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Abstract: Machine learning is usually associated with big data; however, experimental or clinical
data are usually limited in size. The aim of this study was to describe how supervised machine
learning can be used to classify astrocytes from a small sample into different morphological classes.
Our dataset was composed of only 193 cells, with unbalanced morphological classes and missing
observations. We combined classification trees and ensemble algorithms (boosting and bagging)
with under sampling to classify the nuclear morphology (homogeneous, dotted, wrinkled, forming
crumples, and forming micronuclei) of astrocytes stained with anti-LMNB1 antibody. Accuracy,
sensitivity (recall), specificity, and F1 score were assessed with bootstrapping, leave one-out (LOOCV)
and stratified cross-validation. We found that our algorithm performed at rates above chance
in predicting the morphological classes of astrocytes based on the nuclear expression of LMNB1.
Boosting algorithms (tree ensemble) yielded better classifications over bagging ones (tree bagger).
Moreover leave-one-out and bootstrapping yielded better predictions than the more commonly used
k-fold cross-validation. Finally, we could identify four important predictors: the intensity of LMNB1
expression, nuclear area, cellular area, and soma area. Our results show that a tree ensemble can
be optimized, in order to classify morphological data from a small sample, even in the presence of
highly unbalanced classes and numerous missing data.

Keywords: machine learning; astrocytes; LMNB1; tree ensemble; cross-validation; tree bagger;
classification tree

1. Introduction
1.1. Background

Machine learning (ML) has seen a significant advancement in recent years. New tech-
niques, such as deep learning, are becoming more prevalent in tools we use in everyday life.
ML is now being used in fields that were previously thought impossible, including vehicle
detection and traffic density prediction [1], smart agriculture with deep convolutional
neural networks [1–4], and even in the medical field for diagnoses and monitoring [5–8].
Deep learning can also detect fake reviews [9] and leaf disease in agriculture [10]. These
advancements in machine learning have greatly expanded the potential applications and
capabilities of the technology. However, despite these advancements, ML typically requires
large sample sizes. Small datasets are commonly found in experimental research and
clinical studies. Therefore, it is crucial to find ways to optimize ML algorithms for small
sample sizes.
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1.2. Related Works

The interest in machine learning applied to small samples has drastically increased in
the last few years [11]. Despite nearly all information being stored digitally, researchers
are still faced with the challenge of working with small data samples in many real-world
situations, making the use of machine learning a challenge. In neuroscience, researchers
commonly work with databases that are limited by factors such as a small number of
subjects in experiments, high dimensionality (i.e., many features compared to the sample
size), a high degree of noise or missing data, and measurements that are costly or unbal-
anced (i.e., one class has very few observations). These issues are especially sensitive in
the classification of cell types. Cell types in the nervous system can vary greatly in terms
of their morphological and functional characteristics, making it difficult to classify them
accurately. The availability of high-quality, annotated data for training machine learning
models is often limited, making it challenging to achieve a high accuracy in cell type
classification. There is often a lack of standardization in the naming and classification of
cell types in neuroscience, which can make it difficult to compare results across different
studies. Finally, noise can be a serious problem for machine learning models, especially in
neural data that is often collected in vivo, where the environment can be highly variable
and difficult to control [12].

Kokol et al. [11] and Vabalas et al. [13] have investigated the state of the art of ML
applied to a small data set and showed that using k-fold cross validation is not a good
technique to estimate error in small sample predictions, since it may produce results that
deviate significantly from the real error. The three most common difficulties related to
small datasets are unbalanced data, high/low dimensionality, and high bias/prediction
variance [14]. Data unbalance occurs when one or more categories are underrepresented.
This is a problem both during training and validation. During training, the learner only sees
a small number of cases in sparse categories, limiting its ability to generalize. To partially
overcome this issue, a few algorithms, such as RUSBoost and SMOTHEBoost [15,16], have
been developed. High dimensionality occurs when the number of covariates is larger than
the number of cases. It causes model overfitting, such that it cannot be generalized to a new
dataset. Cross validation is a method to evaluate ML models and is achieved by training
several models and correcting for overfitting to improve the model’s ability to generalize.
Standard k-fold cross-validation may not be optimal for small datasets, as there may not
be enough data to create multiple folds without reducing the amount of data available for
training and evaluation. In these cases, leave-one-out cross-validation (LOOCV) may be a
more appropriate approach.

