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A B S T R A C T   

The unceasing evolution of analytical instrumentation determines an exponential increase of data production, 
which in turn boosts new cutting-edge analytical challenges, requiring a progressive integration of artificial 
intelligence (AI) algorithms into the instrumental data treatment software. Machine learning, deep learning, and 
computer vision are the most common techniques adopted to exploit the information potential of advanced 
analytical chemistry measures. In this paper, our primary focus is on elucidating the remarkable advantages of 
leveraging AI tools for comprehensive two-dimensional gas chromatography data (pre)processing. We illustrate 
how AI techniques can efficiently explore the complex datasets derived from multidimensional platforms 
combining comprehensive two-dimensional separations with mass spectrometry in the challenging application 
area of food-omics. 

Pattern recognition based on image processing, computer vision, and AI smelling are discussed by introducing 
the principles of operation, reviewing available tools and software solutions, and illustrating their potentials and 
limitations through selected applications.   

1. Introduction 

Artificial intelligence (AI) is an exponentially expanding field poised 
to transform the landscape of analytical chemistry [1]. Within this 
expansive domain, various specialized branches have emerged to 
confront intricate challenges. One way to divide AI into branches is 
based on the type of learning involved [2]. Machine learning (ML) 
represents the cornerstone of AI, since it empowers computers to learn 
and predict from large amounts of data (Big Data) [3]. ML models and 
algorithms are trained on the data collected in the lab and then used to 
make predictions on novel samples. Another significant field of AI is 
deep learning (DL), an advanced facet of ML, which harnesses artificial 
neural networks (ANN) inspired by the complexity of the human brain, 
enabling tasks such as nuanced image recognition [4]. Other AI tools 
involve natural language processing (NLP), which facilitates seamless 

communication between computers and human languages, fuelling ad-
vancements in speech recognition and machine translation [3], com-
puter vision (CV), which imparts machines with the ability to 
comprehend images and videos [5], and robotics, a pivotal arm of AI, is 
dedicated to the design and operation of robots, utilizing algorithms to 
handle tasks ranging from navigation to sophisticated manipulation [6]. 
These specialized branches collectively sculpt the intriguing terrain of 
AI, reshaping industries and heralding the future of technology. It is 
important to note that these branches of AI are not mutually exclusive. 
For example, many deep learning algorithms are also machine learning 
algorithms. Additionally, many AI applications use techniques from 
multiple branches of AI such as, for instance, open-source or commercial 
software [7], which might use DL algorithms to identify regions of in-
terests (ROIs) contour images within the data acquired from compre-
hensive two-dimensional gas chromatography coupled to mass 
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spectrometry (GC × GC-MS) [8], CV algorithms to evaluate the chro-
matographic fingerprint of the acquired samples images [9,10], and ML 
algorithms to develop supervised predictive models. All these strategies 
find applications in several research fields, such as environmental 
monitoring [11], exposome profiling [12], pharmaceutical research 
[13] and food quality [14–16], thus facilitating informed 
decision-making and accelerating the identification of innovative target 
compounds (e.g., biomarkers). 

Dividing AI into branches is useful for organising and understanding 
the different types of AI techniques. However, it is essential to remember 
that these branches are not mutually exclusive and that many AI ap-
plications use techniques from multiple branches of AI [17]. 

Undoubtedly, the most promising application of AI in analytical 
chemistry is ML, whose algorithms and models are exploited for data 
(pre)processing [18], unsupervised data analysis (explorative models) 
[19,20], supervised data analysis (classification [21] and regression 
models [22]) and design of experiment (DoE) [23,24]. 

AI algorithms serve as powerful tools, automating tasks, enhancing 
the precision of analytical methods, and pioneering novel techniques, 
especially in the -omics research [25]. Foodomics, in particular, is a 
complex field that analyses a wide range of food components, including 
primary metabolites, secondary/specialized metabolites, and other 
non-nutrient compounds (metabolomics) [26] to connect with biolog-
ical outcomes in the nutrition and food science domains [27]. Multidi-
mensional chromatography (MDC) techniques are powerful tools for 
separating and identifying these components, but it generates large and 
complex datasets whose interpretation can be challenging [26]. There-
fore, AI algorithms are usually exploited to ease or possibly automate the 
analysis of these datasets and identify patterns and trends that would be 
substantially impossible to detect by manual inspection. 

In the domain of MDC, the targeted and untargeted approaches 
delineate methodological disparities, both designed with specific ob-
jectives and scientific applications. The targeted strategy is meticulously 
crafted to precisely examine predetermined compounds or compound 
classes within a given sample, necessitating calibration curves or stan-
dards tailored to the specific compounds under exam [28]. In contrast, 
the untargeted approach adopts a more expansive stance, enabling the 

comprehensive exploration of the entire chromatographic domain 
devoid of predefined targets [9,16]. This methodology involves the 
judicious selection of ROIs in both dimensions of the chromatogram, 
facilitating the discovery of unforeseen compounds or intricate patterns 
within the data [8,29]. ML techniques shine in this domain, leveraging 
their ability to recognize patterns and correlations within large datasets. 
ML algorithms, particularly those in unsupervised learning such as 
principal component analysis (PCA) [30,31] or t-distributed stochastic 
neighbour embedding (t-SNE) [32], can uncover previously unidentified 
biomarkers or unique biological patterns, enhancing our understanding 
of complex biological systems. In contrast, while it is invaluable for 
confirming hypotheses and specific biological investigations, targeted 
approaches require fewer advanced computational methods due to their 
narrower focus, typically devoted to regression or classification tasks. 
Therefore, the selection between targeted and untargeted approaches, as 
well as the use of specific ML algorithms, is contingent upon the research 
objectives, wherein targeted methods offer precision and specificity, 
while untargeted approaches provide versatility and the opportunity for 
discovery novel target markers. 

In this paper, our primary focus is not on ML per se. Instead, we focus 
on elucidating the remarkable advantages of leveraging AI tools for data 
(pre)processing. Our aim is to illustrate how AI techniques can effi-
ciently explore the complex datasets derived from comprehensive two- 
dimensional chromatography (C2DC) in the application area of food- 
omic. By harnessing the power of AI, we highlight the potential for 
streamlined and insightful data analysis which includes data pre- 
processing, data processing based on different kind of features, and 
data mining as illustrated in the schematic diagram of Fig. 1. Through 
this exploration, we showcase the transformative impact of AI in deci-
phering the complexities of GC × GC data, emphasizing efficiency and 
precision in data processing. 

The application of data mining and ML to collected peak features and 
peak-region features proves immensely useful in foodomics. This inte-
gration of techniques adds significant value to the analysis of complex 
datasets generated from advanced analytical technologies. One primary 
advantage lies in pattern recognition and classification, where these 
methods help identify distinctive peak features or patterns serving as 

Fig. 1. Logic workflow to access higher level information. Domains where AI tools are adopted: data mining and machine learning; data processing, data pre- 
processing. Further details are provided in the text. 
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biomarkers for specific food components or contaminants. This capa-
bility is particularly vital for quality control, authentication, and safety 
assessment within the food industry. Additionally, ML algorithms play a 
crucial role in feature selection, focusing on the most relevant peak 
features or regions and effectively reducing dimensionality. This not 
only streamlines the analysis process, but also enhances the efficiency of 
subsequent modeling efforts. Furthermore, ML techniques enable pre-
dictive modeling for quantitative analysis, allowing for the accurate 
prediction of the quantity of specific compounds present in food sam-
ples, contributing to a more in-depth understanding of food composi-
tion, quality, and safety through the extraction of meaningful insights 
from complex molecular datasets. 

