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2 Dipartimento di Matematica “Giuseppe Peano”, Università di Torino,
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Abstract: The work presented a general discrete-time model of a population of trees affected by a
parasite. The tree population was considered size-structured, and the parasite was represented by a
single scalar variable. Parasite dynamics were assumed to act on a faster timescale than tree dynamics.
The model was studied based on an associated nonlinear matrix model, in which the presence of the
parasites was only reflected in the value of its parameters. For the model in all its generality, an explicit
condition of viability/extinction of the parasite/tree community was found. In a simplified model with
two size-classes of trees and particular forms of the vital rates, it was shown that the model undergoes
a transcritical bifurcation and, likewise, a period-doubling bifurcation. It was found that, for any tree
fertility rate that makes them viable without a parasite, if the parasite sufficiently reduces the survival
of young trees, it can lead to the extinction of the entire community. The same cannot be assured if
the parasite acts on adult trees. In situations where a high fertility rate coupled with a low survival rate
of adult trees causes a non-parasitized population of trees to fluctuate, a parasite sufficiently damaging
only young trees can stabilize the population. If, instead, the parasite acts on adult trees, we can find a
destabilization condition on the tree population that brings them from a stable to an oscillating regime.
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1. Introduction

In this work, we aim to build a basic modeling framework of the dynamics of parasitized trees.
Although focused on a particular isolated, parasite/tree relationship, the study may have further im-
portance due to the basic position that plants in general occupy in communities with various trophic
levels [1].

By parasitized trees we understand those that are infected by one or more parasites, which leads to
damage at different levels of their population dynamics. Our approach will initially be very general to
end up analyzing certain characteristics of particular cases. The type of model we propose is purely
based on population dynamics. We assume the parasite to be a macro-parasite that affects a population
of trees structured by size.

We consider discrete-time models. In the literature on parasitized trees, there are both continuous-
time models (see [2,3] or more recent examples like [4] or [5]) and discrete-time models [6]. Population
dynamics models with nonoverlapping generations are usually represented as discrete-time models
[7]. In this type of population, the processes act concentrated in small time intervals (egg laying,
synchronized reproduction, etc.). Insects in our work that can play the role of parasites are typically
included in this category. On the other hand, although in the dynamics of a tree population both time
and size can be considered continuous variables, it is also common to consider discrete time and the
population structured in a finite number of diameter classes [8]. This is done because the data held in
forest inventories fits within that framework.

Some of the cited references [2, 3, 5] share a characteristic that we also include in our assumptions.
These models are a better representation of real systems if the different timescales at which parasites
and trees act are taken into account. Obviously, in our model the generations of parasites follow one
another much faster than those of trees [9].

Systems of difference equations with two timescales have been proposed in [10, 11]. The approach
consists of choosing the time unit as the one associated with the slow process and assuming that the
fast process acts l times while the slow process acts only once. The parameter l would represent
the relationship between the timescales. Calling S and F the maps that represent the slow and fast
processes, respectively, X the vector with the state variables, and t the time variable on the slow scale,
the system would have the following expression: X(t + 1) = S

(
F l(X(t)

)
. The superscript l represents

the l-th iterate of the corresponding map. In references [10, 11], there are results that allow us to study
some aspects of the asymptotic behavior of the solutions of these systems with the help of reduced
systems. The basic idea is to let the fast process act first and, if it stabilizes, make the slow process act.
The rigorous justification of this way of acting is developed in the above cited references.

The type of reduced system that we arrive at falls within the category of nonlinear matrix mod-
els [12, 13]. These are of great use in the study of population dynamics, especially of the so-called
structured populations. The parasite/tree models that we will initially propose cannot be considered
matrix models. However, this will be the case of the associated reduced models through which their
analysis will be carried out. The advantage of matrix models is that they have a well-developed the-
ory that we exploit in our work. In particular, we use the characterization of population extinction or
viability represented by the inherent net reproductive number. In [12], there is a general theorem that
demonstrates the loss of stability of the extinction equilibrium when n crosses a value of 1. This is
completed with a general bifurcation result from the extinction equilibrium toward positive equilibria,

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7040–7066.



7042

which can be stable or unstable. In both [12] and [13], there are also results, complementary to the
previous ones, related to the persistence and permanence of the model.

In the construction of our model we do not specify the type of parasite. We focus mainly on the
negative effects they have on trees, which increases model generality. The dynamics of trees is defined,
like the one of any size-structured population, by the specific survival, growth and fertility rates of each
class. The vital rates that define the dynamics of the parasite are assumed to be dependent on the state
vector of the tree population. Likewise, the negative influence that parasite density exerts on the trees,
is reflected in their reduced vital rates.

In the model analysis we are able to find conditions for the parasite/tree community to be viable and,
in that case, for it to tend to steady states or, alternatively, to persistently fluctuate. From these con-
ditions, some conclusions are obtained about the influence of the parasite on the changes between the
viability and extinction, and between the equilibrium and oscillation regimes. Evidently, the parasite
can cause the tree population to go from viable to endangered. In this situation, distinguishing whether
the parasite acts primarily on young or adult trees, differences are observed. By acting on young trees it
is always possible that extinction is attained while this is not the case by acting on adults. In this same
line, we see that acting on young trees favors the stabilization of the community. In circumstances
where the non-parasitized population of trees fluctuates, the negative effect of the parasite on young
trees can bring the community toward an equilibrium. On the contrary, the parasite acting mainly on
adult trees can favor the destabilization of the tree population, in the sense of going from equilibrium
when non-parasitized to oscillations when parasitized.

The organization of the rest of the work is as follows. Section 2 presents a general discrete-time
model of a size-structured tree population living in a community with a macro-parasite. It is assumed
that the dynamics of the parasite acts on a faster timescale than the one of the trees. Parasite dynamics
are represented by the Beverton-Holt model with growth rate and carrying capacity broadly dependent
on the tree population. Also in Section 2, we proceed to the construction of the reduced model that
allows us to apply the results of [11]. Section 3 is devoted to specifying the properties of the different
vital rates, both of parasites and trees, still in a very general way. Even so, results are obtained on the
extinction/viability of the parasite/tree community. To obtain precise results of asymptotic behavior in
situations of community viability in Section 4, the model is specialized to two size-classes for the trees
and the forms of the different vital rates are specified. The results prove the existence of a transcritical
bifurcation from the ecosystem vanishing, 0) equilibrium, to positive and stable equilibrium points and,
furthermore, for constant fertility rate, of a supercritical period-doubling bifurcation. In the Discussion,
the results of the previous sections are interpreted, finding conditions for the long-term behavior of
the tree population which changes whether in the presence or in the absence of the parasite. A brief
conclusion presents some perspectives of the work, which ends with some appendices where the results
stated in the previous sections are rigorously proved.

2. General discrete-time model of a parasitized size-structured tree population

We consider a tree population divided into q different size classes. We denote n j(t), j ∈ {1, . . . , q},
the size of class j at time t = 0, 1, 2, . . .. The tree population vector at time t is

n(t) = col
(
n1(t), . . . , nq(t)

)
.
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The tree population is affected by a parasite that feeds on it. Let us denote p(t) as the size of the
parasite population at time t.

First, we give the basic form of the structured model. We use a general nonlinear Usher matrix
model [12]. We call ŝ j ∈ (0, 1) the fraction of individuals of class j, j ∈ {1, . . . , q}, alive at time t that
survive to time t + 1, m̂ j ∈ (0, 1) the fraction of surviving individuals from class j, j ∈ {1, . . . , q− 1}, at
time t that grow up and belong to class j + 1 at time t + 1 and, finally, f̂ j ∈ [0,∞), j ∈ {1, . . . , q − 1},
f̂q > 0, to the number of new recruits in class 1 at time t + 1 for each individual in class j ∈ {1, . . . , q}
at time t. We assume that the last class is fertile. In its most general formulation, all the parameters ŝ j,
m̂ j and f̂ j can be dependent on n and p.

The corresponding discrete-time system is the following one:

n(t + 1) =



ŝ1(1 − m̂1) + f̂1 f̂2 · · · f̂q−1 f̂q

ŝ1m̂1 ŝ2(1 − m̂2) · · · 0 0

0 ŝ2m̂2
. . .

...
...

...
...

. . . ŝq−1(1 − m̂q−1) 0

0 0 · · · ŝq−1m̂q−1 ŝq


n(t). (2.1)

Calling U the q × q matrix in (2.1), and indicating its possible dependence on n(t) and p(t), the system
can be written for short in the following form

n(t + 1) = U
(
n(t), p(t)

)
n(t). (2.2)

We assume that U ∈ C1(Rq+1
+

)
.

