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Abstract

Current studies of cell signaling dynamics that use live cell fluores-
cent biosensors routinely yield thousands of single-cell, heteroge-
neous, multi-dimensional trajectories. Typically, the extraction of
relevant information from time series data relies on predefined,
human-interpretable features. Without a priori knowledge of the
system, the predefined features may fail to cover the entire spec-
trum of dynamics. Here we present CODEX, a data-driven approach
based on convolutional neural networks (CNNs) that identifies
patterns in time series. It does not require a priori information
about the biological system and the insights into the data are built
through explanations of the CNNs’ predictions. CODEX provides
several views of the data: visualization of all the single-cell trajec-
tories in a low-dimensional space, identification of prototypic
trajectories, and extraction of distinctive motifs. We demonstrate
how CODEX can provide new insights into ERK and Akt signaling in
response to various growth factors, and we recapitulate findings in
p53 and TGFβ-SMAD2 signaling.
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Introduction

Cell signaling dynamics rather than steady states control fate deci-

sions (Purvis & Lahav, 2013). Biosensor imaging has documented

heterogeneous and asynchronous p53 (Lahav et al, 2004), NF-kB

(Tay et al, 2010), ERK (Albeck et al, 2013; Ryu et al, 2015), Akt

(Sampattavanich et al, 2018), and SMAD (Strasen et al, 2018) signal-

ing dynamics across individual cells of a population. This hetero-

geneity arises both from biological noise extrinsic to individual cells

and from intrinsic variability within signaling networks (Snijder &

Pelkmans, 2011). Current biosensor measurements usually yield up

to thousands, potentially multivariate signaling trajectories (Sampat-

tavanich et al, 2018). The characterization of these trajectories typi-

cally relies on visual inspection, followed by statistical analysis of

hand-crafted, human-interpretable features (Gillies et al, 2017;

Sampattavanich et al, 2018). The volume and high dimensionality of

these datasets, as well as the capacity of features to faithfully

describe complex dynamics of the trajectories make data mining

challenging. To meet these challenges, we present CODEX (COnvolu-

tional neural networks for Dynamics EXploration), a data-driven

approach for the exploration of dynamic signaling trajectories using

convolutional neural networks (CNNs). It benefits from the ability of

CNN classifiers to identify a set of data-driven features that best

summarizes the data. CODEX turns the information learnt by CNNs

into three complementary views of the data: A low-dimensional

representation of the whole dataset that emphasizes the distribution

of signaling dynamics, a set of prototypical time series, and a collec-

tion of signature motifs. Notably, CODEX regroups all these results

in a single framework. This enables to quickly obtain a complete

overview of the dataset and to interactively combine the results to

form rich visualizations of signaling dynamics.

Results

In a typical CODEX analysis, a CNN classifier is trained to recognize

single cells from various experimental conditions (the input classes)

based on their corresponding time series (Fig 1A). Any time series

behavior that constitutes a distinctive feature (e.g., repeated motifs,

trends, or baselines) is henceforth referred to as dynamics. To avoid

the difficulties related to CNN training, we use a simple, yet power-

ful CNN architecture (Appendix Note 1, Table EV1). This architec-

ture builds a compressed representation of the input, hereafter

referred to as CNN features, which is a one-dimensional vector used

for classification. We found that this architecture was simple to

adapt to a range of datasets because reducing the number of CNN

features provides an easy and sufficient way to counter overfitting.

Although there are more parameters that impact the training process

(e.g., L2 norm), we found the architecture to perform robustly with

default values across multiple time series datasets (see Materials

and Methods).

1 Institute of Cell Biology, University of Bern, Bern, Switzerland
2 ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland

*Corresponding author. Tel: +41 31 631 46 37; E-mail: olivier.pertz@izb.unibe.ch

ª 2021 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 17: e10026 | 2021 1 of 14

https://orcid.org/0000-0002-8224-9285
https://orcid.org/0000-0002-8224-9285
https://orcid.org/0000-0002-8224-9285
https://orcid.org/0000-0002-0208-7758
https://orcid.org/0000-0002-0208-7758
https://orcid.org/0000-0002-0208-7758
https://orcid.org/0000-0002-4818-035X
https://orcid.org/0000-0002-4818-035X
https://orcid.org/0000-0002-4818-035X
https://orcid.org/0000-0001-8579-4919
https://orcid.org/0000-0001-8579-4919
https://orcid.org/0000-0001-8579-4919


CODEX extracts data-driven features that isolate and expose
dynamics in synthetic data

We first demonstrate CODEX using synthetic trajectories that

mimic the pulsating signal typically observed for different signaling

pathways in cells (Albeck et al, 2013; Stewart-Ornstein & Lahav,

2017) (see Materials and Methods, Fig EV1A, Appendix Note 2).

All synthetic trajectories display four peaks that can be of two

types: either a full or a truncated Gaussian peak. The trajectories

are split into two classes: In the first class, trajectories have a

majority of full peaks (i.e., 2, 3, or 4 full peaks), while in the

second class they have a majority of truncated peaks (i.e., 0, 1, or

2 full peaks). This dataset was constructed such that only the

abundance of full peaks can be used to separate one class from

another. The trajectory baseline is a non-discriminative feature,

and neither the timing of the peaks nor the order of the peaks

can be used as these are randomly sampled. In this setup, we

trained a CNN that quickly converged to the optimal accuracy

(i.e., 5/6 ≈ 83%, because of the ambiguous case where a trajec-

tory has two full peaks).

A t-distributed stochastic neighbor embedding (t-SNE) projection

of the CNN features revealed that the CNN learnt to distinguish the

classes by recognizing and counting the different types of pulses

(Fig EV1B). This demonstrates that despite the CNN being solely

trained to separate the input classes, its latent representations of the

input can be used to reveal structures in the data which are linked

to specific dynamics. We then showed that this feature space can be

sampled to identify prototype trajectories representative of different

dynamics (Fig EV1C).

Further, we used class activation maps (CAMs) (preprint: Zhou

et al, 2015) to identify class-specific motifs. CAMs are based on the

so-called “model attention” to highlight parts of the input that are

important for the CNN to recognize a given class. By building CAMs

for many input trajectories, we extracted a collection of signature

motifs for each class (Fig EV1D, Movie EV1). Subsequently, we

clustered the motifs using the dynamic time warping (DTW)

...

