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Abstract

Drawing benefits from data has become a widespread priority for industry and
science. The discoveries of novel methods, technologies, and algorithms offer pos-
sibilities to derive value from data, so much to portray a third industrial revolu-
tion. From a scientific perspective, data-driven technologies suggest opportunities
to move on in the knowledge of the natural world. Therefore, the brand new Data
Science subject has emerged as a prominent player in the modern era. Among the
other data-driven innovations, Machine Learning (ML) is one of the most disrup-
tive and impactful methodologies to extract value from data. This work focuses
on Supervised ML, aimed at computing predictions by approximating a function
of interest. Inside the Supervised class, Deep Learning (DL) has significantly en-
riched the application potential of data-driven methods. Nonetheless, the usage
of ML in critical domains, like healthcare, social media, industrial production, or
automotive, has raised concerns about new emerging risks. Hence, researchers
have oriented on improving the understanding of ML methods, especially the DL
class. Explainable Artificial Intelligence (XAI) is a framework suggesting methods
to overcome the faced obstacles. In practice, it aims at designing techniques able
to give insights into ML predictions. XAI has reached considerable capabilities to
infer the important variables for an ML prediction. A recent breakthrough in XAI
is an algorithmic class based on the solution concept of cooperative game theory
called Shapley value.

From a scientific perspective, ML methods are ideal companions for theory-
guided science. Indeed, scientific disciplines seek relationships among quantities of
a studied phenomenon. Instead, ML models learn statistical linkages between vari-
ables using adaptive algorithms that process observational data. Theory-Guided
Data Science (TGDS) is a paradigm oriented at improving Data Science gener-
alization capabilities and deepening the scientific knowledge through data-driven
models. Two interactions arise, with opposite orientations, to integrate the better
from theory-guided and data-driven methods. The first consists of learning a data
science model and using its explanations to interpret the learned patterns. Thus, it
helps the researcher to build hypotheses, to simplify assumptions, or to obtain an
insightful perspective on the studied phenomenon. The second interaction consists
of informing data science models with theoretical understanding. Indeed, a data-
driven model is commonly blind to known connections. The insertion of knowledge
enhances the learning capabilities, it supports dropping biased models, and it cleans
the algorithmic design.

After an extended introduction and a review of XAI motivations and methods,
this work provides examples of the two mentioned interactions. The second chapter
employs XAI to improve a numerical model simulating a physical phenomenon. In



particular, it shows how to augment theory-guided modeling by leveraging expla-
nations of ML model predictions. The third chapter illustrates a new graph neural
network architecture that can leverage the known structure of the input variables.
The presented experiments show the advantages of the architecture compared with
baselines on examples of graph regression task. The last chapter proposes a new
concept for game theory to fairly allocate worth to coalitions, inspired by the no-
table Shapley value solution concept for the fair allocation to players. The proposed
solution, named X -Shapley, is derived by extending the view provided by a recent
paper in cooperative game theory, which has shown an appealing parallel with
graph theory via the Hodge decomposition. The chapter thoroughly investigates
the properties of the X -Shapley, and it proves characterizations similar to the orig-
inal Shapley value. X -Shapley could provide significant advancement for XAI in
future research for a better understanding of ML models.
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Chapter 1

Introduction

Digital innovations have provided the modern era with plenty of data sources.
Data pervade increasingly every aspect of work and social life [160]. Managing,
sorting, and extracting benefits from data has become a widespread priority for
industry and scientific research. The discoveries of novel methods, technologies, and
algorithms offer many possibilities to derive value from data, so much to portray
a third industrial revolution. From a strictly economic point of view, the impact
of data value has become predominant, to such an extent that economists have
defined data as the new oil [187].

Among the other data-driven innovations, Machine Learning (ML) constitutes
one of the disruptive and impactful methodologies to extract value from data [99].
In particular, this work focuses on Supervised ML, a class that provides predictions
by approximating a function of interest. The approximation is built by progressively
learning the relationship between the independent and the dependent variable from
statistical samples collected about a phenomenon of interest. The generalization
capability of a trained algorithm allows inferring predictions and building informa-
tion from data. Inside the Supervised class, the development of Deep Learning (DL)
has taken the application potential of data-driven methods to a higher level [122].
On the other hand, applying such technologies to critical domains, like healthcare,
social media, industrial production, or automotive, has raised concerns about the
new risks faced by a human subject in the loop [62]. Hence, the research community
has oriented its effort toward improving the knowledge and understanding of ML
methods, especially in the DL class. The brand new Data Science (DS) subject has
emerged as a prominent player in the modern era.

Furthermore, from a scientific point of view, the development of ML technolo-
gies offers many opportunities to move on in the natural world understanding [44].
Indeed, the data-driven class represents an ideal companion for theory-guided and
experience-based science. The opportunities come together with challenges to the
practical involvement of those methods in scientific disciplines. Indeed, data are
a raw representation of an observation. They require a conversion to step up to
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1 – Introduction

the level of information or knowledge. That is, to increase the efficiency of com-
prehension and decision processes. The above argument recalls the types of the
hierarchical description of the content of human mind: Data, Information, Knowl-
edge, and Wisdom (DIKW): [3, 162]. But the more complex the data, the more
the algorithms used to process them become significantly opaque [91]. Thus, ML
algorithms usually allow climbing up in the mentioned hierarchy only from data to
information. They face restraints in escalating to knowledge, that is, the level where
scientific understanding starts to come into play. Explainable Artificial Intelligence
(XAI) is a class of algorithms providing a roadmap to overcome those obstacles. In
practice, it consists in designing a framework able to give insights into ML predic-
tions, in such a way to derive knowledge from information [62]. XAI has been the
subject of an extensive endeavor of investigations [92]. A recent breakthrough in
XAI is an algorithmic class based on the cooperative game theory solution concept
named Shapley value [170]. In particular, the parallel between Shapley value and
feature importance provides an attractive trial to reach theory-grounded guidance
for XAI [126].

In this context, there are potential intertwines between theory-guided and data-
driven methodologies for researchers. Theory-Guided Data Science (TGDS) is a
paradigm oriented to improving Data Science generalization capabilities. In ad-
dition, TGDS suggests a way to enhance the resources available to deepen the
scientific knowledge by means of data-driven predictive models [112]. Indeed, sci-
entific disciplines seek relationships among measured quantities of a specific phe-
nomenon. Theory-based models commonly represent such connections, incorporat-
ing cause-effect links between variables validated through empirical experiments or
theoretical deductions from first principles. These models are feasible for describing
well-understood phenomena according to scientific disciplines. To predict the evo-
lution of a studied process, the recipe of a theory-guided method consists of building
a numerical model, commonly named a simulator. The simulator assimilates the
equations of the phenomenon to obtain the desired outcome. Numerical models can
be computationally intensive, and it is common to simplify the principles to make
their calculations feasible. On the other hand, data science models suit for ana-
lyzing events when a set of abundant representative observations is available and
is the leading source. They are usually employed to learn statistical relationships
between variables using an adaptive algorithm that processes all the observational
data.

Two intriguing interactions between the mentioned approaches arise, with oppo-
site orientations, to integrate the better from theory-guided and data-driven models.
The first interaction consists of learning a data science model and using its expla-
nations to interpret the learned patterns. The XAI algorithmic class has reached
the considerable capability to infer the most significant variables for a model pre-
diction. The derived interpretation helps the researcher to build further hypotheses
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1 – Introduction

about stimulating relationships between variables. In addition, it can aid in simpli-
fying the numerical model, ignoring insignificant variables for the phenomenon at
hand. In particular, a suggested pipeline is the following: a data-driven ML model
takes as input the output of a theory-based model; then, the statistical analysis of
the ML model, with the help of the XAI method, allow down scaling the theory-
based model, fastening its computations and giving insights about the modeled
phenomenon. Finally, the interpretation contributes to obtaining a different per-
spective on the studied phenomenon, thus enhancing the curiosity, imagination, and
creativity that drives the scientific investigator. The second opposite interaction is
to inform data science models with the knowledge already discovered by theoretical
arguments. Indeed, a data-driven model is commonly blind to elementary scientific
connections. It struggles to provide grounded physical plausible relationships be-
cause only available data determine its view. Therefore, inserting knowledge from
the theory-guided approach boosts the capabilities of a data science model to learn
mechanistic linkages between variables. Moreover, it helps to drop the unfeasible
learning models at the source, excluding biased models and cleaning the design of
the algorithmic architecture.

This work provides examples of the two discussed orientations where theory-
guided and data science models interact. The driving motivation is to provide
perspectives on the composition of the two approaches. The following presents the
work subdivision in chapters. After a review of XAI, Chapter 2 and Chapter 3 deal
with the two recalled approaches; instead, Chapter 4 suggests an extension of the
Shapley value in cooperative game theory to allocate worth to participating coali-
tions, motivated by the possible impacts on XAI. A concluding section accompanies
each chapter.

The prologue of the thesis, in Section 1.1, presents a thorough review of the
literature about XAI, inspired by survey works about the topic [62, 91]. It retraces
the motivations for the development of this new algorithm class: from the need
for trust for critical applications of artificial intelligence to the novel opportunities
offered to developers and scientists. Furthermore, it proceeds debating the dif-
ferences between the various notions of explainability and interpretability for ML
models. Then, it defines the class of attribution methods, oriented to assigning a
relevance score to the input features processed by an ML model, comparing them
with feature selection algorithms. The discussion presents validation methods for
explanations, to ensure trust for XAI by itself. Indeed, the investigator should not
deem the explanations furnished by XAI methods as oracles.

Chapter 2 presents an example of the application of XAI for gaining insights into
a numerical model derived from theoretical knowledge about a studied phenomenon.
It is mainly based on an already published work of the author [34], together with
Stefano Berrone, Francesco Della Santa, Sandra Pieraccini, and Francesco Vac-
carino. An earlier version of the same paper have appeared before [32]. It moves
on by reviewing a particular class of XAI algorithms, named Layer-wise Relevance
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1 – Introduction

Propagation (LRP), oriented to single instance explanations. Starting from the
related literature [18, 133], it proposes a new formal point of view of the algo-
rithm class and derives a novel global LRP explanation algorithm. Finally, it
shows the experimental results over a case study numerical model. In particular,
the theory-based model of interest for the experiments is the Discrete Fracture
Network (DFN). DFNs are popular network models for performing flow simula-
tions in underground fractured media. An interesting problem in studying DFNs
is the backbone identification. A DFN backbone is a suitable subnetwork whose
characteristics approximate the ones of the original network [178]. The proposed
backbone identification methods use an Artificial Neural Network (NN) model and
an LRP algorithm. Specifically, the experiments show the properties of the global
LRP algorithm for the NN in this context and apply a possible generalizable vali-
dation method. Inspired by the promising results, the chapter discusses a general
framework for applying ML and XAI to numerical simulator models. Besides, it
suggests a refinement for the DFN test cases at hand.

The goal of Chapter 3 is to present a specific possibility of inserting knowledge
into an ML model, concretely into NN architectures. This chapter rests on a paper
of the author [33] written together with the same co-authors listed above. The
main subject of this chapter is a novel NN architecture named Graph Informed
Neural Network (GINN). The GINN architecture belongs to the class of Graph
Neural Networks, and it is conceived for regression tasks over datasets endowed
with a graph structure. GNNs apply to node classification, graph classification,
or link prediction problems. The graph regression tasks illustrated in the chapter
represent a new challenge for a GNN. The Graph Informed (GI) layer, where the
data graph adjacency matrix informs the neural connections, marks the novel ar-
chitecture. GINNs are inspired by Convolutional Neural Networks: in particular,
similarly to spatial GNN, they draw from the intuition of switching off specific con-
nections between nodes of subsequent NN layers, to improve the adaptability of the
NN to the task of interest. The chapter builds the definition of the GI layer from
a basic form, having one input feature and one output channel, to a generalized
tensor formulation. Furthermore, it discusses the GINN properties concerning the
graph data at hand. The experiments analyze GINN models and Multi-Layer Per-
ceptron (MLP) architectures, the latters assumed as a baselines for graph regression
tasks. In particular, it compares two different case studies of graph regression tasks.
The first case study is the stochastic maximum-flow problem. Deriving from the
classical maximum-flow problem [116], the chapter describes a variation where the
edge capacities are random variables. The graph regression task devises from the
stochastic version of the maximum-flow problem. The second graph regression task
is the DFN model approximation already described in Chapter 2. The experimental
comparison between the GINN and the baseline architectures shows the advantages
that the novel proposed architecture delivers for the tasks. Therefore, the proposed
GINN architecture is proven to be a significant, useful contribution to the class of
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spatial-based graph neural networks.
Chapter 4 focuses on cooperative game theory. It is motivated by the known

relationships between the Shapley value solution concept and XAI. It illustrates a
novel paradigm for allocating a transferable utility in a cooperative game to coali-
tions, and it is the result of a joint work with Francesco Vaccarino. The paradigm
builds upon and compares with the famous Shapley value, named after the Eco-
nomics Nobel Prize-winning Lloyd S. Shapley. The Shapley’s solution concept deals
with the problem of allocating the payoff gained by a coalition of rational players to
the single participants. The chapter reviews three known characterizations of the
Shapley value. The first characterization originates from the Shapley seminal work
[170], which relies on the axiomatization of the desirable fairness property that a
value allocation should satisfy. The chapter discusses the little variations of the
axiomatization from the classic literature of cooperative game theory [69, 89, 96,
148]. The second classic characterization reviewed in the chapter is a property of
the stability of the Shapley value, where the equilibrium is attained by negotiation
among players through objections and counter-objections to the candidate alloca-
tion. This characterization relies on the balanced contribution property, presented
firstly by the works of Myerson et al. [138, 136]. The presentation of this part
follows the cooperative game theory textbook of Osborne et al. [148]. The third
characterization recalled is a recent link proposed by [180] between the problem
of the allocation among players and graph theory. First, the authors look at the
marginal contribution of a player to a coalition as a discrete differential over an
oriented hypercube graph describing a cooperative game, where the graph repre-
sents the Hasse diagram of the inclusion relation between coalitions. Second, the
authors show that isolating the grand coalition entry of the vector games derived
from the combinatorial Hodge decomposition of the mentioned hypercube graph
allows attaining the Shapley value. After reviewing the classical Shapley value, the
chapter proposes a new allocation paradigm. In particular, it starts deriving a new
differential, parallel with the one of [180], on the transitive closure of the Hasse
diagram, which is a new oriented graph describing a generic cooperative game.
Then, it describes the properties of the vector games derived from the combinato-
rial Hodge decomposition of the new graph representation of the cooperative game.
Furthermore, the chapter illustrates how to compute the candidate solution concept
for coalitions analogous to the Shapley value. The simple analytic formula defines
explicitly the newly denominated X -Shapley allocation (Chi-Shapley or Coalitional
Shapley). Proceeding further, it presents two new characterizations resembling the
recalled ones for Shapley value. The first rests on the concept of the game map:
X -Shapley happens to be the unique game map satisfying a set of fairness axioms
inspired by the ones of values for players. The second extends the cited balanced
contribution property to coalitions: again, X -Shapley is the only efficient game
map with this property. Then, the chapter proves other properties of X -Shapley,
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useful for its understanding. Finally, it discusses proposals for supplementary in-
vestigations in cooperative game theory and XAI.

This following introductory Section 1.1 describes the class of XAI, to provide a
solid foundation useful for the discussion of Chapter 2 and Chapter 4.

1.1 Opening the black-box: Explainable Artifi-
cial Intelligence (XAI)

This section summarizes the main peculiarities of XAI to review the state of
the art and to summarize the main open questions. In particular, Section 1.1.1
discusses the motivation behind XAI methodologies.Second, Section 1.1.2 reviews
a subclass of XAI algorithms from the literature and compare with the ones of
feature selection. The reviewed subclass defines attribution methods: they aim
at providing explanations for predictions of Supervised ML models by assigning
a relevance score to each input feature. Finally, Section 1.1.4 discusses the need
for explanation validation, starting from recent studies from the literature. Then,
the same section proposes a new validation method whenever the data generating
distribution comes from a numerical model simulating a physical phenomenon.

1.1.1 Why Explainable Artificial Intelligence?
Machine Learning (ML) models have gained increasing attention in the last few

years due to the outstanding results obtained in many fields. Among the others,
the most significant and impactful outcomes have emerged in domains represented
by high-dimensional data, like computer vision and natural language processing.
Such results have been made possible by the increasing availability of data and the
rise of hardware performance, together with optimization algorithms that allow the
efficient training of ML models [62]. The benefits of the application of ML models
on such domains are nowadays evident in everyday life in sectors like automotive,
healthcare, finance, and social media, to name a few.

Since 2012, Deep Neural Networks (DNNs) have emerged as the most mighty
class of ML models of supervised learning on the high-dimensional data domains
listed above [120, 122]. Nonetheless, DNNs merge their prediction power with
increased model complexity. The complexity of the DNNs model class derives from
the inherent opaqueness of their abstract prediction mechanisms. Thus, DNNs
lack transparency about their inner workings and are black boxes for the user.
Similarly, Support Vector Machine models (SVMs) [144] are deemed as a black-box
family because of the abstract nature of the extracted features used for classification
or regression tasks. The highly non-linear behavior of the approximated decision
boundary or regression function is a crucial property of both DNNs and SVMs to
deem them as black boxes. Other ML model classes, like linear models or decision
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trees, have lower complexity and higher clearness of the working logic from the user’s
point of view. Notably, complex models are often not suitable and accurate for all
data generating processes, as reported and clearly explained in [163]. In particular,
this happens when the data is structured, and the observed features are valuable
for the target variable [14]. In some sense, this is common in industrial scenarios,
where the disposable features are constrained and come from very manageable
physical problems [56]. In [126], the authors observe that the best explanation of
a simple model is the model itself: it is a perfect and complete representation, it is
transparent and easy to understand. However, transparent ML model classes are
less flexible, especially in the high dimensional domains mentioned before. Indeed,
they bear an intrinsic bias, and the increased data availability becomes worthless.
Therefore, a dualism between predictive performance and transparency arises; a
careful choice of the ML model class is decisive for the practical outcome [62].

When applying DNNs to critical domains, like medicine, finance, or industry, the
complexity of DNNs raises concerns about the user’s trust towards this class of ML
models [62]. Model predictions could reflect possible systematic bias in the data.
Training an ML model on historical datasets labeled via human decisions could lead
to the discovery of endemic preconceptions [150]. The model complexity can shade
the training data distortion and thereupon impede the identification of the bias
causes. Dangerous consequences can occur, especially when dealing with sensitive
data. Some applications have already experienced controversial situations [91]. In
a social context, like the hiring process of human resources in a company, the loan
approval for banking, or the medical illness prediction, the reasons for the decision
are fundamental [125]. The user in charge of adopting a decision supported by an
automatic system should be able to give explanations about its predictions. As an
attempt to rule on the matter, European Union has defined the right to explana-
tion in the General Data Protection Regulation (GDPR) [47]. The regulation is a
step to limit and counteract possible problems appearing when applying nontrans-
parent algorithms to sensitive, crucial, and potentially life-threatening situations.
Therefore, interpretability is needed to afford trust to decision-makers dealing with
predictions in critical areas. While it is easy to express the actual training objective
function for the computation, the concept of trust is hard to formalize and quantify
for the computational task [125]. Interpretability and explainability are intermedi-
ate targets easier to tackle [62]. The horizon is to cross-check the overall system
trust according to qualitative criteria whenever a second source of prediction and
explanation is available.

The interest in interpretability and explainability surpasses the sole user’s trust.
Indeed, the complexity of DNNs makes it hard to debug and improve the prediction
model [125]. The opportunity to explain the model predictions is desirable because
it allows designers and developers to gain knowledge about prediction errors and
clues about their mistakes before the eventual deployment [125]. Therefore, they
can manage to analyze inaccurate predictions by model explanations, and finally
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1 – Introduction

provide founded hypotheses about improvement directions. In addition, they can
avoid putting in production a model having limited generalization capability.

A last usage of explanation is the possibility of learning from the ML predictive
model about the data generating process. In fact, this is particularly meaningful
when the target of the ML model development is not limited to furnishing pre-
dictions but also analyzing the natural world; in other words, to infer properties
or insights about a natural phenomenon. In general, abstracted explanations are
suitable to generate hypotheses and potentially find significant properties of the
studied data-generating processes. Indeed, the training of a Supervised ML model
could be oriented to explore the underlying data structure as the final aim. This
task is indirectly related to Unsupervised Learning [125], in the sense that the label
objective represents weak supervision.

A recent effort of the research community points out that the advancement of sci-
entific understanding could benefit from data-driven models. The paradigm of The-
ory Guided Data Science (TGDS) [112] leverages scientific knowledge to improve the
effectiveness of ML models. In addition, TGDS suggests that interpretability and
explainability can provide novel domain insights. Translating learned relationships
from data to scientific theories and hypotheses requires interpretability. Indeed, the
epistemological advancement needs proof of the physical cause-effect mechanisms
between variables. Therefore, the usage of model explanation is fundamental for
the purpose. The numerical models deriving from theoretical knowledge could be
the best companion for the data-driven models. Focusing on physical sciences, a
numerical model derives from a set of differential equations describing the studied
phenomenon, commonly called a simulator. The link between physical sciences
and ML has significantly tightened in recent years [44] TGDS proposes to employ
a hybrid approach: merging a simulator and data-driven modeling. This approach
is interesting for the new industry 4.0 revolution because the scientific knowledge
discovered in this wise carries to the digital twins used in industrial applications.

Summarizing, interpretability, and explainability are effective to (i) ensure the
user trust (ii) allow model debugging (iii) provide insights about the data generating
process [126].

1.1.2 What is Explainable Artificial Intelligence?
This section presents a tentative clarification of the concepts related to inter-

pretability and explainability. In particular, it set up on recent survey papers [61,
62, 125]. The recent literature uses different notions for explainability and inter-
pretability for ML models. Nonetheless, there is no agreement about their formal
definitions. In [125], interpretability is declared not a monolithic concept. Instead,
it figures as composed of several ideas that need disentanglement. In reality, many
papers proclaim the interpretability of analyzed ML models axiomatically without
further arguments. In [61], the authors define the verb to interpret as to explain
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or to present in understandable terms. Then, for ML models, interpretability is
the ability to explain or present in understandable terms to humans. Literature
papers use interpretability and explainability as synonyms. Yet, some papers make
distinctions [62]. In [133], the authors define the interpretation as a map of an
abstract concept into a domain humans can make sense of. For the same authors,
an explanation is the collection of features of the interpretable domain that have
contributed to produce a decision for a specified example. EU GDPR defines the
legal conception of explanations as “meaningful information about the logic of pro-
cessing” [47]. The regulation has practical implications that define requirements
in engineering and software architectures [102]. At the same time, the kind of ML
explanation methods scientists and engineers have developed might not provide
the legal conception of explanations [66]. Notably, the same methodologies come
partially in response to the constraints of the law. Therefore, the authors of [66]
suggest splitting explanations into model-centric and subject-centric. Those notions
correspond to definitions of interpretability and explainability already mentioned
by [133]. In accordance, [61] mentions the definition of interpretability as repre-
senting a global understanding of the model over all the data domain. Conversely,
explainability takes the role of local interpretability. In this sense, interpretability
comes to play when the goal is scientific understanding or bias detection. Instead,
explainability intervenes when one needs to justify a specific prediction. In this
view, it appears that the EU GDPR covers only explainability. Other terms like
comprehensibility [74] or transparency [125] are used in the literature, meaning
some sense of the understanding of the inner working logic of the model.

An extensive presentation of interpretability and explainability goes beyond the
scope of this work. However, the above discussion shows that none of the men-
tioned arguments enables a formal definition. They implicitly depend on the user’s
knowledge, preferences, and other variables in the application context. This chap-
ter assumes the definition of [61]: interpretability means a global understanding of
the model prediction on all the data domain; explainability translates into under-
standing a prediction coming from a single sample.

XAI is not exhausted by defining interpretability and explainability. There is
a need to solve the dualism between predictive performance and transparency, as
stated in Section 1.1.1. A first solution to tackle the problem is integrating trans-
parency into the model design [62]. The name for this approach is transparent box
design [91]. Two alternative schemes come at hand for this approach. The first
scheme consists of providing methods using only interpretable models by design.
This choice commonly drives to give up on predictive performance and restrict to
uncomplicated model classes. The work of [43] shows an example of this scheme:
evolutionary programming allows finding sets of simple decision rules. A second
scheme consists of using a hybrid method that combines a model belonging to a
transparent family and a model of a black-box one. The work of [189] presents an
example of this scheme: a compound of an SVM and a logistic regression model
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to accomplish a credit scoring task. The goal of transparent DNNs has driven re-
searchers to ask when it is possible to design self-explaining DNNs [11]. At the
extreme, the authors of [163] argue that integrating transparency into the model or
designing inherently interpretable models is the only way to solve the risk of practi-
cal applications of ML models. In other words, the authors suggest that the intrinsic
comprehensibility of ML models is the preferred way to achieve interpretability and
ultimately trust.

A second solution to face the dualism of performance and transparency is to
start with a trained black-box model and, in some cases, with the training data;
then to propose methods to explain the prediction of the predictor ex-post. To
this end, this class of methods is named post-hoc explanation methods [62]. Other
works name this class as reverse engineering [91]. The work of [62] advocates that
providing post-hoc explanations is a similar process to how people justify their own
decisions, that is, without fully knowing the actual functioning of their decision-
making mechanisms. The advantage of post-hoc explanation methods consists in
keeping the original prediction power of complex models, like DNNs or SVMs,
especially in high-dimensional data domains. Because of the recent hardware im-
provements and the increased data availability, the predictive performance benefits
of such complex models are significant to justify a research effort in this direction.
In practice, they endow black-box models with additional algorithms to extract
information from already learned ML models.

The survey of [91] subdivides further the category of post-hoc explanations ac-
cording to three sub-problems they aim to solve. According to the definitions of
interpretability and explainability assumed before, this work refers to the three
subproblems as model interpretation, outcome explanation, and model inspection.
(i) Model interpretation aims at understanding the global behavior of the black-
box over the data domain. (ii) Outcome explanation is related to inferring the
relationship between the features of specific sample input and its prediction in a
local sense. (iii) Model inspection aims to provide descriptions of the properties
of the model prediction process. In particular, model inspection is appropriate
when the explanation goal is to provide a model debugging instrument. Instead,
model interpretation and outcome explanation are suitable when the objective is to
infer scientific knowledge. Focusing on the outcome explanation and model inter-
pretation subproblems, a post-hoc explanation method translates to querying the
black-box with input samples generated in a controlled manner or using random
perturbations of the original train or test dataset.

The survey of [62] suggests categorizing post-hoc explanations into model-agnostic
or model-specific methods. In [91], the authors define a method as model-agnostic or
generalizable when it queries and uses the black-box only by inputting samples. In
other words, the method does not exploit the internal peculiarities of the black-box
to build the explanations. Thus, even though it is applied to explain a particular
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class of ML models, they could provide interpretations for any model kind. Exam-
ples of model-agnostic methods are KernelSHAP [126], LIME [158], Anchors [159],
RISE [151], or Shapley Sampling [182]. Instead, a model-specific method is non-
generalizable. Specifically, it suits only for the particular class of ML model it was
designed for. In other words, model-specific methods make assumptions about the
inner working of the ML model, and they leverage idiosyncrasies of the ML model
representations. Examples of model specific methods are LRP [18], DeepLift [171],
DeepSHAP [126], or DASP [12]. The model-agnostic methods are usually charac-
terized by a high computational cost, although they are preferable because of their
easy applicability to different ML model classes. The main aim of model-specific
explanation methods is to accelerate the computations of model-agnostic methods,
especially when the explanation has time constraints.

Furthermore, a post-hoc explanation method is gradient-based when it assumes
that the ML model to be explained provides a gradient for the output predic-
tion. Gradient-based methods collocate between model-specific and model agnos-
tic because they are not limited to one class of ML models, but apply to all the
models trained using their gradients. An example is represented by Integrated
Gradients [184]. The gradient-based methods need to be distinguished from the
backpropagation-based (BP-based) methods [174], linked to DNN models. Indeed,
the latter modifies the BP algorithm to propagate an importance score from the
DNN output to the input of the DNN, instead of the gradient of the loss function. So
BP methods should be deemed model-specific because they suit for DNNs. Exam-
ples of algorithms belonging to the BP class is Saliency [173, 68, 19], Input ⊙ Gradi-
ent [172], DeconvNet [193], Guided BP [177], Guided Grad-CAM [168], or Smooth-
Grad [176], in addition to the already mentioned LRP, DeepLift, DeepSHAP. In
the literature, the term “saliency map“ refers to an explanation method when im-
ages compose the data domain. So far, saliency maps regard mainly convolutional
DNNs. This name comes from the feature relevance values: they are shown as
heatmap superimposed on the original sample image to explain. Many of the men-
tioned explanation algorithms have standard implementations in open-source code
libraries [126, 7, 119].

Finally, the last solution to provide model interpretability consists of attributing
an influence score to each of the training samples of the ML model at test time.
Specifically, the idea of [117] is to ask which training sample would change the
loss value of the test set the most when up-weighted or down-weighted in the loss
computation during training.

The taxonomy of XAI presented up to now is preparatory to the discussion and
experiments presented in the following sections. The disagreement recurring in
the literature causes this section to be far from exhaustive, although based on the
recent surveys about the topic.
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1.1.3 Attribution Methods and Feature Selection
In the context of Supervised Learning algorithms, the problems of model inter-

pretation and outcome explanation described in Section 1.1.2 relate to the problem
of finding the most important features that have contributed to obtained predic-
tion. The link holds in the global data domain where the model is defined, or in
a local neighborhood of a specific sample. In detail, the feature importance prob-
lem consists of finding an algorithm to assign a quantity to each input feature of
a learning problem, representing its importance for the model to reach a specific
prediction in a global or local sense. The importance value is often referred to as
relevance in the ML literature [118, 93, 36]. The feature ranking according to the
assigned relevance translates the problem into feature selection: the latter consists
of finding the best features to solve the learning task, given the assumed hypothesis
class.

Although the two problems seem consequent, and some literature papers con-
siders both views [64], the two formulations need a distinction. Indeed, a difference
between the XAI approach and the feature selection problem is that the former is
a set of operations conducted to understand the model predictions. Instead, the
latter is mainly a preprocessing phase or is involved in the training algorithm [93].
In fact, in the feature selection literature, the feature selection phase precedes or
is part of the actual training algorithm. This change of perspective can be due to
the historical development of the new class of training algorithms. In particular,
in the early stage of the history of ML, feature selection was a significant phase
in the development of an ML algorithm. With the advent of SVMs or DNNs, the
focus has moved to model behavior understanding. On the other side, literature
about feature selection is more developed while the one on interpretability is more
recent. Therefore, the latter takes inspiration from the former to provide theories,
methods, and algorithms.

The past literature has discussed many concepts of relevance. The variety of
definitions depends on the several answers to the question relevant to what? [36].
From the literature, this chapter reports the main definitions about the conditions
that make a feature be deemed as relevant [118, 36]. Here, the discussion consider
the example case of a binary classification task, to give a contextual view about
the topic.
Notation 1.1.1 (Assumptions for Explanation Models). Formally, assume
to have an input space or data domain A ⊆ Rn and a target space Y ⊆ Rm.
Denote the target function F : A −→ Y , and suppose to have a dataset D =
((x1, y1), . . . , (xp, yp) ⊆ Rn×Y . The samples x are drawn from the random vector
X, according to its probability distribution q. Denote the set of all features as
N ; each component of the input random variable vector, that is, each feature, as
Xi; the set of features N \ {Xi} as Ni. The target samples y ∈ Y are drawn
from the target random variable Y = F (X) + ϵ, where ϵ ∼ N (0, 1) is white noise.
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Furthermore, the target function F is approximated by a Supervised ML modelˆ︂F ≈ F , mapping between the same spaces of F . In the case of binary classification
task, Y = {−1, 1}.

Notably, the Bayes classifier is the algorithm that predicts the most probable
class for a given instance, according to the q data generating distribution, assumed
to be known. The optimal Bayes classifier is weakly monotonic in the number of
features, i.e., its error or loss decreases or remains equal when adding a new feature.
So the problem of computing the feature relevance seems not significant. However,
two obstacles arise in practice: (i) the underlying distribution q is unknown, and (2)
algorithms attempt to find a hypothesis ˆ︂F by approximating NP-hard optimization
problems. The first obstacle is related to the bias-variance trade-off [99]: estimation
of more parameters (bias reduction) has to balance with an accurate estimate of
the same parameters (variance reduction). The second limitation is commonly
intractable, and it poses additional computational challenges.

From the theoretical standpoint, two interesting definitions of a relevant feature
are worthy to mention from [118]. A feature Xi is strongly relevant if the removal
of Xi alone results in a nonzero increase of the Bayes classifier loss. A feature Xi

is weakly relevant if it is not strongly relevant and there exists a features’ subset
S ⊂ Ni such that the Bayes classifier loss on S is worse than the performance on
S ∪ {Xi}. Formally,
Definition 1.1.2 (Strong relevant feature). A feature Xi is strongly relevant if
and only if there exists some xi, yi, ni for which p(Xi = xi, Ni = ni) > 0, and such
that

p(Y = y | Xi = xi, Ni = ni) /= p(Y = y | Ni = ni)

Definition 1.1.3 (Weakly relevant feature). A feature Xi is weakly relevant
if and only if it is not strongly relevant, and there exists S ⊂ Ni for which exists
xi, yi, s with p(Xi = xi, S = s) > 0, and such that

p(Y = y | Xi = xi, S = s) /= p(Y = y | S = s)

Remark 1.1.4. Note that the properties of strongly or weakly relevant features do
not directly provide a quantity to be measured. In other words, they do not allow
computing a feature relevance for model interpretation and outcome explanation.
Instead, they state when a feature is relevant according to the learning task of
study, which is the binary classification task in the presented case.

