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Abstract
Key message Near upper forest line, values of conifer wood anatomical traits are species-specific, but relationships 
among traits are common. Growing season temperature significantly impacts wood anatomy only in its extremes.
Abstract Quantitative wood anatomy can provide detailed insight into adaptation of trees to changing environment, especially 
on the borders of species distribution ranges. This study investigated wood anatomy of Pinus sylvestris L., Pinus sibirica Du 
Tour, and Picea obovata Ledeb. near the forest line in the Western Sayan Mountains, where local climate changes rapidly. 
Anatomical traits reflecting three developmental stages of conifer tracheids (division = cell number, cell enlargement = radial 
diameter, and secondary wall deposition = cell wall thickness) were calculated for earlywood, latewood and total tree ring 
over 50 years. Similar earlywood anatomical structure and low between-trait correlations (r = 0.21…67) were observed in all 
species, which supports prevalence of external impact on its formation, i.e. that shared habitat, climate, and similar habitus 
provide common trade-off between hydraulic efficiency and safety. Also, stronger nonlinearity of relationship between cell 
number and radial diameter in earlywood decreased correlations between them. In latewood, anatomical traits are strongly 
interconnected (r = 0.63…93) for all species. However, Siberian pine has significantly less pronounced latewood; later switch 
from earlywood and different strategy of carbon allocation are proposed as possible reasons. Length of vegetative season and 
sum of temperatures above thresholds 5 °C and 8 °C have no significant correlations with anatomical traits, but extremes 
of these temperature variables led to forming more pronounced latewood (higher proportion of latewood cells with thicker 
walls) during warm/long vegetative seasons than during short/cool ones.
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Introduction

Increasing temperature causes significant shifts in phenol-
ogy and growth rate of the secondary growth of woody 
plants (Barber et al. 2000; Berner et al. 2013; Keenan et al. 
2014; Cuny et al. 2015), leading to a consequent shift in the 
boundaries of plant communities (Grace and James 1993; 
Bocharov 2009; Kharuk et al. 2009) or even to massive for-
est decline due to increased droughts (Zamolodchikov 2012; 
Kharuk et al. 2013, 2017; Liu et al. 2013; Allen et al. 2015). 
Under predicted future temperature increase scenarios, the 
monitoring of the health state, growth and productivity of 
forest ecosystems, as one of the most important global car-
bon sinks, is of particular interest (Myneni et al. 2001; Pan 
et al. 2011; Pugh et al. 2019).

Tree rings are the most informative source of data on 
growth and carbon deposition in woody plants (Fritts 1976; 
Büntgen at al. 2019). Particularly, environmental factors 
impact the process of wood cells’ formation and their ana-
tomical traits during tree-ring development (Plomion et al. 
2001; Hughes et al. 2010; Schweingruber 2012). The quan-
tification of wood anatomical traits within tree rings does 
not only provide detailed insight into the earlywood and 
latewood width, density profiles, cell lumen size and cell 
walls thickness, but also on their variation over time when 
analyzed in long-term tree-ring series (Vaganov et al. 2006; 
von Arx et al. 2016; Arx et al. 2018; Bjornklund et al. 2017; 
Rathgeber 2017; Ziaco and Liang 2019). Tree-ring based 
quantitative wood anatomy allows better understanding of 
physiological mechanisms in adaptation and acclimation of 
woody plants to changing environmental conditions (Chave 
et al. 2009; Fonti et al. 2010; Anderegg and Meinzer 2015), 
as well as revealing species-specific and regional patterns in 
phenology of cambial activity (Carrer et al. 2017; Castagneri 
et al. 2017). One of the significant questions in the study of 
the tree-ring structure being solved by quantitative wood 
anatomy is the fine balance between internal limitations and 
external factors as drivers of wood cells formation in the par-
ticular habitat conditions (climate, soil, landscape, etc.) and 
varying climatic characteristics of individual growth seasons 
(Fonti et al. 2010; Carrer et al. 2017; Castagneri et al. 2017; 
von Arx et al. 2018).

This study looks at selected wood anatomical traits of 
three species of conifers growing near the upper forest line in 
the Western Sayan Mountains (south of central Siberia). The 
harsh continental climate of this region is typified by high 
variation of temperature, thus location of the alpine treeline 
and tree growth at it can be controlled by temperatures and 
length of growing season as well as by severe winter frosts 
(Körner 1999; Körner and Paulsen 2004; Li et al. 2017). 
The evidences of reaction in growth and species distribu-
tion dynamics of various local trees to climate warming are 

ambiguous (Kuznetsova 2007; Kharuk et al. 2009, 2013; 
Tchebakova 2011; Zamolodchikov 2012 and others) and 
need further investigating, especially at the boundaries 
of forested area. Selected sampling site in vicinity of the 
huge Sayano-Shushenskoe Reservoir can be considered as 
a unique polygon undergoing extremely fast climate warm-
ing (0.2–1 °C per decade depending on season; Babushkina 
et al. 2018a, 2020). All three evergreen conifers included 
in the study (Pinus sylvestris L., Pinus sibirica Du Tour, 
and Picea obovata Ledeb.) are of interest for forest manage-
ment in Siberia, being widely spread in cold environments 
of alpine and boreal forests of the region. This study pro-
vides a conceptual framework to examine wood cells’ traits 
reflecting three main developmental phases of any wood cell 
(division, enlargement, and the secondary wall deposition), 
namely cell number, radial diameter and cell wall thickness. 
We investigate the wood structure variability under rapidly 
changing climate over the last decades, and comparison of 
three species will allow us to infer balance between common 
environmental conditions and species-specific acclimation 
strategies in formation of aforementioned anatomical traits.

