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Preface

The aim of this thesis is to investigate the main strategies to implement a dimensional
reduction. In the fields of data mining or in general, the world of data analysis, the
methods of dimensionality reduction have become an indispensable tool. The present
digital revolution offers the researcher very rich data-sets in data analysis which can
greatly improve both prediction capability and the analysis of specific variables of
interest. Traditional methods like principal component analysis and classical metric
multidimensional scaling are put under the pressure by this revolution. Therefore, to
overcome this issue, different methods have been developed to reduce the data dimen-
sionality in a nonlinear way.

New methods that account for this increase include, for example, the use of graphs
to maps the manifold topology and the use of new metrics like the geodesic distance.
In addition, new optimization schemes, based on kernel techniques and spectral de-
composition, have led to spectral. In addition to this rapid growth, it is important
to mention new optimization schemes based on kernel transformations and spectral
decomposition. In fact, these methods have led to spectral embedding, which encom-
passes many of the recently developed methods. In this vein, this thesis pays atten-
tion also to distinguish the methods that perform a dimensionality reduction through
a transformation of the variables, from the methods that adopt a features selection. In
this category, we introduce the use of the Graphical Models as a technique to discern
the most relevant variables from the irrelevant ones. In details, the Graphical Model is
a technique for mapping the relationship between the variables and as representations
of hierarchical Bayesian models. These methods allow managing large data set through
a graph. The nodes in the graph are identified with the random variables of the data
set, and joint probability distribution are used to build the edges between the nodes.

All dimensionality reduction methods can be viewed as solving an optimization
problem, over a matrix of data. The application of one of these methods will depend
on the opportunity to adapt at a very large dataset or the type of variables contained
in the dataset and finally by the trade-off between dimensional reduction and loss of
information from the variables. In order to respect these specifications, we have devel-
oped a new algorithm that takes advantage of the Graphical Models properties. This
algorithm produces an automatic variable selection and belongs to Sequential Forward
Search. In fact, it’s search starts with an empty set and keeps on adding features.



Considering the additional dimension of time to the dataset, the dimensional re-
duction channels another particular problem, namely the change of relationship be-
tween the variables over time. This phenomenon is known as concept- or model- drift
and describes the situation in which there exists a hidden context of data generative
structure, that is an effect of the outcome variable not captured by the model features,
which changes over time abruptly, incrementally, or periodically.

Finally, we applied these methods at the contest of survival analysis. The purpose
of this strategy is to investigate the economic performance of new firms born during
the 2009 crisis with a focus on survival and value creation. Since it leverages on a very
large dataset traditional econometrics techniques require an ex-ante sound variable se-
lection to avoid excessive loss of relevant information. The most important vantage of
this approach is that we can identify the most relevant variables for each year. These
selections are justified by the presence of the drift, computed with the support of the
Graphical Models.

For the sake of clarity, this thesis is composed of chapters that are independent
papers. Thus, some sections could be repeated.
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Chapter 1

Dimensional Reduction: A
Review

The paper discusses the major contributions in the field of dimensionality reduction.
More specifically, it focuses on traditional methods both linear and non-linear for re-
ducing the information overload of dataset. However, the availability of large data
set, big data in some cases, suggests that a viable alternative is an ex-ante reduction of
the variables rather than a transformation such as in Principal Component Analysis or
mapping on a lower-dimensional space such as in Self Organizing Map. In this vein,
the paper suggests that graphical models can be a feasible method for feature selection.

1.1 Introduction

The availability of the Big Data requires new techniques, which can handle not only
a large number of observations, but also rich data sets in terms of number and rela-
tions among variables. One of the challenges for the statistician is to infer from these
data set the relationship between the variables. The high-dimensional data indicates to
data set having a large number of attributes/ features. The reduction of dimensional-
ity becomes a crucial aspect to handle these datasets. For this reason, the dimensional
reduction becomes crucial to transform the high-dimensional data into a lower dimen-
sionality. The intrinsic dimensionality of data is the minimum number of parameters
needed to account for the observed properties of the data [53]. As the main goal, di-
mensionality reduction allows for compression of the data through classification, visu-
alization and, regression. And in this context the Graphical Models becomes important
not only to mapping the relationships between the variables, but also to do feature se-
lection [78]. Dimensional reduction is important in many domains, since it mitigates
the curse of dimensionality and other undesired properties of high-dimensional spaces
[76]. Tendentially before the availability of the big data, linear techniques such as Prin-
cipal Component Analysis (PCA) and Factor Analysis (FA) was used to implement
dimensionality reduction [116]. In the last decades, the literature has proposed a large
number of nonlinear techniques for dimensionality reduction, in order to implement
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a dimensional reduction also in the high dimensional space. [100]. In this view, the
functionality of this paper is twofold:

• to investigate and to compare the different methods to do dimensional reduction
[144];

• to introduce the Graphical Models as a method to do the dimensionality reduc-
tion.

In the following sections, first, we summarize the dimensional reduction strategies
(section 1.2), then we analyze the different algorithms for each group, according to the
classification proposed in the figure 1.3. In particular, in the sections 1.3,1.4,1.5 and 1.6
we do not aim for an exhaustive explanation to every method but rather to provide a a
general idea about these methods.

1.2 Background: notation and basic definitions

Broadly speaking, a dataset is a rectangular matrix X, represented in n× p, where n is
the number of the observation and p the number of the variables. In other words, This
matrix X is a collection of n data data points, {x}n

i=1 in the dimensional Euclidean space
Rp. The high-dimensional space will depend by the dimension of p. Feature selection
is the strategy to select only those feature form the data set X, which are relevant or
significant from the point of view of classification or clustering, the less important fea-
tures are discarded by it [114] [144]. Which regard the transformation strategies of the
data, the following issues must be considered:

• can be used different measure to implement the dimensional reduction (like de-
pendency, relevance, significance, mutual information)

• missing and incomplete data (the real-world dataset mostly have some of the val-
ues that are missing or are incomplete, and some techniques require the complete
dataset)

• variables of interest (discrete or continuous data, some of the dimensional re-
duction techniques can handle the continuous-valued data directly while some
require discretization)

The purpose of dimensional reduction is to do feature selection or transformation of the
variables with some well-defined properties. Indeed, these techniques present a new
dataset Y with k variables instead of the original dataset X with dimensionality p, where
k < p and often k � p. This strategy preserves the local geometry of the data as much
as possible such as distances or angles between data points [27]. In this research, we
denote a high-dimensional data point by xi, where xi is the ith row of the p-dimensional
dataset X. As shown by the author [100], the low-dimensional counterpart of xi is
denoted by yi, where yi is the ith row of the k-dimensional data matrix Y. Basically,
there are two strategies to achieve matrix Y from matrix X:
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• feature extraction- transforming the existing features into a lower dimensional space
[142]

• feature selection- selecting a subset of the existing features without a transformation
[45].

There are different fields of technology or science where high-dimensional data are typ-
ically encountered, here we will mention a few.
Processing of sensor array, that represents all applications where it is used a set of several
identical sensors. In this class belong numerous biomedical applications, such as elec-
trocardiogram or electroencephalograph acquisition, where several electrodes record
time signals at different laces on the chest or the scalp. Seismography and weather
forecasting are also another example of these collections of data [131]. Another class of
application of high-dimensional data is the Image processing, where a picture is consid-
ered as the output of a digital camera. However, in the last decade, image processing
is often seen as a standalone domain. In fact, with the increasing development of deep
learning, image processing became an important element of this research field [153].
Multivariate data analysis is another example of using a high-dimensional dataset. The
main difference with the previous classes is that in multivariate data analysis, the data
come from different types of sensors and focuses on the analysis of measures that can
be related to each other. A clear example is a car, wherein the gearbox connecting the
engine to the wheels has to take into account information from rotation sensors (wheels
and engine shaft), force sensors (brake and gas pedals), position sensors (gearbox stick,
steering wheel), temperature sensors (to prevent engine overheating or to detect glaze),
and so forth [80] [62]. In the contest of high-dimensional for completeness, it should
be mentioned Data mining. At first sight, multivariate data analysis, and data mining
seem to be very close. Actually the former is a classical sub-domain of statistics, indeed
data mining has a broader scope of applications than multivariate data analysis. Data
mining can deal with more exotic data structures than arrays of numbers. For exam-
ple, data mining encompasses text mining. The analysis of large sets of text documents
aims, for instance, at detecting similarities between texts, like common vocabulary, the
same topic, etc [14]. If these texts are Internet pages, hyperlinks can be encoded in
graph structures and analyzed using tools like graph embedding. Cross-references in
databases can be analyzed in the same way [95].

1.2.1 Theoretical motivations

Bellman coined the term "curse of dimensionality " in [21] in connection with the dif-
ficulty of optimization enumeration on product spaces. Bellman claims the fact that
considering a Cartesian grid of spacing 1/10 on the unit cube in 10 dimensions, the
number of points equals 1010; for a 20-dimensional cube, the number of points further
increases to 1020. According to [21] interpretation: if the goal consists of optimizing a
function over a continuous domain of a few dozen variables by exhaustively search-
ing a discrete search space defined by a crude discretization, one could easily be faced
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with the problem of making tens of trillions of evaluations of the function. In other
words, the curse of dimensionality also refers to the fact that in the absence of sim-
plifying assumptions, the number of data samples required to estimate a function of
several variables to a given accuracy (i.e., to get a reasonably low-variance estimate) on
a given domain grows exponentially with the number of dimensions. This fact, respon-
sible for the curse of dimensionality, is often called the “empty space phenomenon” [129].
Because the amount of available data is generally restricted to a few observations, high-
dimensional spaces are inherently sparse. More concretely, the curse of dimensional-
ity and the empty space phenomenon give unexpected properties to high-dimensional
spaces [128]. The increase of the dimensional represents a limitation in the geometric
representation and consequently in the managed of the data. In fact three-dimensional
objects can also be sculpted or carved, but when there are more than three dimensions
it becomes hard to represent them in 2 dimensions. Nevertheless, several techniques
exist to solve this problem: use different colours for some dimensions or multiple linear
projections.

4−Dimensions Hypercube

Figure 1.1: Projection of cube 4 dimensional in 2 dimensions

Figure 1.1 shows the projection of a 4D cube that has been projected on a plane in
a linear way, wherewith D indicates the dimension of the dataset, in other words, the
numbers of the variables p present in the dataset. In D-dimensional space, a sphere
and the corresponding circumscripted cube (all edges equal the sphere diameter) lead
to the following volume formulas:

Vsphere(r) =
πD/2rD

Γ(1 + D/2)
(1.1)

Vcube(r) = (2r)D (1.2)

where r is the radius of the sphere. Surprisingly, the ratio Vsphere/Vcube tends to zero
when D increases:

lim
D→∞

Vsphere(r)
Vcube(r)

= 0
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Intuitively, this means that as dimensionality increases, a cube becomes more and more
spiky, like a sea urchin: the spherical body gets smaller and smaller while the number
of spikes increases, the latter occupying almost all the available volume, as Figure 1.2
shows.

Hypercubes representation

Figure 1.2: Evolution of hypercube projections in different dimensions

If we assign the value 1/2 to r, Vcube will equal to 1, leading to

lim
D→∞

Vsphere(r) = 0 (1.3)

This indicates that the volume of a sphere vanishes when dimensionality increases. By
the Equation 1.1, the relative hypervolume of a thin spherical shell is:

Vsphere(r)−Vsphere(r(1− ε))
Vsphere(r)

=
1D − (1− ε)D

1D , (1.4)

where ε � 1 is the thickness of the shell. When D increases, the ratio tends to 1,
meaning the shell contains almost all the volume[148]. Regardless of the dimension
D of the dataset with all continuous variables, the probability density function of an
isotropic Gaussian distribution is written as:

fx(x) =
1√

(2πσ2)
D exp

(
−1

2
||x− µx||2

σ2

)
(1.5)

with x is a D-dimensional vector, µx represents the D-dimensional mean, while σ2 is
the isotropic variance. If we suppose that the random vector x has zero mean and unit
variance, the equation will simplify into:

fx(x) = K(r) =
1

√
(2π)D exp

(
− r2

2

)
(1.6)

where r = ||x|| can be interpreted as a radius. Indeed, because the distribution is
isotropic, equiprobable contours are spherical. In the context of high-dimensional data,
three possibilities exist to avoid or at least attenuate the effect of this phenomenon. We
can focus on the separation between relevant and irrelevant variables. The second one
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concentrates on the dependencies between (relevant) variables. Eventually, selecting
the best subset of variables that better can explain or predict the variables of interest. In
the first case, for example in a class of multivariate data, not necessarily all variables are
related to underlying information the user wishes to catch. If we have a redundancy of
information, we may eliminate from the dataset irrelevant variables. There are different
techniques to distinguish relevant variables from irrelevant ones. The most used strat-
egy to identify the relevance of the information, between the variable of interest than
other ones presents in the data-set, is to compute the correlation matrix. For instance,
the input variables that are not correlated with the outputs may then be eliminated.
Even when assuming that all variables are relevant, the dimensionality of the observed
data may still be larger than necessary. In that case, rather than arbitrarily removing
some variables, another way to reduce the number of variables would be to find a
new set of transformed variables, called projections. This is motivated by the fact that
dependencies between variables may be very complex and that keeping one of them
might not suffice to catch all information content they both convey [95]. The advan-
tage of this second approach is that the new dataset should obviously be smaller than
the start dataset but despite the reduction of dimensionality, the new one set of data
preserves the interesting characteristics. These properties must ensure that the trans-
formation does not alter the information content conveyed by the initial data set, but
only represents in a different form. For example, if the given variables are assumed to
be mixtures of a few unobserved ones, then a projection that inverts the mixing process
is very useful. In other words, through the transformation, we can track and eliminate
dependence between the observed variables. Another important task of a projection
is to retrieve information from the latent variables, i.e., those that are at the origin of
the observed ones but cannot be measured directly. This task, in its most generic form,
is often called variable separation. In the points of weakness of the projection, there
is the impossibility to infer directly on the variables presented in the dataset. Despite
the projection that can explain a large part of the variance, this technique loses some
information from the original variables. To avoid this problem, in the last decade some
techniques from the machine learning field were developed [111]. This approach can
be used to find from the original dataset the best subset of variables. In that way, we do
a dimensional reduction without lost information from the variables. Furthermore, this
approach can be combined with the projection. In other words, we can automatically
remove the irrelevant variables and focus on the latent variables.

1.2.2 Topology, space and manifolds

From a geometrical point of view, when two or more variables depend on each other,
the support of their joint distribution does not span the whole space. The dependence
induces some structure in the distribution, in form of the geometrical locus that can
be seen as a kind of object in the space. The hypercube illustrated in Figure 1.1 is
an example of such a structure. One of the dimensional reduction aims is to give a
new representation of these objects while preserving their structure [95]. The topology
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studies the properties of objects that are preserved through deformation, twisting and
stretching. One of the central ideas of topology is that the spatial objects like circles
and sphere can be treated as objects in their own right: the knowledge of objects does
not depend on how they are represented, or embedded, in the space. Topology is used
to abstract the intrinsic connectivity of objects while ignoring their detailed form. Two
objects that have the same topological properties are called homeomorphic. The topo-
logical objects are formally defined as topological spaces. A topological space is a set for
which a topology is specified [105]. For a set Y a topology T is defined as a collection of
subsets of Y that obey the following properties:

• ∅ ∈ T and Y ∈ T;

• whenever two sets are in T, then so is their intersection;

• whenever two or more sets are in T, then so is their union.

This definition of a topology holds as well for a Cartesian space RD as for the graph.
From a geometrical point of view, a topological space can also be defined using neigh-
borhoods and Haussdorf’s axioms. The neighborhood of a point x ∈ RD, also called
a ε−neighborhood or infinitesimal open set, is often defined as the open ε > 0 and
centered on x. A set containing an open neighborhood is also called a neighborhood.
Then, a topological space is such that:

• to each point x there corresponds at least one neighborhood U (x) and U (x) con-
tains x;

• if U (x) and V(x) are neighborhoods of the same point x, then a neighborhood
W(x) ⊂ U (x)∪ V(x);

• if z ∈ U (x), then a neighborhood V(z) of z exists such that V(z) ⊂ U (x);

• for two distinct point, two disjoint neighborhoods of these points exist.

Within this framework, a topological manifold M is a topological space that is locally
Euclidean, meaning that around every point ofM is a neighborhood that is topologi-
cally the same as the open unit ball in RD. Commonly, the unqualified term manifold
means "manifold without boundary". An embedding is a representation of a topologi-
cal object in a certain space, usually RD for some D, in such a way that its topological
properties are preserved. For example, the embedding of a manifold preserves open
sets. More generally, a space X is embedded in another space Y when the properties of
Y restricted to X are the same as the properties of X . A smooth manifoldM without
boundary is said to be a submanifold of another smooth manifold N . If M ⊂ N and
the identity map ofM into N is embedding. However, it is noteworthy that, while a
submanifoldM is just a subset of another manifold N ,M can have a dimension from
a geometrical point of view, and the dimension of M may be lower than the dimen-
sion of N . A P-manifold or P-dimensional-manifoldM is defined as submanifold [132] of
N ⊂ RD, if the following conditions holds for all point x ∈ M : there exist two open
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sets U , V ⊂ M with x ∈ U , and a diffeomorphism h : U → V , y 7→ x = h(y) such that:

h(U ∩M) = V ∩ (RP × {0}) = {x ∈ V : xP+1 = ... = xD = 0}

This means that x can trivially be reduced to P-dimensional coordinates. If N = RD in
the previous definition, then:

• a point y ∈ RD is a manifold;

• a P-dimensional vector subspace (a P-dimensional hyperplane) is a P-manifold;

• the hollow D-dimensional hyperplane is (D-1)-manifold;

• any ope subset is a D-manifold.

It was showed in [149] that any P-manifold can be embedded in R2P+1, meaning that
2P + 1 dimensions at most are necessary to embed a P-manifold. For example, an open
line segment is an open 1-manifold that can already be embedded in R1. On the other
hand, a circle is a compact 1-manifold that can be embedded in R2 but not in R1. A
knotted circle, like a trefoil knot, reaches the bound of Whitney’s theorem: it can be
embedded only in RD, with D ≤ 2P + 1 = 3. This mathematical framework has al-
lowed the development of Topological Data Analysis (TDA), which is a recent field that
emerged from various works in applied topology and computational geometry during
the first decade of the century. TDA aims at providing well-founded mathematical, sta-
tistical and algorithmic methods to infer, analyze and exploit the complex topological
and geometric structures underlying data that are often represented as point clouds in
Euclidean or more general metric spaces.

1.2.3 Taxonomy of dimensional reduction

The choice of a strategy to apply dimensional reduction is not trivial. In fact, the huge
development in the last decades of big data in different fields can be a limitation for
most of them. Furthermore, the real-world data concerns datasets with continuous
variables but also discrete or categorical variables. For this reason, there does not ex-
ist the best way to choose a priori what is the appropriate technique to implement a
dimensional reduction. When working with the data, it is important to understand
the goal of the research. Dimensional reduction is a powerful strategy to make more
manageable huge datasets. With this strategy, we can focus on latent variables through
a projection or select an appropriate subset to predict or explain a variable of interest.
Figure 1.3 shows the taxonomy of some techniques for dimensionality reduction. We
have grouped these methods based on linearity, non-linearity, feature selection, and
graphical representation. Consequently, the choice of one of these methods will be
dependent on the nature of the variables presented in the dataset and the purpose of
the research. In the next sections, we present the different dimensionality reduction
techniques and we try to identify the strengths aspects and the inherent weaknesses.
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Dimensional Reduction Tree

Figure 1.3: Taxonomy of dimensionality reduction methods

1.3 Linear Method

In this section, we introduce some linear methods. These methods compute a linear fea-
ture extraction or projection that expresses the new feature as a linear combination of
the original variables. Perhaps the most popular techniques for dimensionality reduc-
tion belong to this group [80]. Indeed methods as Principal Component Analysis (PCA)
or Factor Analysis (FA) are the oldest methods. The type of linear projection used in
practice is influenced by the availability of category information about the patterns in
the form of labels on the patterns. If no category information is available, the eigenvec-
tor projection is commonly used. In the classification problems, Linear Discriminant
Analysis (LDA) is a linear mapping technique when category labels are available.

