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Abstract—Several solutions aim to simplify the burdening task
of parallel programming. The GrPPI library is one of them. It
allows users to implement parallel code for multiple backends
through a unified, abstract, and generic layer while promising
minimal overhead on performance. An outspread evaluation
of GrPPI regarding stream parallelism with representative
metrics for this domain, such as throughput and latency, was
not yet done. In this work, we evaluate GrPPI focused on
stream processing. We evaluate performance, memory usage,
and programming effort and compare them against handwritten
parallel code. For this, we use the benchmarking framework
SPBench to build custom GrPPI benchmarks. The basis of
the benchmarks is real applications, such as Lane Detection,
Bzip2, Face Recognizer, and Ferret. Experiments show that while
performance is competitive with handwritten code in some cases,
in other cases, the infeasibility of fine-tuning GrPPI is a crucial
drawback. Despite this, programmability experiments estimate
that GrPPI has the potential to reduce by about three times the
development time of parallel applications.

Index Terms—Stream Parallelism, Multi-core, GrPPI, SPBench,
OpenMP, ISO C++, Intel TBB, FastFlow

I. INTRODUCTION

Implementing parallelism for stream processing is not easy.
Some strategies can mitigate this difficulty, such as structured
parallel patterns [1]. Pipeline and Farm are examples of parallel
patterns for stream processing. Some parallel programming
interfaces (PPIs), such as FastFlow [2] and Intel® Threading
Building Blocks (TBB) [3], natively implement parallel pat-
terns. However, even using these PPIs, implementing stream
parallelism while achieving performance improvement is still a
task for experts. In this context, GrPPI is a generic and reusable
parallel pattern interface for both stream processing and data-
intensive C++ applications [4]. It allows users to compile their
programs with FastFlow, TBB, OpenMP, ISO C++ threads, and
other backends from a single generic implementation. Even
though they also implement parallel patterns for data stream
processing applications [5], which usually have low-latency
requirements, and support for distributed platforms [6], [7],
which increases the communication delay between nodes of
the pipeline, we found no performance evaluation of GrPPI
regarding latency in the literature. Previous work evaluated it
regarding execution time or speedup.

In this work, we evaluate the performance of GrPPI’s
backends for multi-cores in terms of throughput, latency,
memory usage, and programmability. We implemented four
benchmarks using GrPPI and compared the performance of each
backend against the handwritten benchmark using FastFlow and
TBB. We use SPBench [8] to create the handwritten and GrPPI
benchmarks. It is a framework that simplifies the development
and management of custom benchmarks for stream processing.
Its main goal is to enable users to evaluate and compare the
performance of PPIs, which is the purpose of this paper.

The main contributions of this work can be summarized
as follows: (1) An analysis of GrPPI performance from a
latency perspective using four real-world stream processing
applications; (2) An analysis of the programmability of GrPPI
using Halstead’s method adapted for parallel applications; (3)
An extension of the SPBench benchmarking framework with
support for benchmark generation using GrPPI.

II. RELATED WORK

Our related work is papers that have evaluated the per-
formance of applications implemented with GrPPI. Table I
summarizes the related work, and the last row regards this
paper. Concerning parallel patterns for stream processing, most
works have evaluated pipe-farm compositions. The exception
was [5], which evaluated patterns more specific to data stream
processing. In our work, we evaluate different compositions of
farms with pipelines. Considering the PPIs, only [9] and [10]
evaluated all backends currently provided by GrPPI. Most
papers also compared GrPPI with handwritten parallel code. [4]
also compared it with CUDA and [7] with MPI.

Regarding performance, no work has evaluated the latency
with GrPPI. Latency is a more sensitive metric than throughput
and requires fine-tuning to keep it low for the different PPIs.
Evaluating this metric helps show that GrPPI also allows
fine-tuning with a generic interface for different backends.
Programmability was also a concern for [5], [6], [10], [11].
These works evaluated it regarding lines of code (LOC) or
cyclomatic complexity number (CCN). Several benchmarks
were used to evaluate GrPPI in the related work. Half of them
are synthetic benchmarks, usually applying combinations of
image filters. Some also used specific real-world benchmark
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TABLE I
RELATED WORK SUMMARY TABLE.

