

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Values of polynomials with integer coefficients and distance to their common zeros

Inis is the author's manuscript	
Original Citation:	
Availability:	
This version is available http://hdl.handle.net/2318/1944840	since 2023-11-28T13:32:35Z
Published version:	
DOI:10.4064/aa-68-2-101-112	
Terms of use:	
Open Access	
Anyone can freely access the full text of works made available as under a Creative Commons license can be used according to the of all other works requires consent of the right holder (author or protection by the applicable law.	terms and conditions of said license. Use

(Article begins on next page)

Values of polynomials with integer coefficients and distance to their common zeros.

Francesco Amoroso

§1 - Introduction.

Let $f_1, \ldots, f_m \in \mathbf{Z}[x_1, \ldots, x_n]$ be polynomials of maximum degree D and height (= maximum absolute values of the coefficients) $\leq H$ defining an affine variety $\mathbf{V} \subset \mathbf{C}^n$ of codimension k. Denote by dist the distance in \mathbf{C}^n with respect to the norm $|\omega| = \max_i |\omega_i|$. In [B] W.D. Brownawell proved the following inequality of Lojasiewicz type:

"For any $\omega \in \mathbf{C}^n$ we have

$$\min \left\{ \operatorname{dist}(\omega, \mathbf{V}), 1 \right\}^{(n+1)^2} \le C_1^D \left(H \max\{1, |\omega|\}^2 \right)^{C_2} \cdot \max_i |f_i(\omega)|^{-D^n}$$

where
$$C_1 = \exp\{11(n+1)^5\}$$
 and $C_2 = (n+1)^2$."

This result is essentially the best possible one, except perhaps for the values of the constants and for the exponent $(n+1)^2$ in the left hand side. S.Ji, J.Kollár and B.Shiffman in [J-K-S] have recently proved a similar result for polynomials over a field of arbitrary characteristic without this exponent but with an ineffective dependence on the coefficients. In spite of that, we can look for other relations between the values of the f_i 's and the distance to their common zeros in \mathbb{C}^n . For a polynomial $f \in \mathbb{Z}[x_1, \ldots, x_n]$ we denote its size (= degree + logarithmic height) by t(f); for $\alpha \in \mathbb{C}^n$ we also denote by $t(\alpha)$ the minimum size of a non-zero polynomial $f \in \mathbb{Z}[x_1, \ldots, x_n]$ for which $f(\alpha) = 0$ (if there are no such polynomials we put $t(\alpha) = +\infty$). In this paper we deal with the following problem:

¹⁹⁹¹ Mathematics Subject Classification Primary 11J25. Secondary 11J82.

"Let ω be in the unit ball of \mathbb{C}^n and let the following inequality

$$\max_{i} |f_i(\omega)| < \exp\left\{-C\{\max_{i} t(f_i)\}^{\tau}\right\}$$
 (1)

hold for some C greater than a constant A = A(n) and for some $\tau \ge n+1$. Find the best value $\eta = \eta(\tau, n, k)$ for which there exist constants e = e(n, k) and B = B(n) such that

$$\min_{\substack{\alpha \in \mathbf{C}^n \\ f_i(\alpha) = 0}} |\alpha - \omega| < \exp\left\{-B^{-1}C^e t(\alpha)^{\eta}\right\}.$$
 (2)

Roughly speaking, we are looking for an upper bound for transcendence measures in terms of approximation measures (for definitions see [P2]). If n=1, this problem is completely solved: we can take $\eta=\tau$. In the general case, only partial results are known. For example, using a theorem of P.Philippon, it is easy to see that we can choose $\eta=\tau-n$ (here -n corresponds to D^{-n} in Brownawell's inequality), and we conjecture that this exponent can be replaced by τ . In the present paper we prove this in three special cases: if $\tau=n+1$, if **V** is discrete, or if n=2. Our first result is the following theorem:

Theorem 1.

For any integer $n \geq 1$ there exist two constants A, B > 0 having the following property. Let f_1, \ldots, f_m and ω be as before and assume that (1) holds for some $\tau \geq n+1$ and some C > A. Then, if the affine variety \mathbf{V} defined by the f_i 's has codimension k, we can find $\alpha \in \mathbf{V}$ such that (2) holds with

$$\eta = \max\left\{n + 1 + \frac{\tau - (n+1)}{n+1-k}, \tau - n\right\}$$
(3)

and

$$e = \begin{cases} 1 & , & \text{if } \eta = \tau - n; \\ 2^{-n+k} & , & \text{otherwise.} \end{cases}$$

Notice that $\eta = \tau$ if $\tau = n + 1$ or if k = n (i.e. if **V** is discrete).

