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Abstract
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Evaluating the impact of meningococcal vaccines with synthetic controls

by Ottavia PRUNAS

Evaluating the impact of vaccines is a critical epidemiological task, particularly
challenging for vaccines against diseases presenting low and unpredictable inci-
dence trends. Traditionally, the incidence of meningococcal cases before vaccina-
tion is used as a control (pre-post comparison); or, to correct for changes unrelated
to vaccination, controls are meningococcal cases in non-vaccine-eligible age groups.
However, this is justified only in the absence of indirect vaccine effects. And any
control, if arbitrarily selected, has the potential to bias the impact estimate leading
to inaccurate conclusions.

In my research project, I investigated the validity of the synthetic control ap-
proach, specifically in two infant immunization programmes against serogroup B
and C meningococcal disease in England and Brazil, respectively. This data-driven
approach uses information from other diseases to evaluate vaccine impact avoiding
the potential bias resulting from arbitrary control selection. I used as controls sev-
eral time series of infectious and non-infectious diseases in infants, and time series
of MenB/MenC cases in older unvaccinated age groups.

Results show that the synthetic control method successfully adjusted for under-
lying trends, outperforming a before-after time trend model. Furthermore, meningo-
coccal B and C cases in unvaccinated age groups were found to be the most predic-
tive controls. However, similar performances were obtained when relying on other
non-meningococcal diseases, specifically respiratory diseases and measles, support-
ing the use of the synthetic control method when indirect effects could not be ne-
glected, and providing suggestive hypotheses of associations among infectious dis-
eases that deserve further investigation.

In conclusion, the synthetic control model is a general and robust method that
adjusts for unexplained trends and reduces the risk of bias associated with arbitrarily
selected controls, and could be used even when indirect effects are present.
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Chapter 1

Introduction

Evaluating the impact of newly introduced vaccination programmes implies an-
swering the critical question: what would have happened had the vaccine not been
introduced?

Addressing this question requires an effective surveillance system providing long
and reliable time series of hospitalization, mortality, morbidity, and coverage data.
These observational data generally include information over large geographic ar-
eas and long time periods both pre- and post-vaccination. At the same time, how-
ever, these data can be influenced by other factors unrelated to the vaccination pro-
gramme, such as changes in healthcare reporting or health in the population, which
can either overestimate or underestimate the true effect of the vaccination programme.

Challenges increase when dealing with the real-world evaluation of meningococ-
cal vaccines, because of the low incidence and unpredictable trends of the disease.
Measuring the impact of a newly introduced mass immunization program against
meningococcus is however of primary importance for public health.

Traditionally, vaccine impact is measured by comparing similar populations with
and without a vaccination programme [1, 2]. Most commonly, the same popula-
tion is compared, before and after vaccination, often using time-trend analyses [3, 4,
5]. This approach could fail to adjust for unexplained trends occurring during the
vaccination programme, as it assumes that conditions are identical before and after
immunization. Alternatively, external controls could be used to correct for changes
unrelated to vaccination. Selecting adequate controls is however challenging and
arbitrarily selecting them could introduce a source of bias.

The synthetic control method represents an appealing solution, where controls
are not selected a priori. Starting from a large set of control diseases, Bayesian vari-
able selection is employed to select the optimal set of controls based on the similarity
with the disease of interest, here meningococcal disease, in the pre-vaccine period
[6]. This approach has been successfully applied to evaluate the impact of public
health interventions [7].

In my thesis, I investigated the validity of the synthetic control method for assess-
ing the impact of meningococcal immunization programmes. I applied the synthetic
control method to two different immunization programmes, against serogroup B
and C meningococcal (MenB and MenC) disease in England and Brazil, respectively.

In chapters 2, 3, 4, 5, I provide the building blocks that I used to develop my
analysis. In chapter 2, I go through the epidemiology, pathogenicity, and vaccinol-
ogy of invasive meningococcal disease (IMD). After giving a brief description of the
pathogen responsible for this infectious disease, i.e. Neisseria meningitidis, I expose
the most relevant epidemiological features of IMD related to the spreading on the
human population. Among these, I describe how the pathogen spreads, which are
the subjects most at risk and its geographical and temporal patterns. Then, I review
the vaccines developed to protect against IMD, in particular the MenB and MenC
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vaccines. I conclude the chapter with an overview of the two meningococcal vacci-
nation programmes, the MenC in Brazil and the MenB in England, that have been
the subject of my doctoral research.

In chapter 3, I provide a general description of the different types of vaccine ef-
fects. I then focus on the evaluation of vaccine impact, discussing the challenges
related to observational data and the traditional before-after designs used to evalu-
ate this quantity. A before-after design could be inadequate and could mask the true
impact when other events occur during the vaccination programme. In meningococ-
cal vaccine impact studies, external controls are sometimes used to adjust for trends
unrelated to vaccination, for example, IMD cases in non-vaccine-eligible age groups.
These controls could however be affected by indirect effects.

The novelty of the synthetic control approach is that the most suitable controls
are selected from a large set of controls based on the similarity with the target dis-
ease in the pre-intervention period. In chapter 4, I discuss the main statistical fea-
tures of the synthetic control model, applied to time series data in a Bayesian setting.
I describe the framework of state-space models that incorporate synthetic controls
through linear regression, and I give an overview of prior specifications and poste-
rior inference.

Chapter 5 deals with the synthetic control approach specifically developed to fit
disease count data. Besides, the chapter provides the main steps followed to inves-
tigate the validity of synthetic controls with meningococcal disease. In particular,
I describe: a negative control analysis with a comparison between synthetic con-
trol and time-trend models; vaccine impact estimates from the synthetic control in
comparison with time-trend and models used in previous publications; the most
influential meningococcal disease predictors; a sensitivity analysis; and alternative
methods to overcome the limitations of the synthetic control model with noisy and
sparse control time series.

These steps are put in practice in chapters 6 and 7, where my contribution to
the field can be found. In these two chapters, I follow the procedure described in
chapter 5 for two case studies of vaccination programmes in Brazil and England,
respectively. In both countries, I tested the synthetic control using several infectious
and non-infectious diseases and also MenB/MenC cases in non-vaccine-eligible age
groups as controls. I also discuss indirect effects and different spatial and temporal
aggregation of data to check whether it could improve vaccine impact estimates.

Chapter 8 consists of a final discussion where I highlight similarities and differ-
ences in the results among the two meningococcal programmes under study and I
summarize the main findings of my research project.
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Chapter 2

Meningococcal disease: from
epidemiology to vaccinology

In this chapter, I describe the main features of meningococcal disease relevant to
my doctoral research. The first section of the chapter deals with the biological and
epidemiological features of meningococcal disease. The second section, instead, is
an overview of the meningococcal disease vaccinology. I conclude the chapter pro-
viding relevant information about the two meningococcal vaccination programmes
that were the object of my research: the meningococcal C campaign in Brazil and the
meningococcal B campaign in England.

2.1 Biology and epidemiology of Neisseria Meningitidis

Neisseria meningitidis, also known as meningococcus, is an aerobic Gram-negative
diplococcus. Humans are the only natural reservoir of N. meningitidis, and it usually
colonizes the mucosa of the human upper respiratory tract of healthy individuals,
normally not causing any symptoms before clearance [8, 9, 10]. N. meningitidis can
eventually cross the nasopharyngeal epithelium and gain access to the bloodstream,
causing life-threatening diseases such as meningitis and sepsis. Disease incidence
is uncommon, 0.01–3.6 cases per 100,000 persons globally, but is fatal in 10–15% of
cases even if treated with antibiotics, and up to 20% of survivors suffer severe seque-
lae, including brain damage, deafness, kidney failure, and limb amputation [8, 11].
Disease is a ‘dead-end’ step in the life cycle of this bacterium with no evolutionary
benefit [12].

Meningococci are classified into serogroups, according to the immunologic re-
activity of their capsular polysaccharides [8]. Despite not all the strains exhibit a
capsule, the pathogenic strains are almost always encapsulated. Indeed, the cap-
sule guarantees their survival in blood, and consequently, it enhances resistance to
antibodies and phagocytosis [13]. Among the at least 13 different serogroups, only
serogroups A, B, C, W, X, and Y account for the majority of invasive disease cases [8,
14, 15].

Meningococci are traditionally classified by serologic typing systems based on
structural differences of capsule (serogroup), major outer membrane porin proteins
(serotype), other outer membrane proteins (serosubtype), and lipooligosaccharide
(immunotype)[8, 16]. Meningococcal isolates are clustered into clonal complexes
with molecular typing methods [12, 17, 18]. Each clonal complex is composed of a
group of strains that are supposed to share a common genetic origin [12]. A clonal
complex includes several lineages of highly related isolates (clones) that are identical
when tested by several typing methods [12].
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FIGURE 2.1: Neisseria meningitidis, gram-negative diplococci that
cause meningococcal meningitis [19].

Meningococcal carriage strains are highly heterogeneous as shown by molecu-
lar typing [12, 20, 21]. Moreover, meningococci are also capable of exchanging the
genetic material responsible for capsule production [8, 12]. They can switch from
serogroup B to C or vice versa, and this capsule switching may become a threat to
the wide-spread use of vaccines that provide serogroup-specific protection [8].

N. meningitidis lives exclusively in the human upper respiratory tract and the
nasopharynx is the site from which meningococci are spread through saliva and res-
piratory secretions to other individuals [8]. Meningococci overcome host defenses
and adhere selectively to non-ciliated columnar cells of the nasopharynx, starting
to multiply and colonize the site of mucosal attachment [8]. This attachment is
favored by their pili [22]. Besides, capsular polysaccharide, outer membrane pro-
teins, and lipopolysaccharide may also contribute to the attachment of N. meningi-
tidis to human cells [22]. In general, meningococcal acquisition is quite common
with about 10% of the population being asymptomatic carriers of meningococcus [9,
23]; although rates are variable by age and setting [10]. Carriage prevalence varies
with age, being low in infants and growing slowly up to approximately 10% in pre-
adolescents [23, 24]. A sharp peak is then observed at the age of 20 with values
around 25%. A subsequently decrease is observed in the elderly with percentages
around 10% (Figure 2.2) [23, 24].

In exceptional cases, within 1–10 days after colonization, meningococci can es-
cape their ecological niche, the oropharyngeal mucosa, cross the epithelium and en-
ter the bloodstream, thereby causing invasive meningococcal disease (IMD), most
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FIGURE 2.2: Meningococcal carriage prevalence plotted against age
of individuals. These data were obtained aggregating and fitting data
from several carriage studies in Europe (from Christensen et al. [24]).

commonly manifesting as meningitis or sepsis [14, 25]. This process involves up-
per respiratory epithelial invasion, endothelial cell damage, bloodstream and central
nervous system invasion, trigging of an inflammatory cascade [16] (Figure 2.3).

All age groups are susceptible to IMD. The incidence of IMD is highest among
children <1 year and adolescents/young adults [11]. Notably, the age distribution
of IMD incidence is markedly different from that of asymptomatic carriage (Figures
2.2 and 2.4).

Surveillance data show that incidence and prevalence of the meningococcal serogroups
causing invasive disease continually vary both geographically and temporally (Fig-
ure 2.5) [11, 26, 27]. MenB is endemic in many countries of the developed world. It is
the leading cause of IMD in North America, South America, Australia, North Africa,
and Europe, although a decreasing incidence trend is being observed [11, 28]. The
incidence and prevalence of MenB naturally fluctuate over time and are currently at
an all-time low; the reasons behind this decrease are unknown, among the hypoth-
esis the introduction of a smoking ban in public places in some countries may have
played a role [11].

Serogroup C is also common in the developed world, but the incidence of MenC
disease has significantly decreased, following the introduction of effective conjugate
vaccines against MenC [29]. Currently, it is reported as one of the most prevalent
serogroups in Brazil [30], China [31], Russia [32], India, and Niger/Nigeria [33, 34].
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FIGURE 2.3: Colonization of N. meningitidis in the nasopharynx. Af-
ter adhesion of N. meningitidis to the nasopharyngeal nonciliated ep-
ithelial cells, meningococci may be phagocytosed, thus pass through
epithelium and eventually enter the bloodstream. Here they release
endotoxins in the form of blebs. These outer-membrane vescicles
can cause severe infections and normally they induce an immune-
response. In case they are not killed by the immune-system, meningo-
cocci can reach the brain and cause meningitis. From Rosenstein et al

[8].
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Meningococcal serogroup A (MenA) historically accounted for 90% of meningococ-
cal disease cases in the meningitis belt [35]. Following mass vaccination campaigns
epidemics due to serogroup A have been eliminated [35].

FIGURE 2.4: Incidence of invasive meningococcal disease in England:
2009/2010 to 2018/2019 [36].

Serogroup W (MenW) has historically caused sporadic cases, but after a large
MenW outbreak associated with the Hajj pilgrimage in 2000-2002, other large epi-
demics have been recorded in Africa [37]. Since 2009 MenW cases have been increas-
ing in England and Wales, motivating the introduction of the quadrivalent Men-
ACWY conjugate vaccine in the UK’s immunisation programme, with a catch-up
campaign targeting 13-18 year-olds since August 2015 [38]. In Japan and Southern
Africa (Mozambique) meningococcal serogroup Y (MenY) [39], and meningococcal
serogroup W predominated [40], respectively.

Meningococcal disease incidence is strongly seasonal, with higher incidence dur-
ing the winter in both hemispheres [42]. A typical example of periodical oscillations
within a year period is the incidence of IMD caused by serogroups B and C in Eng-
land and Wales (Figure 2.6). At time scales longer than 1 year, IMD is considered
endemic, with sporadic emergence of single cases and occasional small outbreaks,
often associated with the emergence of hyper-virulent clones. In 2003, a virulent
serogroup B N. meningitidis sequence type 269 (ST269) clone emerged in the province
of Quebec, Canada [43, 44], which caused a prolonged increase in the incidence of
serogroup B invasive meningococcal disease [44].

Moreover, there are slow but consistent fluctuations in incidence as part of sec-
ular changes, with hyper-endemic periods that can last for decades. In the African
meningitis belt, several cyclical large epidemics have been reported, mostly caused
by serogroup A [45].

The mechanism driving these fluctuations remains poorly understood [47, 48].
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FIGURE 2.5: Serogroup distribution world-wide of Invasive
Meningococcal Disease in 2019 [41].

It has been observed that IMD peaks frequently coincide with or closely follow in-
creases in the incidence of influenza and other respiratory virus infections [49, 50, 51,
52], with elevated IMD risk when influenza activity is “epidemic” [47, 53]. This ob-
servation could represent a causal link between IMD and respiratory infections [47],
where the causal relationship could be that influenza weakens human immune de-
fenses [49]. It has also been shown that influenza can increase susceptibility to IMD
directly [54] or indirectly, facilitating meningococcal colonization [55, 56]. Besides,
this relationship could also represent shared susceptibility to seasonal environmen-
tal exposures or seasonal changes in human behavior (e.g., clustering together of
individuals indoors due to cold winter weather, holiday gatherings, etc.) [47].

2.2 Meningococcal vaccines

Vaccination is the only effective prevention measure against IMD [8, 11, 15]. There
are different global prevention strategies. Vaccination is implemented either through
National Immunisation Programmes (NIPs), or vaccinating only high-risk popula-
tions (e.g. conjugate MenACWY in India) or for outbreak control only (e.g. MenB
vaccine in Canada; polysaccharide MenA and MenAC vaccines in Russia; polysac-
charide vaccines in the African meningitis belt) [11]. To maximize coverage, it is
suggested to include vaccination via NIPs; this decision is usually determined by
cost-effectiveness analyses [57].

There are three types of vaccines: 1) polysaccharide; 2) conjugate; and 3) protein.
In brief, polysaccharide vaccines are composed of pure bacterial cell wall polysac-
charide, whereas in conjugate vaccines the capsular polysaccharide is conjugated
with a protein carrier (e.g., diphtheria or tetanus toxoids) [11]. Compared to sim-
ple polysaccharides vaccines, the conjugation with a protein carrier elicits a longer
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FIGURE 2.6: Laboratory confirmed IMD cases in England and Wales
[46].

protection [58] and mucosal immunity. The latter prevents meningococcal coloniza-
tion and carriage acquisition, thus potentially inducing indirect protection of non-
vaccinated individuals at the population level if the vaccine coverage is high enough
[11].