Common environment and similar height of investi-
gated trees provide the same requirements to hydraulic and 
mechanical structure of their wood (Anfodillo et al. 2013; 
Piermattei et al. 2020). Thus, we expect comparable vari-
ability range for their anatomical traits, taking into account 
its natural dynamics within tree ring, i.e. distinction between 
earlywood and latewood. A second expectation is that pat-
tern of relationships between anatomical traits should link 
them in tree-ring structure similarly for all three species, 
providing its functioning in cold conditions. For example, 
Piermattei et al. (2020) unraveled a complex interconnec-
tion between 65 wood anatomical traits of Norway spruce 
grouped according to their functions. However, unlike that 
study where only five outermost tree rings were considered, 
here we address a wider temporal range of climatic variabil-
ity and its impact on the wood anatomical structure by inves-
tigating long-term tree-ring series. In connection with this, a 
third expectation is that the impact of temperature variation 
on wood anatomical structure during growing season should 
be similar for all three species and significant either in gen-
eral or at least for years with extreme low or high tempera-
tures (compare with Hantemirov et al. 2004; Neuwirth et al. 
2007; Carrer et al. 2016). In summary, the tasks set out to 
achieve the aim of this study are the following: (1) to define 
the range of variability of tracheids’ anatomical traits for 
each species; (2) to describe the relationships among these 
traits; and (3) to investigate how year-to-year temperature 
variations impact them.



481Trees (2021) 35:479–492 

1 3

Materials and methods

Study area

The research was performed on the Borus Ridge of the West-
ern Sayan Mountains, most of which is covered by conifer 
forests (Pinus sylvestris, Pinus sibirica, Larix sibirica, Picea 
obovata and Abies sibirica). The soils are loamy, thin and 
stony, with numerous hard rock yields. The climate of the 
study area is sharply continental, with large daily and sea-
sonal magnitudes of temperature fluctuations. Precipitation 
is unevenly distributed throughout the year, with a maximum 
observed in July and a minimum in February–March. As 
the elevation increases, temperatures decrease by an aver-
age of 0.65 °C per 100 m and annual precipitation increases 
approximately by 100–200 mm per 100 m (Polikarpov and 
Nazimova 1963; Maurer et al. 2002; Hamlet and Lettenmaier 
2005; Babushkina et al. 2018a).

The climatic data needed for this study were collected at 
Cheryomushki weather station (Cher 1951–2014, 52.87° N 
91.42° E, 330 m a.s.l.) located on the bank of the Yenisei 
River, 5 km north of the dam of the Sayano-Shushensky 
Reservoir. As shown in previous studies conducted in this 
area (Babushkina et al. 2018a, 2020), after the dam build-
ing, climate warming accelerated primarily in winter, the 
climatic dynamics of the warm season are still similar to the 
regional one. The interannual temperature dynamics is suf-
ficiently synchronous within the region (as shown by com-
parison with data from other weather stations up to 100 km 
of distance)to use the daily temperature series of the Chery-
omushki station, corrected for the difference in elevation 
between the station and the sampling site. To determine the 
dates of the temperature transition through certain threshold 
values Tthr in spring and autumn, temperature series were 
smoothed by 21-day moving average, and the first and last 
day of T > Tthr were found on the smoothed curve for each 
year (Online resource Fig. A1). Interval between these two 
dates was considered as estimation of vegetative period. In 
this study, threshold values of + 5 °C and + 8 °C were con-
sidered according to threshold temperature range approxi-
mately in the range of 5–8 °C for xylogenesis of conifers in 
boreal and mountain forests estimated in meta-analysis by 
Rossi et al. (2008). The sums of active temperatures above 
Tthr were calculated by summing up all positive values of (T 
− Tthr) for the identified vegetative periods. The time series 
of the obtained variables are shown in Online resource Fig. 
A2.