We could build the dynamics of the parasite from any of the discrete single-population models
that exist in the literature [14–16]. This would give greater generality to the model and increase the
difficulty of its analytical treatment. To cover the objectives of our work, it is enough to use the
Beverton-Holt discrete-time model, whose dynamics are similar to the one of the continuous logistic
model. In order for the parameters to maintain the usual interpretation of growth rate, r, and carrying
capacity, K, we prefer to write the Beverton-Holt model [14] as follows:

p(t + 1) =
(1 + r)K p(t)

K + r p(t)
,

To represent parasite-tree interactions in the general form, both parameters K > 0 and r can be con-
sidered dependent on the population vector of the trees n. We assume that K, r ∈ C1(Rq

+

)
. The depen-

dence on p is already contemplated in the Beverton-Holt equation itself. For each value of n, the map
g : Rq+1

+ → R+ that defines the passage of a unit of time in the parasite population dynamics is defined
as follows

g(n, p) =
(1 + r(n))K(n)p

K(n) + r(n)p
. (2.3)

To include in the discrete-time model the dynamics of the tree and parasite population at different
timescales we follow the procedure established in [10]. Roughly speaking, we consider the timescale
of the joint model that is associated with the slow dynamics of the tree population and we assume that
the fast dynamics of the parasites acts a number l of times while that of the trees acts only once.
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We represent by means of map F : Rq+1
+ → Rq+1

+ what happens in the fast timescale with the
population of parasites assuming that the tree population is constant, and by means of a map S :
Rq+1
+ → Rq+1

+ what happens in the slow timescale with the population of trees assuming constant
parasite population.

F(n, p) =
(
n, g(n, p)

)
, S (n, p) =

(
U
(
n, p

)
n, p

)
. (2.4)

Following [10], the discrete-time model with two timescales that we propose is

(n(t + 1), p(t + 1)) = S
(
F l(n(t), p(t)

))
, (2.5)

where F l is the l-th iterate of map F, that reflects the l times the parasite dynamics acts during a slow
time unit.

This type of system is generally difficult to study analytically. In [10], a general system reduction
is proposed, which is further extended in [11]. In Appendix A, Theorem 2 in [11] is applied to justify
the reduction and to detail the information on the complete model (2.5) that can be obtained from the
reduced model (2.6).

The key point in the reduction is in the existence, for any constant population of trees n, of a globally
asymptotically stable (GAS) equilibrium point in the parasite equation

p(t + 1) = g
(
n, p(t)

)
.

Assuming, henceforth, r(n) > 0, this equilibrium is K(n) [14], that is, nothing but the carrying capacity
for the corresponding value of n. Thus, for any initial population of parasites p(0) > 0, we have

lim
t→∞

p(t) = K(n).

The reduced system (2.6) associated with system (2.5) has n as the state variables vector, and it
is obtained by substituting in the tree population dynamics system (2.1) the variable p by the GAS
equilibrium of the parasite equation K(n). As a consequence, the reduced system can be expressed as
follows

n(t + 1) = S̄ (n(t)) := Ū
(
n(t)

)
n(t) := U

(
n(t),K(n(t))

)
n(t). (2.6)

The results in [11] allow us to extend, with better approximation the greater the ratio between
timescales, some properties of the asymptotic behavior of the solutions of the reduced system (2.6) to
those of the initial system (2.5). Fundamentally, they are those that have to do with belonging to the
basin of attraction of a hyperbolic asymptotically stable equilibrium or periodic solution.

3. Some general results on model (2.5).

In this section, we first detail the dependence on the population densities of the different parameters
that appear in (2.5).

In the fast part of the system, the one that defines the dynamics of the parasite population, two
parameters, r and K, appear. We will consider the growth rate r as constant. Its effect is that the
population of parasites approaches the carrying capacity K more or less quickly but, since we consider
this dynamic faster than the one of the trees, whether it is a specific value or if it varies or not, it plays a
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superfluous role. On the other hand, it seems evident that the carrying capacity K has to be dependent
on the size of the different classes of trees. The higher the density of trees, the greater the carrying
capacity of the parasite.

The dynamics of the tree population are governed by three types of rates: survival, ŝ j, maturation,
m̂ j, and fertility, f̂ j. In the variation of these rates with respect to the densities of the populations, we
want to include, on one hand, the parasites effect of feeding and, on the other one, the two types of
competition that can occur between the trees. Trees compete for soil resources and also for light [17].
We assume that the level of competition for soil resources is a function of a weighted total population
of trees Nw =

∑q
j=1 w jn j, where w j > 0 for j = 1, . . . , q. Competition for light is asymmetric. Trees of

a certain size are assumed to be affected only by those that are larger. Thus, for class j, the variable
indicating the level of competition for light is defined as a weighted sum of trees in classes i with i > j:

N j =

q∑
i= j+1

w̄ jini, j ∈ {1, . . . , q − 1}, and Nq = 0.

The weighting coefficients, w̄ ji > 0, are considered dependent on both the class that is harmed by
competition and the class that causes it.

Therefore, we assume that each of the three rates associated with each class of trees j is a function
of the three variables p, Nw, and N j. In general, we only require that an increase in any of the three
variables causes any of the three rates to decrease. Increased quantities of parasites or tree competition
reduce survival, maturation/growth, and fertility.

The comments above lead to the following conditions on model parameters (note that the inequali-
ties between vectors should be understood component-wise):

Parasite dynamics

r > 0, K ∈ C1(Rq
+,R+), K(0) = 0, ∇K(n) ≥ 0 for all n ∈ Rq

+. (3.1)

Trees dynamics

ŝ j ∈ C1(R3
+, (0, 1)

)
, ∇ŝ j

(
p,Nw,N j

)
≤ 0, j ∈ {1, . . . , q},

m̂ j ∈ C1(R3
+, (0, 1)

)
, ∇m̂ j

(
p,Nw,N j

)
≤ 0, j ∈ {1, . . . , q − 1},

f̂ j ∈ C1(R3
+, [0,∞)

)
, ∇ f̂ j

(
p,Nw,N j

)
≤ 0, j ∈ {1, . . . , q − 1},

f̂q ∈ C1(R3
+, (0,∞)

)
, ∇ f̂q

(
p,Nw,Nq

)
≤ 0, for all p ≥ 0, n ∈ Rq

+.

(3.2)

Even though model (2.5) with hypotheses (3.1) and (3.2) that we have just established is still very
general, we can already find some results about its asymptotic behavior. As we mentioned in Section
2, we can study the reduced system (2.6) to obtain information about the asymptotic behavior of the
solutions of system (2.5).

System (2.6) is an example of a nonlinear matrix system [12,13]. A first question that we can study
is the one related to the stability of the extinction equilibrium 0, that is, finding conditions for it to
be locally asymptotically stable (LAS) or even for it to be GAS. Obviously, 0 is an equilibrium of
system (2.6) and its local stability can be analyzed by linearization. The Jacobian matrix of the map S̄
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at 0 is the matrix U
(
0,K(0)

)
= U

(
0, 0

)
, which is called the inherent projection matrix in the context of

nonlinear matrix systems.

Ū0 := Ū
(
0
)
= U

(
0, 0

)
=



s1(1 − m1) + f1 f2 · · · fq−1 fq

s1m1 s2(1 − m2) · · · 0 0

0 s2m2
. . .

...
...

...
...

. . . sq−1(1 − mq−1) 0

0 0 · · · sq−1mq−1 sq


(3.3)

where s j = ŝ j(0, 0, 0) and f j = f̂ j(0, 0, 0) for j = 1, . . . , q, and m j = m̂ j(0, 0, 0) for j = 1, . . . , q − 1.
Equilibrium 0 is LAS if the spectral radius of matrix Ū0, ρ(Ū0), is less than 1. As the matrix Ū0 is

primitive, the Perron-Frobenius theorem ensures that ρ(Ū0) is an eigenvalue and it is strictly dominant.
In general, it is not possible to obtain an expression for ρ(Ū0) from the coefficients of Ū0, which

would allow us to have an explicit expression of the local stability condition of 0. However, this can
be done through the so-called net reproductive number r0 associated with a certain decomposition of
the matrix Ū0. If we call T0 the matrix that contains only the terms of Ū0 corresponding to survival
and maturation, and F0 the one that contains only those related to fertility, we have the following
decomposition:

Ū0 = T0 + F0,

in which the rates of transition between size classes have been separated from those of recruitment of
new individuals. The net reproductive number r0 is defined as the spectral radius of matrix F0(I−T0)−1,
where I is the q-dimensional identity matrix. It is still an eigenvalue of a matrix, but easy to calculate
since F0 has all its rows equal to zero except the first one. Furthemore, it is useful for our purposes in
view of the fact that it satisfies the following equation [12],

sign
(
r0 − 1

)
= sign

(
ρ(Ū0) − 1

)
.