Conjugate vaccines have proved to be successful in preventing meningococcal
disease worldwide. The MenC conjugate vaccine has been implemented into the
NIP in the UK in 1998 [59], significantly reducing both the incidence and carriage of
MenC [60]. Another successful example is the introduction of a monovalent MenA
conjugate vaccine in Africa, which reduced invasive disease and carrier rates by
inducing direct and indirect (herd) protection, respectively [61, 62, 63].

If the use of a polysaccharide or conjugate vaccine is not possible, protein-based
vaccines are implemented, which include a particular protein of the pathogen [11].
The most relevant example is MenB, where a protein-polysaccharide conjugate vac-
cine against serogroup B does not exist. Indeed, the capsular polysaccharide has
the same composition of sialic acids found on human tissues, in particular in neu-
ronal cells [64], and thus such vaccines would be poorly immunogenic and could
potentially induce an autoimmune response [65].

The first approach that has been adopted to develop MenB vaccines was the use
of outer membrane vesicles (OMV). The OMVs contain several molecules, of which
the PorA protein (a porin) is considered responsible for generating immunogenicity
[67, 68]. OMV-based vaccines have been successfully applied to contain local out-
breaks caused by meningococci as in the 1980s in Norway, Cuba, Brazil, France, or
in the 2004-2009 epidemic in New Zealand [69].

Following the publication of the first meningococcal genome, reverse vaccinol-
ogy was used to develop the first vaccine broadly covering for MenB disease [11, 70].
This bottom-up genomic approach was used to deduct the putative bacterial surface-
exposed proteins, i.e. the antigens that could be candidates to compose the vaccine.
Starting from the complete genome sequence of a virulent strain of serogroup B N.
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FIGURE 2.7: Timeline of some relevant achiements in meningococcal
disease control and prevention. From Villena et al [66].

meningitidis, about 600 putative surface-exposed proteins have been predicted us-
ing bioinformatics [71]. Selection of the vaccine candidates continued through vari-
ous steps that consisted of cloning and expression in E. coli, immunization of mice,
confirmation of surface exposure, and bactericidal activity. Finally three proteins
were selected as antigens for vaccine development [71]: (i) factor H-binding protein
(fHbp); (ii) Neisserial adhesin A (NadA), and (iii) Neisseria Heparin-Binding Anti-
gen (NHBA). In addition, the vaccine includes the OMV expressing PorA from the
New Zealand strain, PorA P1.4 [70, 71, 72].

Two broadly protective MenB vaccines have been developed using this tech-
nique, Bexsero (GSK) and Trumenba (Pfizer), both licensed in the USA for persons
between 10 and 25 years of age [73, 74]. The 4CMenB vaccine (Bexsero) was also
licensed in Europe, Canada, Australia, and elsewhere for individuals from 2 months
of age and older [75, 76, 77]. Besides, it has been introduced in the NIP started in the
UK in September 2015.

Figure 2.7 summarizes the relevant achievements in meningococcal disease con-
trol and prevention [66].

2.2.1 Meningococcal C campaign in Brazil

Meningococcal disease is endemic in Brazil and sporadic outbreaks have been recorded
[78], as for the epidemic of serogroup C disease occurred in the Salvador municipal-
ity in 2010 [79]. In Brazil, notification rates of IMD caused by N. meningitidis as high
as 7.0/100,000 inhabitants were reported for children under two years old during
2009 and 2010 [79, 80]. Between 2002 and 2005, a significant shift from serogroup B,
which used to be the most frequent isolate in invasive meningococcal cases (67%), to
serogroup C was observed. Thereafter, the circulation of serogroup C increased [78,
79].

The increasing incidence of serogroup C, coupled with recurring outbreaks in
different regions [81, 82, 83], prompted to the introduction of meningococcal C con-
jugate vaccine in the NIP in November 2010 [78, 79]. Brazil was the first country
in Latin America to introduce this vaccine in its NIP. The recommended vaccination
schedule consisted of priming doses at three and five months, with a booster dose at
12-15 months of age [78, 79, 84].
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Brazil has 27 states which belong to the following five regions: North (seven
states), Northeast (nine states), Southeast (four states), South (three states), and Center-
West (four states). The incidence and serogroup circulation of IMD in all the popu-
lations varies across the Brazilian regions. Figure 2.8 shows meningococcal C inci-
dence at a regional level for less than five years old infants during the pre-vaccination
period (January 2007 - October 2010). The Southeast region accounts for the highest
incidence (1.04 cases per 100,000 population), followed by the Center-west region
(0.64 cases per 100,000). The lowest incidence is reported in the North region. Look-
ing at the sub-regional level, São Paulo state, in the Southeast region, has the highest
incidence, being the most populated state in Brazil (Figure C.1 in Appendix C shows
the incidence of MenC at a state level).

Also in terms of coverage, the country showed heterogeneous responses: three
Brazilian regions reached the target vaccination coverage (>95%) in the first year
following programme implementation (2011) [78]. The Northeast region achieved
this in 2013; the North region achieved vaccination coverage ranging between 80%
and 90% during the study period 2011-2013 [78]. These sub-national differences
reflect variations in the implementation of health policies, such as immunisation
programmes, as a consequence of regional development and a decentralized health
system [78]. Besides, vaccine coverage, quality of disease surveillance as well as dis-
ease burden influenced by population density and presence of urban clusters could
affect the impact of the vaccination programmes at a regional level [78].

Successful reductions of MenC cases following the vaccine introduction have
been shown both at a national and regional level [78, 79]. Observed MenC reductions
were mostly due to the direct effect of vaccination [79]. To increase MenC impact, in-
cluding a possible indirect effect on non-vaccinated groups, a gradual introduction
of MenC vaccination targeting adolescents has been introduced starting in 2017 [79].

FIGURE 2.8: Meningococcal C incidence per 100,000 population in
infants <5 years old at a regional level in Brazil before vaccine intro-

duction (Jan 2007 - Oct 2010).
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2.2.2 Meningococcal B campaign in England

In Europe, meningococcal group B is the most prevalent serogroup among child-
hood meningococcal disease [85]. Indeed, the highest burden of MenB disease oc-
curs during the first 3 years of life [85, 86].

During the past decades, the incidence of MenB in the UK has sharply declined
for still unknown reasons (Figure 2.4) [11], among these a possible explanation could
be the introduction of a smoking ban in indoor places [11, 85]. In the UK, polysaccharide-
protein conjugate vaccines have been effective in preventing meningococcal disease
caused by serogroups A, C, W, and Y, thanks to both to the direct and indirect pro-
tection conferred through prevention of carriage acquisition among vaccinated ado-
lescents [85, 87]. As discussed in section 2.2, the development of such a vaccine
against MenB is critical given the similarities of MenB polysaccharide capsules with
polysialic acid on human neuronal cells cite. A protein-based multicomponent vac-
cine against MenB (4CMenB, Bexsero) has been licensed in Europe.

For Bexsero, the Meningococcal Antigen Typing System (MATS) has been specif-
ically developed to predict strain coverage by 4CMenB [88, 89]. The MATS allows us
to determine whether a certain MenB strain expresses a Bexsero antigen with a min-
imum degree to be correlated to bactericidal killing. It is sufficient the expression of
at least one Bexsero antigen for a strain to be killed. The MATS estimated 73 % strain
coverage in England and Wales prior to the introduction of 4CMenB [85, 90].

In September 2015, the UK became the first country to offer 4CMenB to all infants
[85]. The vaccine is offered to infants alongside their other routine vaccinations at 2
months, followed by a second dose at 4 months, and a booster dose at 12 months. At
the start of the programme, a catch-up vaccination was also offered to children at 12
and 16 weeks of age. From the beginning, high vaccine uptake was observed nation-
ally [85]. Besides, England relies on a near real-time enhanced national surveillance
for all laboratory-confirmed cases, which is facilitated by the provision of a single
national meningococcal reference unit [85].

A first study providing real-world evidence of the effectiveness of 4CMenB in
preventing MenB disease in England has been published 10 months after the pro-
gramme began [91]. Then, a second study confirmed these results 3 years after the
NIP was introduced [85]. In this latter study, it has been observed that the booster
at 12-months of age protected against MenB for at least 2 years, which is reassuring
towards the initial concerns about swift waning levels of antibodies [92]. To be high-
lighted, though, that unlike the polysaccharide-protein conjugate vaccines, 4CMenB
does not have shown evidence of indirect protection on the carriage in immunized
adolescents [85, 93].
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Chapter 3

Evaluating the impact of
vaccination programmes

Once a new vaccine is introduced in a national immunization program, it becomes
critical to evaluate its effectiveness and public health impact. Post-licensure surveil-
lance plays a key role in detecting vaccine effectiveness of various schedules, dura-
tion of protection, indirect effects, health disparities, and microbial adaptation while
sustaining awareness and identifying potential issues in the implementation of the
programme [3, 94, 95]. Post-licensure studies are mainly observational since the real-
world effects of a vaccine administered at a population level are difficult to measure
in an experimental design [3]. Besides, experimental designs require to administer a
placebo to a part of the population, an unethical practice once a vaccine has proven
efficacy in the pre-licensure stage [96].

Overall, post-licensure vaccine studies use diverging terms to describe different
types of effect [3]. First of all, I aim to illustrate the different effects of vaccination,
according to Halloran et al. (section 3.1) [1]. Vaccine effectiveness evaluation comes
with several challenges in terms of potential biases which I discuss in the second
part of section 3.1. In section 3.2, I introduce the three major classes of observational
study designs to measure vaccine effects: cohort, case-control, and ecological studies
[96]. In sections 3.3 and 3.4, I focus on vaccine impact both in terms of study designs
as well as the critical issues when evaluating this quantity. Finally, in section 3.5, I
discuss the methods applied to estimate the impact of meningococcal vaccines, with
examples from immunization programmes implemented worldwide.

3.1 Vaccine effectiveness and impact

The general formula of vaccine effectiveness is one minus some measure of relative
risk (RR) [1]:

VE = 1− RR (3.1)

The relative risk is the ratio between the risk that a certain event occurs in an exposed
group over the ratio that the same event happens in an unexposed group. In this set-
ting, the two groups are the vaccinated and unvaccinated individuals respectively,
while the event of interest could be the clinical observation of interest or sampling of
pathogens in asymptomatic individuals. Depending on the population under study,
vaccine effectiveness can be defined differently, as reported in Figure 3.1 [1].

The direct effectiveness of a vaccine is measured by comparing vaccinated and
unvaccinated individuals belonging to the same population and exposed to the same
vaccination programme to cancel the programme-specific effect [1, 97, 98, 99].
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FIGURE 3.1: Schematical representation of groups and population to
be compared to compute the different effects of vaccination. Figure

rearranged from Halloran et al [1].

The indirect effectiveness is the population effects of widespread vaccination that
is able to reduce transmission and lead to herd immunity [3]. Unvaccinated individ-
uals may thus benefit from those who are vaccinated [1, 95].

The total effectiveness is the difference in outcomes between vaccinated individu-
als in a population with a vaccination programme compared to unvaccinated indi-
viduals without a vaccination programme. Here, both direct and indirect effects are
taken into account.

The overall effectiveness of vaccination compares the average outcomes in the vac-
cinated communities with those of the unvaccinated communities [1].

The impact of vaccination is the overall effectiveness of a vaccination programme
[3]. I will use the terms "impact" and "overall effect" of a vaccination programme
interchangeably [3, 95].

The vaccine effectiveness can be evaluated on single individuals, communities,
or large populations. Here, I will focus on effects at a population level, that are
usually evaluated through observational studies.

In general, studies measuring the effectiveness of vaccination programmes rely
on three strong assumptions: 1) the individuals/populations being compared must
be alike in every way that is relevant for transmission; 2) the probability to be ex-
posed to the infection must be identical in the two groups: vaccinated and unvacci-
nated; and 3) the probability of being vaccinated must be independent of the prob-
ability of developing the disease [3]. However, these assumptions are difficult to
ensure in vaccine observational studies at a population level. Several confounding
factors could either overestimate or underestimate the effect of vaccination, if they
are not properly taken into account.

Indeed, the risk of exposure to the infection, the risk of getting clinically ill if in-
fected, or even the tendency to seek care if ill could introduce a difference between
those who are vaccinated and those unvaccinated other than the vaccine [96]. Be-
sides, other sources of bias could be changes in case detection or surveillance meth-
ods, the presence of a concomitant event, or even secular trends in baseline transmis-
sion or cyclical variations of the target disease [100]. These latter would likely alter
the disease’s baseline risk before and after the vaccine introduction. On a large scale,
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also population characteristics, such as population growth, immigration, changes in
age distribution, and changes in risk factors for the disease of interest are likely to
be different [3].

3.2 Observational study designs to estimate vaccine effects

In this section, I will give an overview of the observational study designs that are
typically applied to evaluate vaccine effects. The three major classes of observational
study design are cohort, case-control, and ecological studies. Here, by ecological
studies, I will refer to time-trend designs, following the approach of Lipsitch et al.
[96].

Cohort studies are prospective studies, with two groups followed over a period
of time (i.e., one group is vaccinated and the other has received a placebo, and vacci-
nation status is known). Cohort studies are powerful because they have the advan-
tage of being tailored to collect specific exposure data and may be more complete.
Among the disadvantages, there is the need for a large sample size.

Case-control studies are instead prospective studies, again the vaccination sta-
tus is known and the two groups represent vaccinated and unvaccinated people,
respectively. To avoid potential biases, the population should be the same both for
the cases and the controls (e.g., same geographical area, same age, and sex distri-
bution, etc..). This study is at risk for selection bias (i.e., if proper randomization is
not achieved, the sample obtained is not representative of the population intended
to be analyzed), with consequent non-comparability between the cases and controls.
Negative controls and test-negative designs could address these forms of bias [96].

Time-trend designs are a form of longitudinal ecological study, where the data
are collected at a population level. In vaccine impact studies, the vaccinated pop-
ulation is compared with a population without the vaccination programme. Based
on the control population, time-trend studies can be in the form of 1) before-after
comparison or 2) controlled designs (Figure 3.2) [101, 102].

Both case-control and cohort studies are usually employed to measure the direct
effectiveness of a vaccine, while time-trend studies address the impact or overall
effectiveness of vaccination programmes [96].

3.3 Vaccine impact

The impact of a vaccination programme answers the critical question: what would
have happened in the absence of vaccination? In the majority of applications, the
vaccine impact is intended as the overall reduction in disease burden, usually com-
puted by comparing the population with vaccination programme to a reference pop-
ulation not subject to the programme [3]. This reference population could be either
the population of interest before vaccination or an external population not influ-
enced by the vaccination programme. The formula defining the vaccine impact is:

VI = 1− IRR (3.2)

where IRR is the incidence rate ratio, i.e. the ratio between the number of observed
cases in the vaccinated population over the number of predicted cases in the unvac-
cinated population. As highlighted in section 2.1, this measure corresponds to the
overall effectiveness as defined by Halloran et al. [1].
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Ecological studies are typically employed in vaccine impact studies at a popula-
tion level, specifically, time-trend studies [96]. In general, time-trend studies require
to make numerous decisions a priori about how to model the data. Among these de-
cisions, I would include selecting which and how many years to analyze in the ’pre’
and ’post’ vaccine periods, whether to exclude data from the vaccine introduction
period, how to control for trends unrelated to the vaccine (including seasonality),
which modeling strategy to employ (i.e., a before-after comparison or a controlled
design) [103]. For this reason, each methodology stands on its own assumptions and
in general, it is always preferable to compare different methods together to increase
the reliability of the results and to help in discovering several sources of biases [103].
The two classes of methods, before-after comparison, and controlled design, are pre-
sented below.

3.3.1 Before-after comparison

In a before-after comparison, the same population is compared across time, i.e. be-
fore and after the intervention. In this case, the pre-period acts as a control. This kind
of design is not subjected to between-group differences that could lead to selection
bias or unmeasured confounders [102]. Indeed, the population characteristics tend
to change only gradually over time and confounding is rarely an issue [101, 102]. Be-
sides, this approach models the underlying trend, thus controlling for within-group
characteristics, secular trends, and random fluctuations [102].

This method, however, cannot exclude time-varying confounders, e.g. other
events or co-interventions that could affect the outcome [102]. Besides, in most cases,
the trend is assumed to continue linearly after the intervention, and this assumption
is rarely verified with consequent underestimation or overestimation of vaccine im-
pact.