1.3.1 PCA and Classical Scaling

Principal Component Analysis (PCA) is the main linear method for dimensionality re-
duction. PCA shows a low-dimensional representation of the dataset X that describes
the maximum variability of the data present in the dataset. The first principal compo-
nent has the greatest variability. The second component has the maximum variability
among all linear combinations that are orthogonal to the first. The third principal com-
ponent is orthogonal respect to the first and the second, and so on for all component.
The scope of PCA is to reduce the number of variables from p to k where k < p or often
k � p and avoid loss of relevant information contained in the data. In mathematical
terms, PCA attempts to find a linear mapping M that maximizes the cost function trace
(MTCov(X)M), where Cov(X) is the sample covariance matrix of the data X with respect
to M, under the constraint that L2-norm of each column mj of M is 1, i.e. that ‖m‖2= 1.
If we introduce a Lagrange multiplier λ, this constraint will be enforced. Hence, an
unconstrained maximization of mT

j Cov(X)mj + λ(1−mT
j mj) is performed. The station-

ary points of this quantity are to be found when Cov(X)mj = λmj. M is formed by the
k-principal eigenvectors of the sample covariance matrix of the zero mean data [119].
PCA solves the eigenproblem:

Cov(X)M = λM (1.7)
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The eigenprobelm is solved for the the k principal eigenvalues λ. The low-dimensional
data representations yi of the datapoints xi are computed by mapping them onto the
linear basis M, i.e. Y = XM. PCA is identical to the traditional method for multidi-
mensional scaling called classical scaling [141]. The input into classical scaling is given
by a pairwise Euclidean distance matrix D whose entries dij represent the Euclidean
distance between the high-dimensional datapoints xi and xj. Classical scaling finds the
linear mapping M that minimizes the cost function:

φ(Y) = ∑
ij

(d2
ij − ‖yi − yj‖2) (1.8)

in which ‖yi − yj‖2 is the Euclidean distance between the low-dimensional datapoints
yi and yj; yi is restricted to be xiM and ‖mj‖2= 1 ∀j.
The minimum of this cost function is given by the eigendecomposition of the Gram
matrix [141]: K = XXT of the high-dimensional data. The entries of the Gram matrix
can be obtained by double-centering the pairwise squared Euclidean distance matrix,
i.e. by computing:

kij = −1
2

(
d2

ij −
1
n ∑

l
d2

il −
1
n ∑

l
d2

jl +
1
n2 ∑

lm
d2

lm

)
(1.9)

The minimum cost of the function in Equation 1.8 can now be obtained by multiplying
the principal eigenvectors of the double-centered squared Euclidean distance matrix
with the square-root of their corresponding eigenvalues. The similarity of classical scal-
ing to PCA is due to a relation between the eigenvectors of the covariance matrix and
the Gram matrix of the high-dimensional data: it can be shown that the eigenvectors ui

and vi of the matrices XXT are related through
√

λivi = Xui. PCA may also be viewed
upon as a latent variable model called probabilistic PCA. This model uses a Gaussain
prior over the latent space, and a linear-Gaussian noise mode. This model leads to an
EM-algorithm that may be computationally more efficient for very high-dimensional
data. PCA and Classical Scaling have been successfully applied in a large number of
domains that permit an useful interpretation of the results. Notwithstanding, PCA and
Classical Scaling suffer from third main drawbacks. First, in PCA the size of the covari-
ance matrix is proportional to the dimensionality of the data-points. As a result, the
computation of the eigenvectors might be infeasible for very high-dimensional data.
This drawbacks may be overcome by performing Classical Scaling instead of PCA, be-
cause the Classical Scaling with the number of datapoints instead of with the number
of dimensions in the data. Second, the cost function in Equation 1.8 reveals that PCA
and Classical scaling focus mainly on retaining large pairwise distances d2

ij, instead of
focusing on retaining the small pairwise distances, which is much more important. Fi-
nally, both method can not applied directly to datasets that contain discrete variables,
in other words we can perform PCA method to different labels of a discrete variable.
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1.3.2 Factory Analysis

Factor Analysis (FA) represents the variables X1, ..., Xp of the dataset as linear combi-
nation of random variables called factors. The propose of this method is to describe the
covariance relationship among the variables in terms of these m underlying, but unob-
servable factors. If the original variables X1, ..., Xp are at least moderately correlated,
the basic dimensionality of the data is less than p. The goal is to reduce the redundancy
among variables by using a smaller number of factors (m < p) that explain the variables
as possible. FA is a method to describe the interrelationships among a set of variables,
seeking a simpler structure of the data, for this aspect is similar to PCA, but there are
important difference between FA and PCA:

• PCAs are defined as linerar combinations of the variables. In FA, the original
variables are expressed as linear combinations of the factors

• the goal of PCA is to explain a large part of the total variance of variables, which
regards FA the intention is to explain the correlations among the variables

We assume a random sample (xi1, ..., xip), from a population with mean vector {µ1, ..., µp}
and covariance matrix Σ. The factor analysis model expresses each variable Xj as a
linear combination of random variables F1, ..., Fm with coefficients lj1, ..., ljm and an ac-
companying error term εj to account for that part of the variable that is unique:

Xj − µj = lj1F1 + lj2F2 + ... + ljmFm + εj (1.10)

The F′j s are random variables, called common factors, with E(Fj) = 0, Var(Fj) = 1 and
Cov(Fj, Fk) = 0, ljk are coefficients, called factor loading. The value of |ljk| indicates the
importance of the factor Fk on variable Xj( we say that Xj loads highly on Fk). In other
words, more is high the absolute value of ljk more is explained the variable Xj by the
factor Fk. While εj are random errors, called also specific factors, with E(εj) = 0 but
different variances Var(εj) = ψj (specific variance), and Cov(εj, εk) = 0, finally factors
and errors are uncorrelated, Cov(εj, Fk) = 0. Exist three main approaches to estimation
of loadings and communalities [77] (facor extraction):

• principal component method;

• (iterated) principal factor method ;

• maximum likelihood method.

The main advantage of the Factor Analysis is that is possible to apply to discrete vari-
ables, if it is possible to order them, and continues variables but is not useful with huge
dataset. Furthermore as PCA, FA can explain the latent variables but we can have the
lose of information from original variables.
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1.3.3 Linear Discriminant Analysis

Another strategy to obtain dimensional reduction is that to implement the classifica-
tion when the data has associated class labels. Fisher’s linear discriminant analysis is
probably the most prominent example [117]. The purpose of LDA (Linear Discriminant
Analysis) is to project the data in such a way that separation between classes is max-
imized. If we suppose that fk(x) is the class-conditional density of X in class G = K,
and let πk the prior probability of class w, where if we consider the total class we have

∑K
K=1 πw = 1. Now we have all elements to apply the Bayes theorem when the class C = k:

Pr(C = k|X = x) =
fk(x)πk

∑K
l=1 fl(x)πl

(1.11)

If we model each class density as multivariate Gaussian:

fk(x) =
1

(2π)p/2|Σk|1/2
e−

1
2 (x−µ)T Σ−1

k (x−µ) (1.12)

and assume that classes have a common covariance matrix Σw = Σ∀w,we can apply
linear discriminant analysis. LDA begins by partitioning the data covariance XXT into
covarinace contributed within each of the C classes (ΣW) and covariance contributed
between the classes (ΣB) such that XXT = ΣW + ΣB for:

ΣW =
n

∑
i=1

(xi − µci)(xi − µci)T ΣB =
n

∑
i=1

(µci − µ)(µci − µ)T (1.13)

Where µ is the global data mean and µci is the class mean associated with data point xi.
LDA seeks the projection that maximizes between-class variability tr(MTΣB M) while
minimizing within-class variability tr(MTΣW M), leading to the optimization program:

maximize tr(MTΣB M)
tr(MTΣW M)

subject to M ∈ On×p

(1.14)

This objective appears very mach like a generalized Rayleigh quotient, and is so for r =
1. In this special case, M ∈ On×1 can be found as the top eigenvector of Σ−1

W ΣB, which
can be seen by substituting L = Σ1/2

W M into Equation 1.14 above. This one-dimensional
LDA projection is appropriate when there are C = 2 classes. A common misconception
is that LDA for higher dimensional projections p > 1 can be solved with a greedy se-
lection of the top p eigenvectors of Σ−1

W ΣB. However, this is certainly not the case, as
the top p eigenvectors of Σ−1

W ΣB will not in general be orthogonal. The eigenvectors
solution solves the similar but not equivalent objective tr((MTΣW M)−1(MTΣB M)) over
M ∈ Rn×p The main goal of LDA is basically separate example of classes linearly mov-
ing them to a different feature space, therefore if the dataset is linear separable, only
applying LDA we can obtain a classifier, and it is possible to reduce a dimensionaly.
However, if the dataset is not linear separable we can apply the algorithm and LDA
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will try to organize the dataset in another space as the maximum linearly separability
as possible, but it still be examples overlapping between classes because of non-linearly
characteristic of data.

1.4 Nonlinear Method

In this section we review the principal Nonlinear Method (NLM) useful for dimension-
ality reduction. In contrast to linear method, nonlinear methods are often more pow-
erful to find the connection between the latent variables and the observed ones. More
specifically, NLM often comprise many parameters, whose identification requires large
amounts of data. Many of these nonlinear dimensionality reduction methods are re-
lated to the linear method. Broadly speaking, these methods can be classified in two
groups: those that provide a mapping, and those that infer to latent variables through
non linear transformation of the dataset.

1.4.1 ISOMAP and LLE

Despite Classical Scaling can be used in many applications, also has certain weak-
nesses. In particular, it mainly aims to retain pairwise Euclidean distances, and does not
take into account the distribution of the neighboring datapoints. In contrast, ISOMAP
preserves pairwise geodesic distances between data point, this aspect is relevant when
the the high-dimensional data lies on or near a curved manifold. Geodesic distance is
the distance between two points measured over the manifold. In ISOMAP, the goedesic
distances between the datapoints. xi(i = 1, 2, ..., n) are computed by constructing neigh-
borhood graph G, in which every datapoint xi is connected with its k nearest neigh-
bors xi j(j = 1, 2, ..., k) in the dataset X. In practice, a graph is created by either keeping
only the connections between every point and its k nearest neighbors to produce a k-
nearest neighbor graph (k-NNG), or simply by keeping all distances smaller than a
value ε-neighborhood graph (ε-NNG). The geodesic distances between all datapoints
in X are computed, thereby forming a pairwise geodesic distance matrix. The low-
dimensional representations yi in low-dimensional space Y are computed by apply-
ing classical scaling on the resulting pairwise geodesic distance matrix. Therefore,
data agree with the model of ISOMAP if the pairwise geodesic distances computed
between points of the P-manifold to be embedded can be mapped to pairwise Eu-
clidean distances measured in P-dimensional Euclidean space. We assume that a devel-
opable manifold has parametric equations of the form y = m(x) and that the isometry
δ(y(i), y(j)) = ||x(i)− x(j)||2 holds. In Rp space, the geodesic distance between points
y(i) = m(x(i)) and y(j) = m(x(j)) can be computed as follows:

δ2(y(i), y(j)) = δ2(m(x(i)), m(x(j)))

= ∑P
p=1 δ2(m(x(i)), m([x1(i), ..., xp(j), ..., xP(i)]T))
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Therefore, in a developable manifold, geodesic distances can be computed componen-
twise, either in the latent Euclidean space of the manifold space or in D-dimensional
embedding space. Here we present the pseudo code of the ISOMAP algorithm:

• build a graph with either the K-rule or the ε-rule;

• weight the graph by labeling each edge with its Euclidean length;

• compute all pairwise graph distance with Dijkstra’s algorithm, square them, and
store them in matrix D;

• convert the matrix of distances D into a Gram matrix S by double centering;

• once the Gram matrix is known, compute its spectral decomposition S = UΛUT ;

• a P-dimensional representation of Y is obtained by computing the product
X̂ = IP×NΛ1/2UT .

Unfortunately, also the the ISOMAP as the classical scaling, presents some weak-
nesses, in particular this algorithm is topological unstable [18]. In fact, ISOMAP can
be constructed erroneous connections in the neighborhood graph in G. There are sev-
eral approaches that overcome the problem of short-circuiting, one of them is to remove
datapoints with large total flows in the shortest-path algorithm [28] or by removing
nearest neighbors that violate local linearity of the neighborhood graph [124]. Further-
more there are another two weaknesses in ISOMAP, one due to "holes" in the manifold
[96] and the second is that this algorithm can fail if the manifold is non-convex [139].
Despite these weaknesses, ISOMAP was successfully applied on task such as wood in-
spection, visualization of biomedical data and eventually head pose estimation.
Local Linear Embedding (LLE) is a technique that is similar to ISOMAP in that it con-
structs a graph representation of the data points. In contrast to ISOMAP, it attempts to
preserve solely local properties of the data. As a result, LLE is less sensitive to short-
circuiting than ISOMAP, because only a small number of local properties are affected
if short-circuiting occurs. Furthermore, the preservation of local properties allows for
successful embedding of non-convex manifolds. In LLE, the local properties of the data
manifold are constructed by writing the high-dimensional data points as a linear com-
bination of their nearest neighbors. In the low-dimensional representation of the data,
LLE attempts to retain the reconstruction weights in the linear combinations as good
as possible. LLE describes the local properties of the manifold around a data points xi

by writing the data point as linear combination wi of its k nearest neighbors xij. Hence,
LLE fits a hyper-plane through the data point xi and its nearest neighbors. LLE is a
technique that constructs a weight matrix W ∈ Rn×m with elements wij so that:

n

∑
i=1

∥∥∥∥∥xi −
n

∑
j=1

wijxj

∥∥∥∥∥
2

(1.15)

The Equation 1.15 is minimized under the constraint that wij = 0 if xj does not belong
to the neighborhood and the constraint ∑n

j=1 wij = 1. Finally the embedding is made in
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such way that the following cost function is minimized for Y the low-dimensional data
representation:

φ(Y) =
n

∑
i=1

∥∥∥∥∥yi −
n

∑
j=1

wijyj

∥∥∥∥∥
2

subject to ||y(k)||2= 1 for ∀k (1.16)

φ(Y) = (Y −WY)2 = YT(I −W)T(I −W)Y is the function that has minimized [122].
Hence the eigenvectors of (I−W)T(I−W) corresponding to the smallest nonzero eigen-
values from the solution that minimizes φ(Y). Conceptually the method is similar to
ISOMAP, but it is computationally much nicer because the weight matrix is sparse and
there exist deficient solver. The popularity of LLE has led to development of linear vari-
ants of the algorithm, in fact it was applied with successful in different fields. However
LLE was reported to fail in visualization [99] and it is performed worse than ISOMAP
[75]. Finally, LLE tends to collapse large portions of the data very close together in the
low-dimensional space, because the covariance constraint on the solution is too simple.

1.4.2 Kernel-PCA

Kernel PCA (kPCA) is an extension of linear PCA in high-dimensional space which is
constructed using a kernel transformation. In contrast of PCA, kernel PCA computes
the principal eigenvectors of the kernel matrix, rather than the covariance matrix. It
is possible to reformulate PCA in kernel space through a kernel transformation. If the
variables of dataset X are centered around 0, then the principal components can also
be computed from the inner product matrix K = XTX. Due to this way of calculating
a PCA, we do not need to explicitly map all points into the high dimensional space
and do the calculations there, it is enough to obtain the inner product matrix or kernel
matrix K ∈ Rn×m of mapped points [126]. An example of the entries in the kernel
matrix is given by Gaussian kernel:

K = φ(xi)Tφ(xi)=κ(xi , xj) = exp

(
−
‖xi − xj‖2

2σ2

)
(1.17)

where σ is a length scale parameter accounting for the width of the kernel. The princi-
pal d eigenvectors vi of the centered kernel matrix are computed. The eigenvectors of
the covariance matrix ai (in the feature space constructed by k) can now be computed,
since they are related to the eigenvectors of the kernel matrix vi through ai = 1√

λi
vi.

In order to obtain the low-dimensional data representation, the data is projected onto
the eigenvectors of the covariance matrix ai. The result of the projection (i.e. the low-
dimensional data representation Y) is given by:

yi =

{
n

∑
j=1

a(j)
1 k(xj, xi), ...,

n

∑
j=1

a(j)
d k(xj, xi)

}
(1.18)
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where a(j)
1 indicates the jth value in the vector a1 and k is the kernel function that was

also used in the computation of the kernel matrix. The kPCA method is very flexible
and there exist many kernels for special purposes. The flexibility comes at the price that
the method has to be finely tuned for the dataset because some parameter combinations
are simply unsuitable for certain data. An important weakness of Kernel PCA is that
the size of the kernel matrix is proportional to the square of the number of instances in
the dataset. In other words the kPCA is not suitable for very large data sets, because
memory scales with O(n2) and computation time with O(n3).

1.4.3 Diffusion Maps

Diffusion Maps are originated by the filed of dynamic systems, this method is based
on defining of a Markov Random Walk on the graph of the data [108]. This measure
is known as diffusion distance, the key idea behind the diffusion distance is that it is
based on integrating over all paths through the graph. In the Diffusion Map first is
constructed a weights graph. Through a Gaussian kernel function are computed the

weights, this leads to a matrix W with entries wij = e−
‖xi−xj‖

2

2σ2 , where σ indicates the
variance of the Gaussian. Subsequently, the matrix W is normalized, in other words
every rows add up to 1. In this way, a matrix P1 is formed with entries: p1

ij =
wij

∑k wij
.

Since Diffusion Maps originate from dynamical system theory, the matrix P1 is a Markov
Matrix that defines the forward transition probability matrix of a dynamical process.
From the matrix P1 we can observe the probability of transition from one to another
datapoint in a single timestep. The forward probability matrix for t timesteps P(t) is
thus given by (P(1))t. Using the random walk forward probabilities p(t)

ij , the diffusion
distance is defined by:

D(t)(xi , xj) =

√√√√√∑
k

(
p(t)

ik − p(t)
jk

)2

ψ(xk)(0) (1.19)

where ψ(xi)(0) = mi
∑j mj

, and mj is the degree of node xi defined by mi = ∑j pij, this

means that ψ(xi)(0) gives more weight to parts of the graph with high density. In other
words the Equation 1.19 shows that pairs of datapoints with a high forward transition
probability have a small diffusion distance. Since the diffusion distance is based on
integration over all paths through the graph. In the low-dimensional representation
of the data Y, diffusion maps attempt to retain the diffusion distances. Using spectral
theory on the random walk it has been shown that the low-dimensional representation
Y that retains the diffusion distances D(t)(xi , xj) as good as possible is formed by the d
nontrivial principal eigenvectors of the eigenproblem:

P(t)v = λv (1.20)

Because the graph is fully connected, the largest eigenvalue is trivial and the eigenve-
cotr v1 is thus discarded. The low-dimensional representation Y is given by the next
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d principal eigenvectors. In the low-dimensional representation, the eigenvectors are
normalized by their corresponding eigenvalues. Hence, the low-dimensional data rep-
resentation is given by

Y = {λ2v2, ..., λd+1vd+1} (1.21)

Diffusion Map is based on the diffusion distance on integration over all paths through
the graph, it is more robust to short-circuiting than the geodesic distance that is em-
ployed in ISOMAP. Diffusion Map have been applied to shape matching and gene ex-
pression analysis.

1.4.4 Laplacian Eigenmaps

Laplacian Eigenmaps is a method that find a low-dimensional data representation by
preserving local properties of manifold. Indeed, the local properties with this method
are based on the pairwise. Laplacian Eigenmaps computes the distances that mini-
mized between a data point and its nearest k neighbors. Using spectral graph theory,
the minimization of the cost function is defined as an eigenproblem. The Laplacian
Eigenmaps first builds a neighborhood graph G in which every row xi is connected to
its k nearest neighbors. For all points xi and xj in graph G that are connected by an
edge, the weight of the edge, as in the Diffusion Maps, is computed using the Gaus-
sian Kernel function, leading to a sparse adjacency matrix W. In the computation of the
low-dimensional representations yi, the cost function that is minimized is given by:

φ(Y) = ∑
ij
‖yi − yj‖2wij (1.22)

in this function large weights wij correspond to small distances between the high-
dimensional datapoints xi and xj. The Equation 1.22 can be solved formulating the
minimization problem as an eigenproblem, indeed it can be shown that the following
holds:

φ(Y) = ∑
ij
‖yi − yj‖2wij = 2YT LY (1.23)

The graph Laplacian L is computed by L = M−W where M is the degree matrix of W, it
is a diagonal matrix, in which the entries are the rows sums of W, i.e. mii = ∑j wij. The
low-dimensional data representation Y can thus be found by solving the generalized
eigenvalue problem:

Lv = λMv (1.24)

For the d smallest nonzero eigenvalues. The d eigenvectors vi corresponding to the
smallest nonzero eigenvalues form the low-dimensional data representation Y. Lapla-
cian Eigenmaps suffer from many of the same weaknesses as LLE, such as the presence
of trivial solution that is prevented from being selected by a covariance constraint that
can easily be cheated on. Despite these weaknesses, Laplacian Eigenmaps have been
successfully applied to, e.g. face recognition [65] and the analysis of fMRI data [24].
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In addition, variants of Laplaican Eigenmaps may be applied to supervised or semi-
supervised learning problems [32].