1.3. Aim of the Study

In our work, we describe how supervised ML can be used to classify astrocytes from
a small pool into several categories. More specifically, we aimed at classifying astrocytes
derived from healthy donor human induced pluripotent stem cells (hiPSCs), based on
distinct nuclear morphologies, as visualized by the expression of the nuclear protein
Lamin B1 (LMNB1, [17]). Lamins are important proteins of the nucleus and constitute
a structural component of the nuclear lamina. They contribute to the stability of the
chromosomes and to the regulation of gene expression [17]; they are additionally involved
in cell cycle regulation and in gene splicing [18]. The reduction of LMNB1 expression
is also associated with senescence [19,20] and pathology [21]. Mutations of the LMNB1
gene are associated with autosomal dominant adult-onset leukodystrophy (ADLD) [21,22].
Using machine learning to classify astrocytes is important for several reasons. First and
foremost, astrocytes play a vital role in the nervous system, providing structural and
metabolic support to neurons [23]. This makes them an important target for research, as
understanding their function and behavior can shed light on the underlying mechanisms
of neurological diseases and disorders. Second, ML as a tool to classify cells, can be
generalized to other cell types such as neurons, oligodendrocytes, and microglial cells.
Finally, by using ML, we can potentially identify specific characteristics or features that
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may be associated with the LMNB1 expression levels, potentially leading to a better
understanding of the underlying causes of these diseases and how they may be treated. Our
application of ML approaches, with a focus on LMNB1, may potentially identify unknown
cellular characteristics or features relevant to understanding and treating laminopathies
and/or senescence.

2. Materials and Methods
2.1. Human Induced Pluripotent Stem Cell Lines and Cultures

Three hiPSC lines derived from healthy donors were used for the study: ATCC-
DYS0100 (C1; derived from the human foreskin fibroblast cell line ATCC SCRC-1041 and
reprogrammed using non-integrative Sendai viral transduction; genes: POU5F1, SOX2,
KLF4, MYC), GIBCO TMOi001-A (C2; derived from CD34+ progenitors reprogrammed
using the non-integrative episomal vector; genes: POU5F1, SOX2, KLF4, MYC, NANOG,
LIN28, SV40 T) and WTSIi004-A (C3; derived from male 35–39 years old fibroblasts and
reprogrammed using Sendai viral transduction; genes: POU5F1, SOX2, KLF4, MYC).
hiPSC lines were cultured in a 37 ◦C incubator at 5% CO2 onto vitronectin-coated six-well
plates in Essential8 (A1517001; ThermoFisher, Waltham, MA, USA). Lines were passaged
every 3–4 days using gentle, non-enzymatic detachment with Versene Solution (15040066;
ThermoFisher, Waltham, MA, USA) for 5 min and were replated in Essential8 medium with
Revitacell Supplement 1X (A2644501; ThermoFisher, Waltham, MA, USA). All hiPSC lines
underwent a periodical rigorous quality check, including a sterility check, mycoplasma
testing and a pluripotency check.