Time-trend designs have been widely used to assess the impact of vaccination
programmes, such as the decline in pneumonia hospitalizations [4], the impact of
meningococcal C campaign in Brazil [79], or the effect of rotavirus vaccination on
death from childhood diarrhea [5].

3.3.2 Controlled design

In a controlled design, the same outcome in the target group is compared with an ex-
ternal control. Here, the target group and a control group are compared at the same
time points, thus avoiding the influence of time-varying factors that could hamper a
correct assessment of impact estimates [102].

Following Lipsitch et al., a negative-control design could effectively detect un-
measured confounding and bias in an observational study [103, 104]. Here, the ideal
control should be affected by the same set of causal relations as the target, but should
not be affected by the exposure of interest, i.e. the vaccination programme [103, 104].

In general, however, choosing the appropriate control group is challenging for
several reasons. First, it is unclear how to find a control group that effectively shares
the same set of causal factors with the target group, since these are usually unknown.
Besides, differences between the target and the control could introduce other sources
of bias [102, 103]. Or even, the control group could be partially affected by the inter-
vention, thus the overall effect of the intervention would be underestimated.

Recently, data-driven methods, i.e. the synthetic control model, have been devel-
oped to overcome the possible biases due to arbitrarily selecting controls [6, 7, 105].
I will discuss in deep the synthetic control model in chapter 4.
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FIGURE 3.2: Schematic representation of time-trend designs. On the
left, a before-after comparison where the control group is the popula-
tion before the intervention. The impact of vaccination is the differ-
ence between the same population before and after the intervention.
On the right, a controlled design, with an external control being com-
pared with the target of interest. The impact of vaccination is the

difference between the two curves in the post-intervention period.

3.4 Challenges in evaluating vaccine impact

Few studies have been carried out about the public health impact of long-standing
vaccination programmes at the population level, despite being a causal quantity of
policy relevance [3, 95, 96]. Among the challenges encountered, there is the need
for time-series of reliable historical data on case notifications, hospitalizations, or on
cause-specific mortality [95, 106].

Despite long-term datasets could lack in reporting fidelity (e.g., national public
archives undergo substantial modifications in data collection and reporting over the
years), they however represent a unique and valuable source of information. In-
deed, with long-term data, statistical associations between climate variations and
the incidence and dynamics of infectious diseases can be investigated and allow to
take into account secular trends in birth rates or vaccination coverages which could
influence shifts in dynamical patterns [106]. Also, having long historical time-series
is helpful to disentangle the vaccine’s effects by other unexplained factors, when
immunization programmes are implemented.

Finally, there is also a lack of standardized methods to identify the appropriate
control groups [95, 104]. Ideally, the two populations being compared should be
the most possible alike, and the only difference should be given by the vaccine. In
practice, it is challenging to find such a control population.

3.5 Assessing the impact of meningococcal vaccines

Evaluating the impact of meningococcal vaccines is critical due to the low disease
incidence and to IMD unexplained trends. Indeed, several years of observation
may be required to obtain statistically significant estimates, during which time nat-
ural fluctuations in IMD incidence unrelated to vaccination are likely to occur. This
phenomenon inevitably introduces risks of biased estimates and misinterpretation
about causal effects [104].

Besides, the peculiar age-and-time pattern of IMD and its relation to geograph-
ical locations rely upon the interplay of several possible causative effects such as
bacterial transmissibility and virulence, immune system maturation and senescence,
level and breadth of mucosal and systemic immunity, frequency and type of person-
to-person contacts, social habits like smoking and kissing, and environmental factors
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[12, 15, 107]. Explicitly taking into account all these causal factors is extremely chal-
lenging, even with sophisticated mathematical models [97, 108, 109, 110, 111, 112,
113].

Finally, also underreporting of IMD cases complicates the efforts to understand
its occurrence and burden [114]. In some countries, a lack of specificity regarding
the serogroup distribution is present (i.e., invasive bacterial disease cases are often
coded as "meningitis due to unspecified bacterium" or "unidentified serogroup"),
with consequent difficulties in understanding the chronological trend of the different
serogroups [78, 114].

In general, the majority of the studies evaluating the impact of meningococcal
vaccination rely on a before-and-after design [100]. For example, the reduction of
the incidence of serogroup C IMD in Canada in children aged 1–17 years, following
the introduction of the vaccine programme, was computed comparing the disease
rates pre- and post-intervention [115]. Similarly, a study conducted in Puglia, Italy,
evaluated MenC impact by comparing the incidence rates before and after the vac-
cination [114]. Among the possible limitations of this approach, there is the lack of
adjusting for unexplained trends if other events occur at the same time as the vacci-
nation.

To account for changes unrelated to the meningococcal vaccination, IMD cases
in non-vaccine-eligible age groups are used as controls in a few studies. Among the
examples, a study assessing the impact of the meningococcal group B vaccine imple-
mented in England in 2015, with MenB incidence in non-vaccine-eligible children of
<5 years of age used to control for unexplained trends [85, 91]. A similar approach
was followed to compute the impact of the MenB vaccine in one region of Quebec,
Canada [44].

Selecting IMD cases in unvaccinated age groups as controls guarantees that they
probably share most of the causal factors with the target disease vaccinated age
groups. However, if the vaccination provides indirect protection to the unvaccinated
population, as for conjugate vaccines (chapter 2, section 2.2), this control group
would eventually show reduced disease incidence and impact estimates would be
no longer reliable. Nevertheless, this would likely happen if the vaccination sched-
ule targets also the adolescents, the segment of the population that usually harbors
the highest rates of meningococcal carriage [24, 46, 79]. As a general statement,
however, indirect effects cannot be excluded and care is required when evaluating
the different methodologies to assess the effect of the vaccination programmes.

3.6 Conclusions

In this chapter, I have reviewed the various definitions of the effects of a vaccination
programme, focusing on vaccine impact evaluation. I briefly discussed the main ob-
servational study designs, i.e. cohort, case-control, and time-trend studies, in terms
of assumptions and potential biases. Time-trend studies are traditionally employed
to evaluate the overall effect of a vaccination programme at a population-level, ei-
ther with a pre-post comparison or with external controls.

In meningococcal studies of vaccine impact, the pre-post comparison is typically
applied, despite the potential issues when other events occur at the same time as
the intervention. To control for trends unrelated to the vaccination, IMD cases in
non-vaccine-eligible age groups are used as controls in a few studies. While this
approach ensures that such controls share the same set of causal factors as the target
disease, potential biases could be introduced if herd immunity occurs.
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In the next chapter, I will discuss the synthetic control method, which avoids the
selection of the controls a priori.
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Chapter 4

The Synthetic Control model

In this chapter, I provide an introduction to how synthetic controls can be applied
to evaluate the causal impact of an intervention. In section 4.1, I give a general
overview of synthetic controls. From the second part of section 4.1 onwards, I then
follow the approach developed by Brodersen et al. in a Bayesian setting, where the
outcome is a time series and the relevant control variables are chosen via Bayesian
variable selection [105].

Structural time series models are employed to build the counterfactual, incorpo-
rating both the information from the target time series in the pre-intervention and
from the control time series in the pre- and post-intervention periods. Structural
time series models are described in detail in section 4.2, focusing on a specific model
with trend, seasonal, and regression components. Along this section, I discuss the
Bayesian variable selection approach, the posterior inference, and the prediction of
the causal impact. In subsection 4.2.1, I present the spike-and-slab prior used to
select the most relevant control time series.

4.1 Introduction to synthetic controls

Synthetic controls have been developed to evaluate the causal impact of an interven-
tion [6, 105, 116]. In several applications, as post-licensure vaccine studies, data are
observational and several unobserved confoundings could hamper a reliable assess-
ment of the true impact of interventions (chapter 3, section 3.1) [104].

To improve the reliability of impact assessment, external controls can be em-
ployed to account for the presence of (likely unobserved) confounders and of un-
predictable, non-vaccine-related temporal trends in disease incidence [6, 116]. There
is however some degree of ambiguity about how to choose these controls, and of-
ten choices are made based on subjective measures of affinity between controls and
outcome [6].

Data-driven methods, such as synthetic controls, have been introduced to build
adequate control groups and to overcome the limitations of arbitrarily selected con-
trols [6]. In the formulation by Abadie et al., the synthetic control is a weighted
average of several control units combined together to provide a more robust com-
parison with the outcome of interest [6]. The rationale is to find the weights for the
control units such that the weighted average of the control’s outcomes best predicts
the outcome of interest in the pre-intervention period [6, 116]. The advantage of such
an approach is that it does not require any insight into post-intervention outcomes.
Consequently, decisions on study designs are made without any knowledge about
how those decisions affect the conclusions of the study [6, 117].

A further contribution to the topic has been proposed by Brodersen et al. [105] in
a Bayesian setting, where the outcome variable is a time series. In the present setting,



22 Chapter 4. The Synthetic Control model

v
!!"#$ !"

%"#$ %"

… …

FIGURE 4.1: Diagram of a state space model readjusted by Shumway
et al. [118]. In this figure, αt is called the state process, while yt is the
observation equation. The dependence among observations is gener-

ated by the states.

the causal impact is the difference between the observed target time series and the
time series that would have been observed in the absence of the intervention, i.e. the
counterfactual [105].

In the upcoming sections, I will follow the approach by Brodersen et al. [105].
Three sources of information are required to build adequate synthetic controls. First,
the target time-series in the pre-intervention period [105]. Secondly, the control time-
series that are predictive of the target time-series in the pre-intervention period. The
selection of the relevant set of control time series is done in the pre-intervention pe-
riod, while their value for predicting the counterfactual is in their post-intervention
temporal evolution [105].

If the control time series are not affected by the intervention, it is often reasonable
to assume the relationship between the target and the control series that existed prior
to the intervention to continue afterward. Finally, the third source of information lies
in the prior knowledge about the model parameters, given the Bayesian framework
[105].

These three sources of information are then combined using a state-space time-
series model, also defined as structural time series models [105, 119]. In section 4.2,
I provide the technical details on structural time series models.

4.2 Bayesian structural time-series models

Structural time-series models are state-space models for time series data [105]. These
state-space models are characterized by a latent process αt, called the state process,
and by an observation equation, with yt being the observations. The state process is
assumed to be a Markov process, i.e. future and past are independent conditional on
the present, and the observations are independent given the states. The dependence
among observations is thus generated by the states (Figure 4.1) [118, 120].
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Given yt an observation at time t, a structural time-series model can be defined in
terms of two equations that link the observation yt to a vector of latent state variables
αt:

yt = ZT
t αt + εt εt ∼ N(0, σ2

t ) (4.1)

αt+1 = Ttαt + Rtηt ηt ∼ N(0, Qt) (4.2)

Equation (4.1) is the observation equation, which links the observed data yt with
the unobserved latent space αt; equation (4.2) is the state equation and it defines how
the latent state evolves over time. The model matrices Zt, Tt, and Rt typically contain
a mix of known values (often 0 and 1), and unknown parameters [119]. The transi-
tion matrix Tt is square, but Rt can be rectangular if a portion of the state transition
is deterministic [119]. In section A1 in Appendix A, I provide further details about
state space models, specifically the Kalman filter and smoother used to characterize
the evolution of the state sequence α.

Ideally, a statistical model should include all relevant information that might
help predict the outcome of interest, such as local trends, seasonality, and time-
varying factors, these latter accounting for the effects of other unobserved causes
otherwise unaccounted for by the model [121]. State space models allow us to flex-
ibly incorporate these multiple sources of variations, with time-varying factors in-
cluded through the control time series [105].

To avoid a rigid commitment to a fixed set of controls, Bayesian variable selec-
tion is employed to choose from among a large set of candidate control variables a
priori [105] (left panel in Figure 4.2). With many control variables, each with a fair
probability of being irrelevant to modeling the outcome variable, one can give each
coefficient a prior distribution with a peak at zero and a long tail [121]. This says
that each variable is probably unimportant, but if it has predictive power, it could
be large [121]. In practice, a spike-and-slab prior is placed over the coefficients [105,
119, 122]. Spike-and-slab prior combines point mass at zero (the "spike"), for an un-
known subset of zero coefficients, to allow shrinkage of small effects to zero with
a weakly informative distribution on the complementary set of nonzero coefficients
(the "slab") to prevent shrinkage of large effects [105, 119, 122]. The "slab" is usually
not completely flat, but rather a Gaussian with a large variance [105, 123].

Once the control’s selection is performed, it becomes straightforward to compute
the counterfactual time series [105]. A schematic example of the procedure is given
in Figure 4.2, with regression, seasonal and random changes components added to-
gether and fitted to the pre-intervention period. Their value is projected into the
post-intervention period to build the counterfactual. The causal impact is then the
difference between the counterfactual and the observed outcome during the post-
intervention period [105].

Example in Figure 4.2, with an additional trend component, can be written in
state-space form as [119]:

yt = µt + τt + βTxt + εt

µt = µt−1 + ut

τt = −
S−1

∑
s=1

τt−s + ωt

(4.3)

where ηt = (ut, ωt) contains independent components of Gaussian random noise.
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1 2 3

pre-period post-period

FIGURE 4.2: Schematic example of the synthetic control method.
Three key components: 1) the most important predictors combined
into a synthetic control, and 2) a seasonal component and 3) random
changes are fitted to the outcome of interest in the pre-intervention
period and then projected into the post-intervention period to build

the counterfactual.

The current level of the trend is µt which induces temporal correlation in the out-
come [116, 119]; τt represents the seasonal component, with a set of S dummy vari-
ables with dynamic coefficients constrained to have zero expectation over a full cycle
of S seasons [119] and the error component εt accounts for unexplained variability
[116, 119].

Control series are included through linear regression, in state-space form as βTxt.
The value of the vector xt depends on the context: it could represent a set of search
queries in economy [119], or a set of diseases in epidemiology [7]. The regression
component allows us to obtain counterfactual predictions by building a synthetic
control based on a combination of controls not affected by the intervention. The
Bayesian variable selection step is obtained by placing a spike-and-slab prior over
the coefficients β.

The state-components are assembled independently, with each component pro-
viding an additive contribution to yt. The model of equation (4.3) is fitted to the
observed data y1:n in the pre-intervention period, treating the counterfactuals as un-
observed random variables [116].

Let φ be the set of all model parameters and α the full state sequence, a prior dis-
tribution p(φ) is specified on the model parameters as well as a distribution p(α0|θ)
on the initial state values. Posterior inference can be carried out as follows: draws of
the model parameters φ and the state vector α are simulated given the observed data
y1:n in the pre-intervention period. Then, posterior simulations are used to simulate
from the posterior predictive distribution p(ȳn+1:m|y1:n, x1:m), over the counterfac-
tual time series ȳn+1, ..., ȳm [105]. This step can be done using a Markov chain Monte
Carlo (MCMC) sampling scheme which involves only Gibbs sampling steps (details
in Appendix A, sections A.2 and A.3)[105, 116, 119, 123].
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FIGURE 4.3: The observed target y1:n = (y1, .., yn) is modeled as the
result of a latent plus Gaussian observation noise with error standard
deviation σy. The state component αt includes a local level µt, and
a set of control time-series xt, scaled by regression coefficients βδ.
State components are assumed to evolve according to independent
Gaussian random walks with standard deviation σµ (the conditional-
dependence arrows are shown for the first time point only) [105]. Of
principal interest is the posterior predictive density over the unob-
served counterfactual responses ȳn+1, ..., ȳm. Subtracting these from
the actual observed data yn+1, ..., ym yields a probability density over
the temporal evolution of causal impact [105].This figure has been

readjusted by Brodersen et al. [105].

The posterior predictive distribution is conditional on the observed data, in par-
ticular on the target time series before the intervention and on the control time series
before and after the intervention. The distribution is not conditioned on the estima-
tion of parameters, or the inclusion or exclusion of covariates, all of which have been
integrated out. In this way, an arbitrary selection is avoided [105]. The posterior pre-
dictive samples are employed to compute the posterior distribution of the pointwise
impact yt − ȳt for each t = n+1,...,m [105].

Figure 4.3 illustrates this process, considering only the trend and regression com-
ponents.