Sampling, processing, and measurements

The sampling site is located 9 km southeast of the weather 
station on the north-eastern mountain slope, 50–100 m under 

forest line (52.81° N 91.51° E, 1300–1350 m a.s.l.). Forest 
stand here consists of Pinus sylvestris, Pinus sibirica and 
Picea obovata with mature trees of all three species forming 
its canopy. For the sampling of cores, living mature (cam-
bial age > 80 years) dominant and subdominant trees without 
signs of mechanical damage were selected. The limitation 
of the minimum age allowed us to minimize age trends in 
the anatomical structure of tree rings for the period under 
consideration (cf. Vysotskaya and Vaganov 1989; Lei et al. 
1996; Eilmann et al. 2009). The homogeneous height of the 
sampled trees also minimized the effect of the axial varia-
tion of anatomical traits (Anfodillo et al. 2013). Cores were 
taken with incremental borers at the chest height (~ 1.3 m). 
Thin (~ 15–20 µm) wood cross-sections were obtained from 
the cores on a sledge microtome and stained with safranin. 
Next, sections were dehydrated with alcohols of increas-
ing concentration and fixed on permanent microscope slides 
with Canadian balsam. Anatomical measurements were 
carried out on microphotographs over a period of 50 years 
(1965–2014 for Picea obovata, 1968–2017 for the Pinus 
species); list of measured and calculated tree-ring traits is 
presented in Table 1. For each tree ring, we selected five 
radial files of cells (Seo et al. 2014; Belokopytova et al. 
2019) and measured cell number (N), lumen diameter (LD) 
and double cell wall thickness (DWT) with an accuracy of 
0.01 µm (Vaganov et al. 1985; Larson 1994). Then, the cor-
responding series of radial diameter (D = LD + DWT) and 
single cell wall thickness (CWT  = DWT/2) were calculated 
from the LD and DWT series.

Separation of tree ring to zones and assessment 
of their traits

To separate earlywood and latewood, the Mork index (Mork 
1928; Denne 1989) was adapted. The threshold value 
CWT/D = 0.125 was empirically selected to be located in 
the area of the lowest density of cells’ distribution between 
typical earlywood and latewood cells (Online resource Fig. 
A3). Note that the CWT /D values for typical earlywood cells 
are similar for all three species, which allowed the use of 
the common threshold value. Since drought-related intra-
annual density fluctuations (IADF) should not be observed 
in the cold and wet conditions of the study area, the almost 
complete absence (less than 1%) of rings where CWT /D after 
rising above the threshold returns to lower values testifies in 
favor of a correctly selected threshold value.

Then, for each ring as a whole and separately for ear-
lywood and latewood, values of N, average D and average 
CWT  were calculated. In addition, the maximum values of 
D and CWT , the position of the transition from earlywood 
to latewood PosLW (Online resource Fig. A4), and tree-ring 
width (TRW  = ΣD) were identified in each ring. To com-
pare tracheidograms (series of intra-seasonal D and CWT  
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variability) of the rings with different N, their normalization 
was used, i.e. compression or stretching of tracheidograms 
to a single value N = 15 cells (Vaganov 1990; Belokopytova 
et al. 2019).

Statistical analysis

To assess the relationships between anatomical traits, Pear-
son paired correlation coefficients and regression models 
were used; for each species, total set of 250 tree rings (5 trees 
× 50 years) was examined. In addition to linear regression 
models, we also used an exponential model with equation 
y = a0 + a1 ⋅ exp

(

a2 ⋅ x
)

 , where the numerical coefficients 
are fitted with the least squares method. The determina-
tion coefficients for nonlinear models were calculated by 
the equation R2 = 1−Σ

(

yactual−ymodel

)2
∕Σ

(

yactual−ymean

)2 
(Kvålseth 1985).

Results

Variability of wood anatomy near forest line

For each of the studied conifer species, average trachei-
dograms and range of variability for D and CWT  for all 
measured rings show wood anatomical traits’ dynamics 
within the tree rings (Fig. 1). The cell number N is compa-
rable for all three species, while latewood occupies a much 
smaller fraction of the ring (17% on average) for Sibe-
rian pine than for Scots pine and spruce (31% and 35% on 

average, respectively). The first tracheids in the earlywood 
have an average D over the 50 analyzed rings of 38–40 µm in 
all species. In spruce, these cells are the largest, but in pine 
species, D increases slightly from the beginning of the ring, 
reaching a maximum of 45–46 µm at 30–50% (P. sylvestris) 
or 10–20% (P. sibirica) of ring width. Then, in all species, 
D decreases to 9–12 µm in the latewood; the most gradual 
decrease is observed in Picea.

Over the 50-year period, the CWT  is stable in most part of 
the earlywood, i.e. it has similar average values (2.5–2.8 µm 
for both Pinus species and 1.7–2.1 µm for Picea) and low 
magnitude of inter-seasonal variability. Then, its values and 
the range of variability gradually increase to the middle of 
the latewood zone (average values: P. sylvestris —5 µm, P. 
sibirica —3.3 µm, P. obovata—3.4 µm), and toward the last 
cells decrease to 2.6–3.2 µm. Cell wall thickness increase 
from earlywood to latewood is the least pronounced for P. 
sibirica, in the most extreme cases CWT  remains stable 
(~ 2.3 µm) throughout the entire ring.

Intrinsic patterns: relationships between anatomical 
traits

Pattern of strong and weak relationships is similar for all 
three species (Table  2). The production of tracheids in 
earlywood and latewood is significantly positively cor-
related with each other, which provides a strong positive 
relationship of N with both New and Nlw. Wider earlywood 
(PosLW > 50% in 98% of measured rings) leads to a stronger 
relationship between N and New than between N and Nlw. 

