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Abstract 

 

The use of quantitative techniques for the extraction of information from medical 

images is increasing in recent years. Among these, the so-called radiomics has assumed 

particular importance. Radiomics consists in the calculation of a series of quantitative 

characteristics from portions of medical images for which it is possible to evaluate the 

correlation with variables of clinical interest (classifications, histological parameters, 

prognosis, response to therapy). The intent is therefore to transform the largely subjective 

elements that physicians use to extract information from the images into objective 

numerical data, as a base to formulate decision-making models. 

To reach this goal radiomics uses quantitative parameters, named radiomic features, 

which are extracted from region of interest (ROI) of medical images. These features 

express various properties of the ROI, from simple statistical indexes of pixel 

distributions, to complex matrix calculations of the heterogeneity texture. Several 

software programs have been developed to extract hundreds of different features. 

Radiomics analysis is often implementable in retrospective studies on normal images 

already acquired in clinical routine for staging and monitoring of the disease. If the 

predictive value of specific radiomic features will be demonstrated in the future, their use 

can easily be extended to all diagnostic centers without additional costs and without 

increases in invasiveness for the patient. 

There are different research fields in the development of radiomics approach. 

Several works are aiming at evaluating the relative impact of acquisition and processing 

parameters in the calculation of radiomic features on the values obtained and on the ability 

to discriminate the results of the clinical variables of interest. The medical physicist can 

deal with this type of investigation starting from his own skills in image formation, 

acquisition protocols, segmentation and post processing methods, that could affect the 

quality of the final image. The research work of this thesis also fits into this context, in 

particular in the field of nuclear medicine images for the diagnosis of neuroendocrine 

tumors (NET). 

The main purpose of this work is the characterization of the robustness of features, 

extracted from patient and phantom images, with respect to different acquisition and pre-

processing methods. The use of phantoms is particularly useful for being able to carry out 

acquisitions with different equipment in the same conditions and for evaluating the 

repeatability and reproducibility of the feature values. In the context of nuclear medicine, 

the development of phantoms presents a greater degree of complexity than in MRI or CT 

imaging, as the phantom must be filled with the radioactive substance with the correct 

timing taking into account the physical decay. All the experimental work was developed 

at the AOU Città della Salute e della Scienza in Turin. 



 
 

 

In the first chapter of the thesis the basics of radiomics analysis are presented, 

including the radiomic workflow which comprises different steps from image acquisition 

to data analysis and potential model development. A particular focus is dedicated to the 

pre-processing techniques, which are the procedures usually applied before the feature 

extraction, and to the description of the categories of features used in the thesis. Nuclear 

medicine positron emission tomography (PET) is also introduced, in particular describing 

the quantitative content of images and discussing the main parameters involved in their 

formation. Finally, a short review of the literature of radiomics in NET tumours is 

presented, with examples of applications for various clinical outcomes. 

Chapter 2 presents a study on the impact of different segmentation approaches 

(manual and semi-automatic) and preprocessing discretization in a cohort of NET 

patients. Different statistical indexes and data mining approaches, such as principal 

component analysis, have been used to investigate the feature robustness and potential 

predictive value.  

The implementation and the use of a phantom with specific inserts produced by a 

3D printing approach is described in chapter 3. In a first part the different strategies to 

develop phantoms for nuclear medicine radiomics and the relative manufacturing 

processes are described. The phantom was acquired with different radioisotopes and 

different parameters were used in the reconstruction of the images, and the relative 

variability in radiomics features was analyzed. 

In chapter 4 a summary of lessons learned during the doctoral work and future 

perspectives in radiomics studies are presented. 
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1. Radiomics in nuclear medicine 

1.1 1.1 What is radiomics 

In recent years there has been an enormous diffusion of artificial intelligence 

techniques and big data analyses in many fields, including the medical one. In particular, 

a great deal of attention is paid to various methodologies for analyzing diagnostic images 

and, among them, radiomics is proving to be particularly promising for clinical 

applications. 

Radiomics is defined as a quantitative approach to medical images, based on the 

extraction of a large number of quantities, called radiomic features (RF) or radiomics 

characteristics, to evaluate possible correlations with clinical variables of interest. 

The basic idea of radiomics is that the images contain information reflecting 

biological processes which can be derived from the relationships between voxels (or 

pixels), intensity distributions and texture properties of the image. Typically, the ultimate 

goal is to correlate the results of the radiomic analysis with clinical data to develop 

diagnostic, prognostic or prediction models for the response to a therapy using artificial 

intelligence techniques and big data. A particular field of radiomics is the so-called “delta 

radiomics”, or study of how the values of radiomic features vary over time (e.g. during a 

therapy) and how these changes are related to biological processes or ongoing 

physiological reactions. 

1.2 Radiomics workflow 

The workflow in a radiomics study is particularly complicated and presents many 

critical passages. Figure 1.1 depicts the typical procedures followed in a radiomic 

analysis.  

Starting from the acquired medical image, a processing step is performed to 

improve the quality: for example, filters can be applied to reduce noise or artifacts. 

Segmentation corresponds to the definition of a partial volume of the image, often 

indicated with ROI (Region of Interest), within which the radiomic features are 

calculated. For example, in the case of images of oncologic patients, the ROI is typically 

the volume of the tumor mass. In the case of medical images, segmentation can be 

performed manually by the medical staff, semi-automatically (a software helps the 

medical staff, but it is not able to segment independently) or automatically (the software 

acts completely independent).  

Interpolation of images consists of resampling them to change the original 

resolution. This is an important step to standardize samples of images obtained with 

different machines or from different centers. The general indication is to provide cubic 
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voxel images, while there is no consensus on the choice of a downsampling or an 

upsampling procedure: in the first case it is expected a loss of information, in the other 

there is the risk of introducing artifacts in the image. Moreover, currently there is no 

consensus on the choice of the optimal interpolation algorithms in various situations.  

 

  

Figure 1.1: Example of workflow for radiomic feature extraction [IBSI 2019] 

 

Starting from the ROI, a morphological mask and a mask of intensities are created. 

The first corresponds to the original ROI, while the second mask is the result of a process 

called “re-segmentation”. Re-segmentation corresponds to the elimination of voxels or 

image pixels whose intensity is outside a predefined range of values: for example, in 

computed tomography (CT) images voxels with values compatible with air or bone 

tissues are often eliminated from the ROI regions. In the pictures obtained from magnetic 

resonance the intensities are in arbitrary values and therefore typically no re-segmentation 

is performed. 

The discretization of the gray levels consists in grouping them into classes 

(typically indicated as “bins”), allowing to create a histogram of the frequencies of gray 

levels. The intensities of the voxels are then changed by assigning the same value to all 

those that fall within the range corresponding to a certain class. It is a fundamental step 
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for the calculation of the radiomic features related to the texture of the image and it can 

also be useful to eliminate at least part of the noise of the images. 

There are two approaches for the discretization of the voxel values: fixed number 

of bins or bins with fixed width. In the first approach (fixed bin number, FBN) the same 

number of classes is used for all the images, and the voxel values are scaled according to 

the following formula: 

 

𝐼𝐵𝑁(𝑥) = {
1 𝑖𝑓 𝐼(𝑥) = min (𝐼(𝑥))

𝑖𝑛𝑡 {𝐵𝑁 ∗
𝐼(𝑥)−min (𝐼(𝑥))

max(𝐼(𝑥))−min (𝐼(𝑥)
} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (1) 

 

where I(x) is the intensity of voxel x, BN the number of bins, and IBN(x) a integer 

corresponding to the discretized gray-level of the voxel x. After this discretization 

approach, the maximum voxel value will be BN for all images, regardless of their 

previous maximum value. In this discretization method the relationship between the 

intensity levels of the image and their physiological meaning is lost, but a normalization 

effect is obtained which is useful in cases where the voxel values are expressed in 

arbitrary units, as in the case of magnetic resonance images.  

The second approach consists in using the same width for the bins of all images 

(fixed bin size FBS). The value of the voxel IBS(x) is calculated as:  

  

𝐼𝐵𝑆(𝑥) = 𝑖𝑛𝑡 {[
𝐼(𝑥)

𝐵𝑆
] − 𝑚𝑖𝑛 ([

𝐼(𝑥)

𝐵𝑆
]) + 1}                              (2) 

 

where BS is the bin size. In this discretization method the relationship between the 

intensities and their physiological significance is maintained. This is the method used for 

the discretization of Computed Tomography (CT) and often for Positron Emission 

Tomography (PET) images. In the case of CT images the intensities are expressed in 

Hounsfield Units (HU), which is a transformation of the coefficient of linear attenuation, 

while in the case of PET images the voxel level is expressed in SUV (Standardized Uptake 

Value), corresponding to the activity of the radiopharmaceutical in the voxel normalized 

to the total injected activity.  

Figure 1.2 shows an example of discretization of voxel intensities of an image with 

different number of bins. Finally, after the interpolation and discretization of the image 

gray levels, the actual calculation of the radiomic features is performed on the voxels of 

the ROIs. 
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Figure 1.2: Example of discretization of the pixel intensities of an image with different 

number of bins [IBSI 2019] 

1.3 Radiomics features 

1.3.1 Types of radiomics features 

The radiomic features are a series of quantities extracted from the voxel values of 

medical images. There are a large number of radiomic features, related to morphological 

properties, to the intensity distributions of the image pixels or voxels or to the properties 

of the image texture. 

The features can be divided into seven groups: 

• morphological features: linked to the shape of the ROI (for example volume, 

surface, sphericity, …); 

• first order: calculated starting from the histogram of the frequency of intensities 

(e.g. mean, entropy, skewness, standard deviation); 

• GLCM (Gray Level Co-occurrence Matrix): related to texture properties of the 

image, in particular to the distribution of gray levels in neighboring voxels (e.g. contrast, 

correlation, cluster tendency); 

• GLSZM (Gray Level Size Zone Matrix): linked to texture properties of the image, 

in particular to the size of clusters of neighboring voxels with the same intensity (e.g. gray 

level variance, gray level non-uniformity); 

• GLRLM (Gray Level Run Length Matrix ): related to texture properties of the 

image, in particular to the length of sequences (called “runs”) of consecutive voxels along 

a given direction with the same intensity (e.g. gray level non-uniformity, run variance); 

• NGTDM (Neighboring Gray Tone Difference Matrix): related to the difference 

between the intensity of a voxel with the average intensity of its neighbors (e.g. contrast, 

coarseness); 

• GLDM (gray level dependence matrix): linked to the homogeneity of the image 

texture (e.g. gray level non-uniformity, large dependence emphasis). 
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1.3.2 Examples of first order radiomics features 

 

The first order features are calculated, after the discretization of the gray levels, 

starting from the intensities of the voxels and from the histogram of the frequency of the 

intensities. We consider X defined as the set of intensity values of Np voxels within the 

ROI, X(i) the value of the i-th voxel, P the histogram of the frequency of the discretized 

gray levels with Ng bins, P(i) the frequency of the voxels with values belonging to the i-

th bin and p(i) = P(i)/Np the normalized probability for the same bin. 

“Entropy” indicates the randomness of the intensity values of the image and 

measures the average amount of information to encode them. It is defined as: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑝(𝑖) ∙ 𝑙𝑜𝑔2(𝑝(𝑖))
𝑁𝑔

𝑖=1
                          (3)              

“Skewness” measures the asymmetry with respect to the mean of the intensity 

distribution of the image voxels: 

       𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1

𝑁𝑝
∑ (𝑋(𝑖)−�̅�)3

𝑁𝑝
𝑖=1

√
1

𝑁𝑝
∑ (𝑋(𝑖)−�̅�)2

𝑁𝑝
𝑖=1

3                (4) 

 

1.3.3 Examples of second order radiomics features 

 

GLCM features are calculated from the gray level co-occurrence matrix and 

reflect texture properties of the image. The co-occurrence matrix of the gray levels, 

denoted by P, has dimension Ng × Ng (with Ng the number of gray levels, or bins, 

following the discretization). The element P(i,j) represents the number of times that an 

intensity voxel belonging to bin i and one to bin j are adjacent. For example, from an 

image represented by the matrix I we obtain the matrix of co-occurrence P. 

𝐼 =

[
 
 
 
 
1  2  5  2  3
3  2  1  3  1
1  3  5  5  2
1  1  1  1  2
1  2  4  3  5]

 
 
 
 

           𝑃 =

[
 
 
 
 
5  6  8  1  2
6  2  2  1  4
8  2  0  1  2
1  1  1  0  0
2  4  2  0  1]

 
 
 
 

           

In this example, there are 5 pairs of adjacent pixels with value 1 in matrix I and so 

the value in the P matrix of the first row and first column is 5; there are 8 pairs of adjacent 

pixels with values 1 and 3 and as a consequence the value of the third column and first 

row (or third row and first column, the matrix is symmetric) is 8, and so on.  

A series of other useful quantities can therefore be defined for the calculation of the 

features: 
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• p: the normalized co-occurrence matrix, with  

𝑝(𝑖, 𝑗) =
𝑃(𝑖,𝑗)

∑𝑃(𝑖,𝑗)
                       (5) 

• Ng: number of discretized gray levels 

• the marginal probability of row i 

𝑝𝑥(𝑖) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1
         (6) 

• the marginal probability of column j 

𝑝𝑦(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑖=1
         (7) 

• the average intensity μx of px  

𝜇𝑥 = ∑ 𝑝𝑥(𝑖)
𝑁𝑔

𝑖=1
𝑖          (8) 

• the average intensity μy of py  

𝜇𝑦 = ∑ 𝑝𝑦(𝑗)
𝑁𝑔

𝑗=1
𝑗          (9) 

• σx: standard deviation of px 

• σy: standard deviation of py 

 

“Contrast” measures the local variation in intensity favoring values away from the 

diagonal: as the contrast increases, the difference in intensity between neighboring voxels 

increases. 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ (𝑖 − 𝑗)2𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  (10) 

“Correlation” is defined as: 

 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ 𝑝(𝑖,𝑗)𝑖𝑗−𝜇𝑥𝜇𝑦

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
   (11) 

The correlation values range from 0 (no correlation) to 1 (perfect correlation) and 

show the linear dependence of gray levels with their respective voxels in the GLCM. 

 

“Cluster tendency” measures the tendency of the voxels to form groups with similar 

values of gray levels: 

 

                  𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
2
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 (12) 
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“Cluster shade” is a measure of GLCM skewness and uniformity: the more it is 

large, the greater the asymmetry with respect to the mean. 

                   𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒 = ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
3
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
        (13) 

1.4 Robustness of radiomics features 

1.4.1 Concept of robustness 

 

The concept of robustness of radiomic features is of particular importance and is 

the basis of a large number of publications [Suter 2020,Granzier 2020,Zwanenburg 2019]. 

As seen previously, radiomics workflow involves a sequence of choices (how to 

apply different filters to the image, segmentation of the region of interest, the 

discretization of gray levels and image interpolation) that may have an influence on the 

values of the extracted features: in fact, different choices can modify the values of the 

voxel intensity or the number of voxels of the image that will be analyzed. Being the 

intensity of the voxels and the relationships between their positions at the basis of the 

calculation of the features, repeating the analysis under different conditions can lead to 

different feature values. 

As there is currently no strong consensus on which is the optimal choice in each 

workflow step, to have reproducible results and reliable models it is necessary to 

investigate the effect of the different processing conditions on the values of the radiomic 

features. 

It is therefore fundamental to assess the robustness, i.e. independence of feature 

values from the conditions under which they were calculated, such as discretization, 

resampling or the methodology used to define ROI (e.g different programs or different 

operators who have carried out the segmentation). 

In addition to the independence of feature values from processing conditions, it is 

also of interest to evaluate whether the latter have an effect on the capability of the feature 

to discriminate patients who respond positively to a particular therapy from those that do 

not respond: in this case we speak of robustness if the features retain the ability to 

distinguish the two groups even as their values change. To evaluate the robustness, two 

statistical tests are typically used: the “intraclass correlation coefficient” (ICC) and the 

“coefficient of variation” (COV).  

 

1.4.2 Intraclass correlation coefficient 

 

The intraclass correlation coefficient (ICC) is widely used in radiomics studies to 

evaluate the robustness of features with respect to parameter variations [Koo 2016]. 
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The ICC has a value between 0 and 1 and is used to measure the reliability of an 

experimental method or the replicability of a measurement. The ICC allows to evaluate 

the correlation and agreement of the measurements and for this reason it is preferred in 

the radiomics field to the Student's t-test (which measures only the agreement) and the 

Pearson correlation coefficient (which measures only the correlation). 

In the case of this study it is used to verify the effect of the different conditions 

(ROI segmentation, discretization of the gray levels, image acquisition and processing 

parameters) on the values of the radiomic features. There are different definitions of ICC 

to choose from, on the basis of the specifics of the study in which to apply it. In our case 

the form of ICC "two-way random-effects model, single rater, consistency" was used. 

Two-way random-effects model means that we want to generalize the conclusions 

obtained in a limited set of conditions, while single rater indicates the fact that each value 

of the radiomic features has been calculated only once (and is not the result of an average). 

The choice of consistency is particularly important: it is made when the interest is not in 

the absolute concordance of the values of the features extracted under different 

conditions, but in the maintenance of the correlation between the values. In this way we 

want to verify that, even when the value of a feature varies in different conditions, it 

maintains for example its ability to discriminate patients responding to therapy from those 

unresponsive. 