RW Parallel patterns Parallel programming
interfaces (PPIs) Performance metrics Program.

metrics Benchmark applications

[4] Pipeline + Farm,
Pipeline + Stencil

GrPPI(TBB, THR, OMP),
TBB, CUDA,
ISO C++ the., OpenMP

Throughput – Gaussian blur + Sobel filter
benchmark

[5]
Stream-Pool,
Window-Farm,
Stream-Iterator

GrPPI(TBB, THR, OMP) Speedup LOC,
CCN

FM-Radio and 3 synthetic bench.:
Traveling salesman,

“Sensor” and “Image”
[6] Pipeline-Farm GrPPI(THR, MPI) Speedup LOC, CCN Mandelbrot + Gaussian Blur

[7] Pipeline-farm GrPPI(THR, MPI),
Boost-MPI, Spark Speedup – Gaussian blur + Sobel filter and

Mandelbrot + Gaussian Blur

[9] Pipeline-farm GrPPI(TBB, THR, OMP, FF),
OMP

Exec. time, Mem. usage,
other hardware metrics – pHARDI

[10] Map, reduce,
stencil, farm

GrPPI(TBB, THR, OMP, FF),
FastFlow Exec. time LOC,

CNN
Four synthetic bench. with

simple math and vector operations

[11] Pipeline-farm,
map, reduce

GrPPI(THR, OMP),
PThreads, OpenMP Exec. time LOC From PARSEC: Swaptions,

Blacksholes, Streamcluster, and Ferret

[12] Pipeline-farm ISO C++ thr.,
GrPPI(THR, TBB) Speedup – Mandelbrot, Ant colony optimization,

Matrix multi., and Image convolution
This
work

Farm, Pipe-farm,
Farm-pipeline

GrPPI(TBB, THR, OMP, FF),
FastFlow, TBB

Throughput, Latency,
Memory usage

LOC, CCN,
PHalstead

Lane Detect., Bzip2, Face Recog.,
and Ferret (PARSEC)

applications, such as pHARDI [10], or well-known benchmark
suites, such as PARSEC [11].

The general conclusion of the related work is that GrPPI
is able to add generic parallelism abstractions to several PPIs
with a minimal performance penalty. However, as shown in
Table I, most related works evaluated performance regarding
execution time/speedup only. None of them measured latency,
an increasingly important metric for real-time processing, which
is one of the goals of stream processing. The evaluations
considering throughput and memory were also quite limited,
not considering different strategies and degrees of parallelism
or different stream processing applications. In this work, we
evaluate GrPPI considering latency, throughput, and memory
usage. Regarding programmability, in addition to lines of code
and cyclomatic complexity number, we use Halstead’s method
for parallel applications (PHalstead) from [13].

III. GRPPI
Some solutions, such as pattern-based programming models,

aim to alleviate the burden of parallel programming. Parallel
patterns allow the implementation of robust, readable, and
portable parallel code while abstracting away the complexity of
concurrency control mechanisms. Intel TBB and FastFlow are
two examples of PPIs that support parallel patterns. However,
such PPIs do not share the same programming interface and
require code rewriting to port a parallel application to other
platforms. The GrPPI library [4] was developed to overcome
these drawbacks and be a unified, generic abstraction layer
between PPIs. It proposes to act as a switch between different
parallel programming interfaces. It provides a compact and
generic parallel interface that seeks to hide the complexity of
concurrency mechanisms. It is also highly modular, allowing
easy composition of parallel patterns. Its goal is to make applica-
tions independent of the parallel programming framework used
underneath, thus providing portable and readable codes [10].

In its latest release, GrPPI allows running applications with
four backends: ISO C++ threads, FastFlow, OpenMP, and Intel
TBB. However, in stream processing, PPIs often offer specific
mechanisms for fine-tuning performance, such as the number
of tokens in TBB. Latency, for instance, is a sensitive metric
that can be excessively high if the application is not properly
tuned. Although GrPPI includes directives for managing many
of these mechanisms, their extent and functionality have not
yet been further evaluated. We argue that evaluating GrPPI
with a latency-oriented perspective can show how much it can
express parallelism for different stream processing scenarios
while maintaining a simple and generic interface.