-0.4
0.0
0.4 4

-0.4
0.0
0.4 1

-0.4
0.0
0.4 3

-0.4
0.0
0.4 2

5

6

7

8

Akt ERKTime [h]
0 5 10 15 0 5 10 15

P
at
hw
ay
ac
tiv
ity
[C
/N
]

tS
N
E
2

> 0.56

> 0.88

> 0.98

tSNE 1

Area of high
confidence

Top
prototypes

4

3

2
1

5 6

7

8

Starved BTC EGF EPR HGF HRG IGF

B

A

C

IGF

BTC

Convolution layers:
data-driven pattern matching

Live imaging of
ERK / Akt biosensors

Input: Single-cell
ERK / Akt trajectories

Output:
classification

...

...EGF
BTC

HGF
HRG

EPR

IGF

Projection of CNN features of input trajectories Feature space reveals landscape of dynamics

0.66

0.99

0.99

1.00 1.00

0.95

0.99

0.81

CNN features
of the input

Figure 1. CNN latent features reveal the landscape of single-cell signaling dynamics.

A Schematic of the CNN classifier architecture used in CODEX. In this example, MCF10A cells are exposed to 6 different GFs and single-cell ERK/Akt activity is reported
using biosensors. The GF treatments form classes that the classifier is trained to identify based on the bivariate ERK/Akt single-cell input trajectories. The input
trajectories are passed through a cascade of convolution layers, followed by a global average pooling layer that compresses the convolution responses into a one-
dimensional vector of features (red rectangle). This latent representation of the input is then referred to as CNN features. Finally, the CNN features are passed to a
fully connected layer to perform the classification.

B t-SNE projection of the CNN features of all ERK/Akt trajectories in the validation set. Each point represents a bivariate ERK/Akt trajectory from a single cell. Hulls
indicate areas associated with a strong classification confidence for each GF. Shading shows the point densities. Diamonds indicate the positions of the 10 top
prototypes (see Materials and Methods) for each GF. The solidity of the hull contour line indicates the minimal classification confidence for all prototypes in the hull.

C Representative ERK/Akt prototype trajectories from each hull indicated in (B). Pathway activity is reported as the ratio of cytosolic over nuclear KTR fluorescence (C/N).
Each pathway activity was preprocessed by removing the average activity of this pathway across all trajectories in the training set. Numbers in the bottom-right
corners indicate the CNN predicted probability for the trajectories to belong to their actual class.
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distance to visualize the diversity of motifs (see Materials and Meth-

ods, Fig EV1D and E). This shows that CAMs exhaustively extracted

all the different motifs from the dataset, in a class-specific manner.

Mapping the signaling dynamics landscape of ERK and Akt
induced by various growth factors

After this proof of concept, we applied CODEX to study Ras-ERK/

PI3K-Akt single-cell signaling dynamics. The activity of both ERK

and Akt was measured using a multiplexed genetically encoded

biosensor system and quantified using a computer vision pipeline

(Fig EV2A and B). The system relies on kinase translocation reporter

(KTR) fluorescent biosensors (Regot et al, 2014). These sensors

provide a readout of the associated pathways activity through ratio

of cytosolic over nuclear KTR fluorescence intensity (C/N). To

induce distinct ERK/Akt dynamics, we stimulated MCF10A breast

epithelial cells with different growth factors (GFs) (Sampattavanich

et al, 2018). Cells were treated with 100 ng/ml with any of the

following GFs: epidermal GF (EGF), betacellulin (BTC), epiregulin

(EPR), hepatocyte GF (HGF), heregulinβ-1 (HRG), and insulin-like

GF 1 (IGF). An additional class consisted of starved cells that were

left untreated. For each GF, we acquired at least 1,200 single-cell,

bivariate ERK/Akt trajectories across two replicates for 48 h. In the

1st phase, lasting about 8 h, population-synchronous dynamics were

observed due to acute GF stimulation (Fig EV2C–E). This was partic-

ularly visible when evaluating cell population-averaged measure-

ments (Fig EV2E). This was followed by a 2nd phase characterized by

heterogeneous, asynchronous dynamics that cannot be captured by a

population average. The latter dynamics were shown to be relevant

for proliferation fate decisions (Albeck et al, 2013; Sampattavanich

et al, 2018), but are difficult to analyze with traditional methods

because of their asynchrony and heterogeneity. For the rest of our

analysis, we truncated the trajectories to keep only the 2nd phase and

focus on this difficult part of the data. To explore the specific signal-

ing dynamics induced by each GF, we trained a CNN classifier that

takes bivariate ERK/Akt trajectories as input to predict starvation or

treatment with a specific GF. After training, this classifier separated

the different classes with about 65% accuracy (Tables EV2 and

EV3), suggesting that input trajectories carry distinctive features that

depend on GF identity many hours after exposure.

To map the landscape of signaling dynamics induced by the dif-

ferent GFs, we used a t-SNE projection of the CNN features learnt

for each trajectory (Fig 1B). GFs populated well-defined but also

partially overlapping areas in the projection space. Trajectories of

starved cells localized to a central largely spread cluster (area 1).

Left of area 1, IGF (IGFR ligand) led to a polarized cluster that we

designated as areas 2 and 3, while HRG (ErbB3/4 ligand) formed a

distinct cluster (area 4). HGF formed area 5 that overlapped greatly

with starved cells. Right of area 1, a cluster was formed by EGF,

EPR, and BTC, which are all ErbB1 ligands. This suggests that each

GF induces a specific continuum of heterogeneous signaling dynam-

ics, whose characteristics correlate with their cognate GF receptor.

Finally, we noted that GFs which overlapped in the projection,

corresponded to cases where the CNN classification performance

was low (Table EV2).

We built a web application to interactively explore different areas

of the t-SNE projection and to report their associated ERK/Akt

trajectories (Movie EV1). We first evaluated trajectories that

exhibited the highest classification accuracies for each class, which

we refer to as “top prototypes” (see Materials and Methods, Fig 1C).

