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a b s t r a c t

We present nlchains, a software for simulating ensembles of one-dimensional Hamiltonian systems
with nearest neighbor interactions. The implemented models are the α-β Fermi–Pasta–Ulam–Tsingou
model, the discrete nonlinear Klein–Gordon model with equal or site-specific masses, the Toda lattice
and the discrete nonlinear Schrödinger equation. The integration algorithm in all cases is a symplectic
sixth order integrator, hence very accurate and suited for long time simulations. The implementation
is focused on performance, and the software runs on graphical processing unit hardware (CUDA). We
show some illustrative simulations, we estimate the runtime performance and the effective scaling of
the cumulative error during integration. Finally, we give some basic pointers to extend the software
to specific needs.
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1. Introduction and motivation

Nonlinear chains, that is systems of points with nonlinear
nearest-neighbor interactions, have an important role in the un-
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derstanding of the basic processes of nonlinear physics and sta-
tistical mechanics. Despite being in general toy models, or at
best crude approximations of real physical systems, they show
a rich phenomenology, and even basic questions such as the
thermalization dynamics or heat transport law often do not have
a definitive answer. Not by chance, one of the first numerical ex-
periment in physics was the Fermi–Pasta–Ulam–Tsingou, that is
the renowned FPUT experiment [1,2]. The aim of the experiment
was to observe the thermalization of a linear chain of masses
and springs, when a small nonlinearity is added. The apparent
paradox of the FPUT experiment is that thermalization in the
FPUT system cannot be attained in a short time, and so it could
not be observed with the computers of the fifties.

Recently, we and collaborators have applied tools of Wave
Turbulence [3,4], a statistical description of weakly interacting
wave systems, to seek universal traits in the thermalization dy-
namics of nonlinear chains, [5–9] and also [10,11]. To this end,
we needed a software to run large simulation of these systems.
These numerical experiment are often time-consuming because
thermalization oftentimes requires a long time compared to the
wave periods of the corresponding linearized system, and also
because large ensembles of realizations of the same chain are
needed to extract meaningful statistics. For these reason, the code
had to be written with performance but also accuracy in mind,
because the Hamiltonian structure of the system needs to be
preserved for long times. We could not find a properly published
software that could fit our needs. Recently, an implementation of
the FPUT system (possibly extendible to other model) has been
published [12], however it was not designed with performance as
a strong point, but rather it has a pedagogical value, stressing on
fast prototyping and code readability. Our contribution here is the
software that we used in our research, that is the implementation
on graphical processing unit hardware (GPUs) of the time integra-
tion for several one-dimensional nonlinear chains. The principal
value of this software is the effort that we have spent in tuning
its performance.

2. The implemented algorithms

In Table 1 we list the models that are already implemented
in nlchains. The qj and pj variables are the conjugate coordinates
and momenta, while ψj is a complex variable, for j an index
that runs from 0 to N − 1, with N the length of the chain. We
have included the original α-β Fermi–Pasta–Ulam–Tsingou model
(FPUT), the discrete nonlinear Klein–Gordon model with equal
masses (DNKG) and disordered, site-specific masses (dDNKG),
the Toda lattice and the discrete nonlinear Schrödinger equation
(DNLS). The specific version of the Toda lattice potential has been
chosen so that it is tangent to the α-FPUT model, that is the
potential energy between two adjacent masses V (qj+1 − qj) =

V (∆qj) is VToda(∆qj) = V-FPUTα(∆qj) + O(∆q4j ). Extending the
software to other systems with similar potentials is expected to
be easy. The parameters α, β , m and mi can be set by the user.