The determination of a relevance value to be assigned ex-post to the features
used by a model make use of the definition of explanation model [126]. As stated
clearly in [126], the best explanation model of a simple model is the model itself.
Instead, for more complex models, the explanation model should be an approxi-
mating simpler model, at least locally. The simpler model could possibly use a new
set of simplified input features Zj, j = 1, . . . , t, on which reconstructing original
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input variables Xi according to a rebuilding function h, such that X = h(Z). For
example, the easiest case assumes that Zj is a binary variable with a one-to-one
correspondence between Z and X, and Zj denoting the presence or absence of the
corresponding input feature Xi. More formally, Zj ∈ {0, 1}, that is t = n and
i←→ j. When the task is outcome explanation, the function h could depend also
on the sample to be explained x∗, so that X = hx∗(Z). To illustrate the idea behind
the meaning of the rebuilding function h, consider the example from [158], where
Xi are the pixel of an image. The binary variables Zj represent the presence or
absence of a superpixel, that is, a region of connected pixels. In detail, the absence
means the replacement of the component of the observed sample with a neutral
assignment, like the gray color, while h maps the Zj presence/absence variables
to the original pixel features Xi. Notably, the paper of [48] justifies the simplified
input space by proposing a unified view of explanation by removing features. In
other words, the simplified input features are a formal representation of the event of
feature removal, and the explanation model measures the relevance of each feature
according to the consequent change observed in the ML model. All the above can
be resumed in the following:
Definition 1.1.5 (Explanation model, informally). Fix a sample x∗ ∈ Rn to be
explained. Assume simplified input features {Zj}j=1,...,t and a function h : Rt → Rn

such that X = hx∗(Z). Given a model ˆ︂F , an explanation model is an interpretable
model Gˆ︁F : Rt → Y that approximates ˆ︂F locally near x∗, assigning to each simpli-
fied feature Zj an attribution or effect φ∗j ∈ R for the explained sample.

In particular, in the case of a regression task, the set Y becomes a subset of Rm,
and the above definition generalizes accordingly. The definition above is clearly
undetermined for the term interpretable characterizing G, anticipated by the dis-
cussion of Section 1.1.2. An attribution method will be an algorithm used to obtain
an explanation model Gˆ︁F . The attributions φ∗j represent the relevance measures
used for outcome explanation or model interpretation. All the attribution methods
are post-hoc explanation methods, because they do not provide a transparent view
of the prediction process of the original explained model ˆ︂F .

Many attribution methods proposed in the literature for the outcome explana-
tion assume a further property on the attributions on the simplified features. This
property is called additive feature attribution, and it defines a class of algorithms
named additive feature attribution methods [126, Definition 1].
Definition 1.1.6 (Additive feature explanation model). The explanation model
Gˆ︁F has the property of additive feature attributions if

Gˆ︁F (z∗) = φ∗0 +
t∑︂

j=1
φ∗jz

∗
j ,

where every φ∗j , j = 1, . . . , t is the attribution to the simplified feature Z∗j for the
explained sample X∗ = h(Z∗)
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In practice, the explanation model G has the property of being an affine function
in the components of the simplifying input features, and it is such that the coeffi-
cients of the affine function are the simplified features attributions. Evidently, an
additive feature explanation model can be deemed an interpretable one. The attri-
bution methods belonging to this class are many of the most recent proposed in the
literature, like LIME [158], SHAP and its variations KernelSHAP and DeepSHAP
[126], DeepLIFT [171], LRP [18]. Note that additive feature attribution meth-
ods use both the model and the dataset to build the corresponding explanation
model G. This happens because the data generating distribution q is commonly
unknown: to build G, the method gets samples from q and query the model in the
neighborhood of the sample x∗ to explain.

Now, consider the case of a data distribution generated by a numerical model.
Precisely, assume that the function F is a simulating model incorporating theoret-
ical knowledge about a physical phenomenon. As stated in the previous Section
1.1.2, this is a frequent scenario in science or industry. In this case, the ML model is
a statistical model approximating the simulator. An explanation model Gˆ︁F could
provide insights about F if both the approximations Gˆ︁F ≈ ˆ︂F ≈ F are sufficiently
precise. In particular, the insights comes from the relevance values ϕj. The rel-
evance score could be employed to improve the simulator F similarly to feature
selection, that is, by providing the most significant variables Xi inputted to F from
a statistical perspective. This chapter illustrates a case study to show in practice
an application of the pipeline presented until now.

1.1.4 The Need for Explanations Validation
The advances in explanation methods, in particular the post-hoc class, give rise

to new challenges for validating the complete training and explanation of the devel-
oped model. An ML training algorithm requires validating the ML model through
a validation set to solve the bias-variance trade-off and to check the model gener-
alization capability on the test set. A general choice is validation methods through
data splitting, selected according to the complexity and computational cost of the
ML model developed, for example, cross-validation [99]. Nonetheless, the validation
process of an ML model does not make the same model robust: the ML model can
be subject to adversarial attacks. An adversarial attack is a tentative of artificially
manipulating the output of an ML model by slightly modifying the input sample
[186, 87]. The more the ML model is complex, the less it is manageable and the
more it is prone to manipulations. This happens especially for high dimensional
data domain and highly non-linear decision boundary or regression function, like
the cases where DNNs are the most powerful. The likelihood of these attacks is
threatening applications of ML in areas like security [188]. The possibility of ad-
versarial attacks strengthens the urgency of validation methods that can guarantee
the ML model’s predictions. Again, explainability represents a candidate solution
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to this problem. Explanations could bring out evidence of prediction errors by the
ML model, thus providing a defense versus manipulations.

As formalized in the previous Section 1.1.3, a post-hoc explanations in the form
of attribution methods provides two steps of approximations Gˆ︁F ≈ ˆ︂F ≈ F . A
usual model validation investigates the approximation ˆ︂F ≈ F . As commented
above, the model validation alone does not prevent an adversarial attack. In case
of attribution methods, a second approximation Gˆ︁F ≈ ˆ︂F comes to help. But does
the explanation model Gˆ︁F provide faithful attributions to the input features? At
first glance, this question could be paradoxical, because the explanation model is
motivated by the need for trustworthy predictions. But the introduction of the
explanation model could raise other concerns about its faithfulness to the model
to be explained. In other words, in the case of post-hoc explanations, the explana-
tion model acts like an external authority that provides insights into the furnished
predictions. Because many explanation methods rely upon heuristics, they do not
guarantee their authoritativeness by themselves. This lack of robustness of ex-
planation gives rise to new problems [78]. First, isolated explanations could be
plausible but misleading, misguiding the possible discovery of knowledge from the
ML model. In theory, such explanations could satisfy the GDPR laws, but they do
not in practice [62]. Second, they can also open the door to manipulations of ex-
planations. These manipulations could take the form of proper adversarial attacks
to explanations, used to hide bias in the explained model. An example coming
from [78] illustrates an undesired outcome. Suppose that an ML model is applied
in healthcare to classify a radiology image as pathological or not. An explanation
method might suggest that a specific image region is important for the malignant
classification (e.g., region having high relevance in the saliency map). The clini-
cian might then concentrate on that region for investigation or treatment, or look
for comparable peculiarities in other subjects. It would result upsetting when a
different region emerges from the saliency map in an almost identical image, indis-
tinguishable from the original, and classified again as malignant. Thus, a robust
predictor (both images correctly classified as malignant) but a fragile explanation
would still cause undesirable behavior. In the example given above, if the explana-
tion guides the doctor’s interventions (e.g., location of a biopsy), then a non-robust
explanation against adversarial attacks could be a life-threatening concern.

The authors of [78] focus on adversarial attacks that introduce tiny perturbations
on the input sample to explain to fool explanation methods. Other authors focus
on adversarial attacks in a scenario where model-agnostic algorithms make pertur-
bations by design on the input sample to approximate the input data distribution
q [175]. The authors of [13] further extend this possibility by fooling model-specific
explanation methods for DNNs to explain any input image by a saliency map of
the number 42. The last two cited papers leverage the lack of representativeness
of samples in the approximation of the data generating distribution. This limit is
due to the sampling procedure adopted by most algorithms, that use sample data
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coming outside the support q to approximate q itself.
The works of [5, 4] represent the first steps towards giving guarantees about the

faithfulness of explanation methods. They propose sanity checks to show that an
explanation method is dependent on the parameters of the ML model to explain
or the data the model has been trained on. Surprisingly, they found that some
explanation algorithm mentioned here fails the check. Furthermore, the paper of
[174] shows that some BP-based explanations method fails the same sanity check,
and it proves a tentative theorem to show the cause of this behavior.

Established on the recent literature, the discussion above is intended to suggest a
critical view of the explanations provided by the most used algorithms. Explanation
methods expose the risk of a confirmation bias towards prejudices about the cause-
effect link between input and prediction. Focusing on the case when the objective
is to provide insights about the data generating process, the risk highlighted could
undermine the conclusion driven by the explanations. Therefore, the validation of
explanations requires basing the inferred hypothesis on a solid experiment. When
a simulator represents the data generating process, that is F , there are several
alternatives for validating the outcome of the explanations compared with those
presented before. In particular, the sanity checks presented before do not use the
data generating process; instead, they concentrate on the ML model to validate
explanations. In the case of outcome explanation or model interpretation, the
developer could possibly modify the simulator F according to the most important
features given by the explanation method to be validated and applied to ˆ︂F . Thus,
the obtained simplified simulator F ′ can be compared with F via suitable metrics,
depending on the domain and problem of interest, to check for the hypothesis
derived from the explanation method.
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Chapter 2

Explainable Artificial
Intelligence for Modeling
Insights

This chapter investigates the possibility offered by interpretability and explain-
ability methods for gaining insights about the data generating process. In partic-
ular, it applies those methodologies when the data generating process is a known
numerical model simulating a physical phenomenon. According to the taxonomy of
1.1.2, the focus is on a model-specific backpropagation-based explanation method
defined by the algorithm of Layer-wise Relevance Propagation (LRP) [18, 133].
The algorithm is employed both for outcome explanation and model interpreta-
tion, as defined in Section 1.1.2. The complete pipeline includes the usage of a
simulator F and a neural network N approximating the simulated data generating
process. Then, the LRP algorithm is applied to N to provide insights about F .
The pipeline handle the validation requirement by using a simplified simulator F ′

derived from F . The comparison of the results obtained by the simplified simulator
and the original simulator provide clues about the insights inferred by the expla-
nation algorithm. In particular, the presentation highlights the peculiarities of the
illustrated pipeline with a specific experimental case study, allowing a discussion of
the result of a model interpretation algorithm.

The explanation algorithm is thoroughly presented in Section 2.1, which provides
a detailed and formal description of LRP. Then, Section 2.2 reviews the experimen-
tal case study of Discrete Fracture Networks (DFNs). Specifically, it formalizes a
regression task, and it presents the Backbone identification problem. Section 2.3
presents the experimental case study and the results of the application of the pro-
posed pipeline to the DFN Backbone identification problem. Finally, Section 2.4
discusses the obtained results, and it proposes a generalization of the pipeline for
the analysis of physical phenomena.
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2.1 Focus on Layer-Wise Relevance Propagation
This section focuses on Layer-wise Relevance Propagation (LRP) [18]. LRP de-

fines a subclass of algorithms of XAI oriented to outcome explanation, as expressed
in Section 1.1.2.

Before describing LRP, fix the notation for the presentation of Neural Networks
(NNs) analyzed using LRP. Given a Fully-connected Neural Network (FNN) N
made of L+ 1 ∈ N layers, denote them as U (0) , . . . , U (L) where:

• U (0) is the input layer;

• U (L) is the output layer;

• U (1) , . . . , U (L−1) are the hidden layers.

Let N be a FNN trained for approximating a function F : A ⊆ Rn → Rm, then
let ˆ︂F denote the function corresponding to N at the end of the training; therefore,
assuming N is a sufficiently good approximation, it holds F ≈ ˆ︂F or, more precisely,
F (x) ≈ ˆ︂F (x) for each x ∈ A ⊆ Rn.

Given a trained NN with function ˆ︂F , LRP looks at a prediction ˆ︂F (x) and assigns
relevance scores to the components xk of x, taking into account the weights and
the architecture of the NN. The computed relevance scores indicate how much each
xk contributed in computing the prediction ˆ︂F (x). For a given NN model, and an
input x, the method assumes to have a vector R ∈ Rm, defined relevance score,
related to ˆ︂F (x), LRP propagates the score R backward through the NN from the
output layer U (L) to the input one U (0). The propagation happens layer-wise, and it
redistributes R among all the input units of U (0). The redistribution of R is defined
by a propagation rule that takes into account the forward propagation of x through
the NN and, therefore, depends on the weights and the network connectivity. The
final result describes the relevance of each component xk of x. In particular, it
allows highlighting the features having higher influence in the computation of the
corresponding prediction made by the NN. Actually, these components are the list
of values that come up to the input units from the propagation of R.

In literature, LRP is always applied with respect to one input at a time [133]:
given one input x and a score R, LRP computes the relevance of the components
xk of x for the prediction of the output. Then, the relevance score depends on the
input, so the most relevant components can vary changing the input sample taken
into account. An extension proposed here is that the authors not only compute the
relevance scores of all the inputs in a given dataset, but they also aggregate this
information (see Subsection 2.1.3 and Section 2.3). The result is an approximation
of the expected relevance score vector that furnishes a description about how the
NN looks at the data domain space. Thus, the extension makes possible to orient
the analysis not only to outcome explanation but also to model interpretation, as
defined in the Subsection 1.1.2.
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2.1.1 The Propagation Rule
To understand the LRP method, the mechanism that regulates the propagation

of the score R backward through the NN is described here. This sequence of
operations is called the propagation rule of the method, and it can vary according
to the NN architecture. LRP has been firstly described for a classification task, and
this section proposes an extension to a regression task. In addition, here the main
characteristics of the propagation rule are introduced and the α-β rule is described.
The same rule will be used in the experiments of the case of study presented in
Section 2.3.

One of the most important aspects that characterizes the propagation rule is
the criterion behind the choice of the score R with respect to the input x, at the
beginning of the backward propagation process, to be assigned to the neurons of the
output layer U (L). The literature of LRP, similarly to all the BP-based explanation
methods, is focused on classification task. In particular, they choose R at the
beginning of the propagation to be the logit score, that is, the value before the
softmax activation function of the output layer U (L) [18]. However, in this work
the authors consider only the simplest case, where the starting score is equal to the
output predicted by the NN with respect to x. This makes easy to generalize LRP
to a regression task, and it does not modify the behavior of LRP in a classification
task. In the situation where the output layer U (L) of the network is characterized
by more than one unit, the criterion is obviously generalized such that it assigns to
each output unit uj ∈ U (L) a relevance score R(L)

j equal to the j-th component of
the prediction vector corresponding to input x, i.e.:

R
(L)
j (x) = (ˆ︂F (x))j . (2.1)

Then the total starting score is

R(x) =
∑︂

uj∈U(L)

R
(L)
j (x) =: R(L)(x) . (2.2)

For the ease of notation, from now on the dependency of the relevance scores on
the input x is omitted.

Therefore, assuming for simplicity to have a NN without skip or residual con-
nections, the LRP method defines a rule to propagate these scores from U (L) to
U (L−1) and, more generally, from each layer to the previous one. The rule com-
prises the definition of messages, for each pair (ui, uj) ∈ U (ℓ) × U (ℓ+1), for each
ℓ = 0 , . . . , L− 1, such that the message R(ℓ , ℓ+1)

i←j ∈ R is the amount of score R(ℓ+1)
j

that spread to unit ui ∈ U (ℓ) from unit uj ∈ U (ℓ+1). Actually, the message R(ℓ , ℓ+1)
i←j

represents how much the output of unit ui sent to uj is relevant for the prediction
computation ˆ︂F (x); then, the relevance score R

(ℓ)
i of ui with respect to ˆ︂F (x) is
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given by the sum of all the incoming messages:

R
(ℓ)
i =

∑︂
uj∈U(ℓ+1)

R
(ℓ , ℓ+1)
i←j , (2.3)

for each ℓ = 0 , . . . , L − 1. The messages can also be named partial relevances.
Therefore, the relevance of the component xi of the input x ∈ Rn is given by the
quantity R(0)

i computed starting from R(x).
Due to the empirical origin of the LRP method, in literature (e.g., see [133]) the

computation of the messages is usually described through examples that show many
possible arbitrary formulas for the definition of R(ℓ , ℓ+1)

i←j . To the best of the authors
knowledge, no formal definitions exist. Then, to facilitate the understanding of
the problem, in the Subsection 2.1.2 a more general and formal definition of the
messages R(ℓ , ℓ+1)

i←j is introduced, to characterize the propagation rule. The content
of Subsection 2.1.2 can be useful to the interested reader that is new to the LRP
algorithm.

2.1.2 Details about Layer-wise Relevance Propagation
In this Subsection, a novel general and formal definition of the LRP messages

is introduced, extending what already illustrated in Subsection 2.1.1. The message
R

(ℓ , ℓ+1)
i←j , from unit uj ∈ U (ℓ+1) to unit ui ∈ U (ℓ) for the LRP method, is defined as

R
(ℓ , ℓ+1)
i←j := ρ

(︂
c(x(ℓ)

i , w
(ℓ+1)
ij ) , R(ℓ+1)

j

)︂
, (2.4)

where x(ℓ)
i is the output of unit ui ∈ U (ℓ) and w(ℓ+1)

ij is the weight of the edge (ui, uj)
in the FNN. The functions ρ : R2 → R and c : R2 → R are arbitrary functions,
denoted as relevance function and contribution function, respectively.

The relevance function ρ has the role to decide how much of the relevance score
R

(ℓ+1)
j has to be propagated backward to unit ui: the higher the output of ρ (i.e.

the message R
(ℓ , ℓ+1)
i←j ), the more relevant is ui with respect to uj. The partial

relevance of ui should clearly depend on the score R(ℓ+1)
j , which is the relevance of

uj, but also on how much ui contributed to unit uj in the forward passage. This
contribution is measured by the function c, taking into account both x(ℓ)

i and w(ℓ+1)
ij .

In literature ([18, 133]), the most used choice of ρ is the multiplication, such that
the role of c is reduced to the computation of an appropriate factor for rescaling
R

(ℓ+1)
j . Moreover, the function c can be different for each message. For example, c

can be characterized by different parameter values varying the unit uj considered
(see parameters z±j in α-β rule later).

The propagation rule, that the LRP method defines to compute the message
R

(ℓ , ℓ+1)
i←j through ρ and c, is assumed to satisfy the following properties:
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1. Conservation [133]: the sum of the scores propagated from each layer to the
preceding ones remains equal, that is:

R(0) = · · · = R(L−1) = R(L) = R(x) , (2.5)

where, for each ℓ = 0, . . . , L, define R(ℓ) as

R(ℓ) =
∑︂

ui∈U(ℓ)

R
(ℓ)
i . (2.6)

The introduction of the conservation property is important because it high-
lights that LRP actually compute a decomposition of the outputs (assuming
Equation (2.1)) in terms of the input variables [18, 133].

2. Coherence: the general criterion behind the user choices of the functions ρ and
c for the propagation rule. Definitions of ρ and c are not formally considered
or argued in the literature, due to the empirical and heuristic nature of both
the propagation rules addressed, and the problems related to the typical LRP
applications. Then, trying to introduce a more detailed formalization, in this
work a propagation rule is defined to be coherent if:

• exists a measure or signed measure µρ with respect to the Borel σ-algebra
on R2 (here denoted as B(R2)) such that ρ(ξ1, ξ2) = µρ((0 , ξ1)× (0 , ξ2)),
for each (ξ1, ξ2) ∈ R2;

• exists a measure or signed measure µc with respect to the σ-algebra B(R2)
such that c(ξ1, ξ2) = µc((0 , ξ1)× (0 , ξ2)), for each (ξ1, ξ2) ∈ R2.

The coherence property, introduced by the authors of this work, has the pur-
pose of providing an outline on how to build a well-defined propagation rule for
LRP to highlight the most relevant input features. Indeed, not every pair of
arbitrary functions ρ and c return scores that describe correctly the relevance
of the inputs to the outputs, even if the conservation property is guaranteed.
Defining ρ and c as functions characterized by the measures µρ , µc, respec-
tively, the authors argue that the relevance scores obtained with LRP better
characterize the relationship between input and outputs in the NN.

Once a propagation rule is defined, the total starting score R(L) propagates from
the output layer to the input units ui ∈ U (0), and values R(0)

i let the user understand
the relevance of the components of the given input x behind the FNN predictionˆ︂F (x).

The propagation rule, defined by the two properties of conservation and coher-
ence, is not uniquely identified. Therefore, different propagation rules have been
proposed in literature [133]. In this work, the rule applied in Section 2.3 belongs
to the class of α-β rule. For the ease of notation, denote as zij the product

zij = xiwij , (2.7)
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where, for simplicity, the layer dependencies previously denoted with superscripts
like (ℓ) and (ℓ+ 1) have been dropped. Then, α-β rule defines the quantity

z±ij := max(± zij , 0) (2.8)

as the signed local contribution of ui with respect to uj, and the quantity

z±j := b±j +
∑︂

ui∈U(ℓ)

z±ij , (2.9)

as the signed pre-activation of uj, where bj is the bias of uj and b±j = max(± bj , 0).
Furthermore, the definition of the message from uj ∈ U (ℓ+1) to ui ∈ U (ℓ) in the

α-β rule [133, section 5.1] is characterized by

R
(ℓ,ℓ+1)
i←j = ρ

(︂
cj(xi , wij) , R(ℓ+1)

j

)︂
= cj(xi , wij) · R(ℓ+1)

j =(︄
α
z+
ij

z+
j

− β
z−ij
z−j

)︄
R

(ℓ+1)
j ,

(2.10)

where, for each fixed α , β ∈ R+, one should have α − β = 1 in order to satisfy
the conservation property. To avoid numerical instability, a small number (e.g.
ϵ = 10−9) is added to the denominators of Equation (2.10). Observe also that the
α-β rule is characterized by a coherence property, where µρ and µcj

are such that:

µρ((0 , ξ1)× (0 , ξ2)) = ξ1 ξ2 (2.11)

and

µcj
((0, ξ1)× (0, ξ2)) =

⎧⎪⎨⎪⎩
α
z+

j

ξ1 ξ2 , if ξ1 ξ2 ≥ 0

− β

z−
j

ξ1 ξ2 , if ξ1 ξ2 < 0
. (2.12)

Specifically, in Section 2.3 of this work, the parameter values are fixed to α = 1
and β = 0. This setting implies that the message is defined as

R
(ℓ , ℓ+1)
i←j =

⎧⎨⎩(xiwij/z+
j )R(ℓ+1)

j , if xiwij ≥ 0
0 , if xiwij < 0

. (2.13)

2.1.3 Expected Relevance Score
The LRP method has been widely used in applications for explanation of NNs

concerning images, but rarely for explanation of regression NNs (e.g. [18, 37]).
Probably due to this reason, to the best of the authors’ knowledge, the usage
of LRP as model interpretation method proposed in this paper has never been
considered before.
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The main idea behind model interpretation performed using LRP is the follow-
ing: compute the expected relevance scores

Ex∼q[R(0)
1 ] , . . . ,Ex∼q[R(0)

n ] (2.14)

for the components x1 , . . . , xn, respectively, of a random input vector x ∈ Rn with
distribution q, with respect to a given FNN N with function ˆ︂F : Rn → Rm. Then,
the most important features for ˆ︂F are the ones characterized by a higher expected
relevance score. Furthermore, assuming that ˆ︂F (x) ≈ F (x) for each x ∈ A ⊆ Rn,
LRP allows performing indirectly (through N ) a feature selection also with respect
to the target function F : A ⊆ Rn → Rm.

From a practical point of view, the vector of expected relevance scores is ap-
proximated by

r̄ = r̄(0) : = Ex∼q[r(0)] = Ex∼q

[︃[︂
R

(0)
1 , . . . , R(0)

n

]︂⊤]︃
=[︂

Ex∼q[R(0)
1 ] , . . . ,Ex∼q[R(0)

n ]
]︂⊤ (2.15)

computing the vector of mean relevance scores with respect to a given set S ⊂ Rn

of s samplings of x, i.e.:

r̄(S) = r̄(0)(S) := ES [r(0)] = 1
s

∑︂
x∈S

r(0) = 1
s

∑︂
x∈S

[︂
R

(0)
1 , . . . , R(0)

n

]︂⊤
≈ r̄ , (2.16)

where r̄(S) = r̄ for s = |S| → +∞.

2.2 Case study: Discrete Fracture Network
Discrete Fracture Networks (DFNs) [6, 42, 70] are popular models adopted for

performing flow simulations in underground fractured media. Each fracture of the
DFN network is represented by a 2-dimensional polygon into a 3-dimensional do-
main, and it is characterized by its own geometrical and hydro-geological features
(namely: position, size, orientation, fracture transmissivity, . . . ). In this section, a
new strategy is discussed. The strategy relies on flux-regression Neural Networks
trained on datasets generated via DFN flow simulations, as in [35] and Layer-wise
Relevance Propagation. The aim is to identify backbones of the DFN, namely,
suitable subnetworks of the DFN where the transport characteristics approximate
the ones of the original network [178]. Further details about the Backbone Identi-
fication problem are given in Subsection 2.2.2.

While most applications of LRP concern NNs trained on image datasets for
classification tasks (e.g. [18, 37]), this experiment applies LRP to a NN trained
on physical simulation data for a regression task. Furthermore, LRP usage is here
characterized by an innovative way of application; indeed, LRP is not run on input
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data one by one, looking for the most relevant features for each single prediction of
the NNs, but an approximation of the expected relevance scores of all the features in
the domain space is computed. In this way, LRP is presented as a feature selection
method with respect to the numerical model of the DFN, and the backbone fractures
of the DFN are identified as the ones with higher expected relevance score. Finally,
the validation of the effectiveness of the LRP-based feature selection method consist
of checking the quality of the identified backbone, running the DFN simulations on
the corresponding subnetwork.

The method proposed herein can be very useful in those applications concerning
the backbone of a DFN and the flux behaviour, varying the fracture transmissivities;
in particular, the backbone obtained with this method can be extremely effective
for clogging problems and waste storage problems. Indeed, since the backbones
returned by the proposed method are identified in the framework of UQ, they
are statistically robust with respect to changes in fracture transmissivities. For
example, a user is able to statistically know which fractures are more relevant for
flux and should be avoided for waste storage problems, or which fractures are most
critical in flux propagation and can be important in clogging problems.

2.2.1 Numerical Model
Here, for the reader’s convenience, the DFN modeling problem is briefly de-

scribed. For full details, the interested reader could refer to [27, 28].
A DFN is a discrete model used to describe and characterize a network of un-

derground fractures in a fractured rock medium as a set of 2D polygons in the 3D
space R3 (see Figure 2.1). Each polygon represents a fracture, and it is labelled
with an index in a set I; then, each fracture is denoted by Fi, with i ∈ I. A DFN
is composed by the union of all the fractures:

∪i∈IFi.

Each fracture is endowed with its own size and orientation in the 3D space and
with its own transmissivity parameter κi for the flux characterization; all these
data are typically sampled from suitable distributions. Segments given by the
intersection of two or more fractures are called traces, and they characterize the
connectivity of the network; notably, DFNs can be represented as graphs with
fractures as nodes and traces as edges (see Figure 2.2).

The flow simulations in a DFN are characterized not only by its geometry, but
also by the hydrogeological properties conferred to the fractures, such as the trans-
missivity. The transmissivity parameter κi of Fi, for each i ∈ I, represents the
flow facilitation through the fracture, and it is fundamental for the flow character-
ization in the DFN; the Section 2.2.3 is focused on the NN regression problem for
predicting the outflowing fluxes of a DFN given the transmissivities of its fractures.
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Figure 2.1: External surface of a natural fractured medium (left) and a DFN (right).
As an example, the opening in the rock could be the upper side of the right 3D plot.
Each colored meshed polygon on the right is a fracture, and polygon intersections
are traces.

2.2.2 The Backbone Identification problem
Given a modelled DFN, a backbone of the DFN is a suitable subnetwork where

the transport characteristics approximate the ones of the original network [178].
These subnetworks can be used in many applications and furnish precious and
fundamental information for clogging problems and for waste storage problems
simulated through DFNs (e.g. geological storage of CO2). In [9], backbones are
identified through particle tracking methods that find the fractures where most of
the transport of particles occurs. However, the computational domain characteriz-
ing a DFN can be quite large and exhibit a great deal of geometrical complexity,
therefore transport and flow simulations turn out to be very costly, even if recent
literature has proposed several approaches to overcome these problems. To men-
tion a few, recall papers based on reformulations as lower-dimensional problems
[146, 145, 55]; based on the use of partially conforming meshes [153, 152, 63, 154];
other interesting geometrical approaches are proposed in [71, 72, 76, 109, 111];
approaches consisting in a reformulation of the problem as a PDE-constrained op-
timization problem [27, 28, 29, 25, 31, 24], that can be used in conjunction with
several space discretizations [30, 23]. Nonetheless, computational simulation on a
large DFN is still a costly task, and it may be prohibitive to perform numerous
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Figure 2.2: The graph representation of a DFN: nodes depict the fractures, traces
are the edges.

simulations.
Due to the expensive cost of particle tracking simulations, other backbone iden-

tification methods based on graph topology and Machine Learning (ML) have been
developed [178, 107, 106, 179]. These methods usually train the learning algorithms
as binary classifiers for single fractures, predicting whether they are backbone frac-
tures or not, on datasets built using particle flow simulations. The great advantage
of these methods is that, given a sufficiently large dataset of classified fractures
for the training, the backbone identification process is fast and accurate. That is
extremely useful in the framework of Uncertainty Quantification (UQ), where nu-
merous simulations are required. Indeed, one of the main issues related to DFNs is
the lack of deterministic information about geometrical and hydro-geological frac-
ture features. This information is typically only known by means of probability
distribution, and data needed for actual simulations are commonly sampled from
the available distributions.

All the cited backbone identification methods take into account the time spent
by particles to flow from the source to the sink of the network as criterion of the
identified backbone. The time spent is assumed to be such that the first passage
time of the particles through the backbone-reduced subnetwork of the DFN is
approximately equal to the one of the full DFN. However, in some problems the
quantity of interest (QoI) may be, for example, the total flux exiting the DFN.
This case study focus on the total flux outflowing the network for identifying the
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backbone. Then, for a given DFN, the target is to identify a backbone such that
its exiting flux approximates the one of the full DFN. The method is tested and
applied in the framework of a DFN with fixed geometry but with stochastic fracture
transmissivities. In particular, the method illustrated is able to identify a backbone
of the given DFN sufficiently good (with respect to the approximation of the QoI)
for every possible sample of fracture transmissivities. The experiments showing
these results are provided in Section 2.3

2.2.3 Regression Problem Setting
The problems addressed in this paper are characterized as follows. See Figure

2.3 and 2.4 for the two examples taken from [35] used to generate the experimental
datasets. In the following, the details and assumptions of the data generation are
resumed. Consider a DFN consisting of n fractures, with fixed geometrical prop-

Figure 2.3: 3D view of DFN158.

erties, immersed in a cubic matrix block with a 1 000 meters long edge. Assume the
boundary conditions to be such that two opposite faces of the block represent an
inlet and outlet face, respectively. Impose a Dirichlet boundary condition on the
pressure H fixed at H = 10 on fracture edges created intersecting the DFN with
the leftmost face of the domain, corresponding to x = 0, and H = 0 on the edges
obtained intersecting the DFN with the rightmost face, that is, x = 1 000. The frac-
tures intersecting such faces are called inflow and outflow fractures, respectively.
All other fracture edges are insulated with homogeneous Neumann condition. The
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Figure 2.4: 3D view of DFN202.

boundary conditions and the geometry of the DFN mainly affect the flux direction-
ality, while the transmissivities have a great impact on the flow intensity on each
outflow fracture. The target of the regression problem here considered is to predict
the exiting fluxes of each sample and to approximate the exiting flux distributions
among the outflow fractures. For a complete description of the DFN model, refers
to [35].