The case m=1 is of particular interest. First of all, Theorem 1 allows us to give a positive answer to the following conjecture of G.V. Chudnovsky (see [C] Problem 1.3 page 178):

"For any integer $n \ge 1$ there exists a positive constant C such that for almost all ω in the unit ball of \mathbb{C}^n (in the sense of the Lebesgue measure in \mathbb{R}^{2n}) the inequality $\log |f(\omega)| \le -Ct(f)^{n+1}$ has only finitely many solutions $f \in \mathbb{Z}[x_1, \dots, x_n]$."

Indeed, it is easy to see that for any $n \in \mathbb{N}$ there exists a positive constant C such that the set of ω 's in the unit ball of \mathbb{C}^n for which the inequality

$$|\alpha - \omega| < \exp\left\{-Ct(\alpha)^{n+1}\right\}$$

has infinitely many solutions $\alpha \in \mathbb{C}^n$ is negligible for the Lebesgue measure (see the proof of [A] proposition 5). Using Theorem 1, we immediately obtain Chudnovsky's conjecture.

Moreover, for m = 1 and $n \ge 2$, (3) can be easily improved to

$$\eta = \max\left\{n + \frac{\tau - 2}{n - 1}, \tau - 1\right\}$$

(see theorem 2 in §3), which implies the full conjecture $\eta = \tau$ for n = 2. On the other hand, in [A] we proved (in a slightly weaker form) that we can choose for η the maximum between $\tau - 2 + \tau/n$ and the positive root of $x^2 + (1 - \tau)x + n - 1 - \tau = 0$. This result approaches our conjecture for $\tau \to +\infty$, but, unfortunately, the proof given in [A] contains some minor errors. In the appendix we shall give a proof of the slightly weaker result

$$\eta > 0,$$
 $\eta^2 + (1 - \tau)\eta + n - \tau = 0$

(which also approaches our conjecture) and an errata-corrige to other mistakes which occur in $[A]^{(1)}$.

⁽¹⁾ I am grateful to Juri Nesterenko who drew my attention to these mistakes.

$\S 2$ - Technical results.

For the proofs, we use the theory of Chow forms, as developed by Ju.V.Nesterenko (see [N1], [N2] and [N3]) and by P.Philippon (see [P1] and [P2]). We briefly sumarize the notations employed by the first Author. Given an homogeneous unmixed ideal I of rank n+1-r in the ring $\mathbf{Z}[x_0,\ldots,x_n]$ having Chow form $F=F(u^1,\ldots,u^r)\in\mathbf{Z}[u^1_0,\ldots,u^r_n]$, we denote by H(I) the maximum absolute value of the coefficients of F, by N(I) the degree of F with respect to u^1_0,\ldots,u^1_n , and by t(I) the number $N(I) + \log H(I)$. Given ω' in the projective space \mathbf{P}^n over \mathbf{C} , we define $|I|_{\omega'}$ as

$$|I|_{\omega'} = \frac{H(\kappa(F))}{|\omega'|^{rN(I)}},$$

where $H(\kappa(K))$ is the maximum absolute value of the coefficients of the polynomial

$$\kappa(F) \in \mathbf{C}[s_{j,k}^i]_{\substack{i=1,\dots,r,\\0 < j < k < n}}$$

obtained replacing in F the vectors u^i by $S^i\omega'$, S^i $(i=1,\ldots,r)$ being skew-symmetric matrices in the new variables $s^i_{j,k}$ $(0 \le j < k \le n)$. For more details, see [N3] (Nesterenko uses the notation $|I(\omega')|$ instead of $|I|_{\omega'}$). Given an homogeneous polynomial $Q \in \mathbf{Z}[x_0,\ldots,x_n]$ and $\omega' \in \mathbf{P}^n$ we let

$$|Q|_{\omega'} = \frac{|Q(\omega')|}{|\omega'|^{\deg Q}}.$$

We start with an easy consequence of the box-principle.

Lemma 1.

Let $n \geq 1$ be an integer and let $\omega' \in \mathbf{P}^n$. Then there exist two positive constants c_1 and c_2 depending only on n such that for any real number $N > c_1$ there exists a non-zero homogeneous polynomial $Q \in \mathbf{Z}[x_0, \ldots, x_n]$ with size $\leq N$ satisfying

$$|Q|_{\omega'} \le \exp\big\{-c_2 N^{n+1}\big\}.$$

Proof.