2.1. The integration scheme

As mentioned in the introduction, the choice in the algorithm
was driven by the need of a good performance but also ac-
curacy in the conservation of the Hamiltonian structure of the
nonlinear chains. We chose the 6th order symplectic Yoshida
integrator [13]. This algorithm suited our needs for the following
reasons. It allows for very long time simulation, as being sym-
plectic it avoid secular growth of conserved quantities such as
the Hamiltonian. It is explicit, which makes it direct and easy
to implement. We chose the sixth order, as it resulted in an
optimal trade-off between computational speed and accuracy in

our field of research. Higher order schemes of the same type
can be implemented with trivial modifications of the source code
(details will be given in a later section).

For reference, we report here the principle of this integration
scheme. Since all the systems considered are Hamiltonian, the
formal solution to the time evolution of some initial state z =

(q0, . . . , qN−1, p0, . . . , pN−1) (or z = (ψ0, . . . , ψN−1) for the DNLS
model) is given by the Poisson bracket

ż = {z,H(z)}. (1)

Now the above equation can be formally solved by introducing
the differential operator DH = {·,H(·)}, to obtain

ż = DHz, z(δt) = eδtDH z(0). (2)

In general it is not possible to give an explicit form of eδtDH , as
that coincides with integrating the system. However, since the
Poisson brackets are bilinear, it is possible to take advantage of
the fact that the Hamiltonians in consideration are the sum of
different terms. If one splits the Hamiltonians in two contribu-
tions, H = HA + HB, then the differential operator also splits in
two corresponding parts, DH = DA + DB, to get

z(δt) = eδtDH z(0) = eδt(DA+DB)z(0). (3)

In general, DA and DB do not commute, so it is not possible to
write eδtDH = eδtDAeδtDB , however it can be shown that it is
possible to generate a scheme of the type

eδtDH = ec1δtDAed1δtDBec2δtDAed2δtDB . . . eckδtDAedkδtDB + O(δtx) (4)

where the coefficients ck and dk are real and x is some positive
integer, the order of the integration scheme. Given that, when the
splitting H = HA + HB is chosen carefully so that HA and HB are
individually integrable, it is possible to generate a fully explicit
integrations scheme.

For the real models, the most natural choice is to split the
Hamiltonian into kinetic and potential energy, that is HA =

1
2p

2
j

and HB = V (qj+1−qj). For the DNLS model, we follow [14] and we
split the Hamiltonian in the linear and nonlinear contributes, that
is HA =

∑ 1
2β|ψj|

4 and HB =
∑

|ψj+1 − ψj|
2. The solution to the

ck and dk of Eq. (4) that we hard-coded in the software is taken
from [13], it is of the 6th order and the values of the coefficients
ck and dk are

{c0, . . . , c7} = {0.392256805238780, 0.510043411918458,
− 0.471053385409757,
0.068753168252518, 0.068753168252518,
− 0.471053385409757,
0.510043411918458, 0.392256805238780}

(5)

and

{d0, . . . , d7} = {0.784513610477560, 0.235573213359357,
− 1.177679984178870,
1.315186320683906,−1.177679984178870,
0.235573213359357,
0.784513610477560, 0}.

(6)

Note that the coefficient d7 is 0, hence it is possible to merge the
last integration of one step eδtc7DA with the first integration of the
next step eδtc0DA . We expect that if the user needs higher order
integrators (e.g. 8th), modifying the software to this end should
be quite trivial.

In concluding this section, we remark that for all the models
except DNLS, the integration is performed in physical space.
For the DNLS model however, because the linear and nonlinear
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Table 1
The list of implemented models in nlchains. For real models, qj and pj are the
conjugate coordinate and momentum at index j ∈ [0,N) with N the length of the
chain (q̇j = pj). For DNLS, ψj is a complex variable, and i is the imaginary unit.