4.2.1 Additional information on the spike-and-slab prior

Let δ = (δ1, .., δj), where δj = 1 if β j 6= 0 and δj = 0 otherwise; βδ denotes the
nonzero elements of vector β [105, 119]. A spike-and-slab prior (Figure 4.4) is then
written as:

p(δ, β,
1
σ2

ε

) = p(δ)p(σ2
ε |δ)p(βδ|δ, σ2

ε ) (4.4)

The marginal distribution p(δ) is called the "spike" and it places positive proba-
bility mass at zero. Usually, an independent Bernoulli prior is applied:

δ ∼
K

∏
k=1

πδk
k (1− πk)

1−δk (4.5)
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FIGURE 4.4: Representation of a spike-and-slab distribution, with a
discrete mixture (π=0.5) of a Dirac delta (the spike) and a Cauchy

distribution (the slab). Figure from [126].

For simplicity, all the πk are assumed to be the same value π = 0.5, i.e. equal prob-
ability over all the control time-series. This value can be changed if a control time
series is thought to be more predictive than others.

The slab component is modeled as a conjugate normal-inverse Gamma distribu-
tion, with prior parameters only very weakly informative [105, 119]:

βδ|σ2
ε ∼ N(bδ, σ2

ε (Σ
−1
δ )−1), (4.6)

1
σ2

ε

∼ Ga(
νε

2
,

sε

2
), (4.7)

Usually, the vector of prior means b is assumed to be zero. The prior parameters
νε and sε represent the number of relevant observations and the expected R2 from
the regression, respectively.

The choice of Σ−1 is tricky: it could be set to our prior beliefs about the inter-
action between the β j, however, this could be implausible when dealing with many
features. Conventionally, one option is to use a Zellner prior [105, 119, 124, 125], so
Σ−1 ∼ XTX, with X the design matrix.

Setting Σ−1 = g
n XTX gives the g observations worth of information on the prior

mean b (recall that the likelihood for an ordinary regression model has information
matrix XTX/σ2

ε , i.e. it is a measure of how much information is known about a
parameter θ) [105, 119]. If X variables are collinear, however, the g-prior becomes
improper. To guarantee full rank, XTX is averaged with its diagonal, obtaining:

Σ−1 = g
n wXTX + (1− w)diag(XTX), with default values g=1 and w=1/2 [105,

119].

4.3 Conclusions

In this chapter, I have illustrated the principles of the synthetic control method, fo-
cusing on the application developed for time-series data. This approach relies on
structural time series models, which I described in section 4.2. Along this section,
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I have presented an example with a trend, seasonal, and regression components. I
have discussed the rationale behind variable selection, which allows us to choose
among a large set of control variables. This process is done by placing a spike-and-
slab prior over the coefficients of the control variables (details in subsection 4.2.1).

I have also presented the main features of posterior inference, though at a general
level. Further details on posterior definitions and MCMC scheme are available in
appendix A, sections A.2 and A.3. In chapter 5, I will describe how synthetic controls
can be applied to meningococcal vaccines, defining the main building blocks of my
research project.
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Chapter 5

Meningococcal vaccine impact
evaluation

In this chapter, I describe the methods applied in my research. In section 5.1, I
present the synthetic control approach developed to fit disease incidence data, specif-
ically meningococcal incidence. In section 5.2, I discuss the control time series em-
ployed in my research, including a description of how their importance is evaluated
in the model. In section 5.3, I present the features of a simple time-trend model to be
compared with the synthetic control.

Section 5.4 is a brief reminder of how vaccine impact is evaluated. In section
5.5 and 5.6, I describe the approaches to evaluate the accuracy of synthetic control
and time-trend models and to verify the robustness of the synthetic control to the
exclusion of specific control variables, respectively. Section 5.7 presents alternative
methods to deal with sparse and noisy control time series.

Finally, section 5.8 summarizes the above sections aiming to provide a general
approach that I applied to MenB and MenC case studies (chapters 6 and 7).

5.1 Synthetic control model applied to meningococcal inci-
dence data

The synthetic control approach has proven to be a robust and appealing tool to quan-
tify the effect of public health interventions in several studies. It has been applied to
assess the impact of pneumococcal conjugate vaccines (PCV) on pneumonia-related
hospitalizations in different countries, to evaluate the effect of PCV introduction on
pneumonia mortality in children in Brazil, to evaluate maternal acellular pertussis
vaccine impact on reducing infant disease burden, and to study the effect of PCV in
Brazil comparing low- and high-income populations [7, 127, 128, 129].

To evaluate the impact of public health interventions such as vaccination cam-
paigns, data are typically in the form of counts of disease cases. In this context, a
Poisson model is more appropriate, with an observation-level random intercept to
take into account overdispersed data. Despite the mathematical complexity, easy
implementation is available as an R package InterventionEvaluat [130] with Bayesian
variable selection performed by the package poissonBvs [123].

The target disease cases yt at time t are modeled as a Poisson process, yt ∼
Poisson(λt), with mean λt [130, 131]:

log(λt) = b0 + ∑
k

ck ∗ I[monthk = m(t)] +
p

∑
j=1

β j(δj) ∗ xjt + bc(t) (5.1)
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where t=1,2,..., total number of time points, xjt represents the number of cases of
control disease j at time t; mt is a function that maps a time point to the correspond-
ing calendar month; ck represents the month k regression coefficient; I[.] represents
the indicator function; b0 is an intercept; p is the total number of control diseases in-
cluded in the analysis; β j(δj) is the regression coefficient for control disease j which
is given a spike-and-slab prior distribution (depending on δj) in order to allow for
data-driven variable selection; δj are binary random variables that are equal to 1 if
the control disease j is included in the model or equal to 0 if it is excluded; and bc(t)
is an observation specific random intercept, where bc(t) ∼ N(0, σ2

b ).
Here, the spike and slab component is defined as follows: the former component

is a Dirac spike, i.e. a point mass at zero, while the slab component is specified as
a scale mixture of normal distributions, resulting in a Student-t distribution [123].
For posterior inference, an MCMC sampling scheme is used [123] (details in chapter
4, section 4.2 and in appendix A, sections A2 and A3). I collected 10,000 posterior
samples after a burn-in period of 5,000 iterations.

5.2 Disease time series used as controls

The control diseases must follow 2 criteria: (1) they must not be affected by the
vaccine under study and (2) the relationship between the outcome and the controls
have to be constant over time in case the vaccine would not have been introduced.

In the two meningococcal infant immunization programmes under study, i.e. the
MenC campaign in Brazil and the MenB campaign in England, the control time series
can be distinguished in two groups. The first group includes several infectious/non-
infectious diseases in the same country and age group of the target disease, follow-
ing the same approach of Bruhn et al. [7]. As a second group, I included also MenC
and MenB cases in non-vaccine-eligible age groups, assuming that they are not im-
pacted by indirect effects of the respective vaccine infant programs during the con-
sidered time-lapse [78, 79, 85].

5.2.1 Importance of the control time series

In the synthetic control framework, it is interesting to understand the control time
series that most contributed to predicting the target time series, here meningococcal
disease.

A quantity of interest is the probability of inclusion, defined as the mean of δ
over the MCMC iterations for each control variable (section 5.1: the binary indicator
δ is equal to 1 if the control variable is included in the model, and it is equal to 0
otherwise). Each control time series is assigned a probability of inclusion, whose
values range from 0-1, with values closer to 1 indicating that the control variable is
included in a larger proportion of the variable combinations that are tested [130].
Following the approach of Bruhn et al. [7], I consider a control disease as "selected"
by the model if its probability of inclusion is higher than 50%.

Another quantity of interest is the model size. In each MCMC iteration, the syn-
thetic control tests a different combination of control variables. The model size indi-
cates how many controls are selected in any given model. If less than one variable is
selected on average, the synthetic control fails to identify suitable control variables
[130].

These two quantities, i.e. inclusion probabilities and model size, have been cal-
culated by the model defined in the R package InterventionEvaluat [130].
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5.3 Time-trend model

I compared the synthetic control model with a simple time-trend model. The time-
trend model only adjusts for seasonality and linear trend, assuming that the trend
from the pre-vaccine period continues into the post-vaccine period [7, 131]. Results
should be consistent with the synthetic control model if there are no unexplained
biases in the data [7].

In a time-trend model, time-series cases of meningococcal disease are assumed
to follow a Poisson process yt ∼ Poisson(λt), with mean λt [7, 130, 131]:

log(λt) = b0 + ∑
k

ck ∗ I[monthk = m(t)] + β1 ∗ indext + bc(t) (5.2)

where t = 1,2,..., is the total number of time points; mt is a function that maps a
time point to the corresponding calendar month; ck represents the month k regres-
sion coefficient; I[.] represents the indicator function; b0 is an intercept; indext is a
time variable with values from 1 to the total number of time points; and bc(t) is an
observation specific random intercept.

5.4 Evaluation of vaccine impact

Vaccine impact is computed by comparing the total number of observed cases (Yobs)
and the number of predicted counterfactual cases (Yc f ) during the evaluation period.
As pointed out in chapter 3, section 3.3, the general formula for vaccine impact (VI)
is:

VI = 1− IRR (5.3)

where IRR is the incidence rate ratio, IRR = Yobs/Yc f [7].
I introduced a gap of 1 to 2 years, depending on the age group, between the

vaccine introduction and the beginning of the evaluation period, in agreement with
previous impact studies (details are displayed in the sections Data in chapters 6 and
7) [78, 85]. Besides, vaccine impact estimates obtained using the synthetic control
and time-trend models were compared with previous publications [78, 85].

5.5 Negative control analysis

Since the counterfactual is never observed in causal impact studies, any model could
be correct, at least in principle. For this reason, it is hard to evaluate the perfor-
mances of different models.

In my research study, I performed a negative control analysis with the aim of
evaluating the prediction accuracy of the synthetic control and time-trend models.
Following the assumption of the absence of indirect protection from the vaccine, I
used IMD cases in unvaccinated age groups as targets of the two models.

If the models appropriately adjust for trends in the data, there should be no mea-
surable vaccine effect, if the assumption of absence of indirect protection from infant
vaccination is met. Consequently, if the model provides good predictions, the coun-
terfactuals will be close to the observed points.

I used the mean absolute error (MAE) to quantify prediction accuracy in the post
immunization period (further details in appendix A, section A.4).
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5.6 Sensitivity analysis: testing the vaccine’s indirect effec-
tiveness assumption

Using IMD cases in unvaccinated age groups as controls could bias one of the as-
sumptions of the synthetic control model, i.e. the control diseases must not be af-
fected by the intervention. In the two vaccination campaigns under study, I assumed
no indirect protection from the vaccine since the immunization programme targets
only infants, a limited fraction of the population to generate measurable herd im-
munity effects. Besides, infants are characterized by low carriage rates compared to
the average population (Figure 2.2 in chapter 2, section 2.1).

However, if the assumption of the absence of indirect protection from the vaccine
is violated, this would bias the vaccine impact estimates towards seeing no effect. In-
deed, IMD cases in unvaccinated age groups used as controls would be themselves
affected by the intervention leading to underestimated impact results. This condi-
tion would affect the reliability of the negative control analysis as well.

To rule out any risk of bias due to indirect effects, I performed a sensitivity anal-
ysis by re-running the model excluding from the control set IMD cases in the un-
vaccinated age groups. I repeated this step also in the negative control analysis. If
the vaccine impact results are consistent in both cases, i.e. with and without IMD
cases in the control group, I can exclude any bias due to the indirect effect of the
vaccination.

Additionally, I quantified the performances of the two models, i.e. with and
without IMD cases in the control group, on vaccine-eligible age groups both in terms
of goodness of fit (i.e., Deviation Information Criterion, DIC, metric) and prediction
accuracy (i.e., MAE metric). Details on DIC and MAE metrics are available in ap-
pendix A, section A.4.

5.7 Alternative methods with sparse data: the STL+PCA ap-
proach

Several vaccine impact studies are often conducted using smaller, subnational datasets,
as the impact of meningococcal C vaccines at a regional level in Brazil [78]. The vac-
cine impact estimates produced by the synthetic control model could be biased, i.e.
non-significant, when data are sparse [131]. In these circumstances, the synthetic
control model could fail to identify an appropriate set of controls (i.e., the probabil-
ity of being included in the model would be lower than 50%).

A straightforward approach to reduce the impact of sparseness is to aggregate
monthly data into quarterly data [131]. However, this approach would not be a
good solution when the pre-intervention data are limited [131]. Besides, using lower
resolution time series reduces the number of data points, which makes it challenging
to establish relationships between the outcome and the synthetic control [131].

Alongside with testing the synthetic control with different temporal aggregation,
I applied an alternative approach, the ’seasonal-trend decomposition plus principal
component analysis (STL+PCA)’ model (Figure 5.1) [131]. This method has shown
to adjust for trends with noisy and sparse control time series [131, 132].

In the STL+PCA method, there is no variable selection. The first step is to extract
a long-term trend for each control disease using the seasonal-trend decomposition
procedure based on locally weighted scatterplot smoothing (STL)[131, 133]. The sec-
ond step includes obtaining a "composite" from these extracted trends where prin-
cipal component analysis (PCA) is performed to reduce the dimensionality of the
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FIGURE 5.1: Diagram of the STL+PCA model. Abbreviations: STL,
seasonal-trend decomposition procedure based on locally weighted
scatterplot smoothing; PCA, principal component analysis. Figure

from [131].

total set of trends [131]. Finally, the first principal component "PC1", which accounts
for most of the variance, is used as a covariate in the regression model to build the
counterfactual [131].

A relevant disadvantage of the STL+PCA model is that it is no longer possible
to interpret relationships between the outcome and control diseases since the orig-
inal control time series are not directly used as a covariate in the model [131]. The
R package InterventionEvaluat [130] provides an implementation of the STL+PCA
model alongside with the synthetic control and time trend models. Further details
are available in Appendix A, section A.5.

5.8 Conclusions

The aim of this section is to provide the building blocks of my doctoral research.
The core of my analysis can be then summarized as follows:

1. Negative control analysis: prediction accuracy of synthetic control and time
trend models is compared using non-vaccine-eligible age groups as targets.

2. Vaccine impact estimation: impact results obtained with the synthetic control
are compared with previous studies and with the time-trend model.

3. Meningococcal disease predictors: the three most relevant predictors of IMD
incidence are investigated according to the probability of inclusion.

4. Sensitivity analysis: the indirect protection assumption is tested by excluding
the IMD cases in unvaccinated age groups from the set of controls and by re-
running the synthetic control model.



34 Chapter 5. Meningococcal vaccine impact evaluation

5. Alternative methods with sparse data: different control time series’ aggrega-
tions (both spatial and temporal) and the STL+PCA approach are taken into
account to overcome the issue of sparse data.

These building blocks will be applied to the meningococcal C campaign in Brazil
and the meningococcal B campaign in England, respectively (chapters 6 and 7), to
investigate the validity of synthetic controls in meningococcal vaccine impact stud-
ies.



35

Chapter 6

The impact of the 2010 MenC
campaign in Brazil

In chapter 5, I discussed how the synthetic control method can be applied to assess
the impact of meningococcal vaccination programmes. In this chapter, I present the
results of the meningococcal C campaign in Brazil.

In section 6.1, I discuss the MenC data collected to perform my analysis. In sec-
tions 6.2, 6.3, 6.4, 6.5, I show the results following the scheme described in chapter 5,
section 5.8, and briefly summarized below. The scheme includes: 1) negative control
analysis; 2) vaccine impact estimation; 3) meningococcal disease predictors; 4) sen-
sitivity analysis; and 5) alternative methods with sparse data. Steps 1), 2), 3), 4), are
repeated for the Brazilian state with the highest incidence of MenC, São Paulo state.
São Paulo state relies on an effective and reliable surveillance system for meningitis
and it has been previously used to confirm findings at a national level [79].

In section 6.6, I address the limitations of the synthetic control model with sparse
data (step 5) using MenC cases at a regional level. I show the performances of the
synthetic control and the STL+PCA methods (section 5.7) in evaluating the reduction
of MenC cases following the 2010 immunization campaign. These reductions are
compared with the results by Moraes et al. [78].

6.1 Data

I collected laboratory-confirmed MenC cases at a state, regional and national level,
aggregated by age and month of disease onset (January 2007 – December 2013) [79]
from Brazilian Notifiable Diseases Information System (SINAN) database [134].

