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1 Introduction

Studies of baryon-pair decays from vector (JP C = 1−−) charmonium(-like) resonances provide
a testing ground for quantum chromodynamics [1, 2]. Below the open-charm threshold, the
mass spectrum of the observed charmonium states is well-matched to the predictions of the
potential quark model [3]. Above the open-charm threshold, the quark model predicts six
vector charmonium states between the threshold to 4.9GeV/c2, namely, the 1D, 3S, 2D, 4S,
3D, and 5S states. However, the experimentally observed vector states in this energy region
are overpopulated. The decays of the three states, ψ(4040), ψ(4160), and ψ(4415), observed
from the inclusive hadronic cross sections are dominated by open-charm processes [4]. The
other states, such as Y (4230), Y (4360), and Y (4660), have been observed through hidden-
charm final states, via initial-state radiation (ISR) processes at BaBar and Belle [5–13] or
direct-production processes in e+e− annihilation at CLEO [14] and BESIII [15, 16]. These Y
states do not appear to be resonances with simple cc̄ quark content, and many theoretical
models, such as hybrid, multiple-quark state, and molecule, etc, have been proposed to
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interpret them [1, 2, 17–20]. However, no solid conclusion has yet emerged and the true
nature of these states remains a puzzle. This status reflects our poor understanding of
the behaviour of the strong interaction in the non-perturbative regime. To make progress,
more high-precision measurements are required. Among these measurements, studies of
the baryonic decays of charmonium (-like) states hold particular promise due to the simple
topologies of the final states and relatively well understood mechanisms. Although many
experimental studies of baryonic processes have been performed by the Belle and BESIII
experiments [9, 21–30], only one observation of ψ(4660) → Λ+

c Λ̄−
c [9] and two evidences for

the decays ψ(3770) → ΛΛ̄ and Ξ−Ξ̄+ [25, 27] were reported by Belle and BESIII experiments.
More precise measurements on the cross sections of the e+e− → baryonic exclusive processes
above the open-charm threshold are desirable as they may provide additional information
to understand the nature of these vector charmonium (-like) states.

In this article, a measurement of the Born cross sections for the processes e+e− →
K−Ξ̄+Λ/Σ0 is presented using e+e− collision data corresponding to a total integrated
luminosity of 25 fb−1 collected at center-of-mass (CM) energies

√
s between 3.510 and

4.914GeV [31, 32] with the BESIII detector [33] at the BEPCII collider [34]. In addition,
vector resonances are searched for by fitting the dressed cross sections of e+e− → K−Ξ̄+Λ/Σ0.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [33] records symmetric e+e− collisions provided by the BEPCII storage
ring [34] in the CM energy range of 2.00 to 4.95GeV, with a peak luminosity of 1×1033 cm−2 s−1

achieved at
√
s = 3.77GeV. BESIII has collected large data samples in this energy region [35–

37]. The cylindrical core of the BESIII detector covers 93% of the full solid angle and
consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight
system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed
in a superconducting solenoidal magnet providing a 1.0T magnetic field. The solenoid is
supported by an octagonal flux-return yoke with resistive plate counter muon identification
modules interleaved with steel. The charged-particle momentum resolution at 1GeV/c is
0.5%, and the dE/dx resolution is 6% for electrons from Bhabha scattering. The EMC
measures photon energies with a resolution of 2.5% (5%) at 1GeV in the barrel (end-cap)
region. The time resolution in the TOF barrel region is 68 ps, while that in the end-cap
region is 110 ps. The end-cap TOF system was upgraded in 2015 using multigap resistive
plate chamber technology, providing a time resolution of 60 ps [38–40].

Simulation samples produced with a geant4-based [41] Monte Carlo (MC) package,
which includes the geometric description of the BESIII detector [42] and the detector response,
are used to determine detection efficiencies and estimate backgrounds. The simulation models
the beam-energy spread and ISR in the e+e− annihilation using the generator kkmc [43].
The inclusive MC sample includes the production of hadron processes, ISR production of the
J/ψ, and the continuum processes incorporated in kkmc [43]. The detection efficiency of
e+e− → K−Ξ̄+Λ/Σ0 is determined by MC simulations. A sample of 200,000 signal events
is simulated with a phase-space (PHSP) distribution for each energy point, where the Ξ̄+

baryon and its subsequent decays to Λ̄π+ are described by the evtgen program [44, 45]
with a PHSP model.
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3 Event selection

A partial-reconstruction technique is employed to select the e+e− → K−Ξ̄+Λ/Σ0 candidate
events, where the Ξ̄+ baryon is reconstructed by the Λ̄π+ mode with the subsequent decay
Λ̄ → p̄π+, and the Λ/Σ0 is inferred from the recoiling system against the reconstructed
K−Ξ̄+ system. Throughout this article, unless explicitly stated, the charge-conjugate state
is always implied.

The selection criteria for charged particle tracks in the MDC are as follows: the charged
tracks detected in the MDC are required to be within a polar angle range of |cos θ| < 0.93,
where θ is defined with respect to the z axis which is the symmetry axis of the MDC. Due
to the implementation of the partial-reconstruction strategy, at least two positively charged
tracks and two negatively charged tracks are required. These tracks are required to be well
reconstructed in the MDC with good helix fits. In order to identify charged particles, a
likelihood-based particle identification (PID) method is employed. This method combines
measurements of the energy loss in the MDC (dE/dx) and the time of flight in the TOF to
form likelihoods L(h) (h = p,K, π) for each hadron h hypothesis. Tracks are identified as
protons when L(p) > L(K) and L(p) > L(π), while charged kaons and pions are identified if
L(K) > L(π) and L(π) > L(K) are satisfied, respectively. Only the events that contain at
least two π+, one p̄ and one K− are retained for further analysis.

