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Abstract

Particle acceleration in astrophysical plasmas is a process of crucial im-
portance for the interpretation of the most energetic phenomena in the
universe produced, for example, in Active Galactic Nuclei, Pulsar Wind
Nebulae, and Gamma-Ray Bursts. The recent wealth of investigation by
means of numerical simulations has shown that, when compared to shock
diffusive acceleration, relativistic magnetic reconnection taking place in
strongly magnetized current sheets can result in a more efficient and uni-
versal acceleration process. In particular, dynamic instabilities such as the
tearing one can trigger a magnetic reconnection regime with time-scales
comparable to the ones observed in astrophysical plasmas.

However, discretization techniques used in numerical simulations introduce
artificial viscosity effects which are not easily quantifiable but can be re-
duced through high-order methods and/or at finer mesh spacing. There-
fore, we investigated the impact of different numerical algorithms, grid
resolutions, and physical resistivity on magnetic reconnection as well as on
particle acceleration mechanisms. 2D magnetohydrodynamics numerical
simulations of tearing-unstable current sheets coupled to a population of
non-thermal test-particles are performed with the PLUTO code for astro-
physical fluid dynamics. Our results indicate that the reconnection rate
of the background tearing-unstable plasma converges only for finite val-
ues of the Lundquist number and for sufficiently large grid resolutions.
On the other hand, the process of particle acceleration is found to be
nearly independent of the underlying numerical details since the system
becomes tearing-unstable and enters its non-linear stages. In the limit of
large Lundquist numbers, the ensuing power-law index quickly converges
to p ≈ 1.7, consistently with the fast reconnection regime.

In the context of particle acceleration in high-energy astrophysical envi-
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ronments featuring magnetic reconnection, the importance of the resistive
term of the electric field compared to the convective one is still under de-
bate. Therefore, in the second half of this thesis, the importance of the
resistive contribution in accelerating particles is investigated. We find that
the resistive field plays a significant role in the early-stage energization of
high-energy particles. Indeed, these particles are firstly accelerated due to
the resistive electric field when they cross an X-point, created during the
fragmentation of the current sheet due to the onset of the tearing insta-
bility. If this preliminary particle acceleration mechanism dominated by
the resistive field is neglected, particles cannot reach the same high ener-
gies. Our results support, therefore, the conclusion that the resistive field
is not only non-negligible but it does actually play an important role in
the particle acceleration mechanism.
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List of Acronyms

Below is the list of acronyms that have been used throughout this thesis
listed in alphabetical order:

AGNs Active Galactic Nuclei
AU Astronomical Unit
AW Alfvén waves
CMB Cosmic Microwave Background
CFL Courant-Friedrichs-Lewy
CRs Cosmic Rays
CT Constrained Transport
DSA Diffusive Shock Acceleration
FSRQ Flat Spectrum Radio Quasars
FTBS Forward in Time, Backward in Space
FW Fast Waves
GRBs Gamma-Ray Bursts
GZK Greisen-Zatsepin-Kuzmin
EHT Event Horizon Telescope
ICM Intracluster Medium
IGM Intergalactic Medium
IR Infrared
KH Kelvin-Helmholtz
LTE Local Thermal Equilibrium
MHD Magnetohydrodynamics
PIC Particle-In-Cell
QSO Quasi Stellar Objects
RMHD Relativistic Magnetohydrodynamics
RK2 2nd-order Runge-Kutta
RK3 3rd-order Runge-Kutta
SED Spectral Energy Distribution
SMBH Supermassive Black Holes
SNR Supernova Remnant
SW Slow Waves
TD Tangential Discontinuity
TM Tearing mode
UCT Upwind Constrained Transport
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Nomenclature

Below is the nomenclature of indices and parameters that have been used
throughout this thesis.

Indices

a Index for atoms
c Index for the convective contribution
E Index for the east-direction with respect to zone edge
e Index for electrons
i Index for positive ions or for grid points along x-axis
j Index for grid points along y-axis
k Index for grid points along z-axis
L Index for the left side of the interface
N Index for the north-direction with respect to zone edge
n Index for step number
p Index for protons or single particle
R Index for the right side of the interface
r Index for the resistive contribution
S Index for the south-direction with respect to zone edge
W Index for the west-direction with respect to zone edge
0 Index for the ground state or the equilibrium value

Parameters

A Vector potential
a Initial current sheet width
B Magnetic field
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Ca Courant number
c Speed of light
C Speed of light artificial value
d̄ Average particle distance
dl Optimal weights for a 5th-order accurate approximation
e Electron charge
E Electric field
Ekin Particle kinetic energy
Et Total energy density
Ethr Threshold kinetic energy
F Flux tensor
f(x,v, t) Distribution function
fpart Fraction of particles
f[S] Short for flux
I Ionization energy
I(f[s]) Interface values reconstruction
J Current density
k Boltzmann constant
kmax Maximum wavenumber for the fastest growing mode
L Flux difference operator
L System length
Lbol Bolometric luminosity
LGRB GRBs luminosity
m Momentum density
m Particle mass
M∗ Stellar mass
M� Solar mass
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n Number density
N Total number of particles
Nm Number of modes
Npart Number of particles in each energy bin
Nx Grid resolution along the x-axis
p Particle momentum
p Power-law index
P Plasma pressure
PIC Inverse Compton emission power
Psync Synchrotron emission power
q Charge density
q Thermal flux vector
Rm Reynolds number
Rrec Reconnection rate
S Lundquist number
S Poynting vector
t Time
tstop Final computational time
T Plasma temperture
TB Brightness temperature
U Array of conserved quantities
UB Magnetic field energy density
u Four-velocity coordinates
Urad Radiation energy density
V Array of primitive variables
V Volume
vA Alfvén velocity
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vg Gas velocity
v Velocity coordinates
vs Shock velocity
vT Thermal velocity
W or Wtot Energy gained by particles
x Position coordinates
Z Atomic number
β β-parameter
βl Smoothness indicators
Γ Polytropic index
γ Lorentz factor
γmax Maximum growth rate for the fastest growing mode
γTM Tearing mode growth rate
∆x Coordinate spacing along x-axis
∆y Coordinate spacing along y-axis
∆z Coordinate spacing along z-axis
∆t Time step
∆Ṽ Slopes
δ Spectral index
ε Perturbation amplitude
η Physical resistivity
θ Angle between v and B

λ Characteristic speeds
λD Debye length
νc Particle collision rate
Π Viscous stress tensor
ρ Plasma density
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σ Electrical conductivity
σd Standard deviation
σT Thomson cross section
τ Thermalization time
τA Alfvénic time
τc Convective time scale
τd Diffusive time scale
φ Dissipative term
φm Random phases
χ Degree of ionization
ψ(v) Arbitrary velocity function
ωc Larmor frequency
ωl Weights
ωp Plasma frequency

ix



x



Contents

Abstract i

1 Introduction 1
1.1 High-energy astrophysical scenario . . . . . . . . . . . . . 1

1.1.1 Gamma-Ray Bursts . . . . . . . . . . . . . . . . . . 1
1.1.2 Active Galactic Nuclei . . . . . . . . . . . . . . . . 2
1.1.3 Characteristic emission spectrum . . . . . . . . . . 6

1.2 How are particles accelerated? . . . . . . . . . . . . . . . . 11
1.2.1 Diffusive shock acceleration . . . . . . . . . . . . . 11
1.2.2 Magnetic reconnection . . . . . . . . . . . . . . . . 12
1.2.3 Tearing instability . . . . . . . . . . . . . . . . . . 13
1.2.4 The debate on the importance of resistivity . . . . 16

1.3 Previous results on particle acceleration . . . . . . . . . . . 17
1.3.1 Test-particles MHD versus PIC . . . . . . . . . . . 17
1.3.2 Shortcomings . . . . . . . . . . . . . . . . . . . . . 18

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . 20

2 Theoretical model: plasma definition and equations 23
2.1 Basic plasma parameters . . . . . . . . . . . . . . . . . . . 23
2.2 Plasma kinetic description . . . . . . . . . . . . . . . . . . 26
2.3 Towards the fluid model . . . . . . . . . . . . . . . . . . . 28
2.4 The magnetohydrodynamic model . . . . . . . . . . . . . . 30

2.4.1 Sweet-Parker model . . . . . . . . . . . . . . . . . . 32
2.4.2 Fast magnetic reconnection . . . . . . . . . . . . . 34
2.4.3 A note on resistivity . . . . . . . . . . . . . . . . . 35

2.5 Particle equations . . . . . . . . . . . . . . . . . . . . . . . 36

3 Numerical methods 39

xi



Contents

3.1 MHD vs PIC codes . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Fluid-particle hybrid approach . . . . . . . . . . . . . . . . 40
3.3 The PLUTO code . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Reconstruction step . . . . . . . . . . . . . . . . . . 42
3.3.2 Riemann solvers . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Final Update step . . . . . . . . . . . . . . . . . . . 46
3.3.4 A note on numerical diffusion . . . . . . . . . . . . 47
3.3.5 Time-stepping schemes . . . . . . . . . . . . . . . . 48
3.3.6 Constrained Transport . . . . . . . . . . . . . . . . 48
3.3.7 Particle mover: Boris integrator . . . . . . . . . . . 53

3.4 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Chosen numerical schemes . . . . . . . . . . . . . . 56
3.4.2 Dynamical contributions of convective and resistive

electric fields . . . . . . . . . . . . . . . . . . . . . 57

4 The impact of the numerical method 59
4.1 Convergence study for the background plasma . . . . . . . 59

4.1.1 The effect of spatial reconstruction . . . . . . . . . 60
4.1.2 The impact of the Riemann solver and emf averaging 62
4.1.3 Dependence on the Lundquist number . . . . . . . 64

4.2 Test particle acceleration . . . . . . . . . . . . . . . . . . . 67
4.2.1 Particle acceleration and energetics . . . . . . . . . 68
4.2.2 Dependence on grid resolution and numerical method 71
4.2.3 Spectral distribution versus Lundquist number . . . 74

5 The importance of the resistive electric field 77
5.1 2D Histogram analysis . . . . . . . . . . . . . . . . . . . . 77
5.2 Resistive field role on high-energy particles . . . . . . . . . 78
5.3 Relation between particle energization and current sheet

evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusions and outlooks 85
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A X-points number algorithm 91

B Plasma convergence study 93

xii



Contents

Bibliography 97

Acknowledgements 115

xiii



Contents

xiv



List of Figures

1.1 Scheme of the most common type of GRB. Credit: NASA’s
Goddard Space Flight Center . . . . . . . . . . . . . . . . 3

1.2 Image of the nearby galaxy Centaurus A taken by Chan-
dra Space Telescope (plus optical and radio observations).
Credit: X-ray: NASA/CXC/CfA/R.Kraft et al; Radio: NS-
F/VLA/Univ.Hertfordshire/M.Hardcastle; Optical: ESO/W-
FI/M.Rejkuba et al . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Characteristic “double humped” spectral energy distribu-
tion of NGC 1275. Credit: Abdo et al. (2009) . . . . . . . 6

1.4 AGN jet of the M87 galaxy. Credit: NASA and the Hubble
Heritage Team (STScI/AURA) . . . . . . . . . . . . . . . 8

1.5 Comparison of gamma-ray spectrum of GRB 170817A, GRB
101224A, and GRB 090510A. Credit: Burgess et al. (2020) 10

1.6 Particle path through the shock from upstream to down-
stream and vice versa. Credit: A. Mignone . . . . . . . . . 12

1.7 A sketch of the initial (top) and final (bottom) configuration
of magnetic field in the reconnecting current sheet. Credit:
E. Beratto . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 A sketch of the initial neutral current sheet fragmented in
X- and O-points due to the tearing instability. Credit: E.
Beratto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Evolution over time of the spectrum power-law index (top
right), of the cutoff Lorentz factor together with the maxi-
mum Lorentz factor (bottom right), and of particle energy
spectra (left). Credit: Sironi and Spitkovsky (2014) (left),
Petropoulou and Sironi (2018) (right) . . . . . . . . . . . . 17

xv



List of Figures

1.10 Test protons trajectories obtained with PIC (top) and MHD
(bottom) simulations. Credit: Drake et al. (2010) (top),
Kowal et al. (2011) (bottom) . . . . . . . . . . . . . . . . . 19

2.1 A sketch of the the Sweet–Parker model for magnetic recon-
nection at a current sheet. Credit: Priest (2020) . . . . . . 33

3.1 The Reconstruct-Solve-Update step sequence typical of a
Godunov-type code. Credit: A. Mignone . . . . . . . . . . 41

3.2 General structure of the Riemann fan generated by two ini-
tial constant states: UL and UR. The pattern includes 7
waves. Credit: A Mignone . . . . . . . . . . . . . . . . . . 44

3.3 Schematic diagram of a finite-volume conservative scheme.
Credit: A. Mignone . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Sketch of the position of MHD variables by using the CT
formalism (left) and of the intersection between four neigh-
bor zones viewed from the top (right). Credit: Mignone and
Del Zanna (2021) . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Thermal pressure of an ideal fluid (left) and volume-integrated
magnetic energy as a function of time (right) obtained with
different emf methods and the HLLD Riemann solver in the
case of magnetized plasma. Credit: Mignone and Del Zanna
(2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Plasma density at four simulation snapshots . . . . . . . . 61
4.2 Spatially-averaged transverse component of magnetic field

as a function of time at different grid resolutions (left) and
number of X-points formed over time at higher resolutions
(right) using linear (top) and WENO-Z (middle) reconstruc-
tions, with a comparison of these at the highest resolution
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Spatially-averaged transverse component of magnetic field
as a function of time for different resolutions and selected
numerical schemes, for a resistive (left) and an ideal (right)
plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Same as Figure 4.3 but with plots from different numerical
methods overlapping at the two largest resolutions . . . . . 66

xvi



List of Figures

4.5 Spatially-averaged transverse component of magnetic field
over time for different values of S̄ at different resolutions . 67

4.6 Comparison between the theoretical growth rate and that
obtained from the simulations for different values of S. . . 68

4.7 Evolution over time of the kinetic energy of the most ener-
getic particle (top), where the points represent the instants
of time corresponding to the position of this particle on the
plasma density in four main moments of its evolution (bottom) 70

4.8 Position of the most energetic particles on the snapshot
of the magnetic field module, normalized to its maximum
value, at the end of the computational time . . . . . . . . 71

4.9 Temporal evolution of particles energy spectrum and the
p-index of the power law to which it converges (top) and
spatial distribution of particles at two different instants of
time (middle and bottom) . . . . . . . . . . . . . . . . . . 72

4.10 Comparison of particle energy spectra at the end of the sim-
ulation for different grid resolutions in the case of a resistive
(left) and an ideal (right) plasma, obtained with different
numerical schemes . . . . . . . . . . . . . . . . . . . . . . 73

4.11 Comparison of particle energy spectra in the saturation phase
at different S̄ for several grid resolutions . . . . . . . . . . 75

5.1 2D histograms of the energy gained (%) due to the resistive
electric field by particles as functions of their final kinetic
energy at different resolutions . . . . . . . . . . . . . . . . 79

5.2 Histograms of the particles kinetic energy at different grid
resolutions, obtained with (black) and without (red) the re-
sistive term in the particle equations of motion . . . . . . . 80

5.3 Resistive contribution over time on particles reaching high
energies at the end of the computational time . . . . . . . 82

5.4 Resistive field contribution on the most energetic particles
over time marked with red points, characterizing four evo-
lutionary phases of the current sheet . . . . . . . . . . . . 83

B.1 Spatially-averaged transverse component of magnetic field
(left) and number of X-points over time (right) at different
grid resolutions . . . . . . . . . . . . . . . . . . . . . . . . 94

xvii



List of Figures

xviii



List of Tables

4.1 Average growth rates for the 1st- and the 2nd-linear phases of
the tearing mode instability measured from the simulations
at different grid resolutions using HLLD with linear and
WENO-Z reconstructions . . . . . . . . . . . . . . . . . . . 62

4.2 p-index of the power-law part of the spectra at different
resolutions for different combinations of schemes in the case
of resistive and ideal plasma . . . . . . . . . . . . . . . . . 74

4.3 p-index of the power-law part of the spectra at at the largest
grid resolution for different values of S̄ . . . . . . . . . . . 76

xix



List of Tables

xx



1
Introduction

The study of particle acceleration is of fundamental importance to under-
standing the high-energy part of the spectra of the most powerful astro-
physical sources, such as Gamma-Ray Bursts (GRBs) and Active Galactic
Nuclei (AGNs). This chapter gives an overview of the reference astrophysi-
cal scenario, as well as the particle acceleration mechanisms taking place in
these environments. Moreover, this chapter describes the techniques used
to carry out this study, which must necessarily involve numerical simula-
tions.

1.1 High-energy astrophysical scenario

Much of the energy output from the most powerful environments of the uni-
verse such as Gamma-Ray Bursts (GRBs; see, e.g., Giannios, 2008; McKin-
ney and Uzdensky, 2012; Sironi and Giannios, 2013; Beniamini and Piran,
2014; Beniamini and Giannios, 2017) and jets found in Active Galactic
Nuclei (AGNs; see, e.g., Böttcher, 2007; Giannios, 2013; Sironi et al., 2015;
Petropoulou et al., 2016), features a non-thermal signature originated by
high-energy particles. This non-thermal signature has been observed from
the radio to the gamma-ray wavebands, up to TeV energies.

1.1.1 Gamma-Ray Bursts

Gamma-Ray Bursts (GRBs) are high-energy explosions with luminosities
exceeding, in some cases, LGRB = 1054 erg/s (Pescalli et al., 2016). These
explosions may be connected to the merging of compact objects in binary
systems (i.e., short GRBs) or the collapse of a massive star into a black hole
or a neutron star (i.e., long GRBs). The binary systems linked to short
GRBs may be composed of neutron stars or a neutron star and a black
hole (see, e.g., Kumar and Zhang, 2015). As claimed by, e.g., Perna et al.
(2016), a short GRB can also be produced by the merger of two black

1



1. Introduction

holes. On the other hand, the massive stars that collapse and generate
long GRBs are of Wolf-Rayet type with a mass M∗ & 30M� (see Piron,
2016). As the name suggests, short and long GRBs are distinguished, for
the first time by Kouveliotou et al. (1993), by their duration, respectively
less or more than about 2 seconds. In particular, short GRBs last from a
minimum of a few milliseconds and a maximum of about 2 seconds (see,
e.g., Lazzati, 2020).
The GRBs emission is characterized by two phases: the prompt and the
afterglow phase (see Fig. 1.1). The former is a short phase, whose duration
distinguishes short and long GRBs (Lazzati, 2020). The prompt phase
features an emission that is very intense in the hard X- and gamma-ray
bands. This phase is followed by another one: the afterglow (first observed
by the BeppoSAX satellite; see Costa et al., 1997; van Paradijs et al.,
1997). This is a longer but less energetic phase, as the emission peaks at
less energetic wavelengths (i.e., X-ray, visible and radio; see Piron, 2016).
The fireball model (see Wijers et al., 1997, and reference therein) explains
how the prompt emission and the afterglow phase are produced. According
to this model, the merger of a neutron star binary system or the collapsed
core of a massive star are considered as central engines launching a plasma
composed of electrons, positrons, and baryons in the form of highly rela-
tivistic jets. The prompt and the afterglow emissions are produced by the
interactions of blobs inside the jet itself and with the surrounding mate-
rial, respectively (see, e.g., Dainotti et al., 2018). However, as pointed out
in Dainotti et al. (2018), this model is not effective in explaining all the
observations of GRBs (see, e.g., Willingale et al., 2007; Melandri et al.,
2008).
Long GRBs can be detectable out to very high redshifts. Therefore, they
can be used to study the stars formation rate and their environmental
impact, for instance, on the metal enrichment of the intergalactic medium
(IGM; see Wang et al., 2015). Moreover, they can be used to investigate
the expansion rate of the Universe, as well as the properties of dark energy
(see, e.g., Demianski et al., 2017).

