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1. Introduction

The precision physics programme at the Large Hadron Collider (LHC) [1] and at the forth-
coming Electron Ion Collider (EIC) [2] is pushing the frontier of the calculation of QCD radiative
corrections towards the Next-to-Next-to-Next-to Leading Order (N3LO) accuracy [3]. In recent
years, there has been significant progress towards the calculation of the scale evolution of the Parton
Distribution Functions (PDFs) to N3LO, which is one of the building blocks of the collider observ-
ables together with the partonic cross sections. Plenty of information is now available regarding
the N3LO splitting function that governs the evolution of the flavour non-singlet PDFs: its leading
[4] and next-to-leading [5] contributions in the limit of large number of quark flavours, 𝑛 𝑓 , are
known analytically, as well as the QED-like term 𝑛 𝑓𝐶

3
𝐹

[6]; the leading colour (planar) limit was
computed in ref. [7]. In addition, the first 11 even Mellin moments (𝑁 = 22) of the non-singlet
splitting function are available [8] and can be used to construct high-precision approximations of
this splitting functions in a wide region of the LHC and EIC phase space [7].

The evolution of the flavour singlet PDFs, namely the gluon density g(𝑥, 𝜇2) and the combina-
tion of quark densities

qs(𝑥, 𝜇2) =
∑︁

𝑖=𝑢,𝑑,𝑠

𝑓𝑖 (𝑥, 𝜇2) + 𝑓𝑖 (𝑥, 𝜇2), (1)

with 𝑓𝑖 labelling the PDF of the quark 𝑖, is governed by a 2-by-2 matrix of splitting functions

𝜇2 𝑑

𝑑𝜇2

(
qs(𝑥, 𝜇2)
g(𝑥, 𝜇2)

)
=

∫ 1

𝑥

𝑑𝑦

𝑦

(
𝑃qq(𝑦) 𝑃qg(𝑦)
𝑃gq(𝑦) 𝑃gg(𝑦)

) (
qs( 𝑥𝑦 , 𝜇

2)
g( 𝑥

𝑦
, 𝜇2)

)
, (2)

with the perturbative expansion

𝑃ij(𝑥) =
∑︁
𝑘>0

𝑎𝑘 𝑃
(𝑘−1)
ij , 𝑎 =

𝛼𝑠

4𝜋
. (3)

The N3LO flavour singlet splitting functions 𝑃
(3)
ij are known analytically in the large-𝑛 𝑓 limit

[5, 9, 10]. Recently, the analytic form of the terms 𝑛2
𝑓

of 𝑃 (3)
qq [11] and 𝑃

(3)
gq [12] has been computed

too. The first 5 even Mellin moments have been calculated using the structure functions in deep-
inelastic scattering [13, 14]. A different approach relies on the relation between the Mellin moments
of the PDFs and the Operator Matrix Elements (OMEs) [15] of the gauge invariant operators of
leading twist, defined as the difference between the canonical mass dimension of the operator and
its spin 𝑁 . At twist 2 we have

O (𝑁 )
q =

1
2
�̄� /Δ(𝑖Δ.𝐷)𝑁−1𝜓, (4)

O (𝑁 )
g =

1
2
(Δ𝜌𝐹𝑎

𝜇𝜌) (𝑖Δ.𝐷)𝑁−2 (Δ𝜎𝐹
𝑎 𝜇𝜎), (5)

where Δ𝜇 is an arbitrary lightlike vector, 𝐹𝜇𝜈
𝑎 = 𝜕𝜇𝐴𝜈

𝑎 − 𝜕𝜈𝐴
𝜇
𝑎 + 𝑔 𝑓 𝑎𝑏𝑐𝐴

𝜇

𝑏
𝐴𝜈
𝑐 is the field strength

tensor and 𝐷
𝜇

𝑎𝑏
= 𝛿𝑎𝑏 − 𝑖𝑔𝐴

𝜇
𝑐 (T𝑐)𝑎𝑏 is the covariant derivative with T𝑐 generator of the gauge

group: the quark operator Oq has (T𝑐)𝑎𝑏 = (𝑇𝑐
𝐹
)𝑎𝑏 and the gluon operator Og has (T𝑐)𝑎𝑏 = 𝑖 𝑓 𝑎𝑐𝑏.