1.4.5 Self Organization Maps

Self Organization Maps (SOM) is a neural network method to project data points from
some input space to a position in a low-dimensional output space [20]. A SOM is orga-
nized with a two-dimensional rectangular gird (other choices, such as hexagonal grids,
can also be used) of K neural prototypes li ∈ Rp, which they correspond weight vectors
wr. SOM maps a data point xi to a neural located at lj in the map output space accord-
ing to xi 7→ lj : lj = minl‖xi −wj‖. Then only the weights of the winning neuron for the
present input are update. If this winning neuron has been chosen for representing an
input instance for the first time its weights are set equal to the input instance. Accord-
ing to [85], the weights are upgraded, in which the neighborhood function is reduced
to only the winning neuron:

wj(t + 1) = wj(t) + α(t)[xi(t)− wj(t)] (1.25)

where wj(t) are the weights of the winning neurons at present iteration t, xi(t) is the
present input instance and α(t) is the usual learning ratio that decreases over the time t
through a Gaussian function [85]. The sequence xi(t) of feature vectors which constitute
the original movement pattern i is transformed by the SOM into a sequence of excited
neurons lj(t). Instead of considering a distance between sequences xi(t), xj(t) directly,
in the p-dimensional input space, it can be operated in the only 2-dimensional output
space, with all redundant, noisy extra dimensions suppressed. This leads to a distance
matrix:

d(i, j) =
√

∑
t

(
li(t)− lj(t)

)2. (1.26)

SOM is a iterative algorithm that selects the best node in the output map at each step,
so that distances in the input space are preserved by their representatives in the output
map. SOM provides a good approximation of the input space, furthermore is topolog-
ically order: in general, similar inputs are mapped to close neurons. SOM reflects the
statistics of the input: regions of the input space where the input arrives with highest
probability correspond to wider regions in SOM and are therefore represented with
higher resolution.

1.5 Feature Selection

In this section, we introduce some methods developed by statistical learning. In partic-
ular, these methods try to combine the availability of the huge dataset with the statisti-
cal theory. The aim is to select a subset of variables to predict or explain the variables
of interest. In other words, the feature selection produces a dimensional reduction
through a selection of the features in relation to the variable of interest. This means that
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if we change the variable of interest we can have different feature selection. Substan-
tially, in this case, we see some ways in which the simple linear model can be improved,
by replacing plain least-squares fitting with some alternative fitting procedures. The
main advantage of these methods is that they can be applied with discrete and contin-
uous data, without restriction. In the next sections, we define the variable of interest
with Υ.

1.5.1 Subset Selection

The term subset selection means a strategy for selecting subsets of predictors. There are
different algorithms to perform this strategy and different measures to choose the best
model between all possible models. The basic strategies used for selecting the attributes
can be classified in that way [114]:

• Best Subset Selection [22]

• Branch and Bound[109]

• Sequential Methods: [63]

– Sequential Forward Search

– Sequential Backward Search

– Hybrid Approach

All of these methods result in the creation of a set of models, each of which contains
a subset of k predictors. In order to implement these methods, we consider a strategy
to discern the best modelMk between all possible modelsM0, ...,Mp. This strategy
consist to evaluate the mean square error (MSE):

MSE =
1
n

n

∑
i=1

(υi − f̂ (xi))2 =
RSS

n

We fit a model to the training data using the least squares, we specifically estimate
the regression coefficients such that the training residual sum square (RSS) is a small as
possible. In particular, the training error will decrease as more variables are included in
the model but the test error may not. However, there are different methods to avoid the
problem for the model size. Indeed, these approaches can be used to select among a set
of models with different numbers of variables. To evaluate how to chose the best model
in terms of goodness of the forecast, we can consider the model selection measures Cp,
Akaike information criterion (AIC) and Bayesian information criterion (BIC). For a fitted
least squares model containing k predictors, the Cp estimate of the MSE is computed
using the equation:

Cp =
1
n

(RSS + 2kσ2)

where σ2 is a estimation of the variance of the error εi = υi − f̂ (xi). The AIC criterion is
defined for a large class of models fit by maximum likelihood. In the case of classical
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model as Υ = ∑k
i=1 βkX + ε, with Gaussian error, maximum likelihood and least squares

are the same thing. In this case AIC is given by:

AIC =
1

nσ2 (RSS + 2kσ2).

As we can see, the Cp and AIC are proportional to each other, for this reason one of them
can be used to evaluate the goodness of the models. BIC is derived from a Bayesian
point of view, but ends up looking similar to AIC as well. For the least squares model
with k predictors, the BIC is up to irrelevant constants, given by:

BIC =
1
n

(RSS + log(n)kσ2).

Essential the Cp and AIC add a penalty of 2kσ2 to the training RSS in order to adjust
for the fact the training error tends to underestimate the test error, while BIC adds a
penalty of kσ2. As we can see, for all of them the penalty increases as the number of
the predictors in the models increases; this is intended to adjust for the corresponding
decreases in training RSS. Small value of Cp, AIC and BIC indicates a model with a
low test error. As consequence, these statistics tend to take on a small value for models
with low test error, so when determining which of a set of models is best, we choose the
model with lowest Cp or AIC or BIC value. Another strategy to choose the best model
is to considering the goodness of the fit, in this case we use the adjusted R2. It is another
popular approach for selecting among a set of models that contain different numbers
of the variables. The R2 is defined as 1− RSS/TSS, where TSS = ∑n

i=1(υi − ῡ) is the
total sum of squares for the response. Since RSS always decreases as more variables are
added to the model, the R2 always increase as more variables are added. For a least of
squares model with k variables, the adjusted R2 statistics is computed as:

Adjusted R2 = 1− n− 1
n− k− 1

× RSS
TSS

The adjusted R2 can be assumed value between 0 and 1. Unlike Cp, AIC and BIC for
which small value indicates a model with a low test error, a large value of adjusted R2

indicates a model with a small test error. Indeed, more the adjusted R2 is close to 1, more
this statistic tells us whether the k regressors are good to explaining the values of the
interest variable [111].

Best Subset Selection

The best subset selection fits a separate least squares regression for each possible combi-
nation of the p predictors. That is, it fits all p models that contain exactly one predictor,
all (p

2)=p(p− 1)/2 models that contain exactly two predictors, and so forth. Then, the
aim is to identify from among the 2p possibilities the best model, in terms predict or
explain the variable of interest. The pseudo code of the best subset selection algorithm is
composed in the follow way:
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• LetM0 denote the null model, which contains no predictors. This model simply
predicts the sample mean foe each observation.

• For k = 1, 2, ..., p:

– a) Fit all (p
k) models that contain exactly k predictors

– b) Pick the best among these (p
k) models, and call itMk. Here best means the

model that have the smallest RSS, or equivalent largest R2

• Select a single best model from amongM0, ...,Mp using cross-validated predic-
tion error, Cp AIC, BIC, or adjusted R2

The step 2 of Algorithm Best Subset identifies the best model (on the training data) for
each subset size, in order to reduce the problem from of 2p possible models to one of
p+1 possible models.

Branch and Bound

The Branch and Bound method organizes the features in a tree, where the root pertains
to choosing all the features. The children at the next level of the root consist of a combi-
nation of features by removing one feature. This strategy continues from each of these
children, new nodes are formed where other features have been removed, and so on. In
the leaf of the tree, we have a combination of features. Once a leaf node is reached, the
criterion function’s values go below bound, then that branch is not evaluated. When
another leaf is reached if its criteria value is greater than bound then it is updated and
that combination of features is stored as the best so far. However, the subset generated
may not be optimal as some of the nodes are not expanded [114].

Sequential Methods

For computational reasons, best subset selection and branch and bound cannot be applied
with very huge dataset. The larger the search space, the higher the change of finding
models that look good on the training data, even though they might not have any pre-
dictive power on future data. Thus an enormous search space can lead to over-fitting
and high variance of the coefficient estimates. For these reasons, the Sequential Methods
can be considered a possible solution to these challenges, in fact, they are attractive
alternatives to previous methods. In this section we present the Sequential Methods,
where the features are sequentially added or removed at each step based on the crite-
rion function. The criterion to evaluate the best model among the all possible models
with different number of regressors k are the same present in the section 1.5.1

Sequential Forward Search is computationally more efficient than previous meth-
ods. In fact, it does not consider all possible 2p models containing a subset of k predic-
tors. The strategy of the dimensional reduction in Sequential Forward Search starts with
an empty set and keeps on adding features. It adds one feature at a time until all of the
predictors are in the model. The feature being added is the most significant or relevant
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one. Once a feature gets added, then it cannot be removed. This procedure is reported
in the following steps:

• LetM0, denote the null model, which contains no predictors.

• For k = 0, ..., p− 1:

– a) Consider all p − k models that augment the predictors in Mk with one
additional predictor.

– b) Choose the best among these p− k models, and call itMk+1. Here best is
defined as having smallest RSS or highest R2

• Select a single best model form amongM0, ...,Mp using cross-validated predic-
tion error,Cp, AIC, BIC, or adjusted R2

Sequential Forward Search’s computational advantage over best subset selection is
clear. Though it can be tend to do well in practice, it is not guaranteed to find the
best possible model out of all 2p models containing subsets of the k predictors.

Sequential Backward Search provides an efficient alternative to best subset selection,
like sequential forward search. It starts with all the p features inside in the model and
in every iteration a feature is discarded. The feature being removed is the one which
is most insignificant or irrelevant. Also once a feature is discarded, it cannot be added
again. Details are given in Algorithm below:

• LetMp denote the full model, which contains all p predictors

• For k = p, p− 1, ..., 1 :

– a) Consider all k models that contain all but one of the predictors inMk for
a total of k− 1 models, and call itMk−1 predictors

– b) Choose the best among these k models, and call itMk−1. Here best is de-
fined as having smallest RSS or highest R2

• Select a single best model form amongM0, ...,Mp using cross-validated predic-
tion error,Cp, AIC, BIC, or adjusted R2

Like sequential forward selection, the sequential backward search examinations through
only 1 + p(p + 1)/2 models, and so can be applied in settings where p is too large to apply
best subset selection. Also like sequential forward search, sequential backward search
is not guaranteed to yield the best model containing a subset of p features.

Hybrid Approach is the strategy that combine the sequential algorithms. It adds some
features remove some of them in each iteration. Features being added are the most sig-
nificant ones and the ones being removed are the least significant ones. This approach
tries to solve the problem of the search for the best subset of predictors with p large.
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1.5.2 Shrinkage Methods

The methods presented in the Subset Selection section, involve using least squares to
fit a linear model that contains a subset of predictors. Here we present an alternative
with an approach that contains all p predictors using a technique that constrains or
regularizes the importance the predictors inside the model, or equivalently, that shrinks
the coefficient estimates towards zero. The two most important techniques for shrinkage
methods are:

• Ridge Regression

• Lasso

Ridge Regression

The Shrinkage Methods are an evolution of the least square fitting, where the procedure
is to identify the coefficients of the linear regression βi, j = 0, .., k where k is the number
of the predictors, that minimize:

RSS =
n

∑
i=1

(
υi − β0 −

k

∑
j=1

β jxi,j

)

The ridge regression is very similar to least squares, except that the coefficients are
estimated by minimizing a slightly different quantity. The ridge regression coefficient
estimates β̂R are the values that minimize:

n

∑
i=1

(
υi − β0 −

k

∑
j=1

β jxi,j

)
+ λ

P

∑
j=1

β2
j = RSS + λ

P

∑
j=1

β2
j (1.27)

where λ ≤ 0 is called tuning parameter, to be determined separately. A method to deter-
mine the value of λ, is to choose a gird of λ values, and compute the cross-validation
error for each value of λ, and chose the λ associate with the smaller cross validation
error. The Equation 1.27 can be studied in two component. As with least squares, ridge
regression seeks coefficient estimates that fit the data well, by making the residual sum
squares small. In the second term of the equation we the "key" of the dimensional re-
duction. In fact λ ∑j β2

j , called a shrinkage penalty is small when β1, ..., βk are close to
zero, and so it has the effect of shrinking the estimates of β j towards zero. The tuning
parameter λ serves to control the relative impact of these two terms on the regression
coefficient estimates. When λ = 0, the penalty terms has no effect, and ridge regres-
sion will produce the least squares estimates. However, as λ → ∞, the impact of the
shrinkage penalty grows, and the ridge regression coefficient estimates will approach
zero. The choice of λ is critical, but once passed this step this method is very useful. In
fact, the ridge regression can be applied with a large dataset with continuous and dis-
crete variables. Nevertheless, the presence of spurious relationship in the dataset should
be taken into consideration. The main disadvantage of this method is that we can not
apply the econometrics theory to interpret the coefficients.
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Lasso

Ridge regression does have an obvious disadvantage. Unlike best subset and sequential
methods which will generally select models that involve just a subset of the variables,
ridge regression will include all p predictors in the final model. The penalty λ ∑

p
j β2

will shrink all of coefficients towards zero, but it will not set any of them exactly to zero
(unless λ = ∞). This may not be a problem for prediction accuracy, but it can create a
challenge in model interpretation in settings in which the number of p is quite large.
Ridge regression will always generate a model involving all predictors inside in the
dataset. Increasing the value of λ will tend to reduce the magnitudes of the coefficients,
but will not result in exclusion of any of the variables. The Lasso is a relative recent
alternative to ridge regression that overcomes this disadvantage. The lasso coefficients,
β̂L

λ, minimize the quantity:

n

∑
i=1

(
υi − β0 −

k

∑
j=1

β jxi,j

)
+ λ

P

∑
j=1
|β j|= RSS + λ

P

∑
j=1
|β j| (1.28)

Where the strategy to choose the best λ is the same of ridge regression. Comparing
the two Shrinkage Methods, we note that they have a term in common. The main
difference is that β2

j term in the ridge regression penalty has been replaced by |β j| in
the lasso penalty. From a statistical point of view, the lasso uses an l1 penalty instead
of an l2 penalty. The similarity between the lasso and ridge regression is not only in
the formula of optimization but also that the lasso as the ridge regression, shrinks the
coefficient estimates towards zero. However, in the case of the lasso, the l1 penalty has
the effect of forcing some of the coefficients estimates to be exactly equal to zero when
the tuning parameter λ is sufficiently large. In other words to produce a dimensional
reduction through the feature selection. As a result, models generated from the lasso
are generally much easier to interpret than those produced by the ridge regression [50].

1.6 Graphical Models

In this section we introduce the Graphical Model as technique to mapping the rela-
tionship between the variables and as representations of hierarchical Bayesian models.
A Graphical Model defines a family of probability distribution through a graph. The
nodes in the graph are identified with the random variables, and joint probability dis-
tribution are defined by taking products over functions defined on connected subset
of nodes [78]. Essentially, they are an elegant framework which combines uncertainty
(probability) and logical structure (independence constraints) to compactly represent
complex, realworld phenomena [25]. The two most important forms of Graphical
Model are represented by directed graph and undirected graph. In the first case we have
a directed graph G(V, E), where V are the nodes and E are the edges of the graph. Let
{Xv : v ∈ V} be a collection of random variables indexed by the nodes of the graph. To
each node v ∈ V, let πv denote the subset of indices of its parents. With Xπv we indicate
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the vector of random variables indexed by the parents of v. According to [78], given a
collection of kernels {k(xv|xπv ) : v ∈ V} that the sum (in discrete case) or integrate (in
continuous case) to 1 (with respect to xv), we define a joint probability distribution (a
probability mass function or probability density as appropriate) as:

p(xv) = ∏
v∈V

k(xv|xπv ) (1.29)

We can write k(xv|xπv ) = p(xv|xπv ) because it is possible to verify that this joint prob-
ability distribution has {k(xv|xπv )} as its conditional[78]. Given an undirected graph
G(V, E), and as in the directed case we have that {Xv : v ∈ V} be a collection of random
variables indexed by the nodes of the graph and let C denote a collection of cliques of
the graph (that we can define as path where the star node is the end node). Associated
with each clique C ∈ C, let ψC(xC) denote a nonnegative potential function. Thus we can
define the joint probability p(xv) by taking the product over these potential functions
and normalizing

p(xv) =
1
φ ∏

C∈C
ψC(xC) (1.30)

where φ is a normalization factor obtained by integrating or summing the product with
respect to xv. Directed graphical models are familiar as representations of hierarchical
Bayesian models, while the undirected graphs are often used in problems in areas as
spatial statistics, statistical natural language processing and communication networks.
In the next section we present in details the different strategy to build the Graphical
Models.

1.6.1 Gaussian Graphical Models

Let X = (X(1), ..., X(p)) be a p-dimensional random vector with a Multi-Gaussian dis-
tribution Np(µ, Σ) with unknown mean µ and nonsingular covariance matrix Σ. The
key quantity in Gaussian Graphical Models is the inverse of covariance matrix K = Σ−1

called as the concentration matrix:

K =


k11 k12 · · · k1p

k21 k22 · · · k2p
...

...
. . .

...
kp1 kp2 · · · kpp

 (1.31)

In particular the partial correlation between xu and xv given all other variables,
can be expressed by the value of the concentration matrix K as:

ρuv|V\{u,v} = −kuv
√

kuukvv (1.32)

Thus, when xu and xv are conditional independent given all other variables, we have
from the concentration matrix that kuv = 0. This is the covariance selection problem [38]
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or the model selection-problem in the Gaussian concentration graph model [33]. From
a construction point of view, a Gaussian concentration graph model for the Gaussian
random vector X is represented by an undirected graph G = (V, E) where V repre-
sents the set of the vertices, direct correspondence with the p variables, while the edges
E = (eu,v)16u<v6p describe the conditional independence relationships among the vari-
ables: X1, ..., Xp. If the edge between Xu and Xv is absent means that Xu and Xv are con-
ditional independent given all other variables present in the dataset [152]. This graph is
called the dependence graph [67] and it is often convenient to represent the model by the
cliques C = {C1, ..., CQ} of the dependence graph. Recall that a probability distribution
factorizes according to an undirected graph G = (V, E) is given by the Equation 1.30. As
we have seen above K = Σ−1 and now we introduce the following equivalence h = Kµ.
The multivariate Gaussian density is given by the Equation:

f(x) = (2π)−d/2det(K)
1
2 exp

{
−1

2
(x− µ)TK(x− µ)

}
= (2π)−d/2det(K)

1
2 exp

(
−1

2
µTKµ + hTx− 1

2
xTKx

) (1.33)

Letting a = − d
2 log(2π) + 1

2 log det(K)− 1
2 µTKµ we can write the Equation 1.33 as:

f(x) = exp
(

a + hTx− 1
2

xTKx
)

= exp

(
a + ∑

u
huxu −

1
2 ∑

u
∑
v

kuvxuxv

)
(1.34)

According to the [32], if the vertices A and B are separated by a set C in the dependence
graph we have kuv = 0 for u ∈ A and v ∈ B. By appropriately collecting terms we can
write f (x) = g(xA, xC)h(xB, xC). The factorization criterion applied to the equation 1.34
yields that for Gaussian graphical models the global Markov property holds: A⊥B | C.
The maximum likelihood estimation of (µ, Σ) for a sample x1, ..., xn of n observations
from a multivariate Gaussian distribution, is (x̄, S̄) where: S̄ = 1

n ∑n
i=1(xi − x̄)(xi − x̄)T

denote the empirical covariance matrix. The log-likelihood function based on the sam-
ple is:

logL(K, µ) =
n
2

log det(K)− n
2

tr(KS)− n
2

(x̄− µ)TK(x̄− µ) (1.35)

If we fixed K, µ̂ = x̄ the equation 1.35 is clearly maximized. The profile likelihood for K
thus becomes

log L(K, µ̂) =
n
2

log det(K)− n
2

tr(KS) (1.36)

Since tr(KS) = ∑u ∑v suvkuv it follow that only elements suv for which the corresponding
elements kuv of K are non-zero will contribute to the likelihood. There are three main
methods to perform a Gaussian Graphical Models:

• Stepwise methods

• Convex optimization

• Thresholding
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In stepwise methods performs model selection based on a variety of criteria. AIC
or BIC criterion which minimizes the negative of a penalized likelihood is given by
−2 log L + Kdim(M). Where dim(M) is the number of independent parameters in
modelM and k = 2 for AIC model otherwise in BIC model k = log n. Figure 1.4 shows
the Gaussian Graphical Models for carcass dataset, found by BIC stepwise method. The
dataset is available on R with the library(gRim) and it is composed by 344 observation
and 7 variables.