1.1.2 Active Galactic Nuclei

Active Galactic Nuclei (AGNs) are compact regions at the center of galaxies
powered by accretion onto supermassive black holes (SMBH with M &
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1. Introduction

Figure 1.1: Scheme of the most common type of gamma-ray burst, characterized by the
prompt and the afterglow phase. Credit: NASA’s Goddard Space Flight Center.

105−9M�; see, e.g., Netzer, 2015; Kono et al., 2021). These objects can be
more luminous (Lbol ≈ 1048 erg/s; see, e.g., Padovani et al., 2017) than
the remaining galaxy light.
Heckman and Best (2014) divided low-redshift AGNs into two categories:
the “radiative-mode” and “jet-mode” AGNs. In these categories, the dom-
inant energetic output takes the form of electromagnetic radiation and of
bulk kinetic energy transported in two-sided collimated jets, respectively.
Heckman and Best (2014) claimed that the electromagnetic radiation in
“radiative-mode” AGNs is generated by the conversion of the gas poten-
tial energy that is accreted by the SMBH, while jets in “jet-mode” AGNs
may derive from gas accretion or they may take advantage of SMBH spin
energy.
Jets in AGNs typically extend on scales from AU to Mpc and can be ob-
served from meter wavelengths up to TeV gamma energies, thus requesting
multi-messenger campaigns (Blandford et al., 2019). Each spectral band
(see Fig. 1.2) is linked to a particular AGN physical process. At either
end of the spectra, there are the infrared (IR) band, which is sensitive
to dust, and the gamma-ray band, which is indeed related to AGNs non-
thermal radiation emitted through jets (Padovani et al., 2017). AGNs jets
are commonly accepted to be launched from systems composed of an ac-
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1. Introduction

cretion disk that surrounds a central object (see, e.g., Pudritz and Ray,
2019, and references therein). It is commonly believed that the magnetic
field has a key role in the launching, acceleration, and collimation of jets.
However, the origin of the accretion-disk magnetic field is not entirely un-
derstood. One of the proposed explanations is that this magnetic field is
created by a dynamo process in the disk (see, e.g., Stepanovs and Fendt,
2014; Mattia and Fendt, 2020a,b). As stressed by Tsunetoe et al. (2022),
the study on the link between the powerful jet and the central engine has
been pushed forward since the first ever image of the shadow of the SMBH
in M87 was released by the Event Horizon Telescope (EHT; see Event
Horizon Telescope Collaboration et al., 2019). Janssen et al. (2021), for
instance, presented EHT observations of the jet launching and collimation
in Centaurus A, revealing a highly collimated jet and a fainter counterjet.
Tsunetoe et al. (2022) investigated the disk-jet structure in M87 through
an analysis concerning the polarization images. Akiyama and Event Hori-
zon Telescope Collaboration (2022) claimed that Sagittarius A*, being the
nuclear SMBH in our Galaxy, allows us to elucidate some of the drivers of
observed cycles in accretion power and jet launching. These are just a few
examples of the latest work on the subject (see also Doeleman et al., 2012;
Lu et al., 2014; Chael et al., 2016).
Urry and Padovani (1995) unified jetted AGN with a scheme that takes
into account the emission in the radio band, the optical spectrum, and the
viewing angle (Foschini, 2017). By considering the last feature, when the
viewing angle is large these AGNs are classified as radio galaxies. On the
other hand, if the viewing angle is small, AGNs are called Blazars, with
relativistic jets pointing towards us. The emitted flux from the blazar jet
is amplificated because of the Doppler boosting, and it can dominate the
emission from the host galaxy or accretion disc (Morris et al., 2019). As set
out in Romero et al. (2017), blazars are characterized by a compact radio
core, a high degree of radio and optical polarization, and a intense emission
in the gamma-ray band. Blazars are classified as BL Lacertae objects (i.e.,
BL Lac objects) when their optical emission is weak or even absent, as Flat
Spectrum Radio Quasars (i.e., FSRQ) when the optical emission is charac-
terized by the quasars (i.e., QSOs meaning Quasi Stellar Objects) typical
emission lines (Romero et al., 2017), or as uncertain/transitional blazars
(Massaro et al., 2009). These classification names are linked to the ori-
gin of the term blazar. In fact, Angel and Stockman (1980) explained that
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1. Introduction

Figure 1.2: Image of the nearby galaxy Centaurus A taken by Chandra Space Tele-
scope. The multi-panel on the right shows the same image in context with optical and
radio observations. Credit: X-ray: NASA/CXC/CfA/R.Kraft et al; Radio: NSF/VLA/U-
niv.Hertfordshire/M.Hardcastle; Optical: ESO/WFI/M.Rejkuba et al.
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1. Introduction

Figure 1.3: Characteristic “double humped” spectral energy distribution (SED) of NGC
1275. Credit: Abdo et al. (2009).

this term derives from the combination of BL Lac object and quasars, done
by Ed Spiegel during a banquet speech at the BL Lac objects Pittsburgh
meeting.

1.1.3 Characteristic emission spectrum

The non-thermal signature that features AGNs is originated from highly
energetic particles undergoing inverse Compton or synchrotron cooling.
ANGs, and consequently Blazars, have a characteristic “double humped”
continuum emission spectrum (Morris et al., 2019), as shown in Figure 1.3.
Radio and soft X-ray emission is attributed to synchrotron emission, while
the high-energy part of the spectra is due to the inverse Compton mecha-
nism. Synchrotron radiation is a type of non-thermal emission generated
by charged particles spiraling around magnetic field lines, emitting photons
with a power given by

Psync = 2e2

3c3γ
2ω2

cv
2 sin2 θ = 4

3cσTβ
2γ2UB. (1.1)
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1. Introduction

Equation (1.1) represents the Larmor formula, where γ = 1/
√

1− v2/c2 is
the Lorentz factor, c is the speed of light, ωc = 2πνL, where νL = eB/mc is
the Larmor frequency, θ is the angle between the speed of the particle (i.e.,
v) and the magnetic field (i.e., B), σT is the Thomson cross section, while
UB = B2/8π is the energy density contained in the magnetic field. This
applies to a single electron, while for a power-law distribution of electrons
the power emitted is equal to

Psync = 2
3cσTn0

UB
νL

(
ν

νL

)−δ
, (1.2)

where n0 is the electrons’ number density, while δ = (p−1)/2 is the spectral
index of the synchrotron emission, where p represents the power-law index
of the electron energy spectrum. In fact, observations indicate that non-
thermal particles possess a power-law distribution of the form If ∝ f−p,
with p generally less than 2 (see, e.g., Ishibashi and Courvoisier, 2010, and
references therein) for energies over 2− 10 keV (see, e.g., Page et al., 2005;
Piconcelli et al., 2005).
The radiation emitted is polarised in the plane perpendicular to the mag-
netic field, with the degree and orientation of the polarisation providing
information about the magnetic field of the source.
Condon and Ransom (2016) explained that, although the total radiation
field is normally fairly isotropic in the rest frame of a synchrotron source,
this radiation field looks extremely anisotropic to the individual ultrarela-
tivistic electrons producing the synchrotron radiation. Indeed relativistic
aberration leads almost all ambient photons to approach within an angle
∼ γ−1 rad of head-on (as seen in Fig. 1.4). The electrons kinetic energy
is reduced by Thompson scattering and is converted into inverse Comp-
ton radiation by upscattering radio photons to become optical or X-ray
photons (Condon and Ransom, 2016). These authors claimed that this
process also limits the maximum rest-frame brightness temperature of an
incoherent synchrotron source to Tb ≈ 1012K. The power emitted due to
the inverse Compton mechanism is given by

PIC = 4
3σT cβ

2γ2Urad, (1.3)

that is very similar to Equation (1.1) apart from Urad, i.e. the radiation
energy density. The photons involved in this process can be either those
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Figure 1.4: AGN jet of the M87 galaxy. The other jet is not visible due to relativistic
beaming. Credit: NASA and the Hubble Heritage Team (STScI/AURA).
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of the Cosmic Microwave Background (CMB) or the same ones produced
by the synchrotron emission (i.e., synchrotron self-Compton).

In addition to radiative losses, the high-energy of cosmic rays is limited by
the Hillas criteria for confinement (see Hillas, 1984). Indeed, particles need
to stay in the acceleration region to gain more energy. This leads to a limit
in their maximum energy, obtained by imposing that the Larmor radius of
the particles is smaller than the size of the acceleration region. The particle
energization is also limited by the collision with photons from synchrotron
radiation, galactic emissions, and cosmic background radiation (Honda,
2009). As claimed by Allard and Protheroe (2009), these interactions lead
to features in the propagated spectrum of high-energy cosmic rays such
as the Greisen-Zatsepin-Kuzmin (GZK; see Greisen, 1966; Zatsepin and
Kuzmin, 1966) cutoff. Binary interactions with the thermal particles of
the intracluster medium (ICM) can also cause a loss of cosmic rays energy
(see, e.g., Vazza et al., 2013).

As stated in Wang et al. (2014), while the emission mechanisms generating
the spectra of blazars are well understood, those for the prompt phase
of GRBs are still under debate, even if models have been proposed (see,
e.g., Giannios, 2008). The synchrotron radiation is the leading emission
mechanism for the afterglow phase (see, for instance, Sari et al., 1998, and
references therein). Indeed, the afterglow is produced by the synchrotron
radiation from the deceleration of the GRB remnant by the collision with
the external medium (Panaitescu and Kumar, 2001). Sironi and Giannios
(2013) investigated the temporal decay of the afterglow GRBs emission at
late times. Figure 1.5 shows some examples of GRBs spectra.

GRBs and AGNs emission shows variability. AGNs are characterized by
variability on the entire electromagnetic spectrum with time-scales from
decades to minutes (Zhang et al., 2022), while the gamma-rays flux emitted
by GBRs during the prompt phase varies on . 1 s time-scales (Lloyd-
Ronning et al., 2016).

What is known at the moment of these astrophysical sources is what can
be observed experimentally, i.e., their spectra. It is of crucial importance
to have a real comparison between the theoretical models and the observed
data to fully understand how the particles really accelerate and produce
the emission spectra that we observe.
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Figure 1.5: Comparison of gamma-ray spectrum of GRB 170817A, GRB 101224A, and
GRB 090510A. Credit: Burgess et al. (2020).
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1.2 How are particles accelerated?

It is often believed that particle acceleration is profoundly affected by
plasma turbulence and that shocks are the major acceleration sites, al-
though magnetic reconnection in current sheets has been recently pointed
out as an efficient energization process (see, e.g., Lazarian et al., 2012; Guo
et al., 2014, 2015; Sironi and Spitkovsky, 2014; Sironi et al., 2015). Indeed,
it has often been proven that relativistic magnetic reconnection produces
power-law spectra of energetic non-thermal particles (see, e.g., Guo et al.,
2014; Sironi and Spitkovsky, 2014) and time-variability compatible with
observations. In particular, a magnetic reconnection regime with time-
scales comparable to the ones observed in astrophysical plasmas can be
triggered by dynamical instabilities as the tearing mode (TM). Therefore,
it is of paramount importance to investigate how the dynamical evolution
of this instability can lead to the formation of magnetized current sheets,
which, in turn, are responsible for particle acceleration.

1.2.1 Diffusive shock acceleration

Fermi (1949) first proposed that cosmic rays are accelerated primarily by
collisions against magnetic fields in motion in the interstellar medium. This
mechanism can occur in shock waves, under the name of diffusive shock ac-
celeration (DSA). As explained in Vainio (1999), particles cross the shock
many times and gain energy each time by scattering off the magnetic tur-
bulence. As it passes, the shock amplifies the irregularities of the magnetic
field. The variation of the magnetic field generates an electric field, which
accelerates the particles. The acceleration time scale is proportional to the
number of reflections between the two shock regions: the upstream and
the downstream (Hoshino, 2001), shown in Figure 1.6. When a particle
crosses a shock that is moving at the velocity vs, it gains an energy of the
order ∆ε/ε = vs/c.
The observations are modeled well, as such a diffusive process naturally
produces a power-law particle spectrum (Baring, 1997). DSA occurs in
collisionless shocks characterizing astrophysical environments such as the
non-relativistic supernova remnant (SNR) shocks, which are often consid-
ered as sources of galactic cosmic rays (CRs; see, e.g., Caprioli et al., 2010;
Morlino and Caprioli, 2012). In fact, an exploding supernova sends a shock
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Figure 1.6: Particle path through the shock from upstream to downstream and vice
versa. Credit: A. Mignone.

into outer space, which propagates by accelerating the particles it encoun-
ters through DSA. The problem with this acceleration mechanism is that
the electric field, which accelerates particles, is stochastic, very variable,
and not so strong. Therefore, DSA in supernovae is not the main CRs
acceleration mechanism. Indeed, Sironi et al. (2015) showed that although
shocks are efficient energy dissipators, they do not energize particles far
beyond the thermal energy. A more promising particle acceleration mech-
anism is magnetic reconnection.

1.2.2 Magnetic reconnection

As claimed by Zweibel and Yamada (2016), magnetic fields are ubiquitous
in the cosmos, and one of the most important basic processes that occur
in almost all the magnetized plasmas is magnetic reconnection. This pro-
cess plays a fundamental role in solar, space, and astrophysical problems
(see the review of Yamada et al., 2010). Figure 1.7 shows a sketch of the
configuration of magnetic field lines in the reconnecting current sheet: the
magnetic field has one component that reverses its polarity along the x-
axis. Such a field can be established by a current sheet J moving on an
infinite plane, perpendicular and outgoing from the page. Lorentz force
J×B pulls plasma to the B-neutral region (i.e., the green line), since equi-
librium is established. During the magnetic reconnection process, fields
of opposite polarities rapidly annihilate and the magnetic energy is con-
verted into kinetic and thermal energy of the plasma becoming, at the
same time, available in creating a non-thermal population of accelerated
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particles. Magnetic field lines are indeed cut and sewn together and plasma
blobs are ejected, as observed on the Sun.
For this mechanism to operate, the plasma cannot be ideal (i.e., non-
resistive) and the Alfvén theorem does not hold: field lines should be
able to change their topology. Albeit astrophysical plasmas are essentially
ideal, the flow evolution may lead to the formation of localized regions
of large gradients and electric currents, where resistivity cannot be any
longer neglected since its role becomes essential in the energy and mo-
mentum balance (see, e.g., Uzdensky, 2011, 2016; Giannios, 2013; Mignone
et al., 2019).
The formation of strong and localized current sheets favors reconnection
events during which the magnetic field topology may break becoming fa-
vorable to resistive instabilities such as the tearing one. Sweet (1958) and
Parker (1957) model describes magnetic reconnection, although it predicts
reconnection rates that are several orders of magnitude slower than the
observed ones, especially when the Lundquist number S = LvA/η is large
(here L is the characteristic length of the system, vA is the Alfvén velocity
and η is the physical resistivity). It is a well-known fact that, for astro-
physical or laboratory highly-conducting plasmas, S � 1 (e.g., S = 1012 in
the solar corona), classical steady-state models fail to predict the observed
bursty phenomena such as solar flares or tokamak disruptions, which oc-
cur instead on a non-negligible fraction (say not less than ∼ 10%) on the
ideal (Alfvénic) time-scales (see, e.g., Marcowith et al., 2020). However,
a different picture emerges when magnetic reconnection occurs as a time-
dependent and unstable process triggered by the tearing mode instability.

1.2.3 Tearing instability

When magnetic reconnection occurs by magnetic diffusion the process is
slow, as in the Sweet-Parker model, but if instability occurs, the process
takes place more quickly. Indeed, a magnetic reconnection regime with
time-scales comparable to the ones observed in astrophysical plasmas can
be triggered by dynamic instabilities as the tearing mode (TM), which
are now considered as byproducts of instabilities acting at larger scales,
such as the Kelvin-Helmholtz (KH; see, e.g., Loureiro et al., 2013), and
current-driven (CD; see, e.g., Striani et al., 2016) instabilities.
The TM instability fragments an initially neutral current sheet into a num-
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Figure 1.7: A sketch of the initial (top panel) and final (bottom panel) configuration of
magnetic field in the reconnecting current sheet. Credit: E. Beratto.
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Figure 1.8: A sketch of the initial neutral current sheet fragmented in X-points (blue
dots) and O-points (red dots) due to the tearing instability. Credit: E. Beratto.

ber of X-points, where field lines cross each other, and O-points, surrounded
by magnetic islands (see Fig. 1.8). In the X-points, the magnetic field has
null points, while the electric field is very intense. The O-points (often
called plasmoids) are regions of high current density.
Following Loureiro and Uzdensky (2016), it is now generally accepted
that the tearing instability radically changes magnetic reconnection, which
becomes intrinsically time-dependent, bursty, and fast compared to the
Sweet-Parker steady-state model. The precise criteria for the onset of the
fast reconnection regime, in which the tearing instability occurs basically
on the Alfvénic time-scales, has been numerically investigated in various
regimes by Landi et al. (2015) (non-relativistic case), Del Zanna et al.
(2016) (relativistic case) and Papini et al. (2019) (Hall regime).
Particle energization via magnetic reconnection can either occur by a direct
acceleration at X-points due to the strong electric field (see, e.g., Bessho
and Bhattacharjee, 2007; Lyubarsky and Liverts, 2008; Ball et al., 2019),
or by the anti-reconnection electric field due to the merging of plasmoids
(see, e.g., Oka et al., 2010; Sironi and Spitkovsky, 2014; Nalewajko et al.,
2015), or because particles are trapped in contracting magnetic islands
due to the Fermi reflection (see, e.g., Drake et al., 2010; Kowal et al., 2011;
Petropoulou and Sironi, 2018; Hakobyan et al., 2021).
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1.2.4 The debate on the importance of resistivity

Particles are accelerated by the plasma electric field, which consists of a
convective and a resistive term, associated with different acceleration mech-
anisms. Indeed, X-points are characterized by the presence of a resistive
electric field, while the Fermi reflection is associated with the convective
electric field.