Through visual inspection, we empirically described the main trends

of the prototypes using qualitative features. Starved cells displayed

flat baseline ERK/Akt levels (Fig 1C, area 1). The polarized cluster

induced by IGF revealed two distinct dynamics: both displayed

sustained Akt activity, but area 2 displayed low ERK activity, while

area 3 displayed pulsatile ERK activity. HRG induced trains of sharp

ERK activity pulses enveloped by wide Akt pulses of high amplitude

(area 4). HGF induced pulsatile, sharp, synchronous ERK, and Akt

pulses (area 5). However, the large overlap of HGF-induced trajecto-

ries with area 1 indicates that many cells had adapted and behaved

as starved cells. The ErbB1 ligands induced similar dynamics that

consisted of synchronous ERK/Akt pulses (BTC—area 6, EGF—area

7, EPR—area 8) (Yarden & Pines, 2012). The relative width of the

ERK/Akt pulses, however, varied from sharp (BTC) to wide (EPR)

and flat (EGF). Along the left-right axis of the projection, HRG and

IGF displayed higher Akt amplitudes, while BTC, EGF, and EPR

displayed lower Akt amplitudes.

A limitation of examining top prototypes is that they might not

faithfully reflect the heterogeneity of signaling dynamics in a class.

For example, this was illustrated by the absence of top prototypes

from areas where GFs overlap (Fig 1B). Therefore, we also used an

alternative sampling strategy to identify prototype trajectories

whose CNN features are as uncorrelated as possible (Appendix Fig

S1B and C). To ensure that the selected trajectories are still repre-

sentative of each class, we only considered trajectories that reached

a minimal threshold of prediction confidence for their actual class.

This resulted in a better coverage of trajectories in the CNN feature

space, while maintaining class specificity. Visual inspection of

prototype trajectories sampled with the different strategies provides

a more complete picture of the salient features that characterize the

individual classes. It is also of interest to identify trajectories for

which the CNN prediction was wrong despite exhibiting a large con-

fidence (Appendix Fig S1D). For example, this might help to under-

stand classes overlap or to identify dynamics that are rarely

observed outside of a given class.

The dynamic information transferred by signaling pathways

often relies on local signal shapes such as the time interval between

pulses (Albeck et al, 2013; Ryu et al, 2015; Sampattavanich et al,

2018) or the decay kinetics (Bugaj et al, 2018). Using CAMs, we

identified minimal signaling motifs that discriminate trajectories

induced by each ligand. We then used DTW shape-based clustering

to evaluate their distribution in different GF classes (Fig 2A and B).

This approach again provided additional intuition about GF-specific

signaling dynamics: (i) The ErbB1 ligands BTC, EGF, and EPR all

led to a mix of synchronous ERK/Akt pulses in which Akt amplitude

was lower than ERK amplitude (clusters 2, 3), or wider ERK/Akt

pulses with a very low Akt amplitude (cluster 4); (ii) HRG led to a

peculiar pattern consisting of multiple sharp ERK pulses under

larger Akt pulses (cluster 5); (iii) IGF led to sustained Akt and base-

line ERK activity with occasional pulses (clusters 6, 7).

To further validate the overview of ERK and Akt dynamics and

show that this specific CNN did not overemphasize or overlook

some trajectory features, we performed the CODEX analysis with a

ResNet architecture (He et al, 2016) instead of the plain CNN archi-

tecture (see Materials and Methods). With this new model, the

dataset projection, prototypes extraction, and CAM-based motifs all
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provided a picture consistent with the previous results (Fig EV3).

This result indicates that the choice of the CNN architecture is flex-

ible and that CODEX results are robust to variations in the model

training step.

The insights brought by the different components of CODEX

provide an intuitive picture of important dynamics that are underly-

ing a dataset. To summarize the findings and check that the intu-

ition built from CODEX’s output was correct, a targeted extraction

of explicit features is a fitted next step. For example, CODEX results

suggested that the synchrony between ERK and Akt as well as their

amplitude ratio were highly discriminative across GF stimulations.

We verified this by computing the temporal correlation between

ERK and Akt as well as the median ratio of ERK over Akt (Fig 2C).

The frequency of ERK and Akt pulses and their synchrony were also

suggested and validated as discriminative features (Fig EV4).

CODEX recapitulates the findings of classic machine-learning
workflows but enhances them with a focus on dynamics motifs

To compare CODEX results against classic machine-learning

approaches, we used an existing library that comprehensively

extracts hundreds of explicit time series features (Christ et al, 2018)
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Figure 2. Discriminative motifs in ERK/Akt trajectories highlight GF signaling signatures and ease the identification of interpretable, GF-specific features.

A Discriminative signaling motifs were extracted from the training and validation top prototypes using a CAM-based approach (see Materials and Methods). The motifs
were clustered using DTW distance and Ward’s linkage. Representative motifs of each cluster, based on the minimization of median intra-cluster distance, are
displayed (see Materials and Methods). Bottom-right labels indicate the class of the trajectory from which the motif was extracted. Each pathway activity was
preprocessed by removing the average activity of this pathway across all trajectories in the training set.

B Distribution of the signaling motifs clusters across the GF treatments.
C Scatter plot of the Pearson correlation coefficient between ERK and Akt trajectories against the median ratio of ERK over Akt activity in single cells. For each

trajectory, ratios are computed on raw data, at each time point and summarized with median. Crosses indicate the mean values and the standard deviations of all
raw single-cell trajectories. At least 1,200 cells for each GF pooled from two technical replicates.
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B Feature importance of a random forest trained to classify ERK/Akt time series according to the GF treatments. The 12 most important features are shown. The

signaling pathway (ERK or Akt) associated with each feature is indicated. For the permutation entropy, the parameters are as follows: D length of the subwindows
and T lag between the windows (Christ et al, 2018).

C, D Biplots of the first three principal components derived from the time series features PCA. Each symbol represents an individual trajectory. The circles indicate
normal ellipses for each group with a confidence of 95%. The larger symbols in the middle of the ellipses are visual helps for the identification of the groups. The
percentiles in the axis labels indicate the amount of total variance carried by the principal components.

E Features that contributed the most to the three first principal components (see Materials and Methods).
F t-SNE projection of the first 197 principal components, which carry 75% of the total variance of the features. Each point represents an individual trajectory;

shading indicates point density. The diamond symbols indicate the trajectories shown in (G).
G Manually selected trajectories which are highlighted with a diamond symbol and a label in (F).
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Figure 4. CODEX identifies TGFβ dose-dependent signaling states.