Subprogram Equation of motion and Hamiltonian density

DNKG ṗj = qj−1 − 2qj + qj+1 − mqj + βq3j

Hj =
1
2 p

2
j +

1
2

(
qj+1 − qj

)2
+

1
2mq2j +

1
4βq

4
j

dDNKG ṗj = qj−1 − 2qj + qj+1 − mjqj + βq3j

Hj =
1
2 p

2
j +

1
2

(
qj+1 − qj

)2
+

1
2mjq2j +

1
4βq

4
j

FPUT

ṗj =
(
qj−1 − 2qj + qj+1

) (
α

(
qj+1 − qj−1

)
+ 1

)
+

+ β

((
qj+1 − qj

)3
−

(
qj − qj−1

)3)
Hj =

1
2 p

2
j +

1
2

(
qj+1 − qj

)2
+

1
3α

(
qj+1 − qj

)3
+

1
4β

(
qj+1 − qj

)4
Toda ṗj =

1
2α

(
e2α(qj+1−qj) − e2α(qj−qj−1)

)
Hj =

1
2 p

2
j +

1
4α2

(
e2α(qj+1−qj) − 2α

(
qj+1 − qj

)
− 1

)
DNLS iψ̇j = −

(
ψj−1 − 2ψj + ψj+1

)
+ βψj

⏐⏐ψj
⏐⏐2

Hj = |ψj+1 − ψj|
2
+

1
2β|ψj|

4

sub-Hamiltonians are diagonal in Fourier and physical space re-
spectively, the integration scheme become essentially a refined
split-step scheme [15], and the time evolution of the linear part is
performed in Fourier space, as suggested (but not implemented)
in [14]. This has the side effect that a large number of Fast Fourier
Transforms (FFTs) are performed in integrating the DNLS model,
that is 14 FFTs per step: the number of non-zero dk coefficients,
doubled to account for a direct and inverse FFT to go back and
forth from physical space. As we will explain later, this has
important consequences in the numerical accuracy and speed of
the algorithm.

2.2. Other calculated quantities

In order to observe recurrence and equipartition, the software
also calculates with a user-settable interval the average energy
per eigenstate of the linearized system (that is α = 0 and β = 0 in
Table 1). For the DNKG, FPUT and Toda systems, it can be shown
that the eigenstates of the linearized systems are the so called
normal modes,

ak =
1

√
2ωk

(̃pk − iωk̃qk) (7)

where the q̃k and p̃k are the discrete Fourier transform of the qj
and pj, and ωk is the dispersion relation of the system, that is ωk =√
m + 4 sin (πk/N)2. For the DNLS model, the normal modes ak

are simply the discrete Fourier transform ψ̃k of the physical space
variables ψj, and the dispersion relation is ωk = 4 sin (πk/N)2. In
all these cases the energy per mode is defined as

ek = ωk⟨|ak|2⟩ (8)

with ⟨·⟩ being the average over the ensemble. For the dDNKG
model, the eigenstates vk and corresponding eigenvalues ω2

k are
calculated numerically from the matrix representation of the
system of ordinary differential equations that correspond to the
equations of motion of the chain. The energy per mode is then
obtained from and explicit projection of the coordinates and
momenta vectors q = (q0, . . . , qN−1) and p = (p0, . . . , pN−1) over
the eigenstates,

ek = ⟨vk ·
(
ω2

kqk + pk
)
⟩/2. (9)

From the average energy per mode, the software calculates
and outputs the associated information entropy,

Sinf =

N−1∑
k=0

e′

k log(e
′

k), e
′

k =
N
E
ek, (10)

where N is the length of the chain and E =
∑

ek the total linear
energy, and the Wave Turbulence entropy

SWT = −

N−1∑
k=0

log(e′

k). (11)

Traditionally, Eq. (10) has been used to monitor the route to
thermalization of the FPUT problem, but in the framework of
Wave Turbulence only Eq. (11) has the properties of an entropy
function, that is it can be proven that statistically it is a monotonic
decreasing function in time. However, it can be shown [8] that
both these two entropies are greater than zero out of thermal
equilibrium, and zero at perfect equipartition, and they are es-
sentially equivalent for the purpose of monitoring the route to
thermalization.