Which of the two electric field terms dominates in accelerating particles is
to date still under debate. Kowal et al. (2011) and other authors (see, e.g.,
Kowal et al., 2012; de Gouveia Dal Pino and Kowal, 2015; del Valle et al.,
2016; Medina-Torrejón et al., 2021) directly neglected the contribution of
the resistive field in the particle acceleration mechanism, as they considered
it unimportant. In Guo et al. (2019) and Paul and Vaidya (2021) it is
claimed that the Fermi mechanism is the dominant one in the acceleration
process, while the crossing of an X-point makes a small contribution to
the global energization. In particular, Guo et al. (2019) argued that the
non-ideal field does not contribute even to the formation of the power-law,
but it is only the Fermi mechanism that determines the spectral index.

On the contrary, Onofri et al. (2006) and Zhou et al. (2016) claimed that,
even if the resistive contribution is less intense than the convective one, it
is much more important in accelerating particles. The results of Zhou et al.
(2016) were later confirmed by Ripperda et al. (2017a). In addition, in Ball
et al. (2019) it is claimed that the particle acceleration mechanism is more
efficient when more X-points are formed on the current sheet. Recently,
Sironi (2022) argued that the acceleration from the non-ideal electric field is
a basic requirement for subsequent acceleration, which is, on the contrary,
typically dominated by the ideal field (as claimed by Guo et al., 2019).
Indeed, particles that do not undergo the non-ideal contribution do not
even reach relativistic energies. The results of this thesis favorably agree
with these last authors, who support the importance of the resistive electric
field.

First thesis aim: quantify the relative importance of the resistive and
convective electric field in the particle acceleration process to understand
if, when, and why one contribution prevails over the other.
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Figure 1.9: Left panel: Evolution over time of particle energy spectrum obtained through
PIC simulation with different magnetization. Right panel: Evolution over time of the spec-
trum power-law index (top panel), of the cutoff Lorentz factor and the maximum Lorentz
factor (bottom panel). Credit: Sironi and Spitkovsky (2014) (left panel), Petropoulou
and Sironi (2018) (right panel).

1.3 Previous results on particle acceleration

The last decade has provided a wealth of investigations, mostly through
magnetohydrodynamic (MHD) or particle-in-cell (PIC) numerical simula-
tions. These approaches model the large and small scales of high-energy
astrophysical environments, respectively. The advantage of the PIC ap-
proach (which lacks the MHD one) is the ability to capture the kinetic
effects relevant at small scales. However, these scales are much smaller
than the typical size of high-energy astrophysical environments. Hence,
PIC simulations are extremely expensive in describing these astrophysi-
cal systems at larger scales (as opposed to MHD ones). Nevertheless, the
simulation results obtained with both methods indicate relativistic mag-
netic reconnection as a very promising candidate in the process of particle
acceleration.

1.3.1 Test-particles MHD versus PIC

Through PIC simulations, Sironi and Spitkovsky (2014), and likewise
Petropoulou and Sironi (2018), found that accelerated particles populate
a power-law distribution with a spectral slope p ∼ 2 in a pair plasma
(see Fig. 1.9). Such studies have been widened to the fluid regime using
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MHD simulations in conjunction with a test-particle approach (see, e.g.,
Gordovskyy et al., 2010a,b; Kowal et al., 2011; de Gouveia Dal Pino and
Kowal, 2015; Ripperda et al., 2017a,b), finding results similar to those
obtained with PIC simulations in terms of particle acceleration. This has
been suggested, e.g. by Kowal et al. (2011), who have found that in 2D
MHD models during an island contraction (due to the merger with other
islands) a particle trapped in it can accelerate and increase its energy
exponentially in a non-relativistic scenario. This is similar to what Drake
et al. (2010) have found with a PIC approach (see Fig. 1.10). This bulk
of evidence suggests that magnetic reconnection can be more efficient and
universal when compared to other mechanisms, such as varying magnetic
fields in compact sources, and the first-order Fermi process behind shocks
(Kowal et al., 2011).
Test-particles acceleration in MHD is usually studied by using frozen snap-
shots (see, e.g., Gordovskyy et al., 2010a; Kowal et al., 2011; de Gouveia
Dal Pino and Kowal, 2015; Ripperda et al., 2017a), in which the fluid pro-
vides a background, static configuration on top which particles are allowed
to evolve. In contrast with these investigations, test-particles and MHD
fluid will be evolved simultaneously in this thesis work, with the advantage
of studying the acceleration mechanism in response to the dynamical evo-
lution of the system, as done by Gordovskyy et al. (2010b), Kowal et al.
(2012), and Ripperda et al. (2017b, 2019b).

1.3.2 Shortcomings

Except for very few works (see, e.g., Kowal et al., 2009; Santos-Lima et al.,
2010; Rembiasz et al., 2017), however, the vast majority of these studies
largely overlook the impact of the numerical method on the simulation
results, it scarcely addresses the problem of convergence concerning grid
resolution and it often neglects the effect of a physical resistivity on the
evolution of the instabilities. Classical and relativistic MHD numerical
simulations have, in fact, shown that when the Lundquist number S is
greater than a certain threshold value, plasma instabilities in the current
sheet trigger a fast reconnection regime with time-scales comparable to the
observed ones. However, the grid resolution must be sufficiently large to
ensure that the dissipation scale is regulated by physical resistivity and not
by numerical diffusion. This requirement, together with the low-resistivity
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Figure 1.10: Top panel: Test protons trajectories in the PIC simulation fields. Bottom
panel: Test proton trajectory inside a magnetic contracting island (merging with other
two small islands), obtained through MHD simulations. Credit: Drake et al. (2010) (top
panel), Kowal et al. (2011) (bottom panel).
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(or high S, typically S > 103) typical of astrophysical plasma, can indeed
demand a very fine mesh spacing in the proximity of the current sheet.
This determines the numerical convergence of the simulation and even-
tually regulates the correct reconnection rate, once the proper numerical
resolution is achieved.

Second thesis aim: assess the impact of numerical method, grid resolu-
tion, and physical resistivity on the magnetic reconnection process as well
as their implications in the particle acceleration mechanisms.

1.4 Outline of the thesis

In this thesis, we focus on the impact of the numerical method on the
magnetic reconnection process and particle acceleration mechanism, as well
as the importance of the physical resistivity in accelerating high-energy
particles.

Chapter 2 describes the theoretical model. Indeed, the fundamental
plasma parameters are introduced, as well as the different plasma mod-
els with a focus on the MHD model. The particle equations of motion are
also discussed.

Chapter 3 introduces the numerical model. First, we briefly discuss the
several numerical approaches generally used in this context, and then we
describe the code used to carry out the simulations presented in this thesis
work: the PLUTO code. Finally, we discuss our numerical setup.

Chapter 4 investigates the impact of the numerical method and resistivity
on magnetic reconnection and particle acceleration. Indeed, we discuss the
effect of the spatial reconstruction scheme, the Riemann solver, the emf
averaging scheme, and the Lundquist number both on the plasma evolution
and on the particle acceleration mechanism. This chapter is based on the
published work of Puzzoni et al. (2021).

Chapter 5 describes the importance of the resistive electric field contri-
bution in accelerating particles. First, we briefly discuss the convergence
of our simulations using a 2D histogram analysis. Then, we focus on the
resistive field role in accelerating high-energy particles by observing their
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spectra. Finally, we analyze the impact of the current sheet evolution
on particle energization. This chapter is based on the published work of
Puzzoni et al. (2022).

Chapter 6 summarizes and discusses the most important results of this
thesis and the plans for future research.
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Theoretical model: plasma definition

and equations

"Plasma is a system whose dynamics are dominated by electromagnetic
forces, as it is the ensemble of charged particles and the fields they gen-
erate" (Chiuderi and Velli, 2012). After solid, liquid, and gas, plasma is
considered the 4th state of matter (Frank-Kamenetskii, 1972). This state is
achieved by heating a gas to the point where electrons separate from posi-
tively charged ions. It is estimated that about 99% of the known universe
is made up of plasma, which is why it is a topic that arouses more and more
interest. In this chapter, after an introduction to some of the fundamental
parameters of plasma and its kinetic description, the non-relativistic mag-
netohydrodynamic model is discussed, together with the particle equations
of motion.

2.1 Basic plasma parameters

Since electrons in the plasma are free moving, they will collide with ions,
marked by index i, and atoms, marked by index a, with a frequency

νc = αini

(
1 + αa

αi
1− χ
χ

)
, (2.1)

where n is the number density, α = σcv̄ (with v̄ the average electron
velocity and σc the cross section), while χ = ni/(ni + na) represents the
degree of ionization (0 < χ < 1). This frequency appears in the definition
of electrical conductivity, namely

σ = e2ne
meνc

= Ze2

meαi
1

1 + αa

αi
1−χ
χ

= σmax

1 + αa

αi
1−χ
χ

, (2.2)

where Ze represents the ion charge, me is the electron mass and σmax is the
maximum value of electrical conductivity, achieved at χ = 1. An electrical
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conductivity that is half that of completely ionized gas is obtained with a
χ of the order of 1% (Chiuderi and Velli, 2012).
The state of ionization is described by the Saha equation, that is

ni
n0
' 2.4 · 1015T

3/2

ni
e−I/kT , (2.3)

where n0 and ni are the number density of the ground state and of the ith
state of ionization respectively, T is the plasma temperature, I represents
the energy of ionization, and k the Boltzmann constant.
In addition to being ionized, a plasma must satisfy the condition of quasi-
neutrality. Indeed, the charge of a particle tends to be shielded by the
presence of charged particles of opposite signs that surround it, as they are
free to move. The scale at which this occurs is called the Debye length,
namely

λD =
√√√√ kT

4πe2n0
, (2.4)

where n0 is the density without the surrounding particles (i.e., the unper-
turbed state). In order to achieve quasi-neutrality, the condition d̄ � λD
must be satisfied, where d̄ is the average distance between particles. Since
d̄ ' n−1/3, the previous condition becomes

nλ3
D � 1. (2.5)

This means that the plasma must be composed of many particles to achieve
the quasi-neutrality condition.
A characteristic velocity of the particles is the thermal velocity, that is

vT =
√√√√3kT
m

. (2.6)

This equation indicates that, at the same temperature T , electrons have a
higher thermal velocity, as it depends on mass. Particles reach the same
temperature through collisions. This process is called thermalization. The
collision rate can be written as

νc = nσcvT ∝
n

T 3/2√m
. (2.7)

The time in which populations of particles reach thermodynamic equilib-
rium through collisions is τ ∼ ν−1, therefore

τee
τii
∼ νii
νee
∼
√√√√me

mi
� 1, (2.8)
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if collisions between electrons (suffix ee) and between ions (suffix ii) are
considered. As a consequence, the electrons thermalize before the ions
(τee � τii). If collisions between ions and electrons are also considered, the
scale of times is τee � τii � τie (Chiuderi and Velli, 2012).
Another important plasma parameter is the plasma frequency, given by

ωp =
√√√√4πe2n

m
, (2.9)

which is again different in the case of protons and electrons, as it depends
on the mass and charge of the particle. Particles perform a harmonic mo-
tion with frequency ωp as a reaction to a perturbation to which the plasma
is subjected, such as the local violation of charge neutrality (Chiuderi and
Velli, 2012). This frequency, together with the speed of light c, is related
to plasma skin depth c/ωp,e, which is the depth in plasma to which elec-
tromagnetic radiation can penetrate and the wave amplitude is attenuated
by a factor of 1/e (Stenson et al., 2017).
When a charged particle moves in a magnetic field of module B, it performs
a circular motion with a frequency

ωc = eB

mc
, (2.10)

that is the cyclotron frequency or Larmor frequency, related to Larmor
radius or gyroradius c/ωc.
In magnetized plasma, a magnetic perturbation propagates with the Alfvén
velocity, which is another fundamental plasma parameter and it is defined
by

vA = B√
4πρ, (2.11)

where ρ is the plasma density.
In the presence of a magnetic field, a magnetic pressure is added to the gas
pressure P , and it is the β-parameter

β = P

B2/8π (2.12)

that establishes which of the two pressures dominates the other:
• if β � 1 the magnetic field determines the motion and so it draws the

plasma,
• if β � 1 the pressure forces determine the motion and so it is the

plasma that draws the magnetic field.
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2.2 Plasma kinetic description

When the system is made up of a very large number of particles N , it
becomes impossible to solve the equations of motion of the particles, that
is to know their position x and their velocity v at any instant of time.
Therefore, a statistical approach is preferred, in which all particles are
described by the distribution function f(x,v, t). In this way, the total
number of particles is given by

N(t) =
∫
V
f(x,v, t)dx3dv3, (2.13)

where V represents the phase space volume. The number of particles is
conserved, soN obeys a conservation law and f , therefore, to the continuity
equation

∂tf + v · ∇xf + aglob · ∇vf =
(
∂f

∂t

)
coll
. (2.14)

The continuity equation assumes this form because the force is divided
into two parts: a global contribution due to all the forces generated by the
plasma (aglob), and a collisional term due to the collision between pairs of
particles (∂f/∂t)coll. In the case of a collisionless plasma (which is typical
of many, although not all, astrophysical plasma), Equation (2.14) becomes
the Vlasov equation (see Vlasov, 1968)

∂tf + v · ∇xf + aglob · ∇vf = 0. (2.15)

It becomes the Boltzmann equation if there is a neutral gas instead of a
plasma, namely

∂tf + v · ∇xf + aglob · ∇vf =
(
∂f

∂t

)
Boltz

. (2.16)

In this case, elastic binary collisions between particles are dominant. If
the plasma is collisional, the Equation (2.14) becomes the Fokker-Planck
equation

∂tf + v · ∇xf + aglob · ∇vf =
(
∂f

∂t

)
coll
, (2.17)

in which the right-hand side of the equation is very different as there are
collisions between one particle and all the others, not only between two
particles. In fact, each particle within the Debye sphere interacts with
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many particles at the same time. Therefore, the total deflection it under-
goes is the result of many small deviations rather than a single interaction
(Chiuderi and Velli, 2012). The global contribution in Equation (2.15) is
given by

aglob = q

m

(
E + v

c
×B

)
, (2.18)

where q and m are the particle charge and mass, respectively. Therefore
the Vlasov equation for electrons, marked with suffix e, and positive ions,
marked with suffix i, becomes

∂fe
∂t

+ ve · ∇fe − e
(
E + ve

c
×B

)
· ∂fe
∂p

= 0,

∂fi
∂t

+ vi · ∇fi + Zie

(
E + vi

c
×B

)
· ∂fi
∂p

= 0,
(2.19)

where e is the electron charge, c the speed of light, Z the atomic number
and p is the momentum given by the product of the particle mass m and
velocity v. The electric E and magnetic B fields are given by Maxwell’s
equations, namely

∇×B = 4πJ
c

+ 1
c

∂E
∂t
,

∇× E = −1
c

∂B
∂t
,

∇ · E = 4πρ,
∇ ·B = 0,

(2.20)

where the density is given by

ρ = e
∫

(Zifi − fe)d3p, (2.21)

while the current density is equal to

J = e
∫

(Zifivi − feve)d3p. (2.22)

Equations (2.19) and (2.20) form the Vlasov-Maxwell system. The electric
and magnetic fields, therefore, depend on the distribution function f (i.e.,
on particle motion).
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2.3 Towards the fluid model

The distribution function f , however, cannot always be measured (even if
for the solar wind this was done with probes), so the moments of the dis-
tribution function are considered, giving up particle velocity information.
The aim is to find differential equations in which only the moments of f
appear, namely

∂

∂t
(n〈ψ(v)〉)+∇·(n〈ψ(v)v〉)−naglob(x)·〈∇vψ(v)〉− ne

mc
〈v×B·∇vψ(v)〉 = C.

(2.23)
This equation characterized the so-called two-fluid plasma model. Indeed,
a plasma is composed of electrons and protons that collide, therefore the
collisional terms (in C = ∫

ψ(v)(∂f/∂t)colldv = (∂t(n〈ψ〉))coll) cannot be
considered null and must be classified according to the species of the par-
ticles. ψ(v) is an arbitrary function of the velocity v, whose average value
is given by

〈ψ(v)〉 = 1
n

∫
ψ(v)f(x,v, t)dv, (2.24)

where
n(x, t) =

∫
f(x,v, t)dv (2.25)

is the number density. In Equation (2.23) the information on the three
components of velocity is lost, but the one on the three spatial dimensions
and the temporal one is maintained. By considering ψ(v) = m, ψ(v) = mv
and ψ(v) = mv2/2, the continuity, momentum and energy equations are
obtained respectively. In this way, the moments of the distribution function
f are the solutions of the equation, without referring to f itself.
The substitution of the 0th−, 1st− and 2nd−order moment in Equation
(2.23) leads to 16 scalar differential equations (2 continuity equations, 2×3
components of momentum equations, 2 energy equations, 2×3 components
of Maxwell equations) and 2 algebraic equations (the equations of state),
for 18 unknowns (2 densities, 2 × 3 components of velocities, 2 pressures,
3 components of the electric field, 3 components of the magnetic field and
2 specific energies). Therefore, this model is not convenient to use because
of the many equations to solve. For this reason, it is convenient to define
a single-fluid model.
The single-fluid plasma model considers a single fluid made of electrons
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(suffix e) and protons (suffix p), that moves with a total fluid velocity

v = ρeve + ρpvp
ρe + ρp

. (2.26)

The mass density of the fluid is
ρ = mene +mpnp ' mpnp, (2.27)

as mpnp � mene, with n = ne + np representing the number density. The
charge density is given by

q = e(np − ne), (2.28)
while

J = e(npvp − neve) (2.29)
represents the current density. By following this approach, the obtained
mass continuity, charge continuity, momentum, and energy equations are

∂ρ

∂t
+∇ · (ρv) = 0,

∂q

∂t
+∇ · J = 0,

ρ
dv
dt

+∇ ·P− qE− 1
c
J×B = 0,

∂

∂t

ξ + E2 +B2

8π

 +∇ · [(ξ + P )v + v ·Π + q + S] = 0,

(2.30)

where
ξ = 1

2ρv
2 + 3

2P, (2.31)

q is the vector of thermal flux, and S = (E × B)/4π is the Poynting
vector. Π and P are parts of the pressure tensor P = P1 + Π, that is
indeed divided into its viscous stress tensor (Π), related to viscous forces,
and its scalar pressure (P ), where 1 is the unit tensor. These equations
must necessarily be coupled with Maxwell’s equations (2.20). The obtained
system is composed of 12 equations with 21 unknowns, that become 15 for
q = 0 and Π = 0. In this case, the plasma is collisional, i.e., is in local
thermal equilibrium (LTE). Therefore, three more equations are needed to
solve the system. These are given by the generalized Ohm’s law in the case
of a fully ionized plasma (ne ' np) and with me � mp, namely

E + 1
c
(v×B)− J

σ
= me

nee2

[
∂J
∂t

+∇ · (Jv + vJ)
]

+ J×B
neec

− ∇Pe

ene
. (2.32)
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Therefore, there is an effect due to conductivity, that is the dissipation due
to the Joule effect, which transforms magnetic energy into thermal energy.
In Equation (2.32), J is defined as a function of macroscopic quantities.
The state of the plasma under pressure P in the ideal case (i.e., non-
viscous) is described by the equation of state

ρe = P

Γ− 1 , (2.33)

where ρe represents the internal energy and Γ = (df + 2)/df is related to
the degrees of freedom df . The system is now closed with the same number
of equations and unknowns.