Adapting the calculation of r0 performed in [12] for the Usher model, we obtain

r0 =
f1

1 − s1(1 − m1)
+

q−1∑
j=2

f j

1 − s1(1 − m1)

( j∏
i=2

si−1mi−1

1 − si(1 − mi)

)
+

fq

1 − s1(1 − m1)

( q−1∏
i=2

si−1(1 − mi−1)
1 − si(1 − mi)

) sq−1mq−1

1 − sq
. (3.4)

Now we can state a result of local stability of trivial equilibrium 0 of system (2.6) and, with the help
of an additional condition, also of global stability.

Proposition 1. Consider the nonlinear matrix system (2.6). Assume that conditions (3.1) and (3.2)
hold.

(i) If r0 < 1, then 0 is LAS.

(ii) If r0 < 1 and, in addition, the maturation rates are constant, m̂ j = m j ( j = 1, . . . , q − 1), then 0 is
GAS, i.e., lim

t→∞
n(t) = 0 for all n(0) ∈ Rq

+.
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(iii) If r0 > 1, then 0 is unstable.

Proof. It follows the proof of Th. 1.2.1 in [12], keeping in mind that the assumption on the m̂ j together
with conditions (3.1) and (3.2) imply that Ū0 ≥ Ū

(
n
)

for all n ∈ Rq
+.

As explained in detail in the Appendix A, equilibrium (0, 0) for system (2.5) has analogous prop-
erties to those established in Proposition 1 regarding equilibrium 0 for system (2.6). In the following
proposition, we specify it with the help of the Theorem 8 in the Appendix A.1.

Proposition 2. Consider the system (2.5). Assume that conditions (3.1) and (3.2) hold.

(i) If r0 < 1, there exists δ0 > 0 such that for every δ > 0 satisfying 0 < δ < δ0, there exists lδ ∈ N
such that for all l ≥ lδ, B̄

(
(0, 0)), δ

)
is a trapping region for mapping S (F l).

(ii) Assume that r0 < 1 and that the maturation rates m̂ j are constant ( j = 1, . . . , q − 1). Then, for
any (n(0), p(0)) ∈ Rq

+ × R+ and every δ > 0, there exist tδ, lδ ∈ N such that
(
S (F l)

)t(n(0), p(0)) ∈
B
(
(0, 0), δ

)
for all l ≥ lδ and t ≥ tδ.

(iii) Assume that r0 > 1. Then, there exists δ0 > 0 such that for every δ > 0 satisfying 0 < δ < δ0

and any point (n, p) ∈ Rq
+ × R+ such that ∥(n, p) − (0, 0)∥ = δ, there exists lδ ∈ N such that(

S (F l)
)
(n, p) < B̄

(
(0, 0), δ

)
for all l ≥ lδ.

Roughly speaking, if r0 < 1 and m̂ j are constant, any solution of (2.5) tends to be as close to (0, 0)
as we like as long as the ratio between timescales l is large enough. From expression (3.4), we obtain
an extinction criterion, r0 < 1, that is easily calculable in terms of the model parameters.

4. Model (2.5) structured in two size classes.

In this section we analyze a two size classes case of the general model (2.5) presented in Section 2.
The assumptions we are making about the different rates involved in the model will allow us to apply
the results developed in Section 3.

For the parasite dynamics, we assume that the growth rate r is constant and that the carrying capacity
K is a linear combination of the densities of each of the two size classes of trees, n1 and n2, that we call
from now on young and adult trees.

r
(
n1, n2

)
= r and K

(
n1, n2

)
= k1n1 + k2n2, (4.1)

where r, k1, and k2 are positive constants. The latter represent the carrying capacity that each tree of
the corresponding class contributes to the parasite population.

For tree dynamics, we must specify survival, maturation, and fertility rates.
The maturation rate is assumed to be constant m̂

(
n1, n2, p

)
= m ∈ (0, 1).

The survival rate of young trees, ŝ1
(
n1, n2, p

)
, depends on their intrinsic survival rate, on parasites,

and on asymmetric competition caused by adult trees. We denote by s1 ∈ (0, 1) the intrinsic young trees
survival rate. To take into account the influence of parasites and adult trees, we consider this survival
rate as a decreasing function of both the number of parasites supported by each tree and the number of
adult trees. Since each young tree represents a part k1 of the parasite carrying capacity and each adult
tree a part k2, we assume that the fraction of parasites supported by each young tree is k1/(k1n1 + k2n2)
and, thus, the number of supported parasites per young tree is pk1/(k1n1 + k2n2).
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Further, we define
ŝ1

(
n1, n2, p

)
=

s1

1 + a1 p
k1

k1n1 + k2n2
+ bn2

,

where a1 and b are positive parameters.
The survival rate of adult trees is defined analogously to that of young trees, eliminating asymmetric

competition. It is the following decreasing function of the number of parasites supported by each one
of them:

ŝ2
(
n1, n2, p

)
=

s2

1 + a2 p
k2

k1n1 + k2n2

,

where s2 ∈ (0, 1) is the adult tree intrinsic survival rate and a2 is a positive parameter.
Finally, we assume that the young trees are not yet fertile and that the fertility of the adult trees is

not affected by the parasites. On the other hand, adult fertility may depend on tree density, reflecting
competition for soil resources. We consider it as a simple decreasing function of the number of young
trees and adult trees:

f̂ (n1, n2) =
f

1 + c1n1 + c2n2
, (4.2)

where c1 and c2 are nonnegative parameters weighting the differences in resources consumption be-
tween young and adult trees.

Table 1. Parameters and their biological descriptions.

Parameter Description Values

r parasite intrinsic growth rate (0,∞)
k1, k2 parts of parasite carrying capacity corresponding to young and adult trees (0,∞)
s1, s2 young and adult trees intrinsic survival rates (0, 1)
a1, a2 coefficients of parasite influence on the young and adult trees survival (0,∞)
b coefficient of asymmetric competition for light of adult trees over young ones (0,∞)
m young trees maturation rate (0, 1)
f adult trees fertility rate (0,∞)
c1, c2 young and adult trees coefficients of competition for soil resources [0,∞)

The complete parasite-tree model with two timescales has the form of system (2.5)(
n1(t + 1), n2(t + 1), p(t + 1)

)
= S

(
F l(n1(t), n2(t), p(t)

))
, (4.3)

where the map F, (2.4), is defined from the map g(n1, n2, p):

g(n1, n2, p) =
(1 + r)(k1n1 + k2n2)p

(k1n1 + k2n2) + rp
,

F
(
n1, n2, p

)
=

(
n1, n2, g(n1, n2, p)

)
,
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and the map S (2.4) from the 2 × 2-matrix U(n1, n2, p):

U(n1, n2, p) =

 (1 − m) ŝ1
(
n1, n2, p

)
f̂ (n1, n2)

m ŝ1
(
n1, n2, p

)
ŝ2

(
n1, n2, p

)  ,
S
(
n1, n2, p

)
=

(
U(n1, n2, p)n, p

)
.

For the three-dimensional system (4.3), the associated two-dimensional reduced system (2.6) is

n(t + 1) = S̄
(
n(t)

)
= Ū

(
n(t)

)
n(t),

with

Ū
(
n
)
=


s1(1 − m)

1 + a1k1 + bn2

f
1 + c1n1 + c2n2

s1m
1 + a1k1 + bn2

s2

1 + a2k2

 , (4.4)

where we have used as equilibrium for p the value of K(n) defined in (4.1).
So, the reduced system reads as follows:

n1(t + 1) =
s1(1 − m)

1 + a1k1 + bn2(t)
n1(t) +

f
1 + c1n1(t) + c2n2(t)

n2(t),

n2(t + 1) =
s1m

1 + a1k1 + bn2(t)
n1(t) +

s2

1 + a2k2
n2(t).