3. Software architecture

The software is packaged in a stand-alone Linux executable.
Build requirements and compilation steps are documented in
the readme (file README.md) that comes with the sources. An
important detail of the building process is that all models except
DNLS are optimized at compile-time for a specific chain length.
A warning is generated if a build of nlchains is launched for
a value of the chain length that does not correspond to the
optimized value, but the computation is carried out anyway. For
more details we refer the reader to Section 5.

The simulation is set up with a number of command line
arguments. The invocation in the shell is in the following form:

[<MPI launcher>] nlchains <model> \\
<common options> \\
<model specific options>

The executable can be run as-is to run on a single GPU on the
current host, or through MPI to split the ensemble of realizations
on different GPUs. The user should assign to each compute node
the same number of MPI processes as the number of GPU attached
to the node itself. When running through MPI, the software
expects the presence of a shared filesystem, because full-state
dumps are written on disk with the MPI shared I/O facilities.

The GPU code is written in CUDA, and the host code is written
in C++14, hence a NVIDIA GPU card (minimum compute capability
3.0) is required. Please note that the software is implemented in
floating point double precision, and so a card of the Tesla line
is suggested, because consumer-level cards are largely limited in
the double precision performance.
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Table 2
List of the output files. The value of prefix is set with the commmand line option
-p (see Table 3)
Filename Description
prefix-step Full dump of the ensemble state
prefix-linenergies-step Energy per eigenstate
prefix-entropy List of entropies

dDNKG only:
prefix-eigenvectors eigenvectors
prefix-omegas pulsation of the eigenvectors

For the purpose of performance comparison, and as a fallback
in the case that no GPU is available on the host, all the models also
have a CPU-only implementation. To launch it, simply append to
the model name -cpu, for example DNLS-cpu. The implementa-
tion is single-threaded but multiple cores and nodes can be used
for parallelization in the same way that the GPU implementation
can be launched on multiple GPUs. The implementation also
makes use of advanced SIMD instructions present in modern
processors (SSE, AVX and AVX-512), and as such it should be re-
garded competitive in performance. This implementation is used
here to compare to the performance of the GPU implementation
(see Section 5.2). However, it is not the main message of this
paper to present a CPU implementation. The interested reader is
referred to the implementation notes attached to this paper as
supplementary material for further information.

3.1. File formats

The format of the inputs and outputs is raw binary. The list of
output files is shown in Table 2.

The initial state of the ensemble, and the full state dumps are
in the same format, that is as a C++ array double[C][N][2],
where C is the ensemble size, N is the chain length, and the
last two-elements array contains the conjugate coordinate qj and
momentum pj of the element in the chain. For the DNLS model,
the format is std::complex<double>[C][N], that is the real
and imaginary part of the element in the chain take the places of
the conjugate coordinate and momentum.

The energy per linear mode dumps is simply a plain array of
doubles, double[N]. Note that when a discrete Fourier transform
is involved in the calculation of the linear energies (all cases ex-
cept dDNKG), we use the FFTW [16] convention (FFTW_FORWARD)
for the sign of the exponent.

The list of entropies has the format double[][3], where
each triplet contains the absolute time (the step number times
the timestep), the Wave Turbulence entropy of Eq. (11) and the
information entropy of Eq. (10).

For the DNKG model, two additional files are created: the
eigenvectors file in format double[N][N] (the first index being
the index of the eigenvector), and the square root of the cor-
responding eigenvalues (corresponding to the pulsation of the
eigenstates) as a double[N].

3.2. Command line options

The first argument to nlchains is one of the subprogram listed
in Table 1. If no other argument is printed, the list of arguments
applicable to the model is printed, together with a short descrip-
tion. In Table 3 we describe the most important command line
options that are common to all models and are necessary to run
a simulation. Other common switches are available (such as for
terminating when a given entropy threshold is reached), but for
brevity refer to the readme available in the source tree.

