour space must appear in the vertices.

in Fig.1.10. It is drawn in Fig. A.2. For the pion channel one gets

Ππ(k) = 2Nctr
∫

Λ

d4p

(2π)4

{
iγ5Su(p+

1

2
k)iγ5Su

(
p− 1

2
k
)}

, (A.11)

while for the kaon channel one has

ΠK(k) = 2Nctr
∫

Λ

d4p

(2π)4

{
iγ5Ss(p+

1

2
k)iγ5Su

(
p− 1

2
k
)}
. (A.12)

The trace in the above equations is performed on Dirac space. After some
easy calculations one gets:

Ππ(k) = 8Nc

∫
Λ

d4p

(2π)4

1

p2 −m2
u

−

− 4Nck
2

∫
Λ

d4p

(2π)4

1[
(p+ 1

2
k)2 −m2

u

][
(p− 1

2
k)2 −m2

u

] (A.13)

ΠK(k) = 4Nc

∫
Λ

d4p

(2π)4

1

p2 −m2
u

+ 4Nc

∫
Λ

d4p

(2π)4

1

p2 −m2
s

−

− 4Nck
2

∫
Λ

d4p

(2π)4

1[
(p+ 1

2
k)2 −m2

u

][
(p− 1

2
k)2 −m2

s

] (A.14)

The pion and kaon masses are given by the poles of the effective propagators
arising from the iteration of the elementary quark-antiquark bubbles. They
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are obtained solving the following equations at zero momentum:

1− 4K+
3 Ππ(mπ, 0) = 0 (A.15)

1− 4K+
4 ΠK(mK , 0) = 0 . (A.16)

For the calculation of the η and η′ masses, the situation is more complicated.
Due to the mixing in Eq. (A.6), the scattering amplitudeMη,η′ is not diagonal.
Within the RPA it can be expressed as

Mη,η′ =
2K+

1− 2Πηη′H
. (A.17)

Here H is a 2x2 matrix that contains the coupling

H =

(
G+

0 K+

K+ G+
8

)
(A.18)

and Πηη′ is a 2x2 matrix that contains the integrals

Πηη′ =

(
Πηη′

00 Πηη′

08

Πηη′

80 Πηη′

88

)
(A.19)

defined as

Πηη′

00 =
2

3
[2Πuū(k) + Πss̄(k)] (A.20)

Πηη′

80 = Πηη′

08 =
2
√

2

3
[Πuū(k)− Πss̄(k)] (A.21)

Πηη′

88 =
2

3
[Πuū(k) + 2Πss̄(k)]. (A.22)

(A.23)

In the above, Πuū is defined in Eq. (A.13). Then the η and η′ meson masses
are now defined as:

det[1− Πηη′(mη,η′ , 0)H] = 0. (A.24)

One can use these equation to fix the free parameters of (P)NJL model in
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order to reproduce the experimental values of the mesons masses and decay
constants.
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Appendix B

Moments and cumulants

In Sec. 2 I discussed the topic of cumulants and moments of a distribution.
In this appendix I discuss the relation between these quantities.

Moments of a distribution

Let P (m) be some probability distribution of a discrete stochastic variable
m. Of course, the sum of P (m) over all possible values of m is 1. To
characterize a distribution one can use its moments. The moment of order n
of P is defined as:

〈mn〉 =
∑
m

mnP (m). (B.1)

The direct computation of these quantities can be difficult and boring. For
this reason, it is useful to introduce a moment generating function G(θ),
defined as:

G(θ) ≡
∑
m

eθmP (m), G(θ = 0) = 1 . (B.2)

The moment of order n of the distribution P (m) is given by:

〈mn〉 =
dnG(θ)

dθn

∣∣∣∣
θ=0

. (B.3)

This methods is very powerful when one is able to compute G(θ).
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Cumulants of a distribution

For many practical purposes, it is more convenient to use cumulants rather
than moments to characterize a probability distribution. To define the cu-
mulants, we start from the cumulant generating function

K(θ) ≡ lnG(θ) . (B.4)

The cumulant of order n of P (m) reads:

〈mn〉c =
dnK(θ)

dθn

∣∣∣∣
θ=0

. (B.5)

Cumulants have several useful features; in particular, it is easy to estimate
from them the non-gaussianity of a distribution. It is also easy to compute
the cumulants of the distribution of the sum (or difference) of two stochastic
variables.