2.2. hiPSCs Neural Commitment and Differentiation into Astrocytes

hiPSCs were induced along the neural lineage and differentiated using the protocol
published by Douvaras and colleagues [24,25], with minor modifications. Briefly, hiPSCs
were enzymatically detached using StemPro Accutase (A1110501; ThermoFisher, Waltham,
MA, USA) and plated at 3–4 × 105 cells/well into a vitronectin-coated six-well plate, in
Essential8 medium supplemented with Revitacell, for ~16 h, and then kept in culture in
Essential8 without Revitacell Supplement, for ~8 h. The medium was then replaced (day
in vitro 0, DIV0) with Neural Induction Medium, and the cells were fed daily until DIV7,
then with N2 Medium from DIV8 to DIV12. At DIV12, adherent cells were lifted using
the StemPro EZPassage Disposable Stem Cell Passaging Tool (23181010; ThermoFisher,
Waltham, MA, USA), cultured in suspension into low-attachment dishes, in order to favor
sphere formation, and were fed every other day in N2B27 medium until DIV20, then until
DIV30 with PDGF Medium (see Table S1 for media composition). On DIV30, spheres were
picked and plated onto six-well plates coated with 0.1 mg/mL poly-L-ornithine (PO, P3655;
Sigma-Aldrich, Saint Louis, MO, USA), followed by the application of 10 mg/mL laminin
(Lam, L2020; Sigma-Aldrich, Saint Louis, MO, USA), at the density of 20 spheres/well.
Plated spheres were gently fed with PDGF medium (2/3 media changes) every other day.
At DIV70-80, spheres and cells migrated out of the spheres were dissociated with StemPro
Accutase for 30 min, passed through a 70 µm cell strainer and sorted for CD49f-positive
(CD49f+) cells [26]. CD49f+ sorted astrocytes were then plated at a density of 3000/cm2

onto PO/Lam coated µ-Slide 8 well ibiTreat (80826; Ibidi, Gräfelfing, Germany), cultured
for three days in PDGF medium, and then fixed with 4% paraformaldehyde (PFA) in 0.1 M
sodium phosphate buffer (PB). Samples were washed two times with PBS and stored at
4 ◦C until immunofluorescence analyses.

2.3. Immunofluorescence and Confocal Analysis

For immunofluorescence reactions, astrocytes were incubated for 24 h at 4 ◦C in a
solution of 0.01 M PBS, pH 7.4, containing 0.5% Triton X-100, 2% normal donkey serum
and primary antibodies. Cells were then incubated for 2 h at room temperature, in a
solution of 0.01 M PBS, pH 7.4, containing 1% normal donkey serum, 4′,6-diamidino-
2-phenylindole dihydrochloride (DAPI; Fluka, Milan, Italy) and appropriate secondary
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antibodies. Primary and secondary antibodies are reported in Table S2. All the images
were acquired with the inverted confocal microscope ZEN LSM800 (Zeiss, Oberkochen,
Germany), using 20×magnification in a field of 319.45 × 319.45 µm, zstep = 1 µm. For
each technical replicate (n = 3) of each cell line (n = 3), at least 15 astrocytes were analyzed,
for a total of 193 astrocytes (C1: n = 55; C2: n = 72; C3: n = 66). Of note, the quantification of
GFAP, AQP4, and LMNB1 protein levels throughout immunofluorescence staining required
a standardized procedure, in order to avoid technical bias. The same antibody aliquots
were used for all the quantification, in order to avoid different specificities, and staining
was carried out in parallel on the different samples. Images were acquired using the same
confocal parameters, and pixel saturation was avoided, in order to appreciate the entire
expression spectrum. Moreover, the images were not post-processed.

2.4. Quantification Analysis

Astrocytes were classified as polygonal or ramified, based on their appearance, and the
number of ramifications was counted manually. To segment these cells, we took advantage
of Ilastik machine learning software [27]. Briefly, we performed pixel classification to
distinguish CD49f labeling from the background, using the Max Intensity ZProjection
stack. As an output, we obtained a simple segmentation map containing a 2D mask of
CD49f+ astrocytes. This output was finally processed with ImageJ software (available
at https://imagej.net/ij/; accessed on 21 March 2023) to measure the area occupied by
each segmented cell. Among GFAP+ and/or AQP4+ astrocytes, the integrated density
(IntDen) of GFAP and/or AQP4 staining was measured in the central focal plane, exploiting
the previously obtained masks. IntDen was normalized on the background around each
cell. Nuclei were automatically outlined on the same images with ImageJ software using
the DAPI signal, and both the nuclear area and IntDen measurements of LMNB1 protein
content were obtained.