MCF10A cells were exposed to increasing doses of TGFβ, and single-cell SMAD2 responses were recorded using a fluorescent biosensor (Strasen et al, 2018). A CNN was
trained to classify SMAD2 activity trajectories according to the TGFβ dose.
A–C t-SNE projection of the CNN latent features for the training, validation, and test sets pooled together. Trajectories representations are colored according to: the

TGFβ dose (A), the DTW clusters (B), or the CNN features clusters (C). The DTW clusters are the ones of the original study (Strasen et al, 2018). CNN features were
clustered using L1 distance and partitioned with hierarchical clustering and Ward linkage.

D, E Distribution of the trajectories in the CNN features clusters according to their corresponding TGFβ dose (D) and their DTW cluster (E). Same colors as in (C).
F Comparison of DTW clusters and CNN features clusters. Median trajectories for each cluster (see Materials and Methods) are reported in bold colored lines, colors

matching (B) and (C), gray shade indicate interquartile range. The DTW clusters (1–6) are made of (946, 340, 200, 278, 218, 83) single-cell trajectories, respectively.
The CNN clusters (1–5) are made of (505, 429, 451, 492, 188) single-cell trajectories, respectively. A random sample of trajectories for DTW clusters and the centroid
trajectories (see Materials and Methods) for each CNN features cluster are shown.

6 of 14 Molecular Systems Biology 17: e10026 | 2021 ª 2021 The Authors

Molecular Systems Biology Marc-Antoine Jacques et al



tS
N
E
2

tSNE 1

tS
N
E
2

tSNE 1

tS
N
E
2

tSNE 1

M
os
ta
bu
nd
an
tC
N
N
fe
at
ur
e
cl
us
te
r

A498

U2OS

LOXIMVI

SKMEL5

MALME3

A549

H460

UO31

UACC257

UACC62

MCF7

HCT116

1Gy 2Gy 4Gy 6Gy 8Gy
F

A B C

4 5 6

0
-1

-1

1
2
3

0
1
2
3

lo
g2
(p
53
−Y
FP
fo
ld
ch
an
ge
)

1 2 3
D

UACC257 UACC62 MCF7 HCT116

MALME3 A549 H460 UO31

A498 U2OS LOXIMVI SKMEL5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Dose [Gy]

Time [h]

C
N
N
cl
us
te
rs
pr
op
or
tio
n

E

CNN
clusters

1
2

3
4

5
6

Dose
[Gy]

1
2

4
6

8Cell
line

A498
A549
H460
HCT116

LOXIMVI
MALME3
MCF7
SKMEL5

U2OS
UACC257
UACC62
UO31

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.3 0.5 0.7Proportion

Figure 5. CODEX identifies cell line-specific p53 responses under increasing ionizing radiation doses.

12 different cell lines were exposed to five doses of ionizing radiations, and single-cell p53 responses were reported using a fluorescent reporter (Stewart-Ornstein &
Lahav, 2017). A CNN was trained to recognize the combination of cell line and radiation dose from p53 trajectories (i.e., one out of 60 classes; see Materials and Methods
and Appendix Note 4).
A–C t-SNE projection of the CNN features for the training, validation, and sets pooled together. Trajectories representation is colored according to: the cell lines (A), the

ionizing radiation doses (B), or the CNN features clusters (C). The p53 trajectories were clustered according to their standardized CNN features with L1 distance and
partitioned with hierarchical clustering and Ward linkage.

D Representative p53 trajectories of the clusters identified using CNN features clustering. Median trajectories are reported in bold colored lines, colors matching (C),
gray shade indicates interquartile range. The CNN clusters (1–6) are made of (767, 554, 486, 574, 746, 698) single-cell trajectories, respectively. Data are pooled from
two to three replicates for each cell line. Individual traces indicate the medoid p53 single-cell trajectories for each cluster (see Materials and Methods).

E Distribution of the trajectories in the CNN feature clusters according to cell lines and ionizing radiation doses. Same colors as in (C).
F Most abundant CNN features cluster for all trajectories in each combination of cell line and radiation dose combinations. The color of the dot indicates the most

abundant cluster; the size of the dot indicates the proportion of cells classified in the indicated cluster. Same colors as in (C).
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and applied it to our ERK and Akt trajectories. We then used these

features for 2 data exploration workflows (Fig 3A). The first one is a

supervised approach where we passed the features into a random

forest classifier and inspected the feature importance for the classifi-

cation (Fig 3B, Tables EV2 and EV3). This provided a rather incom-

plete overview of the dataset trends as many features are correlated

or hard to interpret despite them being explicit.

In the second approach, we first projected the features with prin-

cipal component analysis (PCA) and visualized the first compo-

nents. This projection provided a rather entangled visualization of

the dataset, as is commonly observed in high-dimensional datasets

(Fig 3C–D). However, the interpretation of the features contributing

to the three first components delineated rough but clear trends that

are related to ERK variability, Akt variability, and Akt range of activ-

ity (Fig 3E). Finally, we sought to improve the projection, by first

selecting enough components to cover 75% of the total variance

and projected them with t-SNE (Fig 3F). We obtained a similar

result to the projection of CODEX’s data-driven features. Notably,

the ErbB1 ligands (i.e., EGF, EPR, and BTC) are gathered and the

IGF subpopulations are visible. However, HRG- and EPR-treated

cells are largely scattered, whereas they show a remarkable

compactness in CODEX projection. Visual inspection of individual

trajectories suggests that this is because the features emphasize the

range of the data, while CODEX puts more weight on discriminative

patterns (Fig 3G). For feature-based methods, this reveals the bias

that can be introduced by preselecting features. Although this prese-

lection could also provide a clearer and/or targeted overview of the

data, it also implies that some priors are needed about the data.