Let H and d be two positive integers and let Λ be the set of homogeneous polynomials $Q \in \mathbf{Z}[x_0, \dots, x_n]$ of degree d with non-negative coefficients bounded by H. This set has cardinality $(H+1)^D$, $D=\binom{d+n}{n}$, and for any $Q \in \Lambda$ we have $|Q|_{\omega'} \leq DH$. Let

$$\delta = \min_{Q_1, Q_2 \in \Lambda, \ Q_1 \neq Q_2} |Q_1 - Q_2|_{\omega'}.$$

The ball of **C** with center at the origin and radius $DH + \delta/2$ contains the disjoint union of the open balls of centre $Q(\omega') \cdot |\omega'|^{-d}$ $(Q \in \Lambda)$ and radius $\delta/2$. This gives

$$\delta \le \frac{2DH}{(H+1)^D - 1} \le 2DH^{1-D}$$

and so there exist two polynomials $Q_1, Q_2 \in \Lambda$, $Q_1 \neq Q_2$, such that

$$|Q_1 - Q_2|_{\omega'} \le 2DH^{1-D}$$
.

The polynomial $Q = Q_1 - Q_2$ has degree d, height (= maximum absolute value of the coefficient) $\leq H$ and satisfies $|Q|_{\omega'} \leq 2DH^{1-D}$. The lemma follows taking d = [N/2] and $H = [\exp\{N/2\}]$.

Q.E.D.

Given ω' , α' in the complex projective space \mathbf{P}^n , we put

$$d(\alpha', \omega') = \frac{\max_{0 \le i < j \le n} |\omega'_i \alpha'_j - \omega'_j \alpha'_i|}{\max_{0 \le i \le n} |\alpha'_i| \max_{0 \le i \le n} |\omega'_i|}.$$

Remark.

Let $\omega' = (1, \omega)$ where ω is in the unit ball of \mathbf{C}^n and assume $d(\alpha', \omega') < 1$. Then $\alpha'_0 \neq 0$ and the vector $\alpha \in \mathbf{C}^n$ defined by $\alpha_i = \alpha'_i/\alpha'_0$ (i = 1, ..., n) satisfies $|\alpha - \omega| \leq \max\{1, |\alpha|\}d(\alpha', \omega')$. This gives $\max\{1, |\alpha|\} \leq (1 - d(\alpha', \omega'))^{-1}$ and so

$$|\alpha - \omega| \le \frac{d(\alpha', \omega')}{1 - d(\alpha', \omega')}.$$

In particular, if $d(\alpha', \omega') \leq 1/2$,

$$|\alpha - \omega| \le 2d(\alpha', \omega').$$

Lemma 2.

For any integer $n \geq 1$ there exists a constant A > 0 having the following property. Let $k \leq n$ be a positive integer, $\tau \geq k+1$, $\eta \in [n+1, \tau+n-k]$ and $\theta > 1$ be real numbers and let $\omega' \in \mathbf{P}^n$. Let us assume that there exists a homogeneous prime ideal $\wp \subset \mathbf{Z}[x_0, \ldots, x_n]$ of rank k such that $\wp \cap \mathbf{Z} = \{0\}$ and

$$|\wp|_{\omega'} < \exp\left\{-Ct(\wp)^{\tau/k}\right\}$$

holds for some $C \geq A\theta$. Then, either there exists $\alpha' \in \mathbf{V}_{\mathbf{P}}(\wp)$, the projective variety defined by \wp , such that

$$d(\alpha', \omega') < \exp\left\{-A^{-1}\theta t(\alpha')^{\eta}\right\}$$

or there exists an homogeneous prime ideal $\wp' \subset \mathbf{Z}[x_0, \dots, x_n]$ of rank k+1 such that $\wp' \cap \mathbf{Z} = \{0\}, \ \wp' \supset \wp$ and

$$|\wp'|_{\omega'} < \exp\left\{-A^{-1}\theta^{-1}Ct(\wp')^{(n+1-\eta+\tau)/(k+1)}\right\}.$$

Moreover, if k = n or if $\eta \le \tau - k$, the first case occurs.

Proof.

Let us denote by c_3, \ldots, c_{10} positive constants depending only on k, n, τ and η . If $\omega' \in \mathbf{V}_{\mathbf{P}}(\wp)$ we put $\alpha = \omega$; otherwise let $\alpha' \in \mathbf{V}_{\mathbf{P}}(\wp)$ such that $\delta = d(\omega', \alpha') > 0$ is minimal. Using lemma 6 of [N3], we see that

$$-\delta > Ct(\wp)^{(\tau-k)/k} - c_3. \tag{4}$$

Moreover, corollary 3 of [N1] gives for the size of α ,

$$t(\alpha) \le c_4 t(\wp)^{1/k}. \tag{5}$$

Hence

$$-\delta > (Cc_4^{-\tau+k} - c_3)t(\alpha)^{\tau-k} \ge A^{-1}\theta t(\alpha)^{\eta}.$$
(6)

provided that $\eta \leq \tau - k$ and A is sufficiently large. Let us now assume $\eta > \tau - k$ and put

$$N = \theta^{-y} t(\wp)^{-x} (-\delta)^y$$

where

$$x = \frac{\eta - (n+1) + \tau/k}{\eta + (n+1)k - \tau} > 0$$
 and $y = \frac{k+1}{\eta + (n+1)k - \tau} \ge 1/n$.