I selected cases reported to SINAN with the following classification: meningo-
coccal meningitis (MM), meningococcemia (MCC), or meningococcemia combined
with meningococcal meningitis (MCC+MM) [78]. The MenC vaccine-eligible age
groups were <1 year and 1–4 years-old. The evaluation period is from December
2011 to December 2013. The infant immunization programme is described in chap-
ter 2, section 2.2.1, and it is summarized in Table 6.1.

As control diseases, I used the time series of infectious/non-infectious disease
cases from the same age groups of the target disease. Here, a large number of con-
trols was available (see the full list of 36 control time-series in Table B.1 in Appendix
B). Control time series were identified by the International Classification of Diseases,
10th Revision (ICD-10) code. At a national level, the control diseases are in the age
groups <1year and 1-4-year-olds. Due to the availability of data, at a regional and
state level, the control diseases are in the age groups <1 year and 12-23-months.

In addition, I used the time series of MenC cases, in age groups not eligible for
the immunization program (the time series are reported in Table B.1 in Appendix B).
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Meningococcal C cases are in the age groups: 5-9; 10-14; 15-19; 20-39; 40-59-years-
old.

In 2010, following an epidemic of MenC disease, a mass vaccination campaign
with a catch-up for adolescents in 2010 was implemented in the city of Salvador.
Besides, the whole state of Bahia, whose capital is Salvador, anticipated the infant
routine immunization programme to February 2010 [135]. For this reason, data from
the state of Bahia were excluded from my study [79].

TABLE 6.1: Details on the Meningococcal C vaccination programmes
implemented in Brazil

Country Target
time series

Target
age groups

Time
range

Vaccine
schedule

Start of
immunization
programme

Start of
evaluation
period

Data
source

Brazil* Monthly
MenC cases <1y and 1-4y Jan 2007 -

Dec 2013
3 doses at age
3, 5, 12-15 m Nov 2010 Dec 2011 SINAN[134]

m: months old; SINAN: Sistema de Informação de Agravos de Notificação; y: years old.

* Cases from the city of Salvador excluded from the analysis.

6.2 Negative control analysis on non-vaccine-eligible age groups

To evaluate the prediction accuracy of the synthetic control model and time-trend
model, described in sections 5.1 and 5.3 respectively, I performed a negative-control
analysis (section 5.5) using MenC cases in age groups not included in the immuniza-
tion program as targets of the two models. The post-vaccination cases were not used
for fitting the models. We expect to see no vaccine impact in these age groups if the
no-herd-immunity assumption is not violated (its validity is evaluated at the end of
the section and in section 6.5).

Both models captured the seasonal behavior of MenC cases in all age groups.
However, the synthetic control model predicted MenC cases during the post-vaccination
period better than the time-trend, as confirmed by a ∼ 40% smaller MAE value for
15-19 years old, a ∼ 65% smaller MAE for 10-14 year and a ∼ 55% smaller MAE
for 5-9-year-olds age groups (Figure 6.1, with blue curves representing the synthetic
control and red curves the time-trend models).

The time-trends’ lack of accuracy led to over-estimated predictions of post-immunization
disease in all age groups, with most of the observed cases (black dots) under the fit.
The synthetic control always over-performed the time-trend model in terms of MAE,
in all the considered age groups (Figure 6.1), and accurately reproduced long-term
non-linear trends in the incidence of diseases, such as the decrease in MenC cases
among 5–9 and 10–14-year-old in Brazil since 2012 (Figure 6.1 middle and bottom
panels).

To avoid biased estimates due to indirect protection of vaccination, I repeated
the analysis this time excluding IMD cases in unvaccinated age groups from the
set of controls. Results are shown as cyan curves in the left panels of Figure 6.1.
I found that counterfactual predictions are coincident in both cases, i.e. including
and excluding MenC cases in unvaccinated age groups, for the 15-19-year-old age
group. Instead, I observed small, not statistically significant differences between the
two counterfactuals in 5–9 and 10–14-year-olds only in the last year of the study
(Figure 6.1 middle and bottom panels).
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I repeated these analyses using MenC data from the São Paulo state. Again, the
synthetic control well reproduced MenC trends in all age groups, outperforming
time-trend models in 5-9 and 15-19-years-old age groups according to MAE (Fig-
ure C.2 in Appendix C, top, and bottom panels, respectively). The time-trend model
failed to adjust for MenC trends in both age groups, leading to increased trends
in the post-vaccine period and to wider credible intervals compared to the syn-
thetic control. MenC trends in 10-14-years-old age groups were comparable with
both the models, with a small difference in MAE metrics (MAE equal to 4.14 and to
3.70 for the synthetic control and time-trend models, respectively). In this case, the
time-trend model did not predict an increasing trend in the post-vaccination period,
though the estimates were characterized by greater uncertainty reflected in wider
credible intervals (Figure C.2 in Appendix C, middle panel).

To be consistent with the national case study, I also run the synthetic control
model excluding MenC cases from the set of controls. Results are in agreement with
national performances, with small, not statistically significant differences between
the two counterfactuals in 5–9 and 10–14-year-olds only in the last year of the study
(Figure C.2 in Appendix C, cyan curves in middle and bottom panels). Counterfac-
tuals in the 15-19-years-old age group are coincident in both cases.

The counterfactuals including or excluding IMD cases in unvaccinated age groups
were comparable in both cases in all age groups at national and São Paulo state
scales, and no effect of the vaccine was detected (Figure C.3 in Appendix C, pan-
els A and B), thus supporting the validity of my assumption of absence of indirect
protection.

6.3 Vaccine impact in Brazil and in São Paulo state

Reported meningococcal C cases declined in both age groups after the introduc-
tion of the immunization campaign (the vaccination start dates are highlighted with
black vertical lines in Figure 6.2). Since then, the counterfactuals have started to
move away from the observed data. The impact was evaluated starting from one
year after vaccination (grey dashed vertical lines).

MenC trends were comparable both at a national level and in Sao Pãulo state
only (Figure 6.2, top panels showing MenC trends for Brazil, bottom panels for Sao
Pãulo state). The synthetic control model correctly captured the seasonal behavior
of IMD incidence in both cases.

In Brazil, I measured a 69% (95% CI: 51%; 80%) vaccine impact on MenC cases
in infants (aged less than one year). In children aged 1–4 years old, the impact was
64% (95% CI: 55%; 70%). At a national level, vaccine impact estimates confirmed
previous findings by Moraes et al. (Table 6.2) [78]. In this study, a generalized least
square (GLS) method was employed with a first-order autoregressive (AR1) model
to assess the impact [78].

For São Paulo state, impact estimates were: 78% (95% CI: 65%; 85%) for <1 year
old children, while for 1-4 year-olds: 67% (95% CI: 58%; 74%).

Finally, I also run the time-trend model on the same data (fits and counterfactual
predictions are reported in Figure 6.3). Compared to the synthetic control, the time-
trend model did not adjust for the increasing trend in the number of cases among
the vaccine eligible age groups observed in Brazil during the pre-vaccination period.

After vaccination, counterfactuals predictions with the time-trend model differed
from the synthetic control ones, leading to different impact estimates. In Brazil, the
time-trend predicted a monotonous increase in MenC incidence, leading to a higher



38 Chapter 6. The impact of the 2010 MenC campaign in Brazil

FIGURE 6.1: Predictions generated by synthetic control and time-
trend models for MenC (Brazil) disease in the 15–19 (top), 10-14 (mid-
dle) and 5-9 (bottom) years old non-vaccinated age groups. In blue,
cases predicted with the synthetic control model using all the controls
available (SC1) (curve: best estimate; shaded region: 95%CI). In cyan,
cases predicted excluding MenC cases in unvaccinated age groups
(SC2) (curve: best estimate; shaded region: 95%CI). In red, cases pre-
dicted with a time-trend model (curve: best estimate; shaded region:
95%CI). Observed cases are shown as black dots. Vertical black lines
divide each plot into two parts: on the left side, data used to fit mod-
els; on the right side, data used to evaluate the predictions (MAEs

shown).



6.4. Top three selected predictors of meningococcal disease in infants 39

TABLE 6.2: Vaccine impact estimates in Brazil comparing the syn-
thetic control method with the GLS approach by Moraes et al. [78].

Method Age group Evaluation period Impact [95%CI]
SC <1 y Dec 2011 - Dec 2013 0.69 [0.51;0.80]

GLS+AR1 [78] <1 y Dec 2011 - Dec 2013 0.66 [0.45;0.87]
SC 1-4y Dec 2011 - Dec 2013 0.64 [0.55;0.70]

GLS + AR1 [78] 1-4 y Dec 2011 - Dec 2013 0.52 [0.33;0.71]

FIGURE 6.2: MenC (Brazil) cases in age groups eligible for vaccina-
tion. In blue, cases predicted with the synthetic control model at a
national level (top panels), while in purple cases predicted in the Sao
Pãulo state (curve: best estimate; shaded region: 95%CI). Observed
cases are shown as black dots. Solid black vertical lines indicate the
introduction of the vaccination campaign. Dashed grey vertical lines

indicate the initial point for measuring impact.

reduction of cases following the vaccination compared to synthetic control. I mea-
sured 82% (95% CI: 73%; 88%) and 74% (95% CI: 67%; 83%) vaccine impact in, re-
spectively, infants younger than one year and children 1–4 years old.

A similar increasing trend is observed with São Paulo state (Figure 6.3 bottom
plots), with an expected higher reduction of cases in the post-immunization period.
Here impact estimates were 87% (95% CI: 78%; 92%) and 79% (95% CI: 69%; 85%)
for <1 year-old and 1-4 years-old age groups, respectively.

6.4 Top three selected predictors of meningococcal disease in
infants

In this section, I describe the most frequently selected predictors of MenC incidence
both at a national and São Paulo state level, according to the probability of inclusion
(section 5.2.1).
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FIGURE 6.3: Time-trend model predicted cases in age groups eligible
for vaccination, shown in red for Brazil and in pink for São Paulo state
(curve: best estimate; shaded region: 95%CI). Observed cases shown
as black dots. Solid black vertical lines indicate the introduction of
vaccination campaign. Dashed grey vertical lines indicate the initial

point for measuring impact.

Even if the most frequently selected control time series varied by age group, I
observed a common general pattern in Brazil, with MenC time-series in non-vaccine-
eligible age groups consistently being among the three predictors with the highest
probability of being included in the model. The upper panel of Figure 6.4 (All the
controls panel) displays the three most selected time series to fit pre-immunization
MenC cases of age groups <1 and 1–4 years old in Brazil. Among them, I found not
only MenC cases in older age groups, but also other infectious and non-infectious
disease time series.

The most selected predictor of MenC in the less than one-year-old was “diseases
of blood and disorders involving the immune mechanism” (ICD-10 code D50-89,
probability of inclusion Prob = 0.57), followed by MenC in adolescents 15–19 years
old (Prob = 0.23) and “injury, poisoning and consequences of external causes” (ICD-
10 code S00-T98, Prob = 0.19).

For MenC in 1–4-year-old: first “other acute lower respiratory infections” (ICD-
10 code J20-J22, Prob = 0.35), then “diseases of the circulatory system” (ICD-10 I00-
99, Prob = 0.24) and MenC cases among adults aged 20–39 years (Prob = 0.22). Here,
none of the control diseases showed a probability of inclusion higher than 50%,
though the model size was still over 1 (Table C.1 in Appendix C).

Conversely, the MenC cases in unvaccinated age groups were not selected to pre-
dict meningococcal incidence at the São Paulo state level (Fig. 6.5). The control dis-
eases selected to predict < 1-year-old infants were: "perinatal diseases" (ICD-10 code
P00-99, Prob=0.57), “injury, poisoning, and consequences of external causes” (ICD-
10 code S00-T98, Prob = 0.48), and "all the controls summed together" (code ach,
Prob=0.27). For MenC 1-4 years old children: "Urinary tract infection" (ICD-10 code
N39, Prob=0.28), "perinatal diseases" (ICD-10 code P00-99, Prob=0.28) and "injury,
poisoning, and consequences of external causes" (ICD-10 code S00-T98, Prob=0.22).



6.5. Sensitivity of the synthetic control predictions to the exclusion of MenC cases
in unvaccinated age groups

41

FIGURE 6.4: Top three selected controls with highest probability of in-
clusion, for <1-year age group and 1-4 years old age group in Brazil
(left and right panels, respectively). We report results using all the
controls (blue bars) and a subset where MenC cases in non-vaccine-

eligible age groups were excluded (cyan bars).
y: years; n.e.: non-eligible age group; ach: aggregated variable with all the
controls summed together; E40-46: malnutrition; E00-99: Endocrine, nutri-
tional, metabolic disorders; J20-J22: Bronchitis, bronchiolitis and unspecified
acute lower respiratory infection; I00-99: Diseases of the circulatory system;
P00-99: Perinatal diseases; D50-89: Diseases of blood and blood-forming or-
gans and certain disorders involving the immune mechanism; S00-T98: In-

jury, poisoning and consequences of external causes.

FIGURE 6.5: Top three selected controls with highest probability of
inclusion, for <1-year age group and 1-4 years old age group in São
Paulo state (left and right panels, respectively). We report results us-

ing all the controls (blue bars).
y: years; ach: aggregated variable with all the controls summed together;
P00-99: Perinatal diseases; S00-T98: Injury, poisoning and consequences of

external causes; N39: Urinary tract infection

6.5 Sensitivity of the synthetic control predictions to the ex-
clusion of MenC cases in unvaccinated age groups

MenC controls could be potentially influenced by indirect effects. Removing IMD
controls of the same serogroup relaxed my initial assumption, i.e. that indirect effects
are negligible (section 5.6). Hence, I tested if such an assumption was grounded
by re-running my analyses using other infectious/non-infectious diseases only as
controls. In section 6.2, I already showed that removing IMD cases from the set of
controls did not affect the results, and I repeated the analysis this time with MenC
cases in vaccine-eligible age groups used as targets of the synthetic control. I run this
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FIGURE 6.6: Predictions generated by the synthetic control model for
MenC (Brazil) disease in age groups eligible for vaccination. In blue,
cases predicted with the synthetic control method using all the con-
trols available (SC1). In cyan, cases predicted excluding MenC cases
in unvaccinated age groups (SC2). Curve: best estimate; shaded re-
gion: 95%CI. Observed cases are shown as black dots. Solid black
vertical lines indicate the introduction of the vaccination campaign.
Dashed grey vertical lines indicate the initial point for measuring im-

pact.

test only at a national level since the IMD cases in unvaccinated age groups were not
selected as influential predictors at the São Paulo state level.

Here, reducing the set of controls did not change the goodness of fit (DIC metric
computed over the pre-intervention period) and the accuracy of predictions (MAE
metric computed over the last three points before and the first point after vaccina-
tion) (Figure 6.6 and Table 6.3 ).

TABLE 6.3: DIC and MAE estimates for each set of controls and age
groups eligible for vaccination in Brazil. Best estimates, i.e. lowest

DIC and MAE values, are highlighted in bold.

Age group Set of controls DIC MAE
<1 year All the controls 253.92 2.5

Non-elig. MenC excluded 253.67 2.5
1-4 years All the controls 280.19 3.25

Non-elig. MenC excluded 279.96 2.75

In both age groups, the counterfactuals predictions were coincident in both cases,
with overlapping 95% credible intervals (Figures 6.6). Besides, also impact estimates
were robust to the exclusion of IMD cases from the set of controls (Figure 6.7).

Looking at the controls selected with the highest probability, the synthetic con-
trol model often selected other respiratory infections. The acute lower respiratory
infections (ICD-10 J20-J22) consistently appeared among the top three controls for
the 1–4-year-old (Figure 6.4, Non-elig. MenC excluded lower panel). J20-J22 refers
to bronchitis, bronchiolitis, and other acute lower respiratory infections, including
bronchitis and bronchiolitis due to RSV.

6.6 Vaccine impact with regional data

In this section, I tested the performances of the synthetic control and STL+PCA
methods on sparse data in the post-vaccine period, i.e. specifically from December
2011 to December 2013 (section 5.7). I used MenC cases at a regional level, which are
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FIGURE 6.7: Vaccine impact estimates when using the full set of con-
trols (blue dots) and a subset where non-vaccine-eligible age groups

were excluded (cyan triangles). 95%CIs are shown as grey lines.

sparse in all the regions, with the only exception of the Southeast region. The North
region was excluded from the analysis due to several months with zero occurrences.