(4.5)

From now on, we analyze the system (4.5) in order to obtain information about the asymptotic
behavior of the solutions of system (4.3). Basically, if the asymptotic behavior in (4.5) is defined
by an equilibrium n∗ =

(
n∗1, n

∗
2
)

(or an asymptotically stable periodic solution), then
(
n∗,K(n∗)

)
=(

n∗1, n
∗
2, k1n∗1 + k2n∗2

)
(or the corresponding periodic solution) approximates the asymptotic behavior in

(4.3). The larger the ratio of the timescales l, the better the approximation.
To begin, we calculate r0 for system (4.5) and then apply Proposition 2 to system (4.3). In this case,

the matrix Ū0 (3.3) is

Ū0 =


s1(1 − m)
1 + a1k1

f

s1m
1 + a1k1

s2

1 + a2k2

 , (4.6)

and its net reproductive number r0 (3.4) is as follows:

r0 =
f s1m(1 + a2k2)(

1 + a1k1 − s1(1 − m)
)(

1 + a2k2 − s2
) . (4.7)

Since system (4.5) is a particular case of system (2.6), Proposition 1 allows us to characterize the
stability of equilibrium 0 with the help of r0. Furthermore, when r0 > 1, we can establish the per-
manence of system (4.5), which roughly means that for positive solutions the total population neither
explodes nor tends to zero (see Def. 1 in [18]).

Proposition 3. Consider system (4.5).

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7040–7066.



7050

(i) If r0 < 1, then 0 is GAS.

(ii) If r0 > 1, then 0 is unstable and (4.5) is permanent.

Proof. It is based on Theorems 1.2.1 of [12] and Theorem 3 of [18] (see Appendix A.1).

The global extinction condition of the population of both trees and parasites, r0 < 1, can be ex-
pressed as:

f <
(
1 + a1k1 − s1(1 − m)

)(
1 + a2k2 − s2

)
s1m(1 + a2k2)

. (4.8)

When r0 > 1, the system is permanent and we can turn to look for nontrivial asymptotic behaviors.
To do this, we study the existence and stability of positive equilibria of the reduced system (4.5).

A first result that we can use is that of the bifurcation of positive equilibrium solutions of system
(4.5), a nonlinear matrix system, when r0 crosses the value 1. We follow [12] and use the inherent net
reproductive number r0 as the bifurcation parameter. We can make r0 appear explicitly in the projection
matrix Ū

(
n
)

by decomposing it as the sum of the matrix of transitions T̄
(
n
)

and the normalized fertility
matrix Φ̄

(
n
)

times r0:
Ū
(
n
)
= T̄

(
n
)
+ r0Φ̄

(
n
)
,

where

T̄
(
n
)
=


s1(1 − m)

1 + a1k1 + bn2
0

s1m
1 + a1k1 + bn2

s2

1 + a2k2

 ,
and

Φ̄
(
n
)
=

 0
(
1 + a1k1 − s1(1 − m)

)(
1 + a2k2 − s2

)
s1m

(
1 + a2k2

)(
1 + c1n1 + c2n2

)
0 0

 .
Nonnegative or positive equilibria of system (4.5) satisfy the equilibrium equation

n =
(
T̄
(
n
)
+ r0Φ̄

(
n
))

n. (4.9)

We are interested in the values of r0 for which the Eq (4.9) has nonnegative solutions other than
0. The following proposition ensures the existence of a supercritical bifurcation of positive and stable
equilibrium points from the bifurcation critical value r0 = 1, which is where 0 loses its stability.

Proposition 4. Consider system (4.5).

(i) For each value of r0 > 1, a positive equilibrium point nr0 can be chosen such that the set of
pairs C+ = {

(
r0,nr0

)
: r0 ∈ [1,∞)}, considering n1 = 0, is closed and connected, and the set of

equilibrium points {nr0 : r0 ∈ [1,∞)} is unbounded.

(ii) For every value of r0 < 1, there exists no positive equilibrium point.

(iii) There exists δ > 0 such that for every r0 ∈ (1, 1 + δ), the equilibrium point nr0 is LAS.

Proof. It is based on Theorems 1.2.7 and 1.2.8 of [12] (see Appendix A.2).
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(a) Young trees. (b) Adult trees.

Figure 1. System (4.5) with parameters values: k1 = 1, k2 = 10, s1 = 0.2, s2 = 0.9, a1 = 1,
a2 = 1, b = 1, m = 0.5, c1 = 0, c2 = 0. Asymptotic density of young and adult trees as
a function of r0 ∈ [0.9, 1.4], obtained from the solution of initial conditions n1(0) = 100 =
n2(0) (for each value of r0, n1(t), and n2(t) are represented for t = 1001, . . . , 1010). The
values of f are calculated in (4.7) from the values of r0 and the values previously set for the
rest of the parameters.

The last proposition assures that when the inherent net reproductive number r0 grows past 1, the
stability of the equilibrium point 0 disappears while a branch of stable positive equilibrium points
appears (transcritical bifurcation), as shown in Figure 1. When we move away from (1, 0) along C+,
the positive equilibria may lose their stability. For this to happen, it is enough that the modulus of
some eigenvalue of the Jacobian matrix of map S̄ (4.5) at nr0 become greater than 1 when we advance
through C+. As it will be proven in the next subsection, in the example in Figure 1, the loss of stability
occurs for values of r0 > r f b ≈ 1.367787, at which a flip bifurcation occurs.

The results of Theorem 8 in Appendix A.1 allow us to extend the results of Proposition (4) to
system (4.3), in the sense that the points

(
nr0 ,K(nr0)

)
, for every r0 ∈ (1, 1 + δ), act approximately as

equilibria LAS in the asymptotic behavior of its solutions. Figure 2 compares the asymptotic behavior
of solutions of system (4.3) with their approximations obtained from the reduced system (4.5). The
comparison is established from the variable p of (4.3), which is approximated by k1n1 + k2n2, with n1

and n2 variables of system (4.5). In Figure 2a, the ratio between timescales has been taken to be l = 5,
and l = 10 in Figure 2b. As can be seen, the approximation is good in both cases for the values of r0 in
which the asymptotic behavior is defined by an equilibrium. On the other hand, when 2-cycles appear,
for r0 > r f b, we see that if l = 10, the approximation is still good, while it fails if l = 5.

In what follows, we try to specify the asymptotic behavior of the solutions of system (4.5) when r0

grows beyond 1.
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(a) l = 5. (b) l = 10.

Figure 2. Systems (4.3) and (4.5) with parameters values: r = 1, k1 = 1, k2 = 10, s1 = 0.2,
s2 = 0.9, a1 = 1, a2 = 1, b = 1, m = 0.5, c1 = 0, c2 = 0. Asymptotic density of parasites
p (thick brown line) in (4.3), and its approximation (thin gold line) given by k1n1 + k2n2

in (4.5), as a function of r0 ∈ [0.9, 1.4]. Both are obtained from the solutions of initial
conditions n1(0) = 100 = n2(0) = p(0) in (4.3) and n1(0) = 100 = n2(0) in (4.5) (for each
value of r0, p(t), and k1n1(t) + k2n2(t) are represented for t = 1001, . . . , 1010). The values of
f are calculated in (4.7) from the values of r0 and the values previously set for the rest of the
parameters.

4.1. Stability of positive equilibrium points of system (4.5) for constant fertility rate.

The analysis in this section is performed with the added hypothesis that the fertility rate, (4.2), is
constant, f̂ (n1, n2) = f . Thus, the reduced model (4.5) from which we start is the following:

n1(t + 1) =
s1(1 − m)

1 + a1k1 + bn2(t)
n1(t) + f n2(t),

n2(t + 1) =
s1m

1 + a1k1 + bn2(t)
n1(t) +

s2

1 + a2k2
n2(t).

(4.10)

The detailed analysis of this system is contained in Appendix A.3, where to perform the calculations
the number of parameters of system (4.10) is reduced to five; see (A.11). Here, we only define a new
parameter

σ2 =
s2

1 + a2k2
,

which can be interpreted as the survival rate of adult trees taking into account the influence of parasites.
The net reproductive number (4.7) is expressed using σ2 as

r0 =
f s1m(

1 + a1k1 − s1(1 − m)
)(

1 − σ2
) ,
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and, thus, condition (4.8) of population extinction can be expressed by the parameter L (A.15):

f < L :=
(
1 + a1k1 − s1(1 − m)

)(
1 − σ2

)
s1m

. (4.11)

When f > L, system (4.10) has a unique positive equilibrium E∗ = (n∗1, n
∗
2) (A.14) that can be

written, using σ2 and L, as

n∗1 =
s1

b

(
1 − m +

f m
1 − σ2

)
( f − L), n∗2 =

s1m
b(1 − σ2)

( f − L). (4.12)

Just as L gives us the existence condition of E∗ > 0, to express conditions of stability/instability of
E∗ we need the parameter M (A.21):

M :=
s1(1 − m)(1 − σ2)(3σ2 + 1) + (1 − σ2)2(1 + a1k1)

s1m(1 − 3σ2)
. (4.13)

The results of the following proposition are included in Proposition 9 in Appendix A.3.