Relation between moments and cumulants

Here I show the relation between cumulants and moments. To perform the
calculation, one can insert Eq. (B.5) into Eq. (B.4) and perform the calcula-
tion of the first four cumulants:

〈m〉c =

(
1

G(θ)

dG(θ)

dθ

)
θ=0

〈m2〉c =

[
1

G

d2G

dθ2
− 1

G2

dG

dθ

]
θ=0

〈m3〉c =

[
1

G

d3G

dθ3
− 3

G2

dG

dθ

d2G

dθ2
+

2

G

(
dG

dθ

)3]
θ=0

〈m4〉c =

[
1

G

d4G

dθ4
− 4

G2

dG

dθ

d3G

dθ3
− 3

G2

(
d2G

dθ2

)2

+
12

G3

(
dG

dθ

)2
d2G

dθ2
+

− 6

G4

(
dG

dθ

)4]
θ=0

.

(B.6)
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One can rewrite these relations in terms of the moments and, for compact
notation, in terms of the central moments 〈δmn〉 ≡ 〈(m− 〈m〉)n〉. One gets:

〈m〉c = 〈m〉 = M

〈m2〉c = 〈m2〉 − 〈m〉2 = 〈(δm)2〉 = σ2

〈m3〉c = 〈m3〉 − 3〈m〉〈m2〉+ 2〈m〉3 = 〈(δm)3〉

〈m4〉c = 〈m4〉 − 4〈m3〉〈m〉+ 12〈m2〉〈m〉2 − 3〈m2〉2 − 6〈m〉4

= 〈(δm)4〉 − 3〈(δm)2〉2 .

(B.7)

The first cumulant coincides with the first moment, the second one is the
variance, the third one is the third central moment. All higher order (n ≥ 3)
cumulants are functions only of the central moments and are exactly zero for
a Gaussian distribution. Of course, one can invert these relations and obtain
the moments as functions of the cumulants:

〈m〉 = 〈m〉c
〈m2〉 = 〈m2〉c + 〈m〉2c
〈m3〉 = 〈m3〉c + 3〈m〉c〈m2〉c + 〈m〉3c
〈m4〉 = 〈m4〉c + 4〈m3〉c〈m〉c + 6〈m2〉c〈m〉2c + 3〈m2〉2c + 〈m〉4c

(B.8)

Skewness and kurtosis

So far, I have discussed cumulants as quantities characterizing a distribution
function. When one needs to describe the deviations from a Gaussian dis-
tribution, it is sometimes convenient to use two quantities called skewness γ
and kurtosis κ. These quantities are defined as:

γ =
〈x3〉c
〈x2〉3/2c

=
〈x3〉c
σ3

, κ =
〈x4〉c
〈x2〉2c

=
〈x4〉c
σ4

. (B.9)

For the renormalized stochastic variables x̃ = x/σ these two quantities corre-
spond to the third and fourth cumulants: γ = 〈x̃3〉c, κ = 〈x̃4〉c. The skewness
quantifies the asymmetry of a distribution, while the kurtosis its sharpness
compared with a Gaussian. As one can see in the next paragraph, these two
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quantities for a Gaussian distribution exactly vanish.

Cumulants of some important distributions

In this paragraph I show the calculation of the cumulants of a Gaussian, a
Poisson and a Skellam distribution.

A Guassian probability density with average µ and variance σ reads:

P (x) =
1√

2πσ2
e−

1
2

(
x−µ
σ

)2
. (B.10)

The moment generating function for a continuous variable is defined as:

G(θ) ≡
∫ +∞

−∞
eθxP (x)dx . (B.11)

The computation of the integral is very simple. One simply needs to complete
the square obtaining

G(θ) = exp

[
1

2
θ2σ2 + µθ

]
(B.12)

One can obtain all the moments by taking derivatives of G at θ = 0. The
cumulant generating function follows immediately:

K(θ) =
1

2
σ2θ2 + µθ . (B.13)

From the derivatives of K, one obtains the cumulants of a Gaussian distri-
bution. The only non-vanishing cumulants are the first two, that correspond
to the average and the variance, respectively. In particular, for a Gaussian
distribution, the skewness and kurtosis are exactly zero.