The reconstruction of Λ̄ and Ξ̄+ decays follows the procedures reported in refs. [46–48].
Briefly, to reconstruct Λ̄ candidates and suppress non-Λ̄ background, a secondary-vertex
fit [49] is implemented for the p̄π+ combinations, and the decay length of the Λ̄ candidate
from the fit, i.e. the distance between its production and decay positions, is required to be
greater than zero to suppress the background from non-Λ̄ events. The p̄π+ invariant mass
is required to be within a window of ±8MeV/c2 of the known Λ̄ mass. This criterion is
determined by optimizing the figure of merit (FOM) after choosing the best candidates,
defined as S/

√
S +B, where S is the number of signal MC events and B is the number of

the background events estimated with the inclusive MC simulation. The Ξ̄+ candidates are
reconstructed using a similar secondary-vertex fit from each combination of the remaining π+

and reconstructed Λ̄. The best Ξ̄+ and Λ̄ candidates are kept by minimizing the combined-
mass difference |Mπ+Λ̄ − mΞ̄+ | + |Mπ+p̄ − mΛ̄|, where Mπ+Λ̄ and Mπ+p̄ are the invariant
masses of the π+Λ̄ and π+p̄ combinations, respectively, and mΞ̄+ and mΛ̄ are the known
masses of the Ξ̄+ and Λ̄ baryons from the Particle Data Group (PDG) [50]. Moreover, the
Ξ̄+ signal region in the Mπ+Λ̄ distribution is determined by optimizing the FOM and defined
as lying within a window of ±6MeV/c2 of the known Ξ̄+ mass. The decay length of the
Ξ̄+ candidate also needs to be greater than zero.

To be sensitive to the presence of signal candidates, a kinematic variable of mass recoiling
against the selected K−Ξ̄+ is defined as

M recoil
K−Ξ̄+ =

√
(
√
s− EK−Ξ̄+)2 − |p⃗K−Ξ̄+ |2, (3.1)

where EK−Ξ̄+ and p⃗K−Ξ̄+ are the energy and momentum of the selected K−Ξ̄+ candidates
in the e+e− CM frame, and

√
s is the CM energy.
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4 Born cross-section measurement

4.1 Extraction of signal yields

The signal yields for the processes e+e− → K−Ξ̄+Λ/Σ0 at each energy point are determined
by performing an extended maximum-likelihood fit to the M recoil

K−Ξ̄+ spectra in the range of 1.0
to 1.3GeV/c2 as shown in figure 1. In the fit, the signal shapes for e+e− → K−Ξ̄+Λ/Σ0 at
each energy point are represented by the MC simulated shapes, and the background shapes
are represented by a linear function. The inclusive MC indicates that background arises from
π+π−J/ψ, J/ψ → K−pΛ̄ events, the distribution of which is smooth in the region of interest.
Tables 1 and 2 summarize the signal yields at each energy point. The significance at some of
the energy points is less than 3.0σ, as assessed by comparing the change of likelihood with and
without the signal contribution in the fits. The upper limits of signal yields including additive
part of systematic uncertainty at the 90% confidence level (C.L.) at these energy points are
determined with the Bayesian method [51]. The additive uncertainties are accounted for by
extracting the likelihood distributions L, and the signal shapes corresponding to the maximum
upper limits among all additive items are chosen. Then the upper limit on the signal yield
(NUL) at the 90% C.L. is determined from the condition

∫ NUL

0 L dNobs/
∫ ∞

0 LdNobs = 0.9.
The upper limits for cross sections based on these likelihood distributions and incorporating
the multiplicative systematic uncertainties in the calculation are obtained by smearing the
likelihood distribution by a Gaussian function with a mean of zero and a width equal to σmulti,
where σmulti is the multiplicative part of systematic uncertainty mentioned in section 5.

4.2 Determination of Born cross section

The Born cross section for e+e− → K−Ξ̄+Λ/Σ0 is calculated by

σB = Nobs

2 · L · (1 + δ) · 1
|1−

∏
|2 · ϵ · B(Ξ̄+ → π+Λ̄) · B(Λ̄ → p̄π+)

, (4.1)

where Nobs is the number of the observed signal events, the factor of 2 represents the average
for both modes by considering the charge-conjugate channel, L is the integrated luminosity,
(1 + δ) is the ISR correction factor, 1

|1−Π|2 is the vacuum polarization (VP) correction factor,

ϵ is the detection efficiency, and B(Ξ̄+ → π+Λ̄) and B(Λ̄ → p̄π+) are the branching fractions
taken from the PDG [50]. Note that the cross section corresponds to only one charge mode.
The ISR correction factor is obtained using the QED calculation as described in ref. [52].
The VP correction factor is calculated according to ref. [53].