To calculate the ICC in the form chosen for this study, we consider the matrix X 

whose elements x(i, j) are the values of a feature calculated for the i-th patient in the j-th 

condition. Let N be the number of patients and K the number of conditions. We define  

𝑆𝑖 =
1

𝐾
∑ 𝑥(𝑖, 𝑗)𝐾

𝑗=1     (14) 

the mean of the values measured for patient i for all the conditions, and 

𝑀𝑗 =
1

𝑁
∑ 𝑥(𝑖, 𝑗)𝑁

𝑖=1     (15) 

the mean of the values measured in condition j across all patients. 

From these two terms we can derive the following quantities: 

�̅� =
1

𝑁𝐾
∑ ∑ 𝑥(𝑖, 𝑗)𝐾

𝑗
𝑁
𝑖=1    (16)  

𝑆𝑆𝑇(𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑜𝑡𝑎𝑙) = ∑ ∑ (𝑥(𝑖, 𝑗) − �̅�)2𝐾
𝑗=1

𝑁
𝑖=1   (17) 

     𝑆𝑆𝐵𝑆(𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠) = ∑ ∑ (𝑆𝑖 − �̅�)2𝐾
𝑗=1

𝑁
𝑖=1  (18) 

     𝑆𝑆𝐵𝑀(𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠) = ∑ ∑ (𝑀𝑗 − �̅�)2𝐾
𝑗=1

𝑁
𝑖=1  (19) 

           𝑆𝑆𝐸(𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟𝑠) = 𝑆𝑆𝑇 − 𝑆𝑆𝐵𝑆 − 𝑆𝑆𝐵𝑀  (20) 

𝑀𝑆𝐵𝑆(𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠) =
𝑆𝑆𝐵𝑆

𝐾−1
   (21) 
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𝑀𝑆𝐸(𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟) =
𝑆𝑆𝐸

(𝑁−1)(𝐾−1)
   (22) 

And finally the ICC is defined as: 

 𝐼𝐶𝐶 =
𝑀𝑆𝐵𝑆−𝑀𝑆𝐸

𝑀𝑆𝐵𝑆+(𝑁−1)𝑀𝑆𝐸
   (23) 

The correspondance between ICC values and the “robustness level” varies in 

different studies, but generally a value of ICC greater than 0.9 is associated to an excellent 

robustness and a value between 0.75 and 0.9 to a good robustness. 

 

1.4.3 Use of COV in radiomics robustness studies 

 

The coefficient of variation (COV) or relative standard deviation is widely used in 

radiomics studies to evaluate the robustness of a feature. In particular, it is used to 

quantify the change in the value of a feature when calculated under different conditions. 

In general, it is defined as the ratio of the standard deviation of the values of a 

feature extracted under different conditions over its mean value and it is an indication of 

the dispersion of the data. It is typically indicated in percentage terms. 

In this study, for each feature, a coefficient of variation COVi for the patient with index i 

is defined as:  

 𝐶𝑂𝑉𝑖 = 100 ∗
√

1

𝐾−1
∑ (𝑥(𝑖,𝑗)−𝑥(𝑖)̅̅ ̅̅ ̅̅ )2𝐾

𝑗=1

𝑥(𝑖)̅̅ ̅̅ ̅̅     (24) 

where x(i, j) is the feature value calculated for patient i for a choice j of a parameter 

among K possibilities (for example the different discretizations of the levels of gray or 

the different resampling of the image), x(i)̅̅ ̅̅ ̅ is the average value of the feature calculated 

in the different conditions for the patient i. 

To have a single COV value for each radiomic feature, the mean value calculated 

on N patients is used: 

          𝐶𝑂𝑉 =
1

𝑁
∑ 𝐶𝑂𝑉𝑖

𝑁
𝑖=1      (25)  

Unlike the ICC, the COV provides an indication of the absolute agreement between 

the feature values calculated in different situations. There is no univocal interpretation of 

the value of the coefficient of variation, but in the literature a value of COV below 10% 

is often considered as optimal robustness. 
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1.5 The needs of standardization in radiomics analysis 

Radiomics at the moment has limits that do not yet allow the passage from the 

research phase to the clinical application. In particular, we have not yet arrived at a 

consensus on methodologies and workflow choices that are optimal for different 

applications. Furthermore, limitations regarding reproducibility are generally observed in 

validation studies. The lack of a standard procedure is particularly significant because the 

values of radiomic features are influenced by workflow choices: the use of different filters 

during image processing or different gray level discretizations or of different resolutions 

in the interpolation phase can have an impact on the values of the radiomic features and, 

consequently, on the model to be developed. 

For this reason, initiatives such as [IBSI 2019] (image biomarker standardization 

initiative) or RQS (radiomics quality score) [Lambin 2017] are fundamental to improve 

the standardization of procedural aspects in radiomics studies. IBSI is a collaboration 

aimed at standardizing the extraction procedures of radiomic features: it takes care of 

standardizing feature definitions, workflow for the extraction, tools to validate the 

radiomics software and how to report the results. RQS, on the other hand, is a score (with 

a maximum value of 36) that can be assigned to studies of radiomics to evaluate their 

quality by assigning points to various workflow steps: for example, points are awarded if 

the image acquisition protocol is described, if a study was also performed using a 

phantom, if multiple ROIs were used (for example obtained with different software) or if 

the training of the model was done with a data sample independent of the validation 

sample. 

1.6 General characteristics of PET images 

Positron emission tomography (PET) is increasingly used for the diagnosis, staging 

and follow-up of various malignancies. PET is based on the detection of annihilation 

photons released when radionuclides injected into patients, such as F-18, carbon-11 and 

Ga-68, emit positrons which undergo electron annihilation. Two photons are produced in 

opposite directions each with an energy of 511 keV (corresponding to the electron mass 

energy) and are detected in coincidence as they are absorbed by scintillation crystals 

consisting of germinated bismuth (BGO), lutetium oxyorthosilicate (LSO), or gadolinium 

silicate (GSO). A PET image reconstruction is based on the fact that each annihilation 

occurs in a point along the line connecting the detection points of a coincident photon 

pair and the annihilation activity in each voxel will be proportional to the radiotracer 

uptake.  

FDG is a radiopharmaceutical analogue of glucose which is absorbed metabolically 

by active tumor cells using facilitated transport similar to that used by glucose. The uptake 

rate of FDG by tumor cells is proportional to their metabolic activity. Positrons emitted 
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by a radionuclide have enough kinetic energy to travel a small distance (called positron 

mean range) before annihilating with an electron. The distance is less in dense structures 

such as bone but greater for lungs and air; for example, for FDG in water, the average 

positron gap is 1.4 mm. This change in position between the origin of the positron and its 

site of annihilation causes a blurring in the PET image, limiting the spatial resolution of 

the PET (typically 5 mm on current scanners). Another source of decrease in spatial 

resolution is non-linearity. When the positrons and electrons annihilate each other, they 

are in motion and the actual angle between the two emitted photons is not exactly 180°. 

This effect introduces a random variation with a rms of 0,5o with respect to the 180o angle 

assumed in the PET reconstruction, causing a further degradation in spatial resolution 

also called “annihilation angle blur”. The effect of the image increases as the distance 

between the two detectors detecting coincident events increases; it can therefore be 

decreased by reducing the diameter of the scanner. 

Many annihilation photons are lost because of their absorption in the body. The 

attenuation is lower in the body surface than deep in the body, low in lungs, and especially 

high in dense tissues such as bones, leading to severe artifacts in PET image, unless it is 

corrected during image reconstruction. For this reason, CT images are acquired together 

with PET images and CT voxel values are used to correct for attenuation effects on the 

annihilating photons. 

There are several methods to assess differences in radiotracer uptake by normal and 

pathological tissues, such as visual inspection, “standardized uptake value” (SUV), and 

glucose metabolic rate. In most cases visual inspection is used in the analysis of PET-CT 

results by comparing PET and CT data, as well as viewing fused PET-CT images. SUVs 

are used for semiquantification of FDG uptake. Another method for quantifying dynamic 

PET results is the more complex calculation of glucose metabolic rate. 

The SUV of a local region of interest is calculated according to the following 

formula: 

𝑆𝑈𝑉 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑏𝑜𝑑𝑦 𝑚𝑎𝑠𝑠

   (26) 

This parameter expresses the ratio between the concentration of 

radiopharmaceutical accumulated in a target lesion (in kBq/g) and the average 

concentration of tracer in the patient body (in MBq/kg). The SUV of a tissue is usually 

represented as its minimum, maximum or average value in the region of interest. The 

average SUV is the mathematical mean of all pixels in the region of interest, while the 

minimum and maximum SUV are the values of the pixelz with the lowest and highest 

SUV values, respectively. Typically, malignant tumors have SUVs greater than 2.5-3.0, 

while normal tissues such as liver, lung, and marrow have SUVs between 0.5 and 2.5. 

Variations of the SUV definition have been also introduced, such as the SUV corrected 

for glucose and the SUV normalized for the surface area or the lean body mass. It is useful 
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to know the SUV of the tumor before the initiation of a therapy to evaluate the grade of 

the tumor and to evaluate the treatment response after radiotherapy or chemotherapy 

[Thompson 2002]. It is important to standardize the time interval between radiotracer 

injection and the PET study because SUV variability over time has been well documented  

[Thie 2004]. 

The use of SUVs as a measure of relative tissue/organ uptake facilitates 

comparisons between patients and has been suggested as a basis for diagnosis. However, 

the practice of using SUV thresholds for diagnosis is not widely accepted There are at 

least two general reasons for the inconsistent use of SUVs in practice. The first is that 

accurate diagnostic and staging information need not depend on accurate image 

quantification, as the related image content (i.e., image appearance) is often sufficient for 

such purposes. Second, the measured SUVs exhibit a large degree of variability due to 

physical and biological sources of error, as well as inconsistent and non-optimized image 

acquisition, processing, and analysis. More specifically, the use of SUV thresholds (e.g. 

SUV > 2.5), to characterize a nodule or mass as benign or malignant, has been repeatedly 

shown to be often invalid. Thus, many benign infectious/inflammatory processes will 

have substantial FDG uptake with high SUV values, and conversely, many sluggish or 

slow-growing malignant processes may have minimal uptake and low SUV values. That's 

not to say, however, that using SUV thresholds for diagnosis is of no value. In 

circumstances where a nodule or tissue mass has no greater uptake than adjacent reference 

tissue and the pretest probability of malignancy is low, a decision to develop a "watch 

and wait" management strategy can often be made. with confidence. In this situation, the 

very low false negative rate of negligible FDG uptake can help in the decision to avoid 

unnecessary invasive procedures for tissue diagnosis. This has often been referred to as 

using FDG-PET as a "molecular imaging probe". Thus, PET/CT with FDG may aid in 

the decision to avoid an unnecessary invasive tissue biopsy, as well as guide such a 

procedure to a tissue location where a valid diagnostic biopsy specimen can be obtained. 

1.7 Guidelines and recommendations in nuclear medicine radiomics  

In November 2022 the Society of Nuclear Medicine and Molecular Imaging 

(SNMMI) and the European Association of Nuclear Medicine (EANM) have published a 

guideline on radiomics in nuclear medicine, in order to provide comprehensive best 

practice information for robust radiomics analyses, including study design, quality, data 

collection, the impact of acquisition and reconstruction, discovery and segmentation, 

standardization and implementation of features, as well as appropriate modeling schemes 

and assessments [Hatt 2023]. The list of recommendations is summarized in table 1 of 

the guidelines and here reported in figure 1.3. 

It is in particular of interest to analyze more deeply the recommendations about 

three aspects investigated in this phd research: the consequences of different acquisition 
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parameters, segmentation methods and preprocessing (resampling and voxel contents 

discretization).  

In the guidelines it is highlighted that it not possible at present to recommend 

clinical acquisition/reconstruction settings optimized specifically for the purpose of 

radiomics studies. They therefore recommend relying on the current harmonization 

guidelines for PET/CT imaging which were developed to make PET imaging as reliable 

and reproducible as possible between centres, as this can definitely improve the 

robustness and reproducibility of the derived radiomic characteristics [Pfaehler 2020]. 

Future harmonization guidelines are expected to pay more attention to radiomics 

applications suggesting parameters and acquisition settings to minimize the variability of 

resulting radiomic features [Papp 2019]. It is well known that the variability with respect 

to different acquisition and reconstruction factors (including but not limited to scanner 

model and/or generation, absorption time, scan duration, reconstruction algorithm and 

parameters, post-filtering settings) can influence the values of radiomic features in PET, 

as reported in several studies [Galavis 2010, Yan 2015], although the resulting impact on 

their clinical relevance and power of differentiation may not necessarily be strongly 

influenced [Tankyevych 2021, Ly 2018]. However, these studies have also highlighted 

the fact that the sensitivity of radiomic features can vary widely, with some studies 

showing greater robustness to various factors than others. 

 

 

Figure 1.3 Summary of the steps for performing a radiomics analysis in nuclear medicine 

with their most important recommendations (from [Hatt 2023]) 
 

Based on existing findings and previously published recommendations, including 

AAPM Working Group Report 211 [Hatt 2017] and MICCAI PETseg Challenge [Hatt 
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2018], for the segmentation methods in radiomics studies, the main recommendations are 

the following: 

i) Methods that favor positive predictive value over sensitivity in segmentation 

performance should be preferred. For example, including parts of the absorption at the 

edges is likely to introduce greater bias in the resulting measurements of characteristics 

(particularly absorption medium but also specific structural characteristics) due to partial 

volume effects (if no compensation/correction has been applied to the images before) 

[Hatt 2013, Hatt 2017]; 

ii) Methods based on a fixed threshold (for example, 40 or 50% of the maximum 

SUV) have the advantage of being fairly reproducible by multiple readers. However, they 

should not be used without heavy adjustments or expert corrections for the purpose of 

radiomics studies, as they have been shown to perform poorly especially in heterogeneous 

lesions [Hatt 2017]. 

iii) One should rely on (semi) automated methods, rather than manual delineation. 

Ideally, a consensus between several methods should be considered to improve the 

performance. If no automated algorithm but only manual delineation is available, ideally 

a consensus of at least three expert delineations should be obtained, for example using 

approaches such as the Simultaneous Performance Level and Performance Estimation 

Technique (STAPLE ) [Warfield 2004]. However, this would likely limit the analysis to 

small datasets. Alternatively, if only manual delineation by a single observer is possible 

for the entire study, appropriate study design should include a patient subgroup analysis 

to investigate the potential impact of between-user variability on patient performance. For 

example, a model trained on patients delineated by one expert could be applied to test 

patients for which delineation was performed by another expert. 

iv) There is growing interest in using deep learning approaches to segmentation. 

Current state-of-the-art methods to achieve fully automated PET image detection and 

segmentation are almost all based on DNN like U-Net architecture. The generalizability 

and performance of these algorithms are however questionable as they may fail in new, 

previously unseen cases. Fully automated segmentation should therefore always keep 

human experts in the loop for quality assurance. 

Regarding the two discretization methods described before (FBN and FBS), FBS 

in PET has shown to produce features with a lower correlation with the corresponding 

number of voxels involved in the calculation (i.e., tumor volume) than FBN [Leijenaar 

2015]. However, since FBS instead introduces a spurious correlation with SUV [Orhlac 

2015], there is no consensus on the superiority of one over the other method in terms of 

modeling performance. For comparison purposes, it may be useful to systematically 

implement and report both. 

For the FBN binning method, the recommended number of bins should be between 

4 and 64 bins. A higher number of bins typically leads to very sparse and uninformative 

texture matrices [Hatt 2015]. For the FBS discretization method, the lower bound should 
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generally be set to 0.0 SUV. The recommended container size depends on the problem. 

Typical bin sizes lead to a ROI with a number of bins between 8 and 64. Too small bin 

sizes, such as 0.01 SUV, should be avoided, as this will lead to very sparse and 

uninformative texture matrices. Typically, texture matrices should be calculated with the 

default parameters listed in the IBSI reference document. It is also necessary to be careful 

with the software, as different programs may not use the same default settings. 
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2. Impact of segmentation and discretization on radiomic 

features in PET/CT images of neuroendocrine tumor 

patients 

2.1 Neuroendocrine tumor imaging and purpose of the study 

Neuroendocrine tumors (NET) are a heterogeneous group of malignancies, 

characterized by different subtypes and several possible primary locations [Oronsky 

2017]. The subtypes are classified on the base of some histological indexes derived by 

the analysis of portions of biological tissues extracted with ordinary biopsy. As an 

example the histological index Ki-67 is usually considered to define the NET tumor 

grading. The Ki67 index represents the fraction of Ki-67 antigen-positive tumor cells 

expressed as a percentage, where this antigen is a nuclear protein closely associated with 

cell proliferation. However, according to recent studies the assessment of tumor 

aggressiveness by only lesion biopsy is subject to potential grading underestimation 

[Gerlinger 2019]. It is important to consider the heterogeneity of each NET case, in terms 

of spatial distribution (inter- and intra-tumoral heterogeneity) and also in terms of 

temporal evolution (in particular how the more aggressive cells clone during the 

observation period and follow up). Moreover, NET often appear as multiple-lesions and 

in this case biopsy sampling for each single lesion is obviously not feasible, with a 

consequent absence of complete characterization of the primary and the secondary 

multiple-lesions [Grillo 2016].  