Machine learning is seamlessly integrated into the field of data 
mining, playing a crucial role in various stages of the process. In terms of 
data pre-processing, machine learning algorithms contribute to handling 
missing data by predicting and filling values, and they assist in data 
cleaning through techniques like clustering and anomaly detection. 
Moreover, feature selection benefits from ML’s statistical prowess, 
employing algorithms to identify the most relevant features for predic-
tive models. Dimensionality reduction, often achieved through methods 
like principal component analysis (PCA) and unsupervised algorithms, 
utilizes machine learning to reduce complexity while preserving essen-
tial information. Furthermore, ML involves the application of classifiers 
and regressors to categorize and predict data in a supervised way. 
Therefore, ML’s role extends to addressing the interpretability of 
models, with features integrated to enhance transparency in the data 
mining process. Consequently, the integration of ML into data mining 
amplifies the capacity to extract meaningful insights from vast and 
complex datasets. 

1.1. Nature’s complexity and analytical system dimensions 

As intriguing test bench for AI tools and concepts, food applications 
offer many challenges due to the compositional complexity of samples 
(e.g., primary metabolites, secondary/specialized metabolites, process-
ing derivatives, exogenous compounds from microbial communities, 
presence of xenobiotics and contaminants etc.) and the properties con-
nected to specific yet unique chemical patterns. Multidimensional 
analysis (MDA) systems, combining physico-chemical discrimination of 
individual components by chromatography with the structure- 
elucidation potential of MS, are the ultimate solutions for comprehen-
sive investigations. However, the analytical data generated by MDA 
platforms have to be fully exploited by applying non-conventional ap-
proaches supported by the AI potential, to make a further step ahead and 
generate new knowledge on food properties, going beyond current 
quality indexes. 

Biological systems are characterized by a high degree of complexity 
due to multi-level interactions of molecular patterns on multiple targets 
[33]. To reveal and understand the higher-order network structures and 
relationships between conditions that generate biological phenomena, 
system biology has developed and validated investigation strategies and 
tools capable of tackling Nature’s complexity while giving access to 
higher-level information [16,34]. The so-called integrationist approach of 
system biology necessitates MDA systems to perform untargeted analysis 
[33] while requiring dedicated yet effective data processing to fully 
exploit the information potential and generate new knowledge. 

Food science can take great benefits by implementing such 
comprehensive investigations (i.e., integrationism) since the generation 
of new knowledge would overcome current protocols/markers used in 
quality and authenticity assessment [35,36], sometimes ineffective or 
unreliable, by defining new robust markers capable of predicting key 
properties of food (e.g., origin, sensory features, quality level, nutritional 
density, bioactivity, etc.) [9,37,38]. 

Nowadays, we can affirm that analytical platforms adopted in omics 
have reached the maturity and effectiveness foreseen by R. Wilson in 
1991 “A persistent research frontier is the analytical chemistry of the 

mixtures of chemical substances generated by living organisms. The problems 
of separation, molecular identification, and quantification of these mixtures 
are enormous. They are the ultimate molecular mishmash. The challenges 
they offer have demanded, and produced, many new concepts in chemical 
measurement science” [39]. 

In the field of GC, the conceptualization and realization of the first 
system for GC × GC marked a turning point in the approach to volatiles 
and semi-volatile mixtures analysis, while also revolutionized the means 
to process and interpret the resulting data. In 1991 Liu and Phillips 
showed the first comprehensive 2D separation of a mixture by con-
necting in-series two capillary columns. The system, equipped with a 
modulator operating on a thermal principle (i.e., open tubular capillary 
modulator), adopted a first dimension (1D) polyethylene glycol (PEG) 
column [21 m × 0.25 mm id × 0.25 μm df] connected to a second 
dimension (2D) apolar column with dimethyl polysiloxane stationary 
phase [1 m × 0.10 mm id × 0.10 μm df] [40]. The analytical run lasted 
2.5 min and the modulation period (PM) was set at 2 s. The resulting 
chromatogram was displayed in a 2D time domain and authors could 
state that “each substance forms a peak on the two-dimensional plane at a 
location determined by the interaction of the substance with the two different 
stationary phases” paving the way toward new concepts of chromato-
graphic interpretation and investigation, i.e., 2D chromatographic 
fingerprinting [34]. Moreover, the potential of the new technique was 
immediately evident, since the authors commented in their concluding 
remarks that “potential applications for this method take advantage of its 
speed, its power to separate complex mixtures, or its more reliable identifi-
cation of substances through two independent retention times”. 

It took a while to overcome the skepticism of some experts, but then 
the technique was adopted in several fields as a complement to one- 
dimensional (1D)GC or by replacing it [41–50]. The improved separa-
tion capacity due to greater efficiency and resolution was accompanied 
by a significantly enhanced sensitivity, especially when platforms 
implement cryogenic modulation which produces band compression 
in-space [51]. These combined improvements made GC × GC the 
analytical tool of choice for investigating highly complex samples [52]. 
Fig. 2 compares the 1D-GC profile (2 A) vs. GC × GC contour plots (2 B 
and 2C) of the volatile fraction of a Colombian cocoa sample. Volatiles, 
sampled by headspace solid-phase micro extraction (HS-SPME) with a 
validated protocol [53], were analyzed in close-to optimal conditions by 
1D-GC and GC × GC with loop-type thermal modulation and 
reverse-inject differential-flow modulation. The GC × GC methods were 
mutually translated to keep the original method resolution and preserve 
elution order [54]. The separation power and sensitivity can be roughly 
evaluated by the number of detectable peak features with a threshold 
resolution (R) of 1.5 above a signal-to-noise ratio (S/N) of 50. By 1D-GC, 
180 chromatographic peaks were detected (2A); 1130 in the GC × GC 
with loop-type thermal modulation (2B); and 290 in the GC × GC with 
reverse-inject differential-flow modulation with translated conditions 
(2C). 

To achieve suitable information capacity, MDA should nevertheless 
include MS detection, as it provides orthogonal information on the 
properties of the analytes. It supports structure elucidation [55], identity 
confirmation, and accurate quantification in presence of authentic or 
surrogated standards completing the information inferred by the dif-
ferential retention in the C2DC system. MS, operating at unit-mass res-
olution or by exact mass assignments (i.e., high-resolution MS - HRMS), 
allows access to fundamental molecular features and provides additional 
selectivity and specificity for data processing. 

1.2. Food – omics domains and the role of comprehensive two- 
dimensional chromatography 

The term “omics" describes the collective characterization and 
quantification of pools of biological molecules that translate into the 
structure, function, and dynamics of an organism or many organisms 
[56]. The first omics field was genomics, which was theoretically 
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Fig. 2. 1D-GC profile (2A) and GC × GC contour plots (2B and 2C) of volatile compounds from roasted cocoa beans from Colombia origin. Sampling was by HS-SPME 
with a DVB/CAR/PDMS fiber on 1.50 g of finely grounded sample in 20 mL HS vial kept at 50 ◦C for 40 min. Split/splitless injection was with a 1:20 split ratio in all 
analytical systems. Further details on the application and analytical set-up can be retrieved in reference study by Magagna et al. [53]. Detected peaks (resolution 
threshold 1.5) above a S/N of 50 were: 180 in the 1D-GC (2A); 1130 in the GC × GC with loop-type thermal modulation (2B); and 290 in the GC × GC with 
reverse-inject differential-flow modulation with translated conditions (2C). 
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opposed to genetics and focused on examining individual variations or 
single genes rather than complete genomes. Numerous omics have been 
described to date, spanning a wide range of genetics, biology, and 
chemical domains. It’s interesting to note that the majority of 
food-related omics attempt to link chemical patterns and composition 
with biological aspects of food, such as nutrient content and how it af-
fects humans, sensory qualities, biological activity, and reactions to 
external stimuli, including climate change on crops, processing methods 
on semi-finished and finished goods, plant pathologies, and effects of 
bacterial and mold metabolism [56]. 