The anomalous dimensions of Oq and Og agree, up to a sign, with the moments of the splitting
functions

𝛾
(𝑘 )
ij (𝑁) = −

∫ 1

0
𝑑𝑥 𝑥𝑁−1 𝑃

(𝑘 )
ij (𝑥). (6)
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In minimal subtraction, the anomalous dimensions 𝛾ij(𝑁) are extracted from the single pole of the
renormalisation constants

O (𝑁 )
i = 𝑍ij(𝑁)O (𝑁 ) ,bare

j . (7)

Indeed, using the 𝜖-expansion 𝑍ij(𝑁) = 𝛿ij +
∑∞

𝑘=1
𝛿𝑍

(𝑘)
ij (𝑁 )
𝜖 𝑘 , one has

𝛾ij(𝑁) = 𝑎
𝑑

𝑑𝑎
𝛿𝑍

(1)
ij (𝑁). (8)

In turn, 𝑍ij is obtained by renormalising the off-shell OMEs Aij = ⟨ j(𝑝) |𝑂i | j(𝑝)⟩, with i, j = q, g,
by imposing

𝑍j

𝑍ijAbare
jj (𝑔0, 𝜉0) +

∑︁
k≠j

𝑍ikAbare
kj (𝑔0, 𝜉0)

 = finite, (9)

where 𝑍j indicates the field strength renormalisation, if j = g, or the quark wave function renor-
malisation, if j = q, and 𝑔0, 𝜉0 are the bare coupling and gauge parameter. The sum over k in
eq. (9) not only includes the gauge invariant operators Og and Oq, but it must extend to a set of
unphysical operators [16], often dubbed aliens. These vanish when inserted in physical S-matrix
elements, but they contribute to the off-shell OMEs. The alien operators that enter eq. (9) at two
loops were determined long ago [17, 18]. However, the (off-shell) renormalisation of Og and Oq

beyond two-loop level has been developed only recently [19–21].
Sections 2 and 3 summarise the construction of the alien operators and the renormalisation of

the physical operators in Yang Mills and in QCD, respectively. This step provides the necessary
Feynman rules to compute all the OMEs Akj that contribute to eq. (9). The calculation of such
OMEs boils down to evaluating 2-point integrals, which can by automated up to four-loop order by
using the package Forcer [22], written in FORM [23–25].

The second ingredient of eq. (9) is the mixing among operators, due to the off-diagonal elements
𝑍ik. Such mixing can be interpreted diagrammatically in terms of the operation Z, which extract
the UV counterterm of a Feynman diagram using the Bogoliubov R-operation. The counterterm of
a general diagram featuring the insertion of the gauge invariant operators typically corresponds to
a sum over several different operators with appropriate renormalisation constants, as shown below

Z
[ g ]

∈
∑︁

k
𝑍gk · k

. (10)

In order to compute the mixing renormalisation constants 𝑍ik, as in the example above, we must
renormalise all the divergent Green functions that feature an insertion of O𝑞 and Og, by imposing
conditions analogous to eq. (9), see [19, 20]. The calculation of these off-shell Green functions at
multiloop level is far from trivial and is not automated beyond the 2-point case, mentioned above.
This introduces a potential bottleneck in the determination of the anomalous dimensions.