Initially, the cross section is measured without any ISR correction. Using this initial
measured line shape of the cross sections, signal MC samples are regenerated to obtain revised
values of the efficiencies and ISR correction factors, and the Born cross sections are updated
subsequently. The Born cross sections are calculated iteratively until the values converge,
defined by when the (1 + δ)ϵ difference between last two iterations is less than 0.1%. The
values of the efficiency, ISR correction factor, and Born cross section are obtained through
this iterative process [54]. The Born cross section at each energy point is shown in figure 2.
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Figure 1. Fits to the M recoil
K−Ξ̄+ distributions from data at CM energies from 3.510 and 4.914 GeV. The

data are the dots with error bars. The blue lines represent the total fit, the red dashed lines represent
the background, and the red and green dotted lines represent the Λ and Σ0 signals, respectively.
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√
s (GeV)

∫
Ldt (pb−1) 1

|1−
∏

|2 1 + δ ϵ (%) Nobs (NUL) σB (σUL) (fb) S (σ)

3.510 405.4 1.04 0.74 23.87 58.7+9.4
−8.7 621.2+99.5

−92.1 ± 43.5 6.2
3.581 85.7 1.05 0.79 24.88 5.4+3.8

−3.1 (< 9.4) 237.9+167.4
−136.6 ± 18.1 (< 424.7) 1.3

3.650 410.0 1.02 0.86 24.20 28.7+7.6
−6.9 258.3+68.4

−62.1 ± 16.7 3.6
3.670 84.7 1.02 0.86 25.07 6.2+3.7

−2.9 (< 9.0) 254.2+151.7
−118.9 ± 17.8 (< 398.9) 1.7

3.773 2931.8 1.06 0.92 27.10 239.2+20.0
−19.1 245.2+20.5

−19.6 ± 17.2 12.1
3.867 108.9 1.06 0.97 27.30 3.2+2.9

−2.0 (< 7.6) 83.0+75.3
−52.7 ± 6.1 (< 209.6) 1.0

3.871 110.3 1.05 0.97 23.33 1.4+2.8
−2.1 (< 5.0) 38.4+76.8

−56.2 ± 3.1 (< 137.1) 0.3
4.009 482.0 1.05 1.04 28.57 18.9+6.9

−6.3 (< 28.2) 97.5+35.6
−32.5 ± 7.0 (< 158.4) 2.4

4.130 401.5 1.05 1.04 26.97 8.3+5.3
−4.6 (< 15.6) 54.5+34.8

−30.2 ± 3.9 (< 106.8) 1.2
4.160 408.7 1.05 0.97 27.18 12.8+6.4

−5.7 (< 21.6) 87.9+44.0
−39.2 ± 6.2 (< 142.5) 1.5

4.180 3189.0 1.05 0.91 25.93 170.2+18.6
−17.9 167.1+18.3

−17.6 ± 11.6 7.7
4.190 526.7 1.06 0.90 28.24 34.2+8.6

−7.9 188.8+47.5
−43.6 ± 13.4 3.5

4.200 526.0 1.06 0.92 28.55 25.7+8.6
−6.8 (< 36.1) 137.6+46.0

−36.4 ± 10.0 (< 181.4) 2.5
4.210 517.1 1.06 0.96 27.95 17.9+7.1

−6.5 (< 28.7) 95.5+37.9
−34.7 ± 6.8 (< 153.3) 2.1

4.220 514.6 1.06 1.00 27.81 27.6+7.7
−7.0 143.6+40.1

−36.4 ± 10.3 3.1
4.230 1100.9 1.06 1.04 28.96 41.8+9.7

−9.1 94.5+21.9
−20.6 ± 6.6 3.7

4.237 530.3 1.06 1.07 28.53 17.0+7.2
−5.6 (< 26.4) 78.0+33.1

−25.7 ± 5.5 (< 131.7) 1.7
4.246 538.1 1.06 1.10 28.40 30.2+8.2

−7.6 133.9+36.4
−33.7 ± 9.7 3.1

4.260 828.4 1.05 1.14 29.01 38.1+9.4
−8.6 103.4+25.5

−23.3 ± 7.5 3.4
4.290 502.4 1.05 1.19 27.15 9.4+5.7

−5.1 (< 18.0) 42.9+26.0
−23.3 ± 3.1 (< 94.0) 1.3

4.315 501.2 1.05 1.23 27.03 12.1+6.2
−5.4 (< 20.9) 54.1+27.7

−24.1 ± 3.9 (< 106.4) 1.8
4.340 505.0 1.05 1.26 27.60 13.7+6.9

−6.1 (< 23.2) 58.1+29.3
−25.9 ± 4.1 (< 114.7) 1.5

4.360 543.9 1.05 1.28 29.06 15.6+6.9
−6.2 (< 24.5) 57.4+25.4

−22.8 ± 4.0 (< 105.0) 1.8
4.380 522.7 1.05 1.31 27.35 21.8+6.8

−6.1 (< 31.0) 87.1+27.2
−24.4 ± 6.2 (< 146.7) 2.6

4.400 507.8 1.05 1.32 27.27 21.8+7.5
−6.8 (< 32.3) 89.2+30.7

−27.8 ± 6.2 (< 155.5) 2.4
4.420 1090.7 1.05 1.33 28.91 20.3+8.6

−7.9 (< 30.9) 36.1+15.3
−14.0 ± 2.5 (< 65.8) 1.5

4.440 569.9 1.05 1.35 27.57 4.4+5.0
−4.4 (< 11.4) 15.5+17.6

−15.5 ± 1.1 (< 48.5) 0.7
4.600 586.9 1.06 1.51 28.51 11.4+6.6

−5.8 (< 19.2) 33.7+19.5
−17.1 ± 2.4 (< 70.7) 1.2

4.640 552.5 1.05 1.54 26.63 2.9+6.7
−5.9 (< 13.2) 9.7+22.5

−19.8 ± 0.7 (< 56.4) 0.3
4.660 529.4 1.05 1.60 26.41 1.5+5.1

−4.5 (< 8.7) 5.0+17.0
−14.8 ± 0.4 (< 38.6) 0.2

4.680 1667.4 1.05 1.60 26.23 15.5+8.8
−8.0 (< 24.3) 16.8+9.6

−8.7 ± 1.2 (< 33.6) 1.0
4.700 536.5 1.06 1.61 26.20 16.7+5.9

−5.0 (< 24.3) 55.5+19.6
−16.6 ± 3.9 (< 103.6) 2.1

4.750 366.6 1.06 1.67 28.06 5.9+5.0
−4.7 (< 12.8) 25.3+21.4

−20.1 ± 1.8 (< 72.8) 1.0
4.780 511.5 1.06 1.72 27.94 6.2+6.1

−5.4 (< 15.1) 19.1+18.8
−16.6 ± 1.4 (< 60.5) 0.9

4.914 207.8 1.06 1.91 27.11 6.0+4.4
−3.5 (< 11.9) 42.2+30.9

−24.6 ± 3.0 (< 113.2) 1.1

Table 1. Numerical results for e+e− → K−Ξ̄+Λ, where 1
|1−

∏
|2

is the VP correction factor, 1 + δ is

the ISR correction factor, ϵ is the detection efficiency, Nobs denotes the number of the observed signal
event, NUL is the upper limit of the signal event, σB represents the Born cross section, and σUL is
the upper limit of Born cross section, which take multiplicative and additive systematic uncertainties
into account. The first and second uncertainties for σB are statistical and systematic, respectively.
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√
s (GeV)

∫
Ldt (pb−1) 1

|1−
∏

|2 1 + δ ϵ (%) Nobs (NUL) σB (σUL) (fb) S (σ)