CODEX is readily usable for a wide range of datasets and
summarizes previous discoveries for other signaling pathways

To showcase the versatility of CODEX and benchmark it against clas-

sic approaches, we analyzed additional biosensor signaling datasets

from previous studies. In one example, we analyzed SMAD2 dynam-

ics in a TGFβ dose–response experiment in MCF10A cells (Strasen

et al, 2018). Each TGFβ dose induced different heterogeneous

SMAD2 dynamics that were isolated by shape-based clustering using

DTW distance (Fig 4A, B and F). As the concentration of TGFβ
increases, SMAD2 activity progressively shifts from low responses

toward transient and then sustained activity. This change of activity

was found to better correlate with the number of cell divisions and

cell motility than the actual dose of TGFβ (Strasen et al, 2018). We

were able to recover all dynamic trends highlighted by DTW with a

clustering of the features of a CNN that was trained to recognize

TGFβ doses from SMAD2 trajectories (Fig 4C–F, Appendix Note 3).

CNN features even proved to be better at separating non-responders

from low responders (Fig 4F, right panel, clusters 1 and 2). This

further validates that CNN features are shaped after dynamics and

that this can be used as an alternative to traditional shape-based

clustering to capture biologically relevant dynamics.

In another example, we analyzed p53 dynamics in 12 different

cancer cell lines subjected to five different doses of ionizing radia-

tion (Stewart-Ornstein & Lahav, 2017). In this dataset, the combina-

tion of cell lines and radiation doses yields a total of 60 classes with

dozens of p53 trajectories each (Fig 5A and B). The oscillations of

p53 were described as a key signaling mechanism for regulating cell

cycle arrest and apoptosis upon DNA damage (Lahav et al, 2004).

Here, the size of this dataset poses a major challenge for data visual-

ization and mining. We trained a CNN to take p53 trajectories as

inputs and recognize each of the 60 combinations of cell lines and

radiation doses. A visual inspection of the CNN features projection

revealed that the features separate better the cell lines than the radi-

ation doses (Fig 5A and B). This hinted that cell line identity rather

than radiation dose dictates p53 dynamics. In addition, the five

melanoma cell lines of this dataset (LOXIMVI, MALME3, SKMEL5,

UACC257, and UACC62) are scattered in very different areas of the

projection. This suggests that p53 variation is not tissue-specific.

Then, a clustering of CODEX features allowed us to rapidly identify

discrete p53 signaling profiles (Fig 5C and D) and evaluate their

distribution across conditions (Fig 5E and F). This recapitulated

most cell line-specific effects that were described in the initial study

(Appendix Note 4). For example, MCF7 cells uniquely showed

increased p53 oscillations under high radiation doses. On the

contrary, U2OS cells switched from a pulsatile regime under low

radiation to more sustained response under high radiation. This

analysis shows how CNN features can be used to visualize and

analyze middle-size screens containing hundreds of asynchronous

trajectories to extract biologically relevant insights.

Finally, we used CODEX on a time series dataset representing the

movement speed of male and female Drosophila melanogaster under

day and night light conditions (Fulcher & Jones, 2017) (Fig EV5A

and B and Appendix Note 5). The trajectories in this dataset are

significantly different in length and shapes compared to the other

datasets and were not generated by biosensors. Despite this, with

the same CNN architecture, the model converged to an excellent

classifier, whose output correlates with discriminative, interpretable

features (Fig EV5C and D) that were previously reported.

Discussion

CODEX provides a new angle on extracting and mining features

from large time series datasets. Instead of relying on user-defined

features and their statistical significance, our approach learns

features and uses them to highlight informative pieces of data. In

our approach, a single model generates three views of the data: the

projection, the prototypes, and the motifs, which can be explored

interactively in the web application. For example, motifs revealed

with CAMs in trajectory prototypes can be directly linked to a

subpopulation of trajectories in the projection of the CNN features.

With CODEX, we were able to link the dynamics of ERK and Akt

to biological aspects of the signaling networks. Strikingly, we found

that BTC, EPR, and EGF, which are all ligands of ErbB1 and ErbB4

(Yarden & Pines, 2012), induced similar dynamics in both path-

ways. Indeed, the CNN often mislabeled one as another (Tables EV2

and EV3), they were clustered together in the low-dimensional

projection (Fig 1B), and their prototypes revealed similar profiles

(Fig 1C, Appendix Fig S1). Their common dynamics include a very

correlated, pulsatile activity of ERK and Akt and high levels of ERK

activity. The comparison of prototype trajectories showed that the

three ligands differ mostly by the frequency of activity pulses. In

stark contrast to these three ligands, HRG, a ligand of ErbB3 and

ErbB4, transiently induced very high levels of Akt activity along

with trains of ERK pulses. Altogether, these observations about

signaling dynamics can help to understand various facets of the
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signaling networks (Kholodenko et al, 2010; Ryu et al, 2015; Blum

et al, 2019). First, the difference of pulse frequency across the ErbB1

ligands can help to understand the different kinetics of RTK dimer-

ization upon various ligands binding. Then, despite ErbB4 being a

common receptor for BTC, EPR, EGF, and HRG, the prototypes show

very different activity linked to ErbB1 and ErbB3. This could shed

light on how receptors from the same family, can finely modulate

cell responses to external cues. Finally, the identification of minimal

GF-dependent signaling motifs can provide a starting point for

modeling the signaling networks. For example, in MCF10A cells, an

excitable network generates pulses of ERK activity at random inter-

vals (Albeck et al, 2013). Our finding that different growth factors

induce ERK pulses of different shapes strongly suggests that dif-

ferent network feedbacks are triggered downstream of the different

RTKs. The CAM-based motif mining lays the ground to formulate

hypotheses and test mechanistic models that can recapitulate these

striking dynamics (Ryu et al, 2015; Blum et al, 2019).

CODEX also successfully recapitulated previous findings for

TGFβ/SMAD (Fig 4) and p53 (Fig 5) signaling through clustering of

the CNN features. In the case of TGFβ/SMAD, we could retrieve

previously reported dynamic profiles of SMAD2 signaling in

response to increasing TGFβ doses (Strasen et al, 2018). These pro-

files correlated with cell division and cell motility and were key to

delineate negative feedbacks in TGFβ signaling as well as sources of

signaling heterogeneity between cells. In the case of p53, we

summarized cell line-specific dynamics under increasing doses of

ionizing radiation thanks to the clustering of the CNN features (Ste-

wart-Ornstein & Lahav, 2017). The identification of such dynamics

enabled to characterize variation in DNA repair efficiency and in the

activity of the ATM kinase across cell lines. Such insights into

signaling dynamics could be instrumental for the design of tailored

treatments against any given tumor.