The Poisson distributions for a discrete stochastic variable m is:

P (m) =
λm

m!
e−λ,

∞∑
m=0

P (m) = 1 (B.14)

One can repeat the steps for the Gaussian case and obtain the moment
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generating function and the cumulant generating function:

G(θ) =
∞∑
m=0

eθm
λm

m!
e−λ =

=
∞∑
m=0

(λeθ)m

m!
e−λ =

= exp {λeθ − λ}

(B.15)

K(θ) = lnG(θ) = λeθ − λ . (B.16)

From Eq. (B.16) it easy to verify that all cumulants are equal to λ and from
Eq. (B.8) one obtains for the first four moments:

〈m〉 = λ

〈m2〉 = λ2 + λ

〈m3〉 = λ3 + 3λ2 + λ

〈m4〉 = λ4 + 6λ3 + 7λ2 + λ .

(B.17)

Due to the fact that all cumulants are equal, the skewness and kurtosis of a
Poissonian distribution are given by

γ = λ−1/2 and κ = λ−1. (B.18)

For asymptotically large values of λ these quantities tend to zero, as in the
case of a Gaussian distribution. This feature is related to the central limit
theorem in statistics.

Finally, one can compute the cumulants for a Skellam distribution. This
is the distribution followed by the difference of two stochastic variables, each
of which follows a Poissonian distribution. One has:

S(m) =
∑
m1,m2

δm,m1−m2Pλ1(m1)Pλ2(m2) (B.19)

where Pλi(mi) is the Poisson distribution for the stochastic variable mi with
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average λi. Of course the sum of S(m) over all possible values of m is 1:

+∞∑
m=−∞

∑
m1,m2

δm,m1−m2P1(m1)P2(m2) =

=
∑
m1

P1(m1)
∑
m2

P2(m2) = 1 .

(B.20)

The moment generating function is easily calculated:

G(θ) =
+∞∑

m=−∞

∑
m1,m2

δm,m1−m2e
θmP1(m1)P2(m2) =

=
∑
m1=0

eθm1P1(m1)
∑
m2=0

e−θm2P2(m2) =

= G1(θ)G2(−θ) ,

(B.21)

where Gi is the moment generating function for the Poissonian distribution
of variable mi. The computation of the moments of the Skellam distribution
is difficult. On the contrary, the computation of cumulants is very easy. The
cumulant generating function is:

K(θ) = lnG1(θ) + lnG2(−θ). (B.22)

Hence, the odd cumulants for a Skellam distribution are the difference of
cumulants of the two Poisson distribution, while the even cumulants are
given by the sum of the two Poissonian cumulants:

〈mn〉c = λ1 + (−1)nλ2 . (B.23)
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From Eq.(B.8), the moments of a Skellam distribution read:

〈m〉 = λ1 − λ2

〈m2〉 = (λ1 − λ2)2 + λ1 + λ2

〈m3〉 = (λ1 − λ2)[1 + 3(λ1 + λ2) + (λ1 − λ2)2]

〈m4〉 = (λ1 − λ2)
{

1 + (λ1 − λ2)[1 + 3(λ1 + λ2) + (λ1 − λ2)2]+

+ 6(λ2
1 − λ2

2) + (λ1 − λ2)3
}

+ 3(λ1 + λ2)2 .

(B.24)

The skewness and kurtosis for a Skellam distribution read:

γ =
λ1 − λ2

(λ1 + λ2)3/2
κ =

1

λ1 + λ2

. (B.25)

Again, for large values of λi, the skewness and kurtosis become arbitrarily
small and also the Skellam distribution approaches a Gaussian.

In the next paragraph I discuss how one can use cumulants in statistical
mechanics.