Proposition 5. Let f > L hold in system (4.10), and E∗ be its positive equilibrium (4.12).

(i) If either σ2 ≥ 1/3 , or σ2 < 1/3 and f < M, then E∗ is hyperbolic and LAS.

(ii) If σ2 < 1/3 and f > M, then E∗ is hyperbolic and unstable.

As we have noted in previous sections, using the results of Appendix A.1, the asymptotic results
in Proposition 5 on the two-dimensional reduced system (4.10) admit an approximate extension to the
corresponding three-dimensional starting system with two timescales (4.3).

As stated in the Figure 3, E∗ loses its stability when crossing the f = M curve, and stable 2-
cycles appear as asymptotic elements. In Appendix A.3, it is proven that system (4.10) undergoes a
period-doubling bifurcation on f = M. We reproduce below Proposition 10 in the appendix for ease
of reading.

Proposition 6. For σ2 < 1/3, system (4.10) undergoes a period-doubling bifurcation at f = M.

Again, the results of Appendix A.1 allow us to make, although approximately, the same types of
statements about system (4.3).

5. Discussion

We have proposed a general model (2.5) of a tree size-structured population affected by a parasite.
The model is a discrete-time one and it includes two timescales, a fast one for parasite dynamics
and another slow one for the structured population dynamics. The model (2.5) is analyzed from the
reduced model (2.6). The latter is a nonlinear population matrix model. For this type of model there is
a well-developed theory [12] that allows us to study important features of the asymptotic behavior of
its solutions.

Considering the model (2.5) in all its generality, Propositions 1 and 2 establish the conditions for
the tree-parasite community to be viable or not. This is peformed with the help of the net reproductive
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Figure 3. System (4.10) with parameters values: k1 = 1, a1 = 1, s1 = 0.2, b = 1, m = 0.5,
σ2 = s2/(1 + a2k2) ∈ (0, 1), and f ∈ (0, 100). Curves f = L = 19(1 − σ2) and f = M =
(1−σ2)(3σ2+21)/(1−3σ2), where the system undergoes a transcritical and a period-doubling
bifurcation, respectively.

number r0, which can be calculated explicitly based on the model parameters (3.4). Thus, it is possible
to analyze the influence of the different terms of the model on the viability of the population.

In order to achieve deeper results, in Section 4 the model is particularized by reducing the number
of tree classes to two, young and adult, and proposing concrete expressions for the different growth,
survival, maturation and fertility rates involved. The initial model becomes (4.3), which is studied with
the help of the reduced model (4.5), in which the variable corresponding to the parasite does not appear
and its asymptotic behavior is reflected in the new parameters.

As we mentioned before, the expression (4.7) of r0 of system (4.5) allows us to decide about ex-
tinction or viability of the tree-parasite community. If r0 < 1, we have extinction, and if r0 > 1, no
extinction. From this, the effect of the parasite on the viability of the tree population can be quantified.
To do this, we write (4.7) using the σ2 = s2/(1+ a2k2) notation and, for the sake of symmetry between
tree classes, also σ1 = s1/(1 + a1k1), which we had not used previously. σ1 has an analogous inter-
pretation as that of σ2. It is a sort of survival rate of young trees taking into account the influence of
parasites. The expression for r0 becomes

r0 =
f mσ1(

1 − (1 − m)σ1
)(

1 − σ2
) . (5.1)

This expression is strictly increasing with respect to any of the four variables on which it depends. In
particular, it is in σ1 and σ2. As σ1 ≤ s1 and σ2 ≤ s2, we can ensure that

r0 ≤
f m s1(

1 − (1 − m) s1
)(

1 − s2
) =: r̄0,
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where r̄0 represents the net reproductive number of system (4.5) in the case of no parasites, a1 = a2 = 0.
The condition that the tree population is viable without parasites and nonviable with parasites can then
be expressed as r0 < 1 < r̄0, or, isolating the fertility rate f , as(

1 − s1(1 − m)
)(

1 − s2
)

s1m
< f <

(
1 − σ1(1 − m)

)(
1 − σ2

)
σ1m

. (5.2)

From this inequality, we see that, for any fertility rate f large enough to allow viability of the
tree population in the absence of parasites, sufficiently small values of σ1 can be found that lead the
parasitized population to extinction. A sufficiently large negative effect of parasites on the survival of
young trees can be lethal to both tree and parasite populations. The same does not necessarily occur if
the negative effect of the parasite on the survival of adult trees increases. As a function of σ2, the last
term of inequality (5.2), which is the parameter L in (4.11), is less than

(
1 − σ1(1 −m)

)
/(σ1m), so if f

is greater, the parasitized population remains viable regardless of the greater or lesser damage that the
parasite causes to adult trees.

We discussed the viability of the tree population in relation to the existence of the parasite. This
discussion has revolved, in one way or another, around the relationship between f and L and the results
in Propositions 3 and 4. We now proceed to carry out an analogous discussion on the influence of the
parasite on whether the tree population balances toward a steady state or, on the contrary, oscillates
toward a 2-cycle. This discussion is based on Propositions 5 and 6, and has as its axis the relationship
between f and the parameter M (4.13), which, replacing s1/(1+a1k1) with σ1, is expressed as follows:

M =
σ1(1 − m)(1 − σ2)(3σ2 + 1) + (1 − σ2)2

σ1m(1 − 3σ2)
. (5.3)

From now on, we assume that the parasite effect preserves the viability of the tree population, i.e.,
f > L. We focus on finding situations in which the parasite changes the balance/oscillation tendency
of the non-parasitized tree population.

Starting from (5.4), we define the function

M(x, y) =
x(1 − m)(1 − y)(3y + 1) + (1 − y)2

x m(1 − 3y)
,

so that the value of M in the case of absence of parasite isM(s1, s2), and in the case of parasitized trees
it isM(σ1, σ2). It is simple to verify thatM is a strictly decreasing function in x and strictly increasing
in y. This allows us to easily address two particular cases, those in which the parasite affects only one
of the two classes of trees. We will see that each one of them allows us to find conditions that ensure
one of the two regimes shifts, stable equilibrium/oscillation, between parasitized and non-parasitized
tree population that we are looking for.

Suppose that the parasite is harmful only to young trees and that the non-parasitized tree population
tends to oscillate. This means that a2 = 0 and, as a consequence of Proposition 5, that s2 < 1/3 and
f > M(s1, s2). From a2 = 0 we get σ2 = s2 and, since s1 > σ1 andM is strictly decreasing in x, we
have thatM(s1, s2) <M(σ1, s2) =M(σ1, σ2), so the conditions for the parasite to make an oscillating
population of trees dampen toward a stable equilibrium are, apart from σ2 = s2 < 1/3,

M(s1, s2) < f <M(σ1, σ2). (5.4)
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In situations where a high fertility rate coupled with a low survival rate of adult trees causes a non-
parasitized population of trees to fluctuate, a parasite sufficiently damaging only young trees can bal-
ance the population. Arguments similar to those just presented allow us to conclude that a parasite
affecting only young trees cannot change the trend of a population of non-parasitized trees from stable
to oscillating.

If we now assume that the parasite only harms adult trees and maintain that the non-parasitized tree
population tends to oscillate, we have a1 = 0, s1 = σ1, σ2 < s2 < 1/3, and f > M(s1, s2). This
implies σ2 < 1/3 and, sinceM is strictly increasing in y,M(σ1, σ2) <M(s1, s2) < f , so Proposition
5 yields that the parasitized population also oscillates. On the other hand, if the non-parasitized tree
population tends to a stable equilibrium, there are conditions that ensure that the parasite causes the
population to oscillate. According to Proposition 5, without parasite the population settles to a stable
equilibrium if either s2 ≥ 1/3 or s2 < 1/3 and f <M(s1, s2), and with a parasite there is an oscillation
trend if σ2 < 1/3 and f > M(σ1, σ2). If a2 is large enough, we can obtain σ2 < 1/3 and, provided
that f > (s1(1 − m) + 1)/(s1m) = limσ2→0+M(σ1, σ2), also that f > M(σ1, σ2). If the parasite is
sufficiently harmful (σ2 small enough) and only to adult trees, and the fertility rate satisfiesM(s1, 0) <
f < M(s1, s2), it destabilizes a population that instead would settle to a stable equilibrium without
parasite, inducing persistent oscillations.