Table 1  Measured ad calculated 
tree-ring traits

Description Abbreviation Unit of
measurement

Cell number in tree ring (per radial file of cells) N –
Cell number in earlywood (per radial file of cells) New –
Cell number in latewood (per radial file of cells) Nlw –
Lumen radial diameter LD µm
Double cell wall thickness DWT µm
Tree ring width TRW mm
Cell radial diameter D µm
Average cell radial diameter in earlywood Dew µm
Average cell radial diameter in latewood Dlw µm
Average cell radial diameter in tree ring Dmean µm
Maximum cell radial diameter in tree ring Dmax µm
Cell wall thickness CWT µm
Average cell wall thickness in earlywood CWT ew µm
Average cell wall thickness in latewood CWT lw µm
Average cell wall thickness in tree ring CWT mean µm
Maximum cell wall thickness in tree ring CWT max µm
Relative position of transition from earlywood to latewood 

cells in radial file
PosLW %
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Note that PosLW correlates more strongly with Nlw than with 
New, and does not have a significant correlation with N.

The dependences of the radial diameter traits on cell 
number are stronger after separation of ring into earlywood 

and latewood: the positive correlation of Dew, Dmax, and 
Dmean is maximum with New; Dlw is more strongly associ-
ated with Nlw. The increase in PosLW is associated with an 
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Pinus sibirica

mean ± SD (5%-95%)

N 20 ± 12 (7-42)
New 13 ± 7 (4-27)
Nlw 7 ± 5 (2-16)
PosLW, % 65 ± 7 (52-76)
Dmean, μm 27 ± 3 (22-33)
Dmax, μm 40 ± 5 (33-48)
Dew, μm 34 ± 4 (28-40) 
Dlw, μm 15 ± 4 (10-23)
CWTmean, μm 2.4 ± 0.4 (1.9-3.2)
CWTmax, μm 3.4 ± 0.9 (2.2-5.4)
CWTew, μm 2.1 ± 0.2 (1.7-2.4)
CWTlw, μm 3.1 ± 0.7 (2.1-4.6)

N 25 ± 9 (9-39)
New 17 ± 6 (6-26) 
Nlw 8 ± 4 (2-14) 
PosLW, % 69 ± 6 (58-78)
Dmean, μm 34 ± 3 (29-38)
Dmax, μm 45 ± 4 (38-50) 
Dew, μm 40 ± 3 (34-44)
Dlw, μm 21 ± 3 (15-25)
CWTmean, μm 3.3 ± 0.4 (2.6-4)
CWTmax, μm 5.0 ± 1.0 (3.3-6.8)
CWTew, μm 2.8 ± 0.3 (2.4-3.3)
CWTlw, μm 4.3 ± 0.7 (3.1-5.5)

N 20 ± 7 (10-32)
New 16 ± 6 (7-27)
Nlw 3 ± 2 (2-7) 
PosLW, % 83 ± 6 (71-90)
Dmean, μm 35 ± 3 (30-39) 
Dmax, μm 46 ± 4 (40-52)
Dew, μm 39 ± 3 (34-43) 
Dlw, μm 16 ± 4 (11-23)
CWTmean, μm 2.8 ± 0.4 (2.3-3.4)
CWTmax, μm 3.3 ± 0.6 (2.5-4.5)
CWTew, μm 2.7 ± 0.3 (2.3-3.3)
CWTlw, μm 3.1 ± 0.6 (2.3-4.2)

Fig. 1  Tracheidograms of cell radial diameter D (solid lines), cell 
wall thickness CWT  (dashed lines), and inter-annual range of transi-
tion to latewood PosLW (vertical dotted lines) for three species in the 
study area. Light lines represent 5% and 95% percentiles, dark lines 

represent mean values over all 50-year period. On the table at the 
right from each plot, ranges of variation are presented: mean value, 
standard deviation, 5% and 95% percentiles for each investigated tree-
ring trait



484 Trees (2021) 35:479–492

1 3

increase in Dmean, does not correlate with Dew and Dmax, 
but has a negative correlation with Dlw. Cell radial diame-
ter traits Dew, Dmax, and Dmean have strong positive correla-
tions between themselves but less pronounced correlations 
with Dlw. Among the interrelations of the cell wall thick-
ness with other anatomical traits, the strongest positive 
correlations are with Nlw and Dlw, a negative relationship 
is observed with PosLW. At the same time, all CWT  traits 
are closely correlated.

The relationships that were strongly significant for all 
species and not described directly with mathematical func-
tions were considered in more details (Online resource Fig. 