The fracture transmissivities are assumed to be isotropic parameters κ1, . . . , κn
modelled as random variables with log-normal distribution [106, 165]:

log10 κi ∼ N (−5,1/3) . (2.17)

In particular, the two test cases considered in the experiments are characterized by
n = 158 and n = 202 fractures named DFN158 and DFN202, respectively (see also
[35]). The fractures are assumed to be octagons, and have been randomly gener-
ated using the following distribution for the geometrical features [185, 105]: fracture
radii have been sampled with respect to a truncated power law distribution, with
exponent γ = 2.5 and upper and lower cut-off ru = 560 and r0 = 50, respectively;
the fracture orientations have been sampled from a Fischer distribution having
mean direction µ = (0.0065, −0.0162, 0.9998) and dispersion parameter 17.8; uni-
form distribution has been used for mass centers. The resulting number of outflow
fractures for DFN158 and DFN202 is m = 7 and m = 14, respectively.
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Dataset characterization

Fix the following notation. Let κ = [κ1, . . . , κn]⊤ ∈ Rn be the vector collecting
the transmissivities of all fractures of the given DFN and let φ = [φ1, . . . , φm]⊤ ∈
Rm be the vector collecting all the exit flows. Let F : A ⊆ Rn → Rm be a function
defined by

φ = F (κ), (2.18)
that is the function that provides the vector of outflows associated to the transmis-
sivity input κ. Consider D ∈ N samples κk ∈ Rn, k = 1, . . . , D, drawn according
to distribution (2.17). The dataset D1 used for the creation of the training set, the
test set and the validation set is

D = {(κk,φk) ∈ Rn × Rm |F (κk) = φk , ∀ k = 1, . . . , D} . (2.19)

The test set P is created by randomly picking approximately 30% of the elements
in D. The remaining elements are then randomly split into two subsets T and
V , representing the training set and the validation set, respectively, and such that
|V| ∼ 20% |D \ P|.

2.3 Experiments
This section shows the experimental setting and the results obtained by employ-

ing the Layer-Wise Relevance Propagation algorithm to identify the Backbone on
the Discrete Fracture Network model described in Section 2.2.

2.3.1 Multi-Task Architecture
This section recall the architecture introduced in [35] for the approximation of

a function F : A ⊆ Rn → Rm. These NNs are characterized by a tree-shaped
structure (see Figure 2.5), obtained by extending the one described in [86, chapter
7.7] for multi-task learning. In particular, given a hyperparameter d ∈ N, the NN
architecture is given by:

• One input layer U (0) of n units;

• A sequence of d hidden layers U (1), . . . , U (d), each one made of n units with
softplus (f(x) = log(1 + ex)) activation function, such that U (ℓ−1) is fully
connected to U (ℓ), for each ℓ = 1, . . . , d. Call trunk of the NN the sequence
U (0), . . . , U (d);

1The datasets of DFN158 and DFN202 can be downloaded from
https://smartdata.polito.it/discrete-fracture-network-flow-simulations/ (transmissivity st.dev.
parameter 0.33)
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• m sequences of d hidden layers U (d+1)
j , . . . , U

(2d)
j , each one made of n softplus

units, followed by one output layer U (2d+1)
j made of one linear unit for each

j = 1 . . . ,m. These layers are such that U (d) is fully connected to U
(d+1)
j

and U
(ℓ−1)
j is fully connected to U (ℓ)

j , for each ℓ = d + 2, . . . ,2d + 1, for each
j = 1, . . . ,m. Call branches of the NN all the m sequences U (d+1)

j , . . . , U
(2d+1)
j .

(5.)1

d
Layers

(5.)2

d
Layers

(0)

Figure 2.5: Example of NN built for vector valued regression concerning flux pre-
diction (n = 3, m = 2, d = 2). For simplicity, biases have not been represented.

The choice of using softplus functions for the hidden layers was made after a
preliminary investigation in [35], comparing the performances obtained also with
other activation functions.

Consider a NN N ∗n ∈ {N ∗158,N ∗202} (see Subsection 2.3.2) and a general input
vector ˜︁κ of (normalized) transmissivities for N ∗n . Then, since ˆ︂F (˜︁κ) ≈ F (κ) is
a valuable approximation (Tables 2.1-2.3), the application of LRP method to N ∗n
with respect to a given ˜︁κ returns a vector of relevance scores

r(0) =
[︂
R

(0)
1 , . . . , R(0)

n

]︂⊤
that is a vector characterizing the relevance of fractures Fi in the DFN during the
computation of the fluxes φ = F (κ), for each i = 1 , . . . , n. In particular, due to
the conservation property of LRP (see the Section 2.1.2), observe that initialization
of the scores as in Equation (2.1) allows the relevance scores of the most relevant
fractures Fi to increase when the sum of the predicted fluxes ∑︁m

j=1 ˆ︁φj = R(˜︁κ) is
higher.
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Given the interpretation of LRP relevance scores as fracture relevance in the
DFN for the single simulation F (κ), the idea can be extended. Using LRP as
feature selection method with respect to N ∗n (see Subsection 2.1.3) and assumingˆ︂F (˜︁κ) ≈ F (κ) for each transmissivity vector κ ∈ Rn, the vector of expected rele-
vance scores r̄ ∈ Rn could be interpreted as a measure of the expected relevance of
the fractures F1 , . . . ,Fn in the DFN, for any random κ sampled.

As a consequence, if this interpretation of LRP relevance scores is correct, a
collection of the most relevant fractures (e.g., the ones with Eκ∼qκ [R(0)

i ] greater
than an arbitrary threshold) can be interpreted as a possible backbone of the DFN,
where the target Quantity of Interest (QoI) to be preserved is the total flux exiting
from the DFN. For this reason, this section analyzes the fluxes obtained running
simulations on subnetworks of both DFN158 and DFN202, obtained selecting the
fractures through LRP applied on N ∗158 and N ∗202, respectively, and comparing them
with full simulations on the whole DFNs. From these comparisons, it results a
validation of both the LRP-based feature selection’s quality (see Subsection 2.3.4)
and the subnetworks as backbones.

2.3.2 Neural Network Training and Performances
Consider the two test cases described in the previous Subsection 2.2.3 (DFN158

and DFN202). Recall that they are respectively characterized by n = 158 and
n = 202 total fractures, and m = 7 and m = 14 outflow fractures.

The multi-task architecture previously described is used to design and train
suitable NNs for each DFN. The training of NNs is conducted varying hyperpa-
rameters already tested in [35]. The configuration of hyperparameters yield four
different NNs for each DFN:

• depth parameter d ∈ {1,3} (the depth of the NN being equal to 2d);

• mini-batch size B ∈ {10,30};

• a number n of units for the input layer and hidden layers coinciding with the
number of fractures;

• the tree-shaped structure has m = 7 branches for DFN158 and m = 14
branches for DFN202.

In the following, refer to these NNs and options as

NB
n,d , ∀ d ∈ {1,3} , ∀ B ∈ {10,30} , (2.20)

All the NNs are trained and tested with respect to a dataset Dn (see Section 2.2.3)
of 10 000 pairs (κk ,φk) ∈ Rn ×Rm, in order to make predictions of the outflowing
fluxes of DFN158 and DFN202. The training is made using the optimizer Adam
[114], with a maximum number of epochs cmax = 1 000, mini-batch size B and two
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regularization methods: early stopping method, with patience parameter p∗ = 150,
and method of minimum validation error. Then, for each fixed n = 158,202, the
two networks N ∗n with the best performances are selected. The selection takes into
account a grid search approach with respect to the values of d and B, and it uses as
performance measure the mean value of the global relative errors of the predictions
of NB

n,d on the test set Pn (see Table 2.1). For simplicity, this quantity is referred
to as E[er(NB

n,d ; Pn)], defining the vector of relative errors of a prediction ˆ︁φ with
respect to the total exiting flux [35] as

er( ˆ︁φ) = |
ˆ︁φ−φ|∑︁m
i=1 φi

= 1∑︁m
i=1 φi

[ | ˆ︁φ1 − φ1| , . . . , | ˆ︁φm − φm| ]⊤ . (2.21)

The results of the selection over the grid search are N ∗158 := N 30
158,3 and N ∗202 :=

N 30
202,3.

DFN158 DFN202

d = 1 d = 3 d = 1 d = 3

B = 10 0.0104 0.0085 0.0060 0.0070

B = 30 0.0099 0.0082 0.0057 0.0055

Table 2.1: Mean relative errors E[er(NB
n,d ;Pn)] for several values of depth parameter

d and mini-batch size B for all the test cases (n = 158, 202).

The approach here adopted for building and training the NNs is the same used
in [35], but with a main difference: a pre-processing phase for the input data has
been introduced. Indeed, NN performances often increase when a normalization of
input data is applied to have zero mean and standard deviation equal to 1 [141].
Hence, the preprocessing consist of the application of a function g : R → R to
standardize log(κi):

g(κi) = ˜︁κi ∼ N (0,1) , ∀ i = 1, . . . , n (2.22)

and the training of the NNs is conducted as in [35] with respect to a normalized
version of Dn, that is the dataset ˜︁Dn characterized by normalized inputs such that

˜︁Dn = {(˜︁κk , φk) ∈ Rn × Rm | (κk,φk) ∈ Dn} , (2.23)

where ˜︁κk = g(κk) and g : Rn → Rn is the element-wise application of the function
g to the components of κk.

Tables 2.2 and 2.3 report the measurements of the Jensen-Shannon divergence
(DJS) for the actual flux distributions and the predicted flux distributions given by
the NNs N ∗n with respect to the inputs of the test set ˜︁Pn (see Figure 2.6 for visu-
alizing an example of distribution comparison). They report an additional relative
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dissimilarity measure for distributions, the ratio DKL/E , for the ease of interpreta-
tion and comparison of the values. Indeed, the DJS values can be considered low
for some pairs of distributions, but not for others. The new dissimilarity measure
introduced is defined as the ratio between the Kullback-Liebler divergence (DKL)
and the entropy (E) of the actual distribution (see [35] and [86, chapter 3.13]),
namely:

DKL(P ∥ Q)
E(P ) = Ex∼P [log (P (x)/Q(x))]

Ex∼P [logP (x)] , (2.24)

where P is the actual flux’s probability distribution of a fracture and Q is the
one of corresponding predictions. The advantages of using ratio (2.24) derive from
the relationship between the DKL and the cross-entropy E(P,Q) [86, chapter 3.13],
since:

DKL(P ∥ Q)
E(P ) = E(P,Q)− E(P )

E(P ) = E(P,Q)
E(P ) − 1 , (2.25)

where
E(P,Q) := Ex∼P [logQ(x)] . (2.26)

In fact, E(P,Q) measures the average information needed to describe the entropy
E(P ) (that is, the average information rate of P ) using a random sampling from
Q. Then the ratio (2.24) represents the relative information error, measuring the
relative missing information lost to describe the average information rate of P using
a random sampling from Q.

F8 F12 F14 F78 F90 F98 F107

DJS 0.0050 0.0018 0.0063 0.0012 0.0196 0.2144 0.0060

DKL/E 0.0009 0.0003 0.0010 0.0002 0.0033 0.0379 0.0010

Table 2.2: DFN158. Jensen-Shannon divergence and dissimilarity measure between
actual and predicted flux distributions.

2.3.3 LRP Generalization to Multitask Neural Networks
In this Subsection, the LRP method is generalized to FNNs having the multitask

architecture described in Subsection 2.3.1. In principle, the application of LRP to
multitask FNNs can be easily performed, since any multitask FNN can be translated
into an equivalent non-multitask FNN characterized by some null weights. However,
this sort of translation is not advisable for at least two reasons: firstly, it violates
the principle of parsimony in terms of coding and computational load; secondly,
one hinders the model interpretability by losing its tights with the topology of
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F8 F15 F18 F31 F61 F73 F93

DJS 0.0050 0.0941 0.0226 0.0033 0.0021 0.0014 0.0324

DKL/E 0.0007 0.0177 0.0040 0.0005 0.0003 0.0003 0.0055

F115 F156 F162 F173 F176 F180 F187

DJS 0.0256 0.0928 0.0059 0.0016 0.0327 0.0069 0.0570

DKL/E 0.0042 0.0165 0.0014 0.0002 0.0039 0.0016 0.0097

Table 2.3: DFN202. Jensen-Shannon divergence and dissimilarity measure between
actual and predicted flux distributions.

Figure 2.6: DFN158 case (left) and DFN202 case (right). Example of two compar-
isons between probability density functions of the actual flux distribution (continu-
ous line) and the predicted flux distribution (dotted line) for one of the outflowing
fractures, done by N ∗n .

the underlying DFN. It is, therefore, worthwhile generalizing the LRP method to
multi-task architectures.

Consider a multi-task FNN N with the same architecture as the one introduced
in Subsection 2.3.1, characterized by n inputs, m branches and outputs, and depth
2d. Introduce the following notation for the scores involving the layers of the
branches.

• Let L be such that L = 2d + 1. For each h = 1, . . . ,m, the starting score
assigned to the h-th output is denoted as

R
(L ;h)
1 = ˆ︁φh =

(︂ˆ︂F (˜︁κ)
)︂
h
, (2.27)

where ˆ︂F is the function associated to N and (˜︁κ , ˆ︁φ) is a given input-output
pair defined as in Subsection 2.3.2. Then, the total starting score R(˜︁κ) =
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∑︁m
h=1 ˆ︁φh is re-defined as

R(˜︁κ) =
m∑︂
h=1

R
(L ;h)
1 =: R(L) . (2.28)

• For each ℓ = d + 1, . . . , 2d, the scores computed with respect to units of the
layer U (ℓ)

h (belonging to the h-th branch of N ) are denoted as R(ℓ,ℓ+1 ;h)
i←j . Then,

analogously to (2.3) and (2.6), R(ℓ ;h)
i , R(ℓ ;h) and R(ℓ) are defined, respectively,

as
R

(ℓ ;h)
i =

∑︂
uj∈U

(ℓ+1)
h

R
(ℓ,ℓ+1 ;h)
i←j , (2.29)

R(ℓ ;h) =
∑︂

ui∈U
(ℓ)
h

R
(ℓ ;h)
i (2.30)

and
R(ℓ) =

m∑︂
h=1

R(ℓ ;h) . (2.31)

In particular, the above equation is used also for the case ℓ = L = 2d+1, even
if the result is R(L ;h) = R

(L ;h)
1 .

• For ℓ = d and for each h = 1, . . . ,m, the message propagating scores from
uj ∈ U (d+1)

h to ui ∈ U (d) is denoted as R(d,d+1 ;h)
i←j . Then, the total score R(d)

i

propagated to ui is given by

R
(d)
i =

m∑︂
h=1

∑︂
uj∈U

(d+1)
h

R
(d,d+1 ;h)
i←j (2.32)

Generalizing now the α-β rule (2.10) to define the scores R(ℓ,ℓ+1 ;h)
i←j , for each

ℓ = d, . . . , L − 1 and for each h = 1, . . . ,m, observe that the conservation and
coherence properties are satisfied for the multitask NN N . Then, for the generality
of parameters n, m, and d considered, the LRP method characterized by the α-β
rule can be applied to multitask NNs characterized by the architecture described
in section 2.3.1.

2.3.4 Validation of the Expected Relevance Scores
Since aim at using the expected relevance scores returned by LRP to select an

arbitrary number p ∈ N, p ≤ n, of most relevant features in the domain of F ,
the validation criterion introduced in this work is different from the ones usually
adopted for LRP.

A common criterion used to evaluate an XAI algorithm used for outcome expla-
nation, like LRP, is the one that here is named excluding criterion. This criterion
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consists in analyzing how the predicted NN outcome changes if the p most im-
portant features of an input x, identified by the XAI algorithm, are modified to
an uninformative neutral value, obtaining an altered input x′ [126, 171]. Then,
given a second altered input xrand obtained from x setting p random components
to the neutral value, the excluding criterion analyzes how the predictions ˆ︂F (x′)
and ˆ︂F (xrand) change with respect to ˆ︂F (x): if the p most important input features
of x have been properly identified by the algorithm, the distance between ˆ︂F (x′)
and ˆ︂F (x) is significantly greater than the distance between ˆ︂F (xrand) and ˆ︂F (x). In
computer vision, where LRP has been mainly applied, each input feature is a pixel
color and the neutral value is usually assumed to be the gray color.

However, in the DFN context the excluding criterion is not easily applicable
due to the difficulty to define a suitable neutral value, and to the obstacles to
extend the criterion from a local XAI method for outcome explanation to a global
one for model interpretation, based on the expected relevance scores. Therefore, a
novel validation criterion is proposed here, called retaining criterion. The retaining
criterion involves the usage of the DFN simulator represented by the approximated
function F : A ⊆ Rn → Rm. Let F|p : A|p ⊆ Rp → Rm be a restriction of F with
respect to the p most relevant features of a given input x, identified by the XAI
algorithm; analogously, let x|p ∈ A|p be the restriction of x ∈ A ⊆ Rn. Then,
the criterion consists in comparing F|p(x|p) and F (x): if F|p(x|p) ≈ F (x), the
algorithm has correctly identified the p most relevant features of x.

The retaining criterion can also be extended easily to a global XAI algorithm
like the one defined in Section 2.1.3. In this case, the p most relevant features are
the p ones with highest expected relevance score and, therefore, are fixed for each
input x ∈ Rn. Then, the expected relevance scores returned by LRP perform a
good feature selection of p features if F|p(x|p) ≈ F (x) for each x ∈ A ⊆ Rn.

In general, observe that the new retaining criterion is characterized by the fol-
lowing advantages over the excluding criterion:

• absence of a neutral value usage and definition;

• easily extendable to a global XAI algorithm for model interpretation evalua-
tion;

• the possibility to compare the effects of different choices of p directly looking
at actual simulator outputs instead of model predictions.

Then, the retaining criterion is adopted for evaluating the quality of the backbones
identified with the new method described in the next section 2.3.5.

2.3.5 The Direct Method for Backbone Identification
Consider the NNs N ∗158,N ∗202 and the corresponding datasets ˜︁D158 , ˜︁D202 (see

Equation (2.23)), each one with cardinality | ˜︁D158| = | ˜︁D202| = 10 000 (see Subsection
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2.3.2). For each N ∗n ∈ {N ∗158,N ∗202} compute the vector of mean relevance scores
with respect to the set ˜︁Dn, i.e. the vector

r̄n := r̄ ( ˜︁Dn) = E˜︁Dn
[r(0)] = 1

| ˜︁Dn|
∑︂

(˜︁κ,φ)∈˜︁Dn

r(0) , (2.33)

using an LRP method characterized by the α-β rule with α = 1 and β = 0 (see
Equation (2.13), and Section 2.1.2). Then, looking at the values of r̄n, and recalling
that r̄n ≈ Eκ∼qκ [r(0)], it is possible to create a hierarchy for the fractures of the
DFN such that Fi is less relevant than or as relevant as Fj if

(r̄n)i = E˜︁Dn
[R(0)

i ] ≤ E˜︁Dn
[R(0)

j ] = (r̄n)j , (2.34)

for each i, j ∈ {1 , . . . , n}. In Figure 2.7 the sorted set of fractures with the cor-
responding mean relevance scores (r̄n)i are visualized, both for DFN158 and for
DFN202.

A first observation about the element values of r̄n, for each n = 158,202, is
that all the boundary fractures of the DFNs with exiting flux belong to the set
of fractures in the top 25% with the highest relevance scores. This observation
has non-trivial consequences: it is an important clue that the NNs N ∗n learned to
approximate F coherently with the topology of the network of fractures character-
izing the DFNs. Indeed, although one may think as an obvious consequence that
NNs mainly look at the inputs corresponding to the fractures with exiting flux, re-
member that the NNs N ∗n have no information about relationships between inputs
and outputs, except for the coupling they have access to during the training. In
particular, assuming that Fi is a boundary exit fracture, no information about the
strict physical-based relationship between the transmissivity κi and the computed
flux have been given to the NN.

The only exception to the general behavior observed for the outflux fractures
is the fracture F156 in DFN202: F156 is indeed an exit fracture, but looking at
the actual flux statistics for DFN202, F156 is characterized by an extremely low
flux, especially with respect to the ones of the other outflowing boundary fractures.
With reference to the box in Figure 2.7 (bottom), the fracture corresponds to the
leftmost column with crossing-lines texture. In general, observe that the mean
relevance score for fractures with exiting fluxes is characterized by a non-negligible
dependence on the mean value of the flux (Tables 2.4, 2.5). Indeed, an average
monotonically increasing trend is observed and reported in Figure 2.8.

Continue the analysis and focus on the sub-networks of both DFN158 and
DFN202 given by the set of fractures in the top 25% , 50% ,75% relevance scores,
respectively. First, some interesting observation about the topology of the graphs
that characterize the networks can be done: comparing the graph of the full DFNs
and the graphs of the sub-DFNs given by the 25% , 50% ,75% most relevant fractures
(Figures 2.9 and 2.10) the observations are the following:
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Figure 2.7: Mean relevance scores (r̄n)i (y axis) and corresponding fractures Fi (x
axis), sorted in ascending order w.r.t. the score values. Top: DFN158; bottom:
DFN202. The box in the top-left corner contains the first 60% of the sorted mean
relevance scores. Boundary fractures of the DFN have been highlighted with a
crossing-lines texture (exiting flux) and a horizontal-line texture (entering flux).
Only outflowing fractures are labeled.

1. The less relevant fractures are in general those belonging to dead-end branches
of the networks, since they are the first fractures removed when pruning the
DFN graphs to keep only the 75% most relevant ones;

2. Pruning further the DFN graphs (50% of most relevant fractures), other frac-
tures are removed, which are not dead-end fractures but belong to source-sink
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F8 F12 F14 F78 F90 F98 F107

E˜︁D158
[R(0)

i ] 0 .4371 0.7689 1.1326 2.6015 2.8107 3.3984 5.7554

E˜︁D158
[φj] 0.5372 1.8071 7.0173 13.4984 24.6603 26.8003 67.2993

Table 2.4: DFN158. Mean relevance scores and mean flux values (mm2/s) of
outflux boundary fractures (on ˜︁D158). Columns sorted w.r.t. the mean relevance
score (ascending order)

F156 F187 F115 F15 F180 F18 F93

E˜︁D202
[R(0)

i ] 0.4020 0.6648 0.7487 0.7516 0.9421 0.9974 1.0520

E˜︁D202
[φj] 0.2118 1.4390 2.6950 1.3839 1.9175 2.9906 2.4751

F61 F176 F31 F173 F8 F73 F162

E˜︁D202
[R(0)

i ] 1.3964 1.4791 1.7046 2.7052 2.8025 3.4430 7.5665

E˜︁D202
[φj] 5.2791 6.5818 6.5228 11.4715 27.0487 19.9980 56.0594

Table 2.5: DFN202. Mean relevance scores and mean flux values (mm2/s) of
outflux boundary fractures (on ˜︁D202). Columns sorted w.r.t. the mean relevance
score (ascending order)

paths (i.e., paths in the graph that start from any inlet fracture and end in
any outlet fracture); removing this fractures is likely to reduce the number of
source-sink paths. However, it is worth noting that at least one source-sink
path is always left. In particular, the bottleneck fractures (i.e., the cut nodes
of the graphs) belonging to source-sink paths are not removed. A clear exam-
ple is the single fracture that keeps connected the two main halves of DFN158
(see Figure 2.9);

3. Pruning too much the graphs (25% of most relevant fractures) does not guar-
antee to preserve the connectivity between outflow and inflow fractures and
some bottleneck nodes can be removed from the graphs (see Figure 2.10);

4. In the DFN158 case, the LRP algorithm seems to be more sensitive to the
actual physical relevance of the fractures in the flux problem than in the
DFN202 case. Indeed, for DFN202, in the set of 25% most relevant frac-
tures, five of the outflowing ones belong to a connected component without
inlet fractures; these fractures (F15,F18,F115,F180,F187), disconnected from
any source of flux, are deemed by the LRP algorithm as less relevant than the
other outflowing ones that are at the end of a source-sink path. Moreover,
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Figure 2.8: DFN158 case (left) and DFN202 case (right). Plot of Mean relevance
scores versus mean flux values (mm2/s) of boundary fractures with exiting flux,
computed with respect to ˜︁Dn.

fractures F15,F18,F115,F180,F187 are characterized by a mean relevance score
lesser than one (see Table 2.4).
The explanation of this behavior is likely to dwell into the higher number of
bottleneck fractures characterizing DFN202 with respect to DFN158. Indeed,
the more the bottleneck nodes, the more little differences in the relevance
scores can bring to inaccurate fracture removals.

As a final analysis to confirm that the process outlined is able to detect a subnet-
work of the DFN that can be considered its backbone, numerical simulations are run
on all the sub-DFNs previously introduced. The candidate backbones sub-DFNs
are denoted as DFN158|25%, . . . , DFN202|75%). More precisely, these simulations
run using as input parameters the same transmissivity values of the full DFNs, but
restricted to the remaining fractures of the sub-DFN.

After running these simulations for the sub-DFNs, the total flux exiting from the
sub-networks is compared with the one of the corresponding full DFN, observing
very similar behaviors (see Figure 2.11) that are confirmed by the values reported
in Tables 2.6 and 2.7. In general, for DFN158 the sub-DFNs approximate better
the behavior of the full-DFN total flux than in the DFN202 case; the reason is
attributable to the observations written at item (4). Coherently with the physics
of the problem, it can be observed a general decrease of the total exiting flux
while pruning the DFN fractures in the graph; however, in both cases (DFN158
and DFN202) a good conservation of the mean total flux and a almost perfect
conservation of the standard deviation of the same quantity. In particular, looking
at Tables 2.6 and 2.7 the removal of the 75% of the fractures make lose only 14.38%
of the flux in DFN158 and 29.01% of the flux in DFN202.

The simulations run on all the sub-DFNs proved that backbones for both DFN158
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Figure 2.9: Graphs representing networks of fractures. From top to bottom, left to
right: DFN158, DFN158|75%, DFN158|50%, DFN158|25%. Triangles/diamonds are
fractures with exiting/entering fluxes.

DFN158 DFN158|75% DFN158|50% DFN158|25%

E[ ∑︁φ ] 141.6738 136.8680 (96.61%) 133.5348 (94.26%) 121.2997 (85.62%)

σ[ ∑︁φ ] 27.5962 27.5345 (99.78%) 27.3233 (99.01%) 27.0040 (97.85%)

DKL/E - 0.0028 0.0077 0.0451

Table 2.6: DFN158. Mean value and standard deviation of the total flux for the
DFN and its sub-DFNs (percentages are computed w.r.t. the DFN values). Last
row shows DKL/E for the flux distributions of sub-DFNs with respect to the one of
the DFN.

and DFN202 have been discovered thanks to the NNs N ∗158 and N ∗202, respectively.
In fact, the identified sub-networks of fractures in the DFNs approximate the flux
behaviours of the full networks with respect to 10 000 samplings of transmissivity
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Figure 2.10: Graphs representing networks of fractures. From left to right:
DFN202, DFN202|75%, DFN202|50%, DFN202|25%. Triangles/diamonds stars are
fractures with exiting/entering fluxes.

DFN202 DFN202|75% DFN202|50% DFN202|25%

E[ ∑︁φ ] 146.0742 142.9892 (97.89%) 128.2563 (87.80%) 103.6958 (70.99%)

σ[ ∑︁φ ] 37.4519 37.2404 (99.44%) 36.3729 (97.12%) 37.4810 (100.08%)

DKL/E - 0.0007 0.0217 0.1045

Table 2.7: DFN202. Mean value and standard deviation of the total flux for the
DFN and its sub-DFNs (percentages are computed w.r.t. the DFN values). Last
row shows DKL/E for the flux distributions of sub-DFNs with respect to the one of
the DFN.

vectors κ ∈ Rn (n = 158,202). Then, it is possible to identify a backbone for a
given DFN with a given NN that approximates sufficiently well the function F for
the actual exiting fluxes computation.
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Figure 2.11: Total flux comparisons, for both DFN158 (left) and DFN202 (right),
with respect to the probability density functions of their sub-DFNs.

The backbones built using the method illustrated in this section are characterized
by the property of being robust with respect to different choices of transmissivity
vectors, preserving approximately the total flux behavior. Thus, this backbones
theoretically could be able to conserve also the first passage time of particles for
transport problems (QoI conserved by backbones in [178, 9, 107, 106, 179]), since
this quantity depends on the fluxes characterizing the DFN. However, further stud-
ies should be done to confirm this hypothesis, but they are not part of the purpose
of this work.

2.3.6 The Refined Method for Backbone Identification
Subsection 2.3.5 has shown that by computing the expected relevance scores

with the LRP method for N ∗158 and N ∗202, it is possible to identify backbones for
DFN158 and DFN202 characterized by a good approximation of the total exiting
flux of the corresponding full DFNs. However, sorting the DFN fractures with
respect to the scores, it has been observed that not important fractures (e.g. the
ones belonging to DFN dead-ends branches) sometimes have a higher score than
other fractures, especially in lower scores cases (see Figure 2.12, see item (4), p.41).
Therefore, the backbone identification method described in Subsection 2.3.5 can be
refined by taking into account the fractures of the dead-end branches that, for a
better evaluation of the abilities of the new LRP-based feature selection method,
were intentionally not removed from the network.

The main idea behind the refinement follows: fix an arbitrary percentage step p;
create iteratively a sequence of sub-DFNs by alternating two main steps repeated
until reaching a minimum percentage threshold τ of the starting total fractures:

• a graph-pruning step that removes dead-end branches from the current sub-
DFN. Moreover, the sorted sequence of expected relevance scores is updated
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Figure 2.12: Mean relevance scores (r̄n)i (y axis) and corresponding fractures Fi
(x axis), sorted in ascending order w.r.t. the score values. Top: DFN158; bottom:
DFN202. Box in top-left corner: the first half of the sorted mean relevance scores.
DFN boundary fractures have been highlighted with a crossing-lines texture (exiting
flux) and a horizontal-line texture (entering flux). DFN fractures belonging to dead-
end branches are the darkest ones. Only outflowing fractures are labeled.

by removing the same fractures removed from the sub-DFN;

• a graph-pruning step keeping a specific percentage of fractures according to
the updated expected relevance scores (as described in Subsection 2.3.5);

More specifically, the whole refinement procedure is described by Algorithm 2.3.1.
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Algorithm 2.3.1 (Refined Backbone Identification).

Data: G (graph of the full DFN), p ∈ (0,1) (percentage step), L (fracture/node
sequence, sorted in increasing order with respect to the relevance score value),
τ ∈ (0,1) (minimum percentage threshold).

Outputs: L (sequence containing the subs-sequences of L and characterizing the
sub-DFNs).

Procedure Refined Backbones(G,L, p, τ):

1. L ← empty sequence;
2. N0 ← number of nodes in G; (num. of fractures of the full DFN)
3. ρ ← 1; (percentage counter)
4. R ← subset of G’s nodes s.t. they belong to dead-end branches;
5. L ← remove all the v ∈ R from L; (L still sorted w.r.t. relevance

scores)
6. G ← sub-graph of G given by nodes in L;
7. N ← number of nodes in G;
8. while N/N0 > τ do:
9. while ρ ≥ N/N0 do: (in case (|R|/N0) > p)

10. ρ ← ρ− p;
11. end while
12. if ρ < τ do break;
13. L ← last round(ρN0) elements of L; (L still sorted w.r.t. relevance

scores)
14. G ← sub-graph of G given by nodes in L;
15. repeat lines 4-7;
16. add G to L;
17. end while

In Algorithm 2.3.1, the step corresponding to the removal of the dead-ends,
both from the graph and the sequence of relevance scores, is described in lines 4-7;
the step that keeps only a particular number of fractures (i.e. [ ρN0 ]) with higher
relevance score (as in Subsection 2.3.5) is described in lines 13-14. In general, the
algorithm returns, for each DFN, a sequence of sub-DFNs(︂

DFN|(ρi−ϵi)100%
)︂
i=1,...,s

, (2.35)
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while-step 1 while-step 2

remove

dead-ends

[ρ1N0] most

rel. fractures

remove

dead-ends

[ρ2N0] most

rel. fractures

remove

dead-ends

DFN158 87 (55.06%) 79 (50%) 77 (48.73%) 40 (25.32%) 39 (24.68%)

DFN202 108 (53.47%) 101 (50%) 99 (49.01%) 51 (25.25%) 46 (22.77%)

Table 2.8: Summary of outcome of Algorithm 2.3.1 (p = τ = 0.25) showing the
number of nodes in G at each step (percentages are w.r.t. the initial number of
nodes). Bold values characterize the returned sub-DFNs.

where s is the number of main iterations executed by the algorithm, ρi is the value
of ρ at the i-th iteration and ϵi is the percentage of fracture removed at line 15 at
the i-th iteration. The stopping criteria of the algorithm are such that ρs is always
greater than the threshold τ but τ > ρs − p; on the other hand, (ρs − ϵs) can be
lesser than τ , if the dead-end fractures in DFN|ρs are more than (ρs− τ)N0. In this
last case, the stopping criterion of the main while loop is reached. Concluding the
description of the algorithm, the role of the inner while loop (line 9) is only to skip
the values of ρ such that ρN0 is greater than the current number of nodes in G.

One of the most important observation for Algorithm 2.3.1 is that such a kind
of refinement actually has a negligible computational cost, since the computation
of dead-end branches of a graph is not expensive; all the remaining operations are
the same ones illustrated in Subsection 2.3.5.

Now, the refined method can be applied to DFN158 and DFN202. Then, a
comparison of the results with the previous ones is conducted. For both DFN158
and DFN202, Algorithm 2.3.1 run with p = τ = 0.25, such that it should return a
sequence of sub-DFNs(︁

DFN|(0.75−ϵ1)100%, DFN|(0.50−ϵ2)100%, DFN|(0.25−ϵ3)100%
)︁

(2.36)

comparable with those computed in Subsection 2.3.5. However, since both in
DFN158 and in DFN202 the number of fractures belonging to dead-end branches is
greater than 25% of the total number of fractures, Algorithm 2.3.1 does not return
the first element of sequence (2.36). A brief summary of the operations performed
by the refined method is described in Table 2.8.