2. The alien operators in Yang Mills theory

The alien operators that mix with the gluon operator up to four loops in Yang Mills theory were
determined in ref. [20]. The latter builds upon general theorems [26, 27] that show that the aliens

3
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receive contributions from Equation of Motion (EOM) and BRST exact operators. The former can
be generated from the gauge invariant part of the Yang Mills Lagrangian via field redefinitions

L = −1
4
𝐹𝑎;𝜇𝜈𝐹𝑎

𝜇𝜈 + 𝑐gOg −→
𝐴→𝐴+𝛿𝐴

L + OEOM, (11)

where 𝛿𝐴 is the general field transformation of maximal twist

𝛿𝐴𝑎
𝜇 = Δ𝜇G𝑎 (Δ.𝐴𝑎,Δ.𝜕Δ.𝐴𝑎, . . . ), (12)

yielding

O (𝑁 )
EOM ≡ (𝐷.𝐹)𝑎 G𝑎 = (𝐷.𝐹)𝑎

[
𝜂 𝜕𝑁−2𝐴𝑎 + 𝑔 𝑓 𝑎𝑎1𝑎2

∑︁
𝑖1+𝑖2=𝑁−3

𝜅𝑖1𝑖2 (𝜕𝑖1 𝐴𝑎1) (𝜕𝑖2 𝐴𝑎2) (13)

+ 𝑔2
∑︁

𝑖1+𝑖2+𝑖3
𝑁−4

(
𝜅
(1)
𝑖1𝑖2𝑖3

𝑓 𝑎𝑎1𝑧 𝑓 𝑎2𝑎3𝑧 + 𝜅
(2)
𝑖1𝑖2𝑖3

𝑑
𝑎𝑎1𝑎2𝑎3
4 + 𝜅

(3)
𝑖1𝑖2𝑖3

𝑑
𝑎𝑎1𝑎2𝑎3

4̂ 𝑓 𝑓

)
(𝜕𝑖1 𝐴𝑎1)..(𝜕𝑖3 𝐴𝑎3)

+ 𝑔3
∑︁

𝑖1+..+𝑖4
𝑁−5

(
𝜅
(1)
𝑖1...𝑖4

( 𝑓 𝑓 𝑓 )𝑎𝑎1𝑎2𝑎3𝑎4 + 𝜅
(2)
𝑖1...𝑖4

𝑑
𝑎𝑎1𝑎2𝑎3𝑎4
4 𝑓

)
(𝜕𝑖1 𝐴𝑎1)..(𝜕𝑖4 𝐴𝑎4) +𝑂 (𝑔4)

]
,

where we use the notation Δ.𝐴𝑎 ≡ 𝐴𝑎 (and similarly for the other Lorentz tensors) and where

( 𝑓 𝑓 𝑓 )𝑎𝑎1𝑎2𝑎3𝑎4 = 𝑓 𝑎𝑎1𝑏 𝑓 𝑏𝑎2𝑐 𝑓 𝑐𝑎3𝑎4 , 𝑑
𝑎𝑎1𝑎2𝑎3𝑎4
4 𝑓

= 𝑑
𝑎𝑎1𝑎2𝑏
4 𝑓 𝑏𝑎3𝑎4 ,

𝑑
𝑎𝑎1𝑎2𝑎3

4̂ 𝑓 𝑓
= 𝑑

𝑎𝑎1𝑏𝑐
4 𝑓 𝑏𝑎2𝑑 𝑓 𝑑𝑎3𝑐 − 𝐶𝐴

3
𝑑
𝑎𝑎1𝑎2𝑎3
4 . (14)

In the equations above, 𝑑𝑎𝑏𝑐𝑑4 is the symmetrised trace of the generators of the gauge group in the
adjoint representation. The coefficients 𝜂, 𝜅𝑖 𝑗 . . . in eq. (13) play the role of coupling constants,
one for each operator. The contributions of O(𝑔4) to eq. (13) are given in ref. [20].