Medical imaging and in particular PET imaging might offer a contribution in the 

characterization of tumor heterogeneity, as already outlined in the first chapter. The 

importance of PET imaging is also related to the role of somatostatin (SST), a small 

peptide that exerts inhibitory effects on a wide range of neuroendocrine cells. Due to the 

fact that somatostatin regulates cell growth and hormone secretion, somatostatin receptors 

(SSTRs) have become valuable targets for the treatment of different types of NETs. At 

present, PET imaging with 68Ga-DOTA-peptides analogue to the somatostatin is 

considered the state of the art to quantify SSTR in vivo [Giovannini 2018], while 18F-

fluorodeoxyglucose (18F-FDG) PET-CT is used to metabolically characterize more 

aggressive and higher-grade NET lesions [Carideo 2019]. This dual approach has been 

recently evaluated leading to the development of a nuclear medicine “score”, the 

NETPET [Chan 2017]. The NETPET scoring scheme was devised based on quantitative 

and qualitative assessments made by a number of nuclear medicine physicians and 

medical oncologists. The strategy adopted was to identify the single lesion that was more 

avid for FDG than its SSTR-emulating radiopharmaceutical uptake (specifically [68Ga]-

DOTATATE), as this is likely to represent the more aggressive disease phenotype present 

in the subject. The NETPET grade uses a categorical scale from 0 to 5 and was based 
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largely on the characteristics of the individual initial lesion, with a grade of P1 indicating 

purely SSTR-avid disease with no FDG uptake in any lesion and P5 indicating the 

presence of FDG with negative SSTR, considered a very poor prognostic marker.   

Nevertheless, the simple in vivo quantification of receptor expression is not 

sufficient to fully characterize the biology of the tumor and the intra patients and 

intratumor heterogeneity. This drawback might be solved with a better characterization 

of tumor heterogeneity by the extraction of radiomic features (RFs), as a surrogate 

biomarker for NET lesions characterization, from the 68Ga-DOTA-peptide PET-CT. As 

stated in chapter 1, scientific interest in radiomics applied to PET imaging is rapidly 

increasing, but the methodological approach needs to be validated and standardized and, 

thus, harmonization among protocols is needed. In particular, the approach used for lesion 

segmentation and the voxel value discretization for second order features are two 

procedural parameters that may affect significantly the final results.  

Most of the studies about RFs robustness are focused on 18F-FDG PET/CT imaging 

[Orhlac 2016], whereas at present there is only one study evaluating the impact on RFs 

of different image acquisition and reconstruction parameters for 68Ga-DOTA-peptides 

PET/CT, which howevever does not consider the effect of different segmentation 

approaches [Bailly 2016]. There are several reasons to evaluate the RFs robustness 

specifically in 68Ga-DOTA-peptide tracers: a diverse range of positrons compromising 

the resolution in PET in a different way comparing to 18F-FDG; a different physiological 

distribution of 68Ga-DOTA-peptide; an high inter-patient and intra-patient heterogeneity 

for both physiological and pathological uptake (the SUV maximum and  relative range) 

compared to 18F-FDG, leading to the need of providing different segmentation methods 

and discretization settings. For all these reasons the results obtained with 18F-FDG 

cannot be directly transposed to 68Ga-DOTA-peptide and specific additional 

investigation must be performed for this radiotracer.  

RFs could also be used to evaluate the response to Peptide receptor radionuclide 

therapy (PRRT), that is an effective treatment for gastroenteropancreatic (GEP) NET 

[Strosberg 2017]. PRRT is a treatment that targets some types of neuroendocrine tumors, 

binding to specific receptors on the tumor cells and destroying them with a small, but 

powerful dose of radioactivity. It is not a cure, but PRRT can effectively slow or stop 

tumor growth. This helps to improve the length and quality of life for people with 

neuroendocrine tumors. PRRT belong to the family of “theranostic”, a term derived from 

a combination of the words therapeutics and diagnostics. In this emerging field of 

medicine, drugs and/or techniques are uniquely combined to simultaneously or 

sequentially diagnose and treat medical conditions. Based on the results of a recent trial 

[Oberg 2017], 177Lu-DOTATATE was recently approved in Europe for the treatment of 

inoperable or metastatic GEP-NET in progression disease. Usually the response 

assessment to PRRT is based on imaging monitoring of the disease, even if the Delphic 

consensus assessment for GEP-NET [Bozkurt 2016] consider the current strategies 
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suboptimal due to limitations of parameters evaluated on both anatomic (lesion 

dimensions and measurements evaluation) and functional imaging  (standardize uptake 

value (SUV) interpretation due to the heterogeneity in somatostatin receptor expression) 

and also due to the heterogeneity of NET in histology, localization and behavior. 

The main objective of this study is to evaluate the robustness of RFs as a function 

of segmentation methods and discretization settings in 68Ga-DOTATOC PET/CT 

images. 

2.2 Material and methods 

2.2.1 Patients selection 

 

This study was performed in collaboration with nuclear physicians, who 

individuates 270 examinations of patients affected by NET that performed a 68Ga-DOTA-

TOC PET/CT in the hospital A.O.U. Città della Salute e della Scienza between February 

2017 and July 2019. All the examinations were reviewed in order to select cases suitable 

for this radiomics studies. The inclusion criteria were the following: 1) histologically 

proven NET; 2) 68Ga-DOTA-TOC PET/CT were acquired for staging in treatment-naïve 

patients or restaging after surgery; 3) willing to sign an informed consent form (ICF). 

Exclusion criteria were 1) age < 18 years; 2) previous systemic therapies (e.g. 

somatostatin analogues, chemotherapy, everolimus, peptide receptor radionuclide 

therapy, etc.). 49 patients with a total of 60 lesions matched these inclusion criteria and 

were considered in this analysis. Primary tumor sites were GEP-NET, lung NET and 

others NET in 77.5% (38/49), 18.4% (9/49) and 4.1% (2/49) of cases, respectively. 

For two patients with a similar background disease and a different outcome of 

PRRT, RF distributions on a total of 18 lesions were evaluated with different intensity 

discretization. Considering the novelty of this type of therapy, it is very difficult to obtain 

data from multiple patients from a single center, but we decided to investigate the RF 

distributions of the lesions of these two patients with different therapeutic outcomes with 

the aim of analyzing the absolute RF intervals in these situations and the presence of a 

difference between the two subjects warranting further investigation of potential 

predictive value. Both patients went under surgery of the primitive tumor and started the 

therapy with somatostatin analogue (lanreotide). Both patients developed a metastatic 

disease to the liver, treated with several radiofrequence ablations (RF). The two patients 

were treated with a first line chemotherapy after progression, evaluated on the biopsy of 

a liver metastasis (Ki67 25% for patient A and Ki67 22% for patient B), and with 

everolimus after an extent of progression evaluated with imaging. Despite increasing 

grading, due to a further disease progression and after a carefully evaluation, both patients 

were treated with six cycles of PRRT therapy. The NETPET grade [8] before PRRT 

treatment was 2a for patient A and 1 for patient B and PRRT response was assessed 
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according to RECIST 1.1 criteria, that is a standard way to measure how well a cancer 

patient responds to treatment. It is based on whether tumors shrink, stay the same, or get 

bigger. During the follow-up, Patient A died for complications related to the underlying 

disease 13 months after PRRT, while Patient B responded positively to the therapy. 

 

2.2.2 PET/CT acquisition and image reconstruction 

 

All patients underwent PET/CT on an analog 3-dimensional (3D) PET scanner 

(Philips Gemini Dual-slice EXP scanner – PET AllegroTM system with Brilliance CT 

scanner – Philips Medical Systems, Cleveland, OH). In accordance with the procedure 

guidelines for PET imaging [Bozkurt 2017], the injected tracer average activity was 145.1 

MBq of 68Ga-DOTA-TOC with a relative standard deviation of 25.3 MBq (range: 

minimum 100 Mbq, maximum 212 MBq). After 60 minutes of uptake and following free-

breathing CT acquisition for attenuation correction from the vertex of the skull to the mid-

thighs (5 mm slice, 40 mAs and 120 kVp), PET data were acquired in 3-dimensional (3D) 

mode, covering the same anatomical region of the CT, with 2.5 min per bed position and 

6-8 bed positions per patient. The PET scans were reconstructed by ordered subset 

expectation maximization (OSEM) algorithm (3D-RAMLA) [Ortuno 2006], with the 

following settings: 4 iterations, 8 subsets and field of view (FOV) of 576 mm. For all 

reconstructions, matrix size was 144×144 voxels, resulting in isotropic voxels of 

4.0×4.0×4.0 mm3. All acquisitions were corrected for photon attenuation (using the 

corresponding CT image), as well as for scatter and random coincidences. 

 

2.2.3 Lesion segmentation 

 

The lesion volumes of interest (VOI) is defined using two different approaches: 

manual and semiautomatic segmentation. For both methods the application of a threshold 

of voxel values to redefine the VOIs was also investigated, including in the VOIs only 

the voxel above a specified percentage of the SUV max.  

In the manual method, for each lesion, a three-dimensional VOI was manually 

delineated (VOIm), slice-by-slice, in the OSEM PET images by four independent nuclear 

medicine physicians (FC, VL, GP and BD with 10, 7, 5 and 3 years of expertise 

respectively), by using the software LIFEx v. 4.81 (IMIV/CEA, Orsay, France - 

www.lifexsoft.org) [Nioche 2018].  

Each lesion was also  contoured using a semi-automatic edge-based (SAEB) 

algorithm (VOISAEB), homemade implemented in MATLAB (MathWorks) code, based 

on the active contour model proposed by Chan and Vese [Chan 2001]. The algorithm is 

semi-automatic since, the operator intervention is required in order to insert the central 

point of the lesion (Figure 2.1).  
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Fig. 2.1 First step of semiautomatic segmentation 

 

The developed MATLAB graphical user interface allowed the operator to view both 

the PET and the CT images separately. Edge enhancement filters were applied to 

emphasize the edges of the lesion (Figure 2.2) and, subsequently, a curve was evolved 

iteratively on both the original and the edge-enhanced image in order to match the lesion 

contours by using a level-set formulation (Figure 2.3). The iteration 0 of the level-set, 

which is the initialization, was the center of the lesion indicated by the operator. The final 

contour of the lesion (VOISAEB) was achieved at the end of the iterative level-set. 

 

 
Fig. 2.2 Second step of semiautomatic segmentation 
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Fig. 2.3 Third step of semiautomatic segmentation 

 

The threshold-based segmentation approach was implemented applying three 

different thresholds on both manual  VOIm and VOISAEB, defined as 20, 30 and 40% of 

the SUVmax (VOI20, VOI30 and VOI40, respectively). This approach could represent 

another step towards standardization, but it is crucial to define the proper threshold in 

order to include all the voxel representing the tumor heterogeneity and at the same time 

to discard surrounding physiological uptake, especially for the segmentation of liver 

metastases which are very prevalent in metastatic neuroendocrine tumors.   

 

2.2.4 Intensity discretization 

 

To perform RFs calculation, in particular of textural features, voxels values were 

redefined considering a limited numbers of SUV intensity values (grey-level intensity 

discretization process). In order to investigate the effect of this preprocessing step, the 

analysis was performed with two different settings of intensity rescaling (as already 

defined in paragraph 1.2 of the first chapter), according to the IBSI nomenclature:  

- absolute intensity rescaling factors with 64 number of grey levels (bins) between 

different ranges of SUV units: 0 and 60 SUV (abbreviated AR60) in most cases (“fixed 

bin size” equal to 0.95), and also AR80 and AR100, the last in particular for the lesions 

of the two patients with different therapy outcome;  

- relative intensity rescale factor (min-max of the SUV), using a “fixed bin number” 

equal to 64 number of grey levels and different size of bin, according to the uptake 

characteristic of each lesion/VOI (relative resampling (RR)). 

Number of grey levels was set to 64, that is the typical value adopted in most of the 

PET radiomics studies [Leijenaar 2015, Orlhac 2015].  
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2.2.5 Radiomic features extraction 

 

Radiomics features were extracted from PET images in all the VOIm segmented by 

each nuclear medicine physician, in all the VOISAEB and in all the corresponding VOI20, 

VOI30 and VOI40 using the two intensity rescaling factors (AR60 and RR). As a 

consequence, a total of 40 combinations of VOI, threshold and intensity rescaling factors 

were tested for the sample of 49 NET patients. 

The radiomics features calculated by LIFEx (www.lifexsoft.org) software (in 

agreement with IBSI definitions, see appendix 1) were 51, subdivided in different RF 

families as follow:  

- ten conventional PET parameters: such as SUVmax, SUVmean, SUVmin, 

SUVpeak, SUVstd; 

- five descriptors of the image intensity histogram: HISTO_Skewness (asymmetry), 

HISTO_Kurtosis (flatness), HISTO_Energy (uniformity), HISTO_Entropy_log2 and 

HISTO_Entropy _log10 (randomness); 

- four shape-based features, that describe shape and size of VOI: SHAPE_Volume 

(mL), SHAPE_Volume (voxels), SHAPE_Sphericity and SHAPE_Compacity; 

- thirty-two textural features: a) seven features from grey-level co-occurrence 

matrix (GLCM), describing the correlation between pair of voxels in 13 directions of a 

three-dimensional space; b) eleven features from grey-level run length matrix (GLRLM), 

describing the number and length of run with a certain level of grey in 13 directions of a 

three-dimensional space (a gray level run can be described as a line of pixels in a certain 

direction with the same intensity value); c) eleven features from grey-level zone length 

matrix (GLZLM), describing the number and size of zones with a certain level of grey in 

13 directions of a three-dimensional space; d) three features from neighborhood grey-

level different matrix (NGLDM), describing the difference between a voxel and its 

connected neighbors. 

Detailed descriptions of these features can be found in the Imaging Biomarker 

Standardization Initiative reference manual [IBSI 2019] and in the LifeX documentation 

(www.lifexsoft.org) [39]. In appendix 1 a comparison between IBSI features definitions 

and Lifex features is provided. 

 

2.2.6 Statistical Analysis 

 

Quantitative comparisons between VOIm and VOISAEB were evaluated through the 

Dice Similarity Coefficient (DSC), which measures spatial overlap between two different 

volumes of the same lesions: 

 

𝐷𝑆𝐶(𝑉1, 𝑉2) = 2
|𝑉1 ∩ 𝑉2|

|𝑉1| + |𝑉2|
 

http://www.lifexsoft.org/
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where |V1 | and |V2 | are the volumes of the two segmentations to be compared, 

|V1∩V2 | is the volume of the overlap between V1 and V2. DSC values can range from 0, 

when the two segmentations have no overlap, to 1 when the two segmentations are 

coincident.  

The algorithm for simultaneous truth and performance level estimation (STAPLE), 

[Warfield 2004], was also used to compare VOISAEB with the “true” segmentation 

(VOISTAPLE) derived by the four VOIm. STAPLE algorithm considers a set of 

segmentations and calculates a probabilistic estimate of the true segmentation and a 

measure of the level of performance represented by each segmentation. The source of 

each segmentation in the collection can be one or more trained human raters, or it can be 

an automated segmentation algorithm. The probabilistic estimate of true segmentation is 

formed by estimating an optimal combination of the segmentations, weighting each 

segmentation by the estimated level of performance (in this study all equals), and 

incorporating a previous model for the spatial distribution of the segmented structures 

and spatial homogeneity constraints. STAPLE is simple to apply to clinical imaging data, 

readily allows performance evaluation of an automated image segmentation algorithm, 

and allows for direct comparisons between the human evaluator and algorithm 

performance. 

Robustness of RFs was assessed by Intra-class Correlation Coefficients (ICC) to 

evaluate RFs consistency and Coefficient of Variance (COV) for each lesion to evaluate 

RFs reproducibility in the various settings.   

The Intra-class Correlation Coefficients (ICC) was defined in chapter 1. RFs were 

considered highly robust in case of ICC> 0.9, robust if ICC > 0.8, moderate robust if ICC 

was between 0.5 and 0.8 and poorly robust if ICC was < 0.5. Also the COV was defined  

in chapter 1.  

To investigate the relationship between RFs and lesion volume and SUVmax, a 

Pearson’s correlation analysis was carried out.   

 All analyses were performed using statistical R software (R Foundation, Vienna , 

Austria). 

2.3 Results 

2.3.1 Impact of different segmentation approaches on VOI dimensions  

 

Some representative examples of segmentation of three different lesions are shown 

in Figure 2.4. 
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Fig. 2.4 Example of segmentation (single slice images) of lesions extracted from three 

different examined patients. (A) lung primary NET maximum intensity projection (MIP) of 68Ga-

DOTATOC PET; (D) same lung primary NET lesion contoured by different observers and (G) 

by the SAEB and STAPLE algorithms. In B, E, and H the same representations of a metastatic 

lesion in a mediastinal lymph node are shown; in C, F, and I a metastatic liver lesion.  

 

The DSC were calculated between pairs of different segmentation approaches: 

between VOISAEB and the different VOIm and between manual operators for each lesion 

(letters V, B, F and G indicate the different operators). DSC distributions are reported as 

boxplot in Figure 2.5 and 2.6. The mean value of DSC comparing VOISAEB with 

VOISTAPLE was 0.75 ± 0.11 (0.45 – 0.92), while the mean value of DSC among VOIm was 

0.78 ± 0.03 (0.75 – 0.83). Comparison between operators showed a perfect segmentation 

matching (DSC = 1) for 24 out of 60 lesions with the 40% threshold; mean DSC using 

different SUVmax threshold are reported in Figure 2.7. Mean DSC index value improved 

as the applied SUVmax threshold increases. 
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Fig. 2.5 Figure 4 – Boxplots of mean DSC comparing the semi-automatic edge-based 

algorithm (Alg) with manual segmentations (letters V, B, F and G indicate the different operators) 

and with STAPLE (A). 

 

                 

Fig. 2.6 Boxplots of mean DSC comparing manual segmentations by different operators. 