I found significant reductions of MenC cases using the synthetic control method
in the Center-west and Southeast regions for age group < 1-year-old with vaccine
impact estimates equal to 83% (95% CI: 40%; 93%) and 77% (95% CI: 49%; 88%),
respectively (Figure 6.8, top panel). In infants 1-4 years old, the synthetic control
predicted a significant impact of vaccine with estimates of 79% (95% CI: 45%; 93%)
for Center-west region, 67% (95% CI: 57%; 74%) for Southeast region and 89% (95%
CI: 50%; 99%) for South region.

Results were comparable when running the STL+PCA approach on 1-4 years old
infants (Figure 6.8, middle panel). Instead, differently from the synthetic control, the
STL+PCA found a significant reduction in the South region for < 1-year-old infants
with 89% vaccine impact (95% CI: 63%; 96%).

MenC reduction of cases in the Northeast region was non-significant with both
approaches and age groups.

The bottom panel in Figure 6.8 shows the impact estimates reported in the work
by Moraes et al. [78]. In this study, unidentified IMD serogroup cases were dis-
tributed according to the proportion of cases with identified serogroups [78]. The
study population was indeed larger compared to the data used in my research, com-
posed not only of confirmed cases of IMD C serogroup but also of “unidentified
serogroup” cases, attributable to serogroup C on the basis of proportional distribu-
tion [78].

In this study, impact estimates were significant in all regions and age groups,
except for the South region in 1-4-year-old infants [78]. Point estimates were in
agreement with the synthetic control and STL+PCA methods, while 95% credible
intervals varied between the regions.

Finally, I repeated the analysis aggregating data on a quarterly basis, to increase
the number of occurrences. In general, I did not find a visible improvement (Fig-
ure C.4 in Appendix C).

6.7 Discussion and conclusions

In this chapter, I have presented the first part of the results achieved during my PhD
programme.
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FIGURE 6.8: Vaccine impact estimated with the synthetic control
model (top panel), the STL+PCA model (middle panel) and previ-
ously published estimates from Moraes et al [78] (bottom panel), com-
paring the observed and predicted number of cases in 2011-2013 by
age group and region. 95%CIs are shown as grey lines. Abbrevia-

tions: C, center-west; S, south; SE, southeast; NE, northeast.

First, I showed that the synthetic control method outperformed a simple time-
trend adjustment in a negative control analysis (i.e., where unvaccinated age groups
were used as targets of the synthetic control model). The synthetic control was able
to adjust for several unexplained trends, outperforming the time-trend model in
terms of prediction accuracy in all the considered age groups (MAE estimates were
always lower).

Despite the limitations of using observational data discussed in chapter 3, the
synthetic control detected significant reductions of MenC cases in the two consid-
ered age groups, with vaccine impact estimates in agreement with previous publica-
tions [78]. Besides, results were confirmed running the model on MenC cases of São
Paulo state only, which has already been used as a proof of the results’ robustness
due to its reliable surveillance system [79].

Among the control diseases with the highest probability of being included in
the model, MenC cases in unvaccinated age groups and respiratory diseases, such
as diseases with the ICD-10 code J20-J22, were selected. Since the former controls
could be influenced by indirect effects of the vaccine, thus underestimating the im-
pact estimates, I re-run the synthetic control method excluding MenC cases from the
set of controls. Results were robust to the exclusion of IMD cases in unvaccinated
age groups. It should be highlighted that the MenC campaign introduced in 2010 in
Brazil concerned only infants and not adolescents (which usually harbor the highest
rates of meningococcal carriage) [79]. This finding is in agreement with Moraes et al.
and Andrade et al., that found no indirect protection from the vaccination campaign
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[78, 79]. Both authors suggested vaccinating adolescents to possibly observe indirect
effects on non-vaccinated age groups (to be noted: MenC vaccination targeting ado-
lescents has been introduced starting from year 2017). Besides, a catch-up campaign
was introduced in Salvador for the age group 10–24 years showing evidence of herd
immunity effects [30]. Data from Salvador were excluded from our study.

Another point which should be discussed is whether the 5–9 age group could be
affected by the vaccination campaign. I have performed a few analyses excluding
age group 5–9 from the set of controls and I found small, non-significant differences
(I highlighted this point where I tested the SC analysis excluding MenC cases in non-
vaccine-eligible age groups from the set of controls). Also, to my understanding,
only 1 month of 5-year-olds could have been effectively vaccinated (e.g., those born
in August 2009 and aged 5 in December 2013, which represented the last time point
of my analysis). Considering the high heterogeneity of vaccine coverage (which
varied in Brazil’s regions, with a few regions having low coverage in the first year of
the program), I decided that I could safely use this age group as a control.

Finally, I investigated the reductions of MenC cases following the vaccination
programme at a regional level. In certain regions, the MenC cases were extremely
low and the synthetic control failed to detect significant impact estimates. Since
the sparsity of case counts affected mostly the outcome and the MenC cases used
as controls, the performances of the synthetic control and the STL+PCA methods
were comparable, with some small exceptions (for example, in the South region the
STL+PCA found significant vaccine impact estimates in the <1-year-old age group
in contrast to the synthetic control). A possible solution could be to take into account
the proportion of unknown serogroups to increase the MenC occurrences as done by
Moraes et al. [78], whereas I found no significant improvement when aggregating the
data quarterly.

In this chapter, I have shown that the synthetic control is a robust tool to evalu-
ate the impact of the MenC vaccination campaign in Brazil, despite the challenges
given by observational data and the differences in surveillance systems at a national,
regional and state levels. Besides, the synthetic control model was able to detect
several unexplained trends, while on the contrary, a simple time-trend adjustment
failed. Even if the vaccination programme could induce indirect protection in the
unvaccinated population, the synthetic control provided consistent results relying
on other infectious/non-infectious control diseases only. Finally, the vaccine impact
estimates were robust to the exclusion of MenC cases in unvaccinated age groups
from the set of controls.





47

Chapter 7

The impact of the 2015 MenB
campaign in England

This chapter presents the results of the meningococcal B vaccination programme in
England. I followed the procedure described in chapter 5, summarized in section
5.8.

In section 7.1, I discuss the MenB data collected to perform my analysis. Section
7.2 deals with the quality of the synthetic control’s predictions compared to a simple
time-trend model (step 1, Negative control analysis, in chapter 5, section 5.8). Sections
7.3, 7.4, 7.5, discuss in order: vaccine impact estimates from the synthetic control and
time-trend models and from a previously published study by Ladhani et al. [85]; the
most influential MenB predictors in infants; and a sensitivity analysis (steps 2,3,4 in
chapter 5, section 5.8).

Finally, section 7.6 investigates the performances of the synthetic control model
aggregating information on an annual level.

7.1 Data

I retrieved MenB cases from the Public Health England (PHE) national surveillance
system website [136]. I collected quarterly cases from the last quarter of 2011 to the
first quarter of 2019; before this time period data were not stratified by age group.

MenB time series by quarter of year of subjects eligible for the national immu-
nization program were aggregated in two wide age groups (<1 and 1–4 years-old).
The previous vaccine impact analyses considered MenB annual cases in finer age
groups (i.e., 18–51 weeks and 1-year old age groups) [85, 91]. To be consistent with
previous analyses, I derived quarterly MenB cases in the 18–51-weeks and 1-year-
old age groups, assuming that the proportion of cases by age group was maintained
at a quarterly level (e.g., if cases in the 18–51 weeks age group were 80% of the cases
in the <1-year old age group, I used the same proportion to derive time series on a
quarterly basis).

The details on the infant immunization programme are described in chapter 2,
section 2.2.1, and summarized in Table 7.1.

As control diseases, I used the time series of infectious/non-infectious disease
cases from the same country and age groups of the target disease. Here, the set of
available control time series with quarterly data was smaller compared to Brazil.
In addition, I used the time series of MenB cases, in age groups not eligible for the
immunization program (the time series are reported in Table B.2 in Appendix B).

Meningococcal B cases are in the age groups: 5-9; 10-14; 15-19; 20-24; 25-44; 45-
64 and 65+ years-old. All the other control diseases are in the age groups <1 and
1-4-years-old.
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TABLE 7.1: Details on the Meningococcal B vaccination programme
implemented in England.

Target
time series

Target
age groups

Time
range

Vaccine
schedule

Start of
immunization
programme

Start of
evaluation
period

Data
source

Quarterly
MenB cases 18-51w and 1y* Q4 2011 -

Q1 2019
3 doses at age
2, 4, 12 m Sep 2015 Q4 2016 PHE [136]

*After data augmentation, as described in methods section.

I also collected MenB incidence data on an annual level, from epidemiological
years 1998/99 to 2017/18 [136]. Data prior to epidemiological years 2009/10 were
available from PHE archives [137] and refer to England + Wales meningococcal B
cases in the <1-year and 1-year-old age groups. Again, I have derived MenB cases in
age groups 18-51-weeks and 1-year-old to be able to compare the final estimates with
both quarterly data and previous publications. The set of control diseases publicly
available on an annual basis in the age groups <1 and 1-4-years-old was significantly
larger compared to the quarterly data (Table B.3 in Appendix B).

7.2 Negative control analysis on non-vaccine-eligible age groups

I performed a negative-control analysis on IMD cases in age groups not included in
the immunization program applying both the synthetic control and a simple before-
after time-trend models (step 1, section 5.5).

The synthetic control model predicted IMD cases during the post-vaccination
period better than the time-trend, as confirmed by a ∼ 40% smaller MAE value for
15-19 years old, a ∼ 20% smaller MAE for 10-14 years and 5-9 years old age groups
(see Figure 7.1, with blue curves representing the synthetic control and red curves
the time-trend models).

In the 15-19 and 10-14 years old age groups, the time-trends’ lack of accuracy
led to under-estimated predictions, with most of the observed cases (black dots) far
away from the predicted curve. MenB cases in 5-9 and 10-14 years old age groups
were mostly explained by their seasonal behavior (middle and bottom plots in Fig-
ure 7.1). The synthetic control still over-performed the time-trend model in terms of
MAE in both the considered age groups.

In general, the synthetic control accurately reproduced long-term non-linear trends
in the incidence of disease, such as the increase in MenB cases among 15-19 years old
reported in England during the entire immunization period, compared to negative
trends before the immunization (Figure 7.1, top panel).

Since MenB cases in unvaccinated age groups could be influenced by indirect
protection of the vaccine, I repeated the analysis, this time excluding IMD cases in
unvaccinated age groups from the set of controls. Results are shown as cyan curves
in the left panels of Figure 7.1. Counterfactual predictions are coincident in both
cases, i.e. including and excluding IMD cases in unvaccinated age groups, for all
age groups under study (blue and cyan curves). Besides, impact estimates were non-
significant in both age groups (Figure C.5 in Appendix C), confirming the robustness
of my assumption of the absence of indirect protection.
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FIGURE 7.1: Predictions generated by synthetic control and time-
trend models for MenB (England) disease in the 15–19 (top), 10-14
(middle) and 5-9 (bottom) years old non-vaccinated age groups. In
blue, cases predicted with the synthetic control method using all the
controls available (SC1) (curve: best estimate; shaded region: 95%CI).
In cyan, cases predicted excluding MenB/MenC cases in unvacci-
nated age groups (SC2) (curve: best estimate; shaded region: 95%CI).
In red, cases predicted with a time-trend model (curve: best estimate;
shaded region: 95%CI). Observed cases are shown as black dots. Ver-
tical black lines divide each plot into two parts: on the left side, data
used to fit models; on the right side, data used to evaluate the predic-

tions (MAEs shown).
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7.3 Vaccine impact in England

The synthetic control model well reproduced MenB time-series of cases before the
immunization, even in the presence of non-trivial patterns, such as a trend inversion
between 2014 and 2015 in both age groups (Figure 7.2).

Reported MenB cases sharply declined in both age groups after the introduc-
tion of the immunization campaign (the vaccination start dates are highlighted with
black vertical lines in Figure 7.2). Since then, the counterfactual predictions are de-
tached from the observed data.

I evaluated the impact one year after vaccination (grey dashed vertical lines in
Figure 7.2). I estimated a 75% reduction (95% CI: 69%; 79%) in infants aged 18-51
weeks, while in the 1-year-old age group the impact was 72% (95% CI: 65%; 79%).

These estimates were in good agreement with the study by Ladhani et al. [85].
In this latter case, the impact was assessed with a Poisson regression model on in-
cidence rate ratios. To adjust for changes unrelated to the vaccine, the authors used
MenB cases in non-eligible subjects, i.e. infants of <5 years of age, as controls. In
table 7.2, the two approaches are compared, with estimates overall in agreement al-
though there is a little difference due to the aggregation at a quarterly and annual
level.

TABLE 7.2: Vaccine impact estimates in England comparing the syn-
thetic control method with the approach by Ladhani et al. [85].

Method Age group Evaluation period Impact [95%CI]
SC 18-51w Q4 2016 - Q1 2019 0.75 [0.69;0.80]
SC 1y Q4 2016 - Q1 2019 0.72 [0.65;0.79]
SC 18w to 1y Q4 2017 - Q3 2018 0.76 [0.70;0.80]

Poisson regression [85] 18w to 1y Depends on age group1 0.75 [0.64;0.81]

I also run the time-trend model on the same vaccine eligible age groups ( fits and
counterfactual predictions are reported in Figure 7.3). The time-trend model failed
to adjust for the decreasing trend in the number of cases among the vaccine eligible
age groups observed in England before 2015.

Counterfactuals predicted with the time-trend model differed from the synthetic
control ones, leading to different impact estimates. The time-trend model provided a
lower vaccine impact estimate when compared to the synthetic control. In the 18–51
weeks age group, the impact was 59% (95% CI: 28%; 74%); in 1-year-old children,
48% (95% CI: -37%; 76%).

7.4 Top three selected predictors of meningococcal disease in
infants

MenB time-series of cases in non-vaccine-eligible age groups were consistently among
the three predictors with the highest probability of being included in the model.

As shown in Figure 7.4, All the controls upper panel, MenB incidence in the non-
vaccine-eligible age groups was predominantly selected among the top controls. In
particular, MenB cases in the three-years-old age group were selected with a proba-
bility Prob = 0.97 to predict MenB in one-year-old children.

118-51w: Sep 2016 - Aug 2018; 1y: Sep 2017 - Aug 2018
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FIGURE 7.2: MenB (England) cases in age groups eligible for vacci-
nation. In blue, cases predicted with the synthetic control method
(curve: best estimate; shaded region: 95%CI). Observed cases are
shown as black dots. Solid black vertical lines indicate the introduc-
tion of the vaccination campaign. Dashed grey vertical lines indicate

the initial point for measuring impact.

FIGURE 7.3: Time-trend model predicted MenB (England) cases in
age groups eligible for vaccination, shown in red (curve: best esti-
mate; shaded region: 95%CI). Observed cases shown as black dots.
Solid black vertical lines indicate the introduction of vaccination cam-
paign. Dashed grey vertical lines indicate the initial point for measur-

ing impact.

For the 18–51 weeks age group, posterior inclusion probabilities were lower than
50%. The most selected control time series was MenB cases in 15–19 year-olds with
Prob = 0.23. Also, two childhood infectious diseases, measles, and mumps were
selected among the top controls for the 18–51 weeks age group and the 1-year-old,
respectively, but with a relatively lower probability (respectively, Prob = 0.13 and
Prob = 0.08).

7.5 Sensitivity of the results to the exclusion of MenB cases
from the controls

MenB cases in the 3-years-old age group had almost 100% of the probability of being
included in the model. It is a natural question to understand whether removing such
an age group could influence the results. To be even more general, I removed all
the MenB cases in unvaccinated age groups from the set of controls and re-run the
synthetic control model (section 5.6). In section 7.2, I already proved that removing
IMD cases from the set of controls did not bias the results.

Here, reducing the set of controls did not change the goodness of fit (DIC metric
computed over the pre-intervention period) and the accuracy of predictions ( MAE
computed over the first 4 points post-vaccination assuming the vaccination was not
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FIGURE 7.4: Top three selected controls with highest probability of
inclusion, for 18-51w age group and 1-year-old age group in England
(left and right panels, respectively). We report results using all the
controls (blue bars) and a subset where MenB cases in non-vaccine-

eligible age groups were excluded (cyan bars).
y: years; n.e.: non-eligible age group; ach: aggregated variable with all the

controls summed together; RSV: Respiratory Syncytial Virus.

effective yet) in the 18-51-weeks age group (Figure 7.5, left panel and Table 7.3, top
row).