3.510 405.4 1.04 0.85 24.18 144.3+15.2
−14.5 1536.4+161.8

−154.4 ± 104.0 9.3
3.581 85.7 1.05 0.75 25.09 29.0+7.3

−6.6 1243.0+312.9
−282.9 ± 84.1 3.3

3.650 410.0 1.02 0.85 23.40 102.0+13.4
−12.6 979.8+128.7

−121.0 ± 66.3 7.3
3.670 84.7 1.02 0.90 25.59 36.0+7.0

−6.6 1445.7+281.1
−265.0 ± 97.8 4.2

3.773 2931.8 1.06 1.01 26.83 868.1+36.1
−35.7 856.0+35.6

−35.2 ± 57.9 19.7
3.867 108.9 1.06 0.95 27.67 41.4+7.7

−5.4 1138.4+201.7
−146.9 ± 77.0 4.5

3.871 110.3 1.05 1.01 26.05 40.9+8.2
−7.5 1104.0+222.4

−203.8 ± 74.7 4.1
4.009 482.0 1.05 1.00 27.71 65.9+11.4

−11.0 386.5+66.9
−64.5 ± 26.0 4.4

4.130 401.5 1.05 1.01 28.87 83.6+11.4
−10.8 559.4+76.3

−72.3 ± 37.8 5.6
4.160 408.7 1.05 1.02 26.95 72.7+12.3

−11.7 506.9+85.8
−81.6 ± 34.2 4.0

4.180 3189.0 1.05 1.02 27.00 570.1+32.0
−31.8 508.5+28.5

−28.4 ± 34.3 15.1
4.190 526.7 1.06 1.01 28.54 59.6+11.5

−10.8 307.9+59.4
−55.8 ± 20.9 3.8

4.200 526.0 1.06 1.01 28.97 68.9+12.4
−11.7 350.7+63.1

−59.6 ± 23.6 4.0
4.210 517.1 1.06 1.00 29.16 69.3+11.5

−10.9 360.1+59.8
−56.6 ± 25.7 4.4

4.220 514.6 1.06 0.99 28.80 99.1+13.0
−12.4 529.1+69.4

−66.2 ± 35.7 6.2
4.230 1100.9 1.06 0.99 28.54 173.6+18.1

−17.4 437.2+45.6
−43.8 ± 29.6 7.5

4.237 530.3 1.06 0.98 29.71 80.5+10.8
−10.7 408.4+54.8

−54.3 ± 27.7 4.6
4.246 538.1 1.06 0.97 29.61 85.9+12.7

−12.1 435.4+64.4
−61.3 ± 30.7 5.0

4.260 828.4 1.05 0.97 29.37 161.9+9.4
−15.8 537.4+31.2

−52.4 ± 37.7 7.7
4.290 502.4 1.05 0.97 29.73 83.2+11.7

−11.0 449.8+63.3
−59.5 ± 31.6 5.7

4.315 501.2 1.05 1.00 27.10 82.4+10.6
−10.0 475.2+61.1

−57.7 ± 33.4 5.6
4.340 505.0 1.05 1.02 27.22 90.9+11.7

−11.0 507.9+65.4
−61.5 ± 34.2 4.7

4.360 543.9 1.05 1.05 27.67 57.2+11.6
−11.0 283.6+57.5

−54.5 ± 19.1 3.2
4.380 522.7 1.05 1.07 30.30 77.5+11.8

−11.4 358.2+54.5
−52.7 ± 24.1 4.6

4.400 507.8 1.05 1.09 27.73 61.2+11.2
−10.6 312.4+57.2

−54.1 ± 21.1 3.8
4.420 1090.7 1.05 1.09 27.86 122.3+16.1

−15.5 289.3+38.1
−36.7 ± 19.6 5.7

4.440 569.9 1.05 1.1 29.80 35.1+9.2
−8.6 (< 51.0) 147.2+38.6

−36.1 ± 9.9 (< 213.5) 2.6
4.600 586.9 1.06 1.11 27.89 60.9+11.6

−11.0 262.6+50.0
−47.4 ± 18.3 3.6

4.640 552.5 1.05 1.15 30.23 17.2+9.4
−8.7 (< 31.6) 71.6+39.1

−36.2 ± 5.0 (< 136.2) 0.7
4.660 529.4 1.05 1.16 26.54 44.6+9.2

−8.9 214.3+44.2
−42.8 ± 14.4 3.3

4.680 1667.4 1.05 1.16 26.40 128.9+16.3
−15.9 202.1+25.6

−24.9 ± 14.2 5.3
4.700 536.5 1.06 1.17 26.33 37.9+8.2

−7.5 (< 59.9) 183.2+39.6
−36.2 ± 12.8 (< 296.8) 1.9

4.750 366.6 1.06 1.17 26.50 37.1+7.4
−6.9 (< 47.9) 255.3+50.9

−47.5 ± 17.8 (< 272.3) 2.2
4.780 511.5 1.06 1.18 29.31 28.2+8.6

−8.1 (< 40.9) 127.7+39.0
−36.7 ± 8.9 (< 163.9) 1.9

4.914 207.8 1.06 1.19 29.20 20.6+5.5
−4.8 (< 28.2) 228.8+61.1

−53.3 ± 15.8 (< 268.4) 1.6

Table 2. Numerical results for e+e− → K−Ξ̄+Σ0, where 1
|1−

∏
|2

is the VP correction factor, 1 + δ is

the ISR correction factor, ϵ is the detection efficiency, Nobs denotes the number of the observed signal
event, NUL is the upper limit of the signal event, σB represents the Born cross section, and σUL is
the upper limit of Born cross section, which take multiplicative and additive systematic uncertainties
into account. The first and second uncertainties for σB are statistical and systematic, respectively.