Looking at the sub-DFNs graphs obtained with the refined method (see Figure
2.13), observe that from all the influx fractures exist a path that ends in an outflux
fracture. This simple fact is actually very important; indeed, it is an evidence of
the efficiency of the refined method introduced, since the original method was not
able to preserve a source-sink path for each influx fracture of the sub-DFNs (e.g.,
recall the observations made for DFN202|25%).
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Figure 2.13: Graphs representing the network of fractures of: DFN158|48.73%
(top-left), DFN158|24.68% (top-right), DFN202|49.01% (bottom-left), DFN202|22.77%
(bottom-right). Triangles/diamonds are fractures with exiting/entering fluxes.

Conclude the comparison analysing the total fluxes exiting from the new sub-
DFNs. The values in Tables 2.9 and 2.10 show that the sub-DFNs obtained with
the refined method are characterized by a better flux approximation of the total
flux exiting from the full DFN (see also Figures 2.14 and 2.15 for a visual compari-
son). Therefore, in the end, the method characterized by Algorithm 2.3.1 is a good
refinement of the method proposed in Subsection 2.3.5, returning subnetworks of
the DFN that can be considered its backbones.

2.4 Conclusions and Future Directions
This chapter has highlighted the compelling opportunities offered by the class

of algorithms named eXplainable Artificial Intelligence (XAI). In particular, it has

49



2 – Explainable Artificial Intelligence for Modeling Insights

DFN158 DFN158|48.73% DFN158|24.68%

E[ ∑︁φ ] 141.6738 138.2734 (97.60%) 124.8932 (88.15%)

σ[ ∑︁φ ] 27.5962 27.5544 (99.85%) 26.9265 (97.57%)

DKL/E - 0.0014 0.0314

Table 2.9: DFN158. Mean value and standard deviation of the total flux for the
DFN and its sub-DFNs computed with Algorithm 2.3.1 (percentages are computed
w.r.t. the DFN values). Last row shows DKL/E for the flux distributions of sub-
DFNs with respect to the one of the DFN.

DFN202 DFN202|49.01% DFN202|22.77%

E[ ∑︁φ ] 146.0742 142.9952 (97.89%) 112.4792 (77.00%)

σ[ ∑︁φ ] 37.4519 37.5844 (100.35%) 38.0651 (101.64%)

DKL/E - 0.0008 0.0695

Table 2.10: DFN202. Mean value and standard deviation of the total flux for the
DFN and its sub-DFNs computed with Algorithm 2.3.1 (percentages are computed
w.r.t. the DFN values). Last row shows DKL/E for the flux distributions of sub-
DFNs with respect to the one of the DFN.

Figure 2.14: Total flux comparisons, for both DFN158 (top) and DFN202 (bottom),
with respect to the probability density functions of all their sub-DFNs (computed
with both two methods described in this work).

shown how algorithms and methods of XAI could provide insights about the natu-
ral world. This work has deeply described and formalized the Layer-wise Relevance
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Propagation (LRP) algorithm for outcome explanation. In addition, it has proposed
an extension to globally investigate a studied ML model on all its data domain.
The described pipeline illustrates the attractive possibilities offered by the interac-
tion between a numerical model simulating a physical phenomenon and the XAI
algorithm applied to NNs. In particular, if the data source is a numerical simulator,
an NN approximating the simulator paired with an XAI algorithm can enrich the
investigation of the phenomenon of interest.

The DFN case study represents an example of this possibility. Indeed, the ex-
periments show that the multitask NN is able to correctly approximate the original
simulator F , and the LRP algorithm identifies the subset of significant fractures
causing the outflow. From a statistical perspective, the excluded fractures are
irrelevant for the flow propagation. The proposed extension of LRP as a model in-
terpretation method has made possible the mentioned interaction, allowing a model
analysis on all the domain space of the input variables. The evidences are confirmed
by the validation procedure, which employs a simplified simulator inferred by the
features extracted according to the result of the global LRP algorithm. Moreover,
the simplified simulator represents a down scale of the problem. It provides a faster
tool to analyze the same quantities of interest. In addition, the refined procedure
have improved the LRP algorithm capabilities of selecting the relevant fractures for
the outflow. Future research can explore the limitations of the global LRP method
and employ more recent algorithms inside a similar pipeline. Furthermore, an open
question remains how precisely measure the quality of the computed relevance.

These experiments are in line with the principles that define Theory-guided
Data Science [112] recalled in the introductory Chapter 1. The proposed pipeline is
generalizable to other ML models and XAI algorithms. In addition, the discussed
framework is suitable for other domains and problems in science and engineering.
Furthermore, it opens appealing impacts on industrial applications whenever the
simulator is the primary object to infer the occurring events.
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Figure 2.15: Mean total flux comparison for both DFN158 (left) and DFN202
(right), with respect to their sub-DFNs. Continuous line characterizes the values
corresponding to the sub-DFNs obtained with the refined method. Dotted lines
characterize the values corresponding to the sub-DFNs obtained with the not refined
method. 52



Chapter 3

Inserting knowledge into
Neural Networks

3.1 A New Architecture for Graph Regression
Tasks

Graphs are frequently used to describe and study many phenomena, such as
transportation systems, epidemic or economic-default spread, electrical circuits,
and social interactions; the literature typically refers to the use of graph theory to
analyze such phenomena with the term “network analysis” [38].

Recently, the neural network (NN) community have proposed new key contri-
butions to network analyses; in particular, Deep Learning (DL) approaches [122]
can be extended to graph-structured data via graph neural networks (GNNs). The
origin of GNNs dates back to the late 2000s [88, 131, 166], when their process-
ing was still too computationally expensive [191]. Nonetheless, the huge success
of Convolutional Neural Networks (CNNs) [86] inspired a new family of GNNs,
re-defining the notion of convolution for graph-structured data and developing the
graph convolutional networks (GCNs). According to the taxonomy defined in [191],
two main families of GCNs can be observed: the spectral-based GCNs [41, 53, 115],
which are based on the spectral graph theory, and the spatial-based GCNs [77, 95,
134, 143], which aggregates the information of neighbor nodes’. In particular, the
spatial-based GCNs are nowadays preferred in many applications, thanks to their
flexibility and efficiency [191].

Typically, GCNs are used to perform the following tasks on graph data [191]:
(i) semi-supervised node regression or classification; (ii) edge classification or link
prediction; and (iii) graph classification. Nonetheless, even if GCNs have been
proven to be good instruments to learn graph data, some challenges still exist. The
two main challenges for GCNs are [191]: first, to build deep architectures with
good performances; second, to be scalable for large graphs. The first issue is the
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most problematic one; indeed, the success of DL lies in its depth, but the literature
suggests that going deeper into a GCN is not usually beneficial [191]. Moreover, ex-
perimental results for the spectral-based GCNs showed that performances dropped
considerably as the number of graph convolutional layers increased [123].

This chapter presents a new type of spatial-based graph convolutional layer
designed for regression tasks on graph-structured data, a framework for which pre-
vious GCNs are not well suited. Given a graph G with n nodes, a regression
task on graph-structured data based on G consists of approximating a function
F : Ω ⊆Rn → Rm, m ≤ n, depending on the adjacency matrix of G. In addition,
F takes as input a vector of feature values assigned to the nodes of G, and it re-
turns the m values related to a fixed subset of m nodes. This type of regression
task has applications in many interesting fields, such as circulation with demand
(CwD) problems (see [116, chap. 7.7]), network interdiction models (NIMs) [57],
and flux regression problems in underground fractured media [26, 35]. A classic
multi-layer perceptron (MLP), or its suitable variants, can perform this regression
task on the graph data with a good performance [35, 26], implicitly learning the
node relationships during the training (see [32, 34]). On the other hand, the cur-
rent GCNs in the literature are not comparable to MLPs for such a regression task;
indeed, as mentioned above, they are designed mainly for other kinds of tasks and,
in practice, they cannot exploit deep architectures. Then, the idea is to define
a new graph convolutional layer that exploits the graph structure to improve the
training of the NN (compared to an MLP), and that makes it possible to build
deep NN architectures. The new convolution operation for graph data defined here
belongs to the class of message passing NNs [40, 80] and it is directly inspired by
the convolution of CNNs [86, chap. 9]. Nonetheless, similarities with other spatial-
based GNN exists, like the graph layers of NN For Graph (NN4G) [131], or the
Diffusion-Convolutional NN (DCNN) [15].

Informally, the simplest version of our graph layer is characterized by a filter
with one weight wi associated with each graph node vi. Then, the output feature
of a node is computed by summing up the input features of the node itself and
of its neighbors, where each one is multiplied by the corresponding node weights.
The new type of graph layer is called Graph Informed (GI) layer. Indeed, given a
scalar value wj associated with each graph vertex vj, a GI layer looks like a fully-
connected (FC) layer where, for each unit vi connected with a unit vj of the previous
layer, the weight wji is equal to 0 if (vj, vi) is not an edge of the graph and i /= j,
otherwise wji = wj (see Equation (3.4) in Section 3.2). These NNs are defined
as Graph-Informed Neural Networks (GINNs). The feature map representation of
deeper layers in GINNs is built by filtering out the connections among NN units of
subsequent layers that are not connected in the graph describing the task. Thus, the
process of representation learning is informed by the graph connectivity. Numerical
experiments show the potentiality of the GI layers, which involves training deep
NNs made up of a sequence of GI layers. In particular, the numerical experiments
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showed that GINNs performs better than MLPs for the studied regression tasks.
An emerging observation from the experiments concerns the NN depth: in contrast
with the previous GCNs, the depth seems beneficial for GINNs.

The work is organized as follows: in Section 3.2, the GI layers are formally
introduced and defined, explaining their fundamental operations, properties, sim-
ilarities, and differences with respect to other spatial-based graph convolutional
layers. Section 3.3 presents a case study derived from the problem of maximum-
flow: in the classic formulation, given a flow network described by a graph with
a source, a sink and edges capacities, the objective is to compute the maximum
flow value between the source and the sink. The classic formulation is extended to
the stochastic maximum-flow problem, where the capacities of the flow network are
modeled by random variables. The stochastic maximum-flow problem is translated
to a graph regression task, to provide the first experimental case study. The sec-
ond case study is the real-world application to Discrete Fracture Networks, already
presented in Section 2.2: the flux regression problem of underground networks of
fractures. Section 3.4 is dedicated to the numerical experiments; in particular, it
analyzes the regression performance of the GINNs on the two presented case stud-
ies, and it compares the results with the MLPs baseline on the same problems.
Section 3.5, summarizes the obtained results, draw conclusions and discusses the
possibilities of future research.

3.2 Formalizing the Graph-Informed Layer
In this section, staring from the adjacency matrix of a graph, the mathematical

formulation of the new GI layer is introduced. In particular, this part details the
formalism that defines the function LGI , describing a GI layer LGI . From now on,
the function describing a generic NN layer will be denoted as the characterizing
function of the layer.
Definition 3.2.1 (Graph-Informed layer: basic form). Let A ∈ Rn×n be the
adjacency matrix characterizing a given graph G = (V,E) without self-loops, and
let ˆ︁A be the matrix ˆ︁A := A + In, where In ∈ Rn×n is the identity matrix. Then, a
graph-informed (GI) layer LGI , with respect to the graph G, is an NN layer with
n units connected to a layer with outputs in Rn with a characterizing function
LGI : Rn → Rn defined by

LGI(x) = f
(︂ ˆ︂W⊤ x + b

)︂
, (3.1)

where:

• Given a vector w ∈ Rn of weights associated with the vertices V , the defined
filter of LGI the matrix ˆ︂W is obtained by multiplying the i-th row of ˆ︁A by the
weight wi, i.e.,
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ˆ︂W := diag(w)Â , (3.2)
where diag(w) is the diagonal matrix with a diagonal that corresponds to vector
w;

• Given the layer activation function f : R → R, f denotes the element-wise
application of f ;

• b ∈ Rn is the vector of biases.

Broadly speaking, given a directed graph G = (V,E), with n nodes and an
adjacency matrix A ∈ Rn×n, the main idea behind a GI layer is to generalize the
convolutional layer filters to the graph-structured features. Indeed, the objective
is to endow the layer with the implicit relationship between the features of the
adjacent graph nodes, and also to take advantage of the sparse interaction- and
parameter-sharing properties typical of convolutional NNs (see [86, chapter 9.2]).

Convolutional layers rely on the identification of images as lattices of pixels. The
main idea for the GI layer formulation is to adapt convolutional layer concepts to
graphs that are not characterized by a lattice structure. The filter mechanisms of
the convolutional layers is here generalized to graph-structured data, introducing
the concept of graph-based filters. In practice, for each node of the graph G, con-
sider a weight wj which is associated to node vj ∈ V and re-define the convolution
operation as

x′i =
∑︂

j∈Nin(i)∪{i}
xj wj + bi , (3.3)

where

• xj denotes the input feature of node vj ∈ V , for each j = 1, . . . , n;

• Nin(i) is the set of indices j, such that there exists an incoming edge (vj, vi) ∈
E;

• bi is the bias corresponding to node vi;

• x′i is the output feature associated to vi, computed by the filter (see Figure 3.1).

For a undirected graph G, Equation (3.3) does not change, since a undirected
edge {vj, vi} is equivalent to two directed edges, (vj, vi) and (vi, vj). Indeed, Defi-
nition 3.2.1 holds for both directed and undirected graphs.

Similar to the convolutional layers, which act on the current pixel and on all its
neighbors for computing the output feature, in (3.3) the layer acts on xi and on
the values associated with the incoming neighbors of vi for the computation of x′i
(see Figure 3.1). Nonetheless, despite the inspiration received from convolutional
layers, a GI layer LGI described by (3.3) can be seen also as a constrained FC layer,
where the weights are such that
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wji =

⎧⎪⎪⎨⎪⎪⎩
wj , if (vj, vi) ∈ E
wi , if j = i

0 , otherwise
, (3.4)

for each i, j = 1, . . . , n.
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Figure 3.1: Case of undirected graph with n = 4 nodes. Example of the action of
a filter w ∈ R4 (grey “layer” of the plot) of a GI layer, applied to feature x1 of
the first graph-node v1, for the computation of x′1; for simplicity, the bias is not
illustrated. The orange edges describe the multiplication of feature xi, of node vi,
with the filter’s weight wi, for each i = 1, . . . ,4.

In the next sections, generalizations of the action of these kinds of layers are
provided in order to make possible to:

(i) receive any arbitrary number K ≥ 1 of input features for each node;

(ii) return any arbitrary number F ≥ 1 of output features for each node.

3.2.1 Generalization to K Input Node Features
Equation (3.1) describes the simplest case of GI layers, where just one feature is

considered for each vertex of the graph for both the inputs and the outputs. The
previous definition can be generalized by taking into account a larger number of
features tackled by LGI .
Definition 3.2.2 (Graph-Informed layer with K input features per node).
Let G,A, and ˆ︁A be as in Definition 3.2.1. Then, a GI layer with K ∈ N input
features is an NN layer with n units connected to a layer with outputs in Rn×K with
a characterizing function LGI : Rn×K → Rn defined by

LGI(X) = f
(︂˜︂W⊤vertcat(X) + b

)︂
, (3.5)
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where:

• X ∈ Rn×K is the input matrix (i.e., the output of the previous layer) and
vertcat(X) denotes the vector in RnK obtained by concatenating the columns
of X;

• Given the matrix W ∈ Rn×K, the defined filter of LGI , whose columns w·1, . . . ,w·K ∈
Rn are the vectors of weights associated with the k-th input feature of the
graph’s vertices, the matrix ˜︂W ∈ RnK×n is defined as

˜︂W :=

⎡⎢⎢⎢⎢⎣
ˆ︂W (1)

...ˆ︂W (K)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
diag(w·1) ˆ︁A

...

diag(w·K) ˆ︁A

⎤⎥⎥⎥⎥⎦ ∈ RnK×n . (3.6)

The idea behind the generalization from Definitions 3.2.1 to 3.2.2 is rather sim-
ple. Let L be an NN layer with outputs in Rn×K , K ≥ 1. Therefore, a generic
output of L is a matrix X ∈ Rn×K , whose row i ∈ {1, . . . , n} describes the K
features xi1, . . . , xiK of node vi; on the other hand, each column x·1, . . . ,x·K of X
is equivalent to the output of an NN layer with outputs in Rn.

Therefore, the generalization consists of summing up the action of the K “basic”
single-input filters w·1, . . . ,w·K , where each one is applied to x·1, . . . ,x·K , respec-
tively; then, the bias vector is added to this sum, and the activation function is
applied. However, this approach is equivalent to (3.5), i.e., defining one filter W
obtained from the concatenation of the basic filters. Indeed:

K∑︂
k=1

ˆ︂W (k)⊤x·k = ˜︂W⊤vertcat(X) . (3.7)

Remark 3.2.3 (Parallelism with convolutional layers). It is worth noting
that the operations summarized in (3.5) are an adaptation of the convolutional layer
operations to the graph-based inputs. Indeed, the input X ∈ Rn×K is equivalent
to an n × 1 image with K channels, while w·k is equivalent to the part of the
convolutional filter corresponding to the k-th channel of the input image. Then,
the output LGI(X) ∈ Rn is equivalent to the feature map of the convolutional layers.

3.2.2 Generalization to F Output Node Features
A further generalization (3.5) is possible by increasing the number of output

features per node returned by the GI layer. This operation is equivalent to building
a GI layer characterized by a number F ≥ 1 of matricial filters, where each one used
to compute one of the output features. In a nutshell, the output of these general
GI layers is a matrix Y ∈ Rn×F whose l-th column y·l ∈ Rn, l = 1 . . . , F , describes
the l-th feature of the nodes of G.
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Definition 3.2.4 (Graph-Informed layer: general form). Let G,A, ˆ︁A be as
in Definition 3.2.1. Then, a GI layer with K ∈ N input features and F ∈ N output
features is an NN layer with nF units connected to a layer with outputs in Rn×K

with a characterizing function LGI : Rn×K → Rn×F defined by

LGI(X) = f
(︂˜︂W⊤vertcat(X) +B

)︂
, (3.8)

where:

• Define the filter of LGI , the tensor W ∈ Rn×K×F , given by the concatenation
along the third dimension of the weight matrices W (1), . . .W (F ) ∈ Rn×K, cor-
responding to the F output features of the nodes. Each column w

(l)
·k ∈ Rn of

W (l) is the basic filter describing the contribution of the k-th input feature to
the computation of the l-th output feature of the nodes, for each k = 1, . . . , K,
and l = 1, . . . , F ;

• The tensor ˜︂W ∈ RnK×F×n is defined as the concatenation along the second
dimension (i.e., the column dimension) of the matrices ˜︂W (1), . . . , ˜︂W (F ), such
that

˜︂W (l) :=

⎡⎢⎢⎢⎢⎣
ˆ︂W (l,1)

...ˆ︂W (l,K)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
diag(w(l)

·1 ) ˆ︁A
...

diag(w(l)
·K) ˆ︁A

⎤⎥⎥⎥⎥⎦ ∈ RnK×n , (3.9)

for each l = 1, . . . , F . Before the concatenation, the matrices ˜︂W (1), . . . , ˜︂W (F )

are reshaped as tensors in Rnk×1×n (see Figure 3.2);

• the operation ˜︂W⊤vertcat(X) is a tensor–vector product (see Remark 3.2.6);

• B ∈ Rn×F is the matrix of the biases, i.e., each column b·l is the bias vector
corresponding to the l-th output feature of the nodes.

Notation 3.2.5. From now on, for the sake of simplicity, for each matrix X ∈
Rn×K , denote by x the vector vertcat(X) ∈ RnK .
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col.-dim.

3rd dim.

row-dim.

ˆ︂W (1,1)

...

ˆ︂W (1,K)

˜︂W (1)

˜︂W (2), . . . ,˜︂W (F −1)

ˆ︂W (F,1)

...

ˆ︂W (F,K)

˜︂W (F )

Figure 3.2: Tensor ˜︂W obtained concatenating along the second dimension of the
matrices ˜︂W (1), . . . , ˜︂W (F ) ∈ RnK×n. Before the concatenation, the matrices are
reshaped as tensors in Rnk×1×n.

The generalization of (3.5) to the case of F output features is built as a function
that, for each X ∈ Rn×K , a matrix is returned Y ∈ Rn×F whose l-th column y·l,
for l = 1, . . . , F , is defined as the application of (3.5) with respect to a proper filter
W (l) ∈ Rn×K . Indeed, given

y·l = f
(︂˜︂W (l)⊤x + b·l

)︂
(3.10)

where b·l ∈ Rn is the bias vector associated to the l-th filter, obtain

Y =
[︃
y·1 · · · y·F

]︃
=[︃

f
(︂˜︂W (1)⊤x + b·1

)︂
· · · f

(︂˜︂W (F )⊤x + b·F
)︂]︃

= f
(︂˜︂W⊤x +B

)︂
.

Simply stated, the generalization to the F output features can be interpreted
as a repetition of (3.5), with respect to F different filters and biases, grouping the
results in a matrix Y .
Remark 3.2.6. Recall that the matrix-tensor product of a matrix M ∈ Rp×q by a
tensor T ∈ Rq×r×s is given by

M ·T = P ∈ Rp×r×s ,
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where the (i, j, k)-th component pijk of the tensor P is defined as

pi j k =
q∑︂

h=1
mi hth j k ,

where mih and thjk are components of M and T, respectively. Analogously, it is
possible to extend this product to tensor–matrix or tensor–tensor pairs.

Moreover, for a three-way tensor as ˜︂W, recall that the transpose is defined such
that the (i, j, k)-th element of ˜︂W⊤ is equal to the (k, j, i)-th element of ˜︂W.
Remark 3.2.7 (Total number of parameters). The total number of parameters
in a GI layer, with a characterizing function (3.8), is nKF + nF , i.e., the number
of weights plus the number of biases. Remember that the number of parameters of
a fully-connected layer, with an input shape n and an output shape M is nM +M ;
then, in the case of M = n and (KF + F ) < (n + 1), observe that the GI layers
have a smaller number of parameters to be trained. This observation is important
in the case of very large graphs G (i.e., n≫ 1).

3.2.3 GINNs compared to other Graph Neural Networks
To the best of the authors’ knowledge, the GI layers introduced above define a

novel typology of spatial GCNs. As stated in [40], the design and study of GNN
layers is currently a vibrant area of research for deep learning, and a complete
summary and comparison between different models is challenging and out of the
scope of this chapter. Nonetheless, the GINN layer clearly belongs to Message
Passing NNs, firstly defined by [80] and recalled in [40]. In addition, as already
commented above, it belongs to the convolutional class of message passing NNs,
like other previous works [53, 115, 190]. Formally, define as h(ℓ) the output vector
of the ℓ-th layer of a NN architecture, where h(0) = X ∈ Rn×K is the input feature
matrix. As reported by [40], graph convolutional layers computes the component i
corresponding to the node vi of h(ℓ+1) as:

h
(ℓ+1)
i = g1(h(ℓ)

i ,
⨁︂

j∈N (i)
cij g2(h(ℓ)

j )), (3.11)

where g1 and g2 are learnable function; ⨁︁ is an aggregation operator over the
neighborhood of i, like the summation; cij is a constant representing an importance
measure of vj to vi. The above formulation is quite general, and it comprises the
GINN formulation. Indeed, recalling the weight vector w of Equation (3.2), the
GINN layer formulation can be stated in terms of Equation (3.11) by fixing ⨁︁ as
the summation, cij = 1, and:

g2(h(ℓ)
j ) = w

(ℓ)
j h

(ℓ)
j

g1(h(ℓ)
i , α) = f(w(ℓ)

i h
(ℓ)
i + α) with a generic α ∈ R,
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where f is the layer activation function. Differently from the GINN layer, the
mentioned previous approaches [53, 115, 190] restate the convolution operator using
the spectral representation of the graph, and specifically the spectral decomposition
of the graph Laplacian associated with the graph G. As stated by [53], the spectral
decomposition is introduced because of the need of faster computations of the graph
convolutional operations.

A comparison that deserves special care is the one with NN4G, that is reputed
the first GNN [191]. Indeed, Equation (3.1) partially resembles the NN4G layer
(see [191, sec. V.B.] and [131]). Restated according to the formalism of this section,
the NN4G characterizing function of a hidden layer ℓ, with ℓ ≥ 2, results in:

h
(ℓ)
i = f(

K∑︂
s=1

θ(ℓ)
s Xis +

ℓ−1∑︂
κ=1

∑︂
j∈N (i)

w
(κ,ℓ)
ij h

(κ)
i ,

where Xis is the feature s attributed to the node i of the feature input matrix X and
θ(ℓ)
s are learnable parameters. The first term links the input feature matrix with

the actual layer ℓ, so it resembles the residual connections later revisited for the
ResNet architecture [101]. The second summation is a form of skip connections,
that is, the extra connections between non-consecutive layers, later revisited for
the DenseNet architecture [103]. If κ = ℓ − 1, the third summation resembles
the formulation of the GINN as in Equation (3.3). In other words, it appears
that the simpler GINN architecture can be rebuilt by removing from NN4G the
mentioned forms of residual and skip connections. However, the formulation given
in this chapter by Equation (3.1) is generalized to the tensor form (3.8), that is,
to multiple input/output features, unlike the NN4G layers. It is worth noting that
a tensor form, such as (3.8), is very useful to manage graph-structured regression
problems with more than one feature per node.

Analogously, there are few similarities between the simple LGI layer of Equa-
tion (3.1) and the diffusion-convolutional NNs (DCNNs) of [15], but these GCNs
are still different from the GINNs. Indeed, DCNN layers are based on a degree-
normalized transition matrix, computed from the adjacency matrix, which expresses
the probability of going from node vi to node vj in one step [15], while GINN makes
use of the adjacency matrix by itself to filter the connections between consecutive
layers. Other similarities between the GINNs and GNNs models can be observed in
for the works of [59, 60], where the adjacency matrix is used to describe the flow of
information. Nonetheless, in [59], the NN is built connecting a set of simpler NNs,
according to the adjacency matrix. In [60], the interconnected NNs are trained
similarly to a physics-informed NN (see [155, 156]).

3.2.4 Additional Properties for GI Layers
The GI layers, in their general formulation (3.8), can be endowed with additional

operations. As is commonly done for the convolutional layers, the possibility to
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endow the GI layers with a pooling operation is added. However, this operation
is different from the one typically used in convolutional layers. Indeed, define a
pooling for GI layers that aggregates the information in the columns of the output
matrix, i.e., the values of the F output features of each graph vertex. Given a
reducing operation (e.g., the mean, the max, the sum, etc.), labeled as rdc, and
applied to each row of the matrix returned by (3.8), the pooling operation for GI
layers modifies (3.8) in the following way:

L(GI ; rdc)(X) = rdc
(︂
f
(︂˜︂W⊤x +B

)︂)︂
, (3.12)

where rdc is applied row-wise. For example, let Y ∈ Rn×F denote the argument
of the pooling operation in (3.12), namely Y = f

(︂˜︂W⊤x +B
)︂
; the max-pooling

operation for a GI layer is such that:

L(GI ; max)(X) =

⎡⎢⎢⎢⎢⎣
max{y11, . . . , y1F}

...

max{yn1, . . . , ynF}

⎤⎥⎥⎥⎥⎦ ∈ Rn . (3.13)

Note that the pooling operation can be generalized to the application of sub-
groups to filters, instead of to all the filters. In this case, the pooling operation
returns a matrix Y ∈ Rn×F ′ , with F ′ < F .

Another operation that is defined for GI layers is the application of a mask on
the graph, such that the layer returns values only for a subset {vi1 , . . . , vim} of the
chosen nodes. Let I = {i1, . . . , im} ⊆ {1, . . . , n} label the subset of nodes on which
output of the GI layer focuses on. Then, a GI layer with a mask operation defined
by the set I returns a sub-matrix Y ′ ∈ Rm×F of the matrix Y ∈ Rn×F defined by
(3.8), obtaining extracting rows with index in I; namely,

L(GI ; I)(X) =

⎡⎢⎢⎢⎢⎢⎣
(︂
f
(︂˜︂W⊤x +B

)︂)︂
i1 ·...(︂

f
(︂˜︂W⊤x +B

)︂)︂
im ·

⎤⎥⎥⎥⎥⎥⎦ ∈ Rm×F . (3.14)

Note that the mask operation does not use the adjacency matrix of the graph,
and it is employed in the numerical experiments only in the output layer of the
evaluated GINNs.

This section ends with the following proposition, characterizing the relationship
between the input and the output features of the graph nodes with respect to a
GINN with a subset of H consecutive GI layers. Before presenting the statement,
briefly recall some useful definitions of graph theory.

Given an undirected graph G = (V,E), two nodes vi and vj are said adjacent if
(vi, vj) ∈ E. A path over the graph G between two nodes vi and vj is a sequence of
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distinct nodes starting at vi and ending in vj, expressed as (vp0 = vi, . . . , vpS
= vj),

and such that for all s = 0, . . . S − 1, vs is adjacent to vs+1. The length of the
path is the length of the sequence minus 1, that is S − 1. The shortest path
between two nodes vi and vj is the path of least length between the same nodes.
Then, in the proposition below, the distance between two nodes vi, vj in the graph
G, denoted by distG(vi, vj), is the length of the shortest path between the same
nodes. In particular, if two nodes belongs to different connected components of the
graph, their distance is said to be infinity. In addition, if the graph G = (V,E) is
directed, define the associated undirected graph Ga = (Va, Ea) such that Va = V
and Ea = {(vi, vj) | (vi, vj) ∈ E or (vj, vi) ∈ E}. The proposition below focuses
on an undirected graph, but it can be generalized to a directed graph G via its
associated undirected graph Ga. The proof of the statement is straightforward.
Proposition 3.2.8 (Number of consecutive GI layers and node inter-
actions). Consider an undirected graph G, with the associated adjacency matrix
A ∈ Rn×n. Let H ∈ N, H ≥ 1 and consider a GINN with a subset of H consecu-
tive GI layers LGI1 , . . . , LGIH , built according to A and with LGIh connected to LGIh+1,
for h = 1, . . . , H − 1. Then, the input feature corresponding to node vi in LGI1
contributes to the computation of the output feature corresponding to vj in LGIH if
H ≥ distG(vi, vj).

The proposition above introduces a dependency of a GINN’s depth on the com-
plexity of the graph G = (V,E). Let F : Ω ⊆ Rn → Rm be a function defined on
the n vertices of G, and returning a vector of m values associated with the vertices
vi1 , . . . , vim ∈ V . Let ˆ︂F : Rn → Rm be the characterizing function of a GINN
that approximates F . If the output feature of vertex vj ∈ {vi1 , . . . , vim} through F
depends on the input feature of vertex vi, then the GINN needs at least distG(vi, vj)
consecutive GI layers to guarantee that the input feature of vi contributes in making
predictions for the output feature of vj.

3.3 Case study: Maximum Flow
This section describes the maximum-flow problem case study: given a flow net-

work, that is, a graph with a source, a sink, and capacities defined on the edges,
the goal is to find the maximum flow value that can reach the sink [116, Chapter
7.1]. In particular, the interest is on the stochastic maximum-flow problem, i.e. a
problem where the edge capacities are modeled as random variables and the target
is to find the distribution of the maximum-flow (e.g., see [58]).

The stochastic maximum-flow problem is a sufficiently general problem graph
regression algorithm, and it has many interesting applications in network analy-
ses, such as the circulation with demand (CwD) problems (see [116, Chapter 7.7]
and network interdiction models (NIMs) [57]. Put simply, a CwD problem should
identify whether the maximum flow satisfies a given demand, varying the supply
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provided by the source and the capacities of the edges; a NIM describes a game
in which one or more agents modify the edge capacities to minimize/maximize the
maximum flow of the network. These models have many interesting real-world
applications, such as the administration of city traffic, the optimization of goods
distributions, and identifying vulnerabilities in an operational system.

In this section, the maximum-flow problem is briefly described (Section 3.3.1),
in particular the stochastic maximum-flow problem is presented 3.3.2. Finally,
the maximum-flow regression problem is illustrated (Section 3.3.3). The regres-
sion problem will be the basis for an experimental comparison between the GINN
architecture presented in Section 3.2.

3.3.1 The Maximum-Flow Problem
Flow networks are useful models to describe transportation networks, i.e., net-

works where some sort of traffic flows from a source to a sink along the edges, using
the nodes as switches to let the traffic move from an edge to another one (see [ch.
7.1] in [116]). Here, the definition of a flow network is briefly recalled.
Definition 3.3.1 (Flow Network). A flow network G = (G, s, t, c) is a directed
graph G = (V,E), of nodes V and edges E ⊆ V × V , such that:

• The two nodes s, t ∈ V , s /= t, are defined as the source and the sink of the
network, respectively;

• c is a real-valued non-negative function defined on the edges, c : E → R≥0,
assigning to each edge e ∈ E a capacity ce := c(e).

A flow network G can be endowed with a flow function.
Definition 3.3.2 (Flow). Let G be a flow network. An s-t flow (or just flow) on
G is a function

φ : E → R≥0

that satisfies the following properties:

• The capacity condition: for each e ∈ E, it holds 0 ≤ φ(e) ≤ ce;

• The conservation condition: for each v ∈ V \{s, t}, the amount of flow entering
v must be equal to the amount of flow leaving v, i.e.,

∑︂
e∈Ein(v)

φ(e) =
∑︂

e∈Eout(v)
φ(e) , ∀ v ∈ V \ {s, t} ,

where Ein(v) ⊂ V is the subset of the incoming edges of v, and Eout(v) ⊂ V is
the subset of outcoming edges of v;
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• The amount of flow leaving the source s must be greater than, or equal to, the
one entering s, i.e., ∑︁e∈Ein(s) φ(e) ≤ ∑︁e∈Eout(s) φ(e).