From (4) and from $\eta \leq \tau + n - k$ we obtain

$$N \ge \theta^{-y} t(\wp)^{-x} (Ct(\wp)^{\tau/k-1} - c_1)^y \ge \theta^{-y} (C - c_1)^y t(\wp)^{(\tau + n - k - \eta)/(\eta + (n+1)k - \tau)} \ge c_1$$

provided that A is sufficiently large. Therefore, lemma 1 gives a non-zero homogeneous polynomial $Q \in \mathbf{Z}[x_0, \dots, x_n]$ which satisfies

$$t(Q) \le N,\tag{7}$$

$$|Q|_{\omega'} \le \exp\left\{-c_2 N^{n+1}\right\}. \tag{8}$$

We distinguish three cases:

• First case: $Q \notin \wp$ and $\mu := c_2 N^{n+1} (-\delta)^{-1} < 1$.

By (8) we have $|Q|_{\omega'} \leq \exp\{\mu\delta\}$. If k < n, lemma 4 of [N3] gives an homogeneous ideal $I \subset \mathbf{Z}[x_0, \ldots, x_n]$ of pure rank k+1 whose zeros coincide with the zeros of the ideal (\wp, Q) and such that

$$t(I) \le c_5 t(Q) t(\wp), \tag{9}$$

$$\log |I|_{\omega'} \le \mu \log |\wp|_{\omega'} + c_6 t(\wp) t(Q). \tag{10}$$

Taking into account (10), (7), $\eta \leq \tau + n - k$ and (9), we get

$$\begin{aligned} \log |I|_{\omega'} &\leq -c_2 C N^{n+1} (-\delta)^{-1} t(\wp)^{\tau/k} + c_6 t(\wp) N \\ &= -c_2 \theta^{-1} C (t(\wp) N)^{(n+1-\eta+\tau)/(k+1)} + c_6 t(\wp) N \\ &\leq -(c_2 \theta^{-1} C - c_6) (c_5^{-1} t(I))^{(n+1-\eta+\tau)/(k+1)}. \end{aligned}$$

Proposition 2 of [N2] gives an homogeneous prime ideal $\wp' \in \mathbf{Z}$ of rank k+1 whose zeros are zeros of I such that $\wp' \cap \mathbf{Z} = \{0\}$ and

$$\log |\wp'|_{\omega'} < -c_7 (\theta^{-1}C - c_8) t(\wp')^{(n+1-\eta+\tau)/(k+1)} \le -c_9 \theta^{-1} C t(\wp')^{(n+1-\eta+\tau)/(k+1)}$$
 (11)

provided that A is sufficiently large.

If k = n, the same lemma 4 of [N3] gives $\mu \log |\wp|_{\omega'} + c_6 t(\wp) t(Q) \ge 0$, which cannot occur if A is sufficiently large.

• Second case: $Q \notin \wp$ and $\mu \geq 1$.

Taking into account (5) we obtain

$$-\delta \ge c_{10}\theta^{(n+1)y/((n+1)y-1)}t(\alpha)^{k(n+1)x/((n+1)y-1)}$$

$$\ge A^{-1}\theta t(\alpha)^{\eta}$$
(12)

since

$$\frac{k(n+1)x}{(n+1)y-1} - \eta = \frac{(\eta - n - 1)(\eta - \tau + k(n+1))}{\tau + (n+1) - \eta} \ge 0.$$

• Third case: $Q \in \wp$.

Using (7) and (5), we obtain

$$t(\alpha) \le t(Q) \le \theta^{-y} t(\wp)^{-x} (-\delta)^y$$

$$\le c_4^{kx} \theta^{-y} t(\alpha)^{-kx} (-\delta)^y$$

and

$$-\delta \ge A^{-1}\theta t(\alpha)^{\eta}. \tag{13}$$

Our proposition comes from (6), (11), (12) and (13).

Q.E.D.

By induction we deduce the following

Proposition 1.

For any integer $n \geq 1$ there exists a positive constant B having the following property. Let $k \leq n$ be a positive integer and let $\omega' \in \mathbf{P}^n$ Let us assume that there exists an homogeneous prime ideal $\wp \subset \mathbf{Z}[x_0, \ldots, x_n]$ of rank k such that $\wp \cap \mathbf{Z} = \{0\}$ and

$$|\wp|_{\omega'} < \exp\left\{-Ct(\wp)^{\tau/k}\right\}$$

for some $C \geq B$ and some $\tau \geq n+1$. Then, there exists $\alpha' \in \mathbf{V}_{\mathbf{P}}(\wp)$ such that

$$d(\alpha', \omega') < \left\{ -B^{-1}C^e t(\alpha')^{\eta} \right\}$$

where

$$\eta = \max \left\{ n + 1 + \frac{\tau - (n+1)}{n+1-k}, \tau - k \right\}$$

and

$$e = \begin{cases} 1 & , & \text{if } \eta = \tau - k; \\ 2^{-n+k} & , & \text{otherwise.} \end{cases}$$

Proof.