A5). The Nlw(New) dependence is close to linear, but the 
distribution of data points (tree rings) on the scatter plots has 
shape of a triangle rather than strait line. The D(N) depend-
ences in both zones of the ring are nonlinear and are well 
described by a negative exponential functions with a hori-
zontal asymptote in the area of wide rings (R2 of exponential 
models is stably higher than that of linear models, as well 
as their curves’ visual fitness to actual data points). Appli-
cation of exponential functions D(N) improves the quality 
of modeling the TRW (N) dependence in comparison with 
the simple linear model with constant average cell diameter 
(Table 3), allowing in one model to obtain the maximum 

Table 2  Correlations between 
anatomical traits

Traits N New Nlw PosLW Dmean Dmax Dew Dlw CWT mean CWT max CWT ew

Picea obovata
 New 0.98
 Nlw 0.94 0.84
 PosLW − 0.11 0.08 − 0.39
 Dmean 0.57 0.61 0.46 0.31
 Dmax 0.44 0.45 0.39 0.10 0.85
 Dew 0.44 0.43 0.41 0.04 0.92 0.89
 Dlw 0.83 0.76 0.87 − 0.34 0.59 0.46 0.51
 CWT mean 0.77 0.67 0.87 − 0.48 0.50 0.43 0.51 0.90
 CWT max 0.82 0.74 0.88 − 0.36 0.57 0.45 0.52 0.93 0.95
 CWT ew 0.64 0.60 0.64 − 0.25 0.48 0.42 0.49 0.67 0.83 0.69
 CWT lw 0.81 0.73 0.86 − 0.35 0.57 0.44 0.52 0.93 0.96 0.99 0.70

Pinus sylvestris
New 0.96
 Nlw 0.87 0.71
 PosLW − 0.09 0.15 − 0.52

Dmean 0.66 0.75 0.38 0.33
 Dmax 0.69 0.69 0.55 − 0.01 0.85
 Dew 0.66 0.67 0.52 − 0.01 0.92 0.91
 Dlw 0.76 0.69 0.74 − 0.26 0.69 0.67 0.71
 CWT mean 0.42 0.25 0.63 − 0.60 0.19 0.34 0.37 0.61
 CWT max 0.57 0.44 0.68 − 0.45 0.36 0.45 0.47 0.73 0.89
 CWT ew 0.31 0.21 0.42 − 0.34 0.22 0.30 0.34 0.41 0.87 0.64
 CWT lw 0.50 0.37 0.63 − 0.45 0.33 0.39 0.43 0.72 0.91 0.97 0.65

Pinus sibirica
 New 0.98
 Nlw 0.74 0.59
 PosLW 0.04 0.22 − 0.61
 Dmean 0.50 0.54 0.18 0.30
 Dmax 0.43 0.44 0.25 0.10 0.82
 Dew 0.40 0.38 0.32 − 0.03 0.92 0.83
 Dlw 0.65 0.56 0.75 − 0.38 0.41 0.33 0.42
 CWT mean  0.61 0.53 0.70 − 0.34 0.53 0.49 0.58 0.80
 CWT max 0.70 0.62 0.74 − 0.30 0.49 0.39 0.50 0.87 0.88
 CWT ew 0.57 0.51 0.62 − 0.26 0.54 0.52 0.58 0.70 0.97 0.78
 CWT lw 0.63 0.56 0.66 − 0.27 0.48 0.35 0.48 0.86 0.83 0.96 0.70
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explained variation and plausible estimate of Dmean in wide 
rings. In other dependences, nonlinearity was not observed.

Temperature variation and its impact on wood 
anatomical structure

Unlike winter climate of the study area, the temperature 
characteristics of the growing season did not undergo dras-
tic changes after the construction of the reservoir and the 
launch of the hydroelectric station (Online resource Fig. 
A2). Nevertheless, long-term trends were observed: June 
to August temperatures increased on average by 0.12 °C per 
decade; the sum of active temperatures increased by 4–5 °C 

per decade, depending on the choice of the threshold tem-
perature value; every decade, the growing season began ear-
lier by 0.8–1.0 days and ended later by 1.2–2.1 days (i.e. its 
duration increased by 2.1–3.0 days per decade). Note also 
that the most extreme years in terms of heat supply were 
unevenly distributed in the considered period (Table 4). The 
extremely cold and short vegetative seasons were more often 
observed before the reservoir was filled (the most extreme 
years were 1971, 1972, 1983, 1984, 1985) than after that 
(1995, 2014), and vice versa, the longest and warmest vege-
tative seasons were recorded after the filling of the reservoir: 
1990, 1998, 1999, 2001, 2002, 2004, 2007.

Table 3  Estimations of Dmean 
from various models TRW(N, 
Dmean) and from actual time 
series

a Nonlinear model: TRW  = N·(D*mean − a1·exp(− a2·N))
b D*mean—estimation of mean D in wide rings (asymptote in the exponential function Dmean(N) for each 
species, mean value for five widest rings for each tree in actual series)
c estimation of D*mean only for trees with Nmean > 20

Tree spe-
cies

TRW  = TRW 0 + Dmean·N TRW  = Dmean·N Nonlinear  modela Actual series

TRW 0 Dmean R2 Dmean R2 D*
mean

b R2 Dmean D*
mean

b Nmean

Pinus sylves-
tris

− 0.0676 37.16 0.975 34.79 0.971 35.87 0.976 33.77 34.69
35.12c

25.27

Pinus 
sibirica

− 0.0711 38.90 0.965 35.66 0.958 36.65 0.965 34.81 35.91
36.19c

19.76

Picea obo-
vata

− 0.0646 31.85 0.968 29.40 0.961 30.39 0.968 27.40 29.01
30.17c

19.75

Table 4  Years when the most extreme values of temperature variables were recorded (during 1968–2014, common period for anatomical meas-
urements of the three species)

a For each temperature variable, 5 years are indicated in order from the most extreme to the less extreme value in each direction of the extreme. 
Underlined are years when extremes of the several variables, all in same direction, were registered