With a thorough and reliable definition of the chemical code of food, 
various phenomena are better understood, including (i) quality – by 
markers in raw materials and finished products, (ii) bioactivity - by 
patterns of nutrients and active ingredients, (iii) sensory perception - by 
taste and odor-active compounds that are receptor ligands, and (iv) 
safety - by contaminants and toxic compounds with concentrations 
exceeding predetermined limits. 

Within the general concept of foodomics [27], a discipline that in-
vestigates the interrelations between food and nutrition domains by 
applying omics technologies, more specific omic-related disciplines 
have been conceptualized in the last decade [57]. They have common 
investigation approaches inasmuch as all looks for the interrelation 
between chemical patterns and different biological phenomena. 

Food metabolomics, for example, studies the impact of external 
stimuli/variables on the primary metabolome that, for an edible crop, 
has relevance concerning nutritional density and sensory features (e.g., 
the presence of taste-active primary metabolites or aroma precursors) 
[58–60] or might have diagnostic capacity in relation to genetic and 
phenotype traits. A good understanding of the effect on food composi-
tion of climate variations, harvesting practices, post-harvest treatments, 
storage conditions, and shelf-life, enables pro-active strategies to drive 
quality toward desirable targets [28,37,61]. Food metabolomics has 
implemented GC × GC-MS as an essential technique, complementary to 
liquid chromatography (LC-MS) and nuclear magnetic resonance 
(NMR). 

Food volatilomics focuses the investigation on the volatilome [62], 
also referred to as volatome [63], the fraction that includes volatile 
metabolites and all the other volatile organic and inorganic compounds 
originating from an organism [64] super-organism, or ecosystem. Vol-
atile metabolites are part of the sample’s metabolome, although 
degradation compounds and/or exogenous metabolites (e.g., environ-
mental contaminants, compounds formed by bacteria and molds - mi-
crobial cloud [65]) may also be present within this fraction. Better 
understanding of primary materials phenotyping and adaptation/-
reaction mechanisms is achieved by integrating the information brought 
by both volatilome and metabolome. Due to the physico-chemical 
properties of volatile metabolites, volatilomics is crucial in many food 
applications [49]. The easy access to the volatile fraction by gas sam-
pling techniques and the availability of complete automation solutions 
for sample preparation steps have boosted the investigations in this area 
[37,66,67]. 

When nutrition sciences intercept the trajectory of food metab-
olomics, the nutrimetabolomics perimeter is delineated. Within its 
boundaries, the impact exerted by specific dietary patterns on human 
health is investigated [68]. By nutrimetabolomics, the impact of diet and 
food components/nutrients patterns on the human physiology [68] are 
deepened and better mechanistic understanding of the phenomena is 
likely achieved by providing nutritionists with effective predictive tools 
for early diagnosis or preventive strategies. Nutrimetabolomics focuses 
on both: (i) nutrients and essential nutrients influencing the metabolic 
response in humans, and (ii) non-nutrients having various bio-activities 
and impacting the human metabolism with various effects. 

As an essential quality component, food hedonic properties are a 
challenging bench for analytical chemistry. Besides the actual potential 
of analytical platforms in terms of sensitivity and information capacity, 
human senses should be integrated into the analytical workflow. 

Olfaction, taste, and trigeminal perception should drive the investiga-
tion toward ligands (i.e., sensory active compounds) screening and tar-
geting, while validating the outcomes by recombination and omission 
experiments, as the final stage. Sensomics is the discipline that “molec-
ularizes flavor entities of nature” by identifying the unique yet peculiar 
pattern of odorants and tastants that evoke food sensory identity [69]. 
Sensomics and flavoromics [70] provide solid foundations for predicting 
food hedonic quality by rationalizing the chemoreceptive events 
occurring in our noses and oral cavity [71]. 

Food safety and authenticity are other crucial elements of food 
quality, although they have not yet been established as omics-related 
disciplines. Food safety is a prerequisite and a mandatory criterion for 
all food items intended for human consumption. Due to the current role 
played by GC × GC in safety evaluations of food (e.g., mineral oil 
contamination assessment [72] and non-intentionally added substances 
detection [73]) and its information capacity for food identitation [74], 
food safety and quality will be also covered by this review article. 

2. Machine learning techniques: general overview 

Machine learning techniques can be broadly categorized into two 
primary groups: (i) pattern recognition techniques and (ii) regression/ 
calibration models. In a nutshell, pattern recognition models further 
break down into two types: (i) unsupervised models (where a priori 
classification information for each object under examination is absent) 
and (ii) supervised/classification models (where the a priori classifica-
tion of each object under examination is known). Well-known unsu-
pervised methodologies, also referred to as exploratory analyses, include 
PCA [75], cluster analysis [76], t-distributed stochastic neighbour 
embedding (t-SNE) [77], and uniform manifold approximation and 
projection (UMAP) [78]. Conversely, supervised/classification 
modeling techniques can be subdivided into discrimination methods and 
class modeling techniques. Discrimination models, such as Fisher ratio 
[79], k-nearest neighbours (kNN) [80], logistic regression [81], naïve 
Bayes [82], linear discriminant analysis (LDA) [83], quadratic 
discriminant analysis (QDA) [84], and partial least squares – discrimi-
nant analysis (PLS-DA) [85], aim to distinguish objects within their 
respective classes by assessing features specific to each class. For 
instance, models like kNN evaluate distances between objects to esti-
mate class boundaries, while LDA, QDA, and PLS-DA calculate new class 
boundaries in multidimensional space to separate objects within their 
classes. These models consistently yield outcomes related to object 
classification. Furthermore, they can also be categorized as probabilistic 
(parametric) methods because their classification algorithms rely on 
estimating parameters describing probability density functions, such as 
arithmetic mean, variance, and covariance, along with their respective 
distributions. Another set of supervised models for classification tasks 
relies on experience-based approaches. Specifically, these models 
employ iterative classification strategies, minimizing classification er-
rors based on specific training sets used to construct the models. 
Traditionally labeled as ML techniques, examples include support vector 
machines (SVM) [4], random forest (RF) [86], eXtreme gradient 
boosting (XGBoost) [87], and ANN [88]. 

In contrast, class modeling techniques assess the similarity among 
objects within the same class. Consequently, different categories are 
modeled individually, allowing objects to be assigned to one, more than 
one, or even no category. Examples of class modeling techniques, also 
known as distance-based techniques, include soft-independent modeling 
of class analogy (SIMCA) [89] and unequal dispersed class (UNEQ) [90]. 
SIMCA and UNEQ classify objects based on different distance metrics, 
considering a measure of multivariate outlying placement of 
observations. 

On the other hand, the primary goal of supervised regression/cali-
bration modeling is to examine relationships between a matrix X of 
predictors/variables and one or more responses in a matrix Y. ML 
regression techniques include multivariate linear regression (MLR) [91], 
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principal component regression (PCR) [92], and partial least squares 
regression (PLS-R) [93], but also most of the models mentioned previ-
ously for supervised classification can be converted to solve regression 
tasks (such as, for instance, kNN, SVM and RF). 

It’s important to note that sometimes data cannot be structured into a 
matrix X but rather into an N-dimensional (N-way) array. This situation 
arises, for example, when considering information about sampling times 
or the opinions of different judges. A 3-way array, for instance, can be 
organized as follows: observations × parameters × sampling times. To 
explore such complex arrays, various N-way chemometric procedures 
can be applied, with parallel factor analysis (PARAFAC) [94] and 
Tucker3 [95] being the most popular. These models serve both classi-
fication and calibration purposes. 

A concise description of all the mentioned models is reported in the 
Supplementary Material. 