Notably, the operator OEOM breaks the gauge invariance of the Lagrangian L. However, the
extended Lagrangian in eq. (11) retains the symmetry under the generalised gauge transformation
[17, 20], 𝐴𝑎

𝜇 → 𝐴𝑎
𝜇 + 𝛿𝜔𝐴𝑎

𝜇 + 𝛿𝜔𝐴𝑎
𝜇, with

𝛿𝜔𝐴𝑎
𝜇 = 𝐷𝑎𝑏

𝜇 𝜔𝑏, (15)

𝛿𝜔𝐴𝑎
𝜇 = −Δ𝜇

(
𝛿𝜔G𝑎 − 𝑔 𝑓 𝑎𝑏𝑐G𝑏𝜔𝑐

)
. (16)

The first equation defines the standard gauge transformation. The second equation is its generalisa-
tion, proportional to the lightlike source Δ𝜇. By applying the BRST method [28, 29], eqs. (15) and
(16) define generalised BRST transformations

𝑠(𝐴𝑎
𝜇) = 𝐷𝑎𝑏

𝜇 𝑐𝑏, (17)

𝑠(𝐴𝑎
𝜇) = −Δ𝜇

(
𝑠(G𝑎) − 𝑔 𝑓 𝑎𝑏𝑐G𝑏𝑐𝑐

)
, (18)

where it can be shown that the operator 𝑠′ = 𝑠 + 𝑠 is nihilpotent [20]. Therefore, eqs. (17) and (18)
are employed to complete the Lagrangian in eq. (11) with the appropriate gauge-fixing and ghost
terms. Eq. (17), which is independent on Δ, gives the standard BRST construction of the gauge
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fixing and ghost terms of the Yang-Mills Lagrangian [28, 29]. Eq. (18) generates the ghost operator
of leading twist

O (𝑁 )
𝐺

≡ 𝑠

(
𝑐𝑎𝜕𝜇𝐴𝑎

𝜇

)
= 𝑐𝑎𝜕

(
𝑠 (G𝑎) − 𝑔 𝑓 𝑎𝑏𝑐 G𝑏 𝑐𝑐

)
, (19)

where G is the same polynomial in the field and its derivatives that appears in OEOM, eq. (13).
The complete set of alien operators is given by the sum of OEOM and O𝐺 in eqs. (13) and

(19), respectively. In particular, the terms multiplying each coupling constant, e.g. 𝜂, 𝜅ij for every
allowed value of i, j, .., should be regarded as parts of the same alien, consisting of a gluonic
and a ghost contribution. However, it turns out [20] that not all the coefficients in eq. (13) are
independent, because there are relations imposed by the symmetry of the colour factors in eq. (13)
and by the so-called antiBRST symmetry [30–33]. In [20], such relations were derived and solved
for every fixed value 𝑁 ≤ 16, now extended to 𝑁 ≤ 20, in order to determine the relevant bases of
independent alien operatators, which are closed under renormalisation [26]. Notably, the basis at
𝑁 = 2(𝑁 = 4) has only 1(2) aliens to all orders in perturbation theory. This was checked explicitly
by computing the anomalous dimensions 𝛾 (3)

gg (2) and 𝛾
(3)
gg (4) [20]. As we increase 𝑁 , depending

on the loop order, the number of independent aliens increases, because of two effects. On the
one hand, there are more terms that contribute to the sums in eq. (13). On the other hand, the
operators involving many gluons, e.g. those associated to the couplings 𝜅

(1)
𝑖 𝑗𝑘

, start contributing
only at higher loop order, due to their suppression in the coupling constant 𝑔. As check on the
construction of the aliens, we verified that the three-loop alien counterterms computed for all-𝑁 in
ref. [21] have a unique decomposition in every basis up to 𝑁 ≤ 20. The proliferation of aliens is not
an issue for the calculation of the OMEs Akj in eq. (9), since this is already automated. More severe
computational issues potentially arise in the calcultion of the mixing constants 𝑍ik at multiloop
level, when 𝑘 is an alien involving many gluons. Indeed, as discussed at the end of sec. 1, this
requires the renormalisation of multi-leg Green functions. However, this complication is largely
absent in QCD, when we consider the fermionic contributions. For these, the calculation of the
anomalous dimensions can be performed to four-loop order, as discussed in the next section.