Values Temperature variable Low heat supply High heat supply

Values Yearsa Values Yearsa

June–August temperature T_JJA (°C) 9.2–9.8 1985, 1971, 1988,
2010, 1984

11.6–12.0 2005, 2008, 1998, 2002, 
2012

Sum of active temperatures > 8 °C ΣT8
(degree-days)

1040–1310 1985, 1971, 1995,
2006, 1970

1794–2036 2004, 2001, 2002,
1999, 1998

Sum of active temperatures > 5 °C ΣT5
(degree-days)

1560–1690 1985, 1983, 1972,
2010, 1976

2040–2400 2007, 2002, 2004,
2000, 2001

Beginning of period with tempera-
tures > 8 °C

T8beg (date) 12–21 Jun 1995, 1989, 1971,
2014, 1984

14–19 May 2004, 1992, 2001,
2002, 1990

Ending of period with temperatures > 8 °C T8end (date) 14–21 Aug 1969, 2006, 1985,
1972, 1968

4–12 Sep 2007, 2004, 1973,
1998, 2010

Duration of period with temperatures > 8 °C T8dur (days) 61–71 1985, 1995, 1996,
1971, 1969

104–122 2004, 2001, 2002,
1990, 1999

Beginning of period with tempera-
tures > 5 °C

T5beg (date) 30 May–
3 Jun

2014, 1984, 1983,
2010, 2013

25 Apr–
9 May

2007, 1990, 1999,
1991, 2001

Ending of period with temperatures > 5 °C T5end (date) 28 Aug–
2 Sep

1972, 1996, 1985,
1968, 1974

19–23 Sep 1988, 2006, 2007,
2012, 2002

Duration of period with temperatures > 5 °C T5dur (days) 99–103 1972, 1983, 1985,
2014, 2013

130–149 2007, 2002, 2004,
1997, 2000
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Typical for continental climate high magnitude of tem-
perature fluctuations leads to an almost twofold difference 
in heat supply between the most extreme years; the vegeta-
tive season onset in spring has a fluctuation range of 38–39 
days, its ending in autumn has range of 28–29 days, and 
duration varies by 50–61 days (according to estimates of 
temperature transition dates above and below considered 
threshold values).

No significant correlations were found between calcu-
lated temperature characteristics and the anatomical traits of 
earlywood, latewood, and total ring. However, in the most 
extreme years in terms of heat supply, similar deviations in 
the anatomical structure of tree rings were observed in all 
three species (Fig. 2). During extremely cold/short growing 
seasons, slightly larger but much thinner-walled cells were 
formed, and vice versa, during extremely warm/long seasons 
tracheids were slightly smaller but with much thicker walls. 
Significant differences (p < 0.05) were observed in CWT  at 
the border of earlywood and latewood (in 6–10th normalized 
cell positions for spruce, 7–14th positions for Scots pine, and 
11–12th positions for Siberian pine), the difference in D is 
less stable (9–11th positions for spruce, 4th and 12th posi-
tions for Scots pine, 1st and 6th positions for Siberian pine).

Discussion

The study area is close to the upper boundary of the com-
mon species distribution range, i.e., at the left end of the 
bell-shaped curve of their temperature tolerance, according 
to Shelford’s law (Shelford 1931), where low temperatures 
limit trees growth (Li et al. 2017). Taking into account the 
commonality of local conditions, like wind load or soil char-
acteristics, we observe a plastic response of these conifers’ 
morphology to environmental pressure of a similar direc-
tion and intensity. Common intra-seasonal timeframe of this 
pressure is provided by fairly minor differences (Babarykina 
and Grigoryev 2006; Ovchinnikova et al. 2011; Ovaskainen 
et al. 2020) and common patterns in primary and second-
ary growth phenology (e.g., cambial activity temperature 
threshold for conifers in Rossi et al. 2008; early beginning of 
photosynthesis in Suvorova et al. 2005, 2011; synchronous 
bud break and onset of cambial activity of evergreen conifers 
in Velisevich and Khutornoy 2009; Antonucci et al. 2015; 
etc.). This allows us to interpret any revealed differences 
in their wood anatomy primarily as the species specificity 
of growth processes’ internal regulation and of the strategy 
of their adaptation to the cold and short vegetative season.