If $\eta = \tau - k$, lemma 2 gives our claim. Let us assume

$$\eta = n + 1 + \frac{\tau - (n+1)}{n+1-k}.$$

From $\tau \geq n+1$ we obtain $\eta \geq n+1$. We shall prove the proposition by induction on k.

• $\mathbf{k} = \mathbf{n}$. Lemma 2, with $\theta = A^{-1}C$, gives $\alpha' \in \mathbf{V}_{\mathbf{P}}(\wp)$ such that

$$d(\alpha', \omega') < \exp\left\{-A^{-2}Ct(\alpha')^{\eta}\right\}.$$

• $\mathbf{k} < \mathbf{n}$. We apply lemma 2 with $\theta = C^{1/2}$. If there exists $\alpha' \in \wp$ such that

$$d(\alpha', \omega') < \exp\{-A^{-1}C^{1/2}t(\alpha')^{\eta}\}$$

our assertion follows. Otherwise, there exists an homogeneous prime ideal $\wp' \supset \wp$ of rank k+1 such that $\wp' \cap \mathbf{Z} = \{0\}$ and

$$|\wp'|_{\omega'} < \exp\left\{-A^{-1}C^{1/2}t(\wp')^{\tau'/(k+1)}\right\},$$

with

$$\tau' = n + 1 - \eta + \tau.$$

By inductive hypothesis, we can find $\alpha' \in \wp$ with

$$d(\alpha', \omega') < \exp\{-B^{-1}C^{2^{-n+k}}t(\alpha')^{\eta'}\}$$

where

$$\eta' = n + 1 + \frac{\tau' - (n+1)}{n-k} = \eta.$$

Q.E.D.

Using theorem 2 of [P2] (with $I_{N,1} = \cdots = I_{N,k+1} = (Q_N)$ and the polynomial Q_N of size $\leq N$ given by lemma 1 as in the proof of lemma 2) we find a result similar to the previous one but with a worse exponent:

"For any integer n there exist constants A, B > 0 having the following property. Let $k \le n$ be an integer, $\tau \ge n+1$ a real number and let $\omega' \in \mathbf{P}^n$. Let us assume that there exists an homogeneous prime ideal $\wp \subset \mathbf{Z}[x_0, \ldots, x_n]$ of rank k such that $\wp \cap \mathbf{Z} = \{0\}$ and

$$|\wp|_{\omega'} < \exp\Big\{ - At(\wp)^{\tau/k} \Big\}.$$

Then, we can find $(1, \alpha) \in \mathbb{C}^n$ such that

$$d(\alpha', \omega') < \exp\left\{-B^{-1}t(\alpha)^{\eta}\right\}$$

where

$$\eta = n + 1 + k \frac{\tau - (n+1)}{(n+1-k)\tau}.$$

§3 Proof of the main results.

We have a relation between the value of an homogeneous prime ideal \wp at $\omega' \in \mathbf{P}^n$ and its projective distance from the variety defined by \wp . Our next task is to put it in terms of polynomials.

Lemma 3.

Let $P_1, \ldots, P_m \in \mathbf{Z}[x_0, \ldots, x_n]$ be non-zero homogeneous polynomials of size $\leq T$ and let $\omega' \in \mathbf{P}^n$. Let $\varepsilon = \max_i |P_i|_{\omega'}$ and assume $\varepsilon < \exp\{-AT^{n+1}\}$ where A > 0 depends only on n. Then there exists an unmixed homogeneous ideal $J \subset \mathbf{Z}[x_0, \ldots, x_n]$ of rank $k \leq n$ such that $\sqrt{J\mathbf{Q}[x_0, \ldots, x_n]} \cap \mathbf{Z}[x_0, \ldots, x_n] \supset I = (P_1, \ldots, P_m)$ (2) and

$$t(J) \le B_1 T^k,$$

$$|J|_{\omega'} \leq \varepsilon^{B_2^{-1}}$$

where A, B_1 and B_2 are positive constants depending only on n.

Proof.

Let us denote by $c_{h,11}, \ldots, c_{h,16}$ $(h = 1, \ldots, n+1)$ positive constants depending only on n. We will show by induction that for $h = 1, \ldots, n+1$ there exist unmixed homogeneous ideals $J_h \subset \mathbf{Z}[x_0, \ldots, x_n]$ of rank h such that $J_h \cap \mathbf{Z} = \{0\}$ (for $h \leq n$) and

$$t(J_h) \le c_{h,11}^h T^h,$$

$$|J_h|_{\omega'} \le \varepsilon^{c_{h,12}}.$$
(14_h)

Since the last inequalities fail for h = n + 1, our proposition will be proved.