3. From Yang Mills to QCD

The construction of the alien operators for QCD follows similar steps to those described in
sec.2. The EOM operators of eq. (13) are modified by including the quark term in the equation
of motion. It is convenient to organise the EOM operators in classes of operators featuring an
increasing number of external gluons

𝑂 𝐼
EOM = 𝜂(𝑁)

(
𝐷.𝐹𝑎 + 𝑔𝜓 /Δ 𝑡𝑎𝜓

) (
𝜕 𝑁−2𝐴𝑎

)
, (20)

𝑂 𝐼 𝐼
EOM = 𝑔 𝑓 𝑎𝑎1𝑎2

(
𝐷.𝐹𝑎 + 𝑔𝜓 /Δ 𝑡𝑎𝜓

) ∑︁
𝑛1,𝑛2≥0

𝑛1+𝑛2=𝑁−3

𝜅
(1)
𝑛1 𝑛2

(
𝜕 𝑛1 𝐴𝑎1

) (
𝜕 𝑛2 𝐴𝑎2

)
, (21)

where the vertex of lowest valence in𝑂 𝐼
EOM has 2 gluons, the one in𝑂 𝐼 𝐼

EOM has 3 gluons and similarly
for class 𝐼 𝐼 𝐼, involving the terms multiplying 𝜅

(1)
𝑖1𝑖2𝑖3

, 𝜅 (2)
𝑖1𝑖2𝑖3

in eq. (13), etc. Besides the prefactor
featuring the equation of motion of the gauge invariant part of the Lagrangian, the operators in
eqs. (20) and (21) are identical to the Yang Mills case, eq. (13). Indeed, the polynomial G that

5



P
o
S
(
L
L
2
0
2
4
)
0
5
8

Anomalous dimensions of leading twist operators to four loops Giulio Falcioni

defines OEOM cannot include monomials in the quark/antiquark fields, because these would give
subleading twist. Hence, the polynomial G is not modified going from Yang Mills to QCD. Since
the ghost alien operators are defined in terms of the polynomial G, see eq. (19), the ghost operators
of QCD are also identical to the Yang Mills ones and they are organised as follows

𝑂 𝐼
c = −𝜂(𝑁) (𝜕 𝑐 𝑎)

(
𝜕 𝑁−1𝑐𝑎

)
, (22)

𝑂 𝐼 𝐼
c = −𝑔 𝑓 𝑎𝑎1𝑎2 (𝜕 𝑐 𝑎)

∑︁
𝑛1,𝑛2≥0

𝑛1+𝑛2=𝑁−3

𝜂
(1)
𝑛1,𝑛2

(
𝜕 𝑛1 𝐴𝑎1

) (
𝜕 𝑛2+1𝑐𝑎2

)
, (23)

where the constants 𝜂 (1)𝑛1,𝑛2 are written in terms of 𝜂(𝑁) and 𝜅
(1)
𝑛1 𝑛2 [17, 18, 20].

The origin of the alien contributions to eq. (9) is ultimately related to the breaking of gauge
invariance in the off-shell OMEs [17], hence it’s not surprising that the inclusion of fermions
does not alter significantly the renormalisation of the leading twist operators described in sec.
2. In fact, the renormalisation of the fermionic contributions is much simpler compared to the
gluonic diagrams. The remaining two parts of this section will focus on two such examples: the
calculation of the anomalous dimensions of the quark operator 𝛾qi and the determination of the
terms proportional to 𝑛2

𝑓
in 𝛾gq, respectively.

3.1 Renormalisation of the quark operator

The mixing between the gauge invariant quark operator Oq and the alien operators is much
simpler than the mixing pattern of its gluonic counterpart. Notably, there isn’t any alien operator
featuring a quark-antiquark 2-point vertex, because eqs. (20) and (21) involve at least one gluon
field. Thererefore, at leading order, i.e. at one loop, there is no mixing between Oq and the
unphysical operators [16], contrary to the gluon case. The same argument applies to all the pure
singlet diagrams with any number of external gluons

O (𝑁 )
q ����� 1

𝜖

∝ O (𝑁 )
g ,

where the RHS indicates the corresponding multi-gluon vertex in the gauge invariant gluonic
operator O (𝑁 )

g , eq. (5). Such feature follows directly from the BRST structure of the alien operators.
Indeed, any mixing between Oq and the gluonic EOM alien, O (𝑁 )

EOM, would also imply mixing with
the ghost alien operators O (𝑁 )

𝐺
, via eq. (19). However, at leading order there are no pure singlet

diagrams with external ghosts, hence no such mixing can occur.