2.5. Classification

Classification trees are supervised learning models that work well, both with cate-
gorical (classification trees) and quantitative (regression trees) data. The methodology
behind classification trees is to recursively split data, based upon the predictors that best
distinguish the response variable classes [14,26]. They are computationally efficient and
can easily handle continuous and discrete (or mixed) or missing data. They are highly
flexible, and naturally uncover complex and nonlinear interactions among the independent
variables. Classification trees are also popular because they can easily be combined into
learning ensembles. To classify the LMNB1 morphology, we tested several types of classifi-
cation trees and tree ensembles, in association with different types of cross-validatWeion
(CV), in order to assess their performance. Cross-validation (CV) is a method used to
evaluate ML models, but it is also strictly intertwined with training; therefore, the choice of
CV can influence the accuracy of the model. The simplest cross-validation method consists
of splitting the dataset into a training and a test set. This is clearly not a viable method
when dealing with small datasets, because it subtracts data for training. Here, we test more
sophisticated CV methods such as k-fold CV, bootstrap, leave-one-out CV and stratified CV,
in order to optimize the prediction on our sample. We trained three classifiers, a simple tree,
an ensemble of bagged trees (TreeBagger) and, finally, an ensemble of boosted classification
trees (Tree ensemble), to classify astrocytes into one of five classes: homogeneous, dotted,
wrinkled, forming crumples, or forming micronuclei. Alternatively, we also trained the
classifiers to classify astrocytes into one of three classes, by merging Classes 1 and 2 together,
and 3 and 4 together. The classifiers’ implementation was performed in MATLAB.

To handle class imbalance, we used RUSBoost [16] for the tree ensemble. RUSBoost is
an ensemble method that combines the strengths of both random undersampling and the
popular boosting algorithm, AdaBoost. By randomly undersampling the majority class and
then applying AdaBoost, RUSBoost can balance the class distribution, while also maintain-
ing the strong performance of the boosting algorithm. Additionally, RUSBoost also uses a

https://imagej.net/ij/
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cost-sensitive approach to weigh the misclassification error of the minority class higher,
further addressing the imbalance in the data. Overall, RUSBoost is a powerful technique
for handling unbalanced datasets, and has been shown to achieve strong performances
in various classification tasks. For the classification tree, we used a cost error matrix. The
cost for each class was assigned as the inverse of the frequency. To train the classifiers, we
used a set of eight variables: GFAP expression, cell morphology, number or ramifications,
cellular area, soma area, nuclear area, normalized intensity of LMNB1, normalized intensity
of GFAP, and normalized intensity of AQP4. Since the following variables (normalized
intensity of LMNB1, normalized intensity of GFAP, normalized intensity of AQP4, see
Table S3) were acquired in different sessions, and their measurement is dependent on acqui-
sition settings, we normalized their values using the z score. Finally, we compared several
types of cross-validation: five-fold cross validation, LOOCV, stratified cross-validation
and bootstrapping. For bootstrapping, first, we split the sample into training (80%) and
testing (20%) datasets, and then resampled both sets with 2500 permutations. Since we
were dealing with multiclass classification, the accuracy, sensibility, sensitivity and F1 score
were computed for each class, and then averaged weighting for the size of each class was
obtained. All analyses were made with Matlab R2022a, The MathWorks, Natick, 2022.

3. Results
3.1. Nuclear Patterns of LMNB1 in Astrocytes

Human lamin B1 is a nuclear protein that is encoded by the LMNB1 gene [22]. Visual
inspection of stained astrocytes allowed us to distinguish five morphological nuclear pat-
terns, based on LMNB1 distribution: (0) homogeneous, (1) dotted, (2) wrinkled, (3) forming
crumples, (4) forming micronuclei (Figure 1). In our sample we mostly found patterns 0–2.
Patterns 3 and 4 were very rare in our samples (Table 1), possibly because these may be
linked to cellular dysfunctions, as in case of laminopathies.

Table 1. Description of LMNB1 morphologies.