IV. EXPERIMENTAL METHODOLOGY

In this section, we discuss the methodology used for the
experiments. We evaluate performance regarding throughput,
latency, and memory consumption with varying degrees of
parallelism. All these metrics were provided by SPBench [8].
For the performance evaluation, we ran each benchmark three
times and the standard deviations are in the charts.

A. Execution Environment
All experiments were performed in a computer that has 144

GB of RAM and two Intel(R) Xeon(R) Silver 4210 CPU @
2.20GHz processors. We used Ubuntu 20.04.4 LTS x86-64 OS,
with Linux kernel 5.4.0-105-generic, and GCC 9.4.0 using -O3
flag. The GrPPI benchmarks were implemented using GrPPI
v0.4.0. Intel TBB 2020 Update 2 was used for GrPPI-TBB
and handwritten TBB benchmarks. Handwrittten code with
FastFlow used version 3, while GrPPI used FastFlow 2.2.0.

B. SPBench Benchmarks
We created GrPPI benchmarks using the SPBench1 frame-

work [8] and compared their performance against handwritten

1https://github.com/GMAP/SPBench



implementations of FastFlow and Intel TBB. SPBench is a
framework that allows easy evaluation of different parallel
programming interfaces for stream processing in C++. Initially,
the framework already provided benchmarks with Intel TBB
and FastFLow. We have extended this framework in this work,
and now it also provides GrPPI benchmarks.

Listing 1 shows how a SPBench benchmark with GrPPI looks
like. It represents a Bzip2 benchmark implementation using
a GrPPI farm with OpenMP backend. The Bzip2 application
has three stages: Source, Compress/Decompress, and Sink.
Therefore we implemented a farm where the Source operator
acts as an Emitter, Compress are the workers (which are
replicated), and Sink is the Collector.

1 void grppi_func() {
2 grppi::parallel_execution_omp ex;
3 grppi::pipeline(ex,
4 []() std::mutable -> optional<spb::Item> {
5 spb::Item item;
6 if(!spb::Source::op(item)) { return {}; }
7 else { return item; }},
8 grppi::farm(spb::nthreads,
9 [](spb::Item item) {

10 spb::Compress::op(item);
11 return item; }),
12 [](spb::Item item){ spb::Sink::op(item); }
13 );
14 }
15 int main (int argc, char* argv[]){
16 spb::init_bench(argc, argv);
17 spb::Metrics::init();
18 grppi_func();
19 spb::Metrics::stop();
20 spb::end_bench();
21 }

Listing 1. Example of a Bzip2 benchmark in SPBench using GrPPI with
OpenMP backend and a single farm.

Although omitted in this example for space reasons, we
enabled item sorting to ensure the correctness of the output
file, use queues of size 1 to reduce latency, and enable blocking
mode to improve resource utilization. We implemented a
version of the benchmarks using a mechanism for dynamically
changing the grppi::parallel_execution mode. For
the pipeline of farms implementation, we added more farm
stages to the pipeline. For the farm of pipelines, we created a
single farm and then added a pipeline to it.

V. EXPERIMENTAL RESULTS

This section presents the experimental performance, memory
usage, and programmability results.

A. Performance

We measure latency and throughput by varying the degree
of parallelism in each farm stage from 1 to 40, the number of
threads in the architecture we use. We enabled blocking mode
on the PPIs as this allows more efficient use of resources
and can improve performance when using hyperthreading,
especially in applications that implement a pipeline farm [8].
Figure 1 presents each application’s latency (left) and through-
put/items per second (right) results. The minimum parallelism
degree that GrPPI-OMP accepts is three since it requires two
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Fig. 1. Latency and throughput of the farm benchmarks with different backends.

dedicated threads for running the source and the sink.So we
shifted the results of GrPPI-OMP by -2 in the x-axis.