This fact has important consequences for the computation of the anomalous dimensions of
the quark singlet operator. For instance, the anomalous dimensions 𝛾 (𝑁 )

qq are determined from the

6



P
o
S
(
L
L
2
0
2
4
)
0
5
8

Anomalous dimensions of leading twist operators to four loops Giulio Falcioni

renormalisation of Aqq according to eq. (9), which reads

𝑍𝜓

[
(1 + 𝛿𝑍qq)

q

+ 𝛿𝑍qg

g

+ 𝜂(𝑁)︸︷︷︸
𝛿𝑍q I∼𝑂 (𝑎2 )

O𝐼

+
∑︁

i+j=N−3
𝜅
(1)
i,j︸︷︷︸

𝛿𝑍q 𝐼𝐼∼𝑂 (𝑎2 )

O𝐼𝐼
i,j ]

= finite, (24)

where 𝑍𝜓 is the quark wave function renormalisation. The diagrams in the first line of the equation
above represent the OMEs of the physical operators, Aqq, Agq; those in the second line are the OMEs
with external quarks and an insertion of the aliens of class 𝐼 and 𝐼 𝐼, eqs. (20)-(23). As a shorthand
notation, the latter OMEs are labelled A𝜂q, A

𝜅
(1)
𝑖 𝑗

q etc, where 𝜂 and 𝜅
(1)
𝑖 𝑗

are the allowed couplings
entering eqs. (20)-(23) for each value of 𝑁 . Similarly, the mixing renormalisation constants of each
alien, 𝛿𝑍q𝜂 , 𝛿𝑍q𝜅 (1)

𝑖 𝑗

etc., are indicated with 𝜂(𝑁) and 𝜅
(1)
ij .

By imposing the finiteness of eq. (24), the renormalisation constant 𝛿𝑍qq is determined to
𝐿-loop level in terms of the poles of the OME Aqq at 𝐿 loops and of the products of quantities
at lower loop order. These include the alien contributions in the second line of eq. (24). As
discussed above, the mixing 𝜂(𝑁), 𝜅 (1)ij (𝑁) must be at least of O(𝑎2). Therefore, the OMEs A𝜂q,
A

𝜅
(1)
ij q are computed up to O(𝑎2), to reach four-loop accuracy in 𝛿𝑍qq. These OMEs are computed

straightforwardly, e.g. with Forcer. In turn, the maximal loop order required in 𝜂(𝑁) and 𝜅
(1)
ij is

fixed by the lowest order possible in A𝜂q and A
𝜅
(1)
ij q: since A𝜂q starts at one loop, 𝜂(𝑁) is computed

to O(𝑎3) at each value of 𝑁 . This can be achieved by renormalising the OMEs Aq𝑐, where 𝑐 is an
external ghost-antighost pair. The constants 𝜅

(1)
ij are needed only at the leading order O(𝑎2). To

this accuracy one has [18, 21, 34]

𝜅
(1)
i,j =

𝜂(𝑁)
8

[
(−1)𝑁 − 3

(
𝑁 − 2

i

)
+ 3

(
𝑁 − 2
i + 1

) ]
. (25)

Therefore, all the terms in eq. (24) can be computed to the required accuracy to determine 𝛾
(3)
qq (𝑁)

for each fixed value of 𝑁 . Indeed, in this channel only few aliens can contribute and their mixing
constants are determined systematically. The results of ref. [34] cover 𝑁 ≤ 20 and the calculation
can be pushed to higher 𝑁 . The limiting factor is the memory required for the reduction of Aqq to
master integrals with Forcer. With a similar approach, the anomalous dimensions 𝛾 (3)

qg (𝑁) were
computed through 𝑁 = 20 [35], providing key information on the top line of the matrix in eq. (2).