 

 

                  

Fig. 2.7 Boxplots of mean DSC comparing different manual segmentations and Alg with 

STAPLE for different SUVmax thresholds (NT = no threshold applied). 
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2.3.2 Analysis of the consequences of different segmentation methods on RF values 

 

ICC and COV values calculated for each RF obtained with different segmentation 

methods (manual and semiautomatic) without threshold and with a threshold of 40% are 

shown in Figure 2.8. For this analysis the discretization method was fixed with a SUV 

maximum of 60 (AR60).   

 
Figure 2.8 – (A) Bar diagrams of intra-class correlation coefficient (ICC) values of RFs for 

robustness to segmentation (different operators and semi-automatic algortihm), using AR60 and 

applying different SUVmax thresholds (no SUVmax threshold and 40% SUVmax threshold). (B) 

Boxplot of  percentage COV  for segmentation (different operators) for each RFs, using AR60 

and applying no SUVmax thresholds. (C) Boxplot of  percentage COV (for segmentation (different 

operators) for each RFs, using AR60 and applying 40% SUVmax thresholds. 

 

Using no threshold and applying the AR60 intensity rescale factors, 65.3% of RFs 

showed high robustness (ICC > 0.9) to segmentation (7/10 conventional, 3/6 histogram, 

2/4 shape and 22/32 textural). With a 40% SUVmax threshold, the fraction of RFs with 

high robustness increased to 86.5%. An increase of the SUVmax threshold produced a 

substantial increase of ICC of the following features: SHAPE_Sphericity, 

SHAPE_Compacity, GLCM_Correlation, NGLDM_Contrast, NGLDM_Busyness, 

GLZLM_LZE, GLZLM_LZLGE, GLZLM_LZHGE and GLZLM_ZP. A slightly 

increase was observed for all GLRLM features and for the remaining GLZLM ones 

(Figure 2.8 A).  

About the corresponding COV analysis, when no threshold was applied, the grade 

of dispersion of the majority of RFs was rather low: median COV values were below 10% 
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for 47% of RFs and below 20% for 75% of RFs (Figure 2.8 B). Only two RFs 

(GLZLM_LZE and GLZLM_LZLGE) showed a COV >50%. Using a 40% SUVmax 

threshold, median values of COV were lower with median values well below of 10% for 

all the  RFs (Figure 2.8 C). 

ICC and COV analysis about the different SUVmax thresholds (no threshold, 20%, 

30%, 40%) for AR60 and the first manual operator (the results obtained for the other 

VOIm and VOISAEB were similar) are shown in figure 2.9. 51.9% of RFs (5/10 

conventional, 3/6 histogram, 0/4 shape and 19/32 textural) have high robustness (ICC > 

0.9). The results of COV showed a high variability of the majority of RFs as a function 

of different SUVmax thresholds. Median value of COV was <10% for few RFs, namely 

SUVmax, SUVpeak (0.5ml and 1ml), HISTO_Entropy GLCM_Homogeneity, 

GLCM_Contrast, GLCM_Entropy, GLCM_Dissimilarity, GLRLM_SRE, 

GLRLM_LRE, GLRLM_RP, GLZLM_SZE and GLZM_ZP. 

 
Figure 2.9 - (A) Bar diagrams of intra-class correlation coefficient (ICC) values of RFs for 

robustness to SUVmax thresholding. Bars show the median ICC between the different 

segmentations for the absolute intensity rescale factor AR60. Range error bars (in black) 

encompass the lowest and highest values for different operators. (B) Bar diagrams of mean 

Boxplot of COV (CV) for different threshold (20, 30, 40%) for each RFs, for the first operator 

(results superposable for the other operators). Mean COV (CV) has been calculated between all 

operators. NOTE: LIFEx software calculate the TLG (total lesion glycolysis) conventional 

parameter, that in this study corresponds to the TLSRE (total lesion somatostatin receptor 

expression). 
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2.3.3 Analysis of the consequences of different discretization approaches on RF 

values 

 

Figure 2.10 A show ICC values for RFs evaluated with the two intensity discretization 

approaches, for the first operator and without applying a SUVmax threshold (the results for 

the other operators are very similar). Median values of ICC for intensity rescale factors 

were > 0.9 for all the conventional and shape features (not affected by the discretization), 

for HISTO_Skewness and HISTO_Kurtosis, and for only three texture features, namely 

GLCM_Correlation, GLRLM_RLNU and GLZLM_GLNU. Overall, the percentage of 

highly robust features (ICC>0.9) was 37% (10/10 conventional, 2/5 histogram, 4/4 shape 

and 3/32 textural).  The majority of the remaining textural features showed a very poor 

robustness to discretization settings except for NGLDM Coarseness which had a median 

ICC > 0.7. The COV analysis (Figure 2.10 B) highlights in general low COV values for 

all the RFs with high ICC.  

 

 

 

Figure 2.10 - (A) Bar diagrams of intra-class correlation coefficient (ICC) values of RFs 

for robustness to different intensity rescale factors (RR and AR60) when no threshold was applied 

for a single operator. Bars in blue show the median ICC between different segmentations, 

applying no threshold. Range error bars (in black) encompass the lowest and highest values for 

different operators. (B) Boxplot of  COV  for different intensity rescale factors (RR and AR60), 

applying no threshold, for the first operator (results superposable for the other operators). Mean 

COV (CV) has been calculated between all operators.  

 

         ICC                                       COV [%] 
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Most of the other textural features are characterized by a very high dispersion, 

corresponding to a high percentage of COV value. Only GLCM_Entropy (log10 and 

log2), GLRLM_SRE, GLRLM_LRE, GLRLM_RP and NGLDM_coarseness presented 

a COV <10%, despite a corresponding low ICC for these RFs. 

 

 

2.3.4 Analysis of the correlation of RFs with SUVmax and lesion volume 

 

An important aspect of the information provided by RFs is the independence of 

their values from conventional SUVmax and lesion volumes, since RF analysis is expected 

to provide additional information beyond simple baseline characteristics. If an RF is 

strongly correlated with SUVmax or with volume, any subsequent evaluation may be 

redundant. Figure 2.11 showed Pearson correlation coefficients between RFs values and 

volume (for AR60, without SUVmax threshold and with 40% SUVmax threshold applied, 

respectively) and SUVmax of the ROI (AR60 and RR, no threshold applied). Few RFs 

show high correlation with volume, both without threshold and with a 40% threshold. 

Instead, several RFs showed a high correlation with SUVmax when AR60 was employed 

(higher than 0.9 for HISTO_Entropy_log10, HISTO_Entropy_lo2, GLCM_Dissimilarity, 

GLRLM_SRHGE, GLZLM_SZHGE). When RR was used, no RFs were high correlated 

with SUVmax (except obviously for the “SUV” distribution features).  
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Figure 2.11 Pearson correlation coefficients (mean values between different operators): (A) 

between RFs values and volume (for no SUVmax threshold and 40% SUVmax threshold applied); 

(B) between RFs and SUVmax (for AR60 and RR intensity rescale factors) without threshold.  

 

 

2.3.5 Impact of discretization on RFs for different therapy outcomes 

 

For the two patients with different therapy outcome, textural analysis was 

performed on pre-PRRT PET/CT data, on a total of 8 liver metastases in Patient A and 

10 liver metastases in Patient B. Patient A presented a progression disease after PRRT, 

while patient B showed a very good partial response. P-values of Mann-Whitney test 

comparing the radiomic features values extracted by the liver lesions of the two patients 

are given in Table 2.1.  
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RADIOMIC FEATURES p-value RADIOMIC FEATURES p-value 

CONVENTIONAL-SUVmin 0.536 GLRLM_LRE 0.001 

CONVENTIONAL-SUVmean 0.230 GLRLM_LGRE 0.351 

CONVENTIONAL-SUVstd 0.025 GLRLM_HGZE 0.071 

CONVENTIONAL-SUVmax 0.036 GLRLM_SRLGE 0.174 

CONVENTIONAL-SUVpeak 

sphere 1mL 
0.222 GLRLM_SRHGE 0.042 

CONVENTIONAL-TLG 

(mL) 
0.025 GLRLM_LRLGE 0.408 

HISTO_Skewness 0.001 GLRLM_LRHGE 0.918 

HISTO_Kurtosis 0.007 GLRLM_GLNU 0.001 

HISTO_ExcessKurtosis 0.007 GLRLM_RLNU 0.023 

HISTO_Entropy_log10 0.230 GLRLM_RP 0.002 

HISTO_Entropy_log2 0.230 NGLDM_Coarseness 0.142 

HISTO_Energy (uniformity) 0.417 NGLDM_Contrast 0.001 

SHAPE_Volume (mL) 0.003 NGLDM_Busyness 0.001 

SHAPE_Volume (voxel) 0.003 GLZLM_SZE 0.001 

SHAPE_Sphericity 0.070 GLZLM_LZE 0.001 

SHAPE_Compacity 0.003 GLZLM_LGZE 0.174 

GLCM_Homogeneity 0.002 GLZLM_HGZE 0.008 

GLCM_Energy 0.210 GLZLM_SZLGE 0.252 

GLCM_Contrast 0.001 GLZLM_SZHGE 0.003 

GLCM_Correlation 0.008 GLZLM_LZLGE 0.002 

GLCM_Entropy_log10 0.091 GLZLM_LZHGE 0.003 

GLCM_Entropy_log2 0.091 GLZLM_GLNU 0.210 

GLCM_Dissimilarity 0.001 GLZLM_ZLNU 0.174 

GLRLM_SRE 0.001 GLZLM_ZP 0.001 

 

Table 2.1 – P-values of Mann-Whitney U-test comparing the radiomic features value 

extracted by the liver lesions VOIms of the pre-PRRT PET/CT of the two patients (p values lower 

than 0.05 are highlighted in grey). 

 

 

25 features show a p-value of the Mann-Whitney test below 0.05 (three 

conventional included the SUVmax, three histograms, three shape features included the 

volume and nineteen textural features). Considering only the features resulted significant 

at the Mann-Whitney test, a Pearson correlation analysis was performed in order to 

identify the non-redundant features. The results are showed in Figure 2.12 as heatmap. It 

is appreciable a cluster of features with Pearson correlation close to -1 with SUVmax and 

volume and some features with positive correlation.  
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Figure 2.12 – Graphic representation of radiomic-feature clustering identified with the 

Pearson Correlation matrix heat map, considering only the 26 radiomic features resulted 

significant at the Mann-Whitney test (p<0.05). This graphic displays the absolute value of the 

correlation coefficient between each pair of radiomic features, ranging from + 1 (positive linear 

correlation, in red) to – 1 (negative linear correlation, in green). The correlation coefficient of 0 

is represented in yellow and identified radiomic features that are not correlated. 

 

The features with a poor correlation (range between 0.8 and -0.8) with SUVmax 

and/or volume of the VOI are showed in Figure 2.13, and the boxplot of the seven features 

of second-order (GLCM_Correlation, GLRLM_LRE, GLRLM_RP, GLRLM_SRE, 

GLZLM_LZLGE, GLZLM_ZP and NGLDM_Busyness) not correlated with both 

SUVmax and volume are showed in Figure 2.14. Applying the Bonferroni correction for 7 

tests a significance level of 0.05/7= 0.007 was considered. Six of the seven features show 

a significant difference between the lesions of the responding patient and the lesions of 

the not responding.  
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Figure 2-13 – Pearson correlation coefficient values between radiomic features and SUVmax 

and volume (mL), respectively. 
 
 

 

 
 
 

 

Another type of analysis that can be applied to samples of multivariate observations 

is the principal component analysis (PCA), a technique that allows to increase the 

interpretability of the data while preserving the maximum amount of information and 

allowing the visualization of multidimensional data. Formally, PCA is a statistical 

technique for reducing the dimensionality of a dataset. This is accomplished by linearly 

transforming the data into a new coordinate system where (most) of the variation in the 

data can be described with smaller dimensions than the initial data. 
 



34 
 

 
Figure 2.14 Boxplot of the second-order features not correlated with both SUVmax and 

volume. 
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The Principal Component Analysis first two components, performed on the 26 

features, explain 83.8% of total variance. Figure 2.15 shows the coefficients of the two 

first principal components relative to the RF. Positive correlated RF point to the same 

side of the plot and negative correlated RF point to opposite sides of the graph. The SUV-

related RFs are visible in the lower left quadrant and the volume-related RFs in the lower 

right. 

 

 
 

Figure 2.15 – Graphic representation of the features correlation plots resulted from the 

Principal Principal Component Analysis (PCA), performed on the 26 radiomic features resulted 

significant at the Mann-Whitney test (a). 

 

The impact of different intensity rescale choices on the relative differences between 

responding and not responding lesions was also investigated (table 2.2, figures 2.16-2.19). 

In general, significative differences were observed for more RF when the intensity 

discretization was equal (fixed bin size) or similar for the two patients.  A p-value lower 

than 0.05 for all the combinations of intensity discretization was observed for the 

following texture RF: GLCM_CORRELATION, GLRLM_GLNU (figure 2.18), 

GLRLM_RLNU and GLZLM_LZHGE (figure 2.19). These texture RF showed both 

robustness with respect to all the different discretization approaches and potential 

predictivity added value on the two patients with different PRRT outcome. 

GLCM_CORRELATION is also not correlated with SUVmax. 
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Feature 

NR030 

vs 

R060 

NR030 

vs 

R080 

NR030 

vs 

R100 

NR060 

vs 

R060 

NR060 

vs 

R080 

NR060 

vs 

R100 

NR080 

vs 

R060 

NR080 

vs 

R080 

NR080 

vs 

R100 

CONVENTIONAL_SUVmax 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

GLCM_Homogeneity  0.05 0.17 0.61 0.00 0.01 0.02 0.00 0.00 0.01 

GLRLM_SRHGE 0.54 0.47 0.21 0.04 0.35 1.00 0.01 0.03 0.14 

GLZLM_HGZE 0.84 0.61 0.47 0.01 0.07 0.17 0.00 0.02 0.03 

GLRLM_GLNU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 

GLRLM_RLNU 0.04 0.02 0.04 0.04 0.02 0.01 0.02 0.01 0.01 

GLZLM_LZHGE 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

GLCM_Correlation 0.003 0.005 0.005 0.008 0.012 0.012 0.012 0.016 0.016 

GLRLM_SRE 0.091 0.142 0.681 0.001 0.008 0.016 0.000 0.001 0.003 

GLRLM_LRE 0.142 0.142 0.299 0.001 0.005 0.023 0.000 0.000 0.003 

GLRLM_RP 0.114 0.114 0.408 0.002 0.008 0.016 0.000 0.001 0.003 

NGLDM_Coarseness 0.142 0.055 0.055 0.142 0.055 0.055 0.091 0.042 0.042 

GLZLM_LZLGE 0.408 0.470 0.016 0.002 0.016 0.055 0.000 0.002 0.008 

GLZLM_ZP 0.042 0.091 0.210 0.000 0.003 0.008 0.000 0.000 0.001 

Table 2.2 – P-values of Mann-Whitney comparing the radiomic features value extracted by 

the liver lesions VOIms of the pre-PRRT PET/CT of the two patients, for different intensity 

discretization choices. Features in italic character are not correlated with SUVmax and volume. 

 

 
Figure 2.16 – Distributions of Conventional SUVmax and GLCM_homogeneity for the two 

patients and for different intensity discretization.  
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Figure 2.17 – Distributions of GLRLM_SRHGE and GLZLM_HGZE for the two patients 

and for different intensity discretization.  

 

 
Figure 2.18 – Distributions of GLCM_correlation and GLRLM_GLNU for the two patients 

and for different intensity discretization.  
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Figure 2.19 – Distributions of GLZLM_LZHGE and GLRLM_RLNU for the two patients 

and for different intensity discretization.  

 

2.4 Discussion 

This study aims to investigate the effects of different segmentation methods and 

grey-level intensity discretization on RFs in 68Ga-DOTA-TOC PET/CT. The major 

findings can be summarized as follows: (a) 65.3% of RFs (7/10 conventional, 3/6 

histogram, 2/4 shape and 22/32 textural) showed high robustness (ICC > 0.9) and low 

relative dispersion (low mean COV value) to different operators without SUVmax 

threshold applied (manual segmentation); (b) increasing the SUVmax isocontouring 

threshold had a positive effect on RFs robustness to segmentation, but with the possible 

loosing of important biological information on the population under study; (c) 

quantitative comparison between a semi-automatic edge-based (SAEB) algorithm and 

manual segmentation showed a dice-coefficient similarity (DSC) of 0.75 ± 0.11 

comparable to the DSC between operators (0.78 ± 0.03). These results suggest that a semi-

automatic algorithm might be able to substitute manual segmentation to solve operator 

variability; (d) the use of absolute intensity rescaling factor (AR60) achieved higher 

robustness of RFs to segmentation and isocontouring thresholding than relative (RR) 

intensity rescaling factor; (e) fixed bin size with constant bin for all patients should 

highlight better different clinical variables such as therapy response. 

In monocentric studies, image segmentation is one of the first step to take into 

account in radiomic analysis, since it is a possible source of RFs variability. Overall, RFs 

robustness to segmentation results quite good applying no SUVmax threshold (ICC >0.9 

for 65.3% RFs), using AR60 absolute intensity rescale factor. The less robust RFs was 

SHAPE Sphericity, which describes the closeness of the VOI shape to a sphere and 



39 
 

therefore is strongly sensitive to operator delineation. On the contrary, 

SHAPE_Compacity which is also a shape descriptor that reflects how compact is the VOI 

resulted to be robust. In line with previous studies applied to 18-FDG PET [Altazi 2017, 

Bashir 2017], GLZLM (also called GLSZM) features and in particular the ones measuring 

zones with low grey-level (SZLGE and LZLGE) resulted to have a moderate robustness 

(ICC from 0.5 to 0.8) to segmentation. This is likely related to the lower uptake in lesions 

edges, where operator and SAEB segmentation showed a higher variability (Figure 2.4).  