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Figure 2. Measured Born cross section for e+e− → K−Ξ̄+Σ0 (black) and K−Ξ̄+Λ (red) for each
energy point, where the uncertainties include both the statistical and systematic contributions.

5 Systematic uncertainty

The systematic uncertainties in the measurement of the Born cross-section arise from various
sources, which are categorized as multiplicative and additive. Multiplicative terms refer on
uncertainties due to kaon tracking and PID efficiencies, Ξ̄+ reconstruction, MC simulation
sample size, branching fraction and input line shape. The additive terms include signal
shape and background shape in fit method.

5.1 Luminosity

The luminosities at all energy points are measured using Bhabha events, with uncertainties
of 1.0% below 4.0 GeV, 0.7% from 4.0 to 4.6 GeV, and 0.6% above 4.6 GeV [32, 55].

5.2 Kaon tracking and PID efficiencies

The systematic uncertainties associated with the kaon tracking and PID are estimated with
a control sample of J/ψ → K∗K [56] decays The difference in tracking or PID efficiencies
between data and MC simulation is 1.0%. The total systematic uncertainty from these sources
is assigned to be 1.4% by adding the tracking and PID uncertainties in quadrature.

5.3 Ξ̄+ reconstruction

The systematic uncertainty due to the Ξ̄+ reconstruction arises from the knowledge of the
tracking and PID, and Λ reconstruction efficiencies, and possible biases associated with the
required decay length of the Λ/Ξ, and the Λ/Ξ mass window. The combined uncertainty is
estimated with a control sample of ψ(3686) → Ξ−Ξ̄+ decays using the same method described
in refs. [57–65]. The efficiency difference between data and MC simulation is found to be
5.1%, which is assigned as the systematic uncertainty.
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5.4 MC simulation sample size

The systematic uncertainty arising from the MC simulation sample size is calculated as√
ϵ(1−ϵ)

N /ϵ, where ϵ is the detection efficiency and N is the number of generated signal
MC events.

5.5 MC modeling

The systematic uncertainty arising from the MC modeling is estimated by comparing the
difference in detection efficiencies between the PHSP and HypWK models. The efficiencies
are 25.6% for the HypWK model and 25.7% for the PHSP model. The difference of signal
modeling can be negligible.

5.6 Fit method

The sources of the systematic uncertainty in the fit of the M recoil
K−Ξ̄+ spectrum include the

signal shape and background shape. The uncertainty due to the signal shape is studied by
varying the default signal shape convolved with a Gaussian function, and the yield difference
is taken as the systematic uncertainty, which is 1.8% for the Λ signal shape and negligible
for Σ0 signal shape. The uncertainty due to the background modeling is estimated to be
4.0% by alternative fit with a second-order Chebyshev function.

5.7 Branching fraction

The uncertainty of the branching fraction of Λ̄ → p̄π+ is 0.8% from the PDG [50]. The
uncertainty on the branching fraction of Ξ̄+ → π+Λ̄ is negligible in the analysis.