For the sake of notation, for each v ∈ V set

φin(v) =
∑︂

e∈Ein(v)
φ(e), φout(v) =

∑︂
e∈Eout(v)

φ(e), ∆φv = φout(v)− φin(v) ,

and call the flow value of a vertex v the quantity ∆φv.
Then, due to the conservation condition, it holds that ∆φv = 0, for each v ∈

V \ {s, t}, and ∆φs ≥ 0. Note that the flow value of the source s is equal to the
opposite of the flow value of the sink t, i.e., ∆φt = −∆φs; for this reason, ∆φs is
referred to as the flow value of the network.

One of the most common issues concerning a flow network G is to find a flow
that maximizes the effective total flow of the sink t, i.e., to find φ∗, such that

φ∗ = arg maxφ |∆φt| .
Such a kind of problem is called maximum-flow problem, and it can be solved

through linear programming or many other algorithms (e.g., [127, 83, 45, 113, 82]).
From a practical point of view, the relationship between the maximum-flow problem
and the minimum-cut problem on a flow network G is particularily important (see
[ch. 7.2] in [116] for more details).
Remark 3.3.3 (Flow networks and undirected graphs). Definitions 3.3.1 and
3.3.2 can be extended to the more complicated case of undirected graphs. Indeed,
as observed in Section 3.2, the undirected edges {vj, vi} of a graph are equivalent
to the two directed edges (vj, vi) and (vi, vj). Then, a flow network based on an
undirected graph G = (V,E) can be defined as a flow network G = (G′, s, t, c),
where G′ = (V,E ′) is a directed graph, such that (u, v), (v, u) ∈ E ′ if {u, v} ∈ E,
whose capacity is defined on the edges of G, i.e., c : E → R≥0. As a result, a flow
φ defined on such a flow network is a function φ : E ′ → R≥0 characterized by a
slightly different capacity condition; namely, φ is such that

0 ≤ φ((u, v)) + φ((v, u)) ≤ c({u, v}) , ∀ {u, v} ∈ E .
Another approach is to introduce an arbitrary ordering, denoted by “<”, on

the graph nodes and define a directed graph G′ = (V,E ′), such that (u, v) ∈ E ′ if
{u, v} ∈ E and u < v. In this case, a flow φ on the flow network G = (G′, s, t, c),
with c defined on the edges E ′ is a function φ : E ′ → R, such that the capacity
condition is

0 ≤ |φ(e)| ≤ c(e) , ∀ e ∈ E ′ ,
and where the entering/exiting behavior of the flows is described by the sign of
φ(e) and not by the edge direction; i.e., for (u, v) ∈ E ′, if φ((u, v)) > 0 the flow
φ((u, v)) enters in v, whereas if φ((u, v)) < 0 then φ((u, v)) enters in u. This latter
approach is mainly adopted by software implementations.

66



3.3 – Case study: Maximum Flow

3.3.2 The Stochastic Maximum-Flow Problem
The idea of the flow network, flow, and the maximum-flow problem can be

easily extended to a stochastic framework, in which edge capacities are modeled as
random variables.
Definition 3.3.4 (Stochastic flow network). A stochastic flow network G =
(G, s, t, p) is a directed graph G = (V,E) of nodes V and edges E ⊆ V × V , such
that:

• The two nodes s, t ∈ V , s /= t, are defined as the source and the sink of the
network, respectively;

• p is a real-valued non-negative probability distribution for the edge capacities
of the network.

Let G(c) denote the flow network (G, s, t, c) with edge capacities returned by
c sampled from p. More specifically, let e1, . . . , e|E| be all the edges of G; then
G(c) = (G, s, t, c) if:

• c ∈ R|E| is a vector whose ci is sampled from p;

• The function c is such that c(ei) = ci, for each i = 1, . . . , |E|.

Denote by φ(c) a flow defined on the flow network G(c).
The stochastic maximum-flow problem consists of finding the flow

φ∗(c) = arg maxφ(c) |∆φ(c)
t | , (3.15)

for each fixed vector c.
Alternatively, in stochastic maximum-flow problems, one may seek the flow dis-

tribution and/or its moments, or the maximum flow value entering the sink t, i.e.,

|∆φ∗(c)
t | = max

φ(c)
|∆φ(c)

t | , (3.16)

3.3.3 The Maximum-Flow Regression Problem
A maximum-flow regression problem, with respect to a given stochastic flow

network, consists of finding a function that, for each capacity vector c, returns an
approximation of the maximum flow |∆φ∗(c)

t | or an approximation of all the flows
reaching the sink t.

Let G be a stochastic flow network of n = |E| edges and, without a loss of
generality, let e1, . . . , em ∈ E, m ≤ n be all the incoming edges of the sink t. Let
F : Ω ⊆Rn → Rm be a function, such that

F (c) = [φ∗(c)(e1), . . . , φ∗(c)(em)]⊤ := φ , (3.17)
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for each capacity vector c ∈ Ω ⊆Rn with the elements sampled from the distribution
p of the given network G.

For the sake of simplicity, drop from now on the dependency from c and the star
symbol from the elements of φ, denoted by φ1, . . . , φm the m elements of the vector
φ = F (c). Moreover, assuming the convention of the non-negative flow functions
on the graph (see Section 3.3.1), denote by φ the ℓ1-norm of φ; specifically:

m∑︂
j=1

φi =
m∑︂
j=1
|φi| =∥ φ ∥1=: φ . (3.18)

Then, the target maximum flow with respect to c coincides with φ; indeed,
|∆φt∗(c)| = ∑︁m

j=1 φ
∗(c)(ej) = ∑︁m

j=1 φi = φ.
Given the target function F defined by (3.17), consider the maximum-flow re-

gression problem with respect to G looking for an NN with a characterizing func-
tion ˆ︂F : Rn → Rm, such that ˆ︂F (c) approximates F (c) for each capacity vector c.
Namely, setting ˆ︁φ = ˆ︂F (c) and φ = F (c), seek ˆ︁φ ≈ φ. To train an NN with respect
to F , build a dataset D of pairs (c , φ) ∈ Rn × Rm, with φ = F (c), where the
capacity vectors are sampled with respect to the distribution p of G; then, D is split
into a training set T , a validation set V , and a test set P of arbitrary cardinalities.

Once an NN is trained, its regression performances are evaluated by computing
two performance measures on the test set P : the edge-wise average mean relative
error (MREav), and the mean relative error on the predicted maxflow (MREφ).
These two errors represent the mean relative error (weighted with respect to the
true maxflow) of the predicted flows of the m edges e1, . . . , em and the mean relative
error of the predicted maxflow ˆ︁φ := ∑︁m

i=1 ˆ︁φj (i.e., the sum of the elements ofˆ︁φ = ˆ︂F (c)), respectively. For each prediction ˆ︁φ, let us denote

err( ˆ︁φ,φ) = [err1( ˆ︁φ,φ), . . . , errm( ˆ︁φ,φ)]⊤ :=
[︄
| ˆ︁φ1 − φ1|

φ
, . . . ,

| ˆ︁φm − φm|
φ

]︄⊤
as the vector of relative errors computed with respect to the true maxflow φ =∑︁m
j=1 φj (see (3.18)). Then, the performance measures MREav and MREφ are

defined as

MREav(P) := 1
m

m∑︂
j=1

⎛⎝ 1
|P|

∑︂
(c,φ)∈P

errj( ˆ︁φ,φ)
⎞⎠ (3.19)

and
MREφ(P) := 1

|P|
∑︂

(c,φ)∈P

| ˆ︁φ− φ|
φ

, (3.20)

respectively.
The smaller both the MREav and the MREφ values are on the test set, the

better the performances of the NN, with respect to the maximum-flow regression
task, are.
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Remark 3.3.5 (Interpretation of MREav and MREφ). It is worth highlighting
the different meanings of the errors (3.19) and (3.20): MREav describes the average
quality of the NN in predicting the single elements φ1, . . . , φm of the target vector
φ, while MREφ describes the ability of the NN to predict a vector ˆ︁φ, such that the
corresponding maxflow ˆ︁φ = ∑︁m

j=1 ˆ︁φj approximates the true maxflow φ = ∑︁m
j=1 φj.

Therefore, a small MREav corresponds to a good approximation of the flow vectors
(i.e., ˆ︁φ ≈ φ) and a small MREφ corresponds to a good approximation of the
maximum-flows (i.e., ˆ︁φ ≈ φ). Nonetheless, it is important to point out that a small
MREav does not necessarily imply a small MREφ, and vice-versa. For example, an
NN with large MREav, characterized by the underestimation of the flows φj1 and
by the overestimation of the flows φj2 , may return a small MREφ because the sum
of the flows is not so far from the true maximum-flow; similarly, a large MREφ

can be obtained from a sufficiently small MREav if, e.g., the NN underestimates or
overestimates all the flows φ1, . . . , φm equivalently, such that ˆ︁φ ≈ φ but ˆ︁φ /≈ φ.

Line Graphs for the Exploitation of GINN Models

Since the inputs of the target function F are the capacity vectors c, which are
defined on the edges of the graph G and not on the nodes, a preprocessing phase
on the graph data is needed to compute the line graph L of G in order to exploit
the GINN models for the maximum-flow regression problem. Here, for the ease of
reading the definition of line graph is recalled (see [54, 84]).
Definition 3.3.6 (Line Graph). Let G = (V,E) be a graph (either directed or
not). The line graph of G is a graph L = (E,E ′), such that:

• The vertices of L are the edges of G;

• Two vertices in L are adjacent if the corresponding edges in G share at least
one vertex.

Given the line graph L of the graph G of a stochastic flow network G, the
adjacency matrix AL of L is used to define NN models characterized by GI layers
to perform the maximum-flow regression task. See the next section for more details
about the GINN architectures that are built.

3.4 Experiments
In this section, experiments are conducted to show the performances of the pro-

posed architecture named GINNs with respect to Multi-Layer Perceptrons (MLPs).
The case studies analyzed are the regression on graph data. The first case study
comes from the stochastic maximum-flow, as detailed in Section 3.3.2, and the re-
sults are reported in Section 3.4.1. The second case study comes from the flux
regression on the DFNs, as presented in Section 2.2.3, and the results are reported
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in Section 3.4.4. In particular, the results on the stochastic maximum-flow show
the generalities of the proposed architecture, while the DFNs regression is aimed to
show the potentialities of using GINNs in practical applications related to realistic
underground flow simulations.

3.4.1 Maximum-Flow Numerical Experiments
The experiments related to the maximum-flow regression problem take into ac-

count two stochastic flow networks:

• G1 = (GBA, s, t, p). The graph GBA of G1 characterizes a flow network built
on an extended Barabási–Albert (BA) model graph [21, 8]. Put simply, an
extended BA model graph is a random graph generated using a preferential
attachment criterion. This family of graphs describes a very common behavior
in many natural and human systems, where few nodes are characterized by a
higher degree if they are compared to the other nodes of the network.
In particular, the function extended_barabasi_albert_graph of the NetworkX
Python module [94] generates an extended BA undirected graph , with input
arguments n = 50, m = 2, p = 0.15, and q = 0.35); then, denote t (the sink
of the network) as the node with the highest betweenness centrality [73] and
add a new node s (the source of the network) connected to the 10 nodes with
smallest closeness centrality [22, 164]. With these operations, it is possible to
obtain a graph GBA of 51 nodes and n = |E| = 126 edges, where the source s
is connected to the 10 nodes and the sink t is connected to the m = 15 nodes
(see Figure 3.3-left).
In the end, since, in real-world applications, truncated normal distributions
seem to be very common (see Remark 3.4.1), in order to simulate a rather
general maximum-flow regression problem, the choice was a truncated normal
distribution between 0 and 10, with a mean of 0, and a standard deviation of
5/3, as a probability distribution p for the edge capacities (see Section 3.3.2);
i.e.,

ci ∼ p ≡ N[0,10](5 , 5/3) , ∀ i = 1, . . . , n . (3.21)

• G2 = (GER, s, t, p). The graph GER of G2 characterizes a flow network built on
an Erdős-Rényi (ER) model graph [67, 79]. Put simply, an ER model graph
is a random graph generated with a fixed number of nodes, where the edge
eij = (vi, vj) has a fixed probability of being created. This family of graphs
is typically used to prove and/or find new properties that hold for almost all
the graphs; for this reason, our experiments consider a stochastic flow network
based on an ER graph.
In particular, the function fast_gnp_random_graph of the NetworkX Python
module [94] generates an ER undirected graph, with input arguments n =
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200, p = 0.01). Proceeding further, its largest connected component G0 is
selected, in terms of the number of vertices. Then, to G0 two new nodes are
added: a node s (the source of the network) connected to all the nodes with
degree equal to 1, and a node t (the sink of the network) connected to the 15
most distant nodes from s. These operations allow obtaining a graph GER of
171 nodes and n = |E| = 269 edges, where the source s is connected to 37
nodes and the sink t is connected to m = 15 nodes (see Figure 3.3-right).
In the end, the truncated normal distribution (3.21) is the probability distri-
bution p for the edge capacities.

Figure 3.3: Graph GBA of G1 (left) and graph GER of G2 (right). In cyan, and
with a circle around the source s, in magenta and with a circle around the sink t,
in green the nodes connected to s, and in red the nodes connected to t. All the
other nodes are in blue.

Remark 3.4.1 (Regarding the truncated normal distribution for capac-
ities). In a network describing a system of highroads, the capacity of a road is
defined as c = kℓ/S [157], where k ∈ R+ is a value depending on the type of the
road, ℓ is the road length, and S is the average distance between two vehicles,
typically chosen as a constant value. Then, assuming a network with all roads of
the same type (i.e., k constant) and a truncated normal distribution for the length
ℓ of the roads, the capacity can be modeled as a random variable with a truncated
normal distribution. Therefore, generalizing the concept of the highroad capac-
ity to other similar problems (e.g., a network of pipes, a communication network,
etc.) the distribution (3.21) can be considered sufficiently generic for the numerical
experiments of this section.

Given the stochastic flow networks G1 and G2, the corresponding maximum-flow
regression problems consist of the approximation of the functions F1 : Rn → Rm,
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n = 126, m = 15, and F2 : Rn → Rm, n = 269, m = 15, respectively, where F1
and F2 are defined as in (3.17). For each i = 1,2, the dataset Di of Gi is made of
10,000 pairs (c , φ = Fi(c)) ∈ Rn×Rm, where 3000 of them are used as the test set
(Pi) and the remaining 7000 pairs are used to generate the multi-set Θi sampling
ϑ ∈ {1, . . . , 7000} pairs. In particular, 80% of the pairs in Θi are used as the training
set (Ti) and the remaining 20% are used as the validation set (Vi). An important
aspect of our numerical experiments consists of analyzing the performance of the
trained NNs, varying the quantity of available data for the training process (i.e.,
ϑ), and not only varying the hyper-parameters related to the architecture and
optimization method; in particular, the study focuses on the NN performances when
the number of training and validation data is ϑ = 7000, 1000, 500. Indeed, in real-
world problems, the amount of available data can be limited for many reasons (e.g.,
limited computational resources for simulations, limited time for measurements,
etc.). Then, studying the performances of a regression model while decreasing ϑ is
important to understand the sample efficiency of the model.

The dataset fluxes Fi(c) = φ are computed using the maximum_flow NetworkX
function that, specifically, allows the computation of the flows for all the edges of
the network (given the capacities c). Then, considering all the 10 000 simulations
executed to build the dataset Di, and denoting ℓ(i)

max(c) the length of the longest
source-sink path in Gi(c), observe that:

1. ℓmin(G1) = 4, ℓav(G1) ≈ 5.5, and ℓmax(G1) = 9;

2. ℓmin(G2) = 7, ℓav(G2) ≈ 10.7, and ℓmax(G2) = 17;
where ℓmin(Gi), ℓav(Gi), and ℓmax(Gi) are the minimum, the average, and the max-
imum lengths, respectively, of the longest source-sink path of the flow for Gi with
respect to Di, i.e.,

ℓmin(Gi) := min
(c,φ)∈Di

ℓ(i)
max(c) , (3.22)

ℓav(Gi) := 1
|Di|

∑︂
(c,φ)∈Di

ℓ(i)
max(c) , (3.23)

and
ℓmax(Gi) := max

(c,φ)∈Di

ℓ(i)
max(c) . (3.24)

The values reported in items 1 and 2 show that, on the average, in a radius of the
length ℓav(Gi) from the sink t, it is likely to find almost all the nodes characterizing
the maximum-flow of the network Gi. This information is then taken into account
while choosing the depth values for the construction of the GINNs in the following
Section 3.4.2. Indeed, recall that the number of consecutive GI layers in an NN
tells if the input feature of node vi contributes to the computation of the output
feature of node vj (see Proposition 3.2.8). Therefore, it is interesting to verify if the
regression performance of a GINN improves or not, when the number of GI layers
is related to one of the quantities (3.22)–(3.24).
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3.4.2 NN Architectures, Hyper-Parameters, and Training
The numerical experiments of this section studies and compares the perfor-

mances of MLPs and GINNs concerning the maximum-flow regression problems
related to F1 and F2. Then, the two archetypes of NN architectures are considered:
an MLP archetype and a GINN archetype.

• MLP Archetype: The NN architecture is characterized by one input layer
L0, H ∈ N, hidden layers L1, . . . , LH with a nonlinear activation function f ,
and one output layer LH+1 with a linear activation function. The output layer
is characterized by m units, while all the other layers are characterized by n
units. Finally, it is applied a batch normalization [108] before the activation
function for each hidden layer L1, . . . , LH . See Figure 3.4.

• GINN Archetype: The NN architecture is characterized by one input layer
L0 of n units, H ∈ N hidden GI layers LGI1 , . . . , LGIH with a nonlinear activation
function f , and one output layer LGIH+1 with a linear activation function. All
the GI layers are built with respect to the adjacency matrix AL ∈ Rn×n of
the line graph of the network (see Section 3.3.3) and they are characterized by
F ∈ N filters (i.e., output features). Then, the number of input features K of
the GI layer LGIh is K = F , if h > 1, and K = 1, if h = 1. As for the MLP
archetype, it is applied a batch normalization before the activation function
of each hidden layer. Finally, the output layer is characterized by a pooling
operation and by the application of a mask (see Section 3.2.4) to focus on the
m units corresponding to the m target flows. See Figure 3.5.

Given the two NN archetypes above, the experiments start building a set of
untrained NN models, varying the main hyper-parameters of the architectures. In
particular, for the MLPs, the hyper-parameters H and f are varied (i.e., the depth
and activation functions of the hidden layers), while for the GINNs, also F is varied
(i.e., the number of filters of the GI layers) and the pooling operation. Specifically,
the hyper-parameters vary among these values:

• MLP archetype. f ∈ {relu, elu, swish, softplus} and H ∈ {2,3,4,5}. Deeper
MLPs are not employed to avoid the so-called degradation problem [101],
i.e., the problem in which increasing the number of hidden layers causes the
performance of an NN to saturate and degrade rapidly.

• GINN archetype. f ∈ {relu, elu, swish, softplus}, F ∈ {1,5,10}, and pool-
ing operations in {max,mean} (only if F = 5,10); H ∈ {3,5,7,9} for G1 and
H ∈ {4,9,14,19} for G2. In particular, these values of H are selected because
they are a discrete interval around the value ℓav(Gi), also including cases near,
or equal to, the minimum and maximum values ℓmin(Gi) and ℓmax(Gi), respec-
tively.
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LH
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LH+1

ˆ︁φ1

... ...

ˆ︁φm

Figure 3.4: MLP archetype. The units of the input layer L0 are in green, the units
of the hidden layers L1, . . . , LH are in purple, and the units of the output layer
LH+1 are in red.

Rn

Input

Rn×1×F

GI

Rn×F

GI output

Rn×F×F

GI

Rn×F

GI output
Rn×F×F GI
(pool-max;
m-focus)

Rm

GI
output

Figure 3.5: Example of a GINN archetype with depth H = 2 and max-pooling
operation for the output layer. The output matrices Y of the NN layers are in or-
ange, the weight tensors W of the hidden GI layers are in red (see Definition 3.2.4),
and the weight tensor W of the output GI layer with max-pooling and masking
operations (see Section 3.2.4) are in purple.

Then, these models are all trained on ϑ = 7000,1000,500 input–output pairs
sampled from Di − Pi, using a mini-batch size β = 128,64,32; the weight initial-
ization is a Glorot normal distribution [81] for the MLPs and it varies among a
Glorot normal and a normal distribution N (0, 0.5) for the GINNs. All the biases
are initialized as zeroes.

The remaining training options are fixed and shared by all the models during
the training. In particular, these options are:
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• Mean square error (MSE) loss, i.e.,

loss(B) := 1
m

m∑︂
j=1

⎛⎝ 1
|B|

∑︂
(c,φ)∈B

( ˆ︁φj − φj)2

⎞⎠ , (3.25)

where B is any generic batch of input–output pairs;

• The Adam optimizer [114] (learning rate ϵ = 0.002, moment decay rates ρ1 =
0.9, ρ2 = 0.999);

• Early stopping regularization [86, 128] (200 epochs of patience, restore best-
weights), to avoid overfitting;

• Learning rate reduction on plateau [128] (reduction factor α = 0.5, 100 epochs
of patience, minimum learning rate ϵ = 10−6).

The training of all the NN models, with respect to all the different training
configurations, returns 3168 trained NNs; in particular, there are 144 MLPs and
1140 GINNs, for each stochastic flow network G1 and G2.

3.4.3 Performance Analysis of Maximum-Flow Regression
To evaluate the performance of an NN trained with respect to the maximum-

flow regression task, consider the errors MREav and MREφ (see Section 3.3.3, and
Equations (3.19) and (3.20), respectively) measured on the test set. In particu-
lar, to better analyze the performances, the NNs are visualized as points in the
(MREav,MREφ) plane (see Figure 3.6). Then, the nearer a point is to the origin
(i.e., the ideal zero-error NN), the better the regression performances of the corre-
sponding NNs are. This representation is motivated by the characteristics of the
errors reported in Remark 3.3.5. Indeed, it is important to analyze the behavior of
the NNs with respect to MREav and MREφ together.

Consider the first stochastic flow network G1. In general, looking at Figure 3.6,
the GINNs have better regression performances than the MLPs. In particular:

1. The MREφ of the GINNs is generally smaller than the MLPs, and this effect
increases with ϑ;

2. The MREav of the GINNs is almost always smaller than the MLPs, and this
effect seems to be almost stable while varying ϑ;

3. Looking at the hyper-parameter F , observe that the cases with F = 1,10 gen-
erally perform better with fewer training samples (i.e., ϑ = 1000,500) while the
cases with F = 5 generally perform better with ϑ = 7000. This phenomenon
suggests that increasing the number of filters can improve the quality of the
training, even if a clear rule for the best choice of F is not apparent.
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Figure 3.6: Network G1 (left) and G2 (right). Scatter plots in the (MREav,MREφ)
plane. Left to right: NNs trained with ϑ = 7000,1000,500 samples. Red circles:
MLPs; green stars, blue crosses and purple “x”: GINNs with F = 1,5,10, respec-
tively. 76
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The analysis continues with the second stochastic flow network G2, increasing
the size and complexity of the flow network. Indeed, the graph GBA of G1 is
characterized by a reduced complexity of the maximum-flow problem, because the
BA graphs are generated using a preferential attachment criterion that keeps the
average length of the maximum source-sink path ℓav(G1) small, even when increasing
the nodes of the graph (this phenomenon was observed during some preliminary
experiments).

Figure 3.6 (right), highlights the same characteristics observed for G1, but much
more emphasized. In particular, for each ϑ = 7000,1000,500, the GINNs generally
outperform the MLPs, especially with respect to the MREav. The reason for these
similarities probably lies in the nature of the graphs GBA and GER of G1 and G2,
respectively; indeed, the ER graphs are used to represent generic graphs and are
typically used to show properties that hold for almost all the graphs. On the
other hand, the graph GBA is simpler than GER. Then, it is reasonable that the
observations made for G1 are confirmed looking at G2 and it is reasonable that
the performance differences observed in G2 are less emphasized in G1, since the
maximum-flow problem on GBA is less complex than on GER.
Remark 3.4.2 (GINNs, small MREav, and regressions on graphs). The
above discussion shows that the GINNs generally perform better than MLPs for
regression tasks on graphs but, focusing on the MREav values, the GINNs clearly
show better performances (see Figure 3.6 and Tables 3.1 and 3.2). Specifically,
Tables 3.1 and 3.2 show the three GINNs and MLPs with lowest MREav value on
the test sets of G1 and G2, respectively. The better performances of the GINNs,
with respect to this error measure, are particularly important if extending the
regression problem, e.g., if the task is translated to learning all the flow values
φ∗(c)(e1), . . . , φ∗(c)(en) on the edges of the graph and not only the ones character-
izing the maximum-flow φ reaching the sink. Indeed, in this case, an NN with
small errors on the single elements of the target vector is fundamental, while an
NN with small errors on the sum of the elements of the target vector is useless; for
this reason, in vector-valued regression tasks, the choice is of loss functions such
as (3.25) (evidently similar to the performance measure MREav). In conclusion,
the experiments provides clues about the great potential of GINNs in the field of
regression graphs.

Below the performance analysis proceeds, and it is presented the analysis of the
NN errors change when varying the hyperparameters.

The first observation is related to the activation functions and the mini-batch
size. Observe that the trained NN models (both GINNs and MLPs) generally
exhibit worse regression performances with a ReLU activation function and a mini-
batch size equal to 128; Figure 3.7 report the same scatterplots of Figures 3.6, but
without the points corresponding to the NNs with the ReLU activation function
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or a mini-batch size equal to 128. It is worth noting that the general observa-
tions concerning the NN performances are even more evident when removing these
models. Moreover, among the remaining models, there are no activation functions
or mini-batch size values that are evidently better than the others; in general, as
can be expected, there are only a few advantages of using a mini-batch size of 32
samples instead of a mini-batch size of 64 samples, while decreasing ϑ.

From now on, the analyses ignore models characterized by a ReLU activation
function or mini-batch size equal to 128. Moreover, the focus is on the GINN models
and, in particular, on their performances with respect to the hyperparameter H,
characterizing the number of hidden layers. Indeed, the remaining hyperparameters
(pooling operations and weight initializations) do not seem to have a particular
impact on the results.

The study of the GINN performances with respect to H is particularly interest-
ing, provided Proposition 3.2.8. In fact, from this proposition, the GINN models are
expected to have a better performance if the depth H is such that H + 1 ≳ ℓav(Gi).
This guess is indeed satisfied. Specifically, for G1, by increasing the depth H, ob-
serve that the GINNs improve their performances in general (see Figure 3.8). On
the other hand, for G2, there is a slightly different behavior. The GINNs that
are sufficiently deep (i.e., H ≥ 9) show better performances than the GINNs with
H = 4, but their errors tend to increase with a small ϑ; in particular, the more
H is greater than ℓav(G2), the more the GINN performances seem to deteriorate
(see Figure 3.9). To summarize, the depth in a GINN model is very important to
obtaining good regression abilities, keeping in mind Proposition 3.2.8. Nonetheless,
the practice of using as much of a GI layer as possible is not always the best choice,
and this topic deserves attention in future work.
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Remark 3.4.3 (Training time). Along the conducted experiments , the average
training time for the GINN models is approximately 20 min in total, and one sec-
ond per epoch; on the other hand, the average training time for the MLP models
is approximately 10 min in total and half a second per epoch. Nonetheless, it can
be pointed out that the difference in training times between GINNs and MLPs can
be reduced with code optimization. Indeed, the GINN layers are a custom class
of TensorFlow NN layers developed on purpose by the authors for numerical ex-
periments. The code of TensorFlow’s FC layers is extremely optimized. Therefore,
at the present time, the GINNs and MLPs are not equally comparable as far as
computational cost is concerned. More details about the average training times per
epoch of the models are reported in Table 3.3, and this quantity is indicative of the
training computational cost of the NNs. However, recall that the experiments take
into account more than three thousand models, each one with a different training
configuration that characterizes the training time per epoch. All the training was
performed on a workstation with a CPU of 4 Core and 8 Threads, 32 GB of RAM,
and a GPU Nvidia 1080 8 GB.
Table 3.3: Global statistics of the average training time per epoch for GINN and
MLP models, expressed in seconds.

Avg. Time per Epoch (s)

GINNs MLPs

Mean 1.099 0.565

Std 1.359 0.292

25th perc. 0.318 0.380

50th perc. 0.567 0.431

75th perc. 1.296 0.632
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Figure 3.8: Scatter plots in the (MREav,MREφ) plane for GINNs trained with
respect to G1. Left to right: GINNs trained with ϑ = 7000,1000,500 samples; top
to bottom: red markers highlight GINNs with H = 3,5,7,9 (black markers for all
the other models).
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Figure 3.9: Scatter plots in the (MREav,MREφ) plane of the GINNs trained with
respect to G2. From left to right, the GINNs are trained using ϑ = 7000,1000,500
samples; from top to bottom, the red markers highlight the GINNs with hyper-
parameters of H = 4,9,14,19 (black markers for all the other models).
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3.4.4 Performance Analysis of DFN Flux Regression
Section 3.4.1 has showed the regression abilities and the potentialities of the

GINN models for the maximum-flow regression problem, i.e., for a problem rep-
resentative of generic real-world applications. In this section, the focus is on a
specific real-world application where GINNs can be useful; in particular, it con-
siders an uncertainty quantification (UQ) problem related to underground flows in
fractured media. Here, the idea is to take advantage of the DFN’s graph structure
to build GINN models and to analyze the advantages of using such models for the
DFN flux regression tasks instead of the classic NN architectures (e.g., MLPs or
multitask NNs).

The numerical experiments and analyses presented in what follows are based
on the example DFN158 described in Section 2.2.1. Then, the same experimental
setting studies and compares the performances of the MLPs and GINNs concerning
the flux regression problem related to the function F : Rn → Rm described in
Section 2.2.3. The two archetypes of MLP and GINN architectures are the same as
in Section 3.4.2, as are most of the hyperparameter values and the training options
used; the only differences are the following:

• ϑ = 1000,500 (number of training and validation data);

• β = 64,32 (mini-batch size);

• The ReLU activation function is not considered in the experiments;

• For the GINN models, the depth parameter values are H ∈ {4,7,9,14,19}. The
rationale behind this choice is that it is a set of values around 8, which is the
number of deterministic fractures that, on average, represent an inlet-outlet
flow path for DFN158 (in the absence of a value equivalent to ℓav that cannot
be easily computed for DFN158);

• The GI layers are built with respect to the adjacency matrix A of DFN158;
indeed, the line graph of the DFN is not needed since the features (i.e., the
transmissivities) are assigned to the nodes of the graph and not to the edges.

As in Section 3.4.3, the performance evaluation of the NNs trained with respect
to the DFN flux regression task takes into account the errors MREav and MREφ

on the test set (also, in this case, P is made of 3000 samples). Then, the results
of the NNs are visualized as points in the (MREav,MREφ) plane (see Figure 3.10).
Analyzing the error values and looking at the scatter plots of Figure 3.10, it clearly
appears that the GINN models outperform the MLPs, and that they are character-
ized by more regular error behaviors than the GINNs trained for the maximum-flow
regression task, with respect to the filter hyperparameter (see Section 3.4.3). In
particular:
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1. Both the MREφ and the MREav of the GINNs are almost always smaller than
the ones of the MLPs, independently of ϑ;

2. Looking at the filter hyper-parameter F , the GINN performances are better
as F increases (from F = 1, to F = 5, to F = 10).
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Figure 3.10: Scatter plots in the (MREav,MREφ) plane for NNs trained with respect
to DFN158. NNs are trained using ϑ = 1000 (left) and ϑ = 500 (right) samples.
Red circles: MLPs; green stars, blue crosses and purple “x”: GINNs with F =
1,5,10, respectively.

Furthermore, it is possible to study the relationships between the GINN errors
and the other model hyperparameters. Considering the activation functions, the
GINN models with the relu activation functions have, in general, slightly better
performances than other models; on the other hand, all the GINN models with
the worst performances (i.e., the points in the top-right corners of Figure 3.10)
have softplus activation functions. Concerning the mini-batch size β, the GINNs
with the best performances (corresponding to points in the bottom-left corners
of Figure 3.10) are trained with β = 32. Similar results hold for the weights
initialization, where the best performing GINNs are initialized with a Glorot normal
distribution. About the pooling operations, specific differences in the error values of
GINN models does not appear if using a max-pooling or a mean-pooling operation.