2.1. Current applications of AI in correlating analytical data and food 
properties 

Artificial intelligence algorithms (particularly ML and DL models) 
emerged as a powerful tools in food science, especially by correlating 
analytical data with various food properties (i.e., data mining in Fig. 1). 
In mass spectrometric and spectroscopic data, AI models can decipher 
intricate patterns associated with food composition, aiding in identi-
fying specific compounds, additives, or contaminants [9]. By correlating 
this information with sensory attributes, nutritional content, or shelf 
life, researchers gain valuable insights into food products’ quality, 
safety, and authenticity [96]. In particular, GC × GC-MS experienced 
rapid evolution under the boost of AI improvements. In data processing, 
the ROIMCR approach (regions of interest multivariate curve resolu-
tion), developed by the R. Tauler group [97], represents a sensitive and 
versatile technique to identify and quantify a wide range of metabolites 
in complex samples using comprehensive two-dimensional liquid chro-
matography (LC × LC) [98]. Specific ROIs are identified in the mass 
spectrum to highlight metabolites present at low levels, resolve over-
lapping peaks, discover new biomarkers and for the study of metabolic 
pathways [29]. 

In the discovery of new markers, multiple hypotheses testing is used 
to compare the levels of several metabolites between two sample groups 
and notice the significant differences, surpassing the limits of univariate 
testing. The Bayesian approach proposed by de Sousa et al. [99] 
explicitly incorporates the compositional constraint of metabolomic 
data, consisting in minor variations in numerous small-molecule me-
tabolites within the investigated biological material, by representing 
them in tems of metabolite ratios. A new Bayesian parameter (b-value) 
was introduced, measuring the distance between a posterior distribution 
and the null distribution. The b-value can be used to rank the metabo-
lites according to the strength of evidence against the null hypothesis 
(no significant differences) [100]. 

Also spectroscopic methods like Fourier transform infrared (FTIR) 
[101,102], Raman [103,104], and NMR [105,106], when used to 
investigate complex food compositions, develop their true potential 
when coupled with ML and DL algorithms [107,108]. Once trained on 
big data, ML models distinguish subtle spectral patterns enabling rapid 
and accurate predictions of critical food properties, such as moisture 
content, fat composition, and protein levels [109], certifying origin and 
quality across diverse food products, from agriculture [110] to bever-
ages [111]. 

Spectroscopic imaging technologies like hyperspectral imaging (HSI) 
provide detailed visual insights into foodomics [112,113]. In the food 
industry, AI-driven imaging technologies pinpoint defects [114], con-
taminants [115], and even predict fruit ripeness [116]. For instance, in 
fruit sorting processes, hyperspectral images are scrutinized by AI 
models to assess sugar content and peel features, facilitating precise 
sorting and quality control [117,118]. AI integration into real-time 
monitoring and quality control systems on food processing lines 

revolutionized the food industry [119], by prompt signalling deviations 
from quality standards, thus minimizing waste and assuring reliable 
answers/results. 

3. AI and comprehensive two-dimensional chromatography data 
processing 

Artificial Intelligence algorithms are currently used in many steps of 
an analytical workflow that has C2DC as core platform. Signal pre- 
processing is primarily concerned with individual chromatographic 
signals. Its focus is to refine raw data from the instrument, dealing with 
issues like modulation-phase adjustment [17,18], peak detection [120, 
121], noise removal [122], correction of baseline drifts [122–124] and 
peak distortions [24]. Therefore, these algorithms are expected to be 
applied directly to the signals of each sample, ensuring the accuracy of 
individual peaks. Several AI tools have been developed to perform and 
optimize signal pre-processing strategies, enhance the quality of indi-
vidual signals before any data integration or analysis, and address the 
intricacies within each chromatographic trace, preparing them for 
subsequent processing steps [7,20,123,125]. One fundamental aspect of 
signal pre-processing is the precise identification of peaks within the raw 
chromatographic data, commonly known as peak detection, whose goal 
is to recognize those peaks that signify distinct compounds or analytes 
separated by the chromatographic system. Peak detection algorithms, 
employing techniques such as thresholding, derivative-based methods, 
and wavelet transforms, are instrumental to the accurate peaks location, 
forming the foundation for subsequent analyses [126,127]. In parallel, 
chromatographic signals often exhibit a baseline drift, a phenomenon 
induced by temperature fluctuations or detector noise: baseline correc-
tion algorithms come into play to eliminate or reduce it [123,128]. A 
clear and stable signal is obtained by removing this unwanted variation, 
providing a solid foundation for further in-depth analysis. Furthermore, 
random or systematic noise might arise from electronic or environ-
mental sources, obscuring the genuine peaks within the data and 
hampering accurate analysis. Effective noise reduction techniques, 
including algorithms like smoothing, sparsity correction, and wavelet 
denoising are employed to this purpose [21,122,129]. These methods 
selectively diminish the noise levels while preserving the integrity of the 
actual signal, ensuring a more straightforward and accurate represen-
tation of the underlying data. 

2D chromatography offers new opportunities for data exploration 
and interpretation, due to the high degree of multidimensionality of the 
data arrays collected during the analytical run. For the scope of this 
review, the potential of AI in the different data processing approaches is 
analyzed in detail. 

C2D chromatograms may be represented as digital images by ras-
terizing, i.e., arranging the detector data values from individual modu-
lation periods (or cycles) as a column of pixels (picture elements). It 
should be noted that when MS is adopted as the detector, each pixel 
corresponds to a spectrum, providing information on feature identity 
and amount, generating a 3D/4D data matrix [34]. Rasterized pixel 
columns are then arranged from left to right along the X-axis of a Car-
tesian plane according to 1D retention time, while the 2D data and 
related retention times are plotted from bottom to top on the Y-axis 
[130]. Chromatographic images can then be processed in a variety of 
ways, using multiple feature types and associated tools [34,130–133] as 
well as by applying image pattern recognition (PR) and CV tools [5,134, 
135]. 

Data arrays and fingerprints (e.g., images, signals, textual data, or 
chemical features) can be effectively explored by PR to extract infor-
mation about their chemical properties. Moreover, neural networks, ML 
or other AI algorithms can then support data classification into cate-
gories [136]. When applied to chromatographic data, PR drives sample 
discrimination and classification on the basis of the differential distri-
bution of common chemical features or the presence of unique yet 
distinctive features [16,131,136]. 
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Computer vision, a subfield of AI and computer science, extracts 
meaningful information from visual data (e.g., digital images) and en-
ables computer or systems to take actions or make recommendations 
[137]. CV applies techniques such as image processing, ML, and 3D 
image reconstruction [138]. Image PR and CV are, therefore, two 
strongly interconnected fields that share common algorithms and tools, 
and are possibly integrated into hybrid systems. 

As hybrid systems, CV and image PR offer a new perspective in the 
“observation” of the compositional differences between samples (i.e., 
augmented visualization [139]) which is more intuitive and immediate 
than any other classical approach applied in chromatographic data 
analysis. Their integration in dedicated software and commercial plat-
forms facilitates comparative analysis of large sets of samples while 
reducing the computational time even for high information density data 
such as those collected with HRMS. 

3.1. Image pattern recognition and computer vision applied to C2DC data: 
approaches and tools 

Image PR algorithms for 2D peak patterns matching in C2DC were 
implemented in commercial software many years ago [140,141]. 
Inspired by fingerprint recognition technology used in forensics, image 
PR based on template matching considers 2D chromatograms as the 
sample’s unique fingerprint. Fingerprint verification systems localize 
and extract minutiae information (i.e., ridge endings and bifurcations) 
from digitalized images of human fingertips and then perform 
cross-matching with stored templates for identification [142]. In C2DC, 
2D peaks or other kinds of features (e.g., datapoint or regions – Fig. 1) 
are treated as minutiae features located over the 2D temporal space by 
tracking them across multiple images. When comparative analysis is 
aimed at samples discrimination or classification, it is referred to as 
chromatographic fingerprinting [34] which makes the process of sample 
identitation possible as previously conceptualized for 1D chromato-
graphic fingerprinting [74]. 