5.8 Input line shape

The ISR correction and the detection efficiency depend on the line shape of the cross section.
The associated systematic uncertainty arises from the statistical uncertainty of the cross
sections, which is estimated by varying the central value of the cross section within ±1σ of
the statistical uncertainty. Then, the (1 + δ)ϵ values for each energy point are recalculated.
This process is repeated 3000 times, and a Gaussian function is used to fit the distribution
of the 3000 values of (1 + δ)ϵ. The deviation of the Gaussian function is taken as the
corresponding systematic uncertainty.

5.9 Total systematic uncertainty

The various systematic uncertainties on the Born cross section measurement for e+e− →
K−Ξ̄+Λ/Σ0 are summarized in tables 3 and 4. Assuming all sources are independent, the
total systematic uncertainty is determined by adding these values in quadrature.

6 Fit to the dressed cross section

The potential resonances in the line shape of the cross section for e+e− → K−Ξ̄+Λ/Σ0 are
studied by fitting the dressed cross section, σdressed = σB/|1−Π|2 (without the VP effect)
with the least χ2 method. The fit minimizes

χ2 = ∆XTV −1∆X, (6.1)
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√
s (GeV) L Kaon TP Ξ̄+ Rec. MC B BS SS ILS Total
3.510 1.0 1.4 5.1 0.4 0.8 4.0 1.8 0.3 7.0
3.581 1.0 1.4 5.1 0.4 0.8 4.0 1.8 0.1 7.0
3.650 1.0 1.4 5.1 0.4 0.8 4.0 1.8 0.3 7.0
3.670 1.0 1.4 5.1 0.4 0.8 4.0 1.8 0.4 7.0
3.773 1.0 1.4 5.1 0.4 0.8 4.0 1.8 0.3 7.0
3.867 1.0 1.4 5.1 0.4 0.8 4.0 1.8 2.3 7.4
3.871 1.0 1.4 5.1 0.4 0.8 4.0 1.8 2.2 7.3
4.009 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.9 7.2
4.130 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.9 7.2
4.160 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.3 7.1
4.180 0.7 1.4 5.1 0.4 0.8 4.0 1.8 0.1 7.0
4.190 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.3 7.1
4.200 0.7 1.4 5.1 0.4 0.8 4.0 1.8 2.1 7.3
4.210 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.2 7.1
4.220 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.7 7.2
4.230 0.7 1.4 5.1 0.4 0.8 4.0 1.8 0.4 7.0
4.237 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.3 7.1
4.246 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.9 7.2
4.260 0.7 1.4 5.1 0.4 0.8 4.0 1.8 2.0 7.2
4.290 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.5 7.1
4.315 0.7 1.4 5.1 0.4 0.8 4.0 1.8 2.0 7.2
4.340 0.7 1.4 5.1 0.4 0.8 4.0 1.8 0.3 7.0
4.360 0.7 1.4 5.1 0.3 0.8 4.0 1.8 0.4 7.0
4.380 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.2 7.1
4.400 0.7 1.4 5.1 0.4 0.8 4.0 1.8 0.3 7.0
4.420 0.7 1.4 5.1 0.4 0.8 4.0 1.8 0.5 7.0
4.440 0.7 1.4 5.1 0.4 0.8 4.0 1.8 1.4 7.1
4.600 0.7 1.4 5.1 0.3 0.8 4.0 1.8 0.4 7.0
4.640 0.6 1.4 5.1 0.4 0.8 4.0 1.8 1.3 7.1
4.660 0.6 1.4 5.1 0.4 0.8 4.0 1.8 0.9 7.0
4.680 0.6 1.4 5.1 0.4 0.8 4.0 1.8 0.6 7.0
4.700 0.6 1.4 5.1 0.4 0.8 4.0 1.8 0.7 7.0
4.750 0.6 1.4 5.1 0.4 0.8 4.0 1.8 1.2 7.1
4.780 0.6 1.4 5.1 0.4 0.8 4.0 1.8 1.4 7.1
4.914 0.6 1.4 5.1 0.4 0.8 4.0 1.8 0.9 7.0