2.4 The magnetohydrodynamic model

The magnetohydrodynamic (MHD) model applies to large scales and low
frequencies (ω � ωp, ωc, νc) and it constitutes the simplest phenomeno-
logical model of a plasma described as a perfectly conducting fluid. As
such, it completely ignores kinetic effects, finite-Larmor-radius effects, and
wave-particle interaction. Nevertheless, the MHD description provides the
simplest and most viable first approximation to much of the physics, even
when some of the conditions are not met. In that sense, it allows draw-
ing intuitive conclusions concerning plasma behavior without solving the
equations in detail.
The continuity, momentum, induction, and energy conservation laws in the
MHD model are, respectively,

∂ρ

∂t
+∇ · (ρv) = 0,

∂m
∂t

+∇ ·
mv−BB + 1

P + B2

2

 = 0,

∂B
∂t

+∇× (cE) = 0,

∂Et

∂t
+∇ ·

ρv2

2 + ρe+ P

v + cE×B
 = 0,

(2.34)

wherem = ρv is the momentum density, and Et is the total energy density,
defined as

Et = ρe+ m2

2ρ + B2

2 , (2.35)
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being ρe = P/(Γ − 1) in the case of an ideal gas, with Γ = 4/3. In the
MHD case, the pressure tensor is diagonal (P 6= 0, Π = 0), as it is applied
to large scales and low frequencies, therefore the collisional equilibrium is
reached (τ � τp, τc, τν). The evolution of the magnetic field B is prescribed
by Faraday’s law, and a constant term

√
4π is included in its definition.

Moreover, Faraday’s law is accompanied by the solenoidal condition

∇ ·B = 0. (2.36)

The definition of the electric field E comes from the generalized Ohm’s law
in Equation (2.32), in which the right-hand side is null as it is composed
of terms corresponding to high-frequencies. Therefore, the electric field is
given by

cE = −v×B + η

c
J, (2.37)

where η = c2/σ represents the resistivity, with σ being the conductivity
defined in Section 2.1. The current density is defined as

J = c∇×B. (2.38)

As seen in Equation (2.34), the continuity charge equation is missing, as
in the MHD case it becomes

∇ · J = 0, (2.39)

in agreement with Equation (2.38). In Equation (2.37), v ×B represents
the convective term (Ec), while (ηJ)/c is the resistive one (Er). These two
terms are related to two different time scales, which can be identified in
the induction equation

∂B
∂t

= ∇× (v×B) + η∇2B, (2.40)

obtained by first applying the curl operator to Equation (2.37) and then
substituting Equation (2.38). The first term of Equation (2.40) is the
convective one, which expresses the fact that the magnetic field is affected
by the motion of the plasma, while the second one is the resistive one,
which diffuses the magnetic field. These events are linked to two time
scales: the convective (τc = L/vg) and diffusive (τd = L2/η) scale, where L
represents the characteristic length scale of the system. The ratio between
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these scales leads to the magnetic Reynolds number Rm = τd/τc = vgL/η
or to the Lundquist number

S = vAL

η
, (2.41)

where vA is the Alfvén velocity defined in Section 2.1. Three regimes are
possible:

• Rm, S � 1: ideal regime (η = 0),
• Rm, S ∼ 1: non-ideal regime (η 6= 0),
• Rm, S � 1: resistive regime (η 6= 0).

In the ideal regime (η = 0), Alfvén theorem holds. It stands that

dΦ(B)
dt

= 0, (2.42)

i.e., that magnetic flux through any closed line that moves along with the
fluid does not change over time. Therefore, the fluid acts on the magnetic
field, but the field acts on the fluid in turn. The dynamic that dominates
the other is established by the β-parameter described in Section 2.1. Alfvén
theorem obviously does not hold in the resistive case (η 6= 0), as the mag-
netic field can change its topology. In fact, in the limit case η → ∞ the
fluid and the magnetic field are decoupled.

2.4.1 Sweet-Parker model

As claimed in the introduction (see Section 1), in the resistive case, mag-
netic field topology may break due to the formation of localized and strong
current sheets that favor magnetic reconnection events. Sweet (1958) and
Parker (1957) argued that magnetic reconnection takes place in current
sheets and discussed the model shown in Figure 2.1.
Consider a region of length 2L and height 2l containing a non-ideal plasma
(η 6= 0), with a practically zero magnetic field. Outside this region, there is
an ideal plasma or a plasma in which the convective effects dominate over
the resistive ones (η ' 0). In this outer region, the magnetic field Bi is
frozen in the plasma, due to the Alfvén theorem, and is transported to the
diffusive region with plasma velocity vi. There is a stationary condition,
which occurs when two velocities are equal. The velocities are vi and the
speed with which the magnetic field manages to spread in the resistive
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Figure 2.1: A sketch of the the Sweet–Parker model for magnetic reconnection at a
current sheet. Credit: Priest (2020).

region until it is canceled with that coming from the opposite direction.
Outside the region, the electric field only has its convective term

E ∼ viBi

c
, (2.43)

while inside only the resistive processes occur

E ∼ J

σ
. (2.44)

At the boundary, the two terms must be equal. In fact, since a tangent
field has no discontinuity, the tangent components are continuous at the
interface. J could be obtained through a numerical analysis from Equation
(2.38)

J ∼ cB

l
. (2.45)

By equaling the electric fields and replacing this value of J , the initial
speed of the fluid

vi = η

l
(2.46)

is obtained. The stationary equation of motion must also be considered,
with equal pressure everywhere (∇P ∼ 0), namely

ρ
v2
o

L
= BiB0

l
→ v2

o = B2
i

ρ
= v2

A,i. (2.47)

This means that the fluid exits the region with the Alfvén speed at the
entrance.
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The efficiency of the process is given by the reconnection rate

Rrec = vi
vo

=
√√√√ η

Lvo
= S−1/2. (2.48)

However, as claimed in the introductory section, this rate is too slow to
account for astrophysical phenomena.

2.4.2 Fast magnetic reconnection

Magnetic reconnection can be triggered by the tearing instability, which
can lead to fast magnetic reconnection (see, e.g., Giannios, 2013; Del Zanna
et al., 2016), that is responsible for the fragmentation of very thin current
sheets into a large number of plasmoids.
Del Zanna et al. (2016) studied the tearing mode instability in relativistic
plasmas through a linear analysis of the growth of the perturbations of
an initial current sheet in equilibrium. It is convenient to normalize all
quantities against the length-scale a (i.e., the half width of the sheet),
the corresponding Alfvénic crossing time τ̄A = a/vA, and the equilibrium
magnetic field strength B0. In this way, the maximum growth rate for the
fastest growing mode is

γ̄max ≡ γmaxτ̄A ' 0.6 S̄−1/2, (2.49)

with corresponding maximum wavenumber

k̄max ≡ kmaxa ' 1.4 S̄−1/4, (2.50)

where S̄ is the Lundquist number relative to the length-scale a, namely

S̄ = avA
η
. (2.51)

To analyze the relativistic ideal tearing instability in thin current sheets,
it is convenient to measure both the time and the Lundquist number in
terms of a macroscopic length-scale L, namely the length of a thin current
sheet (with aspect ratio L/a� 1). The time thence becomes

τA = L

vA
, (2.52)

while the Lundquist number is given by Equation (2.41), so that

τ̄A = a

L
τA � τA, S̄ = a

L
S � S. (2.53)
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Therefore, the growth rates are expected to increase, when normalized to
these macroscopic quantities.
The result for thin current sheets is

γmaxτA ' 0.6 S−1/2
(
a

L

)−3/2
. (2.54)

This result in Sweet-Parker sheets with a/L ∼ S−1/2 leads to the para-
doxical result of a rate growing with a positive power of S. However, the
ideal plasma limit should be recovered for S → ∞. It is convenient to
parametrize in terms of S the inverse aspect ratio as a/L ∼ S−α (see Pucci
and Velli, 2014). In this way, the tearing growth time becomes ideal when
α = 1/3. This occurs as the dependence on S completely disappears when
a = LS−1/3. Thence the Equation (2.49) and (2.50) become

γmaxτA ' 0.6, kmaxL ' 1.4 S1/6, (2.55)

using the normalization in Equation (2.53). The instability now occurs on
the Alfvénic time τA, as measured on the macroscopic scales.
Pucci and Velli (2014) and Landi et al. (2015) concluded that in a dynam-
ical process with decreasing a/L values, the Sweet-Parker configuration
with α = 1/2 > 1/3 is never reached. Therefore, a thin current sheet that
enters the ideal tearing mode (a/L ∼ S−1/3), is subjected to fast magnetic
dissipation. Indeed, the modes growth is fast and asymptotically indepen-
dent of S (provided S ∼ 106).

2.4.3 A note on resistivity

The origin of physical resistivity η in plasmas is still a subject of active de-
bate. Astrophysical plasmas are supposed to be collisionless, as Coulomb
collisions between particles composing the plasma are generally tremen-
dously rare. Therefore, plasma resistivity cannot originate from collisions
between particles. One way out is anomalous resistivity.
Such anomalous resistivity is generated by the scattering of particles by
electromagnetic waves (i.e., wave-particle interactions). This scattering
can introduce effective collisions that lower the conductivity of the plasma
(Graham et al., 2022).
As claimed by Che (2017), anomalous resistivity may also lead to a faster
Sweet-Parker regime that could explain observations (see also Ji et al.,
1998; Kulsrud, 2001).
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Indeed, Ma et al. (2018) argue that the fast magnetic reconnection regime
is often linked to anomalous resistivity that could arise in the small elec-
tron magnetic reconnection diffusion region due to local current-instability-
driven turbulence (see also Malyshkin et al., 2005; Eyink et al., 2013).
Although this thesis work follows the Sweet-Parker assumption of a con-
stant physical resistivity, a more realistic resistivity should depend on time,
space, and plasma parameters (Ripperda et al., 2019a).
Anomalous resistivity is indeed included in several MHD simulations of as-
trophysical plasmas (see, e.g., Schumacher and Kliem, 1997; Ohsuga et al.,
2009).

2.5 Particle equations

MHD describes the thermal component of plasmas. However, a plasma
consists also of a non-thermal component represented by charged particles,
or cosmic rays (CR; Mignone et al., 2018). Therefore, we need to introduce
particles to model also this non-thermal component.
Particles are defined in terms of their spatial coordinates xp and velocity
vp, which are governed by the equations of motion

dxp
dt

= vp,

d(γv)p
dt

=
(
e

mc

)
p

(cE + vp ×B),
(2.56)

where the suffix p is used to label a single particle. (e/mc)p is the particle
charge to mass ratio and its Lorentz γ-factor is given by γ = 1/

√
1− v2

p/C2,
where C is the speed of light artificial value, as in the MHD equations the
actual speed of light does not explicitly appear. In this thesis work C is
set to 104 vA since, for consistency reasons, it must be larger than any
characteristic signal velocity.
As seen in Equation (2.37), the electric field E is composed of a convective
(Ec) and a resistive (Er) contribution. In addition to triggering tearing-
driven magnetic reconnection, the resistive term is thought to be of crucial
importance in the process of particle acceleration (Li et al., 2017). In
fact, while in ideal MHD (η = 0) no electric field is present in the fluid
rest frame, a resistive plasma is still capable of accelerating particles at
stagnation points, provided a large current is formed. In reconnecting
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current sheet this condition is manifestly evident at X-points, where the
condition |E| > |B| can easily occur.
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3
Numerical methods

This chapter discusses the various numerical methods used to approach
the study of particle acceleration in astrophysical plasmas. In this thesis
work, the used numerical approach is implemented in the PLUTO code
for astrophysical gas dynamics. How the PLUTO code works and the
implemented numerical setup are discussed in this chapter.

3.1 MHD vs PIC codes

Plasma simulations are carried out through different numerical approaches,
which apply to different scales. The models at the scale extremes are the
particle-in-cell (PIC; see, e.g., Zenitani and Hoshino, 2001; Oka et al., 2010;
Sironi and Spitkovsky, 2014; Guo et al., 2015; Werner et al., 2016) and the
magnetohydrodynamic (MHD; see, e.g., Onofri et al., 2006; Kowal et al.,
2011, 2012; Ripperda et al., 2017a,b) one.
PIC codes work on high frequencies (i.e, ω � ωp, ωc, νc) and therefore
provide the most self-consistent approach to model plasma dynamics at
small scales. However, these codes must resolve the electron skin depth
(see Section 2.1), which, in most cases, is several orders of magnitude
smaller than the overall size of a typical astrophysical system. Even with
the most powerful supercomputers, PIC simulations become prohibitively
expensive for describing astrophysical systems at larger scales.
Fluid models such as the MHD one have been extensively used to investi-
gate, instead, the large-scale dynamics of high-energy astrophysical envi-
ronments. Because of its nature, however, the fluid approach is applicable
on scales much larger than the Larmor radius (see Section 2.1), and so
on low frequencies. As a consequence, this model is not able to capture
important kinetic effects relevant to the microscale.
Therefore, MHD and PIC models apply to too distant spatial and tempo-
ral scales. In fact, the large-scale dynamics of the analyzed astrophysical
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systems described in the Introduction (see Section 1) are observed at about
1 pc (i.e., 1018 cm), while the particle dynamics occur at about 104 cm.
There are about ten orders of magnitude of difference, and so it is im-
possible to balance macroscopic effects that trigger the dissipation and
the microscopic effects that generate the spectrum. For this reason, the
current understanding of astrophysical systems is limited by the range of
scales beyond which one or more model assumptions break down or when
computational resources become prohibitive.

3.2 Fluid-particle hybrid approach

When the forces exerted on the fluid by particles are negligible (i.e, no
feedback on the fluid is present), the limits previously described can be
overcome by using a hybrid MHD-PIC model (see, e.g., Bai et al., 2015;
Mignone et al., 2018). This hybrid model allows approaching the fluid with
the MHD model, while particles are treated kinetically using conventional
PIC techniques. This formalism aims to capture the kinetic effects of
particles without the need to resolve the plasma skin depth, as is typically
required by PIC codes. In the MHD-PIC formalism, only the Larmor scale
must be properly resolved instead. This extends the range of applicability
to much larger spatial and temporal scales when compared to the standard
PIC approach, inasmuch as the particle gyroradius largely exceeds the
plasma skin depth.
In this thesis work, we used an MHD-PIC approach without feedback on
the fluid. In this case, we refer to particles as test-particles. The resistive
MHD model coupled with a test-particle approach is already implemented
in the PLUTO code.

3.3 The PLUTO code

PLUTO is a multi-dimensional finite-volume code for astrophysical fluid
dynamics (see Mignone et al., 2007, 2012a) providing a modular infras-
tructure whereby distinct physics modules and different algorithms may be
independently combined together in order to meet up the user’s most ap-
propriate requirements. This code, entirely written in the C programming
language, was developed at the Physics Department of the University of
Turin and can run on either single or parallel machines. Being a Godunov-
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Figure 3.1: The Reconstruct-Solve-Update step sequence typical of a Godunov-type
code: 1) the solution is first reconstructed inside a computational zone, 2) a Riemann
solver is used to compute the intercell flux, and 3) the solution is updated to the next
time level. Credit: A. Mignone.

type code (see Godunov, 1959), PLUTO’s flowchart follows a three-step
sequence, summarized in Figure 3.1:
1. Reconstruct: a piecewise polynomial reconstruction inside each cell.
2. Solve: compute the interface flux by solving the Riemann problems

between adjacent discontinuous states obtained at zone interfaces dur-
ing the reconstruction step.

3. Update: update the solution array of conserved variables to the next
time level.

Finite volume schemes have a long-standing tradition for their ability to
capture shocks and discontinuities in general without the need to introduce
artificial dissipation. They rely on the conservative form of the equations

∂U
∂t

+∇ · F(U) = 0, (3.1)

which stems from physical principles stating conservation of fundamental
quantities such as mass, momentum, and energy. Equation (3.1) represents
a system of partial differential equations in which U is an array of conserved
quantities (i.e., density, momentum, and energy), while F is the flux tensor.
Equation (3.1) simplifies to

∂U
∂t

+ ∂F
∂x

= 0 (3.2)

if one-dimensional Cartesian coordinates are considered. The computa-
tional domain is defined by x ∈ [xb, xe], which is discretized into Nx cells
(or zones) of equal length ∆x centered around their position center xi. Cell
interfaces are located at xi± 1

2
= xi ± ∆x/2. To simplify the notation, in

what follows we omit the integer-valued subscripts when referring to the
array of conserved quantities U and the flux tensor F.
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3.3.1 Reconstruction step

A high-order non-oscillatory polynomial P is used to reconstruct interface
values from zone averages 

V+,L = limx→x+
P(x),

V−,R = limx→x−
P(x).

(3.3)

where s = L (s = R) at x = x+ (x = x−). Indeed, the subscripts
R and L refer to the sides of the interface. Fluxes are more conveniently
computed using a different set of physical quantities, that are the primitive
coordinates V .
Several reconstruction schemes are available in the PLUTO code, but in
this thesis work two of them have been considered, namely

• a 2nd-order piecewise linear reconstruction,
• the 5th-order WENO-Z algorithm (see, e.g., Borges et al., 2008; Mignone

et al., 2010).
A 2nd-order linear interpolant is characterized by

V±,s = V ± ∆Ṽ
2 , (3.4)

where ∆Ṽ are the slopes computed using a limiting procedure that can
be applied to primitive or characteristic variables. Different steepening
properties characterize different slope limiters, that can be independently
assigned to each characteristic field or primitive variable (Mignone et al.,
2007).
The WENO-Z scheme presented by Borges et al. (2008) is less dissipative
at discontinuities and increases the resolution at critical points as com-
pared to the classical 5th-order weighted WENO scheme by Jiang and Shu
(1996). Nevertheless, this scheme does not require a much higher compu-
tational cost. WENO-Z reconstructs interface values through the convex
combination of several third-order accurate interface values built on the
three possible sub-stencils of i− 2 ≤ s ≤ i+ 2, namely

I(f[s]) = ω0
2fi−2 − 7fi−1 + 11fi

6 + ω1
−fi−1 + 5fi + 2fi+1

6 +

+ ω2
2fi + 5fi+1 − fi+2

6 ,

(3.5)
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where either one of the positive and negative part of the flux is shorten
with f[s], while ωl (l = 0, 1, 2) represents the weights, defined as

ωl = αl∑
m αm

, αl = dl

1 + |β0 − β2|
βl + ζ

 , (3.6)

where d0 = 1/10, d1 = 3/5, d2 = 3/10 are the optimal weights that give a
5th-order accurate approximation, ζ = 10−40 is a small number that avoids
division by zero, and βl are smoothness indicators that give a measure of
the regularity of the corresponding polynomial approximation, namely

β0 = 13
12

(
∆i− 1

2
−∆i− 3

2

)2
+ 1

4
(
3∆i− 1

2
−∆i− 3

2

)2
,

β1 = 13
12

(
∆i+ 1

2
−∆i− 1

2

)2
+ 1

4
(
∆i+ 1

2
+ ∆i+ 1

2

)2
,

β2 = 13
12

(
∆i+ 3

2
−∆i+ 1

2

)2
+ 1

4
(
3∆i+ 1

2
−∆i+ 3

2

)2
,

(3.7)

where ∆i+1/2 = fi+1− fi. The analysis of the WENO-Z scheme implemen-
tation in the PLUTO code is based on Mignone et al. (2010).