6. Conclusions

In this work we have presented a general framework for modeling a structured population that
serves as support for another population, the latter exerting a negative influence on the former. We
have talked about trees and parasites, but obviously the range of application is greater. We had in mind
basic questions concerning plant diseases, or pests, including not only forest but also crop diseases.
Plant diseases that, even though they share some characteristics of diseases in humans or animals [19],
need to be treated specifically [1, 20]. In particular, we have avoided the use of compartmental models
of disease evolution.

We have managed to establish relationships between the intensity of damage caused by parasiti-
zation and different long-term population trends. We have taken advantage of the size structure to
distinguish the effects of parasitism by class. It seems clear, however, that there is a long way to go to
achieve realistic applications on this topic, which we plan to address in future publications hoping that
the established framework is sufficiently broad and flexible.

Finally, we mention some aspects to include in the presented framework to get closer to real ap-
plications [20]. We think about applications that study plant diseases from the point of view of their
economic impact and their control [19], including their effects on both biodiversity and ecosystem ser-
vices [21]. The model used to represent parasite dynamics can be more dynamically rich, so that it
better reflects changes in the host population, including those produced by harvesting or control mea-
sures themselves [22]. Cases in which the host population is harvested or is a deciduous plant that
hosts a parasite feeding on its leaves must be modeled by including this periodic annual variation in its
dynamics. Furthermore, its impact on the parasite must be able to be realistically represented through
the dynamics proposed for it. In all cases, one objective of the model will be to allow theoretical
comparison of the effectiveness of possible disease control methods.
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Appendix

A. Reduction of system (2.5)

The asymptotic behavior of the solutions of system (2.5) and the reduced system (2.6) can be related
by making use of results in [11]. We need to find the limit F̄ of the iterates F l of the function F (2.4),
and prove that the convergence of F l to F̄ is uniform on compact sets.
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Since n remains constant through F, to obtain liml→∞ F l, it is enough to calculate the limit of the
iterates of the function gn(p) = g(n, p), which we know (Beverton-Holt model, [14]) it is K(n). Thus,
we define

F̄(n, p) = (n,K(n)). (A.1)

Lemma 7. Let F and F̄ be respectively defined in (2.4) and (A.1); the following limit exists uniformly
on compact sets of Ω :=

(
Rq
+ − {0}

)
× (0,∞)

lim
l→∞

F l(n, p) = F̄(n, p).

Proof. Let H be any compact set included in Ω and choose any ε > 0. We need to prove that we can
find l0 ∈ N such that

|K(n) − gl
n(p)| < ε, for all (n, p) ∈ H and all l ≥ l0.

For any (n′, p′) ∈ H, since K(n′) is a GAS equilibrium of equation p(t+1) = g(n′, p(t)), there exists
l(n′,p′) ∈ N such that

|K(n′) − gl
n′(p′)| < ε, for all l ≥ l(n′,p′). (A.2)

As the convergence of the solutions of equation p(t + 1) = g(n, p(t)) to K(n) is monotonous, we
also have, for any (n, p) ∈ H and any 0 ≤ l1 ≤ l2, that

|K(n) − gl2
n (p)| ≤ |K(n) − gl1

n (p)|. (A.3)

Using (A.2) and the fact that |K(x) − g
l(n′ ,p′)
x (y)| is a continuous function for (x, y) ∈ Ω, we can find

an open neighborhood U(n′,p′) of (n′, p′) such that

|K(n′′) − g
l(n′ ,p′)
n′′ (p′′)| < ε, for all (n′′, p′′) ∈ U(n′,p′),

and using (A.3), we obtain that

|K(n′′) − gl
n′′(p′′)| < ε, for all (n′′, p′′) ∈ U(n′,p′) and all l ≥ l(n′,p′). (A.4)

To finish the proof, we perform a standard compactness argument.
{U(n′,p′)}(n′,p′)∈H is an open covering of the compact set H, therefore, it possesses a finite sub-covering

{U(n′1,p
′
1), . . . ,U(n′m,p′m)} and, choosing

l0 = max{l(n′1,p
′
1), . . . , l(n′m,p′m)},

we have
|K(n) − gl

n(p)| < ε, for all (n, p) ∈ H and all l ≥ l0,

as we wanted to prove.

The next theorem, which relates the asymptotic behavior of systems (2.5) and (2.6) for big enough
values of parameter l, is nothing more than Theorem 2 of [11] adapted to our setting.

Theorem 8. Let m ∈ N and let n∗ ∈ Rq
+ be a hyperbolic m-periodic point of system (2.6).
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(i) Assume n∗ is LAS and let (n(0), p(0)) ∈ Ω be such that limt→∞ S̄ mt(n(0)) = n∗. Then, it follows:

(1.a.) There exists δ0 > 0 such that for every δ > 0 satisfying 0 < δ < δ0, there exists lδ ∈ N
such that for all l ≥ lδ, B̄

(
(n∗,K(n∗)), δ

)
is a trapping region for mapping

(
S (F l)

)m and, moreover,(
S (F l)

)m has at least a fixed point (n∗l , p
∗
l ) ∈ B

(
(n∗,K(n∗)), δ

)
.

(1.b.) There exists δ0 > 0 such that, for every δ > 0 satisfying 0 < δ < δ0, there exist tδ, lδ ∈ N
such that

(
S (F l)

)mt+1(n(0), p(0)) ∈ B
(
(n∗,K(n∗)), δ

)
for all l ≥ lδ and t ≥ tδ.

(ii) Assume n∗ is unstable. Then, there exists δ0 > 0 such that for every δ > 0 satisfying 0 < δ < δ0 and
any point (n, p) such that ∥(n, p) − (n∗,K(n∗))∥ = δ, there exists lδ ∈ N such that

(
S (F l)

)m(n, p) <
B̄
(
(n∗,K(n∗)), δ

)
for all l ≥ lδ. In particular, B̄

(
(n∗,K(n∗)), δ

)
is not a stable set for

(
S (F l)

)m(n, p).

The theorem is stated in a general way for periodic solutions, although in most of the results it
will be applied to equilibrium points. What this theorem tells us in the case of equilibrium points is the
following. Always for l large enough, if we have found a hyperbolic LAS equilibrium n∗ of the reduced
system (2.6) with a certain basin of attraction B, we can ensure that the solutions of the complete
system (2.5) with initial conditions n(0) ∈ B and any p(0) > 0 will tend toward a neighborhood of
point

(
n∗,K(n∗)

)
, which we can make as small as we want provided l (timescales ratio) is big enough.

Although this is only approximately so, we will assume that if n∗ helps us to define the asymptotic
behavior of solutions with certain initial values n(0) in system (2.6), then

(
n∗,K(n∗)

)
plays the same

role in the complete system for all solutions that share these n(0), whatever p(0) is.

A.1. Proof of Proposition 3

Proof. Statement (i) is a direct consequence of Proposition 1 (ii).
The instability of 0 in statement (ii) follows from Proposition 1 (iii).
To prove the permanence of system (4.5), we apply Theorem 3 in [18]. Some of the hypotheses of

the theorem are immediate to check:
- System (4.5) is continuous.
- Ū0 (4.6) is irreducible, in fact, it is a positive matrix.
- R2

+ \ 0 is positively invariant for (4.5) since Ū(n), (4.4), is a positive matrix for all n, and so if
n ∈ R2

+ \ 0, their product is positive.
- As r0 > 1, the dominant eigenvalue of Ū0 is greater than one.