3.2 Double fermionic contributions to 𝛾
(3)
gq

Now we turn to the renormalisation of the gluon operator Og. Ref. [12] focuses on the
contributions proportional to 𝑛2

𝑓
in 𝛾

(3)
gq . These are compuuted using eq. (9), wiht i = g and j = q

and by restricting to the terms that feature two closed quark loops, either in the OMEs or in the
mixing constants 𝑍jq.
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O𝐼𝐼
EOM

Figure 1: Double fermionic contributions to A
𝜅
(1)
ij 𝑐

.

The 𝑛2
𝑓

terms of the physical OME Agq at four loops are computationally cheaper to compute,
compared to the fully gluonic diagrams, because the most complicated Forcer topologies do not
enter this colour factor. The alien contributions to eq. (9) can be classified by using a counting in
loops and powers of 𝑛 𝑓 , which slightly generalises the loop-counting performed below eq. (24).
Beginning with the simplest class of aliens, O 𝐼

EOM in eq. (20), one finds that the mixing 𝜂(𝑁)
between Og and O 𝐼

EOM starts at O(𝑎𝑛0
𝑓
). Therefore, the OMEs A𝜂q must be computed up to

three-loop order, where only the contributions O(𝑎3𝑛2
𝑓
), O(𝑎2𝑛 𝑓 ) and O(𝑎𝑛0

𝑓
) will be relevant. In

turn, also the mixing 𝜂(𝑁) will enter up to three loops, following the same pattern in the required
coefficients of 𝑛 𝑓 . These values are obtained by renormalising the OME Ag𝑐, with an external
ghost-antighost pair and an insertion of Og. Hence, the necessary 2-point OMEs can be computed
automatically with Forcer for fixed 𝑁 .

By repeating the argument above for the aliens of class II, eq. (20), we find that they do not
contribute to 𝛾

(3)
gq at O(𝑛2

𝑓
) in the 𝑛 𝑓 -expansion. Indeed, the mixing 𝜅

(1)
ij starts also at O(𝑎𝑛0

𝑓
), as

in the case of 𝜂(𝑁). However, requiring the two closed fermion lines in the OME A
𝜅
(1)
ij q singles

out diagrams with least four loops, like the one in Fig. 1. Thus, O𝐼 𝐼
EOM starts contributing only at

O(𝑎5𝑛2
𝑓
), rather than O(𝑎4𝑛2

𝑓
).

The setup described in this section was applied in ref. [12] to compute the 𝑛2
𝑓

terms in the
anomalous dimensions 𝛾

(3)
gq for 𝑁 ≤ 60. As it has been presented at this conference, such data

is sufficient to reconstruct the analytic dependence of 𝛾
(3)
gq (𝑁) |𝑛2

𝑓
. In turn, the inverse Mellin

transform, see eq. (6), provides the 𝑛2
𝑓

contribution in 𝑃
(3)
gq (𝑥) with its exact 𝑥-dependence.

4. Conclusion and Outlook

The anomalous dimensions of the gauge invariant operators of leading twist play a key role
for the precision physics programme at the LHC and at the EIC, due to their connection with the
Mellin moments of the splitting functions that govern the scale evolution of the PDFs. The four-loop
anomalous dimensions 𝛾 (3)

ij (𝑁) are required to develop collider phenomenology to N3LO in QCD.
An efficient method to compute the anomalous dimensions relies on the renormalisation of the
off-shell OMEs of the operators in eqs. (4) and (5). This approach presents a conceptual difficulty
in the mixing between gauge invariant and unphysical alien operators under renormalisation. In
this contribution to the proceedings, the construction of the relevant aliens up to four loops has been
summarised in the case of Yang Mills theory and extended to QCD.