Table 3. Systematic uncertainties (in %) and their sources for each energy point on the Born cross
section measurement for e+e− → K−Ξ̄+Λ. Here, L denotes luminosity, TP denotes tracking and PID,
Ξ− Rec denotes Ξ− reconstruction, MC denotes MC sample size, B denotes branching fraction, BS
and SS denote background shape and signal shape, respectively, and ILS denotes input line shape.
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√
s (GeV) L Kaon TP Ξ̄+ Rec. MC B BS SS ILS Total
3.510 1.0 1.4 5.1 0.4 0.8 4.0 0.0 0.1 6.8
3.581 1.0 1.4 5.1 0.4 0.8 4.0 0.0 0.1 6.8
3.650 1.0 1.4 5.1 0.4 0.8 4.0 0.0 0.1 6.8
3.670 1.0 1.4 5.1 0.4 0.8 4.0 0.0 0.1 6.8
3.773 1.0 1.4 5.1 0.4 0.8 4.0 0.0 0.1 6.8
3.867 1.0 1.4 5.1 0.4 0.8 4.0 0.0 0.2 6.8
3.871 1.0 1.4 5.1 0.4 0.8 4.0 0.0 0.2 6.8
4.009 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.4 6.7
4.130 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.6 6.8
4.160 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.4 6.7
4.180 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.5 6.7
4.190 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.9 6.8
4.200 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.3 6.7
4.210 0.7 1.4 5.1 0.4 0.8 4.0 0.0 2.4 7.1
4.220 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.4 6.7
4.230 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.7 6.8
4.237 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.9 6.8
4.246 0.7 1.4 5.1 0.4 0.8 4.0 0.0 2.1 7.0
4.260 0.7 1.4 5.1 0.4 0.8 4.0 0.0 2.0 7.0
4.290 0.7 1.4 5.1 0.4 0.8 4.0 0.0 2.0 7.0
4.315 0.7 1.4 5.1 0.4 0.8 4.0 0.0 2.0 7.0
4.340 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.3 6.7
4.360 0.7 1.4 5.1 0.3 0.8 4.0 0.0 0.5 6.7
4.380 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.4 6.7
4.400 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.6 6.8
4.420 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.7 6.8
4.440 0.7 1.4 5.1 0.4 0.8 4.0 0.0 0.4 6.7
4.600 0.7 1.4 5.1 0.3 0.8 4.0 0.0 1.8 7.0
4.640 0.6 1.4 5.1 0.4 0.8 4.0 0.0 2.0 7.0
4.660 0.6 1.4 5.1 0.4 0.8 4.0 0.0 0.4 6.7
4.680 0.6 1.4 5.1 0.4 0.8 4.0 0.0 2.0 7.0
4.700 0.6 1.4 5.1 0.4 0.8 4.0 0.0 1.9 7.0
4.750 0.6 1.4 5.1 0.4 0.8 4.0 0.0 1.8 7.0
4.780 0.6 1.4 5.1 0.4 0.8 4.0 0.0 1.8 7.0
4.914 0.6 1.4 5.1 0.4 0.8 4.0 0.0 1.6 6.9

Table 4. Systematic uncertainties (in %) and their sources for each energy point on the Born cross
section measurement for e+e− → K−Ξ̄+Σ0. Here, L denotes luminosity, TP denotes tracking and
PID, Ξ− Rec denotes Ξ− reconstruction, MC denotes MC sample size, B denotes branching fraction,
BS and SS denote background shape and signal shape, respectively, and ILS denotes input line shape.
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where ∆X is the vector of residuals between measured and fitted cross section. The covariance
matrix V incorporates the correlated and uncorrelated uncertainties among different energy
points, where the systematic uncertainties due to the luminosity, kaon tracking and PID,
Ξ̄+(Ξ−) reconstruction, and branching fraction are assumed to be fully correlated among the
CM energies, and the other sources of uncertainty are taken to be uncorrelated.

Assuming the e+e− → K−Ξ̄+Λ/Σ0 signals are produced by a resonance decay and the
continuum process, a fit to the dressed cross section is applied with the coherent sum of a
power-law (PL) function plus a Breit-Wigner (BW) function defined as

σdressed(
√
s) =

∣∣∣∣∣∣c0

√
P (

√
s)

√
s

n + eiϕBW(
√
s)

√
P (

√
s)

P (M)

∣∣∣∣∣∣
2

, (6.2)

BW(
√
s) =

√
12πΓeeBΓ

s−M2 + iMΓ . (6.3)

Here ϕ is the relative phase between the BW function and the PL function, c0 and n are
free fit parameters,

√
P (

√
s) is the three-body PHSP factor, the mass M and total width Γ

are fixed to the assumed resonance with the PDG values [50], and ΓeeB is the product of
the electronic partial width, and the branching fraction for the assumed resonance decaying
into the KΞ̄+Λ/Σ0 final state. The significance for each resonance, after considering the
systematic uncertainty, is calculated by comparing the change of χ2/n.d.f with and without
the resonance hypothesis. Evidence for the ψ(4160) → K−Ξ̄+Λ decay with a significance of
4.4σ is found. Additional possible charmonium (-like) states are included in the fit, but no
significant signal is found for any other contribution. Thus, the upper limits of the products
of branching fraction and the electronic partial width for these charmonium(-like) states
decaying into the KΞ̄+Λ/Σ0 final state including systematic uncertainty are provided at the
90% C.L. using the Bayesian approach [51]. Figures 3 and 4 show the fit to the dressed
cross section of K−Ξ̄+Λ and K−Ξ̄+Σ0 with resonances included [i.e. ψ(3770), ψ(4040),
ψ(4160), Y (4230), Y (4360), ψ(4415), or Y (4660)], and without. The possible multi-solutions
of resonances parameters for the fit of dressed cross sections are obtained based on a two
dimensional scan method which scans all the pairs of ΓeeB and ϕ in parameter space. And
the fit results are summarized in table 5.