It only remains to prove that (4.5) is dissipative to finish the proof. Following the definition 2
in [18], we have to prove that there exists a compact set L ⊂ R2

+ such that for all n(0) ∈ R2
+, there exists

a t̄ = t̄(n(0)) satisfying n(t) ∈ L for all t ≥ t̄.
Starting from (4.5), we write the quotient n1(t + 1)/n2(t + 1) in the following form:

n1(t + 1)
n2(t + 1)

=

1 − m
m
·

s1m
1 + a1k1 + bn2(t)

n1(t) +
f
σ2
·

1
1 + c1n1(t) + c2n2(t)

σ2 n2(t)

s1m
1 + a1k1 + bn2(t)

n1(t) + σ2 n2(t)
,

where we have set σ2 := s2/(1 + a2k2), and obtain the next inequalities:

n1(t + 1)
n2(t + 1)

≤ max
{

1 − m
m
,

f
σ2
·

1
1 + c1n1(t) + c2n2(t)

}
≤ max

{
1 − m

m
,

f
σ2

}
=: β,
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n1(t) ≤ βn2(t), for t = 1, 2, . . . , (A.5)

and, substituting into the second equation of (4.5),

n2(t + 1) ≤
s1m β

1 + a1k1 + bn2(t)
n2(t) + σ2 n2(t). (A.6)

Let us now consider the scalar difference equation

x(t + 1) = g(x(t)) =
s1m β

1 + a1k1 + bx(t)
x(t) + σ2 x(t), (A.7)

and, for any initial conditions
(
n1(0), n2(0)

)
∈ R2

+, let
{(

n1(t), n2(t)
)}

be the corresponding solution of
system (4.5) and {x(t)} be the solution of Eq (A.7) that satisfies x(0) = n2(0). Without loss of generality,
we assume that n2(0) > 0 (if this is not the case, n2(1) > 0 will be satisfied for

(
n1(0), n2(0)

)
∈ R2

+).
Since g(x) is strictly increasing for x ≥ 0, inequalities (A.5) and (A.6) imply, for t = 1, 2, . . . ,

n2(t) ≤ x(t) = gt(x2(0)
)

and n1(t) ≤ β gt(x2(0)
)
. (A.8)

The equation g(x) = x, apart from 0, has only one solution

x∗ =
s1m β − (1 − σ2)(1 + a1k1)

b(1 − σ2)
. (A.9)

If x∗ ≤ 0, as limx→∞(x − g(x)) = ∞, then g(x) < x for all x > 0. So, all solutions of (A.7) with x(0) > 0
would be decreasing and tend to 0. This would imply, using (A.8), that solutions of system (4.5) with(
n1(0), n2(0)

)
∈ R2

+ would tend to (0, 0). Since this cannot be if r0 > 1, we can ensure that x∗ > 0. Now,
using that g(x) is increasing and g′(x) decreasing, it is straightforward to see that for 0 < x < x∗ we
have x < g(x) < g(x∗) = x∗, and for x > x∗ we have x∗ < g(x) < x. Then, Theorem 2.8 in [14] applies
and, thus, all positive solutions of (A.7) are monotonic and tend to equilibrium x∗.

Finally, the previous calculations allow us to ensure that if we choose any l > x∗, the compact set L
whose existence we had to prove can be defined as

L = [0, β l] × [0, l] ⊂ R2
+. (A.10)

A.2. Proof of Proposition 4

Proof. To prove the first assertion of the proposition, we need to apply Th. 1.2.7 and part (i) of Th. 1.2.8
in [12]. So, we have to check that the hypotheses (1.34) (a)–(e) are met, and that lim|n|→∞,n∈R2

+
ν(n) = 0.

We start with the hypotheses (1.34) (a)–(e):

(a) T̄(n) =
(
ti j(n)

)
, ti j ∈ C∞(Ω, (0, 1)) (Ω is an open set of R2 containing R2

+, and t1 j(n) + t2 j(n) ≤ 1
for j = 1, 2. It readily holds taking Ω = {n ∈ R2 : 1 + a1k1 + bn2 > 0}.

(b) I − T̄(n) is invertible for all n ∈ R2
+. Immediate.

(c) Φ̄(n) =
[
ϕi j(n)

]
, ϕi j ∈ C∞(Ω,R+) holds taking Ω = {n ∈ R2 : 1 + c1n1 + c2n2 > 0}.

(d) T̄(n)+ r0Φ̄(n) is irreducible and primitive for all n ∈ R2
+ and r0 > 0. It is clear since all the entries

of these matrices are positive.
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(e) Straightforward computations show that, for all n ∈ R2
+, the matrix Φ̄(n)

(
I − T̄(n)

)−1
has a posi-

tive, strictly dominant, simple eigenvalue

ν(n) =
1 + a1k1 − (1 − m)s1(

1 + a1k1 + bn2 − (1 − m)s1
)(

1 + c1n1 + c2n2
) ,

ν(0) = 1, with a nonnegative eigenvector u(n) =
(

1
0

)
≥ 0, such that

(
I − T̄(n)

)−1
u(n) =


1 + a1k1 + bn2

1 + a1k1 + bn2 − (1 − m)s1

ms1(1 + a2k2)(
1 + a1k1 + bn2 − (1 − m)s1

)(
1 + a2k2 − s2

)
 > 0.

Finally, from the expression for ν(n), it is easy to deduce that

lim
|n|→∞,n∈R2

+

ν(n) = 0.

The second and third assertions of the proposition are a direct consequence, respectively, of parts 3
and 2 of the aforementioned Th. 1.2.8 in [12]. To verify that they can be applied, it is enough to prove
that ν(n) < 1 for all n > 0, which is immediate since

ν(n) ≤
1 + a1k1 − (1 − m)s1

1 + a1k1 + bn2 − (1 − m)s1
< 1.

A.3. Analysis of system (4.10)

Nine parameters appear in system (4.10), but we can group them and reduce their number to five.
We leave m and f as they are, and define

q1 := (1 + a1k1)/s1 > 1, b1 := b/s1 > 0 and σ2 := s2/(1 + a2k2) ∈ (0, 1). (A.11)

The expression of system (4.10) with the new parameters is

n1(t + 1) =
1 − m

q1 + b1n2(t)
n1(t) + f n2(t),

n2(t + 1) =
m

q1 + b1n2(t)
n1(t) + σ2 n2(t).

(A.12)

The equilibria E∗ = (n∗1, n
∗
2) of system (A.12) are the solutions of the following system:

n1 =
1 − m

q1 + b1n2
n1 + f n2, n2 =

m
q1 + b1n2

n1 + σ2 n2. (A.13)

From the second equation, and equating n1/(q1 + b1n2) in both equations, we get

n1 =
1 − σ2

m
n2(q1 + b1n2),

1
1 − m

n1 =
(1 − σ2

m
+

f
1 − m

)
n2,
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and, discarding equilibrium 0, we obtain equilibrium E∗ = (n∗1, n
∗
2), where

n∗1 = (1 − m)
(1 − σ2

m
+

f
1 − m

)
n∗2, n∗2 =

(1 − m − q1)(1 − σ2) + m f
b1(1 − σ2)

. (A.14)

E∗ is a feasible equilibrium whenever (1−m−q1)(1−σ2)+m f > 0, that is, if the following condition
holds:

f >
(m + q1 − 1)(1 − σ2)

m
=: L. (A.15)

This condition is equivalent to the net reproductive number n0, (4.7), being greater than one. From now
on, we assume that f > L holds.

We study the stability of E∗ through linearization. Direct calculations lead us to the following
Jacobian matrix:

J(E∗) =


(1 − m)(1 − σ2)

(1 − m)(1 − σ2) + m f
f −

1 − m
m

b1(1 − σ2)2

(1 − m)(1 − σ2) + m f
n∗2

m(1 − σ2)
(1 − m)(1 − σ2) + m f

σ2 −
b1(1 − σ2)2

(1 − m)(1 − σ2) + m f
n∗2

 (A.16)

We let tr
(
J(E∗)

)
and det

(
J(E∗)

)
denote the trace and determinant of matrix J(E∗), respectively, and

apply the Jury test [14]. We look for conditions so that the following double inequality is satisfied,∣∣∣tr(J(E∗
)∣∣∣ < 1 + det

(
J(E∗)

)
< 2. (A.17)

In the following, we will repeatedly use the conditions set on the parameters: m ∈ (0, 1), f > 0,
q1 > 1, b1 > 0, and σ2 ∈ (0, 1).

The expression of det
(
J(E∗)

)
simplifies to

det
(
J(E∗)

)
=

(1 − σ2)
(
(1 − m)σ2 − m f

)
(1 − m)(1 − σ2) + m f

, (A.18)

and, since 1 − det
(
J(E∗)

)
=

(1 − m)(1 − σ2)2 + (2 − σ2)m f
(1 − m)(1 − σ2) + m f

> 0, it follows that 1 + det
(
J(E∗)

)
< 2.