Table 3
Command line options that are common to all models.
Argument Description
-i initial state of the ensemble
-n length of the chain
-c number of realizations in the ensemble
--dt time step
-b number of time steps per kernel invocation
-s number of time steps to run
-p prefix for output filenames

The model parameters α, β , m and mi (see Table 1) can be set
respectively with --alpha, --beta, -m; for the DNKG model -m
takes a value, for the dDNKG it takes a filename with a list of mass
values in the format double[N].

Note that the time granularity of the dumps and the entropy
calculation is equal to the value of -b. A larger interval for the
space-consuming full state and linear energy dumps can be set
with the option --dump_interval.

4. Illustrative examples and accuracy

As an example of the use case of this software, we show in
Fig. 1 the interesting case of the Toda lattice dynamics versus
the α-FPUT dynamics, with the same initial state in terms of
linear wave modes and the corresponding entropy curves given
by Eq. (11). The initial state of the ensemble (empty circles in the
top half of Fig. 1) has been initialized with random values for the
energy per linear mode, the same set for all realizations in the
ensemble and rescaled to have E = 1, but each realization had a
different phase of the normal modes ak. This scheme ensures that
all realization have the same initial linear energy. The value of α
is 0.5, so that the nonlinear terms of the Hamiltonians are small
compared to the linear part, because in this regime it is easier to
observe the equipartition of the linear modes. The timestep is set
to δt = 0.1 and the total number of steps is 2 ∗ 107. We can see
that for the Toda lattice the entropy (dashed line in the bottom
half of Fig. 1) quickly settles to a value not far from the initial one,
and that clearly signals that the system is not thermalized, while
for the α-FPUT system (solid line) the system eventually reaches
equipartition. This can be appreciated from direct inspection of
the energy per mode at the final state: in the top half of Fig. 1,
the filled circles are the energy per mode of the α-FPUT chain at
equipartition (minus some statistical fluctuation due to the finite
size of the ensemble), while empty squares are the final state
for the Toda lattice. For more elaborate examples we refer the
interested reader to the papers [7,8].

In Fig. 2 we show the scaling of the accuracy of the simulation
as a function of the step size. In order to measure the accuracy, we
control the value of a know exact integral of motion, that is the
value of the Hamiltonian H(t), or the total energy. The simulation
is then run for a fixed total time T = 100000 (arbitrary units), but
with a different time step, and hence a different total number of
steps. The initial state of each simulation is initialized in a similar
way to the data of Fig. 1. The accuracy is then calculated as the
average relative deviation from the initial value of the energy,

ϵ = ⟨|H(T ) − H(0)|/H(0)⟩. (12)

Since we use a sixth order symplectic integrator, it is expected
that the scaling of the error is of the type ϵ = O(δt6). We
see in Fig. that we get the expected scaling of the error for the
models FPUT, DNKG, Toda and dDNKG, up to a saturation around
ϵ ∼ 10−13. For the model DNLS, we get a saturation much
earlier, at around ϵ ∼ 10−9. This can be explained by the fact
that the DNLS algorithm as we mentioned earlier requires 14
Fast Fourier Transforms (FFTs) for each single time step, hence
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Fig. 1. A run from the same initial state of the Toda and α-FPUT model, for the same value of α, for a chain with length 64 and an ensemble size of 4096. Top
figure, the energy per mode, Eq. (7): initial state ⃝, thermalized α-FPUT chain •, final state for the Toda lattice ■. Bottom figure, the entropy curves, solid and
dashed for the α-FPUT and Toda models respectively.

the data undergoes many more additions and multiplications
compared to the other models, and numerical errors due to the
finite accuracy of machine numbers accumulates faster. In fact,
the behavior of ϵ when δt is small is of the type ϵ = O(δt−1),
that is it is proportional to the number of FFTs. This is further
corroborated by the fact that when the nonlinear parameter is
set to zero, that is when the symplectic integration scheme is no
longer a source of error as it becomes exact, the scaling of the
error is still ϵ = O(δt−1) even for large values of δt .