General and species‑specific patterns in the wood 
anatomical structure

The average cell number per radial file of tracheids in the 
tree ring has similar variation ranges for all three species. It 
seems that sharing habitat, habitus and phenological cycle as 
evergreen conifers provided common intra-seasonal patterns 
of the organic substances’ synthesis and deposition in all 
three species. Furthermore, these common factors pressed 
the same requirements to the hydraulic architecture of xylem 
(Anfodillo et al. 2012, 2013; cf. Campelo et al. 2013), i.e. 
size and wall thickness of earlywood tracheids as main water 
conduits (Scweingruber 2012; Hacke et al. 2015). Small size 
of earlywood cells compared to warmer natural areas within 
the region (Babushkina et al. 2010, 2018b, 2020; Belokopy-
tova et al. 2019) may be due linked to growth processes 
being limited by low temperature (Hoch and Körner 2003), 
slowing the production of new cells (Körner 1999; Körner 
and Paulsen 2004) and hindering deposition of macromol-
ecules in the secondary cell walls (Crivellaro and Büntgen 
2020). On the one hand, cold alpine forests are characterized 
by relatively low tree height, which is clearly linked to for-
mation of smaller conduits at the stem base of mature trees 
(Anfodillo et al. 2013; Olson et al. 2014; Rungwattana and 
Hietz 2017). Moreover, combination of low temperatures 
and high relative air humidity during growth season in the 
study area reduces transpiration and cell turgor, leading to 
slower cell extension and eventually smaller tracheids (Lock-
hart 1965; Proseus and Boyer 2005). On the other hand, 
the limited size and relatively thick walls of the earlywood 
conduits, similar for all species, may have been selected for 
higher mechanical wood strength to resist high wind and 
snow loads, and also to minimize the risk of tracheids’ dam-
age by severe winter frosts (Davis et al. 1999; Mayr et al. 
2002, 2006; Bigras and Colombo 2013; Hacke et al. 2015).

Differences in the latewood structure between the three 
species are more pronounced, namely its ratio in the ring 
and CWT  values (see other observations comparing conifer 
species under similar conditions: Babushkina et al. 2010; 
Vaganov et al. 2010; Darikova et al. 2013; Carteni et al. 
2018), with much lesser values of both traits for Siberian 
pine. Carteni et al. (2018) suggested that the transition to 
latewood is regulated by a sharp increase in the availability 
of carbohydrates in the lower part of the stem after cessa-
tion of the primary growth. Therefore, genetically predeter-
mined (Kuznetsova 2007; Kuznetsova and Grek 2016) dif-
ferences in the intensity and duration of the primary growth 
for Siberian pine, like longer needles, denser foliage, and 
especially additional development of the so-called summer 
shoots in mature trees during end of June—beginning of July 
(Goroshkevich 2006; Goroshkevich and Popov 2009; Velise-
vich et al. 2009), may lead to a retarded switch to latewood 
formation. The radial growth and anatomical structure also 
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may be affected by competition for nutrients with reproduc-
tive processes (Innes 1994; Rovere et al. 2003; Olano et al. 
2017), whose productivity is also typically higher for Sibe-
rian pine in comparison with other considered species and 
is shown to be strong competitor for resources in Siberian 

pine provenances adapted to cold environments (Zhuk and 
Goroshkevich 2018). We suggest that a small ratio and 
low CWT  of latewood for Siberian pine can be associated 
with a genetically fixed species strategy of diverting more 
resources to primary growth and reproduction, which is 
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realized through a low deposition rate of the tracheids’ sec-
ondary wall compared to other species. However, this spe-
cies is currently underappreciated as subject of research in 
the area of carbon assimilation and allocation. Therefore, 
to test this hypothesis, it would be interesting to conduct a 
meta-analysis of carbon deposition in various vegetative and 
reproduction organs on scale of comparison between dif-
ferent species and/or climatic zones of conifer distribution.

Relationships between anatomical traits

Taking into account the functional dependences (Online 
resource Fig. A4) of the total ring traits on the traits of 
earlywood and latewood, the interconnections between 
anatomical traits common to all three coniferous species 
can be summarized schematically as presented on Fig. 3. 
The stability of the ratio of earlywood and latewood in the 
ring (PosLW), regardless of radial growth rate, results from 
the tradeoff between water supply and carbon deposition/
mechanical strength (Lachenbruch and McCulloh 2014). 
Since cambial activity during the season is regulated by 
the processes of primary growth through the synthesis of 
hormones and nutrients (Dodueva et al. 2014; Huang et al. 
2014), it can be assumed that cell production in two zones of 
the ring is interconnected by feedback with the tree habitus 
and the characteristics of the photosynthetic apparatus both 
in process of its formation (New), and afterward (Nlw).

A nonlinear dependence of the cell radial diameter on 
their number is found in both zones of the ring, but its non-
linearity is more pronounced in earlywood. This may be due 
to the presence of two paths of regulation of cell expansion: 
(1) internal regulation of all secondary growth processes 

by hormones and availability of nutrients (Vorobyova and 
Vorobyov 1999; Dünser and Kleine-Vehn 2015; Carteni 
et al. 2018); (2) external restriction of the growing cells’ 
turgor and, accordingly, cell expansion by low temperature 
and high air humidity (Lockhart 1965; Proseus and Boyer 
2005). As a result, in earlywood formed during relatively 
cool beginning of vegetative season, the second limita-
tion blocks increase of cell size above certain threshold at 
New > 10–15 cells; latewood cells expand during the middle 
of the season at higher temperature and due to fast switch to 
cell wall deposition don’t reach aforementioned size thresh-
old, thus their expansion is mainly limited by decreasing 
concentration of growth hormones, and has more linear rela-
tionship with cell production.