The shift of paradigm from user-defined to data-driven features

relies on the capacity of the latter to capture complex relationships

across spatial and temporal scales or between data from indepen-

dent sources. This becomes increasingly relevant for biological

applications such as the quantification of tissue properties from

live cell imaging (Mergenthaler et al, 2021) or the integration of

multi-omics experiments (Sharifi-Noghabi et al, 2019). In the

context of cell signaling, CODEX can simultaneously mine the

activity of multiple pathways, which enables to comprehensively

study signaling dynamics and pathways crosstalk. For example,

the motif induced by HRG, that comprises trains of ERK peaks

enveloped by large Akt waves (Fig 2A and B), appears unambigu-

ously in CODEX’s output. By comparison, such motif would be

hard to identify with general features, such as correlation, which

would capture the motif very indirectly. Instead, CODEX provides

a complete overview of the data thanks to the interplay between

projection, prototypes, and motifs extraction. For example, CAM-

based motifs can be overlaid directly on the prototypes or while

browsing the projection of CNN features. This is a clear demarca-

tion between CODEX and classic workflows because in the latter,

motif mining constitutes a separate task which must be recon-

nected to other results afterward.

The use of data-driven features also removes the bias that can be

introduced by preselecting features in the early stages of data explo-

ration. However, a major drawback of data-driven approaches is

that they are created through the optimization of an objective func-

tion which is itself predefined. Therefore, there is no guarantee that

data-driven features will capture all interesting phenomena in the

dataset, that the features will be interpretable, or that they will not

be skewed by data artifacts (e.g., inter-replicate variance). Rather

than competing, data- and feature-driven approaches are remark-

ably complementary. The former are great hypothesis generators

because they can combine and summarize complex data. The latter

are useful for checking whether the features were unbiased or

correctly interpreted and are ultimately the only way to validate

quantitative hypotheses. Regarding non-quantitative analysis, such

as the motif extraction, it is to note that other robust methods exist

to mine motifs in time series (Berndt & Clifford, 1994; Yeh et al,

2017). However, the CAM alternative is well-integrated with the

other parts of CODEX.

Altogether, these results show that CODEX is a flexible frame-

work, which can be applied to a wide range of data and robustly

accommodate other model architectures (Fig EV3). This flexibility

opens exciting perspectives for the extension of CODEX to new

applications. For example, an interesting extension could be to

study intercellular signaling by training a CNN that takes as input

the signaling activity of a cell and of its neighbors simultaneously.

Convolution operations on such data could therefore run both in

time and space simultaneously. Such analysis could be valuable for

the study of collective signaling events associated with collective

cell migration (Aoki et al, 2017) or epithelium homeostasis

(preprint: Gagliardi et al, 2020).

In summary, we have shown that CODEX provides a universal

approach to quickly build hypotheses and identify phenotypes in

dynamic signals from a wide variety of biological systems. Beyond

this, CODEX demonstrates how CNNs, often criticized for their

opacity, can reduce the workload of mining large datasets and

suggest targeted, interpretable analysis.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental Models

MCF10A (Homo sapiens) Brugge laboratory

Recombinant DNA

pMB-PB-FoxO3A-mNeonGreen Pertz laboratory
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

pHygro-PB-ERK-KTR-mTurquoise2 Pertz laboratory

pPBbSr2-miRFP703 Pertz laboratory

Chemicals, enzymes, and other reagents

Recombinant Human IGF-I PeproTech 100-11

Recombinant Human Betacellulin PeproTech 100-50

Recombinant Human Epiregulin PeproTech 100-04

Animal-Free Recombinant Human EGF PeproTech AF-100-15

Human HGF PeproTech 100-39-10UG

Animal-Free Recombinant Human Heregulinβ-1 PeproTech AF-100-03

Insulin solution human Sigma-Aldrich I9278-5ML

Hydrocortisone Sigma-Aldrich H0888-1G

Horse serum Donor Herd Sigma-Aldrich H1270-500ML

DMEM/F12 Ham Sigma-Aldrich D6434-500ML

Penicillin/Streptomycin Sigma-Aldrich P4333

BSA Sigma-Aldrich A2153

FuGENE® HD Transfection Reagent Promega E2311

Hygromycin B solution Santa Cruz biotechnology sc-29067

Blasticidin S HCl Tocris Bioscience 5502

Puromycin dihydrochloride Sigma-Aldrich P7255

Software

Ilastik v1.3.2

Cell profiler v3.1.8

MATLAB R2016b

Other

Eclipse Ti inverted fluorescence microscope Nikon

Zyla 4.2 plus camera Andor

Methods and Protocols

Cell culture and biosensor imaging
MCF10A cells were cultured in DMEM:F12, 5% horse serum,

20 ng/ml recombinant hEGF (PeproTech), 10 μg/ml insulin

(Sigma-Aldrich/Merck), 0.5 mg/ml hydrocortisone (Sigma-Aldrich/

Merck), 200 U/ml penicillin, and 200 μg/ml streptomycin. GFs

stimulation experiments were executed after 2 days’ starvation in

DMEM:F12, 0.3% BSA (Sigma-Aldrich/Merck), 0.5 mg/ml hydro-

cortisone (Sigma-Aldrich/Merck), 200 U/ml penicillin, and 200 μg/
ml streptomycin. hEGF, BTC, EPR, HGF, HRG, and IGF (Pepro-

Tech) were pre-diluted in the starving medium and added to cells

under the microscope.

H2B-miRFP703, ERK-KTR-mTurquoise2, and FoxO3a-mNeon-

Green constructs were generated and subcloned in the piggy

PiggyBac vectors pMP-PB, pSB-HPB, and pPB3.0. Blast as previously

described (preprint: Gagliardi et al, 2020). Upon transfection of

these plasmids with FuGene (Promega), cells were treated with

2.5 μg/ml Puromycin, 25 μg/ml Hygromycin, and 5 μg/ml Blasti-

cidin to select stably expressing cells. To achieve uniform biosensor

experiments, cells were further cloned.