LMNB1 Category N (%)

0 47 (24.35)
1 82 (42.49)
2 48 (24.87)
3 13 (6.47)
4 3 (1.55)

A classification based on nuclear expression of LMNB1 has already been performed by
Giorgio et al. [22]. They found a higher frequency of homogeneous and dotted morpholo-
gies in healthy cells, while morphologies showing crumples were broadly represented in
cellular models of autosomal dominant leukodystrophy (ADLD) [22].

3.2. Classification Algorithm Evaluation

First, we tested the following classifier algorithms on the same subset of data: a simple
classification tree, a tree bagger and classification tree ensemble (Figure 2). Tree ensembles
have several advantages over a simple tree. They generally lead to improved prediction
accuracy and reduced variance. Additionally, they are less prone to overfitting and are
more robust to noisy data. They are also able to handle high-dimensional and complex data
sets more effectively than a single decision tree. We optimized the hyperparameters using
Bayesian optimization, in order to optimize the cross-validation loss of the classifier. For the
ensemble algorithms, the optimization function searched for the maximum number of splits
among integers log-scaled in the range [1, n observations − 1] = 8, the number of learners
among integers log-scaled in the range [10, 500] = 12, the learning rate among real values log-
scaled in the range [0.001, 1] = 1 (the learning rate is a regularization parameter that shrinks
the contribution of each new tree added to the ensemble; the slower the learning rate, the
slower the model learns, becoming more robust) and, finally, the number of predictors to
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sample among integers in the range [1, number of the predictors] = 8. For the simple clas-
sification tree, the optimized parameters comprised the maximum number of splits among
integers, log-scaled in the range [1, n observations − 1] = 5, as well as the split criterion
along Gini’s index, Twoing rule and Maximum deviance reductions = deviance reduction.
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 Figure 1. hiPSC-derived astrocytes display different morphological nuclear LMNB1-related patterns.
Human pluripotent stem cells derived from healthy donors were differentiated to neural progenitors,
expanded as spheres, further matured into authentic astrocytes (see Section 2), and analyzed by
confocal microscopy (A). During this maturation step, they acquired typical astroglial markers (GFAP,
CD49f) and morphologies (B–D). Astrocyte nuclei were classified into 5 categories, corresponding to
distinct nuclear morphologies based on the LMNB1 staining pattern: homogeneous (A’, with no sign
of LMNB1 accumulation), dotted (B’, with dots of LMNB1 accumulations), wrinkled (C’, with stripes
of LMNB1 accumulations), forming crumples, (D’) or forming micronuclei (B”). Magnification in A’,
B’, B”, C’ and D’ shows LMNB1 staining details. GFAP, Glial Fibrillary Acid Protein; LMNB1, Lamin
B1. Scale bar: 50 µm.
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Figure 2. Flow chart of the experimental design. To classify astrocytes’ morphology, we compared
three classifier algorithms; we used methods to address class imbalance like RUSBoost and cost
sensitive error functions. We also used four types of cross-validation.

3.3. Cross-Validation Techniques

We used 5-fold cross-validation (CV) to validate the models. We created a confusion
chart to compare the predicted outcomes with the observed ones. Figure 3A–C show the
confusion charts for each classifier. Rows represent the true classes, and columns represent
the predicted classes of the five LMNB1 morphologies (0, 1, 2, 3, 4). The diagonal squares
show the intersection of true class and predicted class, e.g., the correct predictions. The
off-diagonal squares show the incorrect predictions. White squares indicate zeros.

The classification tree (Figure 3A) only worked well for Classes 0 and 1 and performed
sub optimally for all other classes. We calculated the sensitivity, specificity and F1 score (see
Materials and Methods). Although very similar, the tree ensemble yields the best results,
therefore, we chose this classifier for further analysis.

A closer look at the data shows that the five classes are highly unbalanced (Table 1)
with Class 1 being the most represented, followed by Classes 0 and 2. Classes 3 and 4
are the sparsest. This explains why all the classifiers consistently performed poorly for
Classes 3 and 4. To handle this class imbalance, we used RUSBoost, an algorithm that uses
a combination of random under-sampling (RUS), as well as AdaBoost, in order to better
predict the less represented classes. Figure 4A shows the performance of the classification
ensemble using RUSBoost. Although the use of RUSBoost reduces the F1 score (compare
Figure 3C with Figure 4A), it largely improves the prediction for Class 3, one of the least-
represented ones (Figure 4A).