3.3.2 Riemann solvers

The computation of the fluxes at cell interfaces requires knowledge of the
solution between tn and tn+1. In shock-capturing schemes, this is achieved
by determining the solution of the Riemann problem, i.e., the evolution of
a discontinuity separating two constant states initially adjacent to a zone
interface

U(x, tn) =
U+,L for x < x+,

U+,R for x > x+.
(3.8)

The discontinuity will break into a number of waves whose number and
properties depend on the actual system of conservation laws being solved.
A Riemann solver naturally embeds the concept of upwinding, i.e., the
discretization stencil should be biased towards the direction from which
characteristic waves propagate.
For complex systems of conservation laws, the solution of the Riemann
problem requires the simultaneous solution of a set of nonlinear systems of
equations. In non-relativistic and relativistic MHD (RMHD), for instance,
the decay of the initial discontinuity gives rise to a self-similar wave pat-
tern in the x − t plane, where seven wave modes can develop (see Figure
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Figure 3.2: General structure of the Riemann fan generated by two initial constant
states: UL and UR. The pattern includes 7 waves corresponding to a pair of fast magne-
tosonic waves, a pair of rotational Alfvén waves, a pair of slow magnetosonic modes, and
a contact (or tangential) discontinuity in the middle, propagating at the fluid speed. The
seven waves bound six intermediate constant states. Credit: A. Mignone.

3.2). Fast waves (FW) are the outermost ones and enclose a pair of Alfvén
waves (AW), a pair of slow waves (SW) bounding a tangential discontinuity
(TD) in the middle. FW and SW can be either shock or rarefaction waves
where primary flow quantities (density, pressure, velocity, and magnetic
field) change discontinuously (for the former) or smoothly (for the lat-
ter), depending on the magnetic field topology and pressure jump. Across
the AW, thermodynamic quantities remain continuous while the tangential
components of magnetic field trace circles, in classical MHD, or ellipses,
in the RMHD case (Mignone et al., 2012b). Finally, through the contact
mode, only density exhibits a jump while thermal pressure, velocity, and
magnetic field remain continuous.
Across each wave, the Rankine-Hugoniot jump conditions must be satisfied

λ(k)
(
U (k)
L − U

(k)
R

)
= F(U (k)

L )− F(U (k)
R ), (3.9)

where k = 1, ..., 7 lists the waves. An exact solver demands the simulta-
neous solution of the Rankine-Hugoniot jump conditions across each wave
through a self-consistent procedure that resolves FW, SW, and AW to the
left and the right of the contact (or tangential in the degenerate case) dis-
continuity, that is always located at the center of the structure. This task
is computationally expensive in classical MHD and almost impracticable
in the RMHD case (see Giacomazzo and Rezzolla, 2006). For this reason,
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approximate methods of solution are usually preferred. The degree of ap-
proximation reflects the ability to capture and spread discontinuities over
a few or more computational zones and it is ultimately responsible for the
amount of numerical dissipation of the numerical scheme (Mignone, 2017).
The impact of the numerical diffusion developed by the various schemes
on the simulation results is one of the crucial aspects of this thesis work,
for which the considered Riemann solvers in the MHD case are

• the Roe Riemann solver (see Cargo and Gallice, 1997),
• the HLL Riemann solver (see Harten et al., 1983),
• the HLLD Riemann solver of Miyoshi and Kusano (2005).

The Roe Riemann solver provides intercell fluxes generally written as

F̂ = F− φ, (3.10)

where F = (FL + FR)/2, while φ represents the dissipative term, namely

φ = 1
2R|Λ|L · (UR − UL), (3.11)

where FL,R are the left and right fluxes, L and R are the left and right
eigenvector matrices defined in terms of the Roe average state, while |Λ| =
diag(|λ1|, ..., |λk|) represents the diagonal matrix containing the absolute
value of eigenvalues.
In the HLL case, the intercell numerical flux is given by

F̂ = αRFL + αLFR

αR + αL
− αRαL(UR − UL)

αR + αL
, (3.12)

where αR = max(0, λR) ≥ 0 and αL = −min(0, λL) ≥ 0, with λR and
λL the rightmost and leftmost characteristic speed. These two solvers are
ordinarily employed in numerical simulations of MHD flows and differ in
the amount of numerical diffusion (the HLL being more diffusive than the
Roe one).
The HLLD Riemann solver approximates the Riemann fan with a five-wave
pattern composed of two outermost fast shocks with speed λL and λR, two
rotational waves propagating with speeds

λ∗L = λ∗ − |Bx|√
ρ∗L

, λ∗R = λ∗ + |Bx|√
ρ∗R

, (3.13)

where ρ∗s = ρs(λs−vs)/(λs−λ∗) with s = L or R and λ∗ = mhll/ρhll (where
“hll” marks a component of the HLL intermediate state), separated, in the
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adiabatic case, by a contact wave in the middle propagating with speed λ∗.
The HLLD flux is written as

F̂ = 1
2[FL + FR − |λL|(B∗Lt −BL

t )− |λ∗L|(B∗∗t −B∗Lt )−

− |λ∗R|(B∗Rt −B∗∗t )− |λR|(BR
t −B∗Rt )],

(3.14)

where t = y, z, F = vxBt − vtBx, while

B∗∗Rt = B∗∗Lt = B∗∗t = λ∗RB∗Rt − λ∗LB∗Lt + F∗L − F∗R
λ∗R − λ∗L

, (3.15)

where F∗s = Fs +λs(B∗st −Bs
t ), with B∗st given by B∗st −Bs

t = Bs
tχ

s, where

χs = (vsx − λ∗)(λs − λ∗)
(λ∗s − λs)(λ∗s + λs − 2λ∗) . (3.16)

The HLLD solver presents excellent stability properties and reduced nu-
merical dissipation when applied to time-dependent magnetized current
sheets (see Section 3.3.6 for further details). The Riemann solver descrip-
tion is based on Mignone and Del Zanna (2021).

3.3.3 Final Update step

The Equation
Un+1 = Un + ∆tLn, (3.17)

is obtained in the simplest case of forward Euler discretization, where ∆t =
tn+1−tn is the time interval, while Ln is the flux difference operator, namely

Ln =
∑
d

Ld = − 1
∆V (Ad

+Fd
+ − Ad

−Fd
−), (3.18)

where d = 1, 2, 3 is a given direction and Ad
± and ∆V are the cell’s right

(+) and left (-) interface areas and cell volume in that direction, respec-
tively. F± are the numerical flux functions following the solution of one-
dimensional Riemann problems at cell interfaces. When d = 1, 2, and
3, ± ≡ (i ± 1/2, j, k), (i, j ± 1/2, k), and (i, j, k ± 1/2), respectively (see
Mignone et al., 2007).
Equation (3.17) is an exact expression relating the change of zone-averaged
conserved quantities inside a cell to the net time-averaged flux through its
cell boundaries (see Figure 3.3). Therefore, in this step, the solution array
of conserved variables is updated to the next time level using Equation
(3.17) or a higher order discretization method. This formulation is essential
to ensure conservation from a computational perspective (Mignone, 2017).
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Figure 3.3: Schematic diagram of a finite-volume conservative scheme: the variation of
the average value of U inside a computational cell is related to the net flux F through its
boundary. Credit: A. Mignone.

3.3.4 A note on numerical diffusion

Let us consider the equation

∂U
∂t

+ w
∂U
∂x

= 0, (3.19)

which has known analytical solution consisting of a uniform translation
of the initial profile, that is U(x, t) = U(x − wt, 0). w > 0 leads to the
so-called "forward in time, backward in space" (FTBS) scheme.
The amount of numerical diffusion introduced by the FTBS scheme can
be quantified by computing the local truncation error introduced in the
discretization equation. Expanding around Un and keeping terms up to
2nd-order, the Equation

∂U
∂t

+ w
∂U
∂x

= w∆x
2

(
1− w∆t

∆x

)
∂2U
∂x2 + O(∆t2) + O(∆x2) (3.20)

is obtained. Therefore, the grid values Un obtained with the FTBS scheme
provide a 1st-order approximation to the true solution of the original scalar
Equation (3.19) but satisfy exactly a modified partial differential Equation
given by (3.20) (see LeVeque, 2002). If the 2nd-order terms are neglected,
the grid values Un are 2nd-order approximation to the actual solution. For
higher order schemes the 1st term on the right-hand side of Equation (3.20)
can be eliminated and the amount of dissipation is progressively reduced.
In the fluid ideal case (η = 0) the only present dissipation is the numerical
one.
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3.3.5 Time-stepping schemes

The three-step sequence of steps shown in Figure 3.1 may be iterated more
than once in the case of a multi-stage Runge-Kutta scheme. A robust
2nd-order time stepping method (RK2) is the following predictor-corrector
scheme

U∗ = Un + ∆tLn,

Un+1 = 1
2(Un + U∗ + ∆tL∗).

(3.21)

By adding an additional step, the 3rd-order Runge-Kutta method (RK3)
of Gottlieb and Shu (1998) is obtained, namely

U∗ = Un + ∆tLn,

U∗∗ = 1
4(3Un + U∗ + ∆tL∗),

Un+1 = 1
3(Un + 2U∗∗ + 2∆tL∗∗).

(3.22)

For these methods, the input states for the Riemann solver are given by the
output of the interpolation routine (see Section 3.3.1). The RK2 and RK3
marching schemes have to solve a total of two and three Riemann problems
per cell per direction, respectively. Moreover, boundary conditions must
be assigned before each step (Mignone et al., 2007). The time step ∆t is
limited by the Courant–Friedrichs–Lewy (CFL; see Courant et al., 1928)
condition, namely

∆t = Ca min
d

∆ldmin
|λdmax|

 , (3.23)

with λdmax and ∆ldmin representing the largest signal velocity and the smallest
cell length in the d direction, respectively. Ca represents the Courant
number, which is dimensionless and has a maximum value limited to 1 by
stability constraints. These conditions are typically used to limit the time
step in Godunov-type codes.

3.3.6 Constrained Transport

The magnetic field is evolved using the constrained transport (CT) method,
which ensures that the solenoidal condition expressed by Equation (2.36)
is satisfied to machine precision at all times (see Mignone et al., 2019).
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Figure 3.4: Left panel: Position of MHD variables by using the CT formalism. Right
panel: Intersection between four neighbor zones viewed from the top. Credit: Mignone
and Del Zanna (2021).

The CT method was originally introduced by Evans and Hawley (1988),
and later extended to Godunov-type schemes by Balsara and Spicer (1999),
Londrillo and del Zanna (2004) and Gardiner and Stone (2005), to name
just a few. This method entails a staggered discretization of magnetic
field whereby different components lie on the face they are orthogonal to
(Mignone, 2017) so that a discrete version of Stoke’s law can be applied
when solving the induction equation. Conversely, primary zone-centered
flow variables including density, momentum, and energy are stored by their
volume averages inside the zone. The position of variables in a cell by using
the CT formalism is illustrated in Figure 3.4.
A staggered representation is necessary to preserve the magnetic field
divergence-free constraint in Godunov-type shock-capturing schemes, where
spatial partial derivatives do not commute when discontinuities are present.
Mignone and Del Zanna (2021) defined the staggered electromagnetic quan-
tities as

Bf ≡


Bxf

Byf

Bzf

 =


Bx,i+ 1

2 ,j,k

By,i,j+ 1
2 ,k

Bz,i,j,k+ 1
2

 , Ee ≡


Exe

Eye

Eze

 =


Ex,i,j+ 1

2 ,k+ 1
2

Ey,i+ 1
2 ,j,k+ 1

2

Ez,i+ 1
2 ,j+

1
2 ,k

 , (3.24)

where the subscripts xf , yf , and zf identify the face-centered staggered
location inside the control volume, while xe, ye, and ze represent the corre-
sponding positions of the different edge-centered electric field components.
When a finite-volume approach is considered, conserved variables are evolved
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in terms of their volume-averages Uc, namely

dUc
dt

= −
∆xF̂xf

∆x + ∆yF̂yf

∆y + ∆zF̂zf

∆z

 , (3.25)

where ∆x, ∆y, and ∆z are the coordinate grid spacing, ∆x, ∆y, ∆z are
the backward difference operators defined as

∆xQc ≡ Qc−Qc−êx
, ∆yQc ≡ Qc−Qc−êy

, ∆zQc ≡ Qc−Qc−êz
, (3.26)

where Q can be either a face-centered quantity (Qf) or a edge-centered
quantity (Qe), while êx = (1, 0, 0), êy = (0, 1, 0), and êz = (0, 0, 1) are unit
vectors. The evolution of Uc implies a surface-average representation of the
fluxes at the zone interface, leading to

F̂xf
= 1

∆y∆z
∫

êx · F(U(xi+ 1
2
, y, z, t))dydz,

F̂yf
= 1

∆z∆x
∫

êy · F(U(x, yj+ 1
2
, z, t))dzdx,

F̂zf
= 1

∆x∆y
∫

êz · F(U(x, y, zk+ 1
2
, t))dxdy,

(3.27)

as required by direct application of Gauss’ theorem.
The staggered magnetic field components are also interpreted as face-
averages and are updated using a discrete version of Stokes’ theorem:

dBxf

dt
= −

∆yÊze

∆y − ∆zÊye

∆z

 ,
dByf

dt
= −

∆zÊxe

∆z − ∆xÊze

∆x

 ,
dBzf

dt
= −

∆xÊye

∆x − ∆yÊxe

∆y

 ,
(3.28)

where

Êxe
= 1

∆x
∫
Ex(x, yj+ 1

2
, zk+ 1

2
, t)dx,

Êye
= 1

∆y
∫
Ey(xi+ 1

2
, y, zk+ 1

2
, t)dy,

Êze
= 1

∆z
∫
Ez(xi+ 1

2
, yj+ 1

2
, z, t)dz.

(3.29)
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In PLUTO, the line-average electric field (i.e., the electromotive force or
emf) is constructed using the information available from one-dimensional,
face-centered Riemann solver by a proper emf averaging/reconstruction
scheme, chosen from

• CT-Contact (following the approach of Gardiner and Stone, 2005),
• UCT-HLL (see Del Zanna et al., 2003; Londrillo and del Zanna, 2004),
• UCT-HLLD described in Mignone and Del Zanna (2021).

The approach proposed by Balsara and Spicer (1999) was later improved
by Gardiner and Stone (2005), leading to the CT-Contact method, which
can operate reconstruction from any one of the four nearest face centers
to the zone edge. In the notations of Mignone and Del Zanna (2021), the
zone-centered emf is given by

Êze
= Êarithm

ze
+ ∆y

8

(∂Ez

∂y

)S
−
(
∂Ez

∂y

)N + ∆x
8

(∂Ez

∂x

)W
−
(
∂Ez

∂x

)E ,
(3.30)

where N , S, E and W represent the four cardinal directions with respect
to the zone edge (see the right panel of Figure 3.4), while Êarithm

ze
is the

arithmetic average, namely

Êze
= 1

4
(
−F̂ [By]

xf
− F̂ [By]

xf +êy
+ F̂ [Bx]

yf
+ F̂

[Bx]
yf +êx

)
, (3.31)

where the square bracket indicates the flux component. However, this
method could not be generalized to higher-order methods, as it could be
at most 2nd-order accurate. A more rigorous approach for computational
MHD is the upwind constrained transport (UCT) method originally pro-
posed by Londrillo and del Zanna (2004). We refer to this approach as the
UCT-HLL scheme, in which the edge-centered electric field is given by

Êze
=
α+
xα

+
y E

SW
z + α+

xα
−
y E

NW
z + α−xα

+
y E

SE
z + α−xα

−
y E

SW
z

(α+
x + α−x )(α+

y + α−y ) +

+ α+
xα
−
x

α+
x + α−x

(BE
y −BW

y )−
α+
y α
−
y

α+
y + α−y

(BN
x −BS

x ),
(3.32)

where α+
x = max(0, λRxf

, λRxf +êy
) and α−x = −min(0, λLxf

, λLxf +êy
). λRxf

and
λLxf

represent the rightmost and leftmost characteristic speed, respectively.
This method was simplified by Del Zanna et al. (2007) for the general
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RMHD case, namely

Êze
= −

α+
x (v̄xBy)W + α−x (v̄xBy)E − α+

xα
−
x (BE

y −BW
y )

α+
x + α−x

+

+
α+
y (v̄yBx)S + α−y (v̄yBx)N − α+

y α
−
y (BN

x −BS
x )

α+
y + α−y

,

(3.33)

with, e.g., (v̄xBy)W = v̄Wx B
W
y , where v̄x = (vLx + vRx )yf

/2, while v̄y =
(vLy + vRy )xf

/2. The velocities in the transverse direction at an x-interface
are first computed as

v̄t,xf
=
α+
x vLxf

+ α−x vRxf

α+
x + α−x

· ēt, (3.34)

where t = y, z and then accurately reconstructed in the transverse direc-
tion. Mignone and Del Zanna (2021) extended this method to less dissipa-
tive solvers like HLLD, leading to the UCT-HLLD scheme. By using this
scheme, the edge-centered emf can be constructed from

Êze
= −[(axv̄xBy)W + (axv̄xBy)E] + [(ayv̄yBx)N + (ayv̄yBx)S]+
+ [(dxBy)E − (dxBy)W ]− [(dyBx)N − (dyBx)S],

(3.35)

where aW,Ex (or aN,Sx ) and dW,Ex (or dN,Sx ), that are the flux and diffusion
coefficients respectively, are computed by averaging the corresponding ex-
pressions obtained at x- (or y-) interfaces with a 1D Riemann solver, with

aL = 1 + v∗

2 , aR = 1− v∗

2 , ds = 1
2(vs−v∗)χ̃s + 1

2(|λ∗s| −v∗λ∗s), (3.36)

where χ̃s = (λ∗s − λs)χs (see Equation 3.16, while

vs = λ∗s + λs

|λ∗s|+ |λs| , v∗ = λ∗R + λ∗L

|λ∗R|+ |λ∗L| . (3.37)

The partial differential equations for Uc are solved by coupling the CT
schemes to the Godunov-type method. Indeed, the inter-cell fluxes in
Equation (3.27) are calculated by solving the Riemann problem (see Sec-
tion 3.3.2). Mignone and Del Zanna (2021) shows that the UCT-HLLD
emf reconstruction scheme for the magnetic field and velocity components
from nearby intercell faces to cell edges coupled to the base HLLD Rie-
mann solver employed for the fluid part is an accurate numerical scheme.
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Figure 3.5 shows the thermal pressure of an ideal fluid at a time subse-
quent to the initial one (left panel) and the volume-integrated magnetic
energy as a function of time (right panel) for different emf methods and
using the HLLD Riemann solver in the case of a magnetized current sheet.
We clearly note that the UCT-HLLD scheme is characterized by excel-
lent stability and low diffusion when coupled with the HLLD Riemann
solver. Indeed, magnetic reconnection is not triggered by numerical dif-
fusion and the current sheet remains stable in its initial configuration, as
we expected for an ideal fluid. The same seems to occur for the CT-
Contact scheme. However, the amount of numerical dissipation obtained
with the UCT-HLLD scheme could be even lower and this scheme can be
extended to higher than 2nd-order schemes. Consequently, it is crucial to
use the HLLD scheme both in the fluid and induction equation. Indeed,
the left panel of Fig. 3.5 for the HLLD base Riemann solver coupled with
the UCT-HLL emf reconstruction shows that the current sheet reconnects
even in the ideal case. This means that magnetic reconnection is triggered
by the numerical diffusivity introduced by the UCT-HLL scheme for the
induction equation. This is confirmed by the right panel, which shows that
the magnetic energy remains nearly constant in time for the UCT-HLLD
scheme (red curve) while it decreases when the UCT-HLL scheme (yellow
curve) is used. Therefore, the UCT-HLL emf reconstruction is inherently
more diffusive.