Instead, in the 1-year-old age group, excluding MenB cases led to visible worsen
DIC and MAE estimates (Table 7.3 bottom row). This difference was reflected in
the counterfactuals predictions (Figure 7.5 right panel). Nevertheless, in both age
groups, impact estimates were robust, with almost coincident best estimates and
overlapping 95%CIs (Figure 7.6).

TABLE 7.3: DIC and MAE estimates for each set of controls and age
groups eligible for vaccination in England.

Age group Set of controls DIC MAE
All the controls 98.27 3

18-51 w Non-elig. MenB excluded 98.54 3.67
All the controls 88.26 0.75

1 yr Non-elig. MenB excluded 95.22 3

Looking at the controls selected with the highest probability, the synthetic control
model often selected other respiratory infections or airborne diseases. Specifically, I
found that measles and RSV were frequently selected as predictors of meningococcal
disease incidence (Figure 7.4, Non-elig. MenB excluded lower panel). In particular,
RSV incidence was characterized by a probability of inclusion Prob = 0.90 to predict
MenB in the 1-year old.

7.6 Estimation of vaccine impact with annually aggregated
data

In this section, I evaluated the performances of the synthetic control model on vaccine-
eligible age groups using annual data.

The synthetic control model was able to adjust for the decreasing long-term trend
observed in both age groups starting from the epidemiological year 2000/01 (Fig-
ure 7.7). In the 18-51-weeks age group, the model precisely reproduced the small
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FIGURE 7.5: Predictions generated by the synthetic control model
for MenB (England) disease in age groups eligible for vaccination.
In blue, cases predicted with the synthetic control method using
all the controls available (SC1). In cyan, cases predicted excluding
MenB/MenC cases in unvaccinated age groups (SC2). Curve: best
estimate; shaded region: 95%CI. Observed cases are shown as black
dots. Solid black vertical lines indicate the introduction of the vacci-
nation campaign. Dashed grey vertical lines indicate the initial point

for measuring impact.

FIGURE 7.6: Vaccine impact estimates when using the full set of con-
trols (blue dots) and a subset where non-vaccine-eligible age groups

were excluded (cyan triangles). 95%CIs are shown as grey lines.

increasing trends observed, for example between 1998 to 1999 or between 2010 to
2011. The same precision is observed with 1-year-old age group, except for the last
two points before the vaccination start, which are on the edge of the 95% credible
intervals (Figure 7.7 right panel).

Both counterfactuals are characterized by a sharp increase, with the observed
meningococcal cases out of the 95% credible intervals for all three years after vacci-
nation for age group 18-51-weeks, and for the last two years for the 1-year-old age
group (this age group was not vaccinated in 2015/16).

The reduction of MenB cases in the 18-51-weeks age group was 70% (95% CI:
62%, 74%), while for the 1-year-old age group I found a reduction of 59% (95% CI:
45%, 66%). These estimates were slightly lower compared to the results obtained
using quarterly data.

MenB cases in unvaccinated age groups were the only controls selected to predict
both vaccine-eligible age groups (Figure 7.8, All the controls upper panel).

In particular, MenB cases in the 15-19-years-old age group were included in the
model with a probability Prob=0.78 to predict 18-51-weeks age group, followed by
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FIGURE 7.7: MenB (England) cases in age groups eligible for vaccina-
tion with annual data, starting from the epidemiological year 1998/99
to 2017/18. In blue, cases predicted with the synthetic control method
(curve: best estimate; shaded region: 95%CI). Observed cases are
shown as black dots. Solid black vertical lines indicate the introduc-
tion of the vaccination campaign. Dashed grey vertical lines indicate

the initial point for measuring impact.

FIGURE 7.8: Top three selected controls with highest probability of
inclusion, for 18-51w age group and 1-year-old age group in England
using annual data (left and right panels, respectively). We report re-
sults using all the controls (blue bars) and a subset where MenB cases

in non-vaccine-eligible age groups were excluded (cyan bars).
y: years; n.e.: non-eligible age group; births: average number of births in
the time period considered (1998-2018); Food pois.: Food poisoning; Scarlet f.:

Scarlet fever; C00-D48:Neoplasms.

MenB cases in 25-44-years-old (Prob=0.12). Similarly, in the 1-year-old age group
I found MenB cases in the 15-19-years-old age group with a probability Prob=0.59,
and then MenB cases in 3-4-years-old (Prob=0.32). Since MenB cases in 15-19 years
old could be responsible for the sharp increase observed post-immunization in both
age groups, I repeated the analysis excluding MenB cases from the set of controls.

In the 18-51-weeks age group, the curves were almost coincident in the pre-
intervention period, while in the post-intervention the curve predicted excluding
MenB cases from the controls did not show the same sharp increase. The reduction
of cases was indeed lower, with an impact of 60 % (95% CI: 45%, 74%).

Instead, a significant difference is visible in 1-year-old age group (Figure 7.9).
Here, removing the MenB cases from the set of controls led to wider 95% credible
intervals which included the observed points in the post-intervention period. Con-
sequently, the impact estimate was non significant (VI=52%, 95% CI: -110 %, 72%).

For consistency with section 7.5, I reported the control diseases that were most
frequently selected in the absence of MenB cases from the set of controls (Figure 7.8,
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Non-elig. MenB excluded lower panel).

FIGURE 7.9: Predictions generated by the synthetic control model
for MenB (England) disease in age groups eligible for vaccination
from the epidemiological year 1998/99 to the epidemiological year
2017/18. In blue, cases predicted with the synthetic control method
using all the controls available (SC1). In cyan, cases predicted exclud-
ing MenB/MenC cases in unvaccinated age groups (SC2). Curve:
best estimate; shaded region: 95%CI. Observed cases are shown as
black dots. Solid black vertical lines indicate the introduction of the
vaccination campaign. Dashed grey vertical lines indicate the initial

point for measuring impact.

7.7 Discussion and conclusions

Along with this chapter, I have shown the second part of my results, concerning the
MenB campaign in England.

First, the synthetic control method outperformed a simple time-trend adjustment
in terms of prediction accuracy in a negative control analysis. Despite the limited
number of time-points in the pre-intervention period and the few control diseases
available, the synthetic control precisely adjusted for supra-seasonal trends, with
lower MAE estimates in all the considered age groups (Figure 7.1).

The synthetic control method was also able to adjust for the decreasing trend
observed in vaccine-eligible age groups, with vaccine impact estimates in agreement
with a previously published study [85]. In this study, the incidence of MenB cases
in unvaccinated infants (i.e., <5 years of age), was used as a control to adjust for
trends unrelated to vaccination [85]. I found consistent results, with MenB cases in
unvaccinated age groups among the three predictors of meningococcal incidence.
In particular, MenB cases in 3-years-old age group were selected with a probability
close to 1 to predict infants of 1-year-old (Figure 7.4, All the controls upper panel).

As for the time-trend model, I would expect consistent results with the synthetic
control if there were no unexplained trends in the data. The time-trend model, how-
ever, was unable to adjust for this observed decreasing trend, thus leading to slightly
different impact estimates in both age groups (Figure 7.3) with non-significant esti-
mate in 1-year-old infants.

Despite no evidence yet of the impact of MenB vaccine on the carriage and also
considering that children do not play a key role in transmission, I could not exclude,
however, indirect protection from the vaccine. For this reason, I repeated my analy-
sis excluding this time the MenB cases in unvaccinated age groups.

The set of available infectious/non-infectious diseases was limited (Table B.2 in
Appendix B), thus leading to lower performances both in terms of goodness of fit
(i.e., DIC) and prediction accuracy (i.e., MAE) in the 1-year-old age group. Despite



56 Chapter 7. The impact of the 2015 MenB campaign in England

these differences, impact estimates were robust to the exclusion of MenB cases in un-
vaccinated age groups. Instead, I observed no difference in 18-51-weeks age group
as expected, since the observed MenB cases were explained by the intercept and
the seasonal component only and none of the control diseases had a probability of
inclusion higher than 50%.

In this circumstance, the synthetic control model failed to identify an appropriate
set of controls (Figure 7.4) and one of the possible explanations could be the low
number of both control diseases and pre-vaccine time points [131]. Here, however,
the synthetic control model was still able to produce a reliable counterfactual with
only the intercept and seasonal components (Figure 7.2, left panel).

I found interesting correlations between RSV incidence and MenB cases in the 1-
year-old age group. Associations between RSV incidence and meningococcal disease
have been previously highlighted in epidemiological studies [47].

I then assessed the vaccine impact estimates with annually aggregate data. In
this case, in addition to MenB cases in the unvaccinated age group, I was able to
collect a larger number of control diseases (Table B.3 in Appendix B). I investigated
whether the loss of information due to the annual aggregation data was balanced
by the larger number of control diseases compared to the quarterly data case study.
Here, the synthetic control model accurately reproduced the behavior of MenB in-
cidence in both age groups in the pre-vaccine period, including the sharp decrease
observed starting from the year 2000/01 (Figure 7.7).

MenB cases in unvaccinated age groups dominated in predicting IMD incidence
in infants, in particular MenB cases in 15-19-years old. In addition, in both age
groups, at least one control was selected with a probability of inclusion higher than
50% (Figure 7.8, All the controls upper panel). Removing these controls led to identi-
cal conditions in MenB cases in the 18-51-weeks age group. Instead, in the 1-year-old
age group, the two counterfactuals differed significantly, with larger credible inter-
vals and non-significant impact estimates when removing MenB cases from the set
of controls (Figure 7.9). In general, aggregating the data on an annual basis wors-
ened the performances of the synthetic control model, with lower vaccine impact
estimates and larger credible intervals compared to the evidence suggested by the
quarterly data aggregation and the study by Ladhani et al. [85]. Furthermore, the
MenB cases in 15-19 years old age group were heavily weighted in the model, and
removing them resulted in no vaccine effect in 1-year-old age group, again contra-
dicting previous results.

Several limitations could influence the results presented in this chapter. First, the
quality of the quarterly and annual data collected, since these were obtained combin-
ing different sources (Data section). Secondly, I have made numerous assumptions
to obtain MenB cases in finer age groups, specifically 18-51-weeks and 1-year-old age
groups, and this process could affect the reliability of the results. Third, I was able
to collect a limited set of both control time series and time points pre-vaccination,
which could hamper a correct adjustment of unexplained meningococcal B trends
unrelated to vaccination.

Despite these limitations, the synthetic control proved to correctly adjust for sev-
eral unexplained trends both with annual and quarterly data, for example, the sharp
decrease in incidence observed in infants starting from the year 2000/01. Besides,
the synthetic control model obtained higher prediction performances compared to
a simple time-trend model. Finally, the vaccine impact estimates were in agreement
with previously published studies [85], with the additional advantage that controls
were chosen with data-driven methods.
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Chapter 8

Conclusions

My doctoral research was motivated by the challenges in evaluating the true im-
pact of public health interventions. These challenges have been deeply detailed in
chapters 2 and 3.

In general, there are several approaches commonly employed to evaluate vaccine
impact [132], as presented in chapter 3, section 3.3. These methods rely on different
assumptions about the underlying trend in the data, how they adjust for trends un-
related to vaccination, and how many years to employ before and after vaccination
[103, 132]. Since there is not a ground-truth estimate of the vaccine impact under
study against which the different models can be compared, there is no way to defi-
nitely determine which method is the most suitable [132].

In my research study, I focused my attention on meningococcal vaccines. In
this context, low disease incidence, unknown risk factors, and unpredictable supra-
seasonal trends could hamper an objective, unbiased and rapid assessment of vac-
cine impact.

Here, I have shown that synthetic controls 1) adjust for non-trivial changes in
IMD incidence; 2) outperform a simple before-after time trend model in a negative
control analysis; 3) generalize approaches where controls are arbitrarily selected by
the analyst, and 4) do not require the use of controls of the same disease, which
may not be available, sufficiently common, or even inappropriate because of indirect
effects.

I re-analyzed data from two large infant immunization campaigns in Brazil (against
MenC disease) and in England (against MenB). The two settings differed in many
aspects as pointed out in chapter 2, including meningococcal serogroup, vaccine
type, disease seasonality patterns, age, and socio-demographic features of the pop-
ulation, and public health system. Besides, I relied on observational data collected
from national public health authorities, which could lack in reporting fidelity and
could undergo substantial modifications during time (details in the Data section in
both chapters 6 and 7). Also, in England, the data were aggregated on a quarterly
basis and the time-points available to build the fit were ∼ 1/3 compared to Brazil.
Nevertheless, the synthetic control method was in good agreement with the original
studies, where vaccine impact was assessed employing two different methodologies
[78, 85].

I tested the performances of a time-trend model, where disease incidence pre-
and post-vaccination was compared (chapter 5, section 5.3) [3]. I ran both the syn-
thetic control and the time-trend models on non-vaccine-eligible age groups, in a
negative control setting. In this case, since I assumed indirect effects negligible, I
expected my predictions to be close to the observed points. I found that the time-
trend approach failed to explain unexpected changes in trends, observed both in
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Brazil and England. Its predictive accuracy was lower when compared to the syn-
thetic control and led to different impact estimates when tested on vaccine-eligible
age groups.

Selecting the most suitable control variables is crucial when predicting infectious
diseases like IMD, given the large number of possible clinical, epidemiological, so-
cial, and environmental factors that could influence its behavior [11]. Some of these
factors are probably strictly related to the pathogen studied, while others are rea-
sonably in common with other diseases (chapter 2). For this reason, I included, as
candidate controls, infectious and non-infectious disease cases in infants of the same
age as those vaccinated, following the approach previously applied to pneumococ-
cal vaccines [7]. Besides, I included MenB and MenC cases in older age groups that
were not eligible for the vaccine program, similar to the original analyses run in Eng-
land and Brazil [78, 85]. I then investigated which control diseases were selected to
compose the synthetic control.

MenB and MenC cases in non-eligible age groups were consistently among the
most frequently selected controls in England and Brazil, respectively, though in Eng-
land the probability of inclusion associated with MenB controls was significantly
larger compared to what was observed in Brazil. I then examined the non-IMD dis-
eases that were associated with infant IMD with the highest probability. RSV disease
and measles were among the best predictors in England for 1-year-old and 18–51
weeks-old infants, respectively. Evidence that IMD could be associated with RSV
and measles cases have been reported in epidemiological studies [47, 138]. Also, a
recent study found that measles could reduce humoral immune memory, thereby
generating potential vulnerability to future infections [139]. Interestingly, I found
similar evidence in Brazil, where bronchitis/bronchiolitis and other acute respira-
tory infections appeared to be good predictors of MenC cases. Both the time series
included RSV disease cases [7, 140].

The synthetic control model has some limitations. Using as controls IMD time
series of cases in non-vaccine-eligible age groups comes with inherent risks of gen-
erating biased impact estimates. Non-vaccine-eligible controls will likely differ in
age compared to the target group, and adjustment by stratifying the population by
age may, therefore, be required. Meningococcal vaccination may also indirectly pro-
tect unvaccinated subjects [60, 111], so a reduced risk of IMD in non-vaccinated age
groups would introduce bias and underestimate the vaccine impact [1, 104].

Dynamical models allow to account for such indirect effects [97], but accurate
data on carriage prevalence of specific serogroups and between-persons contact rates,
strictly needed to parametrize such models, are usually unavailable. However, in
both settings investigated, possible indirect effects were negligible due to the low
carrier rate in the vaccinated age groups and the low fraction of vaccinated subjects
at the time of my study. As a precaution, I nevertheless re-run all the analyses ex-
cluding candidate MenB and MenC cases in non-vaccine-eligible age groups from
the set of controls. Results were robust to this exclusion.

The risk of incurring biases is reduced compared to other methods, but fully
adjusting for any possible confounder remains a challenge [7]. It is therefore always
recommended to compare several methods together to increase the robustness of the
results and to detect a possible source of bias [103].