Since we wanted to obtain a more balanced accuracy across classes, we used RUSBoost
with all the following models presented in this paper. In order to reduce class imbalance,
we merged the five original categories into three larger classes, according to morphological
similarities described by Giorgio et al. [22]: Class 1: formed by former Categories 0 and 1;
Class 2: formed by former Category 2; Class 3: formed by former Category 3 and 4. We
applied the same model to these three larger classes; the results are shown in Figure 5B.
The F1 score increases sharply, and the model performs well for Classes 1 and 3, but not
for Class 2.
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Se = sensitivity, Sp = specificity, F1 = F score. All the models in this figure were cross-validated with
5-fold cross-validation.

All the models in this figure were cross-validated with five-fold cross-validation.
Usually, machine learning algorithms are optimized for binary decisions, rather than
multiple class decisions. However, for multiclass problems, we decided to test a technique
called “one vs. all” (also known as “one vs. the rest”), where a separate binary classifier is
trained for each class to predict whether an example belongs to that class or not. This can
lead to improved performance compared to using a single multiclass classifier [28]. One
vs. all (also known as “one vs. the rest”) is a technique used for multiclass classification
problems, where a separate binary classifier is trained for each class to predict whether an
example belongs to that class or not. The class that is predicted by the classifier with the
highest confidence score is the final prediction. This method is based on the idea that a
good classifier for a problem with multiple classes should be able to separate each class
from the rest of the classes. By training a separate classifier for each class, the one vs. all
method attempts to achieve this goal. To assign the decision to one class, we determined the
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decision that had the highest score, which is a measure of the probability of an observation
belonging to a particular class. It can be used to decide the class of an observation based on
a threshold. (Figure 4C). Next, we tried to optimize cross-validation (CV). CV is a key step
in machine learning. It is a method to evaluate ML models by correcting for overfitting, in
order to improve the model’s ability to generalize. It also estimates the goodness of a model.
The most used is k-fold CV, which we used for all models in Figures 3 and 4. However
k-fold CV may not be the best for small samples, since some classes may be absent from one
or more folds. Therefore, we tested bootstrapping, leave-one-out (LOOCV) and stratified
CV. Bootstrapping is a method used to simulate new samples from a single data set, by
performing resampling with replacement. LOOCV uses a single observation as a validation
set and all the remaining data as a training set. Therefore, LOOCV creates as many models
as the sample size (193 in our case) and tests them the same number of times. Stratified CV
ensures that all the outcome classes have an even proportion of outcome classes, so that that
CV’s results are a closer approximation of the real prediction error. We obtained the best
predictions with LOOCV (Figure 5B). At the beginning of the study (Figure 3), we showed
that the tree ensemble performs better for our data than the other models. However, it is
possible that, with different cross-validations, the performance of other models improves
too. Therefore, we tested bootstrapping, LOOCV and stratified CV also on the classification
tree (Figure 6). To address class imbalance and reduce prediction bias, we implemented a
cost-sensitive error function that applies a higher penalty for errors in the over-represented
classes. Specifically, the cost error was calculated as the reciprocal of the class frequency.
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3.4. Important Predictors

Finally, we quantified the importance of the predictors. Figure 7 shows that the three
most important variables are the following: the normalized intensity of LMNB1, nuclear
area, cellular area, and number of ramifications. The important predictors were calculated
by quantifying how crucial each predictor is in a decision tree, by adding up the variations
in risk at each node caused by splits on every predictor, and then dividing that sum by
the total number of branching nodes. The alteration in the risk at a node is calculated by
subtracting the risk of the parent node from the total risk of its child nodes. To illustrate,
when a tree separates a parent node (e.g., Node 1) into two child nodes (e.g., Nodes 2 and 3),
the function increases the importance of the predictor used for that split by the difference
in risk between the parent node and child nodes [28].
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4. Discussion