In earlywood, the relationship between the results of suc-
cessive stages of tracheid differentiation is relatively weak, 
which may be due to compensation mechanism in the kinet-
ics of xylogenesis described by Balducci et al. (2016): an 
increase in the duration of a certain stage of tracheid matu-
ration in the case of a decrease in its speed. Duration of 
the secondary cell wall deposition in latewood is limited by 
short duration of vegetative season, especially in cold alpine 
forests, which impedes the aforementioned compensatory 
mechanism (confer Cuny and Rathgeber 2016). Therefore, 
the rate of the corresponding process plays the prevailing 
role in the CWT values of this zone. In conditions of suf-
ficient moisture, this rate is probably limited by the tem-
perature dynamics and the efficiency of the photosynthetic 
apparatus, fully formed at this time of season. It should also 
be noted that, as seen in Online resource Fig. A3, the ratio of 
CWT /D in latewood has a definite maximum value of about 
0.3–0.4, above which it practically does not rise. This is due 

LatewoodEarlywood 
New Nlw 

Dew Dlw 

CWTew CWTlw CWTmax 

Dmax 

PosLW

N 

CWTmean 

Dmean

LatewoodEarlywood 
New Nlw

Dew Dlw

CWTew CWTlw CWTmax

Dmax

PosLW

N

CWTmean

Dmean

Fig. 3  Intrinsic relationships between investigated tree-ring traits. Arrows indicate direction of statistical (black) and strictly functional (gray) 
relationships. Abbreviations of traits are presented according to Table 1
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to the necessity to have enough inner space for organelles 
and cytoplasm until the very end of tracheid differentiation. 
Such an internal limitation leads to strengthening of the 
CWT (D) positive relationship in the last cells of the ring.

The effect of heat supply and the duration 
of the vegetative season

At present, it is still not completely clear which of the two 
temperature-related factors limits the growth of trees in 
mountain ecosystems to a greater extent: the duration of 
the vegetative season (its onset and ending dates) or heat 
supply during xylogenesis (Bouriaud et al. 2005; King et al. 
2013; Jochner et al. 2018). At the beginning of the season, 
an earlier onset of temperatures favorable for xylogenesis 
leads to an increase in the duration of the cambial activity 
(Gindl et al. 2001; Rossi et al. 2012, 2013). At the end of 
the vegetative season, a decrease in temperature primarily 
limits the process of organic substances’ deposition in the 
structure of xylem (Hoch et al. 2002; Hoch and Körner 2003; 
Piper et al. 2006), leading to inhibition of cell wall thicken-
ing even before photosynthesis deactivation. On the other 
hand, the rate of growth processes (both the formation of 
new shoots and needles, and xylogenesis in the trunk) is 
regulated by heat supply during all the season, which can be 
expressed in terms of the sum of active temperatures. The 
difficulty in separation of the signal from duration and heat 
supply of the vegetative season is that these climatic vari-
ables are positively interrelated in the study area: most years 
with extremely high summer temperatures are characterized 
by an earlier beginning and/or late ending of the season, 
and vice versa (Table 4). Therefore, in this case, tempera-
ture extremes were considered in the complex. The absence 
of significant correlations between generalized anatomical 
traits and temperature variables may be due to the mismatch 
of the temporal scales. Even while generalized, cell num-
bers and measurements are regulated by climatic fluctua-
tions over much shorter periods than full vegetative season 
(T > 8 °C or T > 5 °C) or the most part of it (June–August).

At the same time, the analysis of tracheidograms of 
pointer (extreme) years showed more significant results. 
First of all, the extremes of heat supply and the duration of 
the vegetative season affect the deposition of the secondary 
cell wall. However, their influence is overridden by require-
ments for the hydraulic structure through internal regulation 
in typical earlywood cells, and by limitation of the minimum 
necessary lumen volume in the last cells of the ring. An 
unexpected reverse reaction of the radial cell diameter (the 
formation of larger cells during short/cold seasons) may be 
due to the fact that the result of cell expansion depends on 
its duration more than on rate (Denne 1972; Anfodillo et al. 
2012; Cuny 2013), and increased by higher temperatures 
availability of nutrients stimulates a faster transition from 

cell extension to wall thickening (Carteni et al. 2018). In 
addition, a decrease in the radial size and an increase in the 
cell wall thickness in the middle of the ring can be inter-
preted as shift to the higher proportion of latewood during 
warmer/longer growth season, which may be because of ear-
lier beginning and later ending of latewood cells’ produc-
tion after completion of the primary growth. This hypothesis 
is supported by observations, for example, in the Natural 
Reserve “Stolby”, where regional warming trends led to 
not only earlier, but also faster development of foliage for 
all three studied conifer species (Ovchinnikova et al. 2011; 
Ovaskainen et al. 2020).
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