3.3.7 Particle mover: Boris integrator

Particle equations of motion (see Eq. 2.56) are solved using the standard
Boris pusher, which is a time-reversible integrator and features good con-
servation properties for long-time simulations. Boris pusher is an implicit-
position Verlet algorithm, described by the equations reported by Mignone
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Figure 3.5: Current sheet evolution. Left panels: Thermal pressure of an ideal fluid at
a time subsequent to the initial one, obtained with different emf methods and the HLLD
Riemann solver. Right panel: Volume-integrated magnetic energy as a function of time
again for different emf methods and the same Riemann solver (HLLD). Credit: Mignone
and Del Zanna (2021).

et al. (2018), namely

xn+ 1
2

p = xnp + ∆tn
2 vnp ,

u−p = unp + h

2cE
n+ 1

2 ,

u+
p = u−p + 2

u−p + u−p × b
1 + b2 × b,

un+1 = u+
p + h

2cE
n+ 1

2 ,

xn+1
p = xn+ 1

2
p + ∆tn

2 vn+1
p ,

(3.38)

where b = (h/2)Bn+ 1
2/γn+ 1

2 , while h = ∆tn(e/mc)p is related to the simu-
lation time step ∆tn. The particle mass is taken to be equal to the mass of
the particles composing the fluid, so that, when written in code units, the
charge to mass ratio (e/mc)p becomes unity. In other words, the results
described in Section 4 and 5 are equally applicable to protons embedded in
protons-electrons thermal fluid or to a electron-positron pair plasma. The
electric and magnetic fields E and B are computed from the magnetized
fluid and are properly interpolated at the particle position, following the
approach of Mignone et al. (2018).
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As discussed in Mignone et al. (2018), the particle time step can be con-
strained either by (the inverse of) their gyration frequency or by the max-
imum number of computational zones that can be crossed during a single
time step. In the simulations carried out during this thesis work, both
are found to be smaller than the fluid time step by a factor of ∼ 5 at
nominal resolutions. While gyration dominates the time step restriction at
low grid resolutions, the opposite situation is found as the mesh becomes
finer, since the most energetic particles can cross increasingly more cells in
a single time step.
In our code, particles and fluid are evolved simultaneously, the former with
the Boris algorithm and the latter with the RK3 time-stepping method.
The fluid evolves for a whole step, then particles are updated using the
fields calculated at time n+1/2 (obtained as the arithmetic mean between
values at n and n+ 1).

3.4 Numerical setup

The initial configuration considers a 2D rectangular domain of size L×L/2
where L = 2× 104 c/ωp. The equilibrium magnetic field follows a Harris-
sheet profile,

Bx(y) = B0 tanh
(
y

a

)
, (3.39)

where a denotes the initial width of the current sheet, which is set to
a = 250 c/ωp in all the simulations, while B0 denotes the magnetic field
strength, normalized such that out unit velocity is the Alfvén speed (ρ0 =
B0 = 1 in code units). The guide field Bz is not present and an initial
equilibrium condition is obtained by counteracting the Lorenz-force term
with a thermal pressure gradient,

P (y) = 1
2B

2
0(β + 1)− 1

2B
2
x(y), (3.40)

so that the total pressure remains constant through the sheet (i.e., no
magnetic tension is present initially). β is set to 0.01 in all simulations.
For convenience, resistivity is prescribed from S̄, that is the Lundquist
number corresponding to the current sheet width (see Equation 2.51). vA
is set to one, while the resistivity η is assumed constant throughout the
domain.
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The system is perturbed by introducing a fixed number of small-amplitudes
modes with different wavenumbers k. This is best achieved by redefin-
ing the vector potential as Az(x, y) = A0(y) + δAz(x, y) where A0(y) =
aB0 log(cosh (y/a)) corresponds to the equilibrium field (see Equation 3.39),
while

δAz(x, y) = εB0

Nm

Nm∑
m=0

1
k

sin (kx+ φm) sech
(
y

a

)
(3.41)

is the perturbed term, where Nm is the number of modes (set to 20), ε =
10−3 is the perturbation amplitude, φm are random phases and k = (m +
1)k0 = 2π(m+ 1)/L. We note that we also tried two types of perturbation
on the vertical velocity (i.e, vy). However, these resulted in a perturbation
growth that was too small for our purposes.
Test-particles are evenly assigned to grid zones (1 particle/cell) and their
velocities follow a Maxwellian distribution with standard deviation σd =√
P0/2ρ0, where P0 = P (∞) in Equation (3.40). Test-particles are evolved

together with the fluid until the end of the computational time.
Boundary conditions in the x-direction are periodic, while in the y-direction
are reflective.

3.4.1 Chosen numerical schemes

As one of the aims of this thesis is to quantify the impact of the numerical
scheme on simulation results, three different numerical schemes based on
different combinations of the base Riemann solver (see Section 3.3.2) and
the emf averaging/reconstruction scheme (see Section 3.3.6) are compared,
namely,
i) the HLL Riemann solver with the UCT-HLL reconstruction (see Lon-

drillo and del Zanna, 2004; Del Zanna et al., 2007);
ii) the Roe Riemann solver with the CT-Contact emf averaging scheme;
iii) the HLLD Riemann solver of Miyoshi and Kusano (2005) with the

more recent UCT-HLLD emf averaging scheme;
which, for brevity, will be shortened as HLL (i), Roe (ii), and HLLD (iii).
The HLLD scheme is characterized by a reduced amount of numerical dis-
sipation, as discussed in Section 6.2 of Mignone and Del Zanna (2021), for
which the diffusive flux terms eventually contributing to the emf evaluation
are proportional to the jump in magnetic fields alone.
While the code retains a global 2nd-order accuracy, the amount of numerical
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dissipation can be further controlled by the spatial reconstruction of fluid
variables inside each grid zone. For this reason, both 2nd-order piecewise
linear reconstruction and the 5th-order WENO-Z algorithm are considered
(see Section 3.3.1).
A 3rd-order Runge Kutta stepping is used to advance the equations in time
(see Section 3.3.5). Unless otherwise stated, the final integration time is
ωptstop = 6 · 105, as it is enough for all models to capture both the linear
stages as well as the nonlinear evolution. Notice that, for convenience,
time can also be measured in units of the Alfvén time-scale τ̄A = a/vA =
250c/(vAωp). In practice, the corresponding Alfvén time can be obtained
from the simulation time (in units of 1/ωp) as t/τ̄A = ωptvA/(250c).
Numerical simulations are conducted using different values of the Lundquist
number S̄ defined in Equation (2.51), namely, S̄ = 103, 104, 105 and S̄ =∞
(ideal case, i.e., η = 0) with varying grid resolutions (Nx×Nx/2), starting
from Nx = 192 (which corresponds to a/∆x ∼ 2.5 zones on the initial
current sheet width a) up to Nx = 3072 (a/∆x ∼ 40). Correspondingly,
the number of particles varies from 18, 432 (at the lowest resolution) and
reaches 4, 718, 592 (at the largest one).

3.4.2 Dynamical contributions of convective and resistive elec-
tric fields

In addition to studying the impact of the numerical method and resistivity
on the simulation results, this thesis work focuses on the relative impor-
tance of the two electric field contributions shown in Equation (2.37) in
the particle acceleration mechanism.
Each electric field contribution exerts a work on particles with a corre-
sponding change in their kinetic energy Ekin = (γ − 1)C2. During a single
time step ∆tn this variation is given by the sum of the two contributions

∆En
kin = hnc(Ec · vp + Er · vp)n. (3.42)

To quantify the importance of the two contributions, the energy gained by
the particles is used, which, following Equation (3.42), is split into

W =
∑
n

(hcEc · vp)n +
∑
n

(hcEr · vp)n ≡ Wc +Wr, (3.43)

where n indicates the step number. This equation can be rewritten in
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terms of the particle four-velocity up this way

W =
∑
n

(
h

γ
Ec · up

)n
+
∑
n

(
h

γ
Er · up

)n
≡ Wc +Wr, (3.44)

where γ =
√

1 + u2
p/C2 is the Lorentz γ-factor. Simulations for this anal-

ysis are carried out with the 5th-order WENO-Z reconstruction algorithm
in combination with the HLLD Riemann solver and the UCT-HLLD emf
averaging scheme. The final integration time is ωpt = 7.8 · 105 to cap-
ture even the non-linear evolution of the current sheet. The redefined
Lundquist number S̄ is set to 104. The grid resolution is set to 1536× 768
(i.e., a/∆x ∼ 20) and then progressively doubled up to 6144 × 3072 (i.e.,
a/∆x ∼ 80 and 18,874,368 particles), in order to determine convergence
even in the non-linear evolution phase of the current sheet. Moreover, to
investigate the importance of the resistive field, numerical computations
are carried out twice by first including and then removing the resistive
contribution from the equation of motion of the particles, while always
keeping it during the fluid evolution. This means that the fluid evolution
is the same in both cases while only the particles evolution differs.
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This chapter is based on the paper published on the Monthly Notices of the
Royal Astronomical Society by Eleonora Puzzoni, Andrea Mignone, and Gi-
anluigi Bodo, titled: On the impact of the numerical method on magnetic
reconnection and particle acceleration - I. The MHD case (Puzzoni et al.,
2021). The author of this thesis carried out all the simulations, created
all the figures, and mostly discussed and interpreted the data presented in
this chapter.
In this chapter, the results regarding the impact of the numerical method
and the resistivity on magnetic reconnection and particle acceleration in
the MHD case are presented. First, a convergence study for the background
plasma alone is introduced, in which the effect of spatial reconstruction,
Reimann solver, emf averaging scheme, and resistivity on the evolution of
the current sheet is presented. After, the same study is applied to particle
acceleration.

4.1 Convergence study for the background plasma

The impact of the numerical method and resistivity on the dynamical evo-
lution of the tearing-unstable current sheet is first studied.
The temporal evolution of the plasma density, obtained with the HLLD
scheme and S̄ = 104 at the largest grid resolution (i.e., Nx = 3072), is
shown in Figure 4.1. For 105 . ωpt . 2.1 · 105 (upper left-hand panel) the
current sheet starts to shrink at the edges of the computational domain
and the tearing-mode heads its linear phase. The process continues as the
current sheet becomes thinner and thinner for 2.1 · 105 . ωpt . 3.4 · 105

(upper right-hand panel), therefore this phase is called the second linear
phase in this thesis work. Subsequently, at about 3.4 · 105 . ωpt . 4.6 · 105

the current sheet starts to fragment into plasmoids that begin to merge
(lower left-hand panel). Eventually, for ωpt & 4.6 · 105 the system reaches
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a saturation phase where plasmoids merged into a single large island with
a large filling factor (lower right-hand panel).
Regardless of the numerical scheme, these four evolutionary stages are
observed at all resolutions, albeit the beginning of each phase may occur
at a different time. A convenient way to label the different evolutionary
stages can be quantified by counting the number of X-points formed over
time. The algorithm, based on locating the null points of |B|, is illustrated
in Appendix A and is compatible with the one developed by Zhdankin
et al. (2013).
As an additional diagnostic tool, a quantitative measure of the growth rate
γTM is provided, obtained as

γTM = f(t2)− f(t1)
t2 − t1

, (4.1)

where t1 and t2 correspond to two simulation snapshot times, while

f(t) = 1
2 log

( 1
L2

∫
B2
y(t) dx dy

)
. (4.2)

Equation (4.1) is employed to evaluate the growth rate within the 1st- and
2nd-linear phases in what follows.

4.1.1 The effect of spatial reconstruction

The temporal evolution of the spatially averaged transverse component of
the magnetic field at different resolutions using linear reconstruction and
WENO-Z 5th-order reconstruction are plotted in the top and middle left
panels of Figure 4.2, respectively. The right panels give the corresponding
number of X-points at the largest resolutions (768 ≤ Nx ≤ 3072). For the
sake of comparison, results with both reconstruction schemes at Nx = 3072
are superimposed in the lower panels.
For this case, the Lundquist number is set to S̄ = 104 and the HLLD Rie-
mann solver with the UCT-HLLD reconstruction scheme for emf computa-
tion at cell edges is employed. The different evolutionary stages, described
above, have been marked by the vertical dashed lines. During the linear
phases, the perturbations are expected to grow exponentially at the rate of
the fastest growing mode, as predicted by linear theory (see Section 2.4.2).
The same does not hold during the subsequent phase where a variation of
the magnetic energy is visible depending on the chosen scheme and grid
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Figure 4.1: Plasma density (colorbar) at four simulation snapshots, obtained with a
grid resolution Nx = 3072, the UCT-HLLD scheme and the HLLD Riemann solver with
S̄ = 104 and the WENO-Z reconstruction scheme. Time is expressed in units of both the
inverse plasma frequency and the Aflvénic time scale (in parenthesis).

size. In fact, during the second phase, the width of the current sheet
continues to decrease, eventually leading to its fragmentation through the
formation of X-points. To accurately capture this phase, an even larger
resolution is needed for resolving the increasingly thinner sheets.
A direct inspection of the left and corresponding right panel reveals that
the growth of the perturbation raises with the number of newly formed
X-points. Since this process occurs more rapidly as the numerical diffusion
is reduced, higher resolution runs with WENO-Z reconstruction evolve to-
wards the growth of saturation earlier. On the contrary, at low resolutions,
the saturation stage is attained at later times or may not be reached at all
by the end of the simulation, especially with linear reconstruction where
numerical diffusion is larger. Focusing on the linear phases, convergence
is eventually reached for Nx & 1536 (a/∆x ' 20) for the linear recon-
struction case and Nx & 768 (a/∆x ' 10) using WENO-Z. At the highest
resolution, both linear and WENO-Z schemes show similar growths (see
lower panels of Figure 4.2).
Growth rates for the 1st and 2nd-linear phase, computed using Equation
(4.1), are reported in Table 4.1. During the 1st-linear stage, both compu-
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Table 4.1: Average growth rates (for S̄ = 104 case) for the tearing mode instability, γTM,
measured from the simulations at different grid resolutions (left column) using HLLD
with linear and WENO-Z reconstructions. These are calculated within what we call the
1st- (105 . ωpt . 2.1 · 105 or, equivalently, 400 . t/τ̄A . 840) and the 2nd-linear phase
(2.1 · 105 . ωpt . 3.4 · 105 or, equivalently, 840 . t/τ̄A . 1360).

1st-linear phase 2nd-linear phase
γTM (10−5ωp) γTM (10−6ωp)

Resolution a/∆x Linear WENO-Z Linear WENO-Z
192 × 96 ∼ 2.5 0.80 1.29 6.38 9.24
384 × 192 ∼ 5 1.40 1.68 8.93 9.14
768 × 384 ∼ 10 1.76 1.88 9.58 9.80
1536 × 768 ∼ 20 1.88 1.89 10.2 8.85
3072 × 1536 ∼ 40 1.89 1.90 12.3 12.2

tations eventually converge to the same result, albeit the employment of
WENO-Z favors faster convergence (approximately half the resolution is
needed), owing to the reduced numerical dissipation. The 2nd-linear phase
takes place more rapidly and starts earlier as the numerical dissipation is
reduced, either with the reconstruction order or with a finer mesh spacing.