- $\mathbf{h} = \mathbf{1}$. We take $J_1 = (P_1)$ and we apply proposition 1 of [N3].
- $\mathbf{h} \Rightarrow \mathbf{h} + \mathbf{1}$. Let us assume (14_h) satisfied for some $h \leq n$ and for some ideal J_h . We denote by $J_{h,1}$ the intersection of the primary components of J_h whose radical

⁽²⁾ rank(J) may be > rank(I).

contains I and by $J_{h,2}$ the intersection of the other components. Using [N2] proposition 2 and Gelfond's inequality [G] lemma II, p.135 it is easy to see that

$$t(J_{h,1}) \le c_{h,13}T^h, \qquad t(J_{h,2}) \le c_{h,13}T^h,$$

$$|J_{h,1}|_{\omega'} \cdot |J_{h,2}|_{\omega'} < \varepsilon^{c_{h,12}} \exp\left\{c_{h,14}T^h\right\} \le \varepsilon^{(c_{h,12}-c_{h,14}/A)}.$$
(15)

Since we are assuming that our claim is wrong, we must have $|J_{h,1}|_{\omega'} \geq \varepsilon^{B_2^{-1}}$; therefore

$$|J_{h,2}|_{\omega'} < \varepsilon^{(c_{h,12} - c_{h,14}/A - 1/B_2)}.$$
 (16)

A classical trick (see for instance [P1] lemma 1.9) allows us to find homogeneous polynomials $a_1, \ldots, a_m \in \mathbf{Z}[x_0, \ldots, x_n]$ with $\deg a_j = \max(\deg P_i) - \deg P_j$ $(j = 1, \ldots, m)$ such that $P = a_1 P_1 + \cdots + a_m P_m$ is not a zero-divisor on $\mathbf{Z}[x_0, \ldots, x_n]/J_{h,2}$. Moreover, we can choose the a_i 's in such a way that their heights are bounded by the number of irreducible components of $J_{h,2}$ and so, a fortiori, by $c_{h,13}T^h$. From this, we obtain

$$t(P) \le c_{h,15}T, \qquad |Q|_{\omega'} \le \varepsilon^{c_{h,16}}.$$

Using (15), (16) and the last inequalities, proposition 3 of [N2] gives an unmixed ideal $J_{h+1} \subset \mathbf{Z}[x_0, \ldots, x_n]$ of rank h+1 such that inequalities (14_{h+1}) hold.

Q.E.D.

Using proposition 2 of [N2], we easily deduce

Proposition 2.

For any integer $n \geq 1$ there exist two constants A, B > 0 having the following property. Let $\tau \geq n+1$ be a real number and let $\omega' \in \mathbf{P}^n$. Let us assume that there exist non-zero homogeneous polynomials $P_1, \ldots, P_m \in \mathbf{Z}[x_0, \ldots, x_n]$ of size $\leq T$ such that $\max_i |P_i|_{\omega'} < \exp\{-CT^{\tau}\}$ holds for some $C \geq A$. Then there exists an homogeneous prime ideal $\wp \subset \mathbf{Z}[x_0, \ldots, x_n]$ of rank $k \leq n$ such that $\wp \cap \mathbf{Z} = \{0\}$, $\wp \supset (P_1, \ldots, P_m)$ and

$$|\wp|_{\omega'} < \exp\left\{-B^{-1}Ct(\wp)^{\tau/k}\right\}.$$

Proof of theorem 1.

Let f_1, \ldots, f_m be as in theorem 1, let $P_i = {}^h f_i$ be the homogenized of f_i $(i = 1, \ldots, m)$ and let $\omega' = (1, \omega)$. Applying proposition 1 to the homogeneous prime ideal \wp given by proposition 2 (which has rank $\geq k$ since $x_0 \notin \wp$) and using the remark before lemma 2, we obtain our claim.

Q.E.D.

To improve the previous theorem when m=1, we need the following lemma of Chudnovsky (see [C] lemma 1.1 page 424)

Lemma 4.

Let $f \in \mathbf{C}[x_1, \dots, x_n]$ of degree $\leq d$ and let $\omega \in \mathbf{C}^n$. Then for any $\lambda \in \mathbf{N}^n$ there exists a zero $\alpha \in \mathbf{C}^n$ of f such that

$$\frac{1}{|\lambda|!} \left| \frac{\partial^{\lambda} f(\omega)}{\partial x^{\lambda}} \right| |\alpha - \omega|^{|\lambda|} \le 2^{d} |f(\omega)|$$

(here $|\lambda| = \lambda_1 + \cdots + \lambda_n$).

Theorem 2.