For imaging experiments, MCF10A cells were seeded on 5 μg/ml

Fibronectin (PanReac AppliChem)—coated 24 well 1.5 glass bottom

plates (Cellvis) at 1 × 105 cells/well density 2 days before the experi-

ment. Time-lapse epifluorescence imaging was executed with an

Eclipse Ti inverted fluorescence microscope (Nikon) equipped with a

Plan Apo air 40× (NA 0.9) objective. Images were acquired with a 16-

bit Andor Zyla 4.2 plus camera and with the following excitation and

emission filters (Chroma): far red: 640 nm, ET705/72m; NeonGreen:

508 nm, ET605/52; mTurquoise2: 440 nm, HQ480/40. Images were

acquired with 1,024 × 1,024 resolution with 2 × 2 binning.

Automated image analysis
To obtain single-cell bivariate signaling trajectories of ERK and Akt

activities, we used a dedicated image analysis pipeline, as previ-

ously described (preprint: Gagliardi et al, 2020). First, we trained a

random forest classifier based on different pixel features with Ilastik

(Berg et al, 2019) to separate H2B-miRFP703 fluorescence from

background signal. The 16-bit nuclear probability channel produced

by pixel classification was then used for nuclear segmentation with

CellProfiler 3.0 (McQuin et al, 2018). A 7 pixels expansion of

nuclear segmentation with two pixels separation was used to
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produce a ring-shaped ROI in the cytosol. A ratio of the median

pixel intensities of the cytosol over the nucleus masks was then

calculated. Centroid-based single-cell tracking was executed with

MATLAB using μ-track 2.2.1 (Jaqaman et al, 2008).

ERK and Akt activities were calculated as cytosol/nuclear (C/N)

ratio of average pixel intensities in cytosol and nuclear ROIs in the

respective fluorescence channels. Color coded images of ERK and

Akt activities (Fig EV2B and C) were generated by color coding

nuclear segmentation with the C/N values for each cell in each time

point (CellProfiler 3.0).

ERK and Akt data analysis in single-cell trajectories was carried

out with custom R codes. Heat maps of signaling trajectories (Fig

EV2D) and average plus 95% confidence interval (Fig EV2E) were

generated with Time Course Inspector (Dobrzyński et al, 2019).

CNN architecture, training parameters, data augmentation,
and preprocessing
All CNNs were built with the same convolutional architecture

(preprint: Zhou et al, 2015), while only the number of filters in the

last convolutional layer, i.e., the number of CNN features used for

classification and projection, varied based on the dataset (Table

EV1). For each dataset, several values for the number of CNN

features were tested to minimize overfitting while maintaining

predictive power (Appendix Note 1). The ResNet architecture (He

et al, 2016) which was trained for the GF dataset is the only model

with a different architecture. It starts with a layer of 2D-convolution

with 20 kernels of size (3, 3); this is followed by three residual blocks

with a skip connection regrouping two successive 2D-convolutions

with 20 kernels of size (3, 3) each; a global average pooling gener-

ates a vector of features that are passed to a fully connected layer for

classification. For all models, batch normalization and rectified

linear units (ReLU) activation were used after each convolution

layer. This standard setup was shown to improve training speeds

and prevent overfitting (Krizhevsky et al, 2012; preprint: Ioffe &

Szegedy, 2015). In this configuration, convolutions on bivariate data

are done as if the signal were an image with two rows of pixels and a

single-color channel. All models were trained to minimize cross-

entropy loss with a L2 regularization weighted at 1e-3. Learning rates

were initialized at 1e-2 and progressively reduced through epochs.

The number of epochs varied from about 20 epochs for the synthetic

set to a few hundred for the GF dataset, but all were trained in less

than an hour on a consumer-grade GPU (Nvidia RTX 2080 Ti).

For all datasets, input trajectories were preprocessed before

being passed to the CNN by subtracting from each channel its aver-

age value in the training set. The chosen CNN architecture imposes

a fixed input size. We propose to take advantage of this limitation to

perform data augmentation by randomly cropping trajectories

before presenting them to the network (Table EV1). The procedure

is analogous to what is commonly done on images, where cropping

has been shown to be efficient at enforcing space- (in our case,

time-) invariant feature learning (Krizhevsky et al, 2012). For the

GF dataset analysis, we fixed a set of input trajectories to get rid of

any variation due to the random crop before creating all figures

related to these data.

Prototype trajectories selection
We use the classification confidence of CNNs to identify prototype

curves that are representative of the input classes. The classification

output of a CNN consists in a one-dimensional vector of real

numbers, in which each number represents a single class. These

numbers are not bound to a specific range but a higher number,

relative to the rest of the output vector, is a stronger indication that

the input belongs to a given class. As is usually performed, we

transformed these output vectors with the softmax function. This

squeezes all numbers between 0 and 1 and ensures that their sum is

equal to 1. Hence, it gives a “probabilistic” interpretation to the

CNN output. We define the classification confidence of a model for

a given input, as the predicted probability for this input to belong to

a given class.

We distinguish two types of prototype trajectories. On one

hand, the “top prototypes” which are the trajectories for which

the model prediction is correct and for which its confidence is the

highest in a set of input trajectories. On the other hand, the

“uncorrelated prototypes” which is a subset of input trajectories

that we extract in two steps. First, the set of input trajectories is

filtered to retain those for which the model confidence in the

correct prediction reaches a predefined threshold. Second, a greedy

algorithm chooses one by one trajectories in this filtered set such

that their CNN features are as least correlated as possible between

each other. This procedure is initiated by selecting the trajectory

which has the highest median Pearson correlation to all the other

trajectories in the filtered set.

For the GF dataset (Fig 1B and C), the 10 top prototypes from

each class in the validation set were selected. For the synthetic

dataset (Fig EV1C), eight uncorrelated prototypes with minimal con-

fidence of 90% were chosen in the training and validation sets

pooled together. For the drosophila movement dataset (Fig EV5B),

the top prototypes for each class were chosen in the training and

validation sets pooled together.

Motif mining and clustering with CAMs
Class-discriminative motifs were identified with class activation

maps (CAMs), a technique to reveal class-specific regions, according

to a CNN classifier, in the input trajectories (preprint: Zhou et al,

2015). CAMs assign a quantitative value to each data point in input

trajectories, large values indicate points that largely affect the model

prediction toward a class of interest.