When using AR60 absolute intensity rescale factor, the SUVmax thresholding had 

no considerable impact on inter-segmentation ICC values of the most part of textural 

features. Instead, increasing SUVmax threshold increased robustness of conventional, 

shape and GLRLM features. At the same time, however, it is clear that the SUVmax 

thresholding has an important impact on the dispersion of RFs, reducing it consistently, 

with a progressive decrease of all RFs COV values towards zero. These results may lead 

to choose segmentation with a 40% SUVmax threshold as preferable from the point of view 

of robustness, increasing the similarity between segmentations, but it should also be 

considered that the erosion of the external part of the lesion volume could be associated 

with a loss of relevant information. [Bashir 2017] already reported that segmentation with 

40% SUVmax threshold yields superior inter-observer reproducibility of texture features 

in 18F-FDG PET/CT images, despite the loss of information related to exclusion of voxel 

intensities below the fixed 40% threshold, such as those arising from low-activity tumor 

regions or tumor boundaries. However, as early demonstrated by the study of Biehl et al 

with 18F-FDG PET/CT images [Biehl 2006], there is no consensus in the use of SUVmax 

threshold, also because this parameter can lead to an over- and/or underestimation of the 

lesion PET volume compared with CT volume related to low resolution, inherent noise, 

high uncertainties in lesion boundaries and motion blurring of the lesion related to the 

tomography characteristics [Foster 2014]. In my opinion, shared with the nuclear 

medicine physicians participating to this study, the concern related to the use of threshold-

based segmentation methods in 68Ga-DOTA-peptide PET-CT images must be even 

higher due to the aforementioned heterogeneity of somatostatin receptors expression in 

neuroendocrine tumors which may explain that currently the few studies of radiomics 

with 68Ga-DOTA-peptide in the literature has been made on a manual-based 

segmentation [Werner 2019, Weber 2019].  

In this context, it is evident that the use of automatic and semi-automatic 

segmentation methods is increasing in radiomics studies. The results of this study 

regarding tumor segmentation accuracy are promising since DSC comparing the SAEB 

segmentation with the manual segmentations was 0.75 ± 0.11 (median 0.77). The SAEB 

algorithm is characterized by its hybrid nature: the curve evolves in the image looking to 

both the original image (important for homogeneity) and the edge-enhanced image 

(important for discontinuities detection). This feature allows the SAEB algorithm to 

behave reproducibly for lesions in different locations, with different image appearances 
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and different background uptakes, such as blob-like lesions with dark background (Figure 

2.4A, 2.4D and 2.4G), heterogeneous lesions (Figure 2.4B, 2.4E and 2.4H) and liver 

lesions where background present SUV values comparable to the lesion (Figure 2.4C, 

2.4F and 2.4I). Thus, the use of automatic and semi-automatic segmentation methods, 

such as SAEB algorithm, appears to be an important procedural aspect in future studies 

about analysis of RFs in 68Ga-DOTA SSTR-peptide PET/CT imaging, in order to reduce 

inter- and intra-reader variability of manual segmentation methods, which is also time 

consuming, and in order to reduce relevant information loss due to the application of 40% 

SUVmax threshold. However, further studies are needed to validate the semi-automatic 

segmentation method implemented for this study, comparing it with other similar 

methods already implemented, especially for PET/CT images, such as another gradient-

based method commercially available named GRADIENT (MIM Software, Cleveland, 

OH) or the Fuzzy locally adaptive Bayesian (FLAB) method propped by [Halt 2009]. 

Another interesting result of this study is related to the negative impact of the 

relative intensity rescaling factor on the robustness to segmentation of the majority of 

textural features analyzed. As the rescaling is carried out according to the minimum and 

maximum values of the VOI, the same image is rescaled differently depending on the 

segmentation operator/method used, leading to high variability also in RFs values. 

Anyway, it must be highlighted that the use of relative resampling is not recommended 

in PET images, as already observed in 18F-FDG PET/CT [Leijenar 2015, Orlhac 2017]. 

In clinical cases the “fixed bin number” (RR) intensity rescaling factor is intuitively less 

appropriate: it is based on the range of SUV intensities found in the volume of interest, 

with low SUVs corresponding to low bin numbers and high SUVs corresponding to high 

bin numbers; hence bin width (in SUV) and SUV range may vary between images in a 

cohort, even though the number of bins is consistent. For the identification of RFs as new 

cancer-specific biomarker (e.g. NET), it is important that the textural features values 

would be directly comparable, both inter- and intra-patient, in order to derive meaningful 

conclusions. Moreover, NETs are characterized by an extremely variable expression of 

somatostatin receptors in 68Ga-DOTA-peptides with a corresponding broader range for 

SUV values (from close to 0 up to higher than 100) compared to 18F-FDG PET/CT, 

causing a greater impact on the RR compared to AR.  This concept has been already 

emphasized by several studies: beyond all the variabilities related to the tomographs, 

segmentations and post-processing settings, the robustness of RFs is also related to the 

tumor characteristic and behavior [Messerli 2019] and to the radiotracer analyzed, as 

recently demonstrated by [Lu 2016] that studied the stability of RFs for nasopharyngeal 

carcinoma on both 11C-choline and 18F-FDG PET/CT images, with different results. In 

accordance with previous studies [Zwanenburg 2019, Traverso 2018], the impact of 

intensity discretization on textural features was stronger than segmentation. This is 

exactly the case of textural features, where differentiation between high and low-gray 

levels is needed, and thus, the choice of the discretization setting is relevant. When using 



41 
 

no SUVmax threshold, only four textural features resulted to be robust: 

GLCM_Correlation, GLRLM_RLNU, NGLDM_Coarseness and GLZLM_GLNU 

(Figure 2.10).  

ICC and COV provide in general complementary information: commonly it was 

observed for several features low values of ICC and high COV or the opposite, but there 

are also cases with low ICC and low COV or high ICC and high COV. These last cases 

can be explained considering that COV is sometimes high when the average values of 

features are close to zero. On the other hand, ICC is sometimes high even if COV is also 

high because, despite the great variability, the RFs remain correlated by changing the 

parameters, as we can observed in particular for GLRLM_LGRE, GLRLM_SRLGE, 

GLRLM_LRLGE and GLZLM_LZLGE for the threshold variability (Figure 2.10). This 

behavior can be due to the very small, close to zero, values of these RFs. 

The extraction of robust RFs from 68Ga-DOTA SSTR-peptide PET/CT might 

contribute to solve some limitations related to the clinical evaluation of the SSTR 

expression in NET. At present, no consensus has been already reached regarding the 

assessment of patients who need to be investigated with both 18F-FDG and 68Ga-DOTA-

peptide PET/CT (even if it is more probable that NET neoplasms with Ki67> 15% will 

have positive lesions in 18F-FDG PET/CT [Binderup 2010, Oberg 2016]). Furthermore, 

an early detection of more aggressive disease with 18F-FDG PET/CT does not necessary 

reflect a change in the therapeutic strategy. Finally, conventional semi-quantitative PET 

parameters showed a sub-optimal feasibility to select patients for receptor radionuclide 

therapy (PRRT) and to evaluate response to PRRT. In this scenario, this innovative 

analysis might be applied as prognostic biomarker and predictor of tumor heterogeneity 

in NET.  

Regarding the analysis performed on the two patients with different PRRT 

outcome, the Mann-Whitney test performed on the pre-PRRT PET/CT data of the 

responder patient versus the non-responder patient showed high significant difference for 

the following features: GLCM (homogeneity, contrast, correlation and dissimilarity), 

GLRLM (SRE, GLNU, RLNU, LRE and RP), GLZLM (LZHGE, SZE, LZE, HGZE, 

SZHGE and LZLGE). Out of these features, seven second-order radiomic features have 

been identified as poor correlated (range between 0.8 and -0.8) with SUVmax and PET 

volume parameters: GLCM-Correlation, GLRLM-LRE, GLRLM-RP, GLRLM-SRE, 

GLZLM-LZLGE, GLZLM-ZP and NGLDM-Busyness. These radiomic features could 

potentially offer added predictive value, comparing with SUVmax and PET volume, and 

be more accurate in prediction of therapy (PRRT) response. 

This study is not exempt from limitations. First, we did not initially perform a 

phantom study. To overcome this limitation, as recommended in the radiomics quality 

score (RQS) proposed by [Lambin 2017], in chapter 3 the results of a study on an 

anthropomorphic phantom filled with synthetic lesions as obtained from PET/CT images 

and created by the 3D printer are presented. This model will reflect realistic tumor shapes 
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and heterogeneity uptakes for a prospective evaluation of RFs robustness. Second, NET 

are rare tumors and G3 NET and G3 NEC are rarely evaluated with 68Ga-DOTA SSTR-

peptide; for this reason our sample size is yet too small and heterogeneous to evaluate the 

possible correlation between robust RFs and the histological NET grading system. Third, 

the difficulty of edge-based algorithms in the segmentation of lesions with an uptake 

similar to the background, or with small (<16 cm3) or large dimension (>160 cm3) 

[Pfaehler 2020] has been previously highlighted. However, we acknowledge that the 

number of cases analyzed in this study is not enough to quantitatively validate the 

algorithm in the aforementioned conditions.  

In conclusion, the results of this study indicate that the use of RF is also feasible in 

68Ga-DOTA-TOC PET/CT.The manual delineation of the VOI had an impact on the RF 

type dependent RF values, preserving the correlation with high ICC values in most cases, 

although some relatively high COV values. The 40% SUVmax threshold increased RF 

robustness, but with a potential information loss of scanable lesions. A semi-automatic 

segmentation algorithm could be useful to solve both the impact of different manuals RF 

robustness segmentations and loss of valuable information due to SUVmax threshold 

segmentation method. Finally, the discretization of the gray level affects the robustness 

of the RFs, which vary depending on whether relative or absolute are used resampling. In 

my opinion, an absolute resampling is more suitable for evaluation of NET with 

functional imaging (68Ga-DOTA-TOC PET/CT). These results suggest the need to 

standardize the methodology used in radiomics PET studies in 68Ga-DOTA-TOC 

PET/CT. 
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3. Implementation of a 3D printed phantom to study the 

impact of reconstruction parameters and used 

radioisotopes on PET radiomics features 

3.1 The use of phantoms in nuclear medicine for radiomics analysis 

In the literature there are a series of studies showing various implementation 

strategies of phantoms designed to simulate different patterns of signal heterogeneity in 

nuclear medicine images. Compared to the case of CT or MR, the fabrication of a nuclear 

medicine phantom has several unique features. The phantoms must in fact possess the 

following characteristics: 

- ability to simulate a spatial distribution of the radioisotope similar to that of a real 

patient, for which the result strongly depends on the physiology and metabolism of the 

radiopharmaceutical as well as on the anatomical conformation; 

- ease of management with contained risks of contamination and exposure of the 

operators, considering that the phantom must normally be packaged before each 

acquisition with handling of unsealed sources (in liquid, gel, powder form); 

- reduced preparation times both for radioprotection and practical reasons; 

- repeatability of the radioisotope insertion process: being the primary purpose often 

that of evaluating the repeatability and reproducibility of the heterogeneity 

measurements, the repeatability of the phantom packaging process for each acquisition is 

an essential requirement; 

- traceability of the amount of radioisotope contained; 

- containment materials should have attenuation coefficients similar to those of 

biological tissues. 

An interesting review of the different approaches that can be used is present in 

[Valladares 2020] and the advantages and disadvantages of the different solutions 

adopted are summarized below. 

In [Kadrmas 2009] the use of a cellular foam inside a phantom is proposed. Foams 

were inserted into the thoracic and pelvic compartment of a full-body phantom (figure 

3.1). When phantoms are filled with a radioisotope, the pores create slightly non-uniform 

regions. This solution allows the use of a single radioactive solution to simulate different 

textures and concentrations, has limited preparation times and allows the use of 

anthropomorphic phantoms. On the other hand, it is rather difficult to reuse the same 

expanded materials after a first acquisition of the phantom and therefore it is possible to 

predict a poor reproducibility in multi-center studies, which has not yet been evaluated 

with this solution. 

In [Carles 2017] the use of alginate to create heterogeneous phantom inserts is 

reported and the effects of respiratory motion in the analysis of texture features was 
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evaluated. Combinations of alginate with four different activity concentrations of 

[18F]FDG and different geometric arrangements were used to construct lesions. During 

the phantom assembling process, an activity concentration similar to that observed in lung 

cancer patients was ensured for the lesions and the background. This approach certainly 

allows a wide flexibility and possibility of modeling the shape and concentration of 

radioisotope, with geometric shapes of various types made by hand. The main 

disadvantages are the limited repeatability, a non-negligible risk of personnel 

contamination during the construction phase and rather high preparation times. 

 

 
Figure 3.1 – Use of cellular foam to simulate heterogeneity in anthropomorphic phantoms 

[Kadrmas 2009]. 

  

 
Figure 3.2 – Alginate phantom inserts [Carles 2017]. 

 

In [Forgacs 2016] a heterogeneous insert, made by seven syringes disposed as the 

bullets in the drum of a revolver gun, was placed in the NEMA IQ phantom for PET scans 

(figure 3.3). The sensitivity of the heterogeneity parameters was also evaluated by filling 

four and three insert syringes with 11C and 18F solutions, respectively. 18F has a half 

time of 110 minutes and C11 of about 20 minutes. Hence, different PET scans were 

acquired in the same system over time, resulting in different activity ratios due to the 
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difference in half-life between 11C and 18F and as a consequence different 

heterogeneities pattern can be obtained with a single phantom preparation. The values of 

the corresponding features were plotted against time. This method therefore presents 

excellent ease of preparation and combination of different concentrations of 

radiopharmaceutical in the same insert, high reproducibility and contained risks of 

contamination and external exposure. The main disadvantages can be identified in the 

limited heterogeneity which is represented only on the axial plane and the presence of a 

simulation distant from the anatomical reality. 

 
Figure 3.3 – Inserts of nuclear medicine phantom with syringes disposed as revolver gun. 

Pictures indicated as a,b, and c show activity distribution inside the revolver at t=0, 45 and 80 

minutes of F18 and C11 radionuclides [Forgacs 2016].  

 

In another study [Presotton 2018], tumor-like heterogeneous radioactivity 

distributions are simulated using cylindrical vessels filled with silica gel molecular sieves 

(Figure 3.4).  

 

 
Figure 3.4 – Inserts of nuclear medicine phantom with silica gel molecular sieves [Presotto 

2018].  

 

The same quantity of molecular sieves was incorporated into three vessels of 

aqueous solution with different concentrations of 18F activity. Once the sieves absorbed 
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the liquid, the mean activity concentrations were 3.6, 7.1 and 21.5 kBq/mL. The sieve 

mixes were placed in four cylindrical probes to create heterogeneous regions with 

different spatial radioactivity distributions. Of the 39 radiomic features extracted and 

evaluated, 21 were recommended for discrimination of heterogeneous patterns. These 

include 6 features from Gray Level Run Length Matrix (GLLRM), 8 from Gray Level 

Dimension Zone Matrix (GLSZM), 6 from Gray Level Co-Occurrence Matrix gray scale 

(GLCM), and 1 from Gray Level Difference Matrix (GLDM). This solution makes it 

possible to create multiple and complex heterogeneities with relative ease of preparation. 

On the other hand, the method has poor reproducibility, non-negligible contamination 

risks and a simulation that is rather distant from anatomical reality. 

A completely different method has recently been proposed to mimic heterogeneous 

distributions of PET activity. It consists of a robotic arm capable of producing precise and 

reproducible movements along a 3D trajectory, with a long half-life sealed point 

radioactive source (Na22) mounted at the end of the robotic arm. Using controlled 

movements, different activity distribution patterns can be traced (figure 3.5).  

 

 

 

Figure 3.5 – Use of a robotic arm with a sealed source to simulate heterogeneity in PET 

imaging [Forgacs 2019].  

 

This solution has numerous advantages, including practically zero preparation 

times and risks of contamination, low exposure risks, high reproducibility and 

heterogeneity in the images created. On the other hand, the acquisition times are very 

long to allow the progressive movement of the robotic arm, it is difficult to simulate 

different acquisition times and furthermore the attenuating material similar to human 

tissue is absent. 

Berthon realized a three dimensional phantom stacking paper sheets printed with 

radioactive [18F]FDG ink by means of a modified conventional printer [Berthon 2015]. 

They made in this way a sandwich phantoms to model the uptake of heterogeneous and 
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irregular radiotracers in head and neck cancer patients. The prints were stacked between 

2 mm thick oval sheets of PMMA. They were assembled all together using a plastic stand 

(Figure 3.6). Several irregular and spheroidal lesions, including heterogeneous models, 

were printed to test the performance of automatic segmentation algorithms for tumor 

delineation. In this study the tumor heterogeneity was not assessed. This method is the 

only one that presents the possibility of simulating the complete radionuclide distribution 

of a real case. The main disadvantages are linked to the presence of a homogeneous 

attenuation of the PMMA sheets and to non-negligible contamination risks. The 

repeatability of the method has not yet been evaluated for possible multicenter studies. 

 

 
Figure 3.6 – 3D phantom implemented by sheets of paper printed with radioactive ink 

[Berthon 2015].  