Analogous to Section 3.4.3, the study ends with a focus on the error behaviors
with respect to the depth H of the GINN models. Moreover, for the DFN flux
regression task, it can be observed that the depth H of the model can improve
the regression quality. In particular, for each ϑ = 1 000,500, the best performances
are obtained by the GINNs with a depth of H = 7,9,14, while both the shallowest
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and the deepest GINNs (H = 4,19) have higher errors (see Figures 3.11 and 3.12).
In accordance with Proposition 3.2.8 and the observations of Section 3.4.3, this
characteristic make possible to deduce that, on average, the maximum inlet-outlet
flux path in DFN158 is probably made of 8 to 15 fractures; i.e., a value not so far
from the length of the inlet-outlet path defined by the fractures F1, . . . ,F8.
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Figure 3.11: Scatter plots in the (MREav,MREφ) plane for GINNs trained with
respect to DFN158, ϑ = 1000. Left to right, top to bottom: red markers highlight
GINNs trained with H = 4,7,9,14,19, respectively (black markers for all the other
models).
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Figure 3.12: Scatter plots in the (MREav,MREφ) plane for GINNs trained with
respect to DFN158, ϑ = 500. Left to right, top to bottom: red markers highlight
GINNs trained with H = 4,7,9,14,19, respectively (black markers for all the other
models).

3.5 Conclusions and Future Directions
This chapter has presented and analyzed graph-informed (GI) layers, a new kind

of spatial-based graph convolutional layer, designed for regression tasks on graph-
structured data. The GI layers have been formally defined, from the simplest
version to the most general and tensor version. Moreover, additional optional
operations are introduced: the pooling operation and mask operations.

To study the regression capabilities of graph-informed NNs (GINNs), i.e., NNs
made from GI layers, in the experiments thousands of NN models (both GINNs
and MLPs) have been trained on two maximum-flow regression problems, with
networks based on a Barabási–Albert graph (G1) and an Erdős–Rényi graph (G2).
The maximum-flow regression problem is a representative case study, since it is a
sufficiently general problem to demonstrate the applications in many topics of the
network analysis. By analyzing the approximation errors of the NNs, overall, the
GINNs emerges demonstrating better performances than the MLPs. In particular,
for G2, the GINNs in almost all the cases outperform the MLPs. The study of
the regression performances also showed an interesting relationship between small
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errors and a depth greater than, or equal to, the average length of the maximum
source-sink path in the stochastic network.

After the case study on the maximum-flow regression task, Section 3.4.4 has
presented an example of a possible application of the GINNs to a real-world prob-
lem: a DFN flux regression problem, i.e., an uncertainty quantification problem for
the characterization of the exiting flux distribution of an underground network of
fractures. In this practical application, the GINN models completely outperform
the MLPs; moreover, both the depth and the filter hyperparameters of the GINNs
proved to be significant enough to improve the approximation quality of the target
function.

From the application standpoint, the previous GNN architectures recalled in
Section 3.2.3 are designed for different types of tasks, such as semi-supervised or
supervised node classification or graph classification tasks [191], inferred from the
known features of a subset of nodes. In particular, the comparison with NN4G
[131] shows the novelty of the tensor formulation (see Equation (3.8)), that allows
multiple output features. Generally speaking, the number of nodes and edges of the
dataset faced in the experiments presented by the previous aforementioned works,
like [15, 115, 190] are greater than the one faced in this work, therefore the need for
faster convolutions. Nonetheless, the obtained experimental results suggest that
on the examined test cases, the computational cost of the GINN implementation
is comparable with MLP architectures. In addition, GINNs benefit from the depth
hyperparameter much more than the previous graph convolutional NNs [191]. In
the end, from a theoretical standpoint, nothing prevents from adding a softmax
layer at the end of a GINN to extend the new model architecture to cover graph
classification tasks with respect to vertex labels (like CNNs for image classification).
A complete comparison, including the scalability of the GINN architecture on larger
graph regression tasks, is out of the scope of this chapter, and it is left for future
research.

With the presented applications, the idea of GINNs is clearly related to the
framework of Theory-Guided Data Science (TGDS) [112], because the design of the
architecture of the predictive model takes inside the knowledge of the phenomenon
the data represents. In practice, not only the model makes use of the collected
independent and dependent variables, but the relationship between the variables is
inserted into the model by means of the graph, so that the NN is informed by the
graph. Indeed, each model layer represents a building block for the task, mirroring
the complete graph regression.

In conclusion, this work has introduced a new, useful, contribution to the family
of spatial-based graph convolutional neural networks; indeed, the numerical exper-
iments illustrated here show that the new GI layers and the GINNs have great
potentialities in the framework of regression tasks on graph-structured data.

88



3.5 – Conclusions and Future Directions

10−26× 10−3

MREav - log10 scale

2× 10−2

3× 10−2

4× 10−2

6× 10−2

M
R

E
ϕ

-
lo
g 1

0
sc

al
e

MLPs

GINNs (1 Filt.)

GINNs (5 Filt.)

GINNs (10 Filt.)

Barabási-Albert (ϑ = 7000)

10−3 10−2

MREav - log10 scale

10−2

10−1

M
R

E
ϕ

-
lo
g 1

0
sc

al
e

MLPs

GINNs (1 Filt.)

GINNs (5 Filt.)

GINNs (10 Filt.)
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Figure 3.7: Scatter plots in the (MREav,MREφ) plane for G1 (left) and G2 (right).
Top to bottom: ϑ = 7000,1000,500 samples. Red circles: MLPs; green stars, blue
crosses and purple “x”: GINNs with F = 1,5,10, respectively. NNs with ReLU
activation function or mini-batch size 128 are omitted.
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Chapter 4

Towards extending Shapley
value to coalitions

The Shapley value is probably the most famous solution concept in cooperative
game theory. Its name comes after the Nobel-winning Lloyd S. Shapley from his
published work of 1953 [170]. The Shapley value has been applied to numerous
fields, starting from economy [17], graph theory [1], statistics [104] or machine
learning [126]. A classic essay [161] and a recent handbook [10] give a complete
view of the Shapley value and its applications.

In the framework of cooperative game theory, a set of players or decision-makers
should negotiate to agree how to split the gain of the cooperation, that is, how to
allocate the worth gained by the coalition composed of all the players. A value
is a solution concept that suggests the negotiation outcome among players. Many
alternative solution concepts exist, and each solution fits for different modeling
assumptions. For example, other solutions are the Banzhaf value [20], Deegan-
Packel value [52], or the equal division solution [39]. The popularity of Shapley
value derives from the property of being a “fair” allocation, where a set of desirable
axioms defines the fairness principle. The axioms characterize the Shapley value
because it is the unique value satisfying those properties; likewise, the axioms allow
deriving a simple explicit combinatorial formula to compute the Shapley value.

This chapter suggests a new paradigm of allocating worth to all the coalitions
of a cooperative game, similarly to what the Shapley value does for players. In
other words, the purpose of the proposed allocation is to assign a scalar to each
coalition, that is, every set of possible players; in addition, the assignment should
follow a fairness principle inspired by the one holding for the Shapley value. The
starting idea is extending the connection of [180] between cooperative game theory
and graph theory. In particular, [180] proposes a representation of a transferable
utility game as a graph, and it shows how to derive the Shapley value by the graph
combinatorial Hodge decomposition. The development presented here follows the
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most straightforward path: presenting a new graph representation of the game and
a consequent different Hodge decomposition. This chapter defines a new differen-
tial, inspired by the one of [180], on the transitive closure of the Hasse diagram,
which is a new oriented graph describing a cooperative game. Then, it shows the
properties of the vector games derived from the combinatorial Hodge decomposition
of the new oriented graph. Furthermore, the chapter illustrates how to compute
the candidate analogous to the Shapley value for coalitions. The found simple an-
alytic formula defines the newly denominated X -Shapley allocations (also named
coalitional Shapley). From X -Shapley, it draws appealing theoretical results for
cooperative game theory to show the strong parallelism between the new coalition
allocation and the Shapley value. The main difference with the classical framework
is that coalitions, instead of single players, are the main subjects of the cooperation.
The presentation illustrates that X -Shapley satisfies a principle of fairness through
axioms defined for coalitions. In addition, it shows that the stability property of the
Shapley value can be rephrased for X -Shapley. Finally, it proves other significant
properties of the newly defined coalitional allocation.

The precise motivation and scope of the investigations of this chapter derive
from Explainable Artificial Intelligence (XAI) [62]. The Shapley value applica-
tion as a feature importance method has been a recent breakthrough of XAI [126],
opening a vast research horizon. The hope is that digging into cooperative game
theory would make it possible designing advanced methods for XAI. In particu-
lar, the possibility of attributing a relevance score directly to a group of features
and investigating their interaction is a current research topic [183]. Section 4.4.3
presents a deeper discussion about the research possibilities offered by the proposed
X -Shapley solution concept in XAI.

To the best of the author’s knowledge, there are no other research papers that try
to answer the same question. The most similar approaches are possibly the Owen
value [149], interaction indices [90], or the value of a coalition to another coalition
[100]. Yet, the question answered by those papers are clearly different from the
one exposed, although they all take inspiration and generalize the Shapley value.
In fact, the Owen value [149] proposes to generalize the Shapley value to allocate
the worth of the grand coalition to single coalitions, assuming a fixed partition of
players. This specific assumption is inspired by the dynamic usually emerging in a
parliament, where players are representatives playing voting games to decide about
each regulation. In this case, the set of coalitions to which assigning a value is not
the complete power set of the participating players. Instead, the coalitions are the
parties viewed as aggregations of players, where each party plays the role of one
single player in the voting game. The Shapley value allows distributing the global
power among the aggregations. Interaction indices [90] propose a generalization of a
value accounting for the joint role of players in a cooperative game. The interactions
inspect the game structure as well as measure the contribution of the joint presence
of multiple players in a coalition. One specific interaction index is shown to be a
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generalization of the Shapley value because, when analyzing the presence of a single
player in a game, the interaction index becomes the Shapley value. The work of
[100] proposes an abstract view on the evaluation process of coalition formation in
a cooperative game. In particular, the authors say that the value of a coalition to
another is a measure of the value of an already formed coalition when it decides to
alter its members. Altering the members means modifying the coalition structure
to form a different coalition by including or excluding some players. The authors
suggest computing a matrix of values for each possible pair of coalitions. The
generalization of Shapley value descends from the possibility of drawing the Shapley
value as a summing of matrix rows or columns. The three discusses approaches do
not view coalitions as single entities participating in the cooperative game; instead,
the Owen value along with the interaction indices view them as a group of players,
while the third looks at pairing of coalitions to evaluate the value of forming new
coalitions starting from one pair.

The chapter is organized as follows. Section 4.1 recalls cooperative game theory
to introduce the Shapley value and to describe three of its distinct characterizations.
In particular, it focuses and comments on the recent one proposed in [180], based
on the Hodge decomposition. Starting from this last characterization, Section 4.2
extends the parallelism between cooperative game theory and graph theory: it
suggests the new allocation for coalitions called X -Shapley and computes a simple
analytic formula for its computation. Moreover, Section 4.3 proposes two game
theoretic characterizations that are similar to the classic characterizations of the
Shapley value already reviewed in Section 4.1. Then, Section 4.3.3 elaborates the
properties of X -Shapley from a game theoretic point of view. Finally, Section 4.4
concludes the presented study as well as it discusses the possible perspectives for
future research.

4.1 Introduction to the Shapley value
Following the well known textbooks of game theory [148, 69, 137], this section

starts with a brief comparison between non-cooperative and cooperative game the-
ory (Section 4.1.1) to show the peculiarity of the cooperative framework. Then,
Section 4.1.2 moves on by illustrating the class of cooperative games with trans-
ferable utility and their main related concepts. Section 4.1.3 defines the Shapley
value, and it discusses different interpretations from the literature.

Then, three characterizations are presented. The first characterization is recalled
in Section 4.1.4, which reviews the axiomatic characterization of the Shapley value.
In particular, it defines the principle of fairness of a division of the worth grand
coalition among players in a cooperative game. The property of fairness comes
from the first work of Shapley [170], as reported by Theorem 4.1.43. Section 4.1.5
presents an alternative characterization of the same value by means of objections
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and counter-objections. It recalls the stability property of the Shapley value so-
lution for the cooperative game of interest. Theorem 4.1.47 reports the milestone
result of this characterization. This result derives from the works of Myerson et
al. [138, 136]. The presentation of the above two characterizations follows the
book [148]. The third characterization of the Shapley value uses the combinatorial
Hodge decomposition (Section 4.1.7), and it is presented in Section 4.1.8. This
part revisits the results of a recent work [180], and in particular Theorem 4.1.80
and Proposition 4.1.84.

The three above characterizations are preparatory for the suggested X -Shapley
as allocation to coalitions. In particular, the Hodge theoretic characterization of
X -Shapley is the starting point for the next Section 4.2, while the other properties
are discussed in Section 4.3 and 4.3.3.

4.1.1 Cooperative and Non-Cooperative Game Theory
A game expresses the interaction of multiple players, assuming they follow a ra-

tional behavior. A player is a decision-maker that can be, for example, an individual
human being, a government, an institution, or a computer program. In a game,
each player has a set of available actions to interact with the others. A player is also
referred to as agent, because of being the active subject of the game. Each player’s
rationality generally translates into the goal of maximazing the utility obtained
interacting, where the utility is specific for each player. In addition, the rationality
assumption implies that the complexity of the computations or the sophistication of
the strategies the player can make is unbounded. A game representation describes
the strategic interaction among the players, including the constraint over the ac-
tions they can do [148]. A game solution is a systematic description of the results
that could happen according to the rational interaction of the players. Different
classes of games are present in the literature, but the main focus of this chapter is
limited to cooperative games of transferable utility, as well as the deriving theory.
Before delving into a precise description of cooperative game theory, below a brief
introduction to its counterpart is furnished, named non-cooperative game theory.

Two game representations formalize and clarify these concepts: the strategic and
characteristic form. The first and complete abstract representation of a game is the
strategic form [148].
Definition 4.1.1 (Strategic form). A strategic game consist of

• N ∈ N a finite set of players;

• ∀i ∈ N ∈ N a non-empty set Ai of the actions available to the agent; the
product of their actions set is denoted by A = ×j∈N Aj;

• ∀i ∈ N , a preference relation ⪅i on A.
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This chapter refers to each player using the feminine pronouns “she/her”, ac-
cording to the convention established by Martin Osborne in [148]. Under mild
assumptions, a function ui : A −→ R can express the preference relation of a player
i in a strategic form game. The function ui is called utility function or payoff func-
tion for player i, and it is such that ui(a) ≤ ui(b) ⇐⇒ a ⪅i b. In this formulation,
a player is rational because her objective is to maximize her payoff. Using the
payoff function, the tuple (N, (Ai)i∈N , (ui)i∈N) represents a game in strategic form.

The formulation above is general; it comprehends many possible modeling situ-
ations, referred to as “primitives” in the game theory literature. A simple primitive
is a game where players simultaneously choose their actions, having information
about the strategic behavior of the other players in the past. Each agent uses her
information to find the best action, but she is interested only in her instantaneous
payoff; that is, the agent assumes to play the game only once. The strategic form
is the game representation mainly used in non-cooperative game theory. A solution
consists of determining the strategy of each agent to produce an individual payoff
for each one. The solution should be stable regarding the behavior of the players.
Different definitions of stability lead to different resulted outcomes. An example
of the solution concepts for non-cooperative game theory is the Nash equilibrium
[140]. The pairing of stability and solution concepts also holds for cooperative
games. Yet, the definition of stability comes at the level of agreement inside coali-
tions, not for players. In general, stability consists of the absence of a rational
incentive to deviate from the solution outcome by groups of players.

The terms distinguishing a cooperative and a non-cooperative game could some-
times be confusing [50]. In fact, it does not hold true that non-cooperative games
impede players’ cooperation, neither that cooperative games permit cooperation
only. Rather, the modelling process makes the difference: non-cooperative games
include the possibilities for cooperation as actions in the game; cooperative games
allow players to act outside the specified rules. In real situations, the complexity
of the cooperation route does not enable to completely describe the players’ ne-
gotiation by a formal mathematical model. Non-cooperative game theory handles
strategies and payoffs: it assumes that players are choosing the actions to optimize
their individual payoffs. Instead, cooperative game theory handles coalitions and
allocations: it focuses on groups of players oriented to allocate the collective ben-
efits coming from cooperation, however it appears. A non-cooperative game needs
to define how coalitions form, as well as how their players select collective actions to
model the possibility of coalition formation. A cooperative game could avoid these
details; actually, the result of this kind of games does not show the set of actions
chosen or how coalitions have been formed [148, 85], but only their outcome.

From a different angle, the distinction between a cooperative or non-cooperative
game consists of effective negotiation. A cooperative setting assumes that players
can negotiate effectively. More precisely, the assumption is that the negotiation
happens at the same time within all the coalitions that include a player [137]. In
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other words, it implicitly assumes that players would agree to modify their actions
when there is a permitted change of players’ strategies that would improve their
utility. At the same time, the change does not come along with an explicitly
specified strategy for the players. Instead, the players are assumed implementing
the strategic change unless it contradicts the agreements of some members of the
coalition. In fact, other players of the coalition could have treaties with different
players outside this coalition, inside another equally effective coalition. A non-
cooperative game does not allow the above because there are no implicit agreements:
only individual actions of players could express treaties [137]. From the cooperative
point of view, the actual strategy implemented to negotiate and form the coalition
is not of interest; instead, only the coalition payoff is.

This chapter focuses on the class of cooperative game with transferable utility
(TU-games). In other words, games where players should subdivide the payoff
gained by cooperation without restrictions. In practice, it is common to assume
that the transferable utility is a commodity - money - that can be split among the
members of coalitions without limits, except that the sum of the amount received
by each member should not exceed the worth gained by the grand coalition. This
property differentiates with cooperative games with non-transferable utility (NTU-
games), where there are constraints over the possible splitting of coalitions’ gains.
The game representation in characteristic form is the main subject for both classes,
but here only the case of transferable payoff is presented. The reader can refer to
[148, 96] for a complete view of the NTU-games class.
Notation 4.1.2. Consider a set of players N that are allowed to cooperate by
forming coalitions. The coalition N is called the grand coalition. A coalition of the
game is usually referred to as a subset S ⊆ N . In what follows, the set cardinalities
are indicated by the corresponding lowercase characters (e.g. n := |N |, s := |S|).
In addition, PN indicates the powerset of N , that is, the set of all coalitions. The
complement coalition of a given S ⊆ N is denoted by N \ S or Sc, if N is implied.
Definition 4.1.3 (Characteristic form of a TU-game). A cooperative game
with transferable utility (TU-game) is a pair (N, u) where

1. N ∈ N is the set of players;

2. u : PN → R is the characteristic function of the game, requiring u(∅) = 0.
u(S) represents the payoff or worth of the coalition S ⊆ N .

For each coalition S ⊆ N , its payoff u(S) stands for the commodity that the
members of S can split among themselves.
Notation 4.1.4. In what follows, GN is the set of TU-games. Furthermore, each
TU-Game (N, u) is identified with its characteristic function u.

When modeling a game allowing intrinsic agreements between multiple players,
a critical challenge arises because of the assumption that all coalitions can negotiate
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effectively. In particular, there can be a competition between overlapping coalitions,
(see [137, Chapter 9.1]). Thus, the characteristic form allows representing the
abstract dynamic of cooperation, while it voluntarily ignores the actual strategy
chosen by each player to build agreements. For example, the rationality of players
implies that in a two players game where the cooperation of the two gain more than
the sum of singles, the grand coalition of the two players is formed. Yet, the actual
chosen actions of the players are not explicitly expressed.

The analysis of the outcome represented in characteristic form derives from the
hypothesis that the grand coalition forms because of the player’s rationality; then,
the players divide the grand coalition payoff u(N) among themselves after some
negotiation or bargaining. The final allocation to each player is the amount received
at the end of the negotiation. The allocation derived from the negotiation should
depend on the payoff structure of the coalitions, that is, their relative negotiation
power, rather than the bargaining process itself. In these terms, a characteristic
function shows a summary of the power structure of the game [138].

Finally, note that it is possible to translate a strategic form 4.1.1 to the charac-
teristic form 4.1.3. This derivation is not unique; many proposals have appeared in
the literature, depending on the actual modelled primitive. It is worth mentioning
the rational-threats translation proposed by Harsanyi [97], based on the study of
Nash in the bargaining two-person games [139].
Remark 4.1.5 (Harsanyi’s rational-threats translation). Fixed a coalition
S, in the view of rational threats both the players in S and N \ S choose a joint
action aS ∈ ×j∈S Aj or aN\S ∈ ×j∈N\S Aj, respectively, such that both coalitions
S or N \ S are committed to carry out the action if the agreement would not be
reached. Then, aS and aN\S are the threats of the two confronting parties, and the
strategy (aS, aN\S) is the disagreement point from which the negotiation power of
subsets S and N \ S descends. The interested reader could deepen the subject in
[137, Chapter 9] or [69, Part IV, Chapter 1].

The above Remark is interesting for the formulation of X -Shapley is Section
4.2 because of the direct opposition between the complementary coalitions of S
and N \ S of X -Shapley (Definition 4.3.9). The following section recalls the main
definitions of TU-games at the level of players, coalitions and games.

4.1.2 Transferable Utility Games
This section recalls the main definitions concerning cooperative game theory,

focusing on the properties of cooperative games with transferable utility.
Notation 4.1.6. Hereafter, a game u denotes a TU-game u ∈ GN , according to
the characteristic form of Definition 4.1.3. To simplify the notation, u(i) := u({i})
denotes the payoff computed on a coalition of one player. Analogously to subsets
terminology, a coalition S such that S ∈ PN \ {∅, N} is said proper coalition.
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Denote by SN the group of permutations of the players in N . Let k ≤ n, denote
by S1 ⊔ · · · ⊔ Sk a partition of N in k subset, that is, ⊔ni=1Si = N and Si ∩ Sj = ∅
for all i /= j.
Definition 4.1.7 (Predecessors coalition). Given σ ∈ SN , and i ∈ N , define
the predecessors of i in σ as the coalition

Sσ(i) := {r ∈ N | σ−1(r) < σ−1(i)} (4.1)

Definition 4.1.8 (Permuted game). Given a game u and σ ∈ SN , define the
permuted game σ∗0(u) as:

σ∗0(u)(S) := u(σ(S)) ∀S ⊆ N

Definition 4.1.9 (Payoff vector). Given a game u, a payoff vector or payoff
allocation is a vector x ∈ Rn, where each component xi represents the allocation
of the grand coalition payoff u(N) to the single player i ∈ N . Given a coalition
S, a payoff vector x is said S-feasible if ∑︁i∈S xi = u(S). A payoff vector is called
feasible if it is N-feasible
Definition 4.1.10 (Imputation). An imputation is a feasible payoff allocation
x ∈ Rn such that xi ≥ u(i)
Definition 4.1.11 (Value). Given a game u, a value is a function ψ : GN → Rn

that assigns a unique payoff vector to each game.
Notation 4.1.12. A value depends on the number of players and the game over
which it is evaluated. In the most general notation, the value ψ(N, u) is expressed
in terms of the number of players and the game, and the allocation to a player is
ψi(N, u). If not required, u and/or N are omitted, that is ψi := ψi(u) = ψi(N, u).
Remark 4.1.13. A payoff vector represents a candidate solution of a game, that
is, the assignment of an allocation to each player. The property of a payoff vector
being feasible means that (i)the players receives all the worth, and (ii) the payoff
vector does not exceed the available worth for the grand coalition. The imputation
translates the players’ rationality: each player is willing to cooperate because she
will receive a greater allocated amount after the negotiation than by playing the
game alone. A value is a solution concept because it is a rule to solve each game
by assigning a payoff allocation.
Definition 4.1.14 (Inessential and essential game). A game u is inessential
if

∀S ⊆ N, u(S) =
∑︂
i∈S

u(i).

Equivalently, a game u is inessential if

∀S ⊆ N and T ⊆ N \ S, u(S ∪ T ) = u(S) + u(T )

A game is essential if it is not inessential.
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Remark 4.1.15. An inessential game has an additive payoff structure for each
coalition, that can be derived from the payoff given to single player coalitions.
Thus, it depicts the simpler possible relationship of cooperation between players in
a game.
Definition 4.1.16 (Subgame). Given a game u and a coalition S, define the
subgame uS : PS → R as:

∀T ⊆ S uS(T ) = u(T ).
Note that uS(∅) = 0. Then every subgame is a game, and uN = u.
Definition 4.1.17 (Superadditive and cohesive game). A game u is said

1. superadditive:
∀S, T ⊆ N, S ∩ T = ∅, u(S ∪ T ) ≥ u(S) + u(T ); (4.2)

2. cohesive:
∀k ≤ n, ⊔kj=1Sj = N, u(N) ≥

k∑︂
j=1

u(Sj). (4.3)

Remark 4.1.18. The superadditive property is a classical assumption, which jus-
tifies the formation of the grand coalition and all its subcoaltions in the game [135].
Indeed, when the game is superadditive, the rationality of the players implies that
two coalitions would merge because, when the players of two disjoint coalitions S, T
join, the resulting payoff to allocate is larger. A weaker assumption is the game
cohesiveness. It again guarantees the grand coalition to form by players’ rationality,
but it does not justify all the sub-coalitions.
Definition 4.1.19 (Constant sum game). A game u is constant sum (CSS) if

∀S ⊆ N, u(S) + u(N \ S) = u(N) (4.4)
Remark 4.1.20. A constant sum game depicts a two-player competitive game
between each pair of complementary coalitions. Indeed, each gain of one coalition
is the loss of the other in the negotiation process.
Definition 4.1.21 (Dual game). The dual game of u is the function ū : PN → R
defined as:

ū(S) := u(N)− u(N \ S) (4.5)
Note that the dual game is itself a game because ū(∅) = u(N)− u(N \ ∅) = 0
Definition 4.1.22 (Quotient game). Let u ∈ GN with n ≥ 2, and let K =
{1, . . . , k} be such that k ≤ n. Let P = {S1, . . . , Sk} be a partition of N . Define
uP ∈ GK as the game where the coalitions S1, . . . , Sk of the partition are the players,
that is:

∀{i1, . . . , il} ⊆ K, uP(i1 ∪ · · · ∪ ik) = u(Si1 ⊔ · · · ⊔ Sik).
In particular, uP(∅) = u(∅) = 0, and uP(K) = u(N).
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Remark 4.1.23. In particular, if k = 2, P = {S,N \ S}, and the set of players is
K = {1, 2}, where S = player 1, N \ S = player 2. The associated quotient game
uP becomes:

uP(∅) = 0
uP({1}) = u(S)
uP({2}) = u(N \ S)
uP(K) = u(N).

Definition 4.1.24 (Bilateral coalition). A coalition S is said bilateral in the
game u if

u(S) = u(N \ S)

Definition 4.1.25 (Bilateral game). A game u is said bilateral if all proper
coalitions S are bilateral in u, that is:

∀S ⊆ N such that S /= ∅, N, u(S) = u(N \ S).

Remark 4.1.26. The dual payoff ū represents the amount the other agents in N \S
cannot avoid S from obtaining in u, as reported by [147]. Notably, any constant
sum game is self-dual, that is, ū = u. For bilateral games, individual players are
relatively important because any coalition and its complement receive the same
benefits. Indeed, when one player transfers from one coalition to the other, all
other agents change their gain [132]. Bilateral coalitions make a bilateral structure
at a coalitional level emerge.
Definition 4.1.27 (Marginal contribution of a player to a coalition). Given
a game u and a player i ∈ N , define the marginal contribution of the player i as:

∀S ⊆ N, ∆i(S) := u(S ∪ {i})− u(S). (4.6)

Definition 4.1.28 (Carrier coalition). A coalition R ⊆ N is a carrier in u if

v(S ∩R) = v(S), ∀S ⊆ N

Definition 4.1.29 (Dummy, Null, Nullifying player). Given a game u, a
player i ∈ N is a :

• dummy player if ∀S ⊆ N s.t. i /∈ S, ∆i(S) = u(i).

• null player if ∀S ⊆ N s.t. i /∈ S, ∆i(S) = 0.

• nullifying player if ∀S ⊆ N s.t. i /∈ S, u(S ∪ i) = 0.

Definition 4.1.30 (Symmetric players). Given i, j ∈ N , they are said symmet-
ric players if ∀S ⊆ N s.t. i, j /∈ S, u(S ∪ i) = u(S ∪ j).
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Definition 4.1.31 (Equal division solution). For each game u ∈ GN , the equal
division solution ψEQ is the value

ψEQ
i (u) = u(N)

N

Remark 4.1.32. The marginal contribution of a player i expresses how much gain
a player provides to a coalition S already formed. The concept of dummy player,
null player, and carrier coalition are strictly linked. In particular, it is easy to
notice that if R is a carrier, then every i /∈ R is a null player. In addition, if i is
a null player, then u(i) = 0 [137, Chapter 9.4]. A nullifying player makes 0 the
value of the coalition she joins. The nullifying player is involved in an axiomatic
characterization of the equal division solution ψEQ, which distinguishes the Shapley
value from the equal division [39]. Two symmetric players are indistinguishable from
the point of view of the characteristic function. Notice that two symmetric players
i, j have an equal marginal contribution to all the coalitions not containing them.
Definition 4.1.33 (Unanimity games and Dirac games). Given a coalition
S ⊆ N, S /= ∅, for each T ⊆ N , define the unanimity game θS and the Dirac game
τS as:

θS(T ) =
⎧⎨⎩1 if T ⊇ S

0 otherwise

τS(T ) =
⎧⎨⎩1 if T = S

0 otherwise

Proposition 4.1.34 (Basis of GN). The set of unanimity games {θS}S⊆N,S /=∅ and
the set of Dirac games {τS}S⊆N,S /=∅ are linear algebraic basis for the space of games
GN .

Proof. The first part has already been shown by Lloyd S. Shapley in [170]. See also
[148, Proposition 293.1] or [89, Theorem 2.56].

4.1.3 The Shapley value
This section defines the Shapley value and provides different interpretations to

its combinatorial formulation.
Definition 4.1.35 (Shapley value). Given i ∈ N and u ∈ GN , the Shapley value
ϕi is defined by the formula

ϕi(N, u) := 1
n!

∑︂
σ∈SN

∆i(Sσ(i)), (4.7)

where Sσ(i) is the predecessor coalition of i in σ (Definition 4.1.7).
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Remark 4.1.36 (Random ordering interpretation of the Shapley value).
The interpretation of the Shapley value defined above is straightforward. Con-
cretely, the idea is to suppose that the players could enter a room one by one
according to a random order, and each time they are assigned the marginal con-
tribution to the players already inside the room. More formally, let the players be
ordered according to σ, and assume all orders being equally likely. Then, ϕi is the
expected marginal contribution of the player i to the set of her preceding players
over all ordering. [148, 96].
Remark 4.1.37 (Combinatorial interpretation of the Shapley value). By
simple combinatorial manipulation, the formula 4.7 can be rewritten as

ϕi(u) =
∑︂

S⊆N\{i}

s!(n− s− 1)!
n! ∆i(S). (4.8)

The formula 4.8 is the most used for computations. It allows proposing a second
probabilistic interpretation of the Shapley value as observed in [96]: The contri-
bution of player i is evaluated assuming that the cardinality of the coalitions she
can join are equally probable. That is, first draw at random a number s from
{1, . . . , n− 1}, representing cardinalities in N \ {i}. Then draw a coalition S of the
drawn size s . Note also that the coefficients

s!(n− s− 1)!
n! = 1

n

(︄
n− 1
s

)︄−1

∈ [0, 1] and
∑︂

S⊆N\{i}

1
n

(︄
n− 1
s

)︄−1

= 1.

The above confirms that ϕi is a weighted average of the marginal contribution,
where the weights depend on the coalition size.
Proposition 4.1.38 (About values depending on marginal contributions).
If ψ : GN → RN is a value defined by a linear combination of marginal contributions,
that is, if ∀i ∈ N exists coefficients {aS}S⊆N\i ∈ R such that

∀u ∈ GN , ψi(u) =
∑︂

S⊆N\{i}
aS
(︂
u(S ∪ i)− u(S)

)︂

then
∀i ∈ N, ψi(u) =

∑︂
S⊆N\{i}

aS
(︂
u(N \ S)− u(S)

)︂
(4.9)

Proof. Fix i ∈ N . Observe that, by the change of summands R := N \ (S ∪ i), ψ
is rewritten as:

ψi(u) =
∑︂

R⊆N\i
aS
(︂
u(N \R)− u(N \ (R ∪ i))

)︂
. (4.10)
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Therefore:

2ψi(u) =
∑︂

S⊆N\{i}
aS
(︂
u(S ∪ i)− u(S)

)︂
+

∑︂
S⊆N\i

aS
(︂
u(N \ S)− u(N \ (S ∪ i)

)︂
=

∑︂
S⊆N\{i}

aS
[︂
u(S ∪ i)− u(S) + u(N \ S)− u(N \ (S ∪ i)

]︂
=

∑︂
S⊆N\{i}

aS
[︂
u(N \ S)− u(S) + u(S ∪ i)− u(N \ (S ∪ i)

]︂
=

(4.10)

∑︂
S⊆N\{i}

aS
(︂
u(N \ S)− u(S)

)︂
+

∑︂
S⊆N\{i}

aS
(︂
u(N \ S)− u(N \ (S ∪ i)

)︂
= 2

∑︂
S⊆N\{i}

aS
(︂
u(N \ S)− u(S)

)︂

This proves the statement.

Remark 4.1.39. The authors of [137, Chapter 9] describes a formula for the Shap-
ley value similar to Equation (4.9). Proposition 4.1.38 shows in a general statement
that every value expressed by a linear combination of marginal contributions of i
to all the coalitions S non containing i can be rewritten in terms of differences be-
tween u(N \ S) and u(S). Examples are the Shapley value and the Banzhaf value
[20]. As noted by [137, 97], the above proposition may suggest that the Harsanyi’s
rational-threats translation of Remark 4.1.5 is the best way to derive a game in
characteristic form from the strategic form, when the Shapley value is being used
as solution concept.