Cumulants in statistical mechanics

This paragraph is focused on cumulants in statistical mechanics, in particular
the cumulants of conserved charges. One can consider a physical system
described by the Hamiltonian Ĥ enclosed in a volume V and assume that
this system has an observable N̂ which is a conserved charge. Of course Ĥ
and N̂ commute. The grand canonical partition function for this system at
temperature T and chemical potential µ is defined as

Z = tr[e−(Ĥ−µN̂)/T ] , (B.26)

where the trace is taken over all quantum states of the system. The expec-
tation value of an observable Ô is given by:

〈Ô〉 =
1

Z
tr[Ôe−(Ĥ−µN̂)/T ] . (B.27)
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For example, the expectation value for the conserved charge N̂ is:

〈N̂〉 =
1

Z
tr[N̂e−(Ĥ−µN̂)/T ] . (B.28)

Now one can define the grand canonical thermodynamics potential as:

Ω ≡ −T lnZ . (B.29)

From the latter one can derive the cumulants of the distribution of the con-
served charge N̂ :

〈N̂n〉c = − ∂nΩ/T

∂(µ/T )n
(B.30)

One can easily check this definition by evaluating the lowest-order cumulants.

Similarly, one can define the off-diagonal fluctuations of two different
conserved charge, Q1 and Q2, associated to two chemical potentials µ1 and
µ2. In this case, the grand canonical partition function reads:

Z = tr
[
e−(Ĥ−µiQ̂i)/T

]
. (B.31)

The off-diagonal moments of the distribution are

〈Q̂n
1 Q̂

k
2〉 =

1

Z
tr[Q̂n

1 Q̂
k
2e
−(Ĥ−µiQ̂i)/T ] , (B.32)

while the corresponding cumulants are given by

〈Q̂n
1 Q̂

k
2〉c = − ∂n+kΩ/T

∂(µ1/T )n∂(µ2/T )k
. (B.33)

It is an easy exercise to find the relation between the first off-diagonal mo-
ments and the first off-diagonal cumulants.

In some cases it is more convenient to express the fluctuations of conserved
charges in terms of the ones of their carriers. The charge is expressed in terms
of the particle number through the equation

〈Q̂〉 =
∑
i

Qi〈N̂i,net〉 , (B.34)
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where the sum runs over all particle species and 〈N̂i,net〉 is the average net
number of particles i (i.e. particles minus antiparticles), carrying charge Qi.
For the expectation values of higher-order cumulants one has:

〈Q̂n〉c =
∑
i

Qn
i 〈N̂n

i,net〉c =
∑
i

Qn
i [〈N̂Qi〉+ (−1)n〈N̂−Qi〉], (B.35)

where in the last step we assumed that the net particle number obeys a
Skellam statistics. These last considerations applied to baryon-number fluc-
tuations in QCD lead to:

〈B2n+2〉c
〈B2n〉c

= B2

∑
i〈N

2n+2
i,net 〉c∑

i〈N2n
i,net〉c

= B2 , (B.36)

which holds since, depending on the phase, all particles carry the same baryon
number, either 1/3 or 1. Also in this case we assumed that the net-particle
distribution follows a Skellam statistics.
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Appendix C

Matsubara sums and Fermi
functions

In this Appendix I show the thermal field theory calculations used to de-
rive the expression for the chiral condensate in Eq. (3.19). In Chapter 3 I
introduced the chiral condensate as:

φi ≡ −iTrSi, (C.1)

where the trace is performed over the Dirac and color indices and Si is the
quark propagator of flavour i in coordinate space evaluated at zero separation:

Si(x, x) =

∫
d4p

(2π)4

1

/p−mi + γ0(µ+ A0)
. (C.2)

In order to study the problem at finite temperature and baryon density in the
imaginary time formalism (t = −iτ with τ ∈ [0, β]), the τ -ordered product
of the operators replaces the usual time-ordering and all the expectation
values are taken in the grand-canonical ensemble. Then one needs to operate
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the following substitutions

p0 → iωn = (2n+ 1)iπ/β; (C.3)

A0 → iA4 (C.4)∫
dp0

(2π)
→ i

β

+∞∑
n=−∞

. (C.5)

The discrete energies ωn take the name of Matsubara frequencies. The quark
propagator, then, becomes:

Si = − i
β

+∞∑
n=−∞

∫
Λ

d3p

(2π)3

1

(iωn + µ+ iA4)γ0 − ~γ~p−mi

. (C.6)