 

Cervino reported on a simple process of designing and manufacturing a 3D printed 

phantom insert to simulate the heterogeneous uptake of radiotracers as observed in lung 

tumors [Cervino 2017]. The insert was composed of two regions; the external part was 

formed by four porous wedges filling 50% of the total external volume. The four porous 

parts together form a cylinder having an internal hollow region. This arrangement 

provides a 2:1 activity concentration ratio between the inner porous region and the outer 

portion (figure 3.7). The insert was inserted into a QUASAR™ multipurpose phantom 

body.  

Pfäehler report on the use of 3D printed shells obtained by the segmentation of non-

small cell lung cancer (NSCLC) from real patients [Pfaehler 2020]. Three simulated 

lesions (homogeneous and heterogeneous absorption) are filled with different activity 

concentrations of an aqueous solution of [18F]FDG. For PET scans, 3D printed lesions 

were placed in the NEMA IQ phantom to be filled with a specific concentration of 

background activity.   
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In general, the use of 3D printers offers a wide variety of phantom modeling, high 

repeatability, practicality of use and contained radioprotection risks. The main 

disadvantages are associated with limited heterogeneity, while attention must be paid to 

the thickness and density of the materials used to make the inserts. 

 

 
Figure 3.7 – Phantom produced by 3D printing with geometric structure [Cervino 2017]. 

and modelled on the base of real lung tumors (Pfaheler et al). 

 

In this study, we implemented a phantom with 3D-printed inserts, simulating 

necrotic NET lesions, aimed to analyze the ability to simulate real lesions and obtain RF 

values similar to those of real patients, to investigate the reproducibility of RFs for 

different reconstruction techniques on the same PET/CT scanner, and to assess the impact 

of different radionuclides on RFs for identical inserts.  

3.2 Material and methods 

3.2.1 Phantom implementation 

 

The basic idea for the implementation of a 3D phantom was a modification of a 

classic PET/CT phantom used for quality control, consisting of a hollow PMMA cylinder 

with spherical inserts of different sizes. For routine testing, the cylinder is filled with a 

low-concentration of radionuclide liquid solution to simulate the patient's fundus of 

normal tissue that is not radiopharmaceutical-avid and with a higher concentration of 

radionuclides in the spheres (usually at a 4:1 ratio). For the implementation of the 

phantom we decided to replace the regular sphere inserts with irregular shapes more 

similar to heterogeneous lesions of the patient, maintaining the same practical approach 

of filling management of the different inserts with ad hoc solutions prepared just before 

the acquisition of the phantom. 

A tumoral lesion with a necrotic core extracted from a real PET/CT image served 

as a model to create the phantom inserts. The lesion was segmented manually using LifeX 

software, and the NIFTI-file of the segmented lesion was converted to an STL-file using 

ITK-snap software. STL is a file format commonly used for 3D Printing and computer 

aided design. 3D models of the completed inserts, including a stem and screw-on end for 

screwing the inserts into the Phantom, were created using the free Tinkercard web app. 

Six different insert sizes were envisioned: the largest size was approximately 54 x 47 x 
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44 mm with a necrotic core of 42 x 23 x 25 mm, while the others were smaller with each 

size reduced to 90%, 80%, 70%, 60% and 50%, respectively (Fig. 3.8). 

Materials used for 3D printing of phantoms in nuclear medicine should be 

transparent (to monitor the filling of the radioactive solution), waterproof and with 

densities similar to biologic tissues. In this study we made some attempts with different 

3D printing materials and 3D printers in order to find the best solution. In a first attempt 

we printed the inserts using a polylactic acid (Ultimaker PLA), that is cheap and 

compatible with the printer model available in our nuclear medicine department 

(Ultimaker S5). The results were totally unsatisfied because the obtained inserts did not 

allow to see the liquid inside and they were not waterproof (Fig. 3.9).  

 

 

 
Figure 3.8 – Inserts simulating NET lesions with necrotic core and with different sizes. 

 

 
Figure 3.9 – First attempt of 3D printed inserts production with PLA material. 
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In the search for alternative solutions, the possibility of producing inserts with a 

totally transparent material (Polymaker Polysmooth) compatible with a treatment after 

printing to make it waterproof was identified. The post-processing treatment was 

implemented with a special machine (Polymaker Polysher) designed to polish extrusion-

based 3D printed parts with isopropyl alcohol (also known as isopropanol) or ethanol to 

obtain a shiny, layer-free surface finish. No heating is involved, as the object is coated in 

liquid via nebulization technology. The total printing time for the six lesions was of about 

25 hours. Unfortunately, the post-polishing process heavily reduced the transparency of 

the material and consequently this second attempt also failed. 

Eventually we found another material with nominal properties compatible with our 

purposes, consisting of a transparent resin (FormLabs Standard Resin Cartridges Clear), 

compatible with a different printer available from a specialized commercial service 

(Form3+ 3D-printer, FormLabs). The production cost for six lesions was around 200 

Euros and the result was satisfactory in terms of transparency and impermeability (Fig. 

3.10).  

 

 

    

 

Figure 3.10 – Insert printed with clear resin, example of filling with liquid and 3d printed 

inserts included in the phantom. 

 

3.2.2 Phantom acquisition 

 

The phantom was scanned four times on a Philips Vereos digital PET/CT, using 

two different radioisotopes (18F and 68Ga) with two different solution concentrations, as 

shown in table 3.1. A ratio of concentrations of about 4:1 between the inserts and the 

background of the phantom is normally used for quality control purposes, whereas a ratio 

of about 16:1 was also used in this study in order to have values more similar to real 

patients SUV distributions.  
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Phantom 

acquisition 

Radionuclide Background 

concentration 

[kBq/ml] 

Insert 

concentration 

[kBq/ml] 

1 18F 2.6 10.3 

2 18F 1.8 29.4 

3 68Ga 2.8 11 

4 68Ga 1.6 27.0 

  

Table 3.1 – Phantom acquisitions with different radionuclides and concentrations. 

 

All the scans were performed using the list-mode (recording of raw data with 

additional information such as detector pair address of the line of response) in order to 

allow subsequent reconstructions with different acquisition times.  Phantom scans were 

reconstructed with different parameters, starting from the common reconstruction 

approach used for quality control (first row of table 3.2): 

- the acquisition time was retrospectively changed using values of 1, 1.5, 2.5 and 5 

minutes. The relative images were reconstructed considering only the relative time of 

signal collection, resulting in different signal to noise ratios. 

- PSF reconstruction: a reconstruction option (present or absent) that improve the 

spatial resolution reducing the point spread function of the image production. 

- number of subsets: in the ordered-subsets expectation-maximization (OSEM) 

algorithm [Ortuno 2006], the projection data are divided into subsets which are handled 

sequentially during each OSEM iteration. The number of subsets gives the approximate 

acceleration factor: one iteration of OSEM with N subsets gives a picture roughly similar 

to that of N iterations of other reconstruction algorithms such as the maximum likelihood 

expectation maximization  (MLEM) method. There is a trade-off between the number of 

subsets and image quality. When the number of subsets is large, the size of each subset is 

small and each contains less tomographic and statistical information. This can result in 

enhanced noise textures and other subset-related artifacts in the final image. In this study 

the number of subsets was varied from 1 to a maximum of 30. 

- number of iterations: the standard number of 3 iterations was changed from 1 to 

10. 

Table 3.2 shows the different combinations of the reconstruction parameters: the 

first column shows a code consisting of a letter which will be used in the following 

paragraphs and in the figures to indicate the results obtained for the corresponding 

combinations of parameters. 
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Code Reconstruction 

description 

Time 

[min] 

PSF Iteration Subsets 

A Pet original 5 mm 5 No 3 15 

B Pet with PSF 5 Yes 3 15 

C Pet 4 it 15 sub 5 No 4 15 

D PET 3 it 1sub 5 No 3 16 

E PET 2p5 min 5 No 3 1 

F PET 1p5 min 2.5 No 3 15 

G PET 1 min 1.5 No 3 15 

H PET 1 it 15 sub 1 No 3 15 

I PET 1 it 15 sub 1 No 1 15 

L PET 5 it 15 sub 5 No 5 15 

M PET 7 it 15 sub 5 No 7 15 

N PET 10 it 15 sub 5 No 10 15 

O PET 3 it 25 sub 5 No 3 25 

P PET 3 it 35 sub 5 No 3 35 

Q PET 3 it 50 sub 5 No 3 50 

 

Table 3.2 – Different combinations of parameters used for the reconstructions of phantom 

images. 

 

3.2.3 Features calculation 

 

52 radiomic features (Rfs), including first order (histogram) and second order 

(texture) features, were extracted with LifeX software. Relative trends of RFs and 

coefficients of variation (COV) were analyzed. Wilkoxon tests were applied to assess the 

differences between the RFs associated with the two isotopes. The RFs' correlation with 

volume was analyzed by calculating Pearson's correlation coefficients. 

In addition, we have also selected 9 necrotic tumour lesions with different volumes 

from 9 different real PET/CT images (6 FDG and 3 DOTATOC, respectively) in order to 

compare the phantom RFs values with actual patients RFs.  

 

3.2.4 Statistical analysis 

 

The comparison between actual patient RFs and phantom RFs was done for the four 

combinations of radionuclides and concentrations, using the feature values extracted after 

the standard reconstruction. Mann Whitney p-values were also calculated. 

In order to investigate the influence of the used radionuclide on RFs, a Mann-

Whitney test with paired data was performed considering for each RF, radionuclide and 
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reconstruction parameter combination the 6 values of the 6 lesions obtained with 

concentration ratio 4:1 and the 6 values obtained with the concentration 16:1.  

The impact of different reconstruction techniques was explored analyzing relative 

plots of RFs towards the parameter values and implementing ICC tests considering each 

lesion with his radionuclide and concentration as a subject and different parameters as 

observers. Relative COV were also assessed. 

Finally, the correlation of phantom RFs with lesion volumes were assessed by 

Pearson correlation coefficients. 

All the analysis were performed using the “R” package (https://www.r-

project.org/). 

3.3 Results 

3.3.1 Phantom dataset 

 
The dataset of RFs consisted of a total of 360 image volumes and 18720 RFs values: 

52 features per 6 lesions per 4 acquisition conditions (2 radionuclides and 2 

concentrations) per 15 combinations of the reconstruction parameters.  

Figure 3.12 show an example of phantom images obtained with CT, 18F PET and 
68Ga PET. Voxel dimensions were 1.2 x 1.2 x 2 mm for the CT and 4 x 4 x 4 mm for 

PET. Hounsfield units of the lesion walls and necrotic cores were about 115 HU, close to 

PMMA values and slightly higher than biological soft tissues (usually in the range 40 – 

80 HU). In figures 3.13 and 3.14 screenshots of PET images obtained with different 

reconstruction parameters for the two radionuclides are shown. The images are different 

in terms of noise and spatial resolution. In most cases slight appreciable differences are 

visible but for some reconstruction parameters the images are heavily modified, such as 

image E obtained with only one subset which is very smooth or the H image which is 

noisier due to the reduced acquisition time. 

  

     
Figure 3.11 – Images of the phantom: CT central section on the left, a 18F PET section in 

the middle and a 68Ga PET section on the right.  
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Fig. 3.12 Example of 18F PET phantom images obtained with different reconstruction 

parameters (the letters correspond to the code of processing parameters combination reported in 

table 3.2). 

 

In figure 3.14 some examples of lesions of real patients are shown, with sizes and 

shapes similar to the ones of the phantom inserts. 

 

 
Fig. 3.13 Example of 68Ga PET phantom images obtained with different reconstruction 

parameters (the letters correspond to the code of processing parameters combination reported in 

table 3.2). 
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Fig. 3.14 Example of real lesions with shape similar to the phantom inserts: the two left 

images are 18F and the two right images are  68Ga PET. 

 

3.3.2 Comparison of phantom RFs with real patient RFs 

 

The comparison of RF values extracted by real patient and phantom inserts 

highlighted important differences when the radionuclide concentration ratio 4:1 was used 

and lower differences for concentration ratio 16:1. In particular, p-values of Mann-

Whitney tests for concentration ratio 4:1 where below 0.05 for about 50% of conventional 

RFs (table 3.3), whereas for textural RFs the percentage with significative differences 

was 56% for 18F and 78% for 68Ga (table 3.4). Increasing the concentration ratio between 

inserts and background to 16:1, more similar to real patients, the percentage of RFs with 

significative differences reduces to 12-22% for different kind of RFs and radionuclides. 

Cells highlighted in gray correspond to p values less than 0.05. 

 

  18F  68Ga  
Feature 4:1 16:1 4:1 16:1 

CONVENTIONAL_SUVbwmin 0.00 0.00 0.71 0.57 

CONVENTIONAL_SUVbwmean 0.00 0.31 0.02 0.07 

CONVENTIONAL_SUVbwstd 0.00 0.31 0.02 0.14 

CONVENTIONAL_SUVbwmax 0.00 0.94 0.02 0.07 

CONVENTIONAL_SUVbwQ1 0.00 0.01 0.02 0.07 

CONVENTIONAL_SUVbwQ2 0.00 0.06 0.02 0.07 

CONVENTIONAL_SUVbwQ3 0.00 0.59 0.02 0.14 

CONVENTIONAL_SUVbwSkewness 0.06 0.06 0.02 0.07 

CONVENTIONAL_SUVbwKurtosis 0.48 0.59 0.10 0.57 

CONVENTIONAL_SUVbwExcessKurtosis 0.48 0.59 0.10 0.57 

CONVENTIONAL_TLG(mL) 0.39 0.94 0.10 0.39 

SHAPE_Volume(mL) 0.48 0.09 0.55 0.06 

SHAPE_Volume(vx) 0.48 0.39 0.55 0.79 

SHAPE_Sphericity[onlyFor3DROI]) 0.03 0.00 0.10 0.07 

SHAPE_Surface(mm2)[onlyFor3DROI] 0.48 0.82 0.55 0.79 

SHAPE_Compacity[onlyFor3DROI] 0.24 0.31 0.55 0.79 

 

Table 3.3 – p-values of Mann-Whitney test of differences between phantom inserts and real 

patient lesion conventional RFs, for different radionuclides and concentrations. Cells highlighted 

in gray show p values less than 0.05. 
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  18F 68Ga 

Feature 4:1 16:1 4:1 16:1 

GLCM_Homogeneity[=InverseDifference] 0.00 0.82 0.02 0.06 

GLCM_Energy[=AngularSecondMoment] 0.00 0.48 0.02 0.39 

GLCM_Contrast[=Variance] 0.00 0.59 0.02 0.07 

GLCM_Correlation 0.13 0.06 0.55 0.57 

GLCM_Entropy_log10 0.00 0.39 0.02 0.39 

GLCM_Entropy_log2[=JointEntropy] 0.00 0.39 0.02 0.39 

GLCM_Dissimilarity 0.00 0.59 0.02 0.07 

GLRLM_SRE 0.10 0.33 0.04 0.06 

GLRLM_LRE 0.10 0.13 0.04 0.06 

GLRLM_LGRE 0.10 0.03 0.04 0.11 

GLRLM_HGRE 0.10 0.79 0.04 0.23 

GLRLM_SRLGE 0.10 0.03 0.04 0.11 

GLRLM_SRHGE 0.10 0.79 0.04 0.23 

GLRLM_LRLGE 0.10 0.01 0.04 0.11 

GLRLM_LRHGE 0.10 0.66 0.04 0.23 

GLRLM_GLNU 0.10 0.43 0.07 0.23 

GLRLM_RLNU 0.19 0.93 0.79 0.63 

GLRLM_RP 0.00 0.39 0.02 0.04 

NGLDM_Coarseness 0.82 0.31 0.38 0.79 

NGLDM_Contrast 0.00 0.70 0.02 0.07 

NGLDM_Busyness 0.00 0.18 0.02 0.04 

GLZLM_SZE 0.00 0.24 0.02 0.04 

GLZLM_LZE 0.00 0.39 0.02 0.04 

GLZLM_LGZE 0.00 0.06 0.02 0.25 

GLZLM_HGZE 0.00 0.94 0.02 0.07 

GLZLM_SZLGE 0.09 0.39 0.38 0.79 

GLZLM_SZHGE 0.00 0.82 0.02 0.07 

GLZLM_LZLGE 0.00 0.03 0.02 0.04 

GLZLM_LZHGE 0.00 0.31 0.10 0.39 

GLZLM_GLNU 0.24 0.82 0.26 1.00 

GLZLM_ZLNU 0.00 0.82 0.02 0.25 

GLZLM_ZP 0.00 0.39 0.02 0.04 

 

Table 3.4: p-values of Mann-Whitney test of differences between phantom inserts and real 

patient lesion textural RFs, for different radionuclides and concentrations. Cells highlighted in 

gray show p values less than 0.05. 

 

Figure 3.15 shows the boxplot of conventional SUVmax and lesion volume 

distributions, highlighting the similarities in the SUV range for phantom concentration 

ratio of 16:1 and in the volume range for all the phantom acquisitions. 
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Figure 3.15  – boxplot of conventional SUV max and lesion volume distributions, for 18F 

patients (PatientF), 68Ga patients (PatientG), 18F phantom with 4:1 (PhF_4-1) and 16:1 (PhF_16-

1) concentration ratio and 68Ga phantom with the same concentration ratios (PhG_4-1 and 

PhG_16-1).  

 

There are more differences between patients and phantoms for 68Ga features, and 

this could be a consequence of the greatest differences between the sample patients’ 

maximum SUV and phantom maximum SUV. 