Figure 1 shows that the throughputs of GrPPI backends
(except FF) are equivalent to the handwritten code with
TBB and FastFlow (FF). In the Lane Detection application,
GrPPI-THR and GrPPI-OMP achieve better performance using
hyperthreading. In the case of GrPPI-FF, it achieves throughput
comparable to the other PPIs with lower parallelism degrees.
Still, the inability to apply blocking mode in GrPPI-FF knocks
down performance when using hyperthreading.

Regarding latency, the results of PPIs vary widely. In addition
to the inability to enable blocking mode in GrPPI-FF, it
is also not possible to enable on-demand mode or set the
queues to size 1, which would have a similar effect. Therefore,
GrPPI-FF has an unlimited buffer between stages that stores
many items simultaneously. These items wait a long in the
buffers/queues until the other stages can process them. It incurs
a significant increase in latency. Although GrPPI-THR has the
best throughput performance, it has the second-worst latency
performance overall. However, it manages to have lower latency
than the TBB in Lane Detection when using more workers.
GrPPI-TBB has comparable latency to the handwritten TBB.
GrPPI-OMP presented a better latency than TBB in Lane
Detection over 20 workers.

Figure 2 presents the performance results for the pipeline
with multiple farms (PF) and farm with pipelines (FP) com-
positions. We could not run these versions with the OpenMP
backend in GrPPI, so it is not presented. We present these
results only for the Ferret application since it originally
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Fig. 2. Ferret with compositions of pipelines and farms.

implements a pipeline-farm in PARSEC [14]. The highest
throughputs were achieved by GrPPI-THR-PF, followed
closely by the handwritten version of FastFlow. A pipeline of
farms in TBB in an application with no ordering requirement
(this case) can avoid buffering and process an item from the
beginning to the end of the pipeline if resources are available.

In a pipeline of farms, the inability to optimize FastFlow
code in GrPPI is a critical factor for both throughput and
latency. If on-demand mode is not enabled, this adds multiple
unlimited queues/buffers in the pipeline, further increasing
latency. Without enabling blocking mode, idle workers are in a
busy wait state and do not free up resources. This combination
causes a large load unbalance in this application. Since Ferret-
PF has a pipeline with four farms and the architecture has 40
threads, it is expected that the pipeline of farms in non-blocking
mode will have a significant drop in performance above ten
workers per farm. On the other hand, the farm-pipeline pattern
avoids the additional collectors/emitters between stages that
there would be in a pipeline-farm. So it requires fewer threads
and has fewer shared queues, leading to better load balancing
and mitigating the performance impact.

Except for the TBB, all the PPIs considerably increased la-
tency with pipe-farm implementations. The difference between
TBB and FastFlow in these situations has been extensively
discussed in previous work [8], [15]. Despite the difference
in throughput between GrPPI-FF-FP and GrPPI-FF-PF,
in terms of latency, the two strategies behaved somewhat
similarly, showing the highest latencies. GrPPI-THR-PF,
however, presented far better results than the FP composition.
After all, it achieved the best throughputs and reduced latency
to the same level as GrPPI-TBB with 40 workers.

B. Memory Usage

We get the memory usage from the SPBench
memory-usage metric. This metric returns the total
memory used by a benchmark during its execution. We ran
the benchmarks with a parallelism degree of 10, 20, 30, and
40. The PPI behavior of the benchmarks with a single farm
were similar to those from the pipeline-farm compositions.
Thus, due to space constraints, we are presenting only the
results of the Ferret benchmark in Figure 3.

In most cases, PPIs demanded similar amounts of mem-
ory. The apparent exception was GrPPI-FF-FP, where its
unlimited queues/buffers loaded all data into memory at once.
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Fig. 3. Total memory consumption of Ferret benchmarks using pipeline-farm
(PF) and farm-pipeline (FP) compositions.

It occurs due to the inability of GrPPI to adjust the size of
FastFLow queues and the FastFlow developers’ decision not
to set a lower default boundary for it. Another contribution to
this effect is derived from the strategy of GrPPI, which uses
value-oriented bounded queues instead of pointer-oriented ones.
This avoids excessive allocation/deallocation at the price of
preallocating more memory. However, this high memory usage
is present only in the farm-pipe (FP) composition and not so
much in the pipe-farm (PF). This is because a lower number of
queues is required for a pipeline of farms, where all workers
in a farm share a single queue, and consequently, the number
of queues is independent of the farm multiplicity.