In some circumstances, the synthetic control model could fail to identify an ap-
propriate set of controls, i.e. with 18–51-weeks-old infants in England. Since there
were no marked trends in the data, the synthetic control model was still able to pro-
duce a reliable counterfactual with only the intercept and seasonal components.
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In general, noisy and sparse control time series could be responsible for biased
results from the synthetic control, thus leading to non-significant vaccine impact
estimates [131]. In such situations, I tested both the performances of the STL+PCA
model, which represents a solution for data sparsity [131], and I also tried different
data aggregations, both spatially (in Brazil, at a national, regional and state level)
and temporally (with annual, quarterly, and monthly data) to improve the accuracy
of impact estimates.

Both in Brazil and England, I found that aggregating data with lower resolution,
i.e. annual or quarter data depending on the context, did not improve the perfor-
mances (chapter 6, section 6.6, and chapter 7, section 7.6). I did not detect, however,
a successful and general pattern when dealing with sparsity issues. The STL+PCA
was successful in certain cases, but often its results were comparable with the syn-
thetic control ones. A further attempt with zero-inflated Poisson (ZIP) models could
be done to address the limitations of sparseness in the number of cases [141, 142].

In conclusion, in my research, I provided a rigorous procedure to investigate
the validity of meningococcal vaccine impact studies with synthetic controls (chap-
ter 5, section 5.8), discussing, among others, predictive accuracy, indirect effects,
meningococcal predictors, and different temporal/spatial aggregation to evaluate
vaccine impact.

I showed that the synthetic control is a promising approach for estimating the
impact of meningococcal immunization programmes. Its general applicability in
different contexts allows an objective comparison between vaccines and immuniza-
tion strategies, offering a valid alternative for public health decision making. Present
results suggest that it could be successfully applied to evaluate meningococcal im-
munization campaigns targeting adolescents and adults, where indirect effects could
hamper a correct assessment of the overall impact. I would expect the synthetic con-
trol method to successfully adjust for unexplained trends, relying on non-IMD con-
trols only. Besides, the SC approach is quite flexible, and it could be applied to any
infectious disease, of course using control time series not affected by the interven-
tion. Conversely, the use of methods exclusively based on the comparison of pre-
versus post-immunization IMD incidence data should be counter checked to avoid
possible bias. Also, the intuition that IMD could share some causal factors with
measles and RSV would deserve further investigation.
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Appendix A

Additional information on the
synthetic control method

A.1 Main ingredients of the state-space models

The Kalman filter, the Kalman smoother, and Bayesian data augmentation are the
key tools for working with state-space models [119, 143]. The Kalman filter is a
method developed to estimate the current state of a dynamical system, given the
observations so far. In this context, it is applied to estimate the values for the state
components αt. Given a model and a set of observed variables y1, .., yt, the Kalman
filter produces successive predictions p(αt+1|y1:t) conditional on the past and con-
current observations. It is actually the forward algorithm. There is also the backward
algorithm, i.e. the Kalman smoother, which allows to refine estimates of previous
states, in the light of later observations. With the Kalman smoother, the output of
the Kalman filter is updated to produce p(αt|y1:n), where n is the length of the time-
series, at each value of t. Since all components of the model are Gaussian, all con-
ditional distributions are multivariate normal distributions parametrized by their
mean and variance [119].

Finally, the third ingredient is Bayesian data augmentation: y = y1:n and α = α1:n
represent the full set of observed and latent data. With Bayesian data augmentation,
simulations from p(α|y) are produced using the Durbin and Koopman method [120,
144]. It is not possible to simulate each αt from p(αt|y) since the serial correlation
between αt and αt+1 must be respected (recall Fig. 4.1). With the simulation smoother
developed by Durbin and Koopman [144], it becomes straightforward to simulate
random noise with the same covariance as p(α|y) to which the appropriate mean is
added, by means of the "state mean smoother" [119, 120, 144].

A.2 Posterior definition for β, σ2 and δ

For each t=1,..,n in the pre-intervention period, let ỹt define yt with only the regres-
sion component and with the time series components subtracted away, so ỹ1:n =
(ỹ1, .., ỹn). The idea is to simulate from p(δ, β, σ2

ε |ỹ1:n). This term can be factorized
into p(δ|ỹ1:n)p(1/σ2

ε |δ, ỹ1:n)p(β|δ, σ2
ε , ỹ1:n) [105]. Conditional on δ, the joint poste-

rior distribution for β and σ2 can be derived from standard conjugacy formulas of
Bayesian linear regression, (here with sparsity hypothesis over the coefficients) [105,
119, 121]:

βδ|σε, δ, ỹ1:n ∼ N(β̃δ, σ2
ε (V

−1
δ )−1) 1/σ2

ε |δ, ỹ1:n ∼ Ga(
N
2

,
Sδ

2
) (A.1)

with parameters:
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V−1
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δ ỹ1:n + Σ−1
δ bδ)

N = νε + n Sδ = sε + ỹT
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(A.2)

Then, δ can be obtained by sampling from the marginal distribution p(δ|ỹ1:n),
integrating out β and 1/σ2

ε because of conjugacy:

δ|ỹ1:n ∼ C(ỹ1:n)
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(A.3)

where C(ỹ1:n) is a normalizing constant that depends on ỹ1:n but not on δ. Equa-
tion (A.3) is used in a Gibbs sampling algorithm that draws each δi given δ−i (the
elements of δ other than δi). Each full conditional distribution is proportional to
equation (A.3), and δi can only assume two possible values, i.e. 0 or 1. Thus, the
posterior distribution can be simulated efficiently by drawing from p(δ|ỹ1:n), and
then drawing from the well known closed form p(βδ, σ−2|δ, ỹ1:n) [105, 119, 145].

A.3 Estimating the model using Markov Chain Monte Carlo

The parameter θ defines the collection of model parameters, other than β and σ2,
while φ = (θ, β, σ2, α). The complete data posterior distribution is defined as [105,
119, 145]:

p(φ, α|y1:n) ∝ p(φ)p(α0)
n

∏
t=1

(yt|αt, φ)p(αt|αt−1, φ) (A.4)

With Markov Chain Monte Carlo, the posterior distribution can be efficiently
simulated following the three steps summarized by Scott and collaborators [119]:

• Simulate the latent state α from p(α|y, θ, β, σ2
ε ) using the simulation smoother

from Durbin and Koopman [144].

• Simulate θ ∼ p(θ|y, α, β, σ2
ε ).

• Simulate β and σ2
ε from a Markov chain with stationary distribution

p(β, σ2
ε |y, α, θ).

Repeatedly cycling through the three steps above yields a sequence of draws
φ1, .., φn, from a Markov chain with stationary distribution p(φ|y), which represents
the posterior distribution of φ given y. Step 2, i.e. the draw of θ, depends on which
state component is selected and it is often trivial. The draw in step 3 is done using
a Gibbs sampling algorithm: each element of δ is drawn from its full conditional
distribution, obtained by equation (A.3) (recall that each δ has only two possible
values). Finally, after one sweep of all the variables in random order, βδ and σ2

ε

are drawn from their closed form full conditional distributions given in equation
(A.1) [105, 119, 145]. This algorithm is known as Stochastic Search Variable Selection
(SSVS) [105, 119, 122, 145].

After simulating the model parameter φ and the state vector α, the goal is to
simulate from the posterior predictive distribution p(ȳn+1:m|y1:n, x1:m), to obtain the
counterfactual over the post-intervention period [105].
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A.4 Metrics used to assess the quality of predictions produced
by the synthetic control model

To evaluate the goodness of fit in the pre-intervention period, I used the Deviation
Information Criterion (DIC) metric; whereas I used the Mean Absolute Error (MAE)
as a measure of prediction accuracy in the post-intervention period.

The definition of all the metrics is presented below, given that Yi is the observed
target time series at the time i and Ypredi is the predicted target time series at the
time i.

• The DIC metric trades off a measure of model adequacy against a measure of
complexity and is defined as: DIC = D + pD with θ the set of parameters,
D = E[−2logp(Y|θ)] the posterior mean of the deviance and pD the effective
number of parameters.

• The MAE is a measure of the average of the absolute errors between predicted
and true values and is defined as: MAE = 1

n ∑n
i=1 |Yi −Ypredi|

A.5 Additional information on the STL+PCA model

The seasonal-trend decomposition procedure based on locally weighted scatterplot
smoothing (STL method) decomposes the time series into three components: trend,
seasonality, and the remaining variation in the data [131, 133]. The control time
series j at month/quarter j can then be written as:

ln(ControlDiseasejt) = Tjt + Sjt + Rjt (A.5)

with Tjt, Sjt, and Rjt being the trend, annual seasonal, and remainder components,
respectively [131]. The principal component analysis (PCA) creates uncorrelated
projections that explain the maximum variability in the data overall [131, 146]. PCA
is applied to the extracted trends for the control time series and only the first princi-
pal component PC1 is kept to be included in the regression model.

The regression model is specified as follows, with meningococcal cases following
a Poisson regression yt ∼ Poisson(λt), with mean λt [130, 131]:

log(λt) = b0 + ∑
k

ck ∗ I[monthk = m(t)] + β1 ∗ PC1t + bc(t) (A.6)

where t = 1,2,..., is the total number of time points; mt is a function that maps a time
point to the corresponding calendar month; ck represents the month k regression
coefficient; I[.] represents the indicator function; b0 is an intercept; β1 is the regres-
sion coefficient for the first principal component (PC1); and bc(t) is an observation
specific random intercept.
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Appendix B

Time series used as components of
the synthetic control model

B.1 Meningococcal C campaign in Brazil

The complete list of monthly control time series used in Brazil is shown in Table B.1.
Control time series in Brazil were publicly available [7]. Besides, I collected MenB
time series in the non-vaccine-eligible age groups from the SINAN website [134].

Meningococcal C cases are in the age groups: 5-9; 10-14; 15-19; 20-39; 40-59-years-
old. All the other control diseases are in the age groups <1 and 1-4-years-old.

TABLE B.1: Time series used as components of the synthetic control
in Brazil

Grouping scheme ICD-10 Description Exclusions
MenC Meningococcal C cases in non vaccine-eligible age groups
ICD-10 chapters

C00-D48 Neoplasms A40.3, B95

D50-89
Diseases of blood and blood-forming organs
and certain disorders involving the immune mechanism

E00-99 Endocrine, nutritional, metabolic disorders
H00-99_SY Diseases of the ear and mastoid process H10, H65, H66
I00-99 Diseases of the circulatory system
K00-99 Diseases of the digestive system
L00-99 Diseases of the skin
M00-99 Diseases of the musculoskeletal system
N00-99 Diseases of the genitourinary system
P00-99 Perinatal diseases

Q00-99 Congenital malformations, deformations and chromosomal
abnormalities

R00-99 Symptoms, signs and abnormal clinical and laboratory findings,
not elsewhere classified

S00-T99 Injury, poisoning and consequences of external causes
U00-99 Codes for special purposes
V00-Y99 External causes
Z00-99 Factors influencing health status and contact w/ health workers

Other grouped outcomes
A10_B99_nopneumo Certain infectious and parasitic diseases, except intestinal A40.3, B95
B20-24 HIV
E10-E14 Diabetes
E40-E46 Malnutrition
I60-I64 Stroke

J20-J22 Bronchitis, bronchiolitis and unspecified acute lower respiratory
infection

P05-P07 Premature delivery and low birth weight

ACH_NOJ All nonrespiratory hospitalizations
J00–J99, F and O
chapters

Specific outcomes
A17 Tuberculosis of nervous system
A18 Tuberculosis of other organs
A19 Miliary tuberculosis
A41 Other septicemia
B34 Viral infection of unspecified site

B96
Other specified bacterial agents as the cause of diseases classified
to other chapters

B97 Viral agents as the cause of diseases classified to other chapters
B99 Other and unspecified infectious diseases
K35 Appendicitis
K80 Cholelithiasis
N39 Urinary tract infection (UTI)
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B.2 Meningococcal B campaign in England

The complete list of quarterly and annual control time series used in England are
shown in Tables B.2 and B.3. Control time series in England were publicly available
from the PHE website [147] and historical archives [137]. Besides, I collected MenB
time series in the non-vaccine-eligible age groups from the PHE website [136].

Meningococcal B cases are in the age groups: 5-9; 10-14; 15-19; 20-24; 25-44; 45-64;
65+ years-old. All the other control diseases are in the age groups <1 and 1-4-years-
old.

TABLE B.2: Quarterly time series used as components of the synthetic
control in England

Description
Meningococcal B cases in non vaccine-eligible age groups [136, 137]
Respiratory Syncytial Virus (RSV) [148]
Pertussis [149]
Measles and mumps [150]
Meningococcal C, W, Y cases [136, 137]

TABLE B.3: Annual time series used as components of the synthetic
control in England

Grouping scheme ICD-10 Description
MenB Meningococcal B cases in non vaccine-eligible age groups [136, 137]
Hep A Hepatitis A [151]
HepC Hepatitis C [152]
HIV Human Immunodeficiency Virus [153]

Measles, mumps and rubella [150]
Food poisoning [154]
Malaria [154]
Cholera [154]

TB Tubercolosis [154]
Scarlet Fever [154]
Whooping cough [154]

births Yearly average number of births from 1998 to 2018 [155]
MenC and MenY Meningococcal C and Y [136, 137]
ICD-10 chapters

C00-D48 Neoplasms [156]
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Appendix C

Supplementary figures

FIGURE C.1: Meningococcal C incidence per 100000 population in in-
fants <5 years old at a state level in Brazil before vaccine introduction

(Jan 2007 - Oct 2010).

TABLE C.1: Model size estimates for each set of controls and age
groups eligible for vaccination in Brazil.

Age group Set of controls Model size
<1 year All the controls 2.31

Non-elig. MenC excluded 2.43
1-4 years All the controls 1.9

Non-elig. MenC excluded 1.68
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FIGURE C.2: Comparison between predictions generated by syn-
thetic control and time-trend models for MenC disease (São Paulo
state, Brazil) in the 15–19 (top), 10-14 (middle) and 5-9 (bottom) years
old non-vaccinated age groups. In purple, cases predicted with the
synthetic control model using all the controls available (SC1) (curve:
best estimate; shaded region: 95%CI). In cyan, cases predicted ex-
cluding MenC cases in unvaccinated age groups (SC2) (curve: best
estimate; shaded region: 95%CI). In red, cases predicted with a time-
trend model (curve: best estimate; shaded region: 95%CI). Observed
cases are shown as black dots. Vertical black lines divide each plot
into two parts: on the left side, data used to fit models; on the right

side, data used to evaluate the predictions (MAEs shown).
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FIGURE C.3: Vaccine impact estimates using MenC cases in non-
vaccinated age groups (specifically, 5–9, 10–14 and 15–19 years-old
age groups) in Brazil (panel A) and São Paulo (panel B) as targets of

the synthetic control model

FIGURE C.4: Vaccine impact estimated with the synthetic control
model (top panel), the STL+PCA model (middle panel) and previ-
ously published estimates from Moraes et al [78] (bottom panel), com-
paring the observed and predicted number of cases in 2011-2013 by
age group and region. IMD MenC cases are grouped on a quarterly
basis. 95%CIs are shown as grey lines. Abbreviations: C, center-west;

S, south; SE, southeast; NE, northeast.
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FIGURE C.5: Vaccine impact estimates using MenB cases in non-
vaccinated age groups (specifically, 5–9, 10–14 and 15–19 years-old

age groups) in England as targets of the synthetic control model

FIGURE C.6: Vaccine impact estimates when using the synthetic con-
trol model (blue dots) and the time trend Model (red dots) in Brazil

(panel A) and England (panel B).

TABLE C.2: Model size estimates for each set of controls and age
groups eligible for vaccination in São Paulo state, Brazil.

Age group Set of controls Model size
<1 year All the controls 2.56
1-4 years All the controls 3.00

TABLE C.3: Model size estimates for each set of controls and age
groups eligible for vaccination in England with quarterly data.

Age group Set of controls Model size
18-51 weeks All the controls 1.00

Non-elig. MenC excluded 1.01
1 year All the controls 1.65

Non-elig. MenC excluded 1.97
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TABLE C.4: Model size estimates for each set of controls and age
groups eligible for vaccination in England with annual data.

Age group Set of controls Model size
18-51 weeks All the controls 2.14

Non-elig. MenC excluded 2.40
1 year All the controls 2.24

Non-elig. MenC excluded 2.40
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