Independently from the feature type adopted, chromatographic 
fingerprinting could also provide visual evidence of compositional dif-
ferences between samples, by comparative visualization [143]. In this 
perspective, it can be accounted a CV approach. 

3.1.1. Computer vision by datapoint features 
Comparative visualization was one of the earliest approaches adop-

ted to highlight compositional differences between pairs of chromato-
grams. As for other CV tools, it provides prompt evidence of pattern 
differences by comparing datapoint feature responses between pairs of 
chromatogram images. This pixel-by-pixel comparison could lead to 
erroneous conclusions when it is performed without any image/pattern 
re-alignment and transformation. Earlier applications based on data-
point features explored single-channel detector responses (e.g. flame 
ionization detector FID) with Fisher’s f ratio and PCA [144]. Later, the 
same approach was extended to multi-channel detectors (e.g., MS) by 
selecting specific m/z signals (mass-chromatograms) from the available 
spectra [31,145,146]. 

CV based on datapoint features without image re-alignment was 
adopted by Bordiga et al. [135] in a study focused on the evolution of the 
volatile fraction of “Asti Spumante” and “Moscato d’Asti” during aging. 
Based on Muscat grapes, both wines were screened by HS-SPME to 
comprehensively map odorants and non-odorants across 6 months of 
storage at different temperatures (5, 15, and 25 ◦C). Objective of the 
research was the detection of variations in the distribution of potent 
odorants and the identification of haloanisoles which impart off-flavors 
to the wine. To enable effective comparative visualization of the 2D 
pattern differences, authors developed a Mathematica™ software 
(Wolfram Research Inc., Champaign, IL, USA) carrying out a multi-step 
process consisting of a first graphical reconstruction of the contour plot 
from raw data recorded by the GC instrument. The pixels size of 
resulting 2D-chromatogram images was 251 × 673. In the second step, 

chromatograms alignment on the time domain was checked by locating 
the internal standard reference pixels. The authors did not detect any 
“dimensional shifts” in the GC chromatograms, therefore the alignment 
was not applied. On the other hand, a logarithmic scaling on the in-
tensity domain was applied to better appreciate the different pixel 
contrasts in the graphical representation. In the last step, re-scaling was 
performed by arbitrarily choosing a reference vs. a test sample, to produce 
comparable chromatogram pairs. The scaling based on a pixel-by-pixel 
correction intensity dependent generated a differential image illus-
trated in Fig. 3 for Asti spumante wines. By colorization, it was possible 
to highlight pattern differences between reference and test chromato-
grams, one of which corresponds to a wine classified as perfect, the other 
showing off-flavors and classified as imperfect. Differences are visualized 
in green for analytes with an increasing trend in the perfect class, and red 
for components with decreasing trends in wines with sensory defects (i. 
e., imperfect). 

As shown for the wine aroma application, datapoint features are 
comprehensive and provide the highest precision for fingerprint 
comparative visualization. However, many duplicative features per an-
alyte might result in greater computational complexity while random 
shifts in retention times complicate consistent feature matching between 
pairs of chromatograms. These issues compromise the systematization of 
CV into decision-making processes; misinterpretation of compositional 
differences between sample pairs could produce wrong actions. 

Vial et al. proposed a method named the discriminant pixel approach, 
combining peak features with datapoint features discrimination for 
comparative analysis of a large set of samples [147]. The application on 
tobacco extracts, rich in volatiles and odor-active compounds, was a 
challenging test bench for their tool completed on Matlab™ and C 
platforms. It consisted of a pre-processing step with background 
correction and raw data intensity normalization. Then, normalized sig-
nals were aligned on the temporal domain by dynamic time warping 
(DTW) applied with some constraints on the slope of the warping pipe 
and centering on the matrix diagonal using a windowing of 40 pixels. 
The temporal alignment was performed on each column of the matrix 
corresponding to each chromatogram as illustrated in Fig. 4. For each 
class of the three tobacco types investigated (i.e., Burley, Virginia, and 
Oriental), one chromatogram was taken as a reference for the alignment. 
As the last step, the discriminant pixels were revealed by applying su-
pervised PR models. Working in analogy to the Fisher Ratio method, first 
proposed by Pierce et al. [146], the authors were able to rank pixels 
corresponding to over-represented (or under-represented) compounds 
in each of the analyzed classes vs. all the others. 

Very recently Ferreira et al. [10] proposed a comparative approach 
for the authentication of cachaça samples, a Brazilian distillate obtained 
from sugarcane, based on the detectable volatilome. In particular, the 
approach included a pre-processing of the raw total ion current (TIC) 
signals for response normalization and retention times fluctuations 
compensation. The latter worked on the shift of the absolute retention 
times in both temporal axes and pattern transformation by affine linear 
functions available in commercial software (i.e., GC Image [148]). After 
re-alignment, the chromatograms were converted into grayscale images 
and imported in Matlab™ for unfolding into vectors. Samples authen-
tication, by brand and by adulteration, was achieved by applying 
data-driven soft independent modeling of class analogies (DD-SIMCA) 
with good performances. In particular, the model specificity achieved 
98% for cachaça adulteration and 100% for branding distinction; in both 
cases, model sensitivity was 100% with no false negatives found (0.05 
significance). 

A step ahead in making these hybrid systems (i.e., combining image 
PR and CV) more specific was achieved by exploring the GC × GC-MS 
data array of regions and the corresponding peak region features. Higher 
specificity can be achieved by actively using the MS spectral signature 
during the comparative analysis or the CV. MS metadata can be 
exploited for discrimination - using the tile-based Fisher ratio analysis 
[149–151] - or effective re-alignment of the chromatographic patterns in 
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the time domains, followed by features matching, as with the combined 
untargeted and targeted (UT) fingerprinting based on image PR algo-
rithms [152–154]. 

3.1.2. Computer vision by region features 
Regions are typically identified as small rectangular tiles over-

imposed on the contour plot of a 2D chromatogram. They were 
employed by Marney et al. [150] and Parsons et al. [149] to generate 
features for cross-sample analysis. Summing the m/z signal within a 
defined number of datapoints on the first and second chromatographic 
dimensions into a single tile resulted in some advantages with respect to 
datapoint feature approaches, including reduced computational time 
and better compensation for temporal misalignments. These studies 
showed that PR operated with region features (i.e., tiles) increased the 
rate of true positive matches and decreased the chance of false positives. 
Whenever MS constraints imposed no selectivity, the same approach 
showed limitations both in cases where tiles are populated by multiple 
analytes (e.g., tiles larger than 2D peaks footprint) and when the analytes 
were split across multiple tiles. Tiles (i.e., bins) are sized according to the 
chromatographic performances (e.g., peak widths) while also consid-
ering possible random fluctuations of the retention times in the two 
dimensions. To improve the performance of the tile-based analysis, a 
four-grid tile scheme is used, as illustrated in Fig. 5, with which each 
detected peak is likely to be included/captured within a tile rather than 

split into multiple tiles. The process, now implemented in the com-
mercial software ChromaTOF™Tile (LECO, St. Joseph, MI, USA), over-
laps a four-grid tile scheme over a chromatogram to enable signal 
binning on each tile on the basis of m/z values. The redundant hits 
generated by the four overlapped grid tiles are then removed by a 
“pinning and clustering” process, which is fully automated in the soft-
ware. Once the “pin location” corresponding the 2D peak apex is 
determined, pins with similar retention in the 2D space are re-aligned 
and consolidated at the position of the pin with the highest intensity 
or response. The process is then repeated for all features and redundant 
hits are removed before peak centering. Details on tile-based analysis 
and its performances in case of signal saturation and co-elutions are 
provided in a recent review paper by Synovec and co-workers [155]. 