All the data shown in this Section is attached as supplemen-
tary material.

5. Implementation and software extendibility

The software does not have an interface for adding new
models, and essentially all the available settings can be accessed
through command line options. This is a design choice because
performance has been the top priority in developing this code:
in the case of GPU programs good performance is in general
attained with tight coupling between host and GPU code, and
avoiding unnecessarily generalization (such as allowing to specify
new models through virtual functions). In lieu of a runtime

flexibility, nlchains is designed to be easily modifiable and ex-
tendible. In support of the source code comments, a manual
with extensive implementation notes, a description of the in-
ternal utility interfaces and examples for their usage is pro-
vided in the supplementary material of this paper (also as a
stand-alone document in the source code tree, supporting-
material/documentation/implementation-notes.pdf).
We refer the user who needs to adapt nlchains to his or her needs
to this manual, to avoid cluttering this paper with implementa-
tion details.

5.1. Notes on the implementation for the end user

We mention here only some implementation details that are
useful even for the user who does not intend to modify the
functionality of nlchains.

All models except DNLS have three different implementations
of the GPU kernels. One implementation is optimized for a chain
length less than 32 (move_chain_in_thread), another one is
generic for all chain lengths (move_split), and the last one
(move_chain_in_warp) must be tuned at compile time for a
specific chain length greater or equal to 32. The instruction on
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Fig. 2. The accuracy of the integration algorithms and their scalings. Top figure: FPUT ⃝, Toda □, DNKG ♢, dDKNG +. Bottom figure: DNLS △, DNLS with zero
nonlinearity ▽. Solid lines are the scaling δt6 , dashed line δt−1 .

how to select the target chain length optimization are detailed in
the readme within the sources. This optimized implementation
is much faster compared to the generic one (referred to as the
‘‘split’’ kernel for how the qj and pj variables are kept in separate
buffers), because the ensemble state is kept in registers for all
the duration of the kernel, rather than being read and written in
global memory. Since register memory is limited, the maximum
target chain length is around 1024, though it is not possible to
give a precise upper bound as that depends on the GPU hardware
and the compiler version. The user should always compare the
runtime of the optimized version and the generic one by using
the command line option --split_kernel.

We showed earlier how the integration of the DNLS model
essentially turns into a refined split-step scheme with a large
number of FFTs involved. We use the library cuFFT [17] for this
purpose. In order to save some of the numerous round trips of
the ensemble to and from registers and global memory, the linear
and nonlinear operators have been implemented as cuFFT call-
backs. In general, this leads to a large performance gain, however
there might be circumstances where the non-callback version
may be faster. The use of callbacks can be suppressed selectively
with the command line options --no_linear_callback and --
no_nonlinear_callback, and we encourage to benchmark the
various combinations with and without callbacks for a defined
ensemble size and hardware combination.

Table 4
Performance measurements on a single K40m card (clocked at 875MHz and
3004MHz for core and memory respectively) for a dataset with a chain length
of 64 and 1024 copies, and a kernel batching size (option -b) of 100000 (1000
for the DNLS model). File dumping has been disabled in these runs.
Chain Steps/second
DNKG (optimized kernel) 163904
dDNKG (optimized kernel) 150003
FPUT (optimized kernel) 83254
Toda (optimized kernel) 37431
FPUT (split kernel) 4012
DNLS (with cuFFT callbacks) 2303
DNLS (without cuFFT callbacks) 1149