 In figure 3.16 two examples of feature distributions are shown, without significant 

differences between patients and phantom distributions for concentration ratio 16:1. 
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Figure 3.16: boxplot of two textural RFs (GLCM_entropy_log2 and GLZLM_LGZE) 

distributions, for 18F patients (PatientF), 68Ga patients (PatientG), 18F phantom with 4:1 

(PhF_4-1) and 16:1 (PhF_16-1) concentration ratio and 68Ga phantom with the same 

concentration ratios (PhG_4-1 and PhG_16-1). 

 

 

3.3.2 Comparison of RFs calculated with 68Ga and 18F filled inserts 

 

To analyze the differences between the RF values calculated for the Ga- and F-

filled phantom inserts, Mann Whitney tests were performed for pairs of samples filled 

with the two radioisotopes, separately for each of the acquisition modes. The 

corresponding p-value for different RF and for each acquisition mode are shown in figure 

3.16 (p values below 0.05 are highlighted in yellow). 
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Table 3.5 – p-values of the Mann Whitney test of differences between 68Ga and 18F 

phantom filled inserts, for each combination of reconstruction parameters (p values below 0.05 

are highlighted in yellow). 

 

The number of RFs showing significant differences varies greatly, depending on 

the reconstruction mode used, ranging from 0 to 20. The mean, median (SuvbwQ2) and 

third quartile values of SUV have p-values greater than 0.05 for all the conditions, while 

the SUV max, standard deviation of SUV and first quartile in some combinations of 

parameters have a p-value below 0.05. For the same conditions the number of textural 

RFs with appreciable differences is also greater. In general, the number of features with 

significant differences between the two radioisotopes is greater in combinations with a 

high number of iterations or with a high number of subsets, while it is very low for the 

standard acquisition conditions of patients and phantoms for quality controls (mode A 
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and G). The only condition for which significant differences are not appreciated is mode 

B which includes the correction for the point spread function. 

 

3.3.3 Impact of different reconstruction parameters on RFs 

 

For different acquisition times, the majority of RFs showed COV lower than 20%, 

as shown in figure 3.17.  

 

      
 

Figure 3.17 – COV distributions for the phantom inserts for different acquisition times 

(left) and choice of point spread function correction (right).  

 

         COV [%]       COV [%] 
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The only conventional feature with higher COV values was the excess kurtosis, that 

is the kurtosis value minus 3 and, as a consequence of having mean values close to zero, 

the COV assumes high values. Higher COV values were also observed for GLZLM 

features, in general below 50%. A similar behavior of COV values was assessed for the 

PSF parameter, with a general light increase for all the textural RFs including GLCM and 

GLRLM. These results highlight that features are in general more sensitive to spatial 

resolution than to noise, as the impact of different acquisition times is a light increase in 

noise, whereas the PSF correction has consequences on spatial resolution.  

Plot of the feature values towards acquisition time highlight similar trends for 18F 

and 68Ga radionuclides. An example is shown in figure 3.18 for GLCM_correlation, but 

similar trends were observed for most of the features, with higher variations for the 

GLZLM RFs family. As shown, these features are almost constant with a very small 

increase from 1 minute of acquisition to 5 minutes, with a low impact of the related image 

noise differences. 

 
Figure 3.18 – GLCM correlation values as a function of the acquisition time (left: 

acquisition with FDG of the left, with Ga68 on the right. The colours correspond to different 

lesion volumes (lower values correspond to lower volumes).  

 

The number of subsets had a major impact on RFs, in particular for the extreme 

case of 1 subset (condition E). Figure 3.19 show two examples: the conventional SUV 

max is affected by the choice of the number of subsets and the value increases with a 

maximum for about 30 subsets, whereas for other RFs a decreasing trend was observed.  
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Figure 3.19 – Conventional SUV max and GLCM_homogeneity values towards the 

number of subset considered for FDG PET images reconstruction, for different radionuclides and 

lesion volume (lower values correspond to lower volumes).  

 

 

In figure 3.20 the COV for all the subset conditions and for all except the E 

parameters combination is presented. For subset greater than 15 most of COV values are 

below 20%, whereas including the E case several RFs have a COV greater than 50% and 

some greater than 150%.  

The ICC analysis highlighted in general values greater than 0.9 for most of the RFs 

and reconstruction parameters (Table 3.6). In general, it is possible to say that RFs 

extracted from the phantom test are in general “robust” with respect to the choice of PET 

reconstruction parameters. Low ICC values were observed in particular for GLZLM RFs 

and for the different number of subset and iteration, coherently with the COV 

distributions. 
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Figure 3.20 – COV distributions for the phantom inserts for different number of subsets: 

the right graph was obtained excluding the case of 1 subset (E parameters combination of table 

3.2).  

 

 

 

         COV [%]       COV [%] 
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Table 3.6– ICC values for RFs towards different combination of reconstruction parameters 

(dark green ICC>0.9, light green 0.8<ICC<0.9, orange 0.7<ICC<0.8, yellow 0.5<ICC<0.7, pink 

ICC<0.5). 

 

Relative trends of RFs as a function of the number of iterations used for the PET 

reconstruction showed in most cases a large variation when this number varies between 

RF Acq time PSF Subset Subs -E Iteration

CONVENTIONAL_SUVbwmin 0.87 0.91 0.39 0.83 0.72

CONVENTIONAL_SUVbwmean 1.00 1.00 0.97 1.00 1.00

CONVENTIONAL_SUVbwstd 1.00 0.98 0.88 1.00 1.00

CONVENTIONAL_SUVbwmax 0.99 0.98 0.89 0.99 0.99

CONVENTIONAL_SUVbwQ1 1.00 0.98 0.94 0.99 0.98

CONVENTIONAL_SUVbwQ2 1.00 1.00 0.99 1.00 1.00

CONVENTIONAL_SUVbwQ3 1.00 1.00 0.94 1.00 1.00

CONVENTIONAL_SUVbwSkewness 0.91 0.96 0.71 0.97 0.97

CONVENTIONAL_SUVbwKurtosis 0.91 0.97 0.82 0.96 0.97

CONVENTIONAL_SUVbwExcessKurtosis 0.91 0.97 0.82 0.96 0.97

CONVENTIONAL_SUVbwpeakSphere0.5mL 1.00 0.99 0.92 1.00 1.00

CONVENTIONAL_SUVbwpeakSphere1mL 1.00 0.99 0.94 1.00 1.00

CONVENTIONAL_TLG.mL..onlyForPETorNM. 1.00 1.00 0.99 1.00 1.00

SHAPE_Volume.mL. 1.00 1.00 1.00 1.00 1.00

SHAPE_Volume.vx. 1.00 1.00 1.00 1.00 1.00

SHAPE_Sphericity.onlyFor3DROI.. 1.00 1.00 1.00 1.00 1.00

SHAPE_Surface.mm2..onlyFor3DROI. 1.00 1.00 1.00 1.00 1.00

SHAPE_Compacity.onlyFor3DROI. 1.00 1.00 1.00 1.00 1.00

GLCM_Homogeneity..InverseDifference. 0.99 0.99 0.71 0.98 0.95

GLCM_Energy..AngularSecondMoment. 0.96 0.95 0.18 0.92 0.72

GLCM_Contrast..Variance. 1.00 0.94 0.79 1.00 0.99

GLCM_Correlation 0.99 1.00 0.86 0.98 0.97

GLCM_Entropy_log10 0.99 0.99 0.79 0.99 0.97

GLCM_Entropy_log2..JointEntropy. 0.99 0.99 0.79 0.99 0.97

GLCM_Dissimilarity 1.00 0.97 0.82 0.99 0.99

GLRLM_SRE 0.93 0.93 0.60 0.96 0.90

GLRLM_LRE 0.93 0.77 0.35 0.94 0.85

GLRLM_LGRE 0.99 0.97 0.93 0.98 0.96

GLRLM_HGRE 1.00 0.99 0.95 1.00 1.00

GLRLM_SRLGE 0.98 0.94 0.84 0.97 0.94

GLRLM_SRHGE 1.00 0.99 0.94 1.00 1.00

GLRLM_LRLGE 0.96 0.94 0.76 0.98 0.97

GLRLM_LRHGE 1.00 1.00 0.95 1.00 1.00

GLRLM_GLNU 0.99 0.99 0.95 0.99 1.00

GLRLM_RLNU 0.99 1.00 0.97 0.99 0.99

GLRLM_RP 0.96 0.98 0.51 0.94 0.88

NGLDM_Coarseness 0.99 1.00 0.89 0.99 0.99

NGLDM_Contrast 0.99 0.98 0.77 0.99 0.97

NGLDM_Busyness 0.93 0.98 0.19 0.95 0.91

GLZLM_SZE 0.88 0.96 0.66 0.88 0.90

GLZLM_LZE 0.86 0.89 0.07 0.80 0.56

GLZLM_LGZE 0.94 0.97 0.90 0.93 0.91

GLZLM_HGZE 1.00 0.00 0.00 0.00 0.00

GLZLM_SZLGE 0.33 0.12 0.35 0.53 0.26

GLZLM_SZHGE 0.99 0.97 0.86 0.99 0.99

GLZLM_LZLGE 0.86 0.87 0.11 0.80 0.62

GLZLM_LZHGE 0.89 0.90 0.01 0.00 0.00

GLZLM_GLNU 0.99 0.96 0.00 0.00 0.11

GLZLM_ZLNU 0.99 0.99 0.00 0.00 0.20

GLZLM_ZP 0.99 0.99 0.81 0.98 0.98
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3 and 5 and low changes for a number of iterations between 5 and 10 iterations, regardless 

of the volume of the spheres (Figure 3.21). COV values are not shown, but they are similar 

to the ones obtained for different subset without the “E” parameter combination (Figure 

3.20 right).  

 
Figure 3.21 – GLCM_Entropy trend towards different number of iterations used for PET 

reconstruction, for 18F and 68Ga. 

 

3.3.4 Correlation between RFs and lesion volumes 

 

Table 3.7 shows the Pearson correlation coefficients of single features with respect 

to the insert volumes, including the acquisitions with the same radionuclide and two 

different concentrations or with the same concentrations and the two radionuclides. When 

the same concentration is considered, a large number of RFs (more than 60% excluding 

shape features) correlates with volume. On the other hand, when two different 

concentrations were considered, only two textural RFs (GLRLM_RLNU and 

GLZLM_GLNU) are correlated with lesion volumes for both 18F and 68G.  

3.4 Discussion 

In this study, a three-dimensional phantom was implemented to evaluate the 

reproducibility of radiomic features of neuroendocrine tumors with different PET image 

reconstruction modalities and different radionuclides. Although the use of phantoms 

made with 3D printers is also growing in the field of nuclear medicine, no previous study 

has focused on this type of tumor and on the comparison between two radioisotopes with 

different concentrations. 
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Table 3.7 – Pearson correlation coefficients between RFs and lesion volumes. The table 

columns refer to the following data included in the correlation analysis: F_G_4 18F and 68Ga with 

concentration ratio 4:1, F_G_16 18F and 68Ga with concentration ratio 16:1, F_4_16 18F with 

concentration ratio 4:1 and 16:1 and G_4_16 68G with concentration ratio 4:1 and 16:1. Values 

above 0.8 or below -0.8 are highlighted in grey. 

Feature F_G_4 F_G _16 F_4_16 G_4_16

CONVENTIONAL_SUVbwmin -0.39 -0.19 -0.45 -0.27

CONVENTIONAL_SUVbwmean 0.92 0.95 0.55 0.53

CONVENTIONAL_SUVbwstd 0.93 0.89 0.46 0.45

CONVENTIONAL_SUVbwmax 0.89 0.85 0.39 0.42

CONVENTIONAL_SUVbwQ1 0.49 0.92 0.61 0.59

CONVENTIONAL_SUVbwQ2 0.87 0.95 0.61 0.55

CONVENTIONAL_SUVbwQ3 0.96 0.96 0.58 0.54

CONVENTIONAL_SUVbwSkewness -0.44 -0.87 -0.87 -0.44

CONVENTIONAL_SUVbwKurtosis -0.84 -0.77 -0.82 -0.79

CONVENTIONAL_SUVbwExcessKurtosis -0.84 -0.77 -0.82 -0.79

CONVENTIONAL_SUVbwpeakSphere0.5mL. 0.91 0.91 0.46 0.47

CONVENTIONAL_SUVbwpeakSphere1mL 0.92 0.91 0.49 0.50

CONVENTIONAL_TLG.mL..onlyForPETorNM. 0.99 0.99 0.84 0.86

SHAPE_Volume.mL. 1.00 1.00 1.00 1.00

SHAPE_Volume.vx. 1.00 1.00 1.00 1.00

SHAPE_Sphericity.onlyFor3DROI.. -0.79 -0.90 -0.74 -0.89

SHAPE_Surface.mm2..onlyFor3DROI. 0.99 1.00 0.99 1.00

SHAPE_Compacity.onlyFor3DROI. 0.97 0.97 0.97 0.97

GLCM_Homogeneity..InverseDifference. -0.83 -0.69 -0.29 -0.35

GLCM_Energy..AngularSecondMoment. -0.67 -0.73 -0.43 -0.53

GLCM_Contrast..Variance. 0.92 0.79 0.36 0.30

GLCM_Correlation 0.73 0.81 0.82 0.70

GLCM_Entropy_log10 0.84 0.91 0.58 0.57

GLCM_Entropy_log2..JointEntropy. 0.84 0.91 0.58 0.57

GLCM_Dissimilarity 0.88 0.76 0.30 0.30

GLRLM_SRE 0.55 0.86 0.29 0.48

GLRLM_LRE -0.30 -0.81 -0.25 -0.27

GLRLM_LGRE -0.65 -0.86 -0.64 -0.73

GLRLM_HGRE 0.93 0.94 0.63 0.57

GLRLM_SRLGE -0.64 -0.85 -0.67 -0.74

GLRLM_SRHGE 0.93 0.94 0.62 0.57

GLRLM_LRLGE -0.51 -0.89 -0.46 -0.57

GLRLM_LRHGE 0.92 0.95 0.67 0.61

GLRLM_GLNU 0.96 0.99 0.69 0.71

GLRLM_RLNU 0.98 0.99 0.95 0.90

GLRLM_RP 0.85 0.51 0.24 0.32

NGLDM_Coarseness -0.77 -0.86 -0.70 -0.76

NGLDM_Contrast 0.93 0.81 0.33 0.30

NGLDM_Busyness 0.92 0.08 0.48 0.48

GLZLM_SZE 0.81 0.57 0.35 0.34

GLZLM_LZE 0.45 -0.31 0.26 0.07

GLZLM_LGZE -0.62 -0.85 -0.37 -0.49

GLZLM_HGZE 0.83 0.92 0.50 0.48

GLZLM_SZLGE 0.17 -0.67 -0.02 -0.19

GLZLM_SZHGE 0.78 0.90 0.49 0.43

GLZLM_LZLGE 0.30 -0.45 0.19 -0.02

GLZLM_LZHGE 0.79 0.99 0.54 0.34

GLZLM_GLNU 0.97 0.99 0.90 0.85

GLZLM_ZLNU 0.98 0.99 0.65 0.57

GLZLM_ZP 0.61 0.55 0.16 0.12
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A similar approach to the one followed in this study was adopted by [Pfaheler 2020] 

to simulate non-small cell lung cancer, with the fabrication of three different inserts of 

similar size: one simple, one with two compartments with different concentrations and 

one with an internal necrotic region. The possible effect of the lesions size was not 

examined (as instead it was decided to do in this study), while the acquisitions were 

carried out 4 times on the same scanners and once on other 5 pet scanners. The results are 

reported in terms of percentage of features with ICC values higher than 0.9 or in other 

lower ranges, for images obtained from the same acquisition on the same scanner with 

different noise patterns (reliability), repeated acquisitions on the same scanner 

(repeatability) and acquisitions on different scanners. All analysis were replicated with 

fixed bin number (FBN) and fixed bin width (FBW) discretization. For reliability, the 

percentage of features with ICC above 0.9 is generally higher than 90%, for repeatability 

it falls in many cases below 40% and for reproducibility it is generally below 20%. In the 

multicentric evaluation, the results improve if the acquisition criteria defined by the 

European Nuclear Medicine Research LTD (EARL) [Leijenaar 2015] are followed. The 

ICC values were lower with the FBN discretization than with the FBW. In our study 

percentages of features with very high ICC were observed for the different 

reconstructions used on the same scanner, in analogy to what reported by Pfaheler et al 

in the reliability section with reconstructions with different noise patterns. At the moment 

we do not have repeatability and reproducibility data that will be analyzed in the next 

phases of the study. 

The two different radioisotopes used to fill the phantom inserts in this study are 

both also used in PET examinations of neuroendocrine tumor patients. 68Ga and 18F have 

a different positron range (PR), that is the distance traveled by the positrons from the 

point of emission to the annihilation point and depends on the energy of the emitted 

positron and the electron density of the surrounding medium. In the case of 18F, the 

positron emission energies are relatively low (maximum positron energy: Emax = 0.63 

MeV, mean positron energy: Emean = 0.25 MeV), and the mean PR (rmean) in water is only 

0.6 mm. This does not induce considerable differences between the measured and true 

tracer distribution [Alessio 2008], given the spatial resolution of state-of-the-art PET 

systems ranges from 2 to 4 mm. 68Ga has higher positron emission energies and more 

complex decay schemes (Emax = 1.9 MeV, rmean = 2.9 mm) and this can lead to 

deterioration of the perceived spatial resolution resulting in image blurring and loss of 

image contrast. The consequences of the different PR on image quality and an approach 

for possible correction were recently analyzed in a study [Kertesz 2022], using the 

classical NEMA phantom. The greatest differences were observed for spheres smaller 

than 20 mm and for high values of the number of iterations. In our study the lesions have 

a minimum dimension greater than 20 mm, although with a necrotic nucleus, but also in 

our analysis greater differences were highlighted between the features of inserts filled 

with 68Ga and 18F for the combinations of reconstruction parameters with high number of 
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iterations and subsets, which emphasize the spatial resolution of the image at the expense 

of a greater presence of noise. Therefore, in the case of multicentric PET radiomics 

studies with the use of three-dimensional phantoms, it is conceivable that the results 

obtained with 18F can also be extended to 68Ga in the case of low or intermediate 

interaction number values, while it is certainly advisable to use a specific radionuclide 

for reconstructions with greater spatial resolution. 