The tile-based approach was applied by Sudol et al. in a study 
focused on wine volatilome [156]. The geographical-based differences 
of “Grillo” wines from Sicily (Italy) were investigated by profiling the 
volatile organic compounds after HS-SPME sampling followed by 
differential-flow modulated GC × GC combined with time-of-flight MS 
(FM GC × GC-TOFMS). The analytes’ discriminant for the five wine 
classes were discovered by tile-based Fisher ratio analysis. For the spe-
cific application based on the actual 2D peak widths generated by the 
system, tile sizes were [7 s × 300 ms] corresponding to 10 modulations 
on the 1D and 45 spectra on the 2D, respectively. ANOVA test with a 
p-value threshold of 0.01 was applied to retain the most important 

Fig. 3. Computer Vision approach based on datapoint features. Comparative visualization among bidimensional chromatograms of Asti spumante wines (perfect one 
vs. imperfect one). Pixels in green correspond to analytes with decreasing trends wile in red are represented those with increasing content. From Ref. [135]. 
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class-distinguishing analytes, which were then used for unsupervised 
analysis with PCA. The PCA revealed the natural clustering of wine 
samples according to their geographical origin, supporting the adoption 
of tile-based analysis in challenging applications where the components 
span over a wide dynamic concentration range in the samples. 

In food safety applications, contaminants consisting of complex 
fractions of chemicals are challenging for 1D chromatography-based 
methods. GC × GC with its capability of generating rational retention 
patterns for homologs and structurally related compounds, has great 
potential in groups/classes quantification and fingerprinting, as it is 
required for some contamination sources. Mineral oil hydrocarbon 
(MOH) contamination [73] is an example where CV based on region 
features was successfully applied. Grob and collaborators adopted for 
the first time on-line and off-line GC × GC coupled to LC to detect 
mineral oil-saturated hydrocarbons (MOSHs) and mineral oil-aromatic 
hydrocarbons (MOAHs) in food samples [157]. By applying a medium 
polar × apolar column combination (OV-17 in the 1D and 
PS-255-dimethylpolysiloxane in the 2D) different classes of contami-
nants result separated within the 2D retention space with a retention 
logic driven by their volatility/polarity. Class distribution over the 2D 
space facilitates the identification of the contamination source [158]. 
Diagnostic patterns of contaminant mixtures were included in a contour 
(i.e., region feature) which was stored as a template for comparative 
analysis. In this case, CV facilitated the identification of the source of 
contamination as long as it showed a unique yet distinctive fingerprint. 
Recently Ursol et al. tracked the MOH contamination in extra-virgin 
olive oil production by characterizing the MOSH/MOAH fractions 
fingerprint on process intermediates [159]. 

Although effective from a computational viewpoint, region features 
are challenged by retention times inconsistencies and co-elutions. 
Moreover, work-flows occasionally do not provide visual evidence of 
pattern differences, possibly preventing prompt diagnosis of sample 
similarities and differences, as for most of the datapoint features 
methods. 

3.1.3. Computer vision by peak-region features 
Peak-region features based on template matching have been intro-

duced in image PR to overcome some malfunctioning of peak feature 
approaches in scenarios characterized by pattern misalignment and 
detector response fluctuations [160]. Likewise, peak features ap-
proaches, they achieve the one-feature-to-one-analyte selectivity, but 
also implicitly match the same peak region across chromatograms, a task 
that peak features do not necessarily accomplish in all patterns. 
Peak-region features provide a hybrid concept between regions and 
peaks by delineating one region in the 2D retention-times plane for each 
analyte peak detected in the data set. By precisely defining a 2D contour 
(i.e., region) around 2D peaks footprint on the retention time plane, 
peak-regions are more specific than rectangular tiles and their 
re-alignment across chromatograms takes the benefit of the smart tem-
plates matching procedure [140]. 

Peak-region approaches were developed by Reichenbach et al. 
[160–162] and Schmarr et al. [163,164] with similar procedures. Raw 
data signal pre-processing (i.e., rasterization, background noise sub-
traction, deconvolution, peak detection and integration) is the first step 
of an automated process applied to the source chromatograms of a 
samples set. After pre-processing, chromatograms are aligned on the 
temporal domain before their combination (fusion) to form a single 
composite chromatogram [165]. Then from 2D peaks detected in the 
composite chromatogram, a contour region is recorded and stored in a 
feature template. The feature template is then matched to all source 
chromatograms for geometrical remapping and transformation in the 
temporal domain. Once the process of feature template matching is 
completed for all chromatograms of a set, peak region features are 
tracked across all samples for a truly comprehensive mapping of the 
chemical diversity. 

Since peak regions implicitly match all peaks in all chromatograms, 
they could be challenged by co-elutions and retention times variability. 
Whenever MS detection is available, co-eluting peaks falling within the 
same regions can be recognized by selecting quantitative/discriminant 
ions or resolved by incorporating deconvolution [153]. On the other 
hand, random or systematic retention-times variations are effectively 

Fig. 4. Example of the computation for one of the pixels of Burley tobacco correlation map. The ability of a pixel to discriminate between classes was defined as 
Pearson’s linear correlation coefficient; if the correlation is close to 1, the pixel corresponds to a compound over-represented in Burley tobacco extracts, and if it is 
close to − 1, the pixel corresponds to a compound under-represented in Burley samples. Details are available in Ref [147] where the original figure was reported. 
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addressed by geometric transformations in the retention-times plane 
[148,166,167]. Peak regions are implemented in a commercial software 
called “GC Image GC × GC and LC × LC” (GC Image, LLC, Lincoln NE, 
USA) by Smart Templates™. 

Recently Caratti et al. proposed a novel approach referred to as 
augmented visualization to highlight pattern differences in butter samples 
analyzed along the production process [5]. The dataset consisted of 84 
chromatograms (7 butter processing steps × 2 inocula × 2 biological 
replicates × 3 analytical replicates) plus additional quality control 
samples (QCs). Samples were grouped in seven classes as a function of 
the food processing stage: from raw sweet cream to cultured butter, then 
analyzed at four ripening stages (after 0-8-20-40 days). By automated 

UT fingerprinting available in GC Image Investigator™ (GC Image™, GC 
Image LLC), the chromatograms were re-aligned by feature template 
objects. This alignment was at first achieved within chromatograms 
belonging to the seven classes, whose workflow is illustrated in a sche-
matic diagram depicted in Fig. 6. The six chromatograms (2 biological 
replicates × 3 analytical replicates) were pre-processed before 
comprehensive pair-wise peak matching in each class. Reliable regis-
tration peaks (n ≈ 1000 per class), peaks that were matched in at least 
50% + 1 of the chromatograms, were used as anchor points for template 
matching, image transformation, and registration. A composite chro-
matogram (Class Image) was then generated (last operaton of Step 1 – 
Fig. 6) by combining all registered images (i.e., all analytical runs for 
samples belonging to the same class) in a single image. The Class Images 
were then matched over the reliable template and graphic objects (i.e., 
peak region features) generated and included in a feature template used 
later to match, transform, and align all Class Images chromatograms 
before their fusion into a cumulative Reference Class Image (right side of 
Fig. 6) chromatogram. The process generates a feature template col-
lecting all reliable peaks from Class Images and delineating the contour 
of all detected peak regions. A comprehensive alignment and registra-
tion of Class Images was possible; unique identifiers for peak and peak 
regions features were assigned enabling effective cross-comparison of 
features responses across many chormatograms (single chromatograms 
or Class Image chromatograms). By solving the temporal misalignment 
issue, the comparative visualization is facilitated and augmented visu-
alization (AV) is achieved. AV refers to “computational techniques for 
visualizing what cannot be seen with raw image input” [139]. With the CV 
based on UT fingerprinting process, comparative visualization was 
directly linked to feature metadata and resulted augmented by molecular 
information that gives access to higher-level information about the 
phenomenon under study. 