The chiral condensate now becomes:

φi = − 4

β
Trc

+∞∑
n=−∞

∫
Λ

d3p

(2π)3

mi

(iωn + µ+ iA4)2 − E2
i

. (C.7)

The fraction can be decomposed into a sum of two different fractions:

1

(iωn + µ+ iA4)2 − E2
i

=

=
1

2Ei

(
1

iωn + µ+ iA4 − Ei
− 1

iωn + µ+ iA4 + Ei

)
. (C.8)

One can compute the Matsubara sum of the two fractions separately, using
the following trick:

− 1

2πi

∫
C

dz

eβz + 1

eηz

z − x
=

+∞∑
n=−∞

eηiωn

iωn − x
, (C.9)

where the contour of the integral runs around the imaginary axis in the com-
plex z-plane and η is a positive infinitesimal factor that ensures convergence
and accounts also for the correct ordering of the quark fields in the zero-
distance propagator. The integral can be evaluated through the residue of
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the pole at z = x and one gets:

+∞∑
n=−∞

eηiωn

iωn − x
=

1

1 + eβx
. (C.10)

Applying this trick to Eq. (C.8) one gets:

+∞∑
n=−∞

1

iωn + µ+ iA4 − Ei
=

1

1 + exp{β(Ei − µ− iA4)}
(C.11)

+∞∑
n=−∞

1

iωn + µ+ iA4 + Ei
=

1

1 + exp β(−Ei − µ− iA4)
. (C.12)

After computing the trace over colors one obtains

φi = −2Nc

∫
Λ

d3p

(2π)3

mi

Ei
[1− f+i

Φ (Ei, µi)− f−iΦ (Ei, µi)] , (C.13)

where the functions f±Φ were defined in the main text.
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Appendix D

The Mean Field Equations

In this chapter I present some technical details concerning the solution of the
mean field equation.

D.1 Mean Field Equations: getting the system

In section 3.2.1 I introduced the five coupled equations of the mean field
approximation, in the case in which the vector interaction is neglected. In
this section I show the steps to reduce Eq. (3.38) to Eq. (3.40). To prove
this, one can use the Gauss reduction method.

2G(φu + 2NcIu) + 2Kφs(φd + 2NcId) + 2Kφd(φs + 2NcIs) = 0

2G(φd + 2NcId) + 2Kφs(φu + 2NcIu) + 2Kφu(φs + 2NcIs) = 0

2G(φs + 2NcIs) + 2Kφu(φd + 2NcId) + 2Kφd(φu + 2NcIu) = 0.

(D.1)

One can replace the first equation, called R1 with the following expression:

R1 → φuR1 − φdR2 , (D.2)

where R2 is the second equation, and one gets:

(2Gφu − 2Kφdφs)(φu + 2NcIu)− (2Gφd − 2Kφuφs)(φd + 2NcId) = 0. (D.3)
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Then, the second equation can be replaced by:

R2 → φdR2 − φsR3 (D.4)

where R3 is the third equation and one gets:

(2Gφd− 2Kφuφs)(φd + 2NcId)− (2Gφs− 2Kφuφd)(φs + 2NcIs) = 0 . (D.5)

From these expressions one can obtain the following equations

(φu + 2NcIu) =
2Gφd − 2Kφuφs
2Hφu − 2Kφdφs

(φd + 2NcId) (D.6)

(φs + 2NcIs) =
Gφd − 2Kφuφs
2Gφs − 2Kφuφd

(φd + 2NcId) . (D.7)

Now, substituting these two expressions into the third equation one can con-
clude that the parenthesis involving the condensate of down quarks is null.
One obtains then the first three MFE’s in Eq. (3.40).