4.1.4 Axiomatic Characterization
The first characterization of the Shapley value comes from the concept of fair

allocation of the payoff.
Definition 4.1.40 (Axioms for a fair value). The value ψ is said to satisfy the
axioms of:

EFFi Efficiency if ∑︁i∈N ψi(u) = u(N);

NLLi Null player if, given a null player i ∈ N , then ψi(u) = 0;

SYMi Symmetry if, given two symmetric players i, j ∈ N , then ψi(u) = ψj(u);

LINi Linearity if, given a, a′ ∈ R, and games u, u′, then

∀i ∈ N ψi(a u+ a′u′) = aψi(u) + a′ ψi(u′);

Remark 4.1.41 (About EFFi, NLLi, and SYMi axioms). The efficiency ax-
iom requires that the payoff allocation provided by the value ψ should be feasible.
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This assumption motivates by the need for a complete and non-exceeding allotment
of the grand coalition payoff. In some texts, EFFi is part of the value definition, for
example [148, 137], while others keep it separated [85]. This section follows keeps
it as a separate axiom to provide a better parallel when deriving a concept of value
for coalitions in Section 4.2. NLLi can be stated equivalently using carrier coalition
(Definition 4.1.28) or dummy player (Definition 4.1.29). SYMi states that only the
role of an agent in the game should matter, not her label or names (“i”) [137].
The NLLi and SYMi axioms express the fairness principle because one excludes
players who do not contribute to the game looking at marginal contributions, while
the other guarantees that equal marginal contribution to coalitions is given equal
worth.
Remark 4.1.42 (About the LINi axiom). LINi is the most controversial from
an interpretative point of view, although mathematically convenient. It has been
originally stated as additive axiom by Shapley [170], that is, ψi(u + u′) = ψi(u) +
ψ(u′); the motivation is for the value to be additive in a system of interdependent
games. Then, some authors proposed the value to be linear for convex combinations
of games, that is ψi(p u + (1 − p)u′) = pψi(u) + (1 − p)ψi(u′), p ∈ [0, 1]. In
this case, p can be interpreted as the probability of playing u or u′ according to
some random event [137]. Some texts report it as additivity [148, 96, 69], others
extends to linearity for convex combination of games [85, 137]. In this section, the
axiom is stated in the most general linear form, as useful for some applications, for
example in Machine Learning [126]. The problem of the linearity property outside
convex combinations for game theory lies in the following: the loss of a connection
between the games a u + a′u′, u and u′ if a, a′ ∈ R, especially with a of negative
sign. For example, a superadditive game u, which implies rationality, could become
non superadditive in a u. Finally, note that linearity implies convex combination
linearity, which again implies additivity.
Theorem 4.1.43 (Axiomatic uniqueness of the Shapley value). The Shapley
value ϕ is the only value that satisfies the axioms of EFFi, NLLi, SYMi and LINi.

Proof. The original proof is due to Lloyd Shapley [170, 169]. Similar proof of the
statement is reported in textbooks [148, 85, 137, 96, 69].

Remark 4.1.44. Theorem 4.1.43 states that the Shapley value is the only one
satisfying the fairness property as defined by the four above axioms. This result
is fundamental for applications because it provides a formalized version of the fair
allocation according to the power structure of the characteristic form of the game.
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4.1.5 Counter-objections Characterization
This section recalls the characterization presented in [148, Section 14.4.1], al-

though a more formal discussion should refer to [136, 98]. This second characteri-
zation of the Shapley value is codified by means of objection and counter-objection.
The described property results in a stability concept of the allocation given by the
Shapley value ϕ.

During the effective negotiation in the grand coalition, a request of deviation
of one player i to a candidate allocation ψ may force other players to respond.
Thus, the request causes a chain reaction of deviations that resolves in an outcome
ψ′. If ψ = ψ′, the allocation is deemed stable, otherwise it is unstable. There
are different possible stability concepts, that may characterize other solution of
games with respect to ϕ, for example the Stable Sets [142], the Bargaining Set [16],
the Kernel [51] or the Nucleolus [167]. The idea behind the concept of stability
marking the Shapley value is that the chain reaction is cut short after two steps:
the condition is that for every objection of player i motivating the deviation from
the allocation, there is a player j who has a balancing counter-objection. The
different notions of objection and counter-objection characterize different solution
concepts. In the following, the focus is on the stability of ϕ.

Consider a game u. Recall Definition 4.1.16 of subgame. The following discussion
defines the possible objections for a candidate allocation ψ(N, u) ∈ Rn of a player i
against j /= i. Assume that i wants a higher allocation ψi(N, u) from j and she asks
j to give more to i with one of the following arguments, expresses by the respective
inequality:

1. i threatens to leave the game, so that j could obtain a smaller amount :

ψj(N \ i, uN\i) ≤ ψj(N, u); (4.11)

2. i threatens to persuade the other players N \{i, j} to exclude j from the game,
so that i can receive more

ψi(N \ j, uN\j) ≥ ψi(N, u). (4.12)

Then, the player j could counter-object by saying one of the following in response,
respectively:

1. j says that if i leaves then j would lose, but if j leaves then i would lose at
least as much:

ψi(N, u)− ψi(N \ j, uN\j) ≥ ψj(N, u)− ψj(N \ i, uN\i); (4.13)

2. j says that if she is excluded, i would gain, but if j persuade the other players
N \ {i, j} to exclude i, then j would gain at least as much:

ψj(N \ i, uN\i)− ψj(N, u) ≥ ψi(N \ j, uN\j)− ψi(N, u). (4.14)
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The following definition expresses the balancing between the statements of Equation
(4.11) and (4.13), or Equation (4.12) and (4.14).
Definition 4.1.45 (Balanced contribution for players - BCPi). A value ψ
satisfies the balanced contributions property for players (BCPi) if, for every game
u:

ψi(N, u)− ψi(N \ j, uN\j) = ψj(N, u)− ψj(N \ i, uN\i)

Remark 4.1.46. The property BCPi for a value means that the outcome of a
game using the reasoning of the value should derive from the same reasoning that
describes the outcome of its subgames. The property translates into the stability of
the outcome, or equilibrium of the allocation. Indeed, every objection of a player i
towards the player j balances with a counter-objection of j towards i.
Theorem 4.1.47 (Shapley value and balanced contributions). The Shapley
value ϕ is the unique value satisfying EFFi and BCPi.

Proof. See [148, Proposition 291.3] or [136] and [98].

4.1.6 Shapley value for XAI: SHAP
This section briefly recalls the application of the Shapley value solution con-

cept of cooperative game theory to the field of Explainable Artificial Intelligence
(XAI). The XAI class of algorithms have been already thoroughly described and
summarized in Section 1.1.3. In particular, recall the assumptions for attribution
methods (Notation 1.1.1), the definitions of Explanation Model (Definition 1.1.5)
and Additive Feature Attribution Methods (Definition 1.1.6).

The seminal works of [182] and [181], proposing the algorithm named Shapley
Sampling, are the starting papers for the application of the Shapley value in Ma-
chine Learning (ML). In particular, they propose a general method for explaining
individual predictions of a classification ML model. [104] suggests a second line of
research, where the goodness of fit of linear models is decomposed into relevance
scores allocated to single features, again through the Shapley value. Yet, the break-
through work of [126], proposing the SHAP framework, have laid the foundations
for several studies about the Shapley value for XAI. Among the others, it is worth
mentioning the paper of [49], which extends [126] to a global feature attribution
method for model interpretation, and the paper of [2], that provides an algorithm
to explain individual prediction when there are dependent features.

In general, all these methods provide additive feature explanation model Gˆ︁F
assigning a relevance score ϕi to each of the N input features. The relevance score
is computed through the application of the Shapley value to a cooperative game
built on the ML predictive model ˆ︂F to be explained. There are many possibilities to
derive a game from an ML model, so some authors have defined many explanation
games [130]. This section recalls just the most used explanation game of [126],
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though many limitations are known and improvements have been already suggested,
for example [75] and again [2].
Notation 4.1.48. Fix a sample x∗ ∈ Rn to be explained. Consider the outcome
explanation setting, and for the ease of presentation, assume that the simplified
input features are the original features, that is Z = X. Therefore, each player
i ∈ N is a feature and a coalition S ⊆ N is a feature subset; the grand coalition N
is the set of all the features. The goal is to allocate the contribution of the actual
prediction ˆ︂F (x∗) to the single features xi. In XAI, the allocation of the Shapley
value becomes the attribution of the Explanation Model, as in Definition 1.1.5.
Definition 4.1.49 (SHAP Explanation game). For each coalition S and ML
model ˆ︂F , the game characteristic function uˆ︁F (S) is defined as the expected value of
the prediction, assuming that only the features in S are known.

u
ˆ︁F (S) = E

[︂ˆ︂F (x) | xS = x∗S
]︂

Remark 4.1.50. In other words, it is the expected output of the ML model ˆ︂F ,
conditional on the values of the features on the selected coalition xS = x∗S: The
work of [126] calls the Shapley value for the features of the explanation game
as SHAP. In addition, it shows that there is an axiomatic characterization for
attribution, parallel to the one recalled for the Shapley value in Section 4.1.4. In
particular, first, the authors restate the axioms of EFFi, NLLi, SYMi, and LINi

for the game uˆ︁F in terms of explanation model; for an additive feature attribution
method, they become local accuracy, missingness, and consistency.
Theorem 4.1.51 (SHAP axiomatic uniqueness [126]). There is only one pos-
sible explanation model Gˆ︁F satisfying the properties of local accuracy, missingness
and consistency, defined by:

φ∗j(ˆ︂F ,x∗) =
∑︂

S⊆N\{i}

s!(n− s− 1)!
n!

(︂
u
ˆ︁F (S ∪ i)− uˆ︁F (S)

)︂
(4.15)

Proof. The proof is derived from [192].

Remark 4.1.52. In many practical situations, the SHAP value of Equation (4.15)
is only approximated because of the exponential computation in n needed for the
allocation to input features. Thus, the literature proposes many algorithms to
compute the approximations, for example the already mentioned Shapley Samplings
[181, 182], KernelSHAP, DeepSHAP [126], or DASP [12].
Example 4.1.53 (SHAP for a linear model and independent features). To
conclude the presentation, just recall an example coming from [2, Appendix B], of
the exact computation of SHAP in a simple scenario. Let ˆ︂F be a linear regression
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model on a vector of n independent features x ∈ Rn:

ˆ︂F (x) =
n∑︂
j=1

θj xj.

The explanation game becomes

u
ˆ︁F (S) =

∑︂
j∈N\S

θjE [xj] +
∑︂
j∈S

θjx
∗
j

Then, the SHAP value for each feature ∀i = 1, . . . , N can be expressed as: [2,
Appendix B.1]:

φ∗i (u
ˆ︁F ) = θi

(︂
x∗i − E [xi]

)︂
.

In particular, if the features are zero-mean, that is ∀i ∈ N,E [xi] = 0, then

φ∗i (u
ˆ︁F ) = θix

∗
i

4.1.7 Interlude: Hodge Decomposition of a graph
This section presents the general mathematical framework of the combinatorial

Hodge decomposition from graph theory, used in a recent characterization of the
Shapley value [180].
Notation 4.1.54. Let V be a set of vertices and E ⊆ V × V be a set of edges
connecting a pair of nodes in V .
Definition 4.1.55 (Oriented graph). G = (V,E) is called an oriented graph if
given two vertices a, b ∈ V connected by an edge, only one between (a, b) and (b, a)
is in E.
Definition 4.1.56 (Incidence matrix of oriented graph). Given a graph G,
the incidence matrix MG ∈ R|V |×|E| :

∀i ∈ V, ∀(j, k) ∈ E, MG[i, (j, k)] =

⎧⎪⎪⎨⎪⎪⎩
1 if j = i and (i, k) ∈ E
−1 if k = i and (j, i) ∈ E
0 otherwise.

Definition 4.1.57 (Degree of nodes in an oriented graph). Given an oriented
graph G = (V,E), for each node i ∈ V define the indegree deg+, the outdegree deg−,
and the total degree deg as the cardinalities:

deg+ i = |{j ∈ V | (j, i) ∈ E|
deg− i = |{j ∈ V | (i, j) ∈ E|

deg i = deg+ i+ deg− i

To explicit the graph over which the degree is computed, write deg+
G, deg−G, degG
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Definition 4.1.58 (Adjacency matrix and degree matrix). Given an oriented
graph G = (V,E), the unsigned and signed adjacency matrix, respectively AG, A′G ∈
R|V |×|V |, and the degree matrix DG ∈ R|V |×|V |, are defined as:

∀i, j ∈ V, AG[i, j] =
⎧⎨⎩1 if (i, j) ∈ E or (j, i) ∈ E

0 otherwise.

∀i, j ∈ V, A′G[i, j] =

⎧⎪⎪⎨⎪⎪⎩
1 if (i, j) ∈ E
−1 if (j, i) ∈ E
0 otherwise.

∀i, j ∈ V, DG[i, j] =
⎧⎨⎩degG i if i = j

0 otherwise.

Definition 4.1.59 (l2(V ) and l2(E)). Denote by l2(V ) the space of functions with
domain V and range R, u : V → R, equipped with the inner product

⟨u, v⟩l2(V ) :=
∑︂
a∈V

u(a)v(a). (4.16)

Analogously, denote by l2(E) the space of functions with domain E and range R,
f : E → R, equipped with the inner product

⟨f, g⟩l2(E) :=
∑︂

(a,b)∈E
f(a, b)g(a, b). (4.17)

For f : E → R, set f(b, a) := −f(a, b). In addition, note that the inner-product
spaces l2(V ) and l2(E) can be identified with the spaces R|V |, R|E|, respectively, each
equipped with its Euclidean dot product. A canonical basis for the space l2(V ) is the
set of function fa ∈ l2(V ) such that ∀a ∈ V, fa(b) = 1 if a = b, otherwise fa(b) = 0.
Definition 4.1.60 (d and d∗). The linear operator dG : l2(V ) → l2(E) is defined
as

dG u(a, b) := u(b)− u(a). (4.18)

Its adjoint d∗G : l2(E)→ l2(V ) is defined by

⟨u, d∗G f⟩l2(V ) = ⟨dG u, f⟩l2(E)

and it is explicitly provided by the formula:

(d∗G f)(a) :=
∑︂

(b∼a)
f(b, a), (4.19)

where (b ∼ a) denotes the set {b ∈ E | (a, b) ∈ E or (b, a) ∈ E}.
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Notation 4.1.61. Whenever the graph G is clear from the context, the notation
omits the subscript G from the differential or its adjoint, that is, d := dG or
d∗ := d∗G.
Remark 4.1.62. The operator d is the discrete analogue of the gradient in graph
theory, while d∗ is the discrete analogue of the negative divergence. Assuming
canonical bases on l2(V ) and l2(E), the matrix of d∗, M(d∗) ∈ R|2N |×|E|, is the
incidence matrix of the graph G, as in Definition 4.1.56; instead, the matrix of d is
the transpose: M(d) = M(d∗)⊤

Definition 4.1.63 (Graph Laplacian). Given a graph G, the graph Laplacian
matrix LG ∈ R|V |×|V | is defined as LG = d∗G dG. If clear from the context, the
subscript G is dropped for the graph Laplacian matrix L = LG.
Remark 4.1.64. The graph Laplacian defined above is the same as the usual graph
Laplacian of spectral graph theory LG = DG − AG ([180]). Indeed, given a graph
G = (V,E), then ∀u ∈ l2(V ), a ∈ V :

LG u(a) = (d∗GdG u)(a) =
∑︂

(b∼a)
du(b, a) =

∑︂
(b∼a)∈E

(︂
u(a)− u(b)

)︂
= deg(a)u(a)−

∑︂
(b∼a)

u(b)

=
(︂
(DG − AG)u

)︂
(a)

where DG and AG are the degree matrix and the adjacency matrix of the graph G,
defined in Definition 4.1.58. Recall the following properties of the graph Laplacian
L:

(i) The diagonal entries of L equal to the vector of the node degrees;

(ii) The sum of each row and column of L is equal to 0;

(iii) Ker(L) = Ker(d∗d) = Ker(d), and Im(L) = Im(d∗).

(iv) The (algebraic and) geometric multiplicity of the eigenvalue 0 of L equals to
the number of connected components of the graph G. In particular, if G is
connected, then the algebraic multiplicity of 0 is 1;

Proposition 4.1.65 (Combinatorial Hodge decomposition). the inner-product
spaces l2(V ) and l2(E) are decomposed as

l2(V ) = Im(d∗)⊕Ker(d) and l2(E) = Im(d)⊕Ker(d∗), (4.20)

where Im(·) and Ker(·) denote the image space and the kernel space of a linear
operator, respectively. The decomposition obtained in (4.20) is referred to as the
combinatorial Hodge decomposition of l2(V ) and l2(E).
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Proof. The result follows from the application of the fundamental theorem of linear
algebra applied to d and d∗, respectively.

Definition 4.1.66 (Orthogonal projection on Im(d)). Denote by P : l2(E) →
Im(d) the orthogonal projection onto Im(d).
Remark 4.1.67. By the properties of the projector P 2 = P . In addition, given
ψ ∈ l2(E), it holds the decomposition

ψ = Pψ + (1− P )ψ
= duψ + rψ, (4.21)

with uψ ∈ l2(V ) and rψ ∈ Ker(d∗). In addition, note that if Equation (4.21) holds,
then applying d∗ on both sides gives:

d∗dψ = d∗uψ + d∗rψ
Lψ = d∗uψ by rψ ∈ Ker(d∗) and L = d∗d (4.22)

The focus of the study is on the component uψ.

4.1.8 Shapley value Characterization via Hodge Decompo-
sition

The third characterization resumed here is based on the recent work of [180],
starting from the framework introduced in Section 4.1.7. The authors introduce a
decomposition of a game into a sum of inessential games (Definition 4.1.14), one
for each player. This decomposition derives by formulating the game as a function
on the vertices of a graph and computing the Hodge decomposition of the defined
graph. The formulation allows getting the Shapley values for each player as the
value assigned to the grand coalition of the inessential games in which the original
game is decomposed. The goal is to highlight a connection between the Shapley
values for players and the Hodge decomposition of a graph. This characterization
will be the starting point for the suggested definition of a value for coalitions in the
following Section 4.2.1.
Definition 4.1.68 (Game graph for players). Let N be the set of n players in a
game. Define the game graph for players as the oriented graph G = (V,E), where:

1. V := PN , i.e. the power set of the set of players;

2. E := {(S, S ∪ {i}) ∈ V × V | S ⊆ N\{i}, i ∈ N}.

Remark 4.1.69. This graph corresponds to a n-dimensional hypercube graph.
Each vertex of the graph corresponds to a coalition S, and each edge to a player i
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Figure 4.1: The game graph for players for a game with n = 2 (left) or n = 3
(right).

joining one coalition S not containing i. An edge is oriented in the direction of the
inclusion (S)→ (S ∪ {i}). See Figure 4.1 for an illustration of the graph G.

In this framework, the defined graph is the Hasse diagram of the partial ordered
set (2N , G). The Hasse diagram derives from the relation

∀a, b ∈ V, a ⪯ b⇔ (a ≤ b ∧ a ≤ c ≤ b=⇒c = a ∨ c = b)

In order theory, a Hasse diagram represents a finite partially ordered set, also called
poset, in the form of a drawing of its transitive reduction. In practice, for a poset
(A,⪯), each element of A is a vertex in the plane and a curve goes downward
from x to y whenever y covers x, that is, whenever x ⪯ y and there is no z
such that x ⪯ z ⪯ y. These curves may cross each other, but must not touch any
vertices other than their endpoints. Such a diagram, with labeled vertices, uniquely
determines its partial order.
Remark 4.1.70 (Equivalent notation for a game). By the definition of game
graph G, the characteristic function u of a TU-game is as a function, element of
l2(V ). In addition, the same u can be viewed as a vector. Denote by u the vector
in R2n such that u =

(︂
u[S]

)︂
S∈PN

, whose S-entry is equal to the corresponding
function evaluated in the coalition S, that is u[S] = u(S). Note that u[∅] = u(∅) =
0. Therefore, GN is identified with the subspace of l2(V ) made by the vectors u
such that u[∅] = 0.
Definition 4.1.71 (Differential operator d̄ for game graph of players).
Denote with d̄ : l2(V ) → l2(E) the linear operator for the game graph G deriving
from Equation (4.18), such that :

d̄u(S, S ∪ {i}) = u(S ∪ {i})− u(S) (4.23)
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Remark 4.1.72. Equation (4.23) is a formal algebraic rewriting of the marginal
contribution of the player i to the coalition S ⊆ N\i for u, as expressed in Definition
4.1.27. From the viewpoint of graph theory, d̄ is the 0-coboundary operator of
G, and its adjoint d̄∗ is the corresponding 0-boundary operator expressed as in
Equation 4.19. Thus, because G is connected, the dimension of the kernel space of
d̄ is dim Ker(d̄) = 1 [65, 124].
Definition 4.1.73 (i-player differential di). For each i ∈ N , let d̄i : l2(V ) →
l2(E) be the operator such that for all S ⊆ N \ i, and for all u ∈ l2(V ):

d̄i u(S, S ∪ {j}) =
⎧⎨⎩d̄u(S, S ∪ {i}) if i = j

0 if i /= j
(4.24)

Remark 4.1.74. The i-player differential d̄i is nothing else than the zeroing of the
operator d̄ on the edges of G not involving the marginal contribution of i.
Definition 4.1.75 (i-player Laplacian Li). Given i ∈ N , denote by Li : l2(V )→
l2(V ) the i-player Laplacian defined by Li = d̄∗d̄i.
Remark 4.1.76. Li describes a weighted graph Laplacian of G, where the edge
(S, S ∪ j) have weight 1 if i = j and 0 otherwise. In addition, note that Li is
represented by a symmetric matrix, like L.
Lemma 4.1.77 (Unique game decomposition for di ). Given u ∈ GN , the
vector d̄iu ∈ l2(E) can be uniquely decomposed as:

d̄i u = d̄ui + ri(u) s.t. ⟨d̄ui, ri(u)⟩l2(E) = 0, (4.25)

where ui ∈ l2(V ), and ri(u) ∈ l2(E). Furthermore, there exists a unique ui ∈ GN
allowing the above decomposition.

Proof. For the ease of readability, the following proof report what observed in [180].
Using the Hodge decomposition of l2(E) of Equation (4.20), for a u ∈ GN and a
i ∈ N , there exists an element ui ∈ l2(V ) such that Equation (4.25) holds, where
ri(u) ∈ Ker(d̄∗). In addition, dim Ker(d̄) = 1 from what observed in Remark 4.1.72.
Therefore, ui is uniquely determined by imposing the condition ui(∅) = 0, that is,
by the condition that ui is a game.

Remark 4.1.78 (Orthogonal projection on Im(d̄)). Recall the definition of
Orthogonal projection of Definition 4.1.66, here denoted by P . For example, P d̄i u
is the Im(d̄) component of d̄i u in the Hodge decomposition.
Definition 4.1.79 (i-differential game). Following Lemma 4.1.77, for each i ∈
N , let ui be the unique game such that d̄ui = P d̄i u. Call ui the i-differential game
of u.
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Theorem 4.1.80 (Decomposition by i-differential games [180]). Given a
game u, let ui be the corresponding i-differential game for each i ∈ N , as in Defi-
nition 4.1.79. Then, the games ui satisfy the following:
(a) ∑︁i∈N ui = u;

(b) If u(S ∪ {i})− u(S) = 0 for all S ⊆ N\{i}, then ui = 0;

(c) If σ ∈ SN is a permutation of N and σ∗u is the permuted game as in Definition
4.1.8, then (σ∗u)i = σ∗(uσ(i)). In particular, if σ swaps i and j, and if σ∗u = u,
then ui = σ∗(uj).

(d) For any two games u, u′ and α, α′ ∈ R, then (αu+ α′u′)i = αui + α′u′i

Proof. See Theorem 3.4 of [180].

Remark 4.1.81 (Inessential game and i-differential game). Note that by
[180, Proposition 3.3], u is an inessential game (Definition 4.1.14) if and only if
each i-differential game ui is given by

ui(S) =
⎧⎨⎩u({i}) if i ∈ S

0 if i /∈ S
. (4.26)

Thus, u can be decomposed as u = ∑︁
i∈N ui. Theorem 4.1.80 generalizes the above

decomposition to a generic game.
Corollary 4.1.82 (New characterization of ϕi). ui(N) is the Shapley value
ϕi(u) for each player i ∈ N .

Proof. By the uniqueness of the Shapley value shown by Theorem 4.1.43.

Remark 4.1.83. Observe that the properties [(a)-(d)] stated in Theorem 4.1.80
involve all the entries of the vectors ui, i = 1, . . . , n, while the axiomatic char-
acterization of the Shapley value involve just the N -entry of the vector ui(N).
Nonetheless, there is a clear correspondence between each of the axioms of Defini-
tion 4.1.4 and the properties [(a)-(d)].
Proposition 4.1.84 (Solution of Laplacian equation for players [180]).
Given u ∈ GN , for each i ∈ N , the i-differential game ui is the unique solution
x ∈ GN to the equation:

Lx = Li u (4.27)

Proof. See [180, Proposition 3.9].

Remark 4.1.85. The work of [180] provides an alternative path to explicitly find
the formula of the Shapley value. In particular, it manages to find the expression
of each entry of the vectors ui by computing the solution to Equation (4.27). The
solution is found by inverting the graph Laplacian of the game graph G using the
results of [46].
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4.2 A Shapley value for Coalitions: X -Shapley
This section proposes a new extension of the Shapley value solution concept. In

particular, the aim is to derive a solution for a fair allocation to coalitions instead
of players.

The extension starts from Section 4.2.1, where a Hodge theoretic argument sim-
ilar to the one recalled in Section 4.1.8 is described. In particular, the interaction
between players is viewed through the lens of a new oriented game graph, where the
edges correspond to the marginal contribution of coalitions instead of players. The
new point of view provides a decomposition similar to that of i-differential game
(Definition 4.1.79). In this case, the elements of the decomposition are named
S-differential games (Definition 4.2.14). Theorem 4.2.15 shows that S-differential
games satisfy similar properties to those shown in Theorem 4.1.80 for i-differential
games, where the subjects are the coalitions of a game instead of the players.
Furthermore, Proposition 4.2.18 shows that S-differential games are solutions to
Laplacian equations analogous to that analyzed in Proposition 4.1.84. Yet, in the
case of coalitions, the computation of the solution of the Laplacian equation is not
straightforward. Nonetheless, Theorem 4.2.34 shows that it is possible to compute
the N -entry of the S-differential games. Then, the resulting solution concept for
coalitions is called X -Shapley.

4.2.1 Towards a characterization via the Hodge decompo-
sition

To focus on coalitions of a game instead of players, a new version of the game
graph is defined, where the edge set is modified with respect to Definition 4.1.68
to account for a concept of marginal contribution of coalition. To simplify the
notation, G and E denote the new graph and the new edge set, respectively, dif-
ferentiating with respect to the graph and edge set of the player version, G and E.
From now on, the graph G and the edge set E refers to this new game graph of
coalitions.
Definition 4.2.1 (Game graph of coalitions). Let N be the set of n players in
a game. Define the oriented graph G = (V,E) as:

1. V := PN , i.e. the powerset of the set of players;

2. E := {(S, T ) | S, T ∈ PN , S ⊊ T} = {(A, A ∪B) | A,B ∈ PN , A ∩B = ∅}.

A game subgraph H denotes a subgraph of a game graph G. See Figure 4.2 for
examples.

Remark 4.2.2. The game graph of coalitions G derives by the strict transitive
closure of the game graph of players G. The transitive closure of an oriented graph
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Figure 4.2: A representation of the graph G for a game with n = 2 (left) or n = 3
(right). Highlighted, the “diagonal” edges added in game graph for coalition with
respect to game graph for players.

G is a graph having an edge (a, b) whenever G has a directed path from a to b. In
practice, the difference between G and G is that the last comprehends the edges
(A, A ∪B) with |B| > 1.
Lemma 4.2.3 (Node degree in a game graph for coalitions). Given a game
graph G = (V,E) over N players as in Definition 4.2.1,

∀S ∈ V,

⎧⎨⎩deg+
G S = 2s − 1

deg−G S = 2n−s − 1
where s = |S|. (4.28)

In particular the total degree of the nodes N and ∅ are:

degG S = 2n − 1. (4.29)

Proof. For a given node S ∈ V , the total degree of S depends only on s = |S|.
Indeed, for each node S ∈ V there is:

• an inbound game subgraph H i = (VHi , EHi) isomorphic to the game graph
with s = VHi players, where for each node R ∈ VHi there is an edge (R, S) ∈
EHi , according to the definition of the edge set of G. In this case, the isomor-
phism sends the node S ∈ V to the grand coalition NS of H i.

• an outbound game subgraph Ho = (VHo , EHo) isomorphic to the game graph
with n − s = |VHo | players, where for each node T ∈ VHo there is an edge
(S, T ) ∈ EHo , according to the definition of the edge set of G. In this case,
the isomorphism sends the node S ∈ V to the empty set ∅S of Ho.

Then the deg+
G of node S ∈ V is the deg+

Hi of the grand coalition with cardinality
s. Because the grand coalition is connected with every other node in H i different
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from itself:
deg+

G S = deg+
Hi NS = 2s − 1.

Analogously, the deg−G of node S ∈ V is the deg−Ho of the ∅ ∈ VHo with n−s = |VHo|.
Because ∅S is connected with every other node in H i different from itself:

deg−G S = deg−Hi ∅S = 2n−s − 1.

In particular, if s = n, degG S = deg+
G S = 2n − 1 and if s = 0, degG S = deg−G S =

2n − 1.

Similar to the players setting, let us denote with l2(V ) the space of the functions
with domain in V and range R. Likewise, let l2(E) be the space of functions with
domain in E and range R, both equipped with their inner product (Definition
4.1.59).
Definition 4.2.4 (Differential d operator for G). Denote with d: l2(V ) →
l2(E) the linear operator for the game graph G deriving from Equation (4.18), such
that :

∀S ⊊ T ∈ PN , du(S, T ) := u(T )− u(S) (4.30)
Definition 4.2.5 (S-coalition differential dS). For each S ⊆ N , let dS : l2(V )→
l2(E) be the operator such that for all A,B ∈ PN , A∩B = ∅, and for all u ∈ l2(V ):

dS u(A,A ∪B) =
⎧⎨⎩du(A,A ∪ S) if B = S

0 otherwise
(4.31)

Note that d∅ u = 0 ∈ l2(E).
Lemma 4.2.6 (d sum of dS). The differential d can be written as a sum of S-
coalition differentials dS:

d =
∑︂
S⊆N

dS.

Proof. Take u ∈ GN and take (A,A ∪B) ∈ E, A ∩B = ∅.∑︂
S⊆N

dS u(A,A ∪B) = dB u(A,A ∪B) by dS non-zero only on S = B increments

= du(A,A ∪B)

Lemma 4.2.7 (Computing dN). Given u ∈ l2(V ),

∀A,B ∈ PN : A ∩B = ∅, dN u(A,A ∪B) =
⎧⎨⎩u(N)− u(∅) if A = ∅, B = N

0 otherwise.
(4.32)

In particular, if u ∈ GN , dNu(∅, N) = u(N).
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Proof. For each A,B ∈ PN such that A ∩ B = ∅, if A /= ∅ or B /= N , then
dNu(A,A∪B) = 0. Only the edge (∅, N) ∈ E is such that dNu (∅, N) = du (∅, N) =
u(N)− u(∅).

Proposition 4.2.8 (Describing the kernel space of d). The kernel space of
the differential d can be described by:

Ker(d) = {[λ, . . . , λ]⊤ ∈ R2n | λ ∈ R} (4.33)

Proof. Denote by 1 ∈ l2(V ) the vector with entries equal to 1. Consider u ∈ Ker(d):

du = 0 ⇐⇒ ∀A,B : A ⊊ B ⊆ N, u(A) = u(B) ⇐⇒ u = u(∅)1.

Therefore, Equation (4.33) results calling λ = u(∅).

Corollary 4.2.9 (d injective on GN). Ker(d) ∩ GN = {0}. In particular, d
restricted to GN is injective.

Proof. If u ∈ GN =⇒ u(∅) = 0, then u ∈ Ker(d) ∩ GN =⇒ λ = 0 in Equation
(4.33).

Definition 4.2.10 (Permutation operators σ∗0 and σ∗1). For all permutations
of the N players σ ∈ SN , define:

(i) σ∗0 : l2(V )→ l2(V ) such that ∀u ∈ l2(V ), σ∗0u(S) := u
(︂
σ(S)

)︂
(analogous to Definition 4.1.8 of permuted game);

(ii) σ∗1 : l2(V )→ l2(V ) such that ∀ψ ∈ l2(E), σ∗1ψ(A,B) := ψ(σ(A), σ(B))
(a permutation of the vertices σ induces a permutation of the edges).