7 Summary

Using a total of 25 fb−1 of e+e− collision data collected at
√
s between 3.510 and 4.914GeV

with the BESIII detector at the BEPCII collider, the exclusive Born cross sections for
e+e− → K−Ξ̄+Λ/Σ0 at thirty-five energy points are measured with the partial reconstruction
strategy. A fit to the dressed cross sections for e+e− → K−Ξ̄+Λ/Σ0 with the assumption of one
resonance plus a continuum contribution is performed. The fitted parameter, ΓeeB, for each
assumed resonance are summarized in table 5. Evidence is found for the ψ(4160) → K−Ξ̄+Λ
decay with a significance of 4.4σ including systematic uncertainty. No significant signal of any
state decaying into the KΞ̄+Λ/Σ0 final state is found for other charmonium (-like) resonances.
The upper limits for the product of the electronic partial width and branching fraction for all
assumed resonances decaying into the K−Ξ̄+Λ/Σ0 final state are determined. These results
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Figure 3. Fits to the dressed cross sections of e+e− → K−Ξ̄+Λ with an assumption of a resonance
(ψ(4040), ψ(4160), Y (4230), Y (4360), ψ(4415) or Y (4660)) plus a continuum contribution. The blue
solid line is the fit result.
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Figure 4. Fits to the dressed cross sections of e+e− → K−Ξ̄+Σ0 with an assumption of a resonance
(ψ(4040), ψ(4160), Y (4230), Y (4360), ψ(4415) or Y (4660)) plus a continuum contribution. The blue
solid line is the fit result.
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K−Ξ̄+Λ

Resonance
ΓeeB (10−3 eV) ϕ (rad)

χ2/n.d.f S (σ)
I II I II

ψ(3770) 21.0 ± 3.7 (< 25.0) 1.7 ± 0.5 −1.9 ± 0.3 −2.8 ± 0.2 1.8 0.5
ψ(4040) 45.0 ± 6.3 (< 62.0) 5.1 ± 2.3 −1.3 ± 0.1 −1.3 ± 0.1 1.4 2.8
ψ(4160) 2.1 ± 0.2 1.5 ± 0.4 −1.6 ± 0.1 −1.3 ± 0.2 1.1 4.4
ψ(4230) 21.3 ± 1.5 (< 24.9) 0.6 ± 0.3 −1.8 ± 0.1 2.5 ± 0.3 1.5 2.8
ψ(4360) 28.9 ± 2.7 (< 35.8) 0.6 ± 0.1 −1.8 ± 0.1 −2.9 ± 0.1 1.6 1.7
ψ(4415) 9.3 ± 2.3 (< 14.3) 1.7 ± 1.1 −1.9 ± 0.1 −2.3 ± 0.2 1.6 1.2
ψ(4660) 6.8 ± 3.5 (< 13.0) 0.8 ± 1.5 −1.6 ± 0.1 −1.6 ± 0.1 1.7 1.2

K−Ξ̄+Σ0

Resonance
ΓeeB (10−3 eV) ϕ (rad)

χ2/n.d.f S (σ)
I II I II

ψ(3770) 83.1 ± 3.2 (< 89.5) 0.3 ± 3.3 −1.6 ± 0.2 −2.7 ± 1.7 2.2 1.5
ψ(4040) 5.3 ± 2.5 (< 12.5) 4.2 ± 2.3 −1.3 ± 0.3 −1.1 ± 0.3 2.0 2.0
ψ(4160) 0.4 ± 0.7 (< 1.5) 0.1 ± 0.9 −0.1 ± 0.5 0.1 ± 0.4 2.3 0.9
ψ(4230) 0.6 ± 0.2 (< 1.6) 0.2 ± 0.1 0.2 ± 0.3 0.3 ± 0.3 2.3 0.9
ψ(4360) 1.1 ± 0.6 (< 2.8) 0.9 ± 0.4 2.9 ± 0.3 2.9 ± 0.3 2.0 1.0
ψ(4415) 77.0 ± 4.5 (< 87.0) 1.8 ± 0.8 −1.7 ± 0.2 −2.5 ± 0.2 2.0 2.7
ψ(4660) 62.5 ± 6.2 (< 77.3) 0.6 ± 1.0 −1.6 ± 0.2 −1.3 ± 0.2 2.2 1.5

Table 5. The fitted parameters to the dressed cross section for the e+e− → K−Ξ̄+Λ and K−Ξ̄+Σ0

processes with two solutions (I and II). The fit procedure includes both statistical and systematic
uncertainties except for the CM energy calibration. The relative phase is given by ϕ. B is the branching
fraction of the assumed resonance decaying into the final state. Note that the values in the brackets
represent the upper limit at 90% C.L. with a most conservative evaluation.

are valuable as they add to the experimental information regarding the three-body baryonic
decay of charmonium (-like) states, which may provide important insights into the nature
of baryonic production above the open-charm region.

Acknowledgments

The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for
their strong support. This work is supported in part by National Key R&D Program of
China under Contracts Nos. 2020YFA0406400, 2020YFA0406300, 2023YFA1606000; National
Natural Science Foundation of China (NSFC) under Contracts Nos. 12075107, 12247101,
11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12025502,
12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264,
12192265, 12221005, 12225509, 12235017; the 111 Project under Grant No. B20063; the
Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center

– 15 –



J
H
E
P
0
7
(
2
0
2
4
)
2
5
8

for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of
the NSFC and CAS under Contract No. U1832207; CAS Key Research Program of Frontier
Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents
Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key
Laboratory for Particle Physics and Cosmology; European Union’s Horizon 2020 research and
innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.
894790; German Research Foundation DFG under Contracts Nos. 455635585, Collaborative
Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy;
Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research
Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and
Technology fund of Mongolia; National Science Research and Innovation Fund (NSRF) via
the Program Management Unit for Human Resources & Institutional Development, Research
and Innovation of Thailand under Contract No. B16F640076; Polish National Science Centre
under Contract No. 2019/35/O/ST2/02907; The Swedish Research Council; U.S. Department
of Energy under Contract NoḊE-FG02-05ER41374.
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