D.2 The Hessian matrix of the quark-mass sec-

tor of the PNJL model

In this work, in studying the region of the phase diagram around the first-
order transition I consider the Hessian matrix corresponding to the second
derivatives of the grand canonical potential with respect to the chiral con-
densates. This matrix is completely defined (positive or negative); then one
can find the local/global minima of Ω. The Hermitian matrix used in the
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calculation is:

2G− 4G2A+

− 4K2φ2
sB − 4K2φ2

dC

2Kφs − 4GKφsA−

− 4GKφsB − 4K2φuφdC

2Kφd − 4GKφdA−

− 4K2φuφ
2
sB − 4GKφ2

dC

2Kφs − 4GKφsA−

− 4GKφsB − 4K2φuφdC

2G− 4K2φ2
sA−

− 4G2B − 4K2φuC

2Kφd − 4GKφdA−

− 4K2φuφ
2
sB − 4GKφ2

dC

2Kφd − 4GKφdA−

− 4K2φuφ
2
sB − 4GKφ2

dC

2Kφd − 4GKφdA−

− 4K2φuφ
2
sB − 4GKφ2

dC

2G− 4K2φ2
dA+

− 4K2φ2
uB − 4G2C


where A,B,C are numerical integrals defined as:

A =
Nc

π2

∫
dp
p2 −M2

u

Eu

[
θ(Λ− |p|)− f+u

Φ (Eu, µu)− f−uΦ (Eu, µu)
]

B =
Nc

π2

∫
dp
p2 −M2

d

Ed

[
θ(Λ− |p|)− f+d

Φ (Ed, µd)− f−dΦ (Ed, µd)
]

C =
Nc

π2

∫
dp
p2 −M2

s

Es

[
θ(Λ− |p|)− f+s

Φ (Es, µs)− f−sΦ (Es, µs)
]
.

(D.8)
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Appendix E

Abbreviations

In the following I list in alphabetic order all the abbreviations used in this
thesis.

• AGS: Alternating Gradient Synchrotron is a particle accelerator located
at Brookhaven National Laboratory.

• BNL: Brookhaven National Laboratory located in New York.

• CBM: Compressed Baryon Matter, the experiment devoted to the ex-
ploration of the QCD phase diagram located at the GSI Helmholtz
Centre for Heavy Ion Research in Darmstadt (Germany).

• CEP: Critical End Point.

• CERN: Conseil Européen pour la Recherche Nucléaire or, in English,
European Organization for Nuclear Research, located in Geneva (Switzer-
land).

• CMB: Cosmic Microwave Background.

• EFT: Effective Field Theory.

• EoS: Equation of State.

• FAIR: the Facility for Antiproton and Ion Research is a future particle
accelerator located at the GSI Helmholtz Centre for Heavy Ion Research
in Darmstadt (Germany).
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• HIC: Heavy Ion Collision.

• LHC: the Large Hadron Collider, sited at CERN, is the biggest particle
accelerator in the world.

• LHS: Left Hand Side, usually referred to equations.

• lQCD: Quantum Chromo Dynamics on the Lattice.

• LRF: Local Rest Frame.

• MFE: Mean Field Equation.

• NICA: the Nuclotron-based Ion Collider fAcility is a particles acceler-
ator, currently under construction, near Moscow (Russia).

• NJL: Nambu-Jona-Lasinio.

• NLO: Next-to Leading Order. It usually refers to the first subleading
term in a perturbative series.

• NNLO: Next-to-Next-to Leading Order. It usually refers to the second
subleading term in a perturbative series.

• NRL: Non Relativistic Limit.

• NS: Neutral Strangeness. It refers to a system with vanishing net num-
ber of strange particles.

• PD: Phase Diagram.

• PDG: Particle Data Group.

• PNJL: NJL model with Polyakov-loop correction.

• QCD: Quantum Chromo-Dynamics.

• QED: Quantum Electro-Dynamics.

• QGP: Quark Gluon Plasma.
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• QNS: Quasi Neutral Strangeness. It refers to a system with a small net
number of strange particles.

• RHD: Relativistic Hydro-Dynamics.

• RHIC: the Relativistic Heavy Ion Collider is a particle accelerator lo-
cated at BNL.

• RHS: Right Hand Side, usually referred to equations.

• SPS: the Super Proton Synchrotron is a particle accelerator of syn-
chrotron type at CERN.

• SYM: Symmetric. In this thesis it is the scenario with all quark chem-
ical potentials set equal.

• YM: Yang-Mils, usually referred to the gauge-field Lagrangian.
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