Gaussian Graphical Model

Figure 1.4: Model for carcass data found by stepwise selection using the BIC criterion

One way to avoid a stepwise search is to use the glasso algorithm. This technique
finds a Undirected Gaussian Graphical Model (UGGM) that maximizes a log-likelihood
for K which is penalized by the L1-norm |K|. From equation 1.36 adding L1-penalize
the log-likelihood is equivalent to:

Lpen(K, µ̂) = log det(K)− tr(KS)− ρ|K| (1.37)
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where ρ is a non-negative penalty parameter. The L1-norm |K| is the sum of the abso-
lute values of the elements of concentration matrix K. This sum is largely a proxy for
the number of non-zero elements of K and as this penalized log-likelihood is convex
in K, it can be optimized by convex programming methods. The smaller the value of
ρ, the denser the graph that results. No penalization occurs for values of ρ close to
zero. The simple and apparently naive method for selecting UGGM is to set a specific
threshold for the partial correlations, so edges are removed for all partial correlations
less than a given value. It is showed that all of these methods converged with the same
result [32]. One of the advantage of UGGM is that can be applied when we have dataset
with a large number variables and we want to do dimensional reduction through fea-
ture selection, furthermore we can visualization the relationship between the variables
directly from the graph, and we can control which are many import with the penalty
parameter. However It is important to remember that UGGM can be applied only with
continuous data and the choice of the threshold can be conditioned the variables select
in the model. In the past the main application of the UGGM regards in particular bio-
logical science and medical field [24], today the UGGM is an approach used in varied
contexts[5].

1.6.2 Bayesian Networks

A Bayesian Networks belong of graphical models approach, that allow hierarchical rep-
resentation of the probabilistic dependence between a given set of random variables
X = {X1, ..., Xp} through a directed acyclic graph (DAG) G = (V, A), where each node
vi ∈ V corresponds to a random variable {X1, ..., Xp}. A directed acyclic graph is a graph
with directed edges in which there are no cycles. Formally, a directed graph is a pair
(V, A ⊆ V × V) consisting of a set nodes V and a binary relation A on it that specifies
a directed edge from a node n to another one m whenever (n, m) ∈ A. The acyclicity
condition of a dag (V, A) is ensure by requiring that transitive closure A+of the relation
A is irreflexive;i.e. (n, n) /∈ A+ for all n ∈ V [46]. Figure 1.4 shows an example of a
Bayesian Networks. This Network is a representation of the chest clinic proposed by
[93] and we can note the relationships between the variables expressed in a hierarchical
way. In the recent years Bayesian Networks have been used in many fields, in partic-
ular On-line Analytical Processing (OLAP) performance enhancement [102], medical
service [3], gene expression analysis [52] and cancer prognosis and epidemiology [68].
The high dimensionality of datasets available in many field have led to the develop-
ment of several learning algorithms focused on reducing computational complexity (in
other words to do a feature selection) while still learning the correct network [130]. The
DAG defines a factorization of the joint probability distribution of the joint probability
distribution of V = {X1, ..., Xp} often called global probability distribution, into a set
of local probability distributions, one for each variable. The form of the factorization is
given by the Markov property of Bayesian networks [86], which states tat evry random
variable Xi directly depends only on its parents ΠXi . The two most important aspects
of a Bayesian network, are the conditional independence between the variables and the
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graphical separation that corresponding of the nodes in the graph. Therefore model
selection algorithms first try to learn the graphical structure of the Bayesian network
and then estimate the parameters of the local distribution functions conditional on the
learned structure. This two-step approach has the advantage that it considers one local
distribution function at a time, and it does not require to model the global distribution
function explicitly. Another advantage is that learning algorithms are able to scale to
fit high-dimensional models without incurring in the so-called curse of dimensionality.
Bayesian network structure learning algorithms can be grouped in two categories:

• constraint-based algorithms: these algorithms learn the network structure by ana-
lyzing the probabilistic relations entailed by the Markov property of Bayesian net-
works with conditional independence tests and then constructing a graph which
satisfies the corresponding d-separation statements. The resulting models are of-
ten interpreted as causal models even when learned from observational data [115]
[115]

• score-based algorithms: these algorithms assign a score to each candidate Bayesian
network and try to maximize it with some heuristic search algorithm. Greedy
search algorithms are a common choice, but almost any kind of search procedure
can be used.

Constraint-based algorithms are all based on the Inductive Causation (IC) algorithm by
[56], which provides a theoretical framework for learning the structure casual models.
It can summarized in three steps:

• 1. first the skeleton of the network (the undirected graph underlying the network
structure) is learned. Since an exhaustive search is computationally unfeasible
for all but the most simple datasets, all learning algorithms use some kind of
optimization such as restricting the search to the Markov blanket of each node v
(defined as the minimal set that d-separatesv from the remaining variables, it is
derived as the set of neighbours to v in moral graph of G ).

• 2. set all direction of the arcs that are part of a v-structure (a triplet of nodes
incident on converging connection Xj → Xi ← Xk)

• 3. set the directions of the other arcs as needed to satisfy the acyclicity constraint.

In contrast, score-based algorithms are simply applications of various general purpose
heuristic search algorithms, such as hill-climbing [143], tabu search [54], and simulated
annealing [34]. The networks with the same probability distribution are assigned the
same score. To perform the conditional independence between the variables, there are
several conditional independence test from information theory and classical statistics.
Conditional independence test for discrete data are functions of the conditional prob-
ability tables implied by the graphical structure of the network through the observed
frequencies {nijk , i = 1, ..., R, j = 1, ..., C, k = 1, ..., L} for generic random variables Xa

and Xb and all the configurations of the conditioning variables X:
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• mutual information: an information-theoretic distance measure [89] defined as

MI(Xa, Xb|X) =
R

∑
i=1

C

∑
j=1

L

∑
k=1

nijk

n
log

nijkn++k

ni+kn+jk
(1.38)

It is proportional to the log-likelihood ration test G2 (the differ by a 2n factor,
where n is the sample size) and it related to the deviance of the tested models.

• Person’s X2: that is the classical Person’s X2 test contingency tables,

X2(Xa, Xb|X) =
R

∑
i=1

C

∑
j=1

L

∑
k=1

(nijk −mijk)2

mijk
mijk =

ni+kn+jk

n++k
(1.39)

• Akaike Information Criterion: an experimental AIC-based independence test com-
puted comparing the mutual information and the expected information gain. It
rejects the null hypothesis if

MI(Xa, Xb|X) ≥ (R− 1)(C− 1)L
n

(1.40)

which corresponds to an increase in the AIC score of the network.

In the continuous case conditional independence tests are functions of the partial cor-
relation coefficients ρXaXb |X of Xa and Xb given X:

• linear correlation: the linear correlation coefficient ρXaXb |X

• Fisher’s Z: a transformation of the linear correlation, it is defined as:

Z(Xa, Xb|X) =
1
2

√
n− |X|−3 log

1 + ρXaXb |X
1− ρXaXb |X

(1.41)

• mutual information: an information-theoretic, distance measure [89] defined as

MIg(Xa, Xb|X) = −1
2

log(1− ρ2
XaXb |X) (1.42)

It has the same relationship with log-likelihood ratio as the corresponding test
defined in the discrete case.

Several score function are used to compare different way to represent a dataset with a
Bayesian network, here present the Bayesian information criterion, a penalized likeli-
hood score defined as:

BIC =
n

∑
i=1

log PXi (Xi|ΠXi )−
d
2

log n, (1.43)
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for the discrete case, and

BIC =
n

∑
i=1

log fXi (Xi|ΠXi )−
d
2

log n (1.44)

for continuous case. Where d is the number of the parameters of the global distri-
bution. It is numerically equivalent to the information-theoretic minimum description
length [120] These score functions are said to be score equivalent, since they assign the
same score to networks belonging to the same equivalence class. They are also decom-
posable into the components associated with learning the structure of the network (the
only parts of the score that need to be computed are those that differ between the net-
works being compared).

Bayesian Network

Figure 1.5: The directed acyclic graph corresponding to the clinic example from [93]

The Bayesian networks are very useful to understand the relationship between
the variables and provide an intuitive and comprehensive framework to model high
dimensional data. However, it is often the case that the available data have a more
complex mean structure plus additional components of variance, which must then be
accounted for in the estimation of a Bayesian network. The main limitation of the
Bayesian network is that does not works well when our dataset is composed by mixed
data (continuous and discrete random variables)
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1.6.3 High Dimensional Modeling

In this section we present the high-dimensional graphical models, where the expression
"high-dimensional" means of models with hundreds to tens of thousands of variables.
Often this data has become of central importance in molecular biology, but with the
availability of the Big Data can found this kind of data from other fields. The tech-
niques seen until now for build a Graphical Models, work well in low dimensional
applications (order of hundreds of variables), but them may be quite infeasible for high
dimensional ones. Furthermore, the Gaussian Graphical Models, as suggests the name,
work only with continuous variables and the Bayesian Networks can be infeasible with
mixed data. In contrast, the models that will be present in this sections work with
mixed data and we can do feature selection with high-dimensional dataset. As we seen
in previous sections, High Dimensional Modeling represents a dataset through a graph
that is a couple G = (V, E), where V is the a finite set of nodes (given by the random
variables present in our dataset) and E ⊂ V × V is a subset of ordered couples of V.
Two vertices are connected by an edge (line) when the corresponding variables are con-
ditionally dependent given the other variables represented in the graph. Suppose that
the dataset is composed by d discrete and q continuous random variables, (W,Z), where
W = (W1, ..., Wd) and Z = (Z1, .., Zq), thus i-observation can be written as a couple
(w, z). Here, w is a d-tuple containing the values of the discrete variables, and z is a
real vector of length q. We will denote with P(x) a joint probability distribution for the
random variables (W,Z). Let the corresponding set of nodes be V, where we can write
the subset of d discrete nodes as ∆ and Γ as the subset of q continuous node. Now the
main task is to find an approximation of the joint probability distribution P(x) to build
a conditional graph from the data. A product approximation of P(x) is defined to be a
product of several of its component distribution of lower order (Pa(x)). We consider the
class of second-order distribution approximation, i.e.:

Pa(x) =
p

∏
i=1

P(xi , xj(i)) 0 6 j(i) 6 p (1.45)

where (j1, ..., jp) is an unknown permutation of integers (1, 2, ..., p), where p = d + q [1].
[29] proved that for discrete random variables a goodness approximation between P(w)
and Pa(w) is given by the minimization of the closeness measure computing the mutual
information I :

I(P, Pa) = ∑
w

P(w) log
P(w)
Pa(w)

(1.46)

where ∑w P(w) is the sum over all levels of the discrete variables, this is equivalent to
maximizing the total branch weight ∑

p
i=1 I(wi , wj(i)), where

I(wi , wj(i)) = ∑
wi ,wj(i)

P(wi , wj(i)) log

(
P(wi , wj(i))

P(wi)P(wj(i))

)
(1.47)
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Calculating the total branch weight for each of the pp−2 trees would be computationally
too expensive even for moderate p. So we adopt a radical way of dealing with high-
dimensional sparse data and restrict attention to forest and tree graph. A forest is is a
special case of undirected graph, in particular is a graph with no cycles and it may be
composed of several connected components called trees, i.e. a tree is a connected acyclic
graph [106]. To build the graph is used the Kruskal’s algorithm [88], in order to solve
the problem of finding dependence tree or forest of maximum weight. This algorithm
starts from a square weighted matrix p by p, where a weight for a pair of variables
(Wi , Wj) is computed by the mutual information I(Wi , Wj). From this point of view, the
problem to found the best tree dependence from the data is reduced to calculating p(p−
1)/2 weights, because the mutual information is symmetric, i.e. I(Wi , Wj) = I(Wj, Wi) and
there are not self loop. Consider, now a real application where probability distributions
are not given explicitly. Let w1, w2, ..., wN be N independent samples of a finite discrete
variable x. Then, the mutual information can be estimated as follow:

Î(wi , wj) = ∑
u,v

fu,v(i, j) log
fu,v(i, j)
fu(i)fv(j)

(1.48)

where fu,v(i, j) = nuv(i,j)
∑u,v nu,v(i,j) , and nu,v(i, j) is the number of samples such that their ith

and jth components assume the values of u and v, respectively. It can be shown that
with this estimator we also maximize the likelihood for a dependence tree. This proce-
dure it was extended to data with both discrete and continuous random variables [42].
The assumption is that random variables X are conditionally Gaussian distributed, i.e.
the distribution of Z given W = w is multivariate normal N(µi , Σi), so that both the
conditional mean and covariance may depend on i. We discern two possible case, the
homogenous and heterogeneous case. In the first case Σ depends on i and in the sec-
ond case Σ does not depend on i. To apply the algorithm we need to derive the mutual
information between a discrete variable Wu and a continuous variable Zv, we introduce
the sample cell counts, means, and variances as {ni , z̄v, s(v)

i }i=1,...,|Wu |. In homogenous
case an estimator of the mutual information is given by:

Î(wu, zv) =
N
2

log
( s0

s

)
, (1.49)

where s0 = ∑N
k=1(z(k)

v − z̄)2/N and s = ∑Wu
i=1 nisi/N. In this case we have kwuzv = |wu|−1

degree of freedom. Otherwise, in heterogeneous case an estimator of the mutual infor-
mation is given by:

Î(wu, zv) =
N
2

log(s0)− 1
2 ∑

i=1,...,|Ws |
ni log(si) (1.50)

in this case we have kwuzv = 2(|Wu|−1) degree of freedom. Note that the algorithm
will always stop when it has added the maximum number of edges, i.e. p− 1 for an
undirected tree or forest. A disadvantage with selecting a tree based on maximum
likelihood is that it will always include the maximum number of edges, irrespective of
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whether the data support this or not. It is desirable to take account of number parame-
ters in some fashion. In machine learning approach, it is prevalent the idea to penalize
the likelihood using the minimum description length principle [121], whereas in the
statistical literature the use of information criteria is well-established, particularly AIC
(Akaike information criterion [6] ) and BIC (Bayesian information criterion [127]). For this
reason is used the Kruskal’s algorithm in order to penalize mutual information quanti-
ties ÎAIC

u,v = Îu,v − 2kxu ,yv or ÎBIC
u,v = Îu,v − log(n)kxu ,yv , where kwu ,zv are the degrees of

freedom, to avoid inclusion of links not supported by the data. The class of tree graph-
ical models can be too restrictive for real data problem. However, we can start from the
best spanning tree and determine the best strongly decomposable graphical model that
is a key property which regards the feature selection. The definition of strongly decom-
posable graphical model is a graphical model whose graph neither contains cycles of
length more than tree nor forbidden path [92]. A path exists between nodes A and B if
one can reach A from B in a finite number of steps.

Bic Forest

Figure 1.6: Representation of the extended Chow-Liu Algorithm build over the breast
cancer dataset

The definition of forbidden path is a path between two not adjacent discrete nodes
which passes through continuous nodes [106]. The distributional assumption is that
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the random variables are conditional Gaussian distributed. A key property of decom-
posable graph is that densities of such models can be factorized as:

f(v) = ∏C∈C f (vc)
∏S∈S f (vS)v(S) (1.51)

where C is the class of cliques in a perfect sequence, and v(S) is the number of times
that S occurs as separator in this perfect sequence. This means that If we are only
interested in a subset of such relations, we can define a subgraph of G as GA = (A, EA)
where A ⊂ V and EA ⊂ E. In other words we can consider the variables suggests by
the graph to do a feature selection. IfM0 ⊂ M1 are decomposable models differing
by one edge e = (vi , vj) only, then e is contained in one clique of M1 only, and the
likelihood ratio test forM0 versusM1 can be performed as a test of vi ⊥ vj|C\{vi ,vj}.
These computations only involve the variables in C. It follows that for the likelihood-
based scores such as AIC or BIC, score differences can be calculated locally which is
far more efficient than fitting bothM0 andM1. This leads to considerable efficiency
gains. To summarize, strongly decomposable model is an important class of model that
can be used to analyze mixed data. This class restricts the class of possible interaction
models which would be to huge to be explored. Moreover, we have the important
results that for strongly decomposable graphical models closed-form estimator exists
[92]. In particular, this aspect can be extend in the case when the cliques C may be quite
large and it is often useful to consider potential functions that are themselves factorized
in ways that need not be equated with conditional independencies. As suggest [78], we
consider a set of 38 factors { fi(XCi ) : i ∈ I} for some index set I , where Ci is the subset
of nodes associated with the ith factor. Note in particular that the same subset can be
repeated multiple times (i.e., we allow Ci = Cj for i 6= j). We define a joint probability
by taking the product across these factors:

p(xv) =
1
φ ∏

i∈I
fi(xCi ) (1.52)

Factor graphs provide a more fin-grained representation of the factors that make
up a joint probability and are useful in defining inference algorithms that exploit this
structure. To sum up, all steps of the algorithm to searches an optimal tree or forest is
the following:

• 0 Starting from an empty edge set

• 1 Calculate the BIC for all possible edges

• 2 Select the edge that improves the most the model’s BIC

• 3 If there is no such edge, stop

• 4 Test if the there is another edge that creates a new path

• 5 If it does, select the best edge and return to Step 3
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• 6 Add the edge to E, remove it from the list of possible edges, and return to Step
2.

• Note: a Forbidden Path and Cycles are avoid

Figure 6 shows the result of the Extended Chow–Liu Algorithm. We applied this
algorithm to breast cancer dataset composed of 250 observations and 1001 variables
[103]. This dataset is available on R with library(gRbase).

1.7 Conclusion

This paper presented a review of techniques for dimensionality reduction. In this case,
we have distinguish between the methods that perform a transformation of the vari-
ables to find latent variables and method that perform feature selection. Linear Meth-
ods are most useful for dimensional reduction, but them suffer large numbers of vari-
ables. On the other hand, nonlinear techniques for dimensionality reduction do not
suffer from the presence of trivial optimal solutions, may be based on non-convex objec-
tive functions, and do not rely on neighbourhood graphs to model the local structure of
the data manifold. The Graphical Models are very powerful techniques to understand
the relationship between the variables. This aspect can be used to identify redundancy
of information or to select the most relevant variables. Eventually, we underline that
the choice of one of these methods will depend by the numbers of variables present in
the dataset, by the variables that compose the dataset (if they are continues or not) and
by the main goal of the research.
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Chapter 2

Use of High Dimensional
Modeling for Variables Selection

The Best Path Algorithm

This paper presents a new algorithm for variable selection. In particularly, using the
Graphical Models properties it is possible to develop a method that can be used in the
contest of large dataset, in order to implement an automatic variable selection. The
advantage of this algorithm is that can be combined with different forecasting models.
In this research we have used the OLS (Ordinary Least Squares) method and we have
compared the result with the LASSO method.

2.1 Introduction

In the last decade the challenge of feature selection becomes a problems in different
fields of the research [98]. The dimensionality reduction is a strategy to solve this chal-
lenge. Although overtime scholars developed different methods, recently these meth-
ods have been challenged by Big Data Problem, in which the increasing availability of
data is calling for new techniques able to handle not only a large amount of observa-
tions, but also rich data sets in terms of number and relations among variables [151]. In
general, a dimensionality reduction problem can be viewed as an optimization prob-
lem, over a matrix of data: X [125]. In details, X is represented in n× p consisting of
a collection of p data vectors xi and n observations. The purpose of dimensional re-
duction is to achieve new dataset Y with k variables instead of the original dataset X
with dimensionality p, where k < p and often k � p. In order to obtain this reduction,
we can consider two strategies: feature selection and feature extraction [79]. Algo-
rithms based on feature selection, select only those feature from the data set X, which
are relevant or significant from the point view of classification or clustering and the
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least important features are discarded [114]. In the last decades, this approach was ex-
panded by the Bayesian Model Selection [47] [36]. It produces a variable selection based
on posterior model probabilities and the corresponding posterior model odds, which
are functions of Bayes factors [48]. While feature extraction algorithms utilize all the in-
formation contained in measurement space to obtain a new transformed space, thereby
mapping high dimensional data to lower dimensional one [80]. [35] explains that the
choice of the strategy depends on the problem at hands, and specifically must be exam-
ined these three points:

• the dimension of the data-set

• the type of variables contained in the data-set (continues or discrete),

• a trade-off between dimensional reduction and loss of information from the vari-
ables.