The trace tr
(
J(E∗)

)
can be expressed as

tr
(
J(E∗)

)
=

(1 − σ2)2q1 + 2(1 − m)σ2(1 − σ2) + m f (2σ2 − 1)
(1 − m)(1 − σ2) + m f

, (A.19)

To check the first inequality in (A.17), we need to know the sign of tr
(
J(E∗)

)
. The only term that

can be negative in expression (A.19) is 2σ2 − 1, so if σ2 ≥ 1/2, then tr
(
J(E∗)

)
> 0. On the other hand,

if σ2 < 1/2, tr
(
J(E∗)

)
≥ 0 if, and only if,

f ≤
(1 − σ2)2q1 + 2(1 − m)σ2(1 − σ2)

m(1 − 2σ2)
=: L̄. (A.20)

In short, tr
(
J(E∗)

)
≥ 0 if either σ2 ≥ 1/2, or σ2 < 1/2 and f ≤ L̄, and, thus, tr

(
J(E∗)

)
< 0 if σ2 < 1/2

and f > L̄.
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Let us first assume that tr
(
J(E∗)

)
≥ 0, and we then have

1 + det
(
J(E∗)

)
− tr

(
J(E∗)

)
=

(1 − σ2)
(
(1 − m − q1)(1 − σ2) + m f

)
(1 − m)(1 − σ2) + m f

=
(1 − σ2)m( f − L)

(1 − m)(1 − σ2) + m f
> 0

due to condition (A.15). So, if tr
(
J(E∗)

)
≥ 0, the feasible equilibrium E∗ is LAS.

Now assuming that tr
(
J(E∗)

)
< 0, i.e., σ2 < 1/2 and f > L̄, let us study the sign of

1 + det
(
J(E∗)

)
+ tr

(
J(E∗)

)
=

(1 − m)(1 − σ2)(3σ2 + 1) + m f (3σ2 − 1) + (1 − σ2)2q1

(1 − m)(1 − σ2) + m f
.

The denominator is positive, and the numerator is also positive whenever either σ2 ≥ 1/3 or σ2 < 1/3,
and the following condition is met

f <
(1 − m)(1 − σ2)(3σ2 + 1) + (1 − σ2)2q1

m(1 − 3σ2)
=: M. (A.21)

In all these cases, E∗ is also LAS.
We can assure that E∗ is unstable if tr

(
J(E∗)

)
< 0, σ2 < 1/3, and f > M. Since

L̄ − L =
(1 − σ2)(σ2q1 + 1 − m)

m(1 − 2σ2)
, and M − L̄ =

(1 − σ2)2(σ2q1 + 1 − m)
m(1 − 2σ2)(1 − 3σ2)

,

we have that σ2 < 1/3 implies that L < L̄ < M and, therefore, the existence and instability conditions
of the feasible equilibrium E∗ are simplified to σ2 < 1/3 and f > M.

We bring together in the following proposition what we have seen so far about the positive equilib-
rium of system (A.12).

Proposition 9. System (A.12) possesses the feasible equilibrium E∗ (A.13) whenever f > L (A.15).

(i) If either σ2 ≥ 1/3 , or σ2 < 1/3 and f < M (A.21), then E∗ is hyperbolic and LAS.

(ii) If σ2 < 1/3 and f > M, then E∗ is hyperbolic and unstable.

(iii) If σ2 < 1/3 and f = M, then E∗ is non-hyperbolic and the eigenvalues of J(E∗) are

λ1 = −1 and λ2 =
(1 − σ2)2q1 + (1 − m)(1 + σ2)

(1 − σ2)q1 + 2(1 − m)
∈ (0, 1).

Proof. Claims (i) and (ii) have been previously proven.
To prove claim (iii), in (A.16), just replace n∗2 with its value (A.14) and make f = M:

J(E∗) =


(1 − m)(1 − 3σ2)

2(1 − m) + (1 − σ2)q1

(1 − σ2)
(
q1 + 3(1 − m)

)(
(1 − σ2)2q1 + 4(1 − m)σ2

)
m(1 − 3σ2)

(
2(1 − m) + (1 − σ2)q1

)
m(1 − 3σ2)

2(1 − m) + (1 − σ2)q1

2(2σ2 − 1)(1 − m) − (1 − σ2)σ2q1

2(1 − m) + (1 − σ2)q1

 (A.22)

and a simple calculation gives us the result.
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The last assertion reveals the possible existence of a period-doubling bifurcation when f crosses the
threshold value M, an issue that we justify below.

We assume that f > L so that system (A.12) has the only feasible equilibrium E∗ = (n∗1, n
∗
2) (A.13).

We apply the procedure developed in [23] (Section 5.4.2).
We first move E∗ to the origin. Let us apply the following change of variables, X = (x1, x2) =

(n1 − e1, n2 − e2), which converts system (A.12) into

X(t + 1) = g
(
X(t)

)
,

with
x1(t + 1) = −e1 +

1 − m
q1 + b1

(
e2 + x2(t)

) (
e1 + x1(t)

)
+ f

(
e2 + x2(t)

)
,

x2(t + 1) = −e2 +
m

q1 + b1
(
e2 + x2(t)

) (
e1 + x1(t)

)
+ σ2

(
e2 + x2(t)

)
.

This system can still be written in the following form:

X(t + 1) = A X(t) +G
(
X(t)

)
, (A.23)

where A = Jg(0), the Jacobian matrix of map g at equilibrium 0. Thus, G(X) = g(X) − Jg(0)X =
O
(
∥X∥2

)
, and it can be expressed in the following form:

G(X) =
1
2

B(X, X) +
1
6

C(X, X, X) + O
(
∥X∥4

)
, (A.24)

with B(X,Y) and C(X,Y,Z) multi-linear functions, defined, for i = 1, 2, as follows:

Bi(X,Y) =
2∑

j,k=1

∂2Gi(0)
∂x j∂xk

x jyk, and Ci(X,Y) =
2∑

j,k,l=1

∂3Gi(0)
∂x j∂xk∂xl

x jykzl. (A.25)

Following Proposition 9 (iii), to check the existence of a period-doubling bifurcation, we assume
from now on that σ2 < 1/3 and f = M. In this case, matrix A in (A.23) is the Jacobian matrix (A.22).

Let v and w be right and left eigenvectors, respectively, of the matrix A associated with the eigen-
value -1, and normalized so that their scalar product is 1, ⟨v,w⟩ = 1. For example:

v =
(
(1 − σ2)2q1 + 4(1 − m)σ2,m(3σ2 − 1)

)
(A.26)

w =
(

1
(σ2

2 − 3σ2 + 2)q1 + (1 − m)(3 + σ2)
,

(1 − σ2)
(
q1 + 3(1 − m)

)
m(3σ2 − 1)

(
(σ2

2 − 3σ2 + 2)q1 + (1 − m)(3 + σ2)
)) .
(A.27)

In [23], from these vectors, a linear transformation of system (A.23) is carried out. With the help of
the Taylor expansion (A.24), the center manifold of the system at equilibrium 0 is approximated. After
calculating the restriction of the system on this manifold, which is a scalar equation, it is transformed
to its normal form. The structure of the normal form is x(t + 1) = −x(t) + c(x(t))3 + O((x(t))4) and
the coefficient c determines the nondegeneracy of the period-doubling bifurcation and its direction.
When c > 0, the bifurcation is supercritical, to the right, and, therefore, when the parameter f becomes
greater than M, the 0 equilibrium is no longer stable and a stable 2-cycle appears in its place.
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The calculation of c can be performed using expression (5.49) in [23]

c =
1
6

〈
w,C(v, v, v)

〉
−

1
2

〈
w, B

(
v, (A − I)−1B(v, v)

)〉
, (A.28)

where B and C are defined in (A.25), v in (A.26), w in (A.27), A is matrix (A.22), and I the second
order identity matrix.

Straightforward calculations give us

B(v, v) =
(
2b1(1 − m)m(1 + σ2)(1 − 3σ2)3

(1 − σ2)q1 + 2(1 − m)
,

2b1m2(1 + σ2)(1 − 3σ2)3

(1 − σ2)q1 + 2(1 − m)

)
(A.29)

and

C(v, v, v) =
6b2

1(1 − m)m2(1 + σ2)(1 − 3σ2)5(
(1 − σ2)q1 + 2(1 − m)

)2 ,
6b2

1m3(1 + σ2)(1 − 3σ2)5(
(1 − σ2)q1 + 2(1 − m)

)2

 , (A.30)

and, finally,

c =
b2

1m2σ2(1 + σ2)(1 − 3σ2)4

(1 − σ2)(σ2q1 − m + 1)
(
(σ2

2 − 3σ2 + 2)q1 + (1 − m)(3 + σ2)
) . (A.31)

Taking into account the range of values of each parameter (A.11) and the assumption that σ2 < 1/3, it
is obvious that c > 0. Thus, we have proved the following proposition.

Proposition 10. Assume σ2 < 1/3. Then, system (A.12) undergoes a period-doubling bifurcation at
f = M.
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