In both theories, the proliferation of the alien operators poses challenges for the calculation
of the anomalous dimensions. However, in QCD such complications are less severe when we
look at the fermionic contributions. Due the simplified mixing pattern of the operator Oq, the

8
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anomalous dimensions 𝛾 (3)
qq (𝑁) and 𝛾

(3)
qg (𝑁) were computed up to 𝑁 = 20, as described in sec. 3.1.

Such calculations can be extended for 𝑁 ≥ 20, without any new theoretical ingredient, given the
availability of computational resources. In the case of the gluonic anomalous dimensions, the colour
factors featuring powers of 𝑛 𝑓 do not present the full complexity of alien mixing. The 𝑛2

𝑓
-terms in

𝛾
(3)
gq require only one alien class, which allowed to compute these contributions to the anomalous

dimensions up to 𝑁 = 60.
Beyond the 𝑛 𝑓 -enhanced contributions, more classes of aliens become relevant. Ref. [36]

tackled the calculation of 𝛾 (3)
gq (𝑁) for 𝑁 ≤ 20. In this case, the operators of class 𝐼 𝐼, eq. (21),

which did not contribute at O(𝑛2
𝑓
), do play a role and their mixing, 𝜅 (1)ij , must be computed to 2

loops. As discussed in the example in eq. (10), these correspond to the counterterms of three-point
Green functions at 2 loops. Such calculation can be performed, for example, with the R* operation
[37–39], giving results in agreement with ref. [21]. In addition, we must take into account the
following new classes of operators

𝑂 𝐼 𝐼 𝐼
A1

= 𝑔2 𝑓 𝑎𝑎1𝑥 𝑓 𝑎2𝑎3𝑥
(
𝐷.𝐹𝑎 + 𝑔�̄� /Δ𝑇𝑎𝜓

) ∑︁
𝑛1,𝑛2,𝑛3≥0

𝑛1+𝑛2+𝑛3=𝑁−4

𝜅
(1)
𝑛1𝑛2𝑛3

(
𝜕 𝑛1 𝐴𝑎1

) (
𝜕 𝑛2 𝐴𝑎2

) (
𝜕 𝑛3 𝐴𝑎3

)
,

(26)

𝑂 𝐼 𝐼 𝐼
A2

= 𝑔2𝑑𝑎𝑎1𝑎2𝑎3
(
𝐷.𝐹𝑎 + 𝑔�̄� /Δ𝑇𝑎𝜓

) ∑︁
𝑛1,𝑛2,𝑛3≥0

𝑛1+𝑛2+𝑛3=𝑁−4

𝜅
(2)
𝑛1𝑛2𝑛3

(
𝜕 𝑛1 𝐴𝑎1

) (
𝜕 𝑛2 𝐴𝑎2

) (
𝜕 𝑛3 𝐴𝑎3

)
, (27)

𝑂 𝐼 𝐼 𝐼
c = −𝑔2 𝑓 𝑎𝑎1𝑥 𝑓 𝑎2𝑎3𝑥 (𝜕𝑐𝑎)

∑︁
𝑛1,𝑛2,𝑛3≥0

𝑛1+𝑛2+𝑛3=𝑁−4

𝜂
(1)
𝑛1𝑛2𝑛3

(
𝜕 𝑛1 𝐴𝑎1

) (
𝜕 𝑛2 𝐴𝑎2

) (
𝜕 𝑛3+1𝑐𝑎3

)
, (28)

where the relation between the coefficients 𝜅 (1)𝑛1𝑛2𝑛3 and 𝜂
(1)
𝑛1𝑛2𝑛3 are given in [20]. These quantities,

together with 𝜅
(2)
𝑛1𝑛2𝑛3 can be interpreted as the mixing between Og and the corresponding alien and

were computed at one loop, finding consistent results with the counterterms given in [21].
The calculation of 𝛾

(3)
gg (𝑁) presents the full complexity of operator mixing. However, the

𝑛 𝑓 -enhanced contributions show the same type of simplifications that were discussed in sec. 3.2 in
the context of 𝛾 (3)

gq (𝑁) |𝑛2
𝑓
. The study of the fully gluonic colour factors in 𝛾

(3)
gg is in progress.
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