Machine learning is widely used in neurophysiology and integrative neuroscience to
decode single/multi-unit recordings [29–32] or voxel pattern activations from fMRI [33], in
neural prosthetics [34], and in many other applications. However, ML is still not commonly
used for histological data analysis. Here we applied machine learning to classify in vitro
cultivated astrocytes according to their nuclear expression of LMNB1. We used eight
morphological features to predict five nuclear morphologies of LMNB1 expression. We
trained several classifiers to this task and showed that tree ensembles can classify astrocyte
morphology at rates better than chance. This is a step towards the automation of histologic
data analysis, which is important, considering the development of techniques for faster
anatomical data production, such as CLARITY [35] and PACT [36] that do not require
time-consuming slicing of the brain.

Our results show that a single classification tree predicts less accurately than tree
ensembles. This is consistent with [37], who showed that an ensemble of weak learners
can predict highly unbalanced data more accurately. Surprisingly, we found that the tree
ensemble performs better than the tree bagger. Tree bagger is an algorithm that works
very similarly to the random forest, which is considered the benchmark for this kind of
analyses [38]. This is probably because the tree ensemble relies on a boosting algorithm,
where individual trees work in series and each tree is presented with the whole training
sample, whereas the tree bagger is a bagging algorithm, where several trees work in parallel
and each of them is trained on a subset of the samples, so that every tree is trained on an
even smaller sample than the initial one.

We also showed that the best results are obtained using RUSBoost instead of AD-
ABoost, and by combining LMNB1 categories by morpho-functional similarities. Finally,
we tested several types of cross validation. We obtained the best results with LOOCV,
however bootstrapping yielded more balanced results, in that it also gave good results for
Class 3, the least represented one. LOOCV and bootstrapping are the most computationally
intensive and time-consuming CVs, however, they offer broader exposure to all categories
during the training phase [39].

Finally, we estimated the important predictors: the normalized intensity of LMNB1,
nuclear area, cellular area, and the number of ramifications. Although it is not surprising
that the intensity of expression of the LMNB1 protein may be related to the way in which
it is expressed in the nucleus, we are not aware of any previous research or evidence
that has specifically examined this relationship. This suggests that this may be a new or
novel finding, and further research may be needed to confirm and explore this potential
correlation. On the other hand, the other three important predictors are a novel finding,
and open new perspectives on the mechanism of action of LMNB1 and its expression. None
of the predictors considered were able to predict the membership class on their own as
accurately as when they were combined with the other features. This suggests that the
relationship between these predictors and the LMNB1 class is likely to be complex, and may
not follow a simple, linear pattern. Together, our analyses show new perspectives regarding
the understanding of the relationships between cellular features that are difficult to study
with simpler statistical tools. In future work, it would be important to validate the results
obtained from our small data sample on a larger and more diverse dataset. Moreover,
exploring other machine learning algorithms or techniques, could potentially yield even
better results. Finally, it would be interesting to investigate the biological significance of
the identified predictors and their potential role in astrocyte function and physiology.

5. Conclusions

In conclusion, we were able to classify astrocytes, from a small data sample, into classes
based on LMNB1 expression patterns. Tree ensembles outperformed single classification
trees and tree bagger in this task. The best results were obtained using leave-one-out
cross-validation (LOOCV) or bootstrap. The normalized intensity of LMNB1, nuclear area,
cellular area, and the number of ramifications were found to be important predictors in
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the classification process. These results offer new hints into the mechanisms of action and
expression of LMNB1 and show the potential for the use of machine learning in finding
associations between unexpected cell features that look uncorrelated at first examination.
Our findings suggest that machine learning can be a powerful tool for uncovering hidden
associations between seemingly unrelated cell features, shedding light on the complex
mechanisms of action and expression of LMNB1 in astrocytes. These results offer valuable
insights into the biology of astrocytes, and open new avenues for further investigations
into the role of LMNB1 in regulating their functions.
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