The novelty of this paper is to present an algorithm that it is suitable for each of this
point. Indeed, this method is compatible with large datasets, and works with contin-
uous and discrete data [1]. Furthermore, I will show that this algorithm in an exercise
of prediction minimizes both the loss of information and its redundancy. More specif-
ically, the algorithm is an application of Probabilistic Graphical Models [78]. They are
a form of structural learning in High Dimensional Modeling, where the term ‘high-
dimensional’ means models with hundreds to tens of thousands of variables [67]. Graph-
ical Models are an elegant framework which combines uncertainty (probability) and
logical structure (independence constraints) to compactly represent complex, realworld
phenomena [25] and they are widely used, from biological applications [51] to com-
puter science [40] . A Graphical Model is a family of probability distributions defined
in terms of a directed or undirected graph where [78]:

• the nodes in the graph are identified with random variables

• the connections between the nodes are defined by the joint probability distribu-
tions

The attractiveness of Graphical Models for the problem at hands lies in the fact that they
can be interpreted solely in terms of patterns of conditional independence [67]. This
feature is functional for two reasons: the structure of the graph allows us to consider
the global relationships between the variables and to optimize the feature selection.
The aim of this work is to leverage the property of graphical models to select the best
subset of variables (covariates) to explain or predict a variable of interest. In doing
so, the algorithm exploits mutual information to rank the variables according to their
relevance and minimizing the redundancy in the model [87]. In section 2.2, I recall
the basic properties of Graphical Models and in Section 2.3, I present the algorithms.
Section 2.4 shows an illustrative example of real data and conclusions follow.
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2.2 Background Graphical Models

Graphical Models model the conditional independence relationships between random
variables in a dataset. Graphically, this relationship is depicted as a network of vari-
ables in a graph. We define a graph as a mathematical object G = (V, E), where V is
a finite set of nodes with a one-to-one correspondence with random variables in the
dataset, and E ⊂ V × V, is a subset of ordered couples of V, define as edges or links,
representing interactions between the nodes. The aim is to estimate the rank of rele-
vance of key variables, consequently following [29] algorithms to find the maximum
likelihood tree model. Trees and forest are special case of undirected graph, in details
they are an acyclic undirected graph. In other words, an acyclic undirected graph is a
tree and the forest is a collection of acyclic undirected graphs (trees). If a link between
two nodes is absent, it can be interpreted in terms of conditional independence. Indeed,
these two nodes (variables) are conditional independence given the rest of the dataset.
Pairwise, local and global Markov properties are the connections between graph theory
and statistical modeling [94]. Suppose that the dataset is composed by n observation of
p random variables Xp. Where p can be divided in d discrete and q continuous random
variables. Given a correspondence one-to-one between the variables and the nodes, we
can write the sets of nodes as ∆ and Γ, where V = {∆ ∪ Γ}. Let the corresponding ran-
dom variables be (Z, Y) where Z = (Z1, ..., Zd) and Y = (Y1, ..., Yq) and a i-observation
be (zi , yi). [29] showed that joint probability distribution of P(Z) can be approximate
efficiently with a second order product Pa(Z),i.e:

Pa(Z) =
p

∏
i=1

P(zi , zj(i)), 0 6 j(i) 6 p (2.1)

where (j1, ..., jd) is an unknown permutation of integers (1, 2, ..., d). Indeed, [29] proved
that for discrete random Z, the problem of finding the goodness of approximation be-
tween P(Z) and Pa(Z), is the minimization of the closeness measure:

I(P, Pa) = ∑
z

P(z) log
P(z)
Pa(z)

(2.2)

where ∑z P(z) is the sum over all levels of discrete variables. The Equation 2.2, is equiv-
alent to maximizing the total branch (link) weight ∑

p
i=1 I(zi , zj(i)), where:

I(zi , zj(i)) = ∑
zi ,zj(i)

P(zi , zj(i)) log

(
P(zi , zj(i))

P(zi)P(zj(i))

)
(2.3)

The task is to build a tree or forest of maximum weight. Thanks to [88] algorithm, we
can find the trees of minimum of total length. To choose a tree of maximum total branch
weight, we first index the d(d− 1)/2 according to decreasing weight. This algorithm
starts from a square weighted matrix d × d, where a weight for a couple of variables
(Zi , Zj) is given by the mutual information I(zi , zj). In the real world the probability
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distributions are no given explicitly, for this reason we have to estimate the mutual in-
formation. Let z1, z2, ..., zN be independent samples of finite discrete variables z. Then
the mutual information is given by:

Î(zi , zj) = ∑
u,v

fu,v(i, j) log
fu,v(i, j)

fu(i) fv(j)
, (2.4)

where fu,v(i, j) = nuv(i,j)
∑uv nuv(i,j) and nuv(i, j) is the number of samples such that their ith and

jth components assume the values of u and v, respectively. It was showed that with this
estimator we also maximize the likelihood for a dependence tree [29]. This procedure
works only with the discrete random variables, but it can be extended to dataset with
both discrete and continuous random variables [42]. To present this extension, we have
to consider the distributional assumption of our random variables X i.e. the distribu-
tion of Y given Z = z is a multivariate normal N (µi , Σi) so that both the conditional
mean and covariance may depend on ith component. The authors [42] distinguish be-
tween homogenous and heterogeneous case, if Σ depend by the levels of Z we are in the
homogenous case, otherwise we are in the heterogeneous case. More details this con-
ditional Gaussian distribution can be found in [94]. Before applying the Kruskal’s al-
gorithm, we need to find an estimator of the mutual information I(zu, yv) between each
couple of variables in the mixed case. For a couple of variables (Zu, Yv) we can write
the sample cell count, mean, and finally the variance, respectively, {ni , ȳv, s(v)

i }i=1,...,|Zu |.
An estimator of mutual information, in the homogenous case is give by:

Î(zu, yv) =
N
2

log
( s0

s

)
, (2.5)

where s0 = ∑N
k=1(y(k)

v − ŷv)/N, s = ∑
|Zu |
i=1 nisi/N, and kzu ,yv = |Zu|−1 are the degree of

freedom associated to the mutual information in the homogenous case. While, in the
heterogeneous case an estimator of the mutual information is equal to

Î(zu, yv) =
N
2

log(s0)− 1
2 ∑

i=1,...,|Zs |
ni log(si) (2.6)

with kzu ,yv = 2(|Zu|−1) degrees of freedom. According to [42] it is useful to use one of
these measures,to avoid inclusion of links not supported by the data:

• ÎAIC = Î(xi , xj)− 2kxi ,xj

• ÎBIC = Î(xi , xj)− log(n)kxi ,xj

Where kxi ,xj are the degree of freedom. This aspect is suggested by the algorithm to
find the best spanning tree, because it stop when it has added the maximum number
of edges. Figure 2.1 shows a representation of a generic dataset X composed by the
variables {X1, X2, ..., X10} . In detail we can approximate the joint probability P(X) of
either dataset with Pa(X).

The selection of the variables goes through an important property of the Graphical
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Graphical Model representation

Figure 2.1: Approximation of dataset X through a tree

Models: the strong decomposable [94]. A mixed model is strongly decomposable triangu-
lated and no forbidden paths occurs. In general, a tree is triangulated in every node
[92]. While, a forbidden path is a path between two non-adjacent discrete node passing
through a continuous node [94]. If we consider two mixed modelM0 andM1 where
M0 ⊂ M1 and them differ only by one edge e = (vi , vj). The Likelihood ration test for
M0 andM1 can be computed as a test of vi ⊥ vj|C\{vi ,vj}, where C is a clique ofM1

that contain e only [1]. Specifically, these computations only involve the variables in C.

2.3 The best path algorithm

The availability of many variables requires specific strategies to avoid the loss of infor-
mation to build a predictive model and at the same time to work in a lower-dimensional
space [80]. This trade-off must have a theoretical coherence in high-dimensional space.
For these reasons, the aim of this algorithm is to solve the common challenge encoun-
tered when working with high dimensional dataset. In details, this algorithm provides
a strategy to select k variables, from a dataset with p variables, where k < p. In or-
der to achieve this task, we have implemented a strategy that optimizes the selection.
Indeed this algorithm maximizes the relevance of the model with the variables that
better explain the variable of interest, and minimizes the redundancy by removing the
variables that are statistically irrelevant. For this reason, we can categorize this algo-
rithm as a method for the feature selection. The starting point will be the extension
of the Chow-Liu algorithm [42], discussed in the previous section, computed over the
entire dataset. In order to chose the optimal number of variables (k), the algorithm
considers all possible path steps wi, with i = 1, ..., N starting from node of interest. The
path steps wN are subsets of variables at a specific distance of the variables of inter-
est. The introduction of the path steps, is the cornerstone of the algorithm. In fact, this
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approach organizes a hierarchy of the information of the dataset. As we have seen in
the section 2.2, the spanning tree can be read as conditional tree. In other words, if two
variables are not connected this means that, they are conditional independent given the
rest of the variables present in the dataset. For example in the Figure 2.1, the relation-
ship between the variable X4 and the variable X1 can be write in the following way:
X1 ⊥ X4|X \ {X1, X4}. In other words, if we want to explain the variable X1, to pro-
duce a coherent variable selection we can consider X4 only in the case where we have
contemplated also X2. This strategy allows us to have, a limited number of possible
candidates for feature selection. In this specific way, we optimize the selection in terms
of dependence, since the algorithm is based on the graph structure.

Moreover, if the Graphical Model is composed by an only one component (tree),
the algorithm will contemplate all p − 1 variables inside the dataset, because exist a
finite number of path steps between the p − 1 variables and a node of the tree. On
the contrary, if the Graphical Model is composed by more components (forest) in the
all possible path steps wi there will be not all variables (p − 1), but only h variables
present in the component which contains the node of interest, with h < p− 1. Figure
2.2 shows an example of feature selection for each path steps wi for the node Y. As we
can see from the figure 2.2, the node X13 being an isolated node, is not contemplated
in any selection. This aspect is a direct consequence of the structure of the graph that
optimizes the feature selection, in contrast with classical methods of statistical learning
that contemplate all possible variables in the selection[50]. It is important to underline
that the nodes contemplate in a generic path step w = i are all nodes at distance d ≤ i.
Once we got the best subset of the possible variables, we can consider only the variables
that are relevant to explain the variable of interest.

Path Steps

Figure 2.2: Example of tree with Y variable of interest and path steps w = 1, 2, 3



2.3. The best path algorithm 43

I translate this strategy in the following algorithm, where I reported the pseudo
code:

• Step 0: Run the algorithm to find the best spanning tree or forest, and call this
modelM0

• Step 1: Select the variable of interest and identify all path steps wi, starting form
the variable of interest

• Step 2: For i = 1, ..., N:

(a) Fit the model with k variables present in path step wi

(b) Implement cross-validation, and compute the MSE 1

• Step 3: Pick the best among N models (smallest MSE), and call itMw

• Step 4: Fit the modelMw and select only the significant variables. Call this model
M f

It is simple to note that M0 ⊂ Mw ⊆ M f . This algorithm is an special case of the
mRMRe approach [87], originally proposed by Battiti [19] that measures the impor-
tance of variables based on a relevance penalized by redundancy measure. In this case,
the algorithm at Step 0 produces a rank of the importance for all variables p− 1, then
the from Step 1 to Step 3, it maximizes the relevance by selecting the best subset of
variables that explain the variable of interest, and at Step 4 it and minimizes the redun-
dancy discarding the variables that increase the noise. For instance, if the variable of
interest is Y we can write an equation that explains the algorithm’ surgery:

f (Y;M f ) = MI(Y;Mw)︸ ︷︷ ︸
Relevance

−
Redundancy︷ ︸︸ ︷
MI(Y; S) (2.7)

Where S denotes the set of variables not significant to explain the variables of in-
terest Y. In other words the information shared between S and Y are redundant for the
model:

yi = f (wi) + εi (2.8)

The best path algorithm, belongs to Sequential Forward Search. In fact, the search of the
algorithm starts with an empty set and keeps on adding features [114]. The advantage
of this method is that it starts with an unsupervised learning structure. In fact, we can
study the dependence between the variables of the dataset thanks to the extension of
the Chow-Liu algorithm [42]. Once selected the node of interest, the analysis becomes
supervised learning. In other words, we implement a feature selection according to
the structure of the Graphical Model. Figure 2.2 explain better this concept. Indeed,
it shows that for the node Y there are well defined the possible subset of the variables

1 MSE = 1
n ∑n

i=1(yi − f̂ (xi))2 = RSS
n , where f̂ (xi) is the estimation of the yi
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candidate for the feature selection. But on the other hand, if we change the node of
interest, the algorithm will define other subsets of variables for the feature selection.

There are different papers that investigate of the mutual information criterion to
evaluate a set of candidate features and to select an informative subset [61]. Indeed,
the mutual information can be consider to evaluate the information content of each
individual feature with regard to the output class. Therefore, the mutual information
is the amount by which the knowledge provided by the feature vector decreases the
uncertainty about the class. The limitations of these algorithms are that some of them
work only with variable of interest binary [19] and suffer with large dataset. While the
the best path algorithm can be used with discrete and continuous outcome, moreover the
algorithm is built upon the graphical model, thus it works very well with large data
sets.

2.4 Illustrative example

In this section, we present an application of the best path algorithm. One of the most
important advantage of this algorithm is that it uses econometric techniques to esti-
mate the best model [135]. In other words, it is possible to interpret the coefficient of
the model unlike to methods of statistical learning. Furthermore, it could be suitable
at other techniques of prediction (SVM [41] or Neural Networks [104]). In this exam-
ple, we used the ordinary least squares (OLS). In that way, it is possible to combine
the interpretability of the coefficients and the prediction of the outcome variable. This
algorithm can be apply in different fields, where there is a need of feature selection.
For this example, I propose a management dataset which regards the sales of the cars.
The cars sales dataset includes information about different cars, in particular we have
157 observation and 14 variables that includes sales and price for each cars. This dataset
is being taken from the Analytixalbs and is available on Kaggle 2. In this example, the
intention is to find the best model to explain Sales in thousands. Figure 2.3 shows the
best-spanning tree for the dataset car sales, the yellow vertices indicate the factor vari-
ables while the green vertices the continuous variables. As we can see from the Graph,
in the car’s market the variables Sales in thousands and Price in thousands are connected
given the same features of the car. This is the Step 0 of the algorithm, where we can see
the relationship between the variables present in the dataset. In some way, the figure
2.3 represents a heuristic way to have an "information hierarchy". This is a key point, be-
cause permits to optimization the computation to find the best subset of variables for
our model. In the Step 1, we select the variable of interest: Sales in thousands, then from
the Graph we define the different path steps. In the table 2.1, we have the organization
of the variables for the distance for the variable Sales in thousands. We remember that
in path step w = k, we consider all variables at distance d ≤ k.

2https://www.kaggle.com/gagandeep16/car-sales
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Spanning Tree

Figure 2.3: The best spanning tree for dataset Car Sales

Organization of the variables
Variables Distance
Sales in thousands 0
Wheelbase 1
Length 2
Width 3
Curb weight 4
Engine size 5
Fuel capacity 5
Fuel efficiency 5
Vehicle type 6
Horsepower 6
Power per factor 7
Origin 7
Price in thousands 8
Year resale value 9

Table 2.1: Path steps
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Output results
Path MSE R2 MAE
Path 1 60.9 0.203 43.9
Path 2 61.2 0.223 43.9
Path 3 60.9 0.215 44.1
Path 4 59.0 0.238 42.7
Path 5 60.4 0.226 43.7
Path 6 55.8 0.305 39.4
Path 7 56.6 0.285 40.9
Path 8 62.4 0.264 43.3
Path 9 62.5 0.254 43.6

Table 2.2: Models for each path step

In the table 2.2 we have the results of the Step 2. The algorithm computes the cross
validation for each path-step, and then it selects in Step 3 the best path in terms of
MSE. Finally, in Step 4 the algorithm removes the variables that are not significant. The
model suggested by the algorithm is the follow:

Y = β0 +M f × β + εi (2.9)

where Y is Sales in thousands and the variables that belong toM f are: Wheelbase,Curb
weight, Horsepower and Vehicle type.

2.5 Result

In this section, we show a comparison in terms of prediction with the benchmark
method in statistical learning: LASSO [140]. This algorithm is a powerful method that
performs two main tasks: regularization and feature selection. The table 2.3 shows for
each column 100 times of comparison of mean square error between LASSO and the
best path algorithm. For each iteration, we divide the dataset into 70% training and 30%
test. In that way, we have the same training data and the same test data for the com-
parison in each iteration. The percentages indicate the times where the MSE is lower
in one of the methods with respect to the other. As the table suggests, the best path al-
gorithm performs better than the LASSO method for this dataset. The main advantage
of respect to the Statistical learning methods is that we can interpret the coefficients for
each variable.
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Computation of Mean Square Error
Algorithm 84% 83% 92% 91% 89%

LASSO 16% 17% 8% 9% 11%

Table 2.3: Comparison between the best path algorithm and LASSO method

2.6 A new representation of the Graphical Model

The algorithm that we have proposed, can be see as a strategy to build a Factor Graphical
Model. A Factor Graph is a bipartite graph where the vertices, V, can be divided into two
independent sets, V1 and V2, and every edge of the graph connects one vertex in V1 to
one vertex in V2 [12]. This means that a bipartite graph is a graph that does not contain
any odd-length cycles [39]. In detail, the Factor Graph express how a global function
of many variables factors into a product of local function. For instance, we can write
some real valued function g = (x1, x2, x3, x4, x5) of five variables can be written as the
product of five functions, fA, fB, ..., fE.

g = (x1, x2, x3, x4, x5) = fA(x1) fB(x2) fC(x1, x2, x3) fD(x3, x4) fE(x3, x5) (2.10)

Factor Graph

Figure 2.4: A factor graph that expresses that a global function factors as the product
of local functions

The corresponding factor graph is shown in Figure 2.4, where we have for each
variable a circle and for each factor a square. The variable xi is connected to the function
node for f if and only if xi is an argument of f. Let XS = {xi : i ∈ S} be a collection
of the variables indexed by a finite set S, where S is a linearly ordered. For each i ∈ S,
the variable xi takes on value from some set Ai. If E is a subset of S, then we denote by
XE = {xi : i ∈ E} to be the subset of variables indexed by E. A particular assignment
of a value to each of the variables of XS will be referred to as a configuration of the
variables. A configurations of the variables can be viewed as being elements of the
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Factor Graph of the Algorithm

Figure 2.5: An example of factor graph from the algorithm

Cartesian product AS , ∏i∈S Ai called configuration space. In this context, we should
consider also subconfigurations: if E = {j1, j2, ..., jM} ⊂ S. We can define AE as all
subconfigurations with respect to E; clearly AE = ∏i∈E Ai [49]. Suppose for some
collection Q of subsets of S, that the function g factor as:

g(XS) = ∏
E∈Q

fE(XE) (2.11)

where, for each E ∈ Q, fE : AE → R is a function of the subconfigurations with respect
to E. The authors in [49] refer to each factor fE(XE), in 2.11 as a local function.
A factor graph representation is a bipartite graph denoted by F(S, Q), with vertex
set S ∪ Q and edge set {{i, E} : i ∈ S, E ∈ Q, i ∈ E}. In words, F(S, Q) contains
an edge {i, E} if and only if i ∈ E, i.e., if and only if xi is an argument of the lo-
cal function fE. Those vertices that are element of S are called variable nodes and
those vertices that are elements of Q are called function nodes. For example the fac-
tor graph F(S, Q) in the Figure 2.4 is composed by S = {X1, X2, X3, X4, X5} and Q =
{{X1}, {X2}, {X1, X2, X3}, {X3, X4}, {X3, X5}}. In some way, the best path algorithm
can see as a strategy to build a factor graph, that it maintains the same property of the
original graphical models. The authors in [29] showed that joint probability distribu-
tion of a dataset P(X) can be approximate efficiently with a second order product Pa(X),
as showed in the section 2.2. If we apply the algorithm to find the best subset of vari-
ables to explain variable Y we can build a factor graph as in Figure 2.5. In that case we
could express the joint probability of entire dataset as:

P(Y, X1, ..., X5) = P( fY(X1, X2, X3))P(X4| fY(X1, X2, X3))P(X5| fY(X1, X2, X3))
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In other words, a factor graph F(S, Q) produced by the algorithm, started by the graph-
ical model G(V, E) can be factorized the function:

g(XS) = ∏
E∈Q

fE(XE)

inside to the dataset the following way:

Pa(X) =
p

∏
i=1

P(Xi , g(XS))

This results gives us the opportunities to explain the variable through a func-
tion and in particular to understand the relationship between the variables inside the
dataset with the support of the factor graph.

2.7 Conclusion

In the last decade the availability of large dataset it was a reason of the development
of methods for the dimensional reduction. Most of them works through the transfor-
mation of the variables that not permit to infer directly over the variables. Most of the
statistical learning methods belong at this vein [50], but it is not easy to interpret their
results. On the other hand,the use of the mutual information for the variable selection
was introduced in different paper [19] [16] but these methods suffer in the contest of
big data. The main motivation for this research was to find a useful way for the auto-
matic selection of the variables. The idea to combine the use of the graphical models
as start point, for this selection is is dictated by the need to develop an algorithm for
variable selection for very large dataset. Furthermore, the algorithm presented in this
research can be adapt with other forecasting models and can be used with discrete and
continuous variables.

2.8 Availability

The analyses were performed using the R library gRapHD which we have made avail-
able to the R community via the CRAN repository (de Abreu GCG, Labouriau R, Ed-
wards D: High-dimensional Graphical Model Search with gRapHD R package, submit-
ted to J. Stat. Software).