CV was used by Stilo et al. to highlight patterns of volatile organic 
compounds diagnostic of some spoilage phenomena in raw halzelunts 
(Corylus avellana L.) [9]. Researchers analyzed samples selected among 
different cultivars, geographical origins, shelf-life and storage condi-
tions and characterized by perceivable sensory defects (mouldy, rancid, 
solvent-like, stale, and general unpleasant notes). The workflow generated 
composite Class Images from samples grouped by sensory qualification 
of spoilage with an operative procedure similar to that proposed by 
Caratti et al. [5]. The results were validated against a chromatographic 
UT fingerprinting workflow based on image PR, providing proof of ev-
idence of CV effectiveness and robustness in complex patterns analysis. 

Classical CV techniques can be used to realign chromatograms with 
significant retention time shifts. Geschwender et al. demonstrated an 
automated two-step approach to alignment of chromatograms from 
samples of cocoa acquired on two different instruments, i.e., a 
differential-flow modulated GC × GC-qMS (Fig. 7A left chromatogram) 
and a cryogenic-modulated GC × GC-TOF MS (Fig. 7A right chromato-
gram) without translation of the chromatographic conditions [53,168]. 
The first step, coarse alignment, aims to establish an initial match in 
scale and location as illustrated in Fig. 7B. The enhanced correlation 
coefficient (ECC) is used, which is an image similarity metric that is 
robust to photometric distortions [169]. Multiscale image pyramids 
[170] are used in conjunction with the ECC to extend the range of ECC 
optimization search. The second step (Fig. 7C), fine alignment, focuses 
on achieving peak-to-peak retention time correspondence. It initializes 
peak matching algorithms from the coarse alignment, and uses 
high-order global or local transform functions derived from matched 
peaks. 

Examples provided here demonstrate how strategic is the adoption of 
AI tools at the data processing level and suggest that hybrid approaches 
which combine different AI concepts (e.g., image PR and CV) could 
result also very intuitive and easily accessible for prompt identification 
of compositional differences that originate samples discrimination and 
classification. 

Fig. 5. Computer Vision by tile-based analysis. Details are discussed in the text. 
From Ref. [136]. 
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Fig. 6. Schematic diagram of the computer vision approach based on image pattern recognition and images fusion. Details are discussed in the text. From Ref. [5].  
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Fig. 7. Schematic diagram illustrating the workflow for chromatogram images re-alignment in presence of severe retention-time shifts. Cocoa volatiles patterns were 
analyzed with a differential-flow modulated GC × GC-qMS (upper chromatogram 7A) and with a cryogenic-modulated GC × GC-TOF MS (lower chromatogram 7A). 
Re-alignment is obtained by enhanced correlation coefficient (ECC) and multiscale image pyramids. Details are reported in the text. Details on cocoa volatiles 
profiling are reported in reference literature [53,148]. 
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4. Artificial intelligence smelling based on sensomics: concept 
and tools 

In this last section, the concept of AI smelling based on sensomics is 
discussed as it was conceptualized in an integrated workflow thanks to 
the unique features of GC × GC [71]. The food aroma alone contributes 
about 80% of the whole flavor [69]; it is generated by the interaction of 
odorants (i.e., odor active volatiles) with odorant receptors (ORs) 
located in the olfactory epithelium. Potent odorants, even when present 
at trace and sub-trace level (mg/kg or μg/kg), activate a complex pattern 
of signals (i.e., the Receptor Code) which integration by the nervous 
system produces olfactory perceptions [69]. The odor code, also referred 
to as aroma blueprint [69], evokes the unique identity traits of a food 
enabling its recognition and discrimination among others. To identify 
the molecular code of olfaction, sensomics has established a protocol 
that combines multiple, discrete steps aimed at isolating, extracting, and 
concentrating odor-active compounds before their qualification (odor 
characterization and description), accurate quantification and valida-
tion in aroma recombinates [171]. 

GC × GC became a central analytical tool for sensomics due to its 
separation power and enhanced sensitivity compared to 1D-GC or heart- 
cut 2D-GC. Marriott and co-workers designed and realized many multi- 
multidimensional platforms [172–174] implementing efficient separation 
of volatiles with olfactory screening by GC-olfactomerty (GC-O). Various 
systems enable to switch between GC × GC and targeted MDGC [175] to 
operate in critical regions of the separation space with the maximum 
chromatographic resolution. Although attractive, the direct coupling of 
GC × GC with olfactometry (GC × GC-O) is quite challenging due to the 
very narrow bands produced by the 2D separation. D’Acampora et al. 
[176] explored the possibility of odor fingerprint acquisition by GC ×
GC-O/MS in the field of fragrance analysis. Their attempts remained 
pioneering as the complexity of execution is limiting. The sense of smell 
and neuronal integration of signals in humans requires a physiological 
recovery period that is not compatible with the speed and resolution 
typical of GC × GC. 

On the other hand, off-line GC-O screenings open to some opportu-
nities. They can drive or focus fingerprinting toward odor-active elution 
regions of the 2D chromatogram supporting ML to effectively discrimi-
nate samples based on features likely correlated to peculiar olfactory 
qualities. An example was provided by Gabetti et al. who investigated 
the unique aroma traits of Piemonte peppermint essential oils by 
combining GC-O, performed as aroma extract dilution analysis (AEDA), 
with GC × GC-TOF MS and variable ionization energy (Tandem Ioni-
zation™) [177]. By targeting specific regions of the chromatographic 
space with intense creamy and sweet notes, still perceivable at higher 
dilution factors, the classification performances of PLS-DA models 
improved. Authors argued that an AI-smelling tool based on GC × GC 
would be capable of making decisions driven by samples’ sensory fea-
tures without the use of a human sensory panel. 

Nicolotti et al. [71] developed a sensomics-based expert system – 
SEBES capable of predicting food aroma features by accurately quanti-
fying key-aroma compounds in a simplified methodological workflow. As 
a proof-of-concept supporting the SEBES effectiveness, the accurate 
quantification of about 100 compounds out of the 226 key-food odorants 
(KFOs) listed by Dunkel et al. [69] was achieved and their conversion in 
odor activity values (OAV; ratio of concentration to odor threshold) was 
demonstrated. GC × GC was fundamental to achieve an extended dy-
namic range of the method covering the actual concentration range of 
KFOs in real-world samples. SEBES validation was compared with refer-
ence sensomic protocol [49]; in particular, accuracy was very satisfactory 
with a maximum quantification error of ±20%. As a conclusive remark, 
the authors stated that “it was successfully shown that it is possible to char-
acterize key food odorants with one single analytical platform and without 
using the human olfactory system, that is, by artificial intelligence smelling”. 

The AI smelling concept was further expanded to enable aroma 
blueprint prediction in different food products. For extra-virgin olive 

(EVO) oil, blueprinting was possible by exploiting the quantification 
features of the flame ionization detector (FID) with the application of 
predicted relative response factors (RRFs) based on combustion en-
thalpies [15,38,166,178]. Methods designed for accurate quantification 
of volatiles with multiple headspace extraction (MHE) combined with 
SPME could replace traditional extraction/distillation procedures 
speeding up the sample preparation step and making it fully automated 
[171,179]. The system realized with a differential-flow modulator with 
reverse-inject dynamics, and set for parallel detection by MS and FID, 
extends the quantification capabilities to all detectable volatiles 
showing HS linearity (i.e., without saturation of the HS) with benefits for 
high-throughput screenings as those supporting industrial research. 