For any integer $n \geq 2$ there exists a constant B > 0 having the following property. Let $f \in \mathbf{Z}[x_1, \dots, x_n]$ of size $\leq T$ and let ω in the unit ball of \mathbf{C}^n such that

$$|f(\omega)| < \exp\{-CT^{\tau}\}$$

for some $C \geq B$ and some $\tau \geq n+1$. Then there exists $\alpha \in \mathbb{C}^n$ on the hypersurface $\{f=0\}$ such that

$$|\alpha - \omega| < \exp\left\{-B^{-1}C^e t(\alpha)^{\eta}\right\},\tag{17}$$

where

$$\eta = \max\left\{n + \frac{\tau - 2}{n - 1}, \tau - 1\right\}$$

and

$$e = \begin{cases} 1 & , & \text{if } \eta = \tau - 1; \\ 2^{-n+2} & , & \text{otherwise.} \end{cases}$$

Proof.

We can assume f irreducible and $D_{x_1}f = \frac{\partial f}{\partial x_1} \not\equiv 0$. Inequality (17) with $\eta = \tau - 1$ and e = 1 is easily proved applying proposition 1 to the principal prime ideal $\wp = (f)$. Moreover, if

$$|D_{x_1}f(\omega)| \ge \exp\left\{-\frac{C}{2}t(f)^{\tau}\right\},$$

lemma 4 gives $\alpha \in \mathbb{C}^n$ such that $f(\alpha) = 0$ and

$$\log|\alpha - \omega| < -\frac{C}{4}t(f)^{\tau}.$$

In this case, (17) is proved with $\eta = \tau$ and e = 1. Otherwise, using corollary 2 with $P_1 = {}^h f$ and $P_2 = {}^h D_{x_1} f$, we can find an homogeneous prime ideal $\wp \subset \mathbf{Z}[x_1, \ldots, x_n]$ of rank ≥ 2 (actually = 2), containing the ideal (${}^h f$, ${}^h D_{x_1} f$), such that $|\wp|_{\omega'} < \exp \{-c_{17}Ct(\wp)^{\tau/2}\}$. Proposition 1 and the remark before lemma 2 give (17) with

$$\eta = n + 1 + \frac{\tau - (n+1)}{n-1} = n + \frac{\tau - 2}{n-1}$$

and $e = 2^{-n+2}$.

Q.E.D.

Appendix: Errata-corrige to "Polynomials with high multiplicity" (Acta Arithmetica LVI (1990), 345-364).

In this paragraph we refer to lemmas, propositions, theorems, numbers of equations and lines of the paper [A] using italic style.

The inequalities (5) at p.354 are not true. More precisely, let us define for $k = 1, \ldots, k_0$ and $j = 1, \ldots, s_k$,

$$\Lambda_{jk} = \mathbf{V}_{\mathbf{P}}(\wp_{j,h}) \setminus \bigcup_{h=1}^{k-1} \bigcup_{j=1}^{s_h} \mathbf{V}_{\mathbf{P}}(\wp_{j,h}),$$

where the symbols have the same meaning as in [A]. Lemma 4 at p.354 get $i_{\omega}(J_k) \geq \prod_{h=0}^{k-1} (t_k M - t_h M)$ for any $\omega \in \Lambda_{jk}$. If this set is not empty, it is a non-empty Zariski open set on $\mathbf{V}_{\mathbf{P}}(\wp_{j,h})$, and so $e_{jk} \geq \prod_{h=0}^{k-1} (t_k M - t_h M)$ as claimed at p.355 l.9. So, inequalities (5) hold if $\Lambda_{jk} \neq \emptyset$. On the other hand, from (4) and the definition of these sets, it is easy to see that

$$\mathbf{V}_{M} \subset \bigcup_{k=1}^{k_{0}} \bigcup_{\substack{j=1,\dots,s_{k} \\ \Lambda_{j_{k}} \neq \emptyset}} \mathbf{V}_{\mathbf{P}}(\wp_{j,k}). \tag{18}$$

Now, the same arguments used at p.354 l.8-11 give a polynomial $g_k \in \bigcap_{\substack{j=1,\ldots,s_k\\\Lambda_{jk}\neq\emptyset}} \wp_{jk}$ of

size $\leq c_6 T/M$. As at l.12 we put $g = \prod_{k=1}^{k_0} g_k$. Then (18) ensures that g is zero over \mathbf{V}_M and we have $t(g) \leq c_7 T/M$.

Unfortunately, a problem now arises in inequality at l.-8/-7, p.362 in the proof of theorem 2, since (5) is available only if $\Lambda_{jk} \neq \emptyset$. This additional complication does not occur if n = 2 ($s_1 = 0$ since f is irreducible), so our result

$$\tau \le \eta + \max\left(0, \frac{4-\eta}{3}\right), \qquad n = 2$$

is still true (but it is now sharpened by theorem 2). In the general case, however, we can easily deduce from proposition 2 and from theorem 1 a weak form of theorem 2:

$$\tau \le \eta + \frac{n}{\eta + 1}.$$

A more precise formulation of this result is the following theorem, announced in the introduction:

Theorem 3.