4.1.2 The impact of the Riemann solver and emf averaging

Next, the influence of the Riemann solver as well as the emf-averaging
scheme on the computations is determined. Figure 4.3 shows the evolution
over time of the spatially averaged transverse component of the magnetic
field at different grid resolutions for selected Riemann solvers and emf-
averaging schemes (see Section 3.4). Resistive (S̄ = 104) and ideal (S̄ =∞)
cases are shown in the left and right panels, respectively.
In the resistive case, using the HLL and Roe schemes (top and middle left-
hand panels, respectively), the growth rate flattens as the mesh becomes
finer and convergence during the 1st- and 2nd-linear phase is achieved for
Nx & 768. Conversely, computations using the HLLD method (bottom
left panel) reveal a more homogeneous profile where the different evolu-
tionary phases are clearly distinguished at (nearly) all resolutions, giving
comparable growth and convergence properties. This behavior has to be
attributed to the reduced amount of numerical dissipation of the HLLD
Riemann solver with the UCT-HLLD emf scheme, as discussed in Section
3.3.6.
Note that, in the ideal case (S̄ = ∞, right panels), the equilibrium con-
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Figure 4.2: Left panels: spatially-averaged transverse component of magnetic field as
a function of time at different grid resolutions, using linear (top panel) and WENO-Z
(middle panel) reconstructions. The bottom panel compares the two reconstructions at
the largest resolution (Nx = 3072). Note that time is expressed in units of the inverse
plasma frequency and it can be converted to Alfvénic time units using t/τ̄A = ωpt/250.
Right panels: number of X-points formed over time at higher resolutions using linear
(top panel) and WENO-Z (middle panel) reconstruction with a comparison of these at
Nx = 3072 (bottom panel). We used S̄ = 104 and the HLLD Riemann solver with the
UCT-HLLD scheme in all cases.
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dition given by Equation (3.40) is a stationary solution of the ideal MHD
equations and any dissipative process should be absent. In practice, how-
ever, the discretization process introduces a numerical viscosity/resistivity
which allows the current sheet to reconnect to some extent. Generally
speaking, the rate at which field dissipation occurs should depend on the
amount of numerical diffusion: more dissipative schemes or lower resolu-
tions will trigger reconnection events earlier. This is clearly the case for
the Roe and the HLL schemes for which convergence will never be reached
owing to the resolution-dependent numerical resistivity. The employment
of the HLLD scheme reveals, once more, an unexpected benefit: the system
remains stable with minimal dissipation at all resolutions and no perturba-
tion growth, as one would expect for an ideal system. The same behavior
has been witnessed in simulations of ideal current sheets, as described
by Mignone and Del Zanna (2021) (see Section 6.2 of that paper). This
proves that the introduction of a physical resistivity is absolutely essential
to ensure convergence concerning the numerical method and mesh size in
simulations of reconnecting current sheets. This is remarkably true during
the linear phase(s), although a word of caution is noteworthy. For the sake
of comparison, in fact, Figure 4.4 plots the spatially averaged transverse
component of the magnetic field over time at the two largest resolutions for
the selected schemes. While convergence is reached during the 1st-linear
phase (ωpt . 2.1·105), the same does not hold during the subsequent phase
where a variation of the magnetic energy is visible depending on the chosen
scheme and grid size. In fact, during the 2nd-linear phase, the width of the
current sheet continues to decrease, eventually leading to its fragmenta-
tion through the formation of X-points. To accurately capture this phase,
an even larger resolution is needed for resolving the increasingly thinner
sheets.
From these initial results, it is clear that the HLLD combination scheme
with WENO-Z reconstruction seems to produce the most accurate results
and it will be employed as the fiducial numerical scheme.

4.1.3 Dependence on the Lundquist number

Figure 4.5 shows the spatially averaged transverse component of the mag-
netic field over time for different values of S̄ and grid resolutions. Note
that the saturation phase occurs at later times when S̄ increases, i.e., as
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Figure 4.3: Spatially-averaged transverse component of magnetic field as a function of
time for different resolutions and selected numerical schemes, with S̄ = 104 (left panels)
and S̄ = ∞ (right panels). The WENO-Z reconstruction is used for all computations.
Convergence refers to the 1st linear phase only (larger resolution is needed to resolve
smaller current sheets forming after the fragmentation phase).
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Figure 4.4: Same as Figure 4.3 but with plots from different numerical methods over-
lapping at the two largest resolutions (S̄ = 104). As before, convergence refers to the
1st-linear phase only.

the physical resistivity decreases. For this reason, when S̄ = 105 (see lower
panel), the final simulation time has been extended to ωptstop ≈ 1.8 · 106,
i.e., three times than for the previous cases. The results indicate that the
system evolution converges at an increasingly larger grid resolution depend-
ing, as expected, on the relative magnitude between numerical and physical
resistivity, scaling as ηnum ∼ O(∆x2) and η ∼ 1/S̄, respectively1. There-
fore, as an order of magnitude, the resolution threshold for convergence
is expected to scale approximately as a/∆x ∼ 10

√
S̄/104 for a 2nd-order

accurate scheme. Indeed, for S̄ = 103 (see upper-left panel), convergence
is observed at all resolutions (a/∆x & 3). On the contrary, at S̄ = 105,
convergence is fully attained only at Nx ∼ 3072, while the low-resolution
simulation (i.e., Nx = 192) shows that the linear growth proceeds slowly
and the saturation phase is not even reached by the end of the simulation
(ωptstop ≈ 1.8 · 106).
It is interesting to compare the measured growth rate for the 1st-linear
phase with the theoretical expectation (as done by Del Zanna et al., 2016,

1Note that, albeit the employment of 5th-order accurate reconstruction, the computations remain
2nd-order accurate.
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Figure 4.5: Spatially-averaged transverse component of magnetic field over time for dif-
ferent values of S̄ at different resolutions. The HLLD scheme with WENO-Z reconstruc-
tion has been used. The vertical dashed lines mark the temporal range of the 1st-linear
phase during which convergence is reached.

see Section 2.4.2). Figure 4.6 shows the growth rate obtained from Equa-
tion (2.54) compared with that obtained from the simulations (Equation
4.1) for different values of S = LS̄/a with S̄ = 103, 104, 105. It is clear that
γTMτA approaches the asymptotic value γmaxτA as S increases. In fact, for
S̄ = 105, γTMτA ≈ 0.149 and γmaxτA ≈ 0.152 are obtained.

4.2 Test particle acceleration

The attention is now turned to the impact of the numerical method and
resistivity on the dynamics and energetics of test-particles which evolve
concurrently with the fluid.
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Figure 4.6: Comparison between the theoretical growth rate obtained from Eq. (2.54),
in red, and that obtained from the simulations, in black, for different values of S.

4.2.1 Particle acceleration and energetics

The upper panel of Figure 4.7 shows the kinetic energy history of the most
energetic particle, that is Ekin = u2

p/(γ + 1). Notice that, as C = 104,
particles remain non-relativistic for the entire evolution (γ ∼ 1). A sharp
increase is first observed for ωpt & 3.6 · 105 when the particle enters one
of the small magnetic islands after crossing an X-point (panel a), where
a strong electric field boosts the particle velocity. Secondary acceleration
events occur and continue concurrently with the process of repeated island
merging (panel b) until the merger (panel c) with a large final plasmoid,
within the most energetic particles remain trapped (panel d). Island merg-
ers can lead to an extra particle energy boost, due to the anti-reconnection
electric field at the secondary current sheet that forms perpendicular to
the main one, at the interface between both islands (see, e.g., Oka et al.,
2010; Sironi and Spitkovsky, 2014; Nalewajko et al., 2015; Cerutti, 2019).
Once the particle enters the larger magnetic island, it undergoes a sharp
acceleration inside the magnetized ring around the plasmoid center within
which it is trapped. The particle increases its kinetic energy through the
first-order Fermi process since the hosting plasmoid compresses while it
merges with smaller islands while accreting particles and magnetic flux
(see, e.g., Drake et al., 2010; Kowal et al., 2011; Guo et al., 2014; de Gou-
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veia Dal Pino and Kowal, 2015; Guo et al., 2015; Petropoulou and Sironi,
2018; Hakobyan et al., 2021). When major mergers no longer occur and the
plasmoid stabilizes, the particle energy remains approximately constant in
time. Note that other energetic particles are also subject to the same ac-
celeration mechanisms. As an illustrative example, Figure 4.8 shows a map
of the magnetic field module (normalized to its maximum value), together
with the position of the most energetic particles at the end of the simu-
lation overplotted. As also found by Petropoulou and Sironi (2018), this
figure indeed highlights that particles dominating the high-energy spectral
cut-off reside in a strongly magnetized ring around the plasmoid core.

The upper panel of Figure 4.9 shows the temporal evolution of the particles
energy distribution. For convenience, the energy range is broken into three
portions identified with the low-energy end (10−3 . Ekin . 10−1), the
power-law section dN/dEkin ∝ E−pkin with slope p ≈ 1.7 (10−1 . Ekin . 102)
and the high-energy cut-off (102 . Ekin . 104). The spectrum reaches an
almost asymptotic shape during the saturation phase when ωpt & 4.4 · 105

(t/τ̄A & 1760, see bottom left-hand panel of Figure 4.3). Note that all
spectra shown in this thesis are normalized to the total number of particles,
which varies with the grid resolution. The middle and lower panels of
Figure 4.9 show the particles spatial distribution at ωpt ≈ 4 · 105 and
ωpt ≈ 6 · 105 coloured by the chosen energy ranges. The low-energy end
of the spectra (i.e., the blue region) is determined by most of the particles
in the domain which do not experience significant acceleration. These
particles are predominantly found in the regions outside the plasmoids
with spatial and velocity distributions remaining close to the initial values.
Particles populating the power-law component of the spectrum (i.e., the
orange region), on the contrary, are found in the proximity of the current
sheet or settle in the outermost rings of the magnetic islands. Their number
increases in time as the acceleration mechanism produces more energetic
particles. Particles with the highest energy approximately (i.e., the red
region), are settled inside the current sheet as reconnection begins and
then gradually fill the central regions of the plasmoids as they form and
merge with each other. At the end of the computation (see bottom panel),
approximately ∼ 51 per cent of particles fill the low-energy domain, ∼ 47
per cent of particles populate the power-law section of the spectrum while
∼ 2 per cent is represented by high-energy particles.

69



4. The impact of the numerical method

Figure 4.7: Top panel: Evolution over time of the kinetic energy of the most energetic
particle, where the points represent the four instants of time corresponding to the plots
in the lower panels. Middle and bottom panels: Overplot of the position of the most
energetic particle, colored according to its Lorentz γ-factor, on the plasma density (col-
orbar) snapshots in four main moments of its evolution, obtained with a grid resolution
Nx = 3072 and S̄ = 104.
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Figure 4.8: Position of the most energetic particles on the snapshot of the magnetic field
module, normalized to its maximum value, at the end of the simulation obtained with a
grid resolution Nx = 3072 and S̄ = 104.

4.2.2 Dependence on grid resolution and numerical method

The impact of grid resolution and physical resistivity on the particle energy
distribution is now assessed.
A comparison between particles energy spectra at the end of the simulation
(ωpt ≈ 6 · 105) at different resolutions is shown in Figure 4.10, in the
resistive (S̄ = 104; left-hand panels) and ideal (S̄ =∞; right-hand panels)
simulation cases, for the most and least diffusive numerical schemes, HLL
(lower panels) and HLLD (upper panels), respectively. Table 4.2 shows the
corresponding spectral index p of the power-law part of the spectrum.
In the presence of a physical resistivity (see left-hand panels), the spectrum
remains almost unchanged once Nx & 768 (a/∆x ' 10), and it quickly
converges to a power-law with index 1.7 . p . 1.8 for both numerical
methods, as shown in the first two columns of Table 4.2. This indicates
that once the tearing instability is triggered and the reconnection cascade
commences, the acceleration properties are virtually independent of the
numerical resolution and numerical diffusion.
However, if an ideal plasma is considered (see right-hand panels), the re-
sults differ depending on the chosen numerical method. For the HLLD
scheme, which has the least dissipation, the tearing instability is gradually
quenched (as already discussed in Section 4.1.2) as the resolution increases
and no significant particle acceleration takes place so that the particle
energy distribution remains close to the initial Maxwellian (see top right
panel of Figure 4.10). Conversely, the presence of a larger numerical diffu-
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Figure 4.9: Top panel: temporal (colorbar) evolution of particles energy spectrum and
the p-index of the power law to which it converges (red dashed line). Middle and bottom
panel: Spatial distribution of the particles, colored according to their energy (colorbar),
at two different instants of time. The energy ranges of the colorbar correspond to the
three different parts of the spectra shown in the top panel. The graphs are obtained with
a grid resolution Nx = 3072 and with S̄ = 104.
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Figure 4.10: Comparison of particle energy spectra at the end of the simulation (ωpt =
6 ·105) for different grid resolutions in the case of a resistive with S̄ = 104 (left panels) and
an ideal (right panels) plasma. The HLLD (+ UCT-HLLD) scheme is used in the upper
panels, with the HLL (+ UCT-HLL) one being used in the lower panels. The dashed
gray lines represent the power law to which the spectra converge, with the corresponding
p-index. In all the cases the WENO-Z reconstruction has been used.

sion in the HLL scheme, triggers magnetic reconnection even in the ideal
limit, thus spawning a spectral distribution with power-law index p ≈ 2.0
(see the last column of Table 4.2). In this case, fluid convergence (in the
sense discussed in Section 4.1.2) could not be achieved (see Figure 4.3)
While the spectral index obtained in the ideal case is not significantly
different from the resistive case, our results indicate that the outcome of
ideal MHD computations should be interpreted with some caution as the
mechanisms triggering resistive instabilities may be driven in a rather un-
predictable way by numerical diffusion rather than by actual physical ef-
fects. This conclusion may differ if we consider the case of fast reconnection
driven by turbulence.
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Table 4.2: p-index of the power-law part of the spectra (referring to Fig. 4.10) at different
resolutions for different combinations of schemes in the case of resistive (S̄ = 104) and
ideal (S̄ = ∞) plasma. The ideal HLLD+UCT-HLLD case is not shown as magnetic
reconnection does not start.

Power-law index p
Resolution a/∆x HLLD HLL HLL

(S̄ = 104) (S̄ = 104) (S̄ =∞)
192 × 96 ∼ 2.5 1.5 1.3 1.5
384 × 192 ∼ 5 1.6 1.7 2.2
768 × 384 ∼ 10 1.7 1.8 2.4
1536 × 768 ∼ 20 1.7 1.8 2.2
3072 × 1536 ∼ 40 1.7 1.8 2.0

4.2.3 Spectral distribution versus Lundquist number

The resolution study is repeated by varying the value of the redefined
Lundquist number S̄. Figure 4.11 shows a comparison between the particle
energy spectra during the saturation phase, for different values of S̄ and
grid resolutions. As shown in Figure 4.5, the beginning of the saturation
phase is delayed as S̄ increases, for this reason the spectra shown in Figure
4.11 correspond to different computational times. Also, for higher value of
the Lundquist number (S̄ = 105) the results from low-resolution simulation
(Nx = 192, i.e., a/∆x ' 2.5) are omitted, since, as mentioned in Section
4.1.3, magnetic reconnection at that time has just started.
From Figure 4.11 it appears that the power-law index weakly depends on
the Lundquist number and it converges to a value 1.5 . p . 1.7 again for
grid resolutions at around Nx & 768 (a/∆x ' 10). A quantitative measure
of the p-index is provided, for different values of S̄, in Table 4.3 at the
largest grid resolution (Nx = 3072, i.e., a/∆x ' 40). Note that it remains
substantially the same for S̄ & 104 (or S & 8 · 105), that is a result that
may be connected to the onset of the fast reconnection regime (see Landi
et al., 2015).
These results lead to the conclusion that, once magnetic reconnection has
started, the amount of resistivity, either of numerical or physical origin, has
a weak (or almost negligible) impact on the particle energization process.
These findings favorably compare to previous works using test-particles
in MHD snapshots, in particular with Gordovskyy et al. (2010a,b), who
found a power-law index p ≈ 1.5− 3.0 at the end of reconnection (i.e., the
O-point stage). In addition, PIC simulations of merging plasmoids reveal
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Figure 4.11: Comparison of particle energy spectra in the saturation phase at different
S̄ for several grid resolutions, obtained using the HLLD+UCT-HLLD with the WENO-Z
scheme.

a spectral index compatible with these results, that is p ≈ 1.5 (see, for
instance, Drake et al., 2010, 2013; de Gouveia Dal Pino and Kowal, 2015).
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Table 4.3: p-index of the power-law part of the spectra (referring to Fig. 4.11) at at the
highest grid resolution (Nx = 3072) for different values of S̄.

Power-law index p
Resolution a/∆x S̄ = 103 S̄ = 104 S̄ = 105 S̄ =∞
3072 × 1536 ∼ 40 1.5 1.7 1.7 -
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The importance of the resistive

electric field

This chapter is based on the paper published on the Monthly Notices of the
Royal Astronomical Society by Eleonora Puzzoni, Andrea Mignone, and
Gianluigi Bodo, titled: The impact of resistive electric fields on particle
acceleration in reconnection layers (Puzzoni et al., 2022). The author of
this thesis carried out all the simulations, created all the figures, and mostly
discussed and interpreted the data presented in this chapter.
This chapter is intended to be part of the ongoing debate on the importance
of the resistive term of the electric field compared to the convective one in
the context of particle acceleration in high-energy astrophysical environ-
ments featuring magnetic reconnection. Indeed, this chapter investigates
whether the resistive field plays a role in accelerating particles to high
energies.

5.1 2D Histogram analysis

A detailed analysis of the resistive contribution is provided by the his-
tograms in Figure 5.1 at the Nx = 1536, 3072, and 6144 grid zones for the
S̄ = 104 case. The 2D histograms show the percentage of energy gained by
particles due to the resistive electric field at the end of the computational
time (ωpt = 7.8 ·105), as a function of their final kinetic energy. Notice that
a steady state (i.e, the saturation phase) is reached at this time. The colors
indicate the fraction of particles (fpart) in each energy bin, normalized to
the total number of particles in that bin (Npart), in turn, reported in the
corresponding uppermost panels.
As an illustrative example, it is worth looking at the first gray pixel in the
first energy bin (lower left corner of the figure) of the upper right-handed
2D histogram of Figure 5.1. 50% of particles in this energy bin (Npart ≈
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105, from the corresponding upper panel) is energized between 0 − 5%
by the resistive field. The corresponding 2D histogram for the convective
contribution would be mirrored with respect to the x-axis. Therefore, 50%
of particles in the example bin are energized between 95 − 100% by the
convective electric field.
By looking at Figure 5.1, the 2D histograms at different grid resolutions
show a similar shape. The resistive electric field has a small contribution
(Wr . 30%) at low energies (Ekin . 10 v2

A). On the contrary, it has a
non-negligible contribution at intermediate energies (10 . Ekin/v

2
A . 103).

Indeed, up to about 30% of particles are energized up to 100% by the
resistive field (see the purple, blue and green pixels). At high energies
(Ekin & 103 v2

A), the resistive contribution slightly decreases with the grid
resolution, but still leaves the corresponding energy gain significant. In-
deed, even in the high-resolution case (see lower panel), for about 40% of
the particles in the last energy bin, the resistive contribution accounts for
40 − 45% of their energy gain (see orange pixel). A smaller percentage
of particles (. 10%) are accelerated up to 100% by the resistive field (see
purple pixels in the upper right corner). At lower resolution (see upper left-
hand panel), owing to increased numerical diffusion, the amount of work
exerted by the resistive electric field is somewhat larger at high-energies
(Wr & 50%, purple, blue, and green pixels).
Our simulation results indicate that the contribution of the resistive elec-
tric field converges with grid resolution at intermediate energies (10 .
Ekin/v

2
A . 103). At high energies (Ekin & 103 v2

A), however, convergence
assessment is somewhat more uncertain, as the contribution of the resistive
field appears to decrease as resolution increases. Further details on plasma
convergence are presented in Appendix B, where we conclude that it was
not possible - with the current computational resources - to resolve the
typical critical current sheet (i.e., the smallest current layer found in the
system; see Uzdensky et al., 2010). Nevertheless, the resistive contribution
is non-negligible at all resolutions. Indeed, in the following sections, we will
assess its fundamental importance in the particle acceleration mechanism.