The use of the same shape of lesion with different dimensions allowed to analyze 

the correlation of the different features with the volume. When similar concentration ratio 

was used to fill the inserts, in most cases high values of the Pearson coefficients were 

found. When RFs calculated with different concentration ratios were considered, only 

two textural RFs show high correlation towards volume. These results can be compared 

with the analysis of correlation performed in the previous chapter for the two patients 

with different PRRT outcome (Figures 2.13 and 2.14). In particular it is possible to 

observe that the two RFs without correlation with volume in all the conditions of figure 

3.23 (GLZLM_SZLGE and GLZLM_ZP) were also not correlated with volume in the 

PRRT patient analysis, with significant differences between responding and not 

responding lesions. 

This study has several limitations, which will be addressed in the continuation of 

the work. In particular, due to various problems of a practical nature and of access to the 

PET equipment with high workloads of ordinary examinations, at the time of writing this 

thesis it was not possible to carry out repeated acquisitions in the same conditions of the 

phantoms to evaluate the repeatability of the values of obtainable RFs. These evaluations 

are planned for the coming months and will provide important information on the 

possibility of using the phantom in multi-center studies. Another limitation is linked to 

the use of only one shape of insert: in this work we have focused on the differences 

between fluorine and gallium and on the impact of different lesion sizes, with results of 

interest in this area. In the future it will be possible to evaluate other forms of NET lesions 

in particular by creating them starting from patients with different clinical variables of 

interest. 

In conclusions, these implemented and user-friendly 3D-printed inserts for NEMA-

phantom allow to evaluate the impact of different acquisition and reconstruction 

parameters on RFs. This approach appears promising for the standardization of PET 

protocols and the harmonization of data in multicenter radiomic studies.  
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4. Lessons learned and future perspectives 

 
When undertaking a study in the field of radiomics, various aspects must be taken 

into consideration, in particular at a general level the dataset available or to be collected, 

the software used, the level of experience of the various professional figures involved in 

the study (both medical and techniques), the presence of evidence already published in 

the field and the questions to which the study undertaken intends to provide answers. 

What is a relevant question in a radiomics study? A relevant question for physicians 

is usually a question of interest for patient management or for better understanding a 

disease. For physicists (or computer scientists or engineers) the questions afforded are 

more often related to aspects that impact on the use of radiomics in general or in specific 

applications, in particular about methodological aspects. The relevance of the question 

considered in the radiomics study should always be verified by comparison with the 

literature but also with discussions with physicians and other scientists. When reviewing 

the literature about the subject, many useful information is often provided in the 

supplementary data of the articles, because radiomics studies implies commonly a lot of 

data results and only a part of them are published in the main part of the paper. Particular 

attention should be paid to the homogeneity of the data (recruitment, scanner, acquisition 

protocol, reconstruction protocol) and if the author assesses the validity of their 

conclusion on an independent dataset.  

In general, it is important to verify that the question of the study cannot be answered 

with already known other simple quantities extracted from the images, such as SUV in 

nuclear medicine PET and lesion volumes. As an example, in [Welch 2019] a radiomic 

model was fitted and externally validated using features extracted from previously 

reported lung and head and neck (H&N) cancer datasets using gross-tumour-volume 

contours, as well as from images with randomly permuted voxel index values (images 

without meaningful texture). To determine if the model added benefit, the prognostic 

accuracy of tumour volume alone was also calculated as a baseline. It was determined 

that the radiomics signature was a surrogate for tumour volume and that intensity and 

texture values were not pertinent for prognostication. Many similar examples of 

misinterpretation have been published.  

It is also important to publish “negative results”, in the sense of studies where the 

radiomics analysis did not provide additional information to commonly used quantities. 

As an example, in another study performed during this doctoral work [Thuiller 2019], we 

investigated the diagnostic value of both conventional parameters and RFs to distinguish 

lung NETs, including typical (TC) and atypical carcinoid (AC), from lung neuroendocrine 

carcinomas (Lu-NECs), including large-cell neuroendocrine carcinomas (LCNECs) and 

small-cell neuroendocrine carcinomas (SCLCs). We found that RFs do not provide 

additional information allowing us to discriminate Lu-NECs and Lu-NETs. Only 

HISTO_Entropy_log10 was selected by a LASSO regression, but it was highly correlated 
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to conventional PET parameters. In this example these results may be explained by the 

characteristics of the considered tumor sample. First, even if several NETs might present 

high FDG-avidity, while several NECs hold low FDG-avidity, the broad difference in 

SUV values in NECs compared with NETs could lead to a broader difference in RF values 

between the two groups [Orlhac 2015]. Moreover, the volume of tumors in the considered 

cohort was low (median value of MTV = 7.52 mL) and several studies reported that a 

radiomic approach does not provide additional information when the lesion metabolic 

volume is lower than 10 mL [Hatt 2015]. In any case, the publication of these results is 

useful to the scientific community to select fields where more investigations about 

radiomics are promising from other where there are not expectable added values.  

In the field of radiomics, differently from most of other science subjects, 

reproducing results obtained from other research groups are at least as important as 

producing new results. At present, most of the radiomics studies are not confirmed by 

other teams, in particular for predictive models, and as a consequence there is not 

translation in clinical practice. This is probably the greatest roadblock for advancing in 

the field.  

Several studies investigated the potential robustness of RFs, intended as 

maintenance of information provided by the RF in case of evaluation in different moments 

(repeatability) and conditions (reproducibility). In particular [Zwanenburg 2019] presents 

a meta-analysis with evaluation of the impact of single factors affecting reproducibility 

of image biomarkers: 

- patient factors (disease type and site, injected radionuclide, injected tracer 

activity, tumour motion, breathing patterns); 

- image acquisition factors (tracer uptake time, scan duration, 4D breathing 

frames, static 3D vs gated 4D, scanner differences, test-retest repeatability); 

- image reconstruction (reconstruction method, number of iterations, number of 

subsets, gaussian filter width, partial volume corrections, voxel dimension 

difference, voxel harmonization); 

- segmentation (delineation variability, manual or automatic or semi-automatic 

method) 

- image processing (SUV normalization, image interpolation method, voxel 

harmonization, factors affecting reproducibility of image biomarkers, 

discretization method, discretization levels, added noise sensitivity) 

- feature computation (texture matrix aggregation and distances, software used) 

Several of these factors were investigated in this doctoral thesis and useful 

information about the consequences on RFs were collected, for both in patient and in 

phantom studies.  

We haven’t the possibility of investigating scanner differences in PET images, 

although the first part of the study with patient data was performed on an old PET/CT and 

the second part with phantom on a new digital PET/CT installed in march 2021. Another 
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part of doctoral work not reported in this thesis was focused on radiomics analysis on 

MRI images of breast triple negative cancers. In that case we have different MRI 

sequences acquired on two different scanners and a sample of about 40 patients with 

different response to neo adjuvant chemotherapy. We found that some features were 

affected by the scanner and other features showed significative differences between 

responding and not responding patients independently of the scanner used.  

Although most of the robustness studies show results in terms of ICC and COV of 

RFs values for different factors analyzed on patients’ samples or phantoms data, as also 

done in this thesis, the future investigations should focus on samples with patients 

subdivided according to a clinical variable of interest, with the definition of a model and 

the relative impact of procedural factors on the model. In other words we have to move 

from a selection of robust RFs to the identification of robust models. This require the 

collection of more numerous patient samples, multicentric studies with high quality data 

and this is still a great challenge at present, and probably we have to wait some years 

before to see relevant progresses. Most of the published studies are still monocentric or 

with few centers and number of cases rarely above one hundred. In any case, with some 

simple queries on Pubmed it is possible to see that the trends of research are actually 

going in this direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 – Number of Pubmed researches as a function of the publication year extracted 

with different keywords connected to radiomics: reproducibility, robustness, models and 

multicentric (searches of February 26th, 2023).  
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Literature research with keyword “reproducibility” combined with radiomics shows 

a total of 824 studies with a plateau in the period 2020-2022. Also the research with 

“robustness” combined with radiomics shows an increase of studies up to 2021 with a 

similar number in 2022. On the contrary, the keyword “models” with radiomics shows 

still a progressive increase in the last three years and probably the number of 2023 studies 

will be greater than 2022. Also, the number of multicentric studies is in progressive 

increase, although the total number is still very poor and represents less than 2% of the 

total number of studies. 

A systematic review of radiomics in PET nuclear medicine imaging was recently 

published in two parts [Morland 2022a and b]. Seven studies were found to be conducted 

on neuroendocrine tumors [Bevilacqua 2021, Mapelli 2020, Thuillier 2019, Werner 2019, 

Atkinson 2021, Werner 2017, Weber 2020], half of which on pancreatic neuroendocrine 

tumors. The radiotracers used were 68Ga-DOTA-peptides (6/7) and 18F-FDG (1/7). Four 

studies aimed at predicting prognosis and four were conducted for diagnostic purposes, 

particularly for Ki67 prediction.  

 

Study Aim Patient 
sample 

size 

Relevant features 

[Bevilacqua 2021] Predicting grade 1 (G1) and 2 (G2) 
primary pancreatic neuroendocrine 
tumour 

51 NHGLCM, EGLCM 

[Mapelli 2020] Predicting tumour aggressiveness 
and outcome in patients candidate to 
surgery for pancreatic 
neuroendocrine neoplasms 

61 Intensity variability, 
size zone variability, 
entropy, homogeneity 

[Thuillier 2019] Differentiate among different 
histological subtypes of lung 
neuroendocrine neoplasms 

44 No added value of RFs 
towards conventional 
quantities 

[Werner 2019] Predicts Overall Survival in Pancreatic 
Neuroendocrine Tumor Patients 
Undergoing Peptide Receptor 
Radionuclide Therapy 

31 GLCM entropy 

[Atkinson 2021] Prognostic potential of tumor 
heterogeneity and tracer avidity in 
NET 

44 First order kurtosis, 
skewness, and entropy 

[Werner 2017] Prognostic value of tumor 
heterogeneity as assessed by 
somatostatin receptor 

141 Entropy, Correlation, 
Short Zone Emphasis 
and Homogeneity 

[Weber 2020] Prediction of proliferative activity of 
NETs, potentially allowing non-
invasive tumor grading. 

100 Entropy and 
homogeneity 

Table 4.1 – Aims and relevant features for recent studies about radiomics in NET patients.  

 

It is not easy to compare the relevant features with significative differences towards 

the clinical variable of interest for these studies, as there are in general few details about 

the method used to calculate the features, the software and the compliance with IBSI 
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standard. In general, “entropy” is always present, in some studies it is specified that it is 

a GLCM entropy and in others no. In the future, it should be always stated the software 

used for RF calculation and the IBSI compliance, in order to facilitate the comparison of 

results of different studies. Moreover, the identification of relevant RFs calculated in a 

standard manner, will open the road to implement robustness studies focused on the 

relevant biomarkers and on their values for different patient populations. This should be 

a shift in perspective from the last few years of RFs computing binges towards a more 

selective approach to single significant RFs, with thorough investigation of their 

behavior. 

Phantoms studies, in my opinion, will still have a role in the next years of radiomics 

analysis. In this work we made several attempts to obtain our first inserts suitable for in 

phantom investigation of RFs reproducibility and at the end we implemented a phantom 

with RFs results comparable with real patients and with reproducibility results coherent 

with findings of other studies. It is desirable also in this field to move towards a 

standardization of phantom implementations for radiomics studies, such as a common 3D 

printing approach and a shared library of 3D printing models, to facilitate the comparison 

of the results among centers.  
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Conclusions 

 
At the end of this journey, I can confirm with greater awareness that the workflow 

of a radiomics study includes various tasks which commonly belong to the knowledge 

and skills of the specialist in medical physics: from image quality assurance to image 

processing, from segmentation techniques to statistical processing of results, from 

phantom implementation to experimental management.  

It was possible to obtain the results presented here thanks to an interdisciplinary 

work involving in particular nuclear medicine physicians, engineers and physicists. The 

various analysis of real NET patient data and related publications have been published on 

relevant journals, and several subsequent studies have cited the results. The specific 

information in terms of the semi-automatic approach to segmentation without threshold 

and the use of fixed discretization will also be useful to set up the next studies correctly 

from the beginning and also to define standardized approaches.  

The phantom study highlighted in particular the possibility of making inserts for 

phantoms that are already commercially available with low costs and good representation 

of the radiomic data of real tumor lesions. The first results are encouraging and have 

allowed us to formulate interesting conclusions on the relative effects of the size of the 

lesions, the type of radioisotope used and the effect of various image reconstruction 

parameters. The natural evolution of the next phases of the study will include a 

verification of the repeatability of the method, its use on different scanners and the 

creation of inserts with different shapes and internal heterogeneities.  
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Appendix 1 

 

 

In this appendix Lifex features and IBSI features are compared.  

 

GLCM (Grey Level Co-occurrence Matrix)  

 

LifeX 

 

IBSI  

GLCM_Homogeneity  Inverse difference  

GLCM_Energy  Angular second moment  

GLCM_Contrast  Contrast  

GLCM_Correlation  Correlation  

GLCM_Entropy_log10  /  

GLCM_Entropy_log2  Joint entropy  

GLCM_Dissimilarity  Dissimilarity  

 

 In the IBSI document, GLCM features are 24. 

 

NGLDM (Neighborhood Grey-Level Different Matrix)  

 

In IBSI: NGTDM (Neighborhood Grey Tone Difference Matrix) 

 

LifeX  IBSI  

NGLDM_Coarseness  Coarseness  

NGLDM_Contrast  Contrast  

NGLDM_Busyness  Busyness  

 

In the IBSI documento, NGTDM features are 5.  
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GLRLM (Grey-Level Run Length Matrix)  

 

LifeX 

 

IBSI  

GLRLM_SRE  Short runs emphasis  

GLRLM_LRE  Long runs emphasis  

GLRLM_LGRE  Low grey level run emphasis  

GLRLM_HGRE  High grey level run emphasis  

GLRLM_SRLGE  Short run low grey level emphasis  

GLRLM_SRHGE  Short run high grey level emphasis  

GLRLM_LRLGE  Long run low grey level emphasis  

GLRLM_LRHGE  Long run high grey level emphasis  

GLRLM_GLNUr  Grey level non-uniformity  

GLRLM_RLNU  Run length non-uniformity  

GLRLM_RP  Run percentage  

 

In the IBSI document, GLRLM features are 16.  

 

 GLZLM (Grey-Level Zone Length Matrix)  

 

In IBSI: GLSZM (Grey Level Size Zone Matrix) 

 

LifeX 

 

IBSI  

GLZLM_SZE  Small zone emphasis  

GLZLM_LZE  Large zone emphasis  

GLZLM_LGZE  Low grey level zone emphasis  

GLZLM_HGZE  High grey level zone emphasis  

GLZLM_SZLGE  Small zone low grey level emphasis  

GLZLM_SZHGE  Small zone high grey level emphasis  

GLZLM_LZLGE  Large zone low grey level emphasis  

GLZLM_LZHGE  Large zone high grey level emphasis  

GLZLM_GLNUz  Grey level non-uniformity  

GLZLM_ZLNU  Zone size non-uniformity  

GLZLM_ZP  Zone percentage  

 

In IBSI, GLSZM features are 16.  
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Shape  

 

LifeX  

 

IBSI  

SHAPE_Sphericity  Sphericity  

SHAPE_Compacity  / *  

SHAPE_Volume  Volume  

 

In IBSI document two measures of compacity are provided, both similar to the one 

defined in IBSI.  

 

 

 

Compactness 1 e Compactness 2 correspond to the reciprocal of SHAPE_Compacity 

with a constant multiplicative factor 

 

Histogram features  

 

In IBSI: Intensity histogram features 

 

LifeX  

 

IBSI  

HISTO_Skewness  Intensity Skewness  

HISTO_Kurtosis  (Excess) intensity kurtosis *  

HISTO_Entropy_log10  /  

HISTO_Entropy_log2  Discretised intensity entropy  

HISTO_Energy  Discretised intensity 

uniformity  

 

*(Excess) intensity kurtosis = HISTO_Kurtosis – 3 in order to obtain a value of 0 for 

gaussian distributions. 
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Conventional indices  

 

LifeX  

 

IBSI  

CONV_min  Minimum intensity  

CONV_mean  Mean intensity  

CONV_max  Maximum intensity  

CONV_peak  Local intensity peak  

CONV_TLG  Integrated intensity  

CONV_RIM_xxx  /  

 

 

Categories present in IBSI and absent in Lifex:  

• Grey Level Distance Zone Matrix (GLDZM)  

• Neighbouring Grey Level Dependence Matrix (NGLDM). To be noticed that in LifeX 

the acronym NGLDM is used to indicate Neighborhood Grey-Level Different Matrix 

which represent the NGTDM im IBSI (Neighborhood Grey Tone Difference Matrix).  

 

 