Recently, the AI smelling machine concept was integrated into a 
decision-making tool for confectionery industry [37]. The analytical 
method, completed by automated MHS-SPME combined with GC ×
GC-MS/FID, was applied to accurately quantify key-aroma compounds, 
rancidity and spoilage markers in premium quality hazelnuts (Corylus 
avellana L.) over 12 months of method application. By accurate quan-
tification, chemical quality traits for incoming materials were confi-
dently assessed with results transferability over time and across 
laboratories supporting objective decisions and reliable prediction of 
sensory features (i.e., AI smelling based on sensomics), geographical 
origin of samples, and storage time. 

5. Concluding remarks 

Artificial Intelligence concepts based on image PR and CV have been 
successfully applied to advance multidimensional data array interpre-
tation to derive information and predict samples’ properties. The 
compositional complexity of food challenges conventional data pro-
cessing approaches, but the multidimensional nature of C2DC data offers 
unique possibilities for CV and augmented visualization. Robust AI tools 
are capable of (i) compensating for retention-time shifts that cause 
image distortion, thereby facilitating comparative visualization and 
related strategies; (ii) specifically targeting unknown-knowns, actively 
exploiting mass spectral signatures in the presence of co-elutions and 
misalignments; (iii) identifying the source(s) of contamination in com-
plex mixtures by analysing chromatographic fingerprints; and (iv) pre-
dicting aroma signatures by systematically identifying key food- 
odorants in presence of interferents. 

The most powerful systems are those integrating multiple concepts 
and facilitating analyst access to embedded information using intuitive 
tools available in commercial software platforms. In-depth exploitation 
of the information content of every single analysis from C2DC benefits 
from AI and soon we expect further advancements through the adoption 
of generative learning which could explore the full information content 
from different sources and link it to additional, not necessarily corre-
lated, properties [180]. 

Funding 

M. Vincenti and E. Alladio acknowledge support from the Project 
CH4.0 under the MUR program “Dipartimenti di Eccellenza 2023–2027” 
(CUP: D13C22003520001). 

CRediT authorship contribution statement 

Andrea Caratti: Writing – review & editing, Methodology, Writing – 
original draft. Simone Squara: Writing – review & editing, Writing – 
original draft, Methodology. Carlo Bicchi: Supervision, Writing – re-
view & editing. Erica Liberto: Writing – review & editing. Marco 
Vincenti: Conceptualization, Supervision, Writing – original draft, 
Writing – review & editing. Stephen E. Reichenbach: Writing – review 
& editing, Software, Methodology, Conceptualization. Qingping Tao: 
Writing – review & editing, Software, Methodology. Daniel Gesch-
wender: Writing – review & editing, Software, Methodology. Eugenio 

A. Caratti et al.                                                                                                                                                                                                                                  



Trends in Analytical Chemistry 174 (2024) 117669

14

Alladio: Writing – review & editing, Writing – original draft, Supervi-
sion, Conceptualization, Methodology. Chiara Cordero: Writing – re-
view & editing, Writing – original draft, Supervision, Methodology, 
Conceptualization. 

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 

Data availability 

No data was used for the research described in the article. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.trac.2024.117669. 

References 

[1] M. Mousavizadegan, A. Firoozbakhtian, M. Hosseini, H. Ju, Machine learning in 
analytical chemistry: from synthesis of nanostructures to their applications in 
luminescence sensing, TrAC - Trends Anal. Chem. 167 (2023) 117216, https:// 
doi.org/10.1016/j.trac.2023.117216. 

[2] L.B. Ayres, F.J.V. Gomez, J.R. Linton, M.F. Silva, C.D. Garcia, Taking the leap 
between analytical chemistry and artificial intelligence: a tutorial review, Anal. 
Chim. Acta 1161 (2021) 338403, https://doi.org/10.1016/j.aca.2021.338403. 

[3] L.M. Petrick, N. Shomron, AI/ML-driven advances in untargeted metabolomics 
and exposomics for biomedical applications, Cell Reports Phys. Sci. 3 (2022) 
100978, https://doi.org/10.1016/j.xcrp.2022.100978. 

[4] A.M. Jimenez-Carvelo, Data mining/machine learning methods in foodomics, 
Curr. Opin. Food Sci. 37 (2021) 76–82, https://doi.org/10.1016/j. 
cofs.2020.09.008. 

[5] A. Caratti, S. Squara, C. Bicchi, Q. Tao, D. Geschwender, S.E. Reichenbach, 
F. Ferrero, G. Borreani, C. Cordero, Augmented visualization by computer vision 
and chromatographic fingerprinting on comprehensive two-dimensional gas 
chromatographic patterns: Unraveling diagnostic signatures in food volatilome, 
J. Chromatogr., A 1699 (2023) 464010, https://doi.org/10.1016/j. 
chroma.2023.464010. 
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multiple hypotheses testing in compositional analysis of untargeted metabolomic 
data, Anal. Chim. Acta 1097 (2020) 49–61, https://doi.org/10.1016/j. 
aca.2019.11.006. 

[100] P.H. Stefanuto, A. Smolinska, J.F. Focant, Advanced chemometric and data 
handling tools for GC×GC-TOF-MS: application of chemometrics and related 
advanced data handling in chemical separations, TrAC - Trends Anal. Chem. 139 
(2021) 116251, https://doi.org/10.1016/j.trac.2021.116251. 

[101] J. Selamat, N.A.A. Rozani, S. Murugesu, Application of the metabolomics 
approach in food authentication, Molecules 26 (2021) 1–19, https://doi.org/ 
10.3390/molecules26247565. 

[102] D. Cozzolino, Foodomics and infrared spectroscopy: from compounds to 
functionality, Curr. Opin. Food Sci. 4 (2015) 39–43, https://doi.org/10.1016/j. 
cofs.2015.05.003. 

[103] M. Petersen, Z. Yu, X. Lu, Application of Raman spectroscopic methods in food 
safety: a review, Biosensors 11 (2021) 187, https://doi.org/10.3390/ 
bios11060187. 

[104] Y. Sun, H. Tang, X. Zou, G. Meng, N. Wu, Raman spectroscopy for food quality 
assurance and safety monitoring: a review, Curr. Opin. Food Sci. 47 (2022) 
100910, https://doi.org/10.1016/j.cofs.2022.100910. 

[105] A. Trimigno, F.C. Marincola, N. Dellarosa, G. Picone, L. Laghi, Definition of food 
quality by NMR-based foodomics, Curr. Opin. Food Sci. 4 (2015) 99–104, https:// 
doi.org/10.1016/j.cofs.2015.06.008. 

[106] K. Fan, M. Zhang, Recent developments in the food quality detected by non- 
invasive nuclear magnetic resonance technology, Crit. Rev. Food Sci. Nutr. 59 
(2019) 2202–2213, https://doi.org/10.1080/10408398.2018.1441124. 

[107] C.M. Andre, C. Soukoulis, Food quality assessed by chemometrics, Foods 9 (2020) 
2–5, https://doi.org/10.3390/foods9070897. 

[108] J.L. Aleixandre-Tudo, L. Castello-Cogollos, J.L. Aleixandre, R. Aleixandre- 
Benavent, Chemometrics in food science and technology: a bibliometric study, 
Chemom. Intell. Lab. Syst. 222 (2022) 104514, https://doi.org/10.1016/j. 
chemolab.2022.104514. 

[109] D. Song, Q. Wu, M. Kamruzzaman, Appropriate use of chemometrics for 
feasibility study for developing low-cost filter-based multi-parameter detection 
spectroscopic device for meat proximate analysis, Chemom. Intell. Lab. Syst. 238 
(2023) 104844, https://doi.org/10.1016/j.chemolab.2023.104844. 

[110] K. Wang, Z. Li, J. Li, H. Lin, Raman spectroscopic techniques for nondestructive 
analysis of agri-foods: a state-of-the-art review, Trends Food Sci. Technol. 118 
(2021) 490–504, https://doi.org/10.1016/j.tifs.2021.10.010. 
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