5.2 Resistive field role on high-energy particles

Figure 5.2 shows the 1D histograms of the particles kinetic energy at the
end of the computational time (ωpt = 7.8 ·105) for S̄ = 104 at different grid
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Figure 5.1: 2D histograms of the energy gained (%) due to the resistive electric field by
particles as functions of their final kinetic energy. The colorbar represents the fraction of
particles in each energy bin. The total number of particles in each bin is shown in the
corresponding upper panels. These histograms are reproduced at the Nx = 1536 (upper
left panel), Nx = 3072 (upper right panel) and Nx = 6144 (lower panel) grid resolutions,
with S̄ = 104. 79
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Figure 5.2: Histograms of the particles kinetic energy at the end of the computational
time for S̄ = 104 at different grid resolutions, obtained with (black bars) and without
(red bars) the resistive term in the particle equations of motion. The dashed red lines
represent the power-law part of the spectra, with the corresponding p-index.
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resolutions (Nx = 1536, 3072, 6144). The black and red bars are obtained,
respectively, by including or excluding the resistive term in the particle
equations of motion. Following the work of Sironi (2022), we have de-
cided to remove all the particles that are initially found within the current
sheet (|y0/a| < 1) as they have peculiar behavior depending on the initial
conditions. Moreover, we removed the particles initially farthest from the
current sheet (|y0/a| > 16), as they will never reach it within the final
simulation time. This avoids a box size effect or a statistic bias. A direct
comparison between the two cases clearly indicates that, when the resis-
tive contribution is neglected, the particle spectra are somewhat steeper,
characterized by a power-law with index p ≈ 1.8 at the largest resolutions
(Nx = 3072, 6144), and the maximum kinetic energy achieved by the par-
ticles is lower. This discrepancy occurs at all resolutions considered here.
For instance, in the Nx = 3072 case, the maximum kinetic energy achieved
by particles by considering the resistive term is Ekin ≈ 1.3 · 104 v2

A, versus
the maximum kinetic energy Ekin ≈ 1.4 · 103 v2

A achieved without includ-
ing this term. Similarly, in the Nx = 6144 case, the maximum kinetic
energy reached by particles is lower when the resistive term is neglected
(Ekin ≈ 4.2 ·103 v2

A versus Ekin ≈ 1.6 ·104 v2
A). This confirms, as also argued

by Sironi (2022), that the resistive electric field contribution is fundamental
in building the high-energy tail. As we shall see shortly, this effect takes
place in the early stages of the acceleration process.
To this end, we now focus on the resistive contribution in accelerating
particles over time and consider only those particles that at the end of the
computational time achieved a kinetic energy Ekin > Ethr. We set three
different energy threshold: Ethr/v

2
A = 103, 5·103, 104. For these particles we

calculated the fraction of energy gained due to the resistive contribution,
namely ∑

pWr,p/Wtot, where Wtot = ∑
pWr,p + ∑

pWc,p is the total energy
gained by these particles (i.e., also due to the convective contribution).
Figure 5.3 shows the fractional energy gain of selected particles due to
the action of the resistive field as a function of time, for different energy
thresholds and for S̄ = 104 with a grid resolution Nx = 3072 (left panel)
and Nx = 6144 (right panel). By looking at this figure, it is clear that the
resistive contribution is dominant in accelerating particles at 3.6 · 105 .
ωpt . 4.4 · 105 for all the kinetic energy thresholds. Subsequently, the
resistive contribution gradually decreases. In the Nx = 6144 case (see
right panel), the resistive contribution towards the end of computational
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Figure 5.3: Left panel: Resistive contribution over time on particles that at the end of
the computational time reach a kinetic energy of 103 v2

A (green line), 5 · 103 v2
A (magenta

line), and 104 v2
A (blue line) for the S̄ = 104 case with a grid resolution Nx = 3072. Right

panel: Same but for Nx = 6144.

time is lower (see Ekin > 5 · 103 v2
A and Ekin > 104 v2

A). This result is in
agreement with the decline at high-energies observed in the lower panel
of Figure 5.1. Accordingly, if the resistive contribution is removed from
the particle equations of motion, particles cannot achieve the same high
energies.

5.3 Relation between particle energization and cur-
rent sheet evolution

Figure 5.4 shows the fluid pressure colored maps at four specific times.
These instants are marked with red points in corresponding lower panels,
where we show the resistive field contribution for the particles with final
kinetic energies above Ethr = 103 v2

A. By looking at the upper left panels
(ωpt = 3.4 ·105), it is clear that the current sheet has reached the 2nd-linear
phase. At subsequent times (ωpt = 3.6 ·105, for instance), the current sheet
fragments in X- and O-points (see upper right panel). This fragmentation
phase corresponds to a net increase of the resistive electric field contribution
in the particle acceleration mechanism (see corresponding lower panel).
The increase of the resistive contribution during the fragmentation phase
may be explained by the formation of X-points, in which the resistive
electric field is strong. During the fragmentation phase, plasmoids merge
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Figure 5.4: Resistive field contribution on the most energetic particles (Ekin > 103 v2
A)

over time, obtained with S̄ = 104 and a grid resolution Nx = 3072. This plot is repeated
four times being marked with red points, that characterized four evolutionary phases of
the current sheet, whose pressure is shown in the corresponding upper panels. 83
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with each other and during this merging process the resistive contribution
remains strong, reaching a peak at ωpt = 4.0 · 105 (see lower left panels).
Indeed, when two plasmoids merge, a secondary current sheet forms at the
interface between the two (see, e.g., Oka et al., 2010; Sironi and Spitkovsky,
2014; Nalewajko et al., 2015). Plasmoids merge until a large final magnetic
island is formed. When major mergers no longer occur and the final giant
plasmoid stabilizes (i.e, the saturation phase is reached), the resistive field
contribution begins to smoothly decrease (see lower right panels). Indeed,
towards the end of the computational time, the resistive contribution seems
to approach a saturation value.
Therefore, high-energy particles are accelerated by the resistive electric
field when they cross an X-point (and are shortly after injected into a
plasmoid, see, e.g., Zenitani and Hoshino, 2001; Bessho and Bhattachar-
jee, 2007; Lyubarsky and Liverts, 2008; Sironi and Spitkovsky, 2014; Ball
et al., 2019) and during islands merging. When particles are finally trapped
inside a plasmoid that no longer merges with other islands, the resistive
contribution decreases, leaving room for the more gradual action of the con-
vective electric field. These results are in agreement with those of Sironi
(2022), who demonstrated that high-energy particles must have crossed
non-ideal regions during the early stages (called “injection” by the author)
of their acceleration process. On the contrary, our results are in contrast
with those of Guo et al. (2019), who claim that the non-ideal field can
be neglected in the particle acceleration mechanism, as the Fermi mecha-
nism is the dominant one. Similarly, our results are different from those of
Kowal et al. (2011, 2012) (see also de Gouveia Dal Pino and Kowal, 2015;
del Valle et al., 2016; Medina-Torrejón et al., 2021), who argue that the
resistive contribution is completely negligible in the particle acceleration
mechanism.
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6
Conclusions and outlooks

In this thesis, we investigated particle acceleration in magnetized current
sheets with a particular emphasis on the impact of the numerical and phys-
ical resistivity on magnetic reconnection and particle acceleration mecha-
nisms. To this end, we have presented high-resolution 2D numerical sim-
ulations of tearing-unstable MHD current sheet embedding a non-thermal
population of test particles evolving along with the fluid. Computations
have been performed using the PLUTO code for computational plasma
astrophysics.
In this chapter, the major results presented in the previous chapters of this
thesis are summarized. Moreover, possible future developments are briefly
discussed.

6.1 Summary

In Chapter 4, we have investigated the impact of the numerical method,
grid resolution, and physical resistivity on both the current sheet evolution
and its convergence properties as well as on the spectral properties of non-
thermal test-particles evolving within the background thermal plasma.
We initially focused only on the fluid evolution, identifying four main tem-
poral phases characterized by a growing number of newly forming X-points.
After an initial 1st-linear phase characterized by a shrinking of the initial
current sheet (t/τ̄A . 840, where τ̄A = a/vA = 250/ωp), a 2nd-linear phase
(ending at t/τ̄A ≈ 1360) marks the evolution of smaller current sheets,
resulting from the breaking of the initial one. Subsequently, a more rapid
fragmentation phase leads to the appearance of several X- and O-points
feeding the formation of dynamically interacting plasmoids (t/τ̄A . 1840).
In the end, a final non-linear saturated phase is accompanied by the pres-
ence of a single large magnetic island.
Several simulations using different numerical methods and mesh resolu-
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tions have demonstrated that convergence during the initial linear stages
of the evolution can be achieved only for finite values of the Lundquist
number S̄ = avA/η, where a, vA, and η are, respectively, the initial current
sheet width, Alfvén velocity, and physical resistivity. The minimum resolu-
tion at which convergence is attained depends on the amount of numerical
diffusion inherited from the underlying discretization method. Below this
resolution, the linear growth phase is dominated by spurious numerical ef-
fects, which, as a general trend, are likely to delay the onset of the tearing
instability as the resolution becomes coarser. In this respect, we have found
that the combination of the HLLD Riemann solver and the UCT-HLLD
emf averaging scheme of Mignone and Del Zanna (2021), together with
5th-order WENO-Z reconstruction, yields the best performance achieving
convergence already at a/∆x ' 10 when S̄ = 104. This is about half
the grid resolution when compared to either linear reconstruction or more
diffusive numerical methods based on more approximate Riemann solvers
(e.g., HLL; see Del Zanna et al., 2007, and reference therein) or 2nd-order
emf averaging schemes (e.g., CT-Contact; see Gardiner and Stone, 2005)
for which convergence is ensured when a/∆x & 20.
For larger (smaller) values of the Lundquist number, the mesh size has
to be increased (decreased) at the point where numerical diffusion falls
below the physical one. For a globally 2nd-order accurate scheme, we have
shown that this is expected to hold if the number of computational zones
covering the initial current sheet width scales approximately as a/∆x ∼
10
√
S̄/104. We also have verified that the linear growth rate matches the

theoretical prediction for asymptotically large S̄. Conversely, in the ideal
case (S̄ =∞), we have observed that the discretization scheme introduces
a grid-dependent numerical resistivity that still allows the current sheet to
reconnect, although convergence can never be actually achieved. This is
easily explained by the fact that a change in grid resolution is tantamount
to a different problem with another value of the (spurious) resistivity. Only
with the employment of the HLLD + UCT-HLLD scheme, the system
remains stable as one would expect for an ideal current sheet. Based on
these results, we have picked the HLLD scheme (with 5th-order WENO-Z
spatial reconstruction) as our optimal numerical method. This suggests
that genuinely higher than 2nd-order schemes may be more suited for this
kind of problems.
In the second part of Chapter 4, we focused on the effect of the numerical
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method and resistivity on particle acceleration and energization. Several
computations at different grid resolutions indicate that the particle energy
distribution remains almost unchanged for a/∆x & 10 and it quickly con-
verges to a power-law with index p ≈ 1.7, when S̄ ≥ 104. Different values
of the Lundquist number, in fact, appear to have a weak influence on the
power-law index, once the fast reconnection regime (S̄ ≥ 104) has been
reached. These results do not generally depend on the integration method
or its numerical diffusion but seem to have a general validity inasmuch as
the magnetic reconnection process is operating. Indeed, we have found
that this holds even for ideal MHD (S̄ = ∞, albeit with a different spec-
tral index) for which the island formation process, when present, could be
triggered solely by numerical resistivity. This has been clearly observed in
the presence of a more dissipative scheme such as the HLL Riemann solver
(for which p ≈ 2), but it does not appear with the more accurate HLLD
Riemann solver/emf averaging combination.
Our conclusion is that, in the context of reconnection-driven test-particle
acceleration, there is no need to reach very high grid resolutions and that
the amount of resistivity, beyond a certain threshold (i.e., S̄ ≥ 104), has a
very weak or almost negligible impact on the particle energization process.
It must be emphasized that in this chapter we have investigated conver-
gence by concentrating on the particle spectra.
More subtle aspects, not captured by the convergence in the spectrum,
have been addressed in Chapter 5, where we shift our focus on the conver-
gence properties of the resistive field, by investigating its behaviour in the
process of particle acceleration in a reconnecting 2D Harris current sheet
at different grid resolutions.
Our results indicate clear convergence at intermediate energies
(10 . Ekin/v

2
A . 103), while at high energies (Ekin & 103 v2

A) convergence
achievement is not clear-cut. However, even if the contribution of the
resistive field slightly decreases with grid resolution (at high energies), a
more detailed analysis reveals that its omission from the particle equations
of motion leads to lower (within a factor of 10) maximum energies and
steeper cuts (p ≈ 1.8 at the largest resolutions) in the particle energy
spectra. This behavior remains essentially unaffected by grid resolution.
We found that the resistive contribution is strongest as the current sheet
starts to fragment and plasmoids start to merge. During this phase, in
fact, the resistive contribution sharply increases as a large number of X-
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points is created (where the resistive electric field is predominant). The
presence of X-points is indeed essential in producing abrupt acceleration
of particles at this stage (see, e.g., Zenitani and Hoshino, 2001; Bessho and
Bhattacharjee, 2007; Lyubarsky and Liverts, 2008; Sironi and Spitkovsky,
2014; Nalewajko et al., 2015; Ball et al., 2019). Moreover, particle energy
is boosted also during plasmoids merging, due to the anti-reconnection
electric field therein (see, e.g., Oka et al., 2010; Sironi and Spitkovsky,
2014; Nalewajko et al., 2015).
Our results lead us to conclude that not only the resistive field is non-
negligible (in agreement with the works, for example, of Onofri et al., 2006;
Zhou et al., 2016; Ball et al., 2019; Sironi, 2022), but it plays a fundamen-
tal role in accelerating high-energy particles. In particular, our results
favorably agree with Sironi (2022), who argues that the non-ideal field is
crucial in the early-stages of particle acceleration. On the other hand, our
outcomes disagree with those of Kowal et al. (2011, 2012), de Gouveia Dal
Pino and Kowal (2015), del Valle et al. (2016) and Medina-Torrejón et al.
(2021), who neglect the resistive electric field in the particle equations of
motion as they do not consider it important in the acceleration process.
Similarly, our results also differ from those of Guo et al. (2019), who argue
that the Fermi mechanism is dominant and the non-ideal field can be ne-
glected in the particle acceleration process during large-scale reconnection
events, as it is unimportant for the formation of the power-law distribution.

6.2 Outlooks

In addition to the results discussed in this thesis, there are still several
numerical and physical aspects that need further investigation.

• First of all, it is essential to extend this work to the relativistic (fluid)
case (RMHD), as relativistic outflows appear in GRBs and AGNs.
Moreover, a more precise comparison could be made with the works
on particle acceleration by magnetic reconnection, which considers
relativistic fluids (see, e.g. Sironi and Spitkovsky, 2014; Guo et al.,
2015; Ripperda et al., 2019a).

• At the same time, the impact of the guide field (null in this thesis
work) should be considered, as it is still a matter of debate (see, e.g.,
Drake et al., 2010; Kowal et al., 2011).

• In many works particles are evolved on a static background magnetic
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configuration (i.e, a fluid snapshot; see, e.g., Gordovskyy et al., 2010a;
Kowal et al., 2011; de Gouveia Dal Pino and Kowal, 2015; Ripperda
et al., 2017a). Analyzing this case would allow us to understand if
the contemporary evolution of the current sheet really affects particle
energization.

• The extension to the 3D case would enable us to perform more consis-
tent and realistic simulations. However, achieving convergence re-
quires a high computational cost. Indeed, we explained that the
Nx = 6144 case included about 80 points on the initial width of our
two-dimensional current sheet. In 3D, the number of points would
be enormous. Nevertheless, there are advanced numerical techniques,
such as adaptive mesh refinement (AMR; see Mignone et al., 2012a) or
the guiding center approximation (GCA; see, Ripperda et al., 2018;
Mignone et al., 2022), which can be used to reduce computational
time.

• As mentioned earlier, future studies will probably take advantage of
genuine fourth-order schemes, as well as address the issue of longer
simulations and different choices of boundary conditions. Indeed, we
have a kind of “artificial” state introduced by periodic boundary con-
ditions. During the non-linear phase, plasmoids merge creating a large
final plasmoid, as the process dynamically goes from small scales to
large scales. However, when the largest plasmoid is created, the limit
imposed by the periodic boundary conditions is reached: there is only
one big final plasmoid and then the smallest ones that end up in it.
This may not occur when different boundary conditions are consid-
ered.
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A
X-points number algorithm

The algorithm employed to locate X-points from the simulation results is
illustrated.
Since, at an X-point, the magnetic field |B| vanishes (and so do the Bx

and By components), we first identify computational zones hosting a local
minimum of |B| over a stencil of 3× 3 zones. These zones, therefore, may
potentially contain a null point. Let (i, j) be the indices of a zone hosting
a local minimum of |B|. A bilinear interpolation is used to represent the
Bx and By components of magnetic field inside a square delimited by the
four corner points (xi±1, yj±1):

H(x̂, ŷ) =Hi−1,j−1(1− x̂)(1− ŷ) +Hi+1,j−1x̂(1− ŷ)+
+Hi−1,j+1(1− x̂)ŷ +Hi+1,j+1x̂ŷ,

(A.1)

where H(x̂, ŷ) denotes either the x- or y-component of B while x̂ and ŷ are
normalized coordinates in [0, 1].
Then is required that both Bx(x, y) and By(x, y) have a root:Bx(x̂, ŷ) = a0 + a1x̂+ a2ŷ + a3x̂ŷ = 0,

By(x̂, ŷ) = b0 + b1x̂+ b2ŷ + b3x̂ŷ = 0,
(A.2)

where the coefficients a0, a1, ..., b3 are readily found from Equation (A.1).
Equation (A.2) leads to a quadratic equation whose solutions are consid-
ered null points only if they fall inside the unit square.
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B
Plasma convergence study

Here we focus on the plasma convergence study, following the methodol-
ogy adopted in Chapter 4 (see Fig. 4.2). Figure B.1 shows the temporal
evolution of the spatially-averaged transverse component of the magnetic
field at different grid resolutions (left panel) and the corresponding num-
ber of X-points formed (right panel). The number of X-points is obtained
through the algorithm based on locating the null points of |B| discussed in
Appendix A.
Although the growth of the perturbation shown in the left panel seems to
indicate convergence at Nx = 3072 even in the non-linear phase, we cannot
conclude the same by looking at the right panel. Indeed, the number
of X-points increases with the grid resolution. This leads us to conclude
that, during the fragmentation phase, very thin current sheets are created,
which are not completely resolved even at these high resolutions. However,
as emphasized in Chapter 5, there are strong indications that our results
are valid even if we have not achieved complete convergence.
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Figure B.1: Left panel: Spatially-averaged transverse component of magnetic field as a
function of time at different grid resolutions. Right panel: Number of X-points formed
over time at the same grid resolutions.
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