5.2. Performance measures

Performance of the software depends on a large number of
factors. For reference, in Table 4 we show some rough estimates
of the number of steps per second for most of the implemen-
tations present in the software, for a fixed chain length size of
64 and ensemble size of 1024. These performance figures should
roughly scale linearly with the number of GPUs, and linearly with
the inverse of the chain length and ensemble sizes. As mentioned
earlier, the big performance bottleneck for the FPUT model is
the memory access in the case of the ‘‘split’’ kernel, hence it is
crucial to recompile the software for a desired chain length. Such
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Table 5
Performance measurements on a Intel Xeon Processor E5-2680, both single
threaded and 24 threads, for a dataset with a chain length of 64 and 1024
copies (1008 for the multithreaded test), batching size (option -b) of 10000
(1000 for the DNLS model). File dumping has been disabled in these runs.
Chain Steps/second (1 thread) Steps/second (24 threads)
DNKG 1229 24510
dDNKG 1280 25623
FPUT 802 17123
Toda 197 4165
DNLS 90 1965

difference is expected also in the models DNKG, dDNKG and Toda.
The DNLS model is the slowest of all, due to the large number of
FFTs involved. However, it is possible to appreciate the speedup
due to the use of cuFFT callbacks.

As previously mentioned, we have implemented the integra-
tors as traditional CPU code, in order to compare the advantages
of the GPU implementation. The code makes use of recent vector-
ization (SIMD) capabilities of recent CPUs, in particular it can use
the AVX and AVX-512 instruction sets. The CPU implementation
has been tested on an Intel Xeon Processor E5-2680 (which has
a release date similar to the NVIDIA K40m card used in the GPU
benchmarks), and as such it utilizes the AVX instruction set. It
can be parallelized in the same way of the GPU implementation
(see Section 3). The results are shown in Table 5, both for a single
thread run and a 24-threads run (all the cores of the CPU in
use), with the same parameters of the data shown in Table 4. We
observe the following. The relative order in terms of performance
of the models is essentially the same as the GPU implementation.
The multithreaded performance is roughly linear in the number
of threads, though it shows the typical signs of saturation: a
20-fold increase is observed when running the simulation with
24 threads. Finally, we see that the speedup of the (optimal)
GPU implementation over the multithreaded implementation is
significant. For the real models, we observer a speedup of 6.7x
(DNKG), 5.9x (dDNKG), 4.9x (FPUT) and 9.0x (Toda). For the DNLS
model, the speedup is much more modest (1.2x). This is due
to the fact that the GPU implementation suffers from the high-
latency global memory operations, while the CPU implementation
operates on a single chain at once, and hence the CPU cache
is utilized. Unfortunately it was not possible for us to test the
code on more recent GPU hardware which should provide a much
better memory technology.

6. Impact

The purpose of this software is to provide the scientific com-
munity a specialized tool for simulating nonlinear chains (and
possibly other simple Hamiltonian, nearest-neighbor systems).
While the simulation algorithms is not new, and trivial imple-
mentations of the Yoshida sixth order integration algorithms are
not particularly difficult, to our knowledge there has been so far
no effort to code a simulation with a strong focus on performance,
modernity and extendibility of the code, nor software that makes
use of heterogeneous hardware architectures such as GPUs.

This software has been essential in our research work [7,8].
Naive implementations of this kind of simulations can have a run-
time of weeks. Exploiting the parallelization possibilities of GPU
hardware, and a painstaking work of tuning and optimization of
the code made the run of a simulation of a typical size a matter
of at most hours.

7. Conclusions

In this paper we presented nlchains, a specialized software for
simulating a number of one-dimensional Hamiltonian systems
with nearest neighbor interactions on GPU hardware. The soft-
ware has been coded during the study of the thermalization of
these systems, but other applications are possible, as the speed
and accuracy are very good. We have described briefly the usage
of the software, and mentioned a few implementation details
that can guide the interested user in adapting the software to
his or her needs. We provided also a few simulation results,
most importantly the scaling of the cumulative errors in the
simulations, which matches very well the expected scaling O(δt6)
with δt being the step size. To our knowledge, this is also the
first implementation of the Yoshida 6th order symplectic integra-
tor for the discrete nonlinear Schrödinger equation as described
in [14] with the suggested optimization of leveraging the Fast
Fourier Transform for the linear operator of the algorithm.
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