2.9 Appendix

The result of the LASSO model are shown in the Figure 2.6. In the abscissa are reported
different values of λ. When λ changes the importance of the variables changes conse-
quently. Each line represent on the explanatory variables and its role in the model. In
order to choose the most appropriate value for λ, we implement a "gird" of λ values,
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Feature Selection with LASSO

Figure 2.6: Selection of the variables with LASSO method

and compute the cross-validation error for each value of λ, eventually we choose the
value with the smallest cross-validation error. Figure 2.7 reported this procedure, the
first vertical dotted line represent the value of λ choose for this analysis.

Model selection

Figure 2.7: Cross-Validation, n− f old = 10
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Chapter 3

Drift Estimation with Graphical
Models

This paper deals with the issue of concept drift in supervised machine learning. We
make use of graphical models to elicit the visible structure of the data and we infer from
there changes in the hidden context. Differently from previous concept-drift-detection
methods, this application does not depend on the supervised machine learning model
in use for a specific target variable, but it tries to assess the concept drift as independent
characteristic of the evolution of a data set. Specifically we investigate how a graphical
model evolves by looking at the creation of new links and the disappearing of existing
ones in different time periods. The paper suggests a method that highlights the changes
and eventually produce a metric to evaluate the stability over time. The paper evaluate
the method with real world data on the Australian Electric market.

3.1 Introduction

In the last decades, both the increasing availability of digitised information and the
improvement in the algorithms made the use of machine learning widespread across
different industries. Specifically, supervised machine learning became a standard tool
for predicting key information in various organization processes such as for instance
to mention a few risk default of firms and individual, fraudulent claims, customers
churn, and machine failures. The assessment of model uncertainty within a supervised
machine learning exercise is based on testing the goodness on a test-set, whose observa-
tions have not been employed in the model training. This practice allows for flexibility
in the choice of the model and prevents from the risk of over-fitting. However, this
analysis relies on the assumption the data generating structure is similar between the
test-set and the future observations. While this assumption is rarely debatable in phys-
ical process, social process change overtime and a model trained on past data might
see a deterioration of its predictive power [55]. This phenomenon is known as concept-
or model- drift and describes the situation in which there exists an hidden context of
data generative structure, that is any effect of the outcome variable not captured by the
model features, which changes over time abruptly, incrementally, or periodically [150,
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147]. Scholars addressed this issue and developed a battery of techniques for concept
drift detection and early detection. As reviewed in [83] and [44], traditional techniques
in concept drift detection typically relies by adopting different time windows or size
of the training data [84] or in explaining how the weights of different features change
overtime in the outcome prediction [84, 138, 82]. A recent review [10] surveys also
methods which can also deal with model update with stream data [23]. However, all
of these techniques rely on some sort of computation or statistical comparison of the
changes on classification error overtime and from this evidence they deduct the pres-
ence of concept drift [150]. In this paper, we approach the problem from a different
angle. We make use of graphical models [92] to elicit the visible structure of the data
and we infer from there changes in the hidden context with use of statistical measure.
To compute the drift we use the Bayesian Regression. This enables us to discern con-
texts where we have domain knowledge with respect to contexts where we do not have
any estimates ahead of time. Thus, differently from previous concept-drift-detection
methods, this application does not depend on the supervised machine learning model
in use, but it tries to assess the concept drift as an independent characteristic of the
evolution of a data set.

3.2 Graphical Models, background

Consider a dataset, composed by p random variables Xp, where p can be divided in d
discrete and q continuous random variables. Graphical Models are a method to display
the conditional independence relationships between random variables in a dataset. The
conditional independence relationships can be showed as a networks of variables with
an undirected graph, that is mathematical object G = (V, E), where V is a finite set of
nodes, one-to-one correspondence with the p random variables present in the dataset,
and E ⊂ V × V, is a subset of ordered couples of V. Links represent interactions be-
tween the nodes. If a link between two nodes is absent, the two variables represented
by the node are conditional independent given the dependence of the remaining vari-
ables.

Pairwise, local and global Markov properties are the connections between graph
theory and statistical modeling [92]. As said before, there exist a one-to-one correspon-
dence between the variables and the nodes in the graph and, for this reason, the sets of
nodes is ∆ and Γ, where V = {∆∪ Γ}. Let the corresponding random variables be (Z, Y)
where Z = (Z1, ..., Zd) and Y = (Y1, ..., Yq) and a i-observation be (zi , yi). This means
that z is a d-tuple containing the values of discrete variables, and y is a real vector of
length q. Our interest is to estimate the joint probability distribution P(x) for the ran-
dom variables (Z, Y) to build a conditional (undirected) graph from the data. A product
approximation of P(x) is defined to be a product of several of its component distribu-
tion of lower order Pa(x). As suggest [29], we can consider the class of second-order
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approximation, i.e:

Pa(x) =
p

∏
i=1

P(xi , xj(i)), 0 6 j(i) 6 p (3.1)

where (j1, ..., jp) is an unknown permutation of integers (1, 2, ..., p), where p=d+q. Chow
and Liu in [29] proved that for discrete random Z, the problem of finding the goodness
of approximation between P(z) and Pa(z) with the minimization of the closeness mea-
sure:

I(P, Pa) = ∑
z

P(z) log
P(z)
Pa(z)

(3.2)

where ∑z P(z) is nothing more than the sum over all levels of discrete variables. The
equation (2), is equivalent to maximizing the total branch (link) weight ∑

p
i=1 I(zi , zj(i)),

where:

I(zi , zj(i)) = ∑
zi ,zj(i)

P(zi , zj(i)) log

(
P(zi , zj(i))

P(zi)P(zj(i))

)
(3.3)

The task is to build a tree or forest (different trees) of maximum weight. We make use
of the Kruskal’s algorithm [88] to compute trees with the minimum of total length. To
choose a tree of maximum total branch weight, we first index the d(d− 1)/2 according
to decreasing weight. This algorithm starts from a square weighted matrix d× d, where
a weight for a couple of variables (Zi , Zj) is given by the mutual information I(zi , zj). In
the real world the probability distributions are no given explicitly, for this reason we
have to estimate the mutual information. Let z1, z2, ..., zN be independent samples of
finite discrete variables z. Then the mutual information is given by:

Î(zi , zj) = ∑
u,v

fu,v(i, j) log
fu,v(i, j)

fu(i) fv(j)
, (3.4)

where fu,v(i, j) = nuv(i,j)
∑uv nuv(i,j) and nuv(i, j) is the number of samples such that their ith and

jth components assume the values of u and v, respectively. It was showed that with this
estimator we also maximize the likelihood for a dependence tree [29]. This procedure
works only with the discrete random variables, but it can be extended to data with both
discrete and continuous random variables [42]. To present this extension, we have to
consider the distributional assumption of our random variables X i.e. the distribution
of Y given Z = z is a multivariate normal N (µi , Σi) so that both the conditional mean
and covariance may depend on ith component.
We distinguish between homogenous and heterogeneous case, if Σ depend on i we are
in the homogenous case, otherwise we are in the heterogeneous case. More details this
conditional Gaussian distribution can be found in [136]. Before to apply the Kruskal’s
algorithm, we need to find an estimator of the mutual information I(zu, yv) between
each couple of variables in the mixed case.
For a couple of variables (Zu, Yv) we can write the sample cell count, mean, and finally
the variance, respectively, {ni , ȳv, s(v)

i }i=1,...,|Zu |. An estimator of mutual information, in
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the homogenous case is give by:

Î(zu, yv) =
N
2

log
( s0

s

)
, (3.5)

where s0 = ∑N
k=1(y(k)

v − ŷv)/N and s = ∑
|Zu |
i=1 nisi/N. kzu ,yv = |Zu|−1 are the degree of

freedom associated to the mutual information in the homogenous case.
While, in the heterogeneous case an estimator of the mutual information is equal to

Î(zu, yv) =
N
2

log(s0)− 1
2 ∑

i=1,...,|Zs |
ni log(si) (3.6)

with kzu ,yv = 2(|Zu|−1) degrees of freedom. According [42] it is useful to use either
ÎAIC = Î(xi , xj)− 2kxi ,xj or ÎBIC = Î(xi , xj)− log(n)kxi ,xj , where kxi ,xj are the degree of
freedom, to avoid inclusion of links not supported by the data. This aspect is suggested
by the algorithm to find the best spanning tree, because it stop when it has added the
maximum number of edges. Furthermore the algorithm avoid inside the tree a forbid-
den path. The definition of forbidden path is a path between tow not adjacent discrete
nodes which passes through continuous nodes [2]. However, we can start from the
best spanning tree and determine the best strongly decomposable graphical model. A
strongly decomposable graphical model whose graph neither contains cycles of length
more than three nor forbidden path. Strongly decomposable model is an important
class of model that can be used to analyze mixed data. This class restrict the class of
possible interaction model which would be to huge to be explored [1]. The graph build
to find the best spanning tree, can be see with a symmetric adjacency matrix AM, with
dimension V ×V, in which each element takes value of 1 if an edge exists between two
of the V variables, and zero otherwise. Elements in the main diagonal are zeros, since
self-loops are not allowed.

3.3 A measure of dynamic stability as proxy for the model

drift

Considering the additional dimension of time t to the dataset of N observations and
p variables as a tensor X with dimension (N × p × T), we are interested in modeling
the evolution of the joint probability P(X1, ..., Xp) over T time periods. In other words,
considering the graph G, with V = p vertices of the maximum spanning tree with mu-
tual information as express in Eq. 3.6 for each period t = 1, ..., T and the corresponding
T adjacency matrices AMt. The aim of the paper is to describe how the graphs, as
represented by their adjacency matrix AMt with t = 1, 2, ...T , change over time.

3.3.1 Transition Matrix Processes

In order to accomplish this task, we analyse the transition process which connects the
original adjacency matrix AM1 to any adjacency matrices in a subsequent period AMT .
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We first introduce a function which maps any possible state of AMt into a transition
matrix TM = f (AMt) with t = 1, 2, 3, ..T, noted TMT , of dimension V × V. Its generic
element wi,j registers all possible states of dependence of any couple of variable Vi and
Vj in T periods. Specifically, the function takes the following form:

TMt =
T

∑
t=1

2(T−t) AMt (3.7)

For the sake of clarity, the following paragraph describes the process up to T = 3
and, thereafter, generalizes for T periods.

AM1 AM2 AM3 TM3

0 0 0 0
1 0 0 4
1 1 0 6
1 1 1 7
0 1 0 2
0 0 1 1
1 0 1 5
0 1 1 3

Table 3.1: All possible AMt values for two nodes i and j and the resulting wi,j in TMT
function for T = 3

As a starting point, in t = 1 the transition matrix TM1 is equal to the adjacency
matrix AMt=1, where wi,j;1 = 0 means that the i-node and j-node are not connected,
while when wi,j;1 = 1 means that the i-node and j-node are connected. At t = 2 existing
links can persist or not, while non-existing links can appears or not. From Eq. 3.7,

TM2 = 2× AM1 + AM2 (3.8)

Thus, TM2 maps any possible evolution of connections wi,j;2 with values {0, 1, 2, 3}.
When Vi and Vj are never connected,that is AMi,j;t=1 = AMi,j;t=2 = 0, then TMi,j;2 = 0.
If Vi and Vj stay connected, that is AMi,j;t=1 = AMi,j;t=2 = 1, then wi,j;2 = 3. For AMi,j

changing from 0 in t = 1 to 1 in t = 2 and viceversa, we have wi,j;2 = 2 and wi,j;2 = 1,
respectively. At time t = 3 the possible evolution of AM can be described has 8 levels,
given by:

TM3 = 22 × AM1 + 21 × AM2 + 20 × AM3 (3.9)

Table 3.1 summarizes all possible combinations between two nodes of binary val-
ues of the AMt in the three periods, mapped on TM3. Generally, for time T we can
derive Eq. 3.7:
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TM2 = 2× AM1 + AM2

TM3 = 2× TM1,2 + AM3

TM3 = 2× (2× AM1 + AM2) + AM3

TM3 = 22 × AM1 + 21 × AM2 + 20 × AM3

TM3 =
T

∑
t=1

2(3−t) AMt

...

TMT =
T

∑
t=1

2(T−t) AMt

(3.10)

In general, the value of the generic element wi,j;t ∈ W ⊂ N of TMt can be consid-
ered as a discrete random variable with density f (wi,j;t)

f (wi,j;t) = P(Wi,j;t = wi,j;t), t = 2, ..., T (3.11)

Thus, wi,j;t represents the evolution of the connection between i-node with j-node
at time T, for each node V. The numerosity of the setWi,j;T = {0, 1, 2.., 2T − 1} is 2T .

3.3.2 From the transition process to stability

The main idea of the paper is to consider as a proxy for the model drift the appearance
or disappearance of connections between nodes, that is changes of the conditional inde-
pendence structure of a dataset over time. For this reason, we are specifically interested
in two specific levels. The one describing the state of the word in which a connection
between two nodes never exists, that is AMi,j;t = 0 ∀ t and the one describing a stable
connection over time, that is AMi,j;t = 1 ∀ t. For the case T = 3, the two cases map
into wi,j;3 = 0 and wi,j;3 = 7, as showed in Table 3.1. In general for a generic T, we
have a stability of connections when connections are always absent, with wi,j;T = 0, or
always existing, with wi,j;T = 2T − 1. This transition process is a partition process (Fig
3.1) of the set of V possible connections between the V nodes in the undirected graph:
V = V(V−1)

2 . Each transition in time t generates a subsequent partition of V , one of
whose will always contain elements for which wi,j;t = 0 or always wi,j;t = 2t − 1. This
transition processes is a special case of the Tail-free processes [74]. Consider a sequence
T0 = {V}, T1 = {A0, A1}, T2 = {A00, A01, A1}, and so on, of measurable partitions of
the V elements, obtained by slitting every set in the preceding partition into two new
sets for the node on left and maintain the same node for the others.
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Partition of Transition Matrix Process
V

A0

A00

A000 A001

A01

A01

A1

A1

A1

Figure 3.1: Representation of Transition Matrix process with Tail-free processes

Specifically, at each time t we can partition the elements between stable and unsta-
bles ones. Fig. 3.1 shows a tree diagram that represents the distribution of mass over
time V = A0 ∪ A1 = (A00 ∪ A01) ∪ A10 of the elements at each time. A0 contains ele-
ments for wi,j,2 = {0, 3}, that is stable connections while A1, the remaining ones. At the
subsequent period, A0 is partitioned between A00, in which connection remain stable
with wi,j,3 = {0, 7},while A01 = {1, 6} and A1 the remaining ones.

Clearly, every partition is composed by the union of all possible evolution of the
connection given by the levels of W , and, by construction, there is always a partition
with elements wi,j;t = 0 and wi,j;t = 2t − 1, that containing stable links between the i-
node and the j-node until time t.
We describe this process as a variable Yi,j;t with values :

Yi,j;t =

yi,j;t = 1 if wi,j;t = 0∨ wi,j;t = 2t − 1

yi,j;t = 0 otherwise
, t = 2, ..., T (3.12)

Thus, Yi,j;t is indicate persistent status of dependence over time Yi,j;k = 1 or not Yi,j;k = 0.
Be Yt the vectorization of Yi,j;t, vec(Yi,j;t) = Yt with length V = V×(V−1)

2 , that is at each
time we observe the stability of the V connection between each possible pair of nodes.
The structure of the transition matrix process depend by the spanning forest at time t = 1,
and for each period we have a partition of V given by µt = ∑N

i=1 Yi,t with t = 1, ..., T− 1.

Therefore, we pool together the T − 1 periods and define Stability, the resulting
variable Y with length n = V × (T − 1). Stability is the cornerstone of our strategy to
estimate an empirical measure of model drift.

3.3.3 The stability index

In this section we introduce the Stability as a latent variable, which capture stability of
connection of a graph overtime.
Consider the following variable with same length i = 1, ..., n:
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• Y, Stability as defined above

• W = vec(TMi,j,t) that is the vectorization of the value wi,j;t of TM.

• T the corresponding time for each Yi.

We build a dataset with this variables and call it D. Note that by construction the
observations of D is exchangeable since we have built D respecting the temporal period
of the adjacent matrices, thus:

P(D1, ..., Dn) = P(Dσ(1), ..., Dσ(n))

for all n ≥ 1 and all permutations σ of (1, ..., n). In other words, the order of appearance
of the observation does not matter in terms of their joint distribution. In order to exploit
this property, we implement a Bayesian Regression Model over the dataset D [7]. One
advantage of a Bayes perspective is the opportunity to consider the contest of analysis
with the support of the prior distribution. This approach is functional to discern the
situations when the data generating structure is similar between the test-set and the
future observations as a physical process, with respect to a social process that changes
more fast overtime [146].

Let θi the probability of a realization of Yi = 1 of Stability with odds of stability
θi

1−θi
. Thus the dichotomous variable Y can be described by a Bernoulli distribution

with probability of success θi:

Yi|θi
ind∼ Bern(θi), i = 1, .., n

Consider a logistic regression model1, which writes that the logit of the probability
θi, or the log of the its odd is a linear function of some predictor variables xi:

Logit(θi) = log
(

θi
1− θi

)
= β0 +

2T

∑
j=1

β jxj,i (3.13)

where the j predictors are T, that is the time of the realization of Y and W, that is
the corresponding value. Since W has 2t levels, we regress 2t − 1 dummy variable and
keep W = 0 as the reference category:

log
(

θi
1− θi

)
= β0 + β1 × T +

2T−1

∑
j=1

β jwj,i (3.14)

By construction, the intercept of this model β0 can be interpreted as the baseline
risk for Stability. A high β0 suggests that the underlying graphical model is not chang-
ing much over time. βt captures the effect of the drift over time. It can be shown

1The logistic regression seem the most natural way to describe this phenomenon. However, according to
the type of expected drift, we could employ other function, without loss of generalization.



3.3. A measure of dynamic stability as proxy for the model drift 59

that Stability is weakly decreasing over time and, thus β1 define the speed of conver-
gence towards the absence of stability. Finally, since the variable Y takes value 1 for
Wi,j = (0; 2T − 1), the coefficient β2T−1, that is the coefficient for Wi,j = 2T − 1 with ref-
erence Wi,j = 0 captures which component of Stability originates in the persistence of
existing connections, rather than on the persistence of absence of connections.

The computation is straightforward: by rearranging the logistic regression Equa-
tion 3.13. It is possible to express the regression as a nonlinear equation for the proba-
bility of success θi :

log
(

θi
1− θi

)
= β0 + β1 × T +

2T−1

∑
j=1

β jwj,i

θi
1− θi

= exp

{
β0 + β1 × T +

2T−1

∑
j=1

β jwj,i

}

θi =
exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
1 + exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
(3.15)

From the Equation 3.15 we can define the likelihood for the sequence of Yi over data
set of n subjects is then

(3.16)
p(D|β0, β1, βj) =

n

∏
i=1


 exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
1 + exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
yi

1−
exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
1 + exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
(1−yi)


where D is the dataset composed by Ti and the corresponding dummy variables

generated by the level of Wi. The set of unknown parameters consists of β0, βT , ..., β2T−1.
In general, any prior distribution can be used, depending on the available prior infor-
mation. The literature suggests the use of informative prior distributions if something
is known about the likely values of the unknown parameters, otherwise, the use of non-
informative prior if either little is known about the coefficient values or if one wishes to
see what the data themselves provide as inferences. In this case, we will use the most
common priors for logistic regression parameters:

β j ∼ N(µj, σ2
j ) (3.17)

The most common choice for µ is zero with σ large enough to considered as non-
informative in the range from σ = 10 to σ = 100. The posterior distribution of βj is
extrapolated by combining likelihood Eq. 3.16, with the prior in Eq. 3.17:
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(3.18)

p(β0, β1, βj|D, σj, µj) =
n

∏
i=1


 exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
1 + exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
yi

1−
exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
1 + exp

{
β0 + β1 × T + ∑2T−1

j=1 β jwj,i

}
(1−yi)


×

p

∏
j=0

1√
2πσj

exp

−1
2

(
β j − µj

σj

)2


Now, we are not that much interested in the regression parameters βj, we want to find
the posterior probability distribution of the stability. Furthermore, this model gives us
the opportunity to compute the prediction of the stability over a specific time t. If ỹi

represents the number of similarity connection between n nodes at time t, then one
would be interested in the posterior predictive distribution of the fraction ỹi/n One
represents this predictive density of ỹi as:

f (Ỹi|y) =
∫

p(β0, β1, βj|D, σj, µj)p(ỹi , D|β0, β1, βp)dβ (3.19)

where p(β0, β1, βj|D, σj, µj) is the posterior density of β and p(ỹi , D|β0, β1, βj) is the
Binomial sampling density of ỹi conditional of regression vector β = (β0, β1, βp). Figure
3.2 represents the Bayesian graphical model of the stability, in particular, we can see all
process that describes from the adjacent matrix to the coefficients of the logistic, that
say us how changes the relationship between the variables over the time. Where we
have an adjacent matrix (AM) for each time t, for each pair sequential of the AM we
have a transition matrix TM. From the TM we can build the dataset to compute the
stability with n observation, where n = V × (T − 1), and three variables: W,T,Y.