Here, we define a motif as a continuous stretch of points in

the input trajectories that are recognized as important by the

CNN for a given class, as indicated by CAMs. This approach is

analogous to what was already proposed in computer vision (Sel-

varaju et al, 2017). To obtain the motifs, the points in an input

trajectory are first classified as “relevant” or “non-relevant” for

the class by binarizing CAM values using Li’s minimum cross-

entropy threshold (Li & Tam, 1998). This results in a collection

of continuous “relevant” segments which are expanded by a

defined number of points. This helps to better capture the context

around a motif and to correct for single points detected as “non-

relevant” by the thresholding. This collection of extended

segments in a trajectory forms the collection of class-specific

motifs in the trajectory.

In order to go beyond the identification of motifs among single

trajectories, we established a motif mining pipeline to investigate

and characterize motifs at the dataset scale. To do so, we first

isolate motifs in prototype trajectories from every class in the

datasets. The CAMs to identify these motifs are generated toward
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the actual class of each trajectory. Then, from each trajectory

only the longest motif is retained. Finally, all the motifs are

compared with dynamic time warping (DTW) distance and parti-

tioned with hierarchical clustering.

For the GF (resp. Synthetic) dataset, 75 (resp. 125) top proto-

type trajectories (resp. uncorrelated prototype trajectories with

minimal confidence of 90%) were selected from both the training

and the validation sets to extract the patterns. Motifs were

extended by 2 (resp. 0) points, and only the longest motif was

retained in each trajectory. The motifs were finally filtered to

retain motifs shorter than 100 points (resp. longer than five

points) (Figs 2A and EV1D).

Dynamic time warping
Dynamic time warping (DTW) distances between CAM-motifs were

computed with the R package parallelDist, with the “symmetric 2”

step pattern. Pairwise distances were normalized by the sum of the

lengths of both motifs of the pair.

Medoids and centroids for motifs clusters and CNN
features clusters
To present the content of the motif clusters (Figs 2A, EV1D and

EV3C), sets of representative motifs were selected. The selection

process explicitly relies on the distance matrices that were used to

perform the clustering. Specifically, the medoid (resp. centroid)

motifs are the motifs for which the median (resp. mean) DTW

distance to all other motifs in the same clusters is minimal.

A similar procedure was followed to choose representative

trajectories from CNN features clusters (Fig 4F right column, Fig 5

D). These clusters were defined by hierarchical clustering using

the L1 distances between the CNN features of the trajectories.

This distance matrix was used to select trajectories that mini-

mized intra-cluster distance. For the TGFβ/SMAD2 dataset,

centroids were used in place of medoids, i.e., trajectories that

minimized the average intra-cluster distance (and not the median)

were selected.

t-SNE projections
The t-SNE projections of the CNN features were performed with the

implementation in the Python library sklearn.

Peak detection
The number of ERK/Akt activity peaks was calculated with a

custom algorithm that detects local maxima in time series. A local

maximum is defined as a point that exceeds the value of its

neighbors by a threshold that was manually set at 0.12 for ERK

and 0.10 for Akt.

Classic time series features extraction, projection, and random
forest classifier
Hundreds of classic time series features were extracted using the

library TSfresh (Christ et al, 2018). Features were extracted both

for ERK and Akt signals in the GF dataset. The features were

extracted using the same fixed cut of data as the one that was

used to produce the figures related to the CNN method (see CNN

architecture method section). The features were filtered to keep

only those that were significantly different between the GFs. This

filtering was done using TSfresh’s procedure. The procedure runs

an appropriate statistical test for each feature and filters relevant

features with a false discovery rate control of 5%. We then

trained a set of random forests using the H2O R package (https://

github.com/h2oai/h2o-3) that took these features as input and

predicted the GF treatment. The parameters of the random forests

were randomly sampled from predefined ranges and the model

with best classification accuracy on the validation set was kept

after 8h of search. This model comprised 386 trees with a maxi-

mum depth of split of 21; it reached a classification accuracy of

58%. The variables’ importance of this model was extracted using

H2O’s corresponding function. The latter estimates feature impor-

tance by the reduction of squared error associated with splits on

each feature (Fig 3B).

The contributions of variables to each PCA component (Fig 3E)

were extracted using the R package factoextra (https://github.com/

kassambara/factoextra). The latter estimates a variable contribution

to a PC by the ratio of its squared cosine over the sum squared cosi-

nes of all variables for a given PC.

Synthetic data
Synthetic data were created by generating trajectories that always

comprise 4 events of pulses (Fig EV1). Each pulse can be of two

types: either a full Gaussian peak or a Gaussian peak truncated at

its maximum. The side of the peak being truncated is random for

each peak. The equation to generate a single peak event is as

follows:

yi tð Þ¼Hie

� t�Pið Þ2
2Sið Þ2 ,

where {t|t∈N0; t < 750} is the discrete time variable, stopping

when the desired length of trajectory is reached (here 750); P is

the discrete random variable for the time of event occurrence,

follows U{0,750}; H is the height of the peak, follows U(1, 1.5)

and S relates the width of the peak, follows U(15, 25). After trun-

cation of a peak, the final equation for a single peak is:

if no truncation: if truncation to the left: if truncation to the right:

y∗i ðtÞ¼ yiðtÞ, 8t y∗i ðtÞ¼
yiðtÞ if t ≥ Pi

0 otherwise

(
y∗i ðtÞ¼

yiðtÞ if t ≤ Pi

0 otherwise

(

The number of truncation events for a single trajectory is drawn

from Uf0, 1, 2g for trajectories of the first class and Uf2,3,4g for

trajectories of the second class. Finally, the whole trajectory is

obtained by summing all independent peak trajectories:

z tð Þ¼∑4
i¼0y

∗
i tð Þ:

We add the hard constraint that each peak (i.e., each realization of

P in a trajectory) must be at least 75 time points away from each other.

The final synthetic dataset contains 10,000 trajectories in

each class, from which 70% were used for training and the rest for

validation.

Data availability

All source data and code to reproduce every figure can be down-

loaded from: https://doi.org/10.17632/4vnndy59fp
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The code necessary to run CODEX, along with user-friendly

Jupyter notebooks and the interactive application to browse the

t-SNE projection of CNN features are freely available at: https://

github.com/pertzlab/CODEX.

Expanded View for this article is available online.
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