For any integer $n \geq 1$ there exist constants A, B > 0 having the following property. Let $f \in \mathbf{Z}[x_1, \dots, x_n]$ and ω in the unit ball of \mathbf{C}^n . Let

$$|f(\omega)| < \exp\{-CT^{\tau}\}$$

hold for C > A and $\tau \ge n+1$. Then we can find $\alpha \in \mathbb{C}^n$ on the hypersurface $\{f=0\}$ such that

$$|\alpha - \omega| < \exp\left\{-B^{-1}Ct(\alpha)^{\eta}\right\}$$

where η is the positive root of $\eta^2 + (1 - \tau)\eta + n - \tau = 0$.

Proof.

We define $M \geq 1$ as the first integer for which there exists $\lambda \in \mathbf{N}^n$ with $|\lambda| = M$ such that

$$\left| \frac{1}{M!} \left| \frac{\partial^{\lambda} f(\omega)}{\partial x^{\lambda}} \right| > -\frac{C}{2} t(f)^{\tau}.\right|$$

Let

$$u = \frac{\log M}{\log t(f)} \in [0, 1].$$

Lemma 4 gives $\alpha \in \mathbf{C}^n$ with $f(\alpha) = 0$ and

$$|\alpha - \omega| < \left\{ -\frac{C}{4}t(f)^{\tau - u} \right\}. \tag{19}$$

On the other hand, proposition 2 with

$$\left\{P_1,\ldots,P_m\right\} = \left\{\frac{1}{\lambda!}\frac{\partial^{\lambda} f}{\partial x^{\lambda}}, \quad |\lambda| \leq M-1\right\}$$

and lemma 6 of [N3] give a point α of multiplicity $\geq M$ on the hypersurface $\{f=0\}$ such that

$$|\alpha - \omega| < \exp\left\{-c_{18}Ct(f)^{\tau - n}\right\}.$$

By theorem 1, $t(\alpha) \leq c_{19}t(f)/M$, hence

$$|\alpha - \omega| < \exp\left\{-c_{20}Ct(\alpha)^{(\tau-n)/(1-u)}\right\}$$

Combining the last inequality with inequality (19), we find $\omega \in \mathbb{C}^n$ on the hypersurface $\{f=0\}$ which satisfies

$$|\alpha - \omega| < \exp\left\{-c_{21}Ct(\alpha)^{\min\left\{(\tau-n)/(1-u), \tau-u\right\}}\right\}.$$

Since

$$\min_{0 \le u \le 1} \min \left\{ \frac{\tau - n}{1 - u}, \tau - u \right\} = \eta,$$

our assert follows. Q.E.D.

REFERENCES

- [A] F.Amoroso, "Polynomials with high multiplicity", Acta Arithmetica LVI (1990), 345-364;
- [B] W.D.Brownawell, "Local diophantine Nullstellen inequalities", J. of the AMS 1, N.2 (1988), 311-322;
- [C] G.V.Chudnovsky "Contribution to the theory of transcendental numbers", AMS n.19 (1984);
- [G] A.O.Gelfond, "Transcendental and algebraic numbers", New York, Dover 1960;
- [J-K-S] S.Ji, J.Kollár and B.Shiffman, "A global Lojasiewicz inequality for algebraic varieties", Trans. Amer. Math. Soc. 329, N.2 (1992), 813-818;
- [N1] Ju.V.Nesterenko, "Estimates for the characteristic function of a prime ideal", Mat. Sbornik 123 (165), (1984), 11-34 = Math. USSR Sbornik 51 (1985), 9-32;
- [N2] Ju.V.Nesterenko, "On algebraic independence of algebraic powers of algebraic numbers", Mat. Sbornik 123. No.4, (1984), 435-459 = Math. USSR Sbornik 51 (1985), 429-453;
- [N3] Ju.V.Nesterenko, "On a measure of the algebraic independence of the values of certain functions", Math. USSR Sbornik 56.2 (1987), 545-567;
- [P1] P.Philippon, "Critères pour l'indépendance algébrique", Inst. Hautes Etudes Sci. Publ. Math. 64 (1986), 5-52;
- [P2] P.Philippon, "Sur les mesures d'indépendance algébrique". Séminaire de Théorie des Nombres, Paris 1983-84, Birkhäuser Boston Inc. (1985), 219-233;
- [W] M.Waldschmidt, Nombres transcendants, Springer-Verlag, Berlin 1974;

Francesco Amoroso,

Dipartimento di Matematica

Via F. Buonarroti 2

56127 PISA (ITALY)