3.4 Empirical experiment

As a test bed for this theoretical approach, we apply the stability index to the ELEC2
dataset [64], a benchmark for drift evaluation [15, 90, among the many]. It holds infor-
mation on the Australian New South Wales (NSW) Electricity Market, containing 27552
records dated from May 1996 to December 1998, each referring to a period of 30 min-
utes. These records have 5 fields: a binary class label Y and four covariates X1, X2, X3

and X4 capturing different aspects of electricity demand and supply. In order to com-
pute the empirical evolution of the drift over time, we group observations in one week
period. Thus, for each week we have a panel dataset of 5 variables and 336 observation.
Thus, we have a tensor X with dimension (N× p× T) with N = 336 records for a week,
p = 5 the variables as described above and T = 82 temporal periods.

First, we realize a Graphical Models for each period t as the start point of our
strategy to compute the drift. Figure 3.3 portraits the graphs for some selected periods
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Stability Process

AMt TMh wi

ti

yi

µjσ2
j

θi

fii = 1, ..., n

h = 1, ..., T − 1

t = 1, ..., T

Figure 3.2: Bayesian Graphical Model of the stability

and shows that the structure of the graph changes overtime. We thus expect a presence
of the drift.

Figure 3.4 depicts the evaluation of the drift overtime. The red dots are the percent-
age of stable relations among variables, that is the the sum of variable Yi,t in Equation
3.12, while the blue line is the estimation of the Equation 3.18 with its related confidence
interval as the gray contour. The figure highlights 6 periods of drift. The different Sta-
bility values are reported in the table 3.2. In the table 3.3 are reported the magnitude of
the coefficients for the baseline β0 or intercept, β2T−1 for the W = 2T − 1 with reference
level W = 0 and for the time βtime.
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Spanning Tree t = 1 Spanning Tree t = 8

Spanning Tree t = 12 Spanning Tree t = 14

Spanning Tree t = 19 Spanning Tree t = 41

Figure 3.3: Graph over the time
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Stability over time

Figure 3.4: Evolution of Stability

Percent
of Stability

Evolution of the Drift
ty = 2 ty = 8 ty = 12 ty = 14 ty = 19 ty = 41

∑N
i=1 Yi,t

N 1.0 0.8 0.6 0.5 0.2 0.1

Table 3.2: Approximation of the drift for selected period

Regression Summary

Coefficients Estimation
β0 7.66
β2T−1 19.75
βTime -0.30

Table 3.3: Coefficients of logistic regression

3.5 Conclusion

This paper presented an algorithm to estimate the magnitude of a model drift in a con-
text of machine learning. While past solutions relies on how the classification errors
of a specific target variable changes over time, the present method tries to describe the
underlying hidden context with the use of graphical models and to estimate how the
observable context changes over time. Specifically, we provide not only an assessment
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of the drift, which is independent from the model in use, but also an estimation of
the confidence interval of this prediction. These two characteristics combined together
allow to signal when a data driven process shows an excessive risk due to the drift
and needs to be retrained or re-calibrated. Possible applications are countless such as
predicting defaults, online recommendations systems, or spam filtering. More specific,
any prediction which involves human behaviour is prone to constant changes in the
data generating process, while biological and physical phenomena tend to be more sta-
ble over time. Further lines of research in this area include a fine tuning for estimating
different type of drift, allowing for temporary drift, and testing the index on a wider
array of applications.
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Chapter 4

Variable selection and dynamic
stability with graphical models

A survival analysis of Italian start-ups

The paper investigates the economic performance of new firms born during the 2009
crisis with a focus on survival and value creation. Since it leverages on a very large
dataset traditional econometrics techniques require an ex-ante sound variable selection
to avoid excessive loss of relevant information. The most important vantage of this
approach is that we can identify the most relevant variables for each years. These se-
lections are justified by the presence of the drift. We make use of graphical models to
elicit the visible structure of the data and we infer from there changes in the hidden
context. Differently from previous concept-drift-detection methods, this application
does not depend on the supervised machine learning model in use, but it tries to assess
the concept drift as independent characteristic of the evolution of a data set. Specifi-
cally we investigate how a graphical model evolves by looking at the creation of new
links and the disappearing of existing ones in different time periods. The paper sug-
gests a method that highlights the changes and eventually produce a metric to evaluate
the stability over time. Moreover, the use of graphical model allows us to understand
the differences in the relationships among variables in firms subgroups, for instance
survived firms vs non-survived or firms from different geographical location.

4.1 Introduction

In this paper we address the issue of variable selection in survival models. Although
survival models root in biomedical research, they have been widely employed in the
analysis of firms’ survival. Survival models have three characteristics: the dependent
variable is the time span before the realization of an event; data are right censored,
since some observations do not experience the event; there are covariates explaining
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the average waiting time for the event to occur and they can be considered either risk
factors to be analyzed or control variables, depending on the problem at hand.

The present digital revolution presents the researcher with very rich data-sets in
survival analysis which can greatly improve both prediction capability and the analysis
of specific risk factors of interest. However, the vast availability of data might create an
embarrassment of riches [11, 43] in the choice of the variables since the requirements
of clarity, exogeneity of the covariates, degrees of freedom, and collinearity issues force
the researcher to make an educated selection.

Although in the age of digital information the issue of variable selection is not lim-
ited to survival models only, we believe that the nature of multivariate duration anal-
ysis offers specific challenges worth to address. [72] proposed a method based on ran-
dom survival forest, which they claim is superior to any modification of the standard
cox regression framework [110, 113, 97, 17], but also to alternative methods [70, 31].
However, both [72] and cited literature are prediction exercises using gene arrays, that
is biological variables. The exercise presented here however aims also at using survival
model for causal explanation applying economic theory to socio-economic variables,
which, contrary to biological and physical ones, describe socio-economic phenomena
prone to change abruptly even in the short run. Therefore, the process of variable se-
lection needs both to explore how stable is the data generation process leading to the
event and, possibly, operates a different selection of variable in each time period. This
selection should also allow for the man-in-the-loop, that it should embed educated and
theory-driven knowledge of the researcher.

They key issue in the framework propose is the use of data science algorithms
to empower the research and not not as substitutes. With this aim in mind, the next
section discuss the theoretical approach and present 4.2, graphical models as a gen-
eral framework 4.2.1, for variable selection in a context which combines an automatic
approach with theory-driven approach of the researchers, a Bayesian inference tool to
estimate the stability of the relation of variables over time 4.2.2, the precise algorithm
which operate the selection 4.2.3. Sections 4.4 and 4.5 perform an exercise of firms sur-
vival and highlight the difference between a traditional approach and the present one
in the variable selection.
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4.2 Survival analysis and data science

This paper takes up the challenge of introducing new emerging tools from data science
with the aim of improving already established methods of analysis [145]. Specifically,
we address the issue of variables selection, which, in the presence of many variables,
creates a trade-offs between the need of minimizing the loss of information and the
constraints of econometrics model which mandate specific requirements on esogeneity
of the variables, degrees of freedom, and coherence with the theory.

Traditionally, variable choice in an econometrics exercise is theory driven and op-
erated by the researcher based on both its educated guess and, in some cases, a process
of trail-and-errors. While this process exploits all theoretical knowledge, it presents
some drawbacks. If the variables’ set is extremely large, the task can go beyond the
cognitive ability of the researcher, who will opt for cognitive shortcuts [58]. Thus this
process might be influenced by cognitive biases and possibly be subject to scientific
malpractices such as the p-hacking behavior[26, 66]. Moreover, the process of selec-
tion can be opaque and usually motivated ex-post such in the case of reverse p-hacking
and selective report [30]. On the contrary, an automated purely data-driven process is
fast, transparent and free from biases, but it does not allow to leverage the information
coming from theory, expertise, and literature: indeed in many cases, there is a clear the-
oretical expectation that a variable will influence an outcome and the exercise is either
to test this hypothesis or infer its strength [112].

Along this line, [60] propose a general methodology to build few new variables
out of many under theoretical constraints set by the researcher. Specifically, they show
how information in many variables can be automatically reduced in a new one with
supervised machine learning, but still obeying some rules set ex-ante which encode the
expertise of the researcher as the man-in-the-loop.

In this paper, we maintain the idea that data science methods in the context of
econometrics should empowered the researcher, rather than substitute her, but we
overturn the [60]’s methodology. While they automatized a process with rules set by
the researcher ex-ante, in the present exercise the data-driven process serves as a first
step to simplify the space of possible choices and allow the researcher to operate both
within her cognitive ability and with an accountable and reproducible method to select
variables. Specifically, we introduce graphical models as a tool to compute and visu-
alize the conditional dependency structure of a data-set. Graphical models allow the
researcher to appreciate any variable of interested and its direct determinants. Thus,
graphical models reduce the information to be elaborated by the the researcher, but at
the same time, controlling for the dependency structure, allow her to select variables
without omitting covariates with a mediating effects and incurring in estimating spuri-
ous relationships. The role of theory and expertise in the selection of the variable occurs
only ex-post exposing with clarity the rationale behind the selection. Since the set of
possible variables can still be very large, we add a further layer of automation, which
occurs in a set of meaningful relations controlled by the-man-in-the-loop. In sum, the
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process, graphically depicted as a flowchart in Figure 4.1, is described by the following
steps:

• unsupervised production of a graphical model;

• researcher’s analysis of the dependency structure of the graphical model and
theory-driven transparent intervention removing or adding variables and sub-
sequent transformation of the graphical model;

• stability analysis, to detect a possible model drift which would hinder the possi-
bility of a panel analysis;

• automatic variables selection on the transformed graphical model for each year
in case of low stability;

• econometric analysis.

This procedure allows for a transparent selection of the variables, by blending auto-
matic algorithms and theory, and checks for the stability overtime of the relation. The
next section briefly recalls the main element of graphical models, the analysis of stabil-
ity, and variable selection as introduced in the previous chapters of this thesis.

4.2.1 Graphical models

Graphical models are a method to display the conditional independence relationships
between the variables through a network or a graph. A Graph is a mathematical ob-
ject G(V, E), where V is a finite set of nodes with direct correspondence with the vari-
ables and E ⊂ V × V, is a subset of ordered couples of V [92]. Graphical Models
used in this paper belong to classes of multivariate distributions, whose conditional inde-
pendence properties are encoded by a graph in the following way: the random vari-
ables have a direct representation with the nodes of the graph, while the absence of the
edges between nodes represents conditional independence between the corresponding
variables. We define a graphical models as an undirected graph G = (V, E), where
V = {v1, ..., vp} is the of vertices and E is the set of edges. Furthermore, an edge
e = (u, v) ∈ E indicates that the variables associated to u and v are not conditionally
independent given the rest of the dataset. We restrict the analysis to undirected decom-
posable graphs, for which two non-adjacent nodes are separated by a set of (at most)
size one (tree). A tree is a special undirected graph, that does not allow cycles. If a
dataset is represented by a collection of tree, we call this graph a forest. This simplifi-
cation allows us to calculate the maximum spanning tree, that is the tree that reduces
information redundancy, with the mean of the Chow-Liu Algorithm [29]. This algorithm
was developed to approximate optimally n-dimensional discrete probability distribu-
tion by a product of second-order distribution or the distribution of the first-order tree.
In particular, we adopt the extension of the Chow-Liu Algorithms by [42], which allows
also for continuous variables1.

1For further details and a review on graphical models see Chapter 1
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Begin

Consider multivariate
survival data over T

Compute T graphical models

Add and remove variables
and conncetions according
to the theory

On this basis, draw the new graphs

Compute stability over time

Is the model
drift small?

Overall automatic
variable selection

Econometric
analysis

Automatic variables
selection for every period

Econometric
analysis

End

Researcher Input

Automatic analysis

Automatic analysis

Automatic analysis

Automatic analysis

Researcher Input

Researcher Input

Figure 4.1: Flowchart: combining automatic analysis with research expertise

4.2.2 Graphical model and stability

In the context of time dependent variables, such as the case for survival analysis, the
(in)dependence relationship among variables, as encoded in a graph does not remain
necessarily stable. Chapter 3 of this thesis is devoted to the analysis of the drift, that is
the estimation of the stability of connection of a graph over time.

First, given a collection of datasets composed by p variables, T different time of ob-
servation and nt observations that correspond to the number of observation we com-
pute a random variable stability, base on the change of connection among variables
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described by a Transition matrix (TM). Starting from the adjacency matrix (AM), ob-
tained from the graphical models for each year, Transition matrix process is a function
that maps any possible change of state between two variables, that is a change of state
between AM0 to AMt with t = 1, 2, ..., T. Specifically, the generic element wi,j;t of TMt,
with dimension V × V, registers the evolution of the conditional dependency of any
couple of nodes Vi and Vj in T period. Specifically, the TM takes the following form:

TMt =
T

∑
t=1

2(T−t) AMt (4.1)

Chapter 3 shows how we use the wi , j; t to identify the distribution of stable con-
nections between two variables and the describe it as a Bernoulli distribution:

Yi|θi
ind∼ Bern(θi), i = 1, .., n

where Y is the long form vector of all possible connection over the T years and
takes value of 1 if the connection is stable up to that period and 0, otherwise. On this
basis, it is possible to implement a logistic regression model that is the odds of Y as
a linear function of both the history of past connections encoded in W and T. Since
W has 2t levels, we regress 2t − 1 dummy variable and keep W = 0 (stable absence of
connections) as the reference category, it that way the logistic regression is:

log
(

θi
1− θi

)
= β0 + β1 × T +

2t−1

∑
j

β jwj,i (4.2)

While in the section 3.4, we discussed the meaning of the coefficient, here we focus on
the intercept of this model β0, which, by construction can be is baseline risk for Stability.
We can express the Eq.4.2 in term of probability of stability of θi:

θi =
exp{β0 + β1 × T + ∑2t−1

j β jwj,i}

1 + exp{β0 + β1 × T + ∑2t−1
j β jwj,i}

(4.3)

From the Eq. 4.3 we can define the likelihood for the sequence of Yi over dataset of n
subjects is then

(4.4)
p(D|β0, β1, βj) =

n

∏
i=1


 exp{β0 + β1 × T + ∑2t−1

j=1 β jwj,i}

1 + exp{β0 + β1 × T + ∑2t−1
j=1 β jwj,i}

yi

1−
exp{β0 + β1 × T + ∑2t−1

j=1 β jwj,i}

1 + exp{β0 + β1 × T + ∑2t−1
j=1 β jwj,i}

(1−yi)
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where D is the dataset composed by the corresponding dummy variables by the level of
W for each Yi and the time of the transition T. The set of unknown parameters consists
of β0, βT , ..., β2T−2. Empirically, we use the most common priors for logistic regression
parameters, which are of the form:

β j ∼ N(µj, σ2
j ) (4.5)

with µ is zero with σ large enough to considered as non-informative in the range from
σ = 10 to σ = 100. The posterior distribution of βj is extrapolated by combining likeli-
hood Eq. 4.4 and prior 4.5:

(4.6)

p(β0, β1, βj|D, σj, µj) =
n

∏
i=1


 exp{β0 + β1 × T + ∑2t−1

j=1 β jwj,i}

1 + exp{β0 + β1 × T + ∑2t−1
j=1 β jwj,i}

yi

1−
exp{β0 + β1 × T + ∑2t−1

j=1 β jwj,i}

1 + exp{β0 + β1 × T + ∑2t−1
j=1 β jwj,i}

(1−yi)


×
p

∏
j=0

1√
2πσj

exp

−1
2

(
β j − µj

σj

)2


4.2.3 Graphical models and variable selection

We briefly recall here the main result of THE Chapter 2, in which we use the decom-
posable graph property for the development of of an algorithm of variable selection.
This algorithm belongs to belongs to Sequential Forward Search [114]. In this case, we fit
the algorithm for a binary outcome. The strategy to identify the appropriate number of
regressors is the following: at Step 0 the algorithm produces a rank of the importance
for all variables, then the from Step 1 to Step 4, it maximizes the relevance and at Step
5 it and minimizes the redundancy of information2. Specifically, the algorithm operates
according the following steps:

• Step 0: the algorithm finds the best spanning tree or forest, and call this model
M0;

• Step 1: the algorithm identifies all path steps wi, starting form the variable of
interest identified by the researcher;

• Step 2: the algorithm divides the dataset in training set(75%) and validation set
(25%)

• Step 3: the algorithm for i = 1, ..., N:

(a) fits the model with k variables present in path step wi

(b) computes the predicted probability of the outcome of interest in the test
set;

2details in Chapter 2 of this thesis
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(b) measures the overall performance with the area under the ROC curve
(AUC) [73] .

• Step 4: Select the best among N models (largest AUC), and call itMw

• Step 5: Fit the modelMw and select only the significant variables. Call this model
M f

It is simple to note thatM0 ⊂Mw ⊆M f . The output of the modelM f can be written
as:

yi = f (wi) + εi

where wi represent a vector of the variables selected by the algorithm. In order to
control the temporal dependence, we have included in the models the probability to
fail of the previous year. In that way, we can see if the performances of the previous
year can affect the probability to fail in the year of observation.

4.3 Data

For this analysis we use the AIDA (Analisi Informatizzata delle Aziende) database pro-
vided by the Bureau van Dijk. This database contains comprehensive information on all
Italian firms required to file account. Each firm is described by a large number of vari-
ables in the following categories: identification codes and vital statistics; activities and
commodities sector; legal and commercial information; index, share accounting and
financial data; shareholders, managers, company participation. From this database we
consider variables with lowest percentage of missing data and that describe all macro
categories. Specifically, we observe all firm funded in 2009 and we observe them along
a time span of 10 years. Details of the percentage of the missing variables are recorded
in Table 4.3. Since there is still a percentage of missing variables, we use Random Forest
Missing Algorithm as data imputation strategy. This method has some desirable proper-
ties, since it is able to handle mixed types of missing data. Furthermore, it is adaptive
to interactions and non-linearity and it has the potential to scale to big data settings
[137]. We implemented the Random Forest Missing Algorithm with the support of Open
Computing Cluster for Advanced data Manipulation (OCCAM) at the University of
Turin [8, 9].

4.4 Traditional Survival Analysis

Traditional approach to survival analysis in such a context relies on an extensive lit-
erature which overtime highlight both empirically and theoretically the main deter-
minants of survival [59, 118]. It is not the purpose of the paper to survey the broad
literature, but we recall here the six main elements which emerged in the last decades
as the fundamental ones together with few selected reference, specifically:

• Age and size [118, 13, 57];
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• Sector or Industry of belonging; [101, 81, 57]

• Geographical localization; [4, 134, 133]

• Profitability; [37]

• Liquidity constraints; [69, 107]

• Innovativeness and Entrepreneurship. [60, 71, 123]

The traditional approach of variables selection consists in deriving from both the-
ory and literature the most promising hypotheses to be tested. Insofar, among the vari-
ables in the dataset, we selected Region, Sector, Total from sales and Production cost as
a proxy for profitability, Index liquidity to capture liquidity constraints, Employees and
Sales for the size, and for the innovativeness Innovative Startups, that is whether a firm
is registered after 2012 in the register of Italian innovative start-ups. The variable Sector
is Nace Rev.2 and Fig. 4.2 shows the distribution across sectors and the survival rate
after 10 years, while the maps in Fig. 4.3 displays the distribution of the observations
and they survival across Italian regions. More details are reported in Appendices in the
Tables 4.4 and 4.5.

New firms in 2009

(a) Frequency

Survival rate after 10 years

(b) Survival Rate

Figure 4.2: Histograms of the Sectors in the start-ups
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New firms in 2009

(a) Map of the Frequency

Survival rate after 10 years

(b) Map of the Survival Rate

Figure 4.3: Maps of the start-ups

We can thus consider the set of selected variables and define Xi = {Xi,1, ..., Xi,p} as
the realized values of the covariates for firm i and Yi the correspondence status, of sur-
vival or not. We adopt semi-parametric hazard models, that are specifically designed to
examine the duration phenomena to ascertain survival determinants by explaining the
time period between a firm´s start-up and its cessation of economic activity. The most
commonly used models for survival data describe the transition rate from one state to
another, wherein this case the transition is represented by the death of the firm [91].
These models belong to Poisson regression, in particular, the Cox proportional hazard
models used in this analysis: These models belong to Poisson regression, in particular,
the Cox proportional hazard models used in this analysis:

λ(t|Xi) = λ0(t) exp
p

∑
j=1

β jXi,j (4.7)

It is simple to note that some variables that are time variant. Following the standard
approach to survival analysis, we consider the time dimension according to:

λ(t|X(t)i) = λ0(t) exp
p

∑
j=1

β jX(t)i,j (4.8)

where the covariate X(t) is the value of time-varying covariate for the ith subject at time
t, with t = 1, ..., T. The partial likelihood, in general, is as follows:

L(β) =
T

∏
t=1

[
λ(Yi|Xi(t))

∑i∈Ri(t) λ(Yi|Xi(t))

]
(4.9)
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where the expression i ∈ Ri indicates that the sum is taken over all subject in the risk
set Ri at time t. Figure 4.4 shows the survival cur for the firms born in 2009, while the
figure 4.5 shows the survival curs with the stratification for Macro-Region. Figure 4.11
shows the survival cur for the Innovativave stratification.