The memory usage of GrPPI-FF-PF, however, is reduced
with 40 workers. Probably because resources are tightly con-
tested with blocking mode disabled, and more intensive stages
get more processing priority. Thus, such a lack of resources
can lead to the inability of the first stage (emitter) to send
enough items to fill the queues. This is because the bottleneck
produced by the more costly task is reduced, and therefore the
bottleneck at the emitter is increased. GrPPI-THR-FP also
uses more memory with ten workers, but we can see that this
is directly linked to the latencies shown in Fig. 2. In general,
the PPI that used the least memory in the big picture was
OpenMP, followed by the handwritten FastFlow.

C. Programmability Evaluation

[1] says that a PPI should balance three properties: perfor-
mance, portability, and programmability. However, programma-
bility is not usually addressed in parallel programming and it
may be directly linked to the lack of methods and tools that
support parallel programming and the difficulty of performing
experiments on humans. Thus, most productivity evaluations are
tied to code metrics such as lines of code (LOC) or cyclomatic
complexity. [13] adapted Halstead’s method to address parallel
programming and created the PHalstead2 tool. This method is
based on tokens of code (operators and operands) and results
in a series of measures, including estimated development time.
Figure 4 shows the results of different code metrics, including
PHalstead. We measured LOCs and cyclomatic complexity
using the Lizard 1.17.10 tool.

The graph in Figure 4 includes the benchmarks implemented
with Intel TBB, FastFlow, GrPPI, and sequential applications.
With GrPPI, we consider two versions: “GrPPI-static” is a
more straightforward implementation that invokes the executor

2https://github.com/GMAP/phalstead
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Fig. 4. Number of lines of code, cyclomatic complexity, and estimated
development time (PHalstead [13]) of the benchmarks implemented with
FastFlow, TBB, GrPPI-static, and GrPPI-dynamic.

of a specific backend statically within the code; “GrPPI-
dynamic” is an implementation with a mechanism that allows
switching between the four backends dynamically at runtime.
We consider these two versions because, although dynamic
backend selection is a valuable feature of GrPPI, its use is a
user option and not a requirement.

As exposed in Figure 4, GrPPI-static achieved the best results
in all cases. In parallel implementations with a single farm,
GrPPI-dynamic is similar to TBB and FastFlow. However,
we can see that GrPPI shows better results in pipe-farm (PF)
and farm-pipe (FP) implementations, where the complexity of
programming with FastFlow increases considerably. Concerning
cyclomatic complexity, GrPPI-static has equivalent results to the
sequential application. On the other hand, PHalstead estimated
a longer development time for GrPPI-dynamic with Lane
Detection, Face Recognizer, and Ferret-Farm. This extra cost
is given by the addition of the backend switching mechanism.
In Bzip2, which has two execution modes (compress and
decompress), this cost is diluted, and GrPPI-dynamic can
maintain a lower development time than TBB and FastFlow.
In Ferret PF and FP, this is due to the significant increase in
implementation complexity with TBB and FastFlow.

VI. CONCLUSION

In this work, we evaluated the GrPPI library targeting
stream processing scenarios. Unlike related work, we use
more representative metrics to measure stream processing
performance, such as latency and throughput. We also evaluate
memory usage and programmability/productivity.

As an overall conclusion, we can say that GrPPI does
what it promises. It delivers competitive performance while
foregoing fine-tuning. However, such fine-tuning can be a
crucial requirement for current stream processing applications,
which demand real-time processing. Such factors may limit the
applicability of GrPPI in more realistic scenarios. As future
work, the latency of the GrPPI parallel patterns for data streams

could be evaluated using appropriate benchmarks. In addition,
a comparison of GrPPI could be made with similar solutions
such as SPar [16], which generates code for the same backends
as GrPPI but has an annotation-based abstraction approach.
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