Survival Function

Figure 4.4: Survival function for the firms born in 2009 and table risk

Survival Function Stratification for Marco-Region

Figure 4.5: Survival Function Stratification for Marco-Region and table risk
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Figure 4.5 corroborates the role play by the regions, in Italy along the social-economic
divide between the North and the rest of Italy 3. Table 4.6 shows the result of the mul-

Macro-Region N Observed Expected (O−E)2

E
North 31201 18634 241 241
Center 21245 14366 83 83
south 21095 14409 107 107

χ2 = 480, on 2 degrees of freedom, p-value≤ 2e− 16

Table 4.1: log-rank test for Macro-Region

tivariate Cox regression, in which sector G (wholesale and retail trade; repair of motor
vehicles and motorcycles) is the reference level for the variable Sector, while for the
variable Region the the reference is Lombardia. The results consistent with the literature
and the selected variable are mainly significant. These result assume both a stable rela-
tion among variables over a time span of ten years and stable coefficients as well. In the
next section we apply the theoretical framework presented in Section 4.2 to the same
data and present an alternative view in which the variable selection is computer-aided
and stability is not considered for granted.

4.5 Graphical model and survival

Section 4.2.1 introduced graphical models a method to map he conditional dependence
structure of a dataset, to evaluate its stability overtime, and to select the variable to
include in a regression, accordingly. In this section we apply the method to the data at
hand and show whether this approach produce qualitatively different results.

4.5.1 A graphical model of Italian Start-ups

Figure 4.6 presents the graphical model for ten years: continuous variables are light
blue, the discrete ones green, region and sector are yellow, and survival is red.The label
of the nodes are reported in table 4.2.

3The table 4.1 reports the log-rank test, that is the most widely used method of comparing different survival
curves. The log-rank is approximately distributed as a χ2 test statistic and is a non-parametric test, which
makes no assumptions about the survival distributions
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Spanning Tree 2009

Spanning Tree 2011

Spanning Tree 2013

Spanning Tree 2010

Spanning Tree 2012

Spanning Tree 2014
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Spanning Tree 2015

Spanning Tree 2017

Spanning Tree 2016

Spanning Tree 2018

Figure 4.6: Graphical Models over ten years

Figure 4.6 can help the researcher in identifying the variable to include or not in the
selection process for the survival analysis with a high level of accountability. This step,
which introduces "the-man-in-the-loop" of the automatic process serves to include the
researcher’s knowledge with scientific justifications.

In the case at hand we decide the exclude 6 variables, which two precise charac-
teristics: they both generate noises in the data and they are not theoretical relevant.
Specifically, the following motivations explain the reason of exclusion:

• Province (2) direct dependence with the variable Region, presence of many levels.

• Legal form (3) presence of many levels, among which many are not informative.
Moreover the variable is rarely.
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• Legal status (4) Presence of many non informative levels, not mentioned in the
literature, data non reliable since they do derive from administrative process.

• Artisan Companies (6): zero-inflated, non informative, not mentioned in the litera-
ture.

• Constitution quarter (40): not informative since in Italy, the timing of constitution
relates more with administrative deadlines.

• Sae description (39): many non-informative levels, not mentioned in the literature.

Based on this new set of variables the selection algorithm will identify each years
a different number of regressor (k) each year, hindering the possibility of a standard
duration analysis which exploits the panel structure. We estimate the each year the
probability of survival with a logit regression:

log
(

ρi,t

1− ρi,t

)
= β0 +

k

∑
j=1

β jxt,j ∀ t (4.10)

where on the left hand side, we have the odd ratio of surviving explained by the
set of selected variable Xt. Unfortunately, in this way we loose the information of the
variable in this previous and we cannot safely assumed that it is uncorrelated with
with the present probability of surviving. Indeed the likelihood of surviving depends
very much also on the past history of the firms. In order not to incurred in the omitted
variable bias, we add in the set probability of surviving in t− 1, in this way we test the
impact of the variable in t, controlling for past history of the firm, which in this case is
unobservable. Thus also add a variable Predicted probability: pi,t−1.

We prune all the connection relating to this variables and compute the new edges
represented as red connections in Fig. 4.6. The resulting graphs highlight that variable
Survival node (7), which is the variable of interest belongs to the main component in
every year. Thus, as expected, this variables exhibits multiple relationships with the
remaining variables in the data-sets. The analyses were performed using the R library
gRapHD which we have made available to the R community via the CRAN repository
([2]).

4.5.2 Stability

To evaluate how changes the relationship between the variables over the observation
time, we introduce the stability, a measure developed to evaluate the drift 4. Figure 4.7
shows the result of the logistic regression for the Stability of the graphs in figure 4.6.

4for more details we suggest the Chapter 3
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Stability over time

Figure 4.7: Stability

As we can see from the figure 4.7, the Stability constantly decreasing during the
years, for this reason , it is important to identify a model that is dynamic over the time.
Details of the coefficient are recorded in the table 4.7, while figure 4.12 shows the result
of the Eq. 4.6.

4.5.3 Variables Selection

In this section we present the results of the variables selection carried out through the
algorithm presented in the section 4.2.3. The results in evidence in the figures 4.8, 4.9
and 4.10 show an evolution of the relevant variables over the time and they are com-
pared with the coefficient of the traditional survival exercise. Gray color stays for non
significant coefficient or not selected for the analysis. Traditional survival analysis,
highlight the role firm innovativeness, size, cost of production, revenues and as usu-
ally predicted in the literature, region and sectors. The alternative approach does not
dismiss these variables, but overall it provides a richer analysis which changes remark-
ably year by year. At the general level, survival in 2010 and 2017 does not seem to be
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captured by the current variables as if in these years other events were responsible for
firms’ exit.

More in details, innovativeness 5 is still recognized as an important variable, but
only in few specific years. For categorical sectors and regions, the new method seems
to explain the mild significance of the traditional supervisor as a mean between years
with a strong impact of regions and sectors and other, with a minimum or absent one.

Odds ratio of the selected variables

Figure 4.8: Impact of significant continuous variables

5the survival curve for innovativeness firms is reported in the Figure 4.11
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Odds ratio of the Region levels

Figure 4.9: Impact of significant Regions
Reference level: region Lombardia

Odds ratio of the Sector variables

Figure 4.10: Impact of significant Sector
Reference Level: sector G
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4.6 Conclusions

This paper proposes a methodology to address two issues in survival models. First, the
increasing availability of data with a large number of variables makes the process of
variable selection both cumbersome and, in some cases, opaque. Secondly, the hidden
context not captured by the observable data of a socio-economic phenomenon might
change over time and it is not possible to assume that the generative process of the
data remains constant. We employ graphical models as a tool for both empowering
the research in the process of variable selection and testing the stability over time of
the underlying dependency structure of the variable. When applying this method and
comparing it with a traditional survival exercise, results are striking. While the tradi-
tional methodology highlights the role of some variables, as for instance firms’ inno-
vativeness, the approach suggested in this paper shows that this effect explains sur-
vival in few selected year only. Moreover, this process of selection is fully accountable
and remove any risk of selective reporting and p-hacking. This paper contribute to
the ongoing attempt in the literature of combining data science tools with traditional
econometrics, in order to enhance a researcher’s possibilities, without substituting its
role.
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4.7 Appendix

In this section are reported the details of missing data 4.3, the frequencies of the Regions
4.4 and of the Sectors 4.5. It is possible also to find the coefficients of the Cox Regression.
Furthermore in the table 4.7 are reported the coefficients values of the Bayesian Logist
Regression for the Stability, where each coefficients of the factor w are negative respect
to w = 0, except the coefficient w = 1023 that identify the stability of the connection of
the edges at time t = 10. Figure 4.12 shows the result of the Equation 4.6, in particular
we can see the distribution of the posterior and the evolution of the edges over the time.
We can see for each years N points. Furthermore, Figure 4.12 shows also as the edges
between the variables change over time. Indeed, the ordinate indicates the sorted levels
of the variable wi,j.

Survival Function Stratification for innovative startup

Figure 4.11: Survival Function Stratification for innovative startup and table risk
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Name of Variables Label Node Type of variable

Region 1 Discrete
Province 2 Discrete
Legal form 3 Discrete
Legal State 4 Discrete
Innovative Startup 5 Dichotomous
Artisan Companies 6 Dichotomous
Death 7 Dichotomous
Total receivables 8 Continue
Receivables from shareholders 9 Continue
Total from sales 10 Continue
Current assets 11 Continue
Employees 12 Continue
Total tangible fixed assets 13 Continue
Total intangible assets 14 Continue
Total Stock 15 Continue
Total assets 16 Continue
Total equity 17 Continue
Share capital 18 Continue
Total liabilities 19 Continue
Severance pay 20 Continue
Total production value 21 Continue
Revenues from sales and services 22 Continue
Production costs 23 Continue
Wages and Salaries 24 Continue
Severance pay + quiescence+other costs 25 Continue
Operating income 26 Continue
Total extraordinary income and expenses 27 Continue
Earnings Before Taxes 28 Continue
Total financial income and expenses 29 Continue
Total depreciation and impairment losses 30 Continue
Profit or loss for the period 31 Continue
Liquidity index 32 Continue
Ebitda 33 Continue
Total revaluation 34 Continue
Total write-downs 35 Continue
Accrued and deferred income 36 Continue
Total payables 37 Continue
Sector 38 Discrete
Sae description 39 Discrete
Constitution quarter 40 Discrete

Table 4.2: Name of the variables
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Label Node Percentage of missing data
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
9 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
10 20% 5% 4% 4% 4% 3% 3% 2% 1% 0%
11 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
12 28% 26% 12% 8% 7% 4% 4% 4% 3% 3%
13 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
14 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
15 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
16 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
17 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
18 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
19 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
20 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
21 20% 5% 4% 4% 4% 3% 3% 2% 1% 0%
22 20% 5% 4% 4% 4% 3% 3% 2% 1% 0%
23 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
24 20% 5% 4% 4% 4% 3% 3% 2% 1% 0%
25 20% 5% 4% 4% 4% 3% 3% 2% 1% 0%
26 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
27 20% 5% 4% 4% 4% 3% 3% 2% 1% 0%
28 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
29 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
30 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
31 20% 5% 4% 4% 4% 3% 3% 2% 1% 0%
32 27% 10% 9% 9% 9% 8% 8% 7% 7% 6%
33 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
34 45% 30% 24% 17% 9% 3% 2% 2% 1% 0%
35 20% 5% 4% 4% 4% 3% 3% 2% 1% 0%
36 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
37 17% 4% 4% 4% 4% 3% 3% 2% 1% 0%
38 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
39 1% 1% 1% 0% 0% 0% 0% 0% 0% 0%
40 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 4.3: Percent of missing for year
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Region Number of fimrs
born in 2009

Lombardia 13430
Veneto 5453
Emilia-Romagna 5079
Piemonte 3552
Liguria 1408
Trentino-Alto Adige 1204
Friuli-Venezia Giulia 943
Valle D’Aosta 132
North 31201
Lazio 12217
Toscana 4435
Marche 1975
Abruzzo 1631
Umbria 987
Center 21245
Campania 7645
Sicilia 4766
Puglia 4580
Calabria 1614
Sardegna 1583
Basilicata 590
Molise 317
South 21095

Table 4.4: Distribution of the firms for Region
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Label Frequency Description
A 1426 agriculture, forestryand fishing
B 64 mining and quarrying
C 7933 manufacturing
D 1936 electricity, gas, steam and air conditioning supply

E 317 water supply;sewerage, waste management
and remediation activities

F 12214 construction

G 14955 wholesale and retail trade;
repair of motor vehicles and motorcycles

H 2923 transportation and storage
I 5053 accommodation and food service activities
J 3192 information and communication
K 1433 financial and insurance activities
L 6422 real estate activities
M 6703 professional, scientific and technical activities
N 4117 administrative and support service activities

O 2 public administration and defence;
compulsory social security

P 716 education
Q 1428 human health and social work activities
R 1588 arts, entertainment and recreation
S 1117 other service activities
U 2 activities of extraterritorial organizations and bodies

Table 4.5: Frequency of the sector

Posterior of probability of stability

Figure 4.12: Evolution of the connections
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Variables Coefficient exp(Coef) se(Coef) robust se z Pr(>|z|) Signif.
Region Abruzzo 1.18E-01 1.12E+00 3.23E-02 3.26E-02 3.609 0.000307 ***
Region Basilicata -8.21E-03 9.92E-01 5.29E-02 5.15E-02 -0.159 0.873346
Region Calabria 1.26E-01 1.13E+00 3.23E-02 3.30E-02 3.809 0.00014 ***
Region Campania 1.37E-01 1.15E+00 1.79E-02 1.86E-02 7.357 1.89E-13 ***
Region Emilia-Romagna 4.09E-03 1.00E+00 2.11E-02 2.13E-02 0.192 0.847482
Region Friuli-Venezia Giulia -6.11E-02 9.41E-01 4.39E-02 4.39E-02 -1.393 0.163483
Region Lazio 2.13E-01 1.24E+00 1.56E-02 1.61E-02 13.209 2E-16 ***
Region Liguria 5.57E-02 1.06E+00 3.53E-02 3.61E-02 1.543 0.122827
Region Marche 6.59E-02 1.07E+00 3.02E-02 3.07E-02 2.144 0.032037 *
Region Molise 8.57E-02 1.09E+00 6.96E-02 6.76E-02 1.268 0.204727
Region Piemonte 1.46E-02 1.01E+00 2.42E-02 2.45E-02 0.597 0.550658
Region Puglia 1.28E-01 1.14E+00 2.13E-02 2.22E-02 5.78 7.46E-09 ***
Region Sardegna 1.95E-01 1.22E+00 3.21E-02 3.29E-02 5.936 2.92E-09 ***
Region Sicilia 1.92E-01 1.21E+00 2.07E-02 2.18E-02 8.8 2E-16 ***
Region Toscana -6.24E-03 9.94E-01 2.21E-02 2.23E-02 -0.28 0.779621
Region Trentino-Alto Adige -3.55E-01 7.01E-01 4.31E-02 4.28E-02 -8.292 2E-16 ***
Region Umbria 5.44E-02 1.06E+00 4.13E-02 4.15E-02 1.312 0.189687
Region Valle d’Aosta -9.14E-02 9.13E-01 1.14E-01 1.17E-01 -0.78 0.435531
Region Veneto -8.76E-02 9.16E-01 2.10E-02 2.12E-02 -4.13 3.63E-05 ***
Sector A -4.14E-01 6.61E-01 3.77E-02 4.01E-02 -10.311 2E-16 ***
Sector Others -1.63E-01 8.50E-01 1.57E-01 1.55E-01 -1.053 0.292157
Sector C -6.59E-02 9.36E-01 1.77E-02 1.93E-02 -3.42 0.000626 ***
Sector D -1.72E-01 8.42E-01 3.18E-02 3.50E-02 -4.897 9.75E-07 ***
Sector E -3.66E-01 6.93E-01 7.90E-02 7.93E-02 -4.616 3.91E-06 ***
Sector F -6.60E-02 9.36E-01 1.51E-02 1.91E-02 -3.448 0.000564 ***
Sector H 1.23E-01 1.13E+00 2.46E-02 2.75E-02 4.474 7.66E-06 ***
Sector I 1.54E-01 1.17E+00 1.95E-02 2.70E-02 5.704 1.17E-08 ***
Sector J -1.28E-01 8.80E-01 2.46E-02 2.79E-02 -4.584 4.56E-06 ***
Sector K -8.20E-02 9.21E-01 3.46E-02 3.80E-02 -2.157 0.031038 *
Sector L -5.30E-01 5.89E-01 2.06E-02 2.60E-02 -20.369 2E-16 ***
Sector M -6.11E-02 9.41E-01 1.85E-02 2.26E-02 -2.701 0.006913 **
Sector N 8.03E-02 1.08E+00 2.14E-02 2.68E-02 2.99 0.002788 **
Sector P -2.78E-01 7.57E-01 5.03E-02 5.38E-02 -5.158 2.49E-07 ***
Sector Q -3.96E-01 6.73E-01 3.77E-02 4.18E-02 -9.467 2E-16 ***
Sector R 1.65E-01 1.18E+00 3.09E-02 3.44E-02 4.788 1.69E-06 ***
Sector S 1.14E-01 1.12E+00 3.67E-02 4.16E-02 2.731 0.006322 **
Innovative Startup -1.99E+00 1.36E-01 3.33E-01 3.19E-01 -6.252 4.05E-10 ***
Production costs 2.96E-05 1.00E+00 4.43E-06 8.48E-06 3.495 0.000474 ***
Total from sales -1.13E-04 1.00E+00 6.52E-06 3.51E-05 -3.208 0.001339 **
Index Liquidity -2.58E-02 9.74E-01 3.03E-03 3.35E-03 -7.717 1.19E-14 ***
Employees -7.58E-03 9.92E-01 7.35E-04 3.18E-03 -2.384 0.017148 *

Signif. code: p∗∗∗ < 0.0001,p∗∗ < 0.001,p∗ < 0.05,p. < 0.1

Table 4.6: Cox regression summary
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β0 β1 β2 β3 β4 β5 β6 β7 β8
69.51 -11.68 -11.54 -1.84 -11.1 -10.45 -10.33 -1.67 -10.89
β9 β10 β11 β12 β13 β14 β15 β16 β17
-8.13 -9.69 -9.47 -10.26 -9.38 -10.2 -1.51 -10.98 -8.32
β19 β20 β21 β23 β24 β26 β27 β28 β29
-8.25 -8.09 -9.32 -9.1 -10.05 -8.06 -8.89 -9.57 -9.49
β30 β31 β32 β34 β38 β40 β42 β43 β46
-9.27 -1.11 -11.09 -8.3 -8.16 -8.31 -9.35 -8.3 -8.39
β47 β48 β52 β54 β55 β56 β57 β58 β59
-8.91 -9.76 -8.38 -8.17 -8.43 -8.8 -9.34 -7.99 -8.28
β60 β61 β62 β63 β64 β65 β68 β77 β80
-8.96 -8.18 -9.55 -0.43 -10.76 -8.26 -8.34 -8.42 -8
β84 β87 β92 β95 β96 β97 β104 β108 β111
-9.19 -8.2 -8.28 -8.53 -9.63 -8.15 -8.28 -8.26 -8.16
β112 β115 β116 β119 β120 β122 β124 β125 β126
-8.8 -9.22 -8.41 -8.13 -9.07 -8.06 -8.43 -9.09 -9.06
β127 β128 β130 β136 β155 β168 β175 β184 β191
-0.03 -10.71 -8.49 -8.51 -8.15 -9.26 -8.47 -8.3 -8.06
β192 β194 β208 β216 β223 β224 β230 β231 β232
-9.22 -8.32 -8.37 -8.15 -8.27 -8.81 -8.26 -8.92 -8.25
β238 β240 β245 β248 β250 β251 β252 β254 β255
-8.17 -8.49 -8.47 -8.28 -8.21 -8.94 -9.29 -8.24 -0.07
β256 β260 β272 β311 β336 β351 β368 β383 β384
-10.34 -8.35 -8.21 -8.44 -8.72 -8.25 -8.26 -8.33 -9.16
β388 β432 β448 β460 β463 β464 β477 β480 β491
-8.23 -8.46 -8.22 -8.39 -8.91 -8.39 -8.13 -8.05 -8.36
β496 β500 β503 β504 β508 β511 β512 β544 β623
-8.04 -8.07 -8.33 -8.82 -8.32 -0.06 -10.24 -8.2 -8.21
β672 β703 β768 β776 β896 β920 β927 β955 β960
-8.21 -8.15 -9.43 -8.25 -8.52 -8.18 -8.72 -8.05 -8.4
β983 β1007 β1008 β1016 β1022 β1023 βt
-8.24 -8.31 -7.98 -8.07 -8.58 6.85 -0.03

Table 4.7: Coefficients of Bayesian logistic regression
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