Remark 4.2.11. ∀σ ∈ SN , A ⊆ B ⊆ N =⇒ σ(A) ⊆ σ(B)
Lemma 4.2.12 (Properties of σ∗0 and σ∗1). Given S ⊆ N , consider the differen-
tial d, the associated orthogonal projection P , the differential dS, and σ ∈ SN . The
following holds:

(i) dσ∗0 = σ∗1d
(flipping d and σ∗0 changes σ∗0 into σ∗1)

(ii) Pσ∗1 = σ∗1P
(P commutes with σ∗1)

(iii) dSσ∗0 = σ∗1dσ(S)
(a permutation of the argument of u ∈ GN followed by an increment by S is
the same as an increment by S followed by a permutation)

Proof. We prove the points in sequence.
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Proof of (i). Given u ∈ GN , ∀(A,B) ∈ E,
d (σ∗0u)(A,B) = σ∗0u(B)− σ∗0u(A) definition of d

= u
(︂
σ(B)

)︂
− u

(︂
σ(A)

)︂
definition of σ∗0

= du
(︂
σ(A), σ(B)

)︂
definition of d

= σ∗1 du(A,B) definition of σ∗1.
Thus (i) is proven.

Proof of (ii). Given ψ ∈ l2(E), remember from Remark 4.1.67 that P ψ = duψ,
with uψ ∈ l2(V ). Then, ∀(A,B) ∈ E

P σ∗1ψ(A,B) = P ψ(σ(A), σ(B)) definition of σ∗1
= duψ(σ(A), σ(B)) definition of uψ
= uψ

(︂
σ(B)

)︂
− uψ

(︂
σ(A)

)︂
definition of d

= σ∗0uψ(B)− σ∗0uψ(A) definition of σ∗0
= dσ∗0uψ(A,B) definition of d
= σ∗1duψ(A,B) (i) shown before
= σ∗1P ψ(A,B) definition of uψ.

Thus (ii) is proven.

Proof of (iii). Given u ∈ GN , by definition of dS, definition of σ∗0, using (i) and
definition of σ∗1, it holds ∀(A,B) ∈ E

dS σ∗0u(A,B) =
⎧⎨⎩dσ∗0u(A,B) = σ∗1du(A,B) = du(σ(A), σ(B)) if B = S

0 otherwise
(4.34)

By the same arguments, ∀(A,B) ∈ E:
σ∗1dσ(S) u(A,B) = dσ(S) u(σ(A), σ(B)) =

=
⎧⎨⎩du(σ(A), σ(B))) if σ(B) = σ(S)⇐⇒ B = S

0 otherwise
(4.35)

By comparing expressions of (4.34) and (4.35), (iii) is proven.

Lemma 4.2.13 (Unique game decomposition for dS). Given u ∈ GN , the
vector dSu ∈ l2(E) can be uniquely decomposed as:

dS u = duS + rS(u) s.t. ⟨duS, rS(u)⟩l2(E) = 0, (4.36)
where uS ∈ l2(V ), and rS(u) ∈ l2(E). Furthermore, there exists a unique uS ∈ GN
allowing the above decomposition.
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Proof. The proof proceeds similarly to Lemma 4.1.77, using the injectivity of d on
GN from Corollary 4.2.9.

Definition 4.2.14 (S-differential game). Following Lemma 4.2.13, for each S ∈
N , let uS ∈ l2(V ) with uS(∅) = 0 be the unique game such that duS = PdS u, where
PdSu is the Im(d) component of dS u in the Hodge decomposition. Call uS the
S-differential game of u.

The following Theorem is inspired by the Theorem 4.1.80, but it focuses on
coalitions instead of single players.
Theorem 4.2.15 (Decomposition by S-differential games). Given a game u,
let uS be the corresponding S-differential game for each S ∈ PN . Then, the games
uS satisfy the following:

(a) ∑︁S⊆N uS = u;

(b) if u(S ∪ T )− u(T ) = 0 for all T ⊆ N \ S, then uS = 0;

(c) if σ ∈ SN and σ∗u is the permuted game, then (σ∗u)S = σ∗ (uσ(S)). In particu-
lar, if σ is a permutation that swaps S and T , with S ∩T = ∅, and if σ∗u = u,
then uS = uT .

(d) For any two games u, u′ and α, α′ ∈ R, then (αu+ α′ u′)S = αuS + α′ u′S

Proof. Let the games uS be as Definition 4.2.14. Prove the properties (a)-(d).

Proof of (a). Let us prove that uS satisfy (a). Take u ∈ GN and apply both
sides of Lemma 4.2.6 to u.

du =
∑︂
S⊆N

dS u

P du = P
∑︂
S⊆N

dS u apply P to both sides

du =
∑︂
S⊆N

P dS u linearity of P and Pdu = du

du =
∑︂
S⊆N

duS definition of uS

du = d
∑︂
S⊆N

uS linearity of d

u =
∑︂
S⊆N

uS Corollary 4.2.9: d injective on GN
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Proof of (b).

∀T ⊆ N \ S, u(T ∪ S)− u(T ) = 0 hyphotesis
=⇒∀T ⊆ N \ S, dS u(T, T ∪ S) = 0 Definition 4.2.5 of dS
=⇒ dSu = 0 0 ∈ l2(E)
=⇒P dS u = 0 = duS definition of uS
=⇒uS = 0 Corollary 4.2.9: d injective on GN

Proof of (c).

d
(︂
(σ∗0u)S

)︂
= PdS(σ∗0u) definition of uS applied to (σ∗0u)S
= Pσ∗1dσ(S)(u) Lemma 4.2.12.(iii)
= σ∗1Pdσ(S)(u) Lemma 4.2.12.(ii)
= σ∗1duσ(S) definition of uσ(S)

= dσ∗0uσ(S) Lemma 4.2.12.(i)

Therefore, d
(︂
(σ∗0u)S

)︂
= dσ∗0uσ(S), and by Corollary 4.2.9:

(σ∗0u)S = σ∗0(uσ(S)) (4.37)

Consider now S, T ⊆ N s.t. S ∩ T = ∅ and σ ∈ SN s.t. σ(S) = T and σ(T ) = S.
In other words, σ swaps S and T . In addition, assume as before that σ∗0u = u.

uS = (σ∗0u)S assumption σ∗0u = u

= σ∗0(uσ(S)) Equation (4.37)
= σ∗0uT σ(S) = T

= uT assumption σ∗0u = u

and this concludes the proof of (c).

Proof of (d). Let us prove now linearity. Let α, α′ ∈ R and u, u′ be two games.
Then, since duS = PdS u,

d (αu+ α′ u′)S = P dS (αu+ α′ u′) definition of uS
= αP dS u+ α′ P dS u′ linearity of P and dS
= α duS + α′ du′S definition of uS

Remark 4.2.16. Following what done for players in Section 4.1.8, the question
now is if uS(N) represents a concept of value for the coalition S, similarly to the
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Shapley value as pointed out in by Corollary 4.1.82 and Remark 4.1.83. From
the discussion until now, no answer is possible because there is not a uniqueness
result like Theorem 4.1.43 that allows deriving a similar conclusion. The following
sections try to analyze the properties of uS(N) and derive characterizations similar
to those of the Shapley value for players.
Definition 4.2.17 (Coalitional Laplacian LS). Given S ⊆ N, S /= ∅, denote by
LS : l2(V )→ l2(V ) the coalitional Laplacian defined by LS = d∗dS.
Proposition 4.2.18 (Solution of Laplacian equation for coalitions). Given
u ∈ GN , ∀S ⊆ N, S /= ∅, the S-differential game uS represents the unique solution
x ∈ GN to the equation:

Lx = LS u (4.38)

Proof. Proceeding like Proposition 4.1.84 proven in [180]: first, show that uS is a
solution of (4.38), second show uniqueness.

Proof of S-differential game is solution. From Lemma 4.2.13:

rS = dS u− duS (4.39)

with uS ∈ GN and rS ∈ Ker(d∗). Then, applying d∗ to both sides of Equation
(4.39)

0 = d∗(dS u− duS) = d∗dS u− d∗duS = LS u− LuS

So uS is a solution of Equation (4.38).

Proof of uniqueness. Observe that Ker(L) = Ker(d) by Remark 4.1.64.(iii), so
L is injective on GN , and uS is the unique solution.

Remark 4.2.19. The last Proposition 4.2.18 is the natural translation of Propo-
sition 4.1.84 from [180] to the new game graph G of Definition 4.2.1.

4.2.2 Interlude: Preliminary Results and Notation
Before going forward to derive a candidate Shapley value for coalitions, this

section shows preliminary results about possible partitions of PN , and it fixes a
notation useful for the computation of the analytic formula of X -Shapley of the
following Section 4.2.3.
Lemma 4.2.20 (A-Partition of PN). If S ⊆ N and S /= ∅, then the power set
of N can be partitioned into:

PN = AS1 ⊔ AS2 ⊔ AS3 (4.40)
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where

AS1 := {T ⊆ N \ S }
AS2 := {T ∪ S | T ∈ A1}
AS3 := {T ⊆ N | S /= T ∩ S /= ∅}.

Proof. Let T ⊆ N . Three alternative cases emerge:

(i) T ∩ S = ∅ =⇒ T ∈ AS1 ;

(ii) T ∩ S = S =⇒ T ∈ AS2 ;

(iii) T ∩ S /= ∅ and T ∩ S /= S =⇒ T ∈ AS3 .

Notation 4.2.21. In the following, omit the dependency over S for the A-sets to
simplify the notation, that is, Aj = ASj .
Remark 4.2.22. Focus on the cases s = n and s = 0. The case s = 0 is not
considered in Lemma 4.40, indeed the A-Partition degenerates:

(i) if s = 0, then the A∅-sets do not form a partition because A1 = A2 = PN and
A3 = ∅;

(ii) if s = n, then the AN -sets become A1 = {∅}, A2 = {N} and A3 = PN \{∅, N}.

Corollary 4.2.23 (Emptiness of A3 for singletons). Under the same hypotheses
of Lemma 4.2.20,

|S| = 1 =⇒ A3 = ∅. (4.41)

Proof. Consider S = {i}. Use a proof by contradiction. Take T ∈ N and suppose
that both T ∩ S /= S and T ∩ S /= ∅. Obtain T ∩ S = T ∩ {i} ⊆ {i}. Then
|T ∩ {i}| ≤ |{i}| = 1. This means |T ∩ {i}| can only be 0 or 1. If |T ∩ {i}| = 0,
then T ∩ S = ∅, that is a contradiction. If |T ∩ {i}| = 1, then T ∩ S = {i} = S,
that is a contradiction.

Remark 4.2.24. Remember that Lemma 4.2.20 holds for all proper subsets S of
N . So, assume n > 1; ∀S ⊆ N such that 1 ≤ s ≤ n − 1, then A1 /= ∅ because
A1 ⊇ {∅}. In addition, under the same assumption, it follows thatA2 is a nonempty
set because A2 = {T ∪ S | T ∈ A1} ⊇ {S}.
Corollary 4.2.25 (Complementary relations of the A-Partition). Under the
same hypotheses of Lemma 4.2.20, it holds that

∀T ∈ A1, N \ T ∈ A2 and viceversa, ∀T ∈ A2, N \ T ∈ A1 (4.42)
∀T ∈ A3, N \ T ∈ A3 (4.43)
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Proof. First, show claim 4.42. Given a set T ⊆ N , denote T c = N \ T . If T ∈ A1,
then T ⊆ Sc =⇒ T c ⊇ S. Therefore, denoting by R = T c \ S, then R ⊆ N \ S,
that is, R ∈ A1, and T c = R ∪ S. The above have just shown that T c is a union of
an element of A1 and S so T c ∈ A2 and (4.42) is proven.

Second, show claim (4.43). If T ∈ A3 then T ∩ S /= S and T ∩ S /= ∅. Consider
T c. Find a contradiction on two cases:

1. suppose T c ∩ S = S. Then T c ⊇ S =⇒ T ⊆ Sc =⇒ T ∈ A1. But this is a
contradiction because T ∈ A3 by hypothesis and A1,A3 are disjoint sets.

2. suppose T c ∩ S = ∅. Then T c ⊆ Sc =⇒ T c ∈ A1 =⇒ T ∈ A2 by (4.42). But
this is again a contradiction because T ∈ A3 by hypothesis and A2,A3 are
disjoint sets.

So (4.43) is proven.

Corollary 4.2.26 (B-Partition of PN). If S is a proper subset of N , the power
set of N , PN , can be decomposed into the partition:

PN = B1 ⊔ B2 ⊔ B3 ⊔ B4 ⊔ B5 (4.44)

where ⊔ indicates disjoint union and

B1 := {T ⊊ N \ S | T /= ∅} = “proper subsets of N \ S”
B2 := {T ∪ S | T ∈ A1}
B3 := {T ⊆ N | S /= T ∩ S /= ∅}
B4 := {S,N \ S}
B5 := {∅, N}.

Proof. From A-Partition given by Lemma 4.2.20, observe that S ∈ A2, N \S ∈ A1,
∅ ∈ A1, and N ∈ A2. Therefore, define:

(i) B1 = A1 \ {N \ S, ∅}

(ii) B2 = A2 \ {S,N}

(iii) B3 = A3

(iv) B4 = {S,N \ S}

(v) B5 = {∅, N}

and Bi=1,...,5 is a new partition of PN .
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Notation 4.2.27. The notation of the following sections assumes that G = (V,E)
is a game graph having coalition as edges (Definition 4.2.1), and e = |E|. It
fixes a total ordering of the subset elements in PN , which are the nodes of V .
The ordering is induced (i) by the size of the set elements and (ii) by the natural
ordering of ({1, . . . , N},≤). For example, the subsets of {1, 2, 3} are sorted in this
order (without parenthesis for the ease of notation): ∅ < 1 < 2 < 3 < 12 < 13 <
23 < 123. Note that the fixed ordering is compatible with the partial ordering of
inclusion on PN , that is, if A ⊆ B ∈ PN , then A ≤ B. Consequently, there is an
induced lexicographic ordering on E. For example, the edges of {1, 2} are sorted in
this order: {(∅, 1) < (∅, 2) < (∅, 12) < (1, 12) < (2, 12). In addition, the following
sections assume the canonical basis of l2(V ) and l2(E) according to fixed orderings.
Fixing a coalition S ⊆ N, S /= ∅, denote the matrices associated with the linear
operators d, d∗, dS named respectively Md, Md∗ and MdS

. Denote with M⊤ the
transpose of matrix M . Recall that L = Md∗Md, LS = Md∗MdS

and Md∗ = M⊤
d .

Moreover, observe that the rows of Md,MdS
are indexed by edges, their columns

are indexed by nodes, that is, by coalitions; instead, both the rows and columns of
the Laplacian matrices L and LS are indexed by nodes, that is L,LS ∈ Rn×n. In
particular, let R,C ⊆ N and let A ⊊ B ⊆ N , that is, (A,B) ∈ E.

(i) If M ∈ Re×n, M [(A,B), :] denotes the row corresponding to the (A,B)-th
basis element on l2(E), and M [:, C] denotes the column corresponding to the
C-th basis element on l2(V );

(ii) If L ∈ Rn×n, L[R, :] denotes the row corresponding R-th basis element of
l2(V ), while L[:, C] denotes the column of L corresponding to the C-th basis
element of l2(V );

(iii) If u ∈ Rn is a column vector, u[R] denotes the component of u corresponding
to the R-th basis element.

4.2.3 Computing the Analytic Formula of X -Shapley
The goal of this section is to derive a value for coalitions as expressed in Remark

4.2.16. The procedure is again inspired by [180], that is, the computations try
to solve the normal equation of Proposition 4.2.18. Nonetheless, while [180] uses
the inverse matrix of the graph Laplacian of G as recalled in Remark 4.1.85, the
analogous computation of L−1 of the game graph of coalitions G is not straightfor-
ward, and it is avoided here. Instead, linear algebra computations of the N -entry
of the solution x ∈ GN of Equation (4.38) allow computing the N -entry of the
S-differential game uS.

This section is organized as follows: Remark 4.2.28, Proposition 4.2.29 and
Remark 4.2.30 provide a characterization of LS. Then, Proposition 4.2.31 provides
a characterization of L. Furthermore, Lemma 4.2.32 and Lemma 4.2.33 provides
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an explicit expression for a specific linear combination of the rows of LS and L,
called qS and q, respectively. Finally, using the computed linear combinations,
Theorem 4.2.34 solves Equation (4.38) for the N -entry of the solution, that is, the
S-differential game uS. Equation (4.78) shown by Theorem 4.2.34 is the starting
point for a discussion about the suggested Shapley value for coalitions. To conclude,
Example 4.2.35 provides computations in the case n = 3.
Remark 4.2.28 (Computation of LN and L∅). Recall Definition 4.2.17 of LS.
Observe that L∅ = d∗d∅ is the zero matrix of Rn×n because d∅ = 0 (Definition 4.2.5
of S-differential). Furthermore, note that LN has a particular expression. Indeed
LN = d∗dN , and Lemma 4.2.7 allows expressing dN . Now, compute a generic
matrix entry LN [R,C]. Fix R,C ⊆ N and consider the element fR ∈ l2(V ) of the
canonical basis on l2(V ): fR is such that, for each T ∈ V , fR(T ) = 1 if T = R and
fR(T ) = 0 otherwise. Using Equation (4.19), LN can be expressed as:

LN [R,C] = d∗dN fR(C) =
∑︂

(T,C)∈E
dNfR(T,C)−

∑︂
(C,T )∈E

dNfR(C, T )

Computing each summand results in:

dNfR(T,C) =
⎧⎨⎩fR(C)− fR(T ) if C = N, T = ∅

0 otherwise
=

⎧⎪⎪⎨⎪⎪⎩
1 if R = C = N, T = ∅
−1 if R = T = ∅, C = N

0 otherwise

dNfR(C, T ) =
⎧⎨⎩fR(T )− fR(C) if T = N, C = ∅

0 otherwise
=

⎧⎪⎪⎨⎪⎪⎩
1 if R = T = N, C = ∅
−1 if R = C = ∅, C = N

0 otherwise

Therefore, the expression for LN is:

LN [R,C] =

⎧⎪⎪⎨⎪⎪⎩
1 if C = R = N or C = R = ∅
−1 if C = ∅, R = N or C = N, R = ∅
0 otherwise.

(4.45)

Note that LN is a symmetric matrix, as expected.
Proposition 4.2.29 (Characterization of LS). Let S be a proper subset of N ,
and let R ⊆ N .

(i) The S-column of LS is such that:

LS[R, S] =

⎧⎪⎪⎨⎪⎪⎩
−1 if R = ∅
1 if R = S

0 otherwise.
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(ii) The N-column of LS is such that:

LS[R, N ] =

⎧⎪⎪⎨⎪⎪⎩
−1 if R = N \ S
1 if R = N

0 otherwise.

(iii)

LS[:, C] = −LS[:, C ∪ S] ∀C ⊆ N \ S (4.46)
LS[:, C ′] = 0 ∈ Rn ∀C ′ ⊆ N such that S /= C ′ ∩ S /= ∅ (4.47)

Proof. Before proving the claims one by one, make some preliminary observations.

Preliminary: properties of MdS
. Consider MdS

as in Notation 4.2.27. Observe
that for a given C ⊆ N \ S:

MdS
[:, C] =

[︂
0, . . . , 0, −1

(C,C∪S)
, 0, . . . , 0

]︂⊤
(4.48)

MdS
[:, C ∪ S] =

[︂
0, . . . , 0, 1

(C,C∪S)
, 0, . . . , 0

]︂⊤
(4.49)

because the edge (C,C ∪ S) ∈ E is the unique edge starting from C whose dSu is
not identically zero, and dSu (C,C ∪ S) = du (C,C ∪ S) = u(C ∪ S)− u(C).

In particular, if C = ∅:

MdS
[:, ∅] =

[︂
0, . . . , 0, −1

(∅,S)
, 0, . . . , 0

]︂⊤
(4.50)

MdS
[:, S] =

[︂
0, . . . , 0, 1

(∅,S)
, 0, . . . , 0

]︂⊤
(4.51)

while if C = N \ S:

MdS
[:, N \ S] =

[︂
0, . . . , 0, −1

(N\S,N)
, 0, . . . , 0

]︂⊤
(4.52)

MdS
[:, N ] =

[︂
0, . . . , 0, 1

(N\S,N)
, 0, . . . , 0

]︂⊤
(4.53)

Instead, given C ′ ⊆ N such that C ′ ∩ S /= ∅ and C ′ ∩ S /= S:

MdS
[:, C ′] = 0 ∈ Re. (4.54)

Indeed, if C ′ ∩ S /= ∅, then C ′ is not a subset of N \ S, so there is no edge in E
starting from C ′. In addition, if C ∩S /= S, then C ′ contains S, so there is no edge
in E ending in C ′.
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Preliminary: properties of Md∗. Consider now Md∗ = M⊤
d as in Notation

4.2.27. Observe that:

M⊤
d [∅, :] =

[︂
∗, . . . , ∗, −1

(∅,S)
, ∗, . . . , ∗

]︂
(4.55)

M⊤
d [S, :] =

[︂
∗, . . . , ∗, 1

(∅,S)
, ∗, . . . , ∗

]︂
(4.56)

M⊤
d [N \ S, :] =

[︂
∗, . . . , ∗, −1

(N\S,N)
, ∗, . . . , ∗

]︂
(4.57)

M⊤
d [N, :] =

[︂
∗, . . . , ∗, 1

(N\S,N)
, ∗, . . . , ∗

]︂
(4.58)

where ∗ means a generic real value.
Instead, if R ⊆ N s.t. R /∈ {N \ S,N} and if R′ ⊆ N s.t. R /∈ {∅, S}

M⊤
d [R, :] =

[︂
∗, . . . , ∗, 0

(N\S,N)
, ∗, . . . , ∗

]︂
(4.59)

M⊤
d [R′, :] =

[︂
∗, . . . , ∗, 0

(∅,S)
, ∗, . . . , ∗

]︂
(4.60)

because the edge (N\S,N) ∈ E does not start nor end in R, and the edge (∅, S) ∈ E
does not start nor end in R′.

Proof of (i). Now consider the matrix LS and its column LS[:, S].

LS[S, S] = M⊤
d [S, :]MdS

[:, S] = 1 by (4.51) and (4.56)
LS[∅, S] = M⊤

d [∅, :]MdS
[:, S] = −1 by (4.51) and (4.55)

LS[R′, S] = M⊤
d [R′, :]MdS

[:, S] = 0 by (4.51), (4.60).

Therefore:

LS[:, S] =
[︂
−1
∅
, 0, . . . , 0, 1

S
, 0, . . . , 0

]︂⊤
, (4.61)

so the first assertion of the lemma is proved.

Proof of (ii). Analogously, consider the column LS[:, N ].

LS[N, N ] = M⊤
d [N, :]MdS

[:, N ] = 1 by (4.53) and (4.58)
LS[N \ S, N ] = M⊤

d [N \ S, :]MdS
[:, N ] = −1 by (4.52) and (4.58)

LS[R, N ] = M⊤
d [R, :]MdS

[:, N ] = 0 by (4.53), (4.59).

Therefore:

LS[:, N ] =
[︂
0, . . . , 0, −1

N\S
, 0, . . . , 0, 1

N
, 0, . . . , 0

]︂
. (4.62)
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Proof of (iii). By Equation (4.48) and (4.49), it holds that

∀C ⊆ N \ S MdS
[:, C] = −MdS

[:, C ∪ S]. (4.63)

Hence,

LS[:, C] = M⊤
d MdS

[:, C] by (4.63)
= −M⊤

d MdS
[:, C ∪ S]

= −LS[:, C ∪ S].

In addition, by Equation (4.54), it holds that ∀C ′ ⊆ N such that ∅ /= C ′ ∩ S /= S:

LS[:, C ′] = M⊤
d MdS

[:, C ′] = 0 ∈ Rn.

Remark 4.2.30. LS is a symmetric matrix because it is the graph Laplacian of
the subgraph given by the edges (T, T ∪ S) ∈ E, for each T ⊆ N \ S. Therefore,
from Equation (4.61) and (4.62), it holds the same for the rows

LS[S, :] =
[︂
0, . . . , 0,−1

∅
, 0, . . . , 0, 1

S
, 0, . . . , 0

]︂
. (4.64)

LS[N, :] =
[︂
0, . . . , 0, −1

N\S
, 0, . . . , 0, 1

N
, 0, . . . , 0

]︂
. (4.65)

In particular, given a game u ∈ GN :

LS[S, :] u = u[S]− u[∅], (4.66)
LS[N, :] u = u[N ]− u[N \ S]. (4.67)

From Equation (4.46) and (4.47), it holds also that:

LS[R, :] = −LS[R ∪ S, :] ∀R ⊆ N \ S, (4.68)
LS[R′, :] = 0 ∈ Rn ∀R′ ⊆ N such that ∅ /= R′ ∩ S /= S. (4.69)

Proposition 4.2.31 (Characterization of L).

∀R,C ⊆ N, L[R,C] =

⎧⎪⎪⎨⎪⎪⎩
degR if R = C

−1 if R ⊊ C or C ⊊ R

0 otherwise.
(4.70)

Proof. Fix a row R and a column C corresponding to subsets of N :

L[R,C] =
(︂
M⊤

d Md
)︂

[R,C] = M⊤
d [R, :]Md[:, C].
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Given a generic (A,B) ∈ E:

M⊤
d [R, (A,B)] =

⎧⎪⎪⎨⎪⎪⎩
1 if B = R, i.e. A ⊊ B = R

−1 if A = R, i.e. A = R ⊊ B.
0 otherwise

(4.71)

Md[(A,B), C] =

⎧⎪⎪⎨⎪⎪⎩
1 if B = C, i.e. A ⊊ B = C

−1 if A = C, i.e. A = C ⊊ B

0 otherwise.
(4.72)

If R = C, then:

L[R,R] = M⊤
d [R, :]Md[:, R] =

=
∑︂

T⊆N | (T,R)∈E or (R,T )∈E
1.

In other words, L[R,R] represents the number of edges connected to R in the game
graph of coalitions G, so

L[R,R] = degR.

If R ⊊ C, then the components of M⊤
d [R, :] and Md[:, C] are both nonzero only

for the entry (A,B) = (R,C). Thus, by Equation (4.71) and (4.72):

L[R,C] = M⊤
d [R, (R,C)]Md[(R,C), C] = −1.

By the same argument, if C ⊊ R:

L[R,C] = M⊤
d [R, (C,R)]Md[(C,R), C] = −1.

Otherwise, there are no edges of (A,B) ∈ E such that both M⊤
d [R, (A,B)] and

Md[(A,B), C] are nonzero. Thus, in this case:

L[R,C] = 0.

Lemma 4.2.32 (Computing qS). Given a coalition S ⊆ N , define the column
vector qS ∈ Rn as:

qS :=
∑︂

T∈PN\{∅,N}
LS[T, :]⊤ + 2LS[N, :]⊤. (4.73)

Then,
q⊤S u = u[N ]− u[N \ S] + u[S]− u[∅] (4.74)
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Proof. Recall Remark 4.2.28 expressing LN and L∅. Consider the case S = ∅. Then,
check the identity (4.74):

qS = 0 = u[N ]− u[N ] + u[∅]− u[∅].

Furthermore, consider the case S = N . Then, check again the identity (4.74):∑︂
T∈PN\{∅,N}

LS[T, :]⊤ + 2LS[N, :]⊤ =
[︂
0
∅
, 0, . . . , 0, 2

N

]︂⊤
Therefore,

q⊤S u = 2u[N ] = u[N ]− u[∅] + u[N ]− u[∅].
Now, consider a proper coalition S /∈ {∅, N} and recall the B-Partition given by
Lemma 4.2.26. Observe that PN \ {∅, N} = ⨆︁4

j=1 Bj. Focus on the sets B1 and B2.
By Equation (4.68), it holds that:∑︂

B1⊔B2

LS[T, :] =
∑︂

T⊊N\S,T /=∅
LS[T, :] +

∑︂
T⊊N\S,T /=∅

LS[T ∪ S, :] = 0 ∈ Rn

Consider the set B3. By Equation (4.69),∑︂
B3

LS[T, :] =
∑︂

T⊆N,S /=T∩S /=∅
LS[T, :] = 0.

Then, ∑︂
B1⊔B2⊔B3⊔B4

LS[T, :] =
∑︂
B4

LS[T, :] = LS[S, :] + LS[N \ S, :]

So, qS becomes:

qS = LS[S, :]⊤ + LS[N \ S, :]⊤ + 2LS[N, :]⊤ =
= LS[S, :]⊤ + LS[N, :]⊤ because (N \ S) ⊔ S = N , using (4.68).

Finally, by Equation (4.66) and (4.67),

q⊤S u = u[N ]− u[N \ S] + u[S]− u[∅]

Lemma 4.2.33 (Computing q). Define the column vector q ∈ Rn as

q :=
∑︂

T∈PN\{∅,N}
L[T, :]⊤ + 2L[N, :]⊤. (4.75)

Then

q[T ] :=

⎧⎪⎪⎨⎪⎪⎩
−1− degN if T = ∅
1 + degN if T = N

0 otherwise.
(4.76)
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Proof. Fix a column C ∈ N and recall as in Remark 4.1.64 that the sum of the
rows (or columns) of a graph Laplacian is equal to zero, so

0 =
∑︂
T∈PN

L[T,C] =
∑︂

T∈PN\{∅,N}
L[T, C] + L[N,C] + L[∅, C].

Then, it follows:∑︂
T∈PN\{∅,N}

L[T, C] = −L[N,C]− L[∅, C] = using (4.70)

=
⎧⎨⎩1− degN if C = N or C = ∅

+2 otherwise.
(4.77)

Thus, again by the characterization of L of (4.70), Equation (4.75) becomes:

q =
[︂

1− degN
∅

, +2, +2, . . ., +2, 1− degN
N

]︂⊤
+

+ 2
[︂

−1
∅
, −1, −1, . . ., −1, degN

N

]︂⊤
=

=
[︂

−1− degN
∅

, 0, 0, . . ., 0, 1 + degN
N

]︂⊤
Therefore, Equation (4.76) is proven.

Theorem 4.2.34 (Solving Lx = LS u for the N-entry of x). If x ∈ GN is the
unique solution of Lx = LS u of Equation (4.38), then the N-entry of x is:

x[N ] = 1
2n
(︂
u[N ]− u[N \ S] + u[S]

)︂
. (4.78)

Proof. Observe that the column vectors q, defined by Equation (4.75), and qS,
defined by Equation (4.73), are the same linear combination of the rows of the
matrices L and LS, respectively. Then, they represent elementary row operations
on the system of linear equations (4.38). Therefore, the solution of (4.38) should
satisfy the following:

q⊤ x = q⊤S u. (4.79)
Using (4.76) and (4.74), Equation (4.79) becomes:(︂
− degN − 1

)︂
x[∅] +

(︂
degN + 1

)︂
x[N ] = u[N ]− u[N \ S] + u[S]− u[∅]. (4.80)

Now, impose x[∅] = 0 because x ∈ GN . Similarly, u[∅] = 0. From Lemma 4.2.3,
remember degN = 2n − 1. Therefore, Equation (4.80) becomes:(︂

2n − 1 + 1
)︂
x[N ] = u[N ]− u[N \ S] + u[S]

x[N ] = 1
2n
(︂
u[N ]− u[N \ S] + u[S]

)︂
.
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Example 4.2.35 (Solution of Equation (4.38) for n = 3). Suppose n = 3.
Consider the basis of games τS of Definition 4.1.33.
We can express u =

[︃
u∅, u{1}, u{2}, u{3}, u{12}, u{13}, u{23}, u{123}

]︃⊤
.

By Proposition 4.2.31, we can compute L:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −1 −1 −1 −1 −1 −1 −1

−1 4 0 0 −1 −1 0 −1

−1 0 4 0 −1 0 −1 −1

−1 0 0 4 0 −1 −1 −1

−1 −1 −1 0 4 0 0 −1

−1 −1 0 −1 0 4 0 −1

−1 0 −1 −1 0 0 4 −1

−1 −1 −1 −1 −1 −1 −1 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The computations of Remark 4.2.28 provides L∅ and L{123}. To compute LS for
S = {1} and S = {12}, we use Proposition 4.2.29.

L{1}u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 0 1 0 −1 0 0 0

0 0 0 1 0 −1 0 0

0 0 −1 0 1 0 0 0

0 0 0 −1 0 1 0 0

0 0 0 0 0 0 1 −1

0 0 0 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u∅

u{1}

u{2}

u{3}

u{12}

u{13}

u{23}

u{123}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u{1} + u∅

u{1} − u∅
−u{12} + u{2}

−u{13} + u{3}

u{12} − u{2}
u{13} − u{3}
−u{123} + u{23}

u{123} − u{23}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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L{12}u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 −1

−1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u∅

u{1}

u{2}

u{3}

u{12}

u{13}

u{23}

u{123}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u{12} + u∅

0

0

−u{123} + u{3}

u{12} − u∅
0

0

u{123} − u{3}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For the remaining proper subsets of N , that is S ∈ {2,3,13,23}, LS can be derived
by an index permutation of the results obtained for L{1} or L{12}, according to the
corresponding subset cardinality. Then, the following are example computations of
q and qSu that allow computing x[N ] by Equation (4.78), after imposing x[∅] = 0.

q =
∑︂

T∈PN\{∅,N}
L[T, :]⊤ + 2L[N, :]⊤

=
[︂
− 8, 0, 0, 0, 0, 0, 0, 8

]︂⊤
.

q⊤{1} u =
(︂ ∑︂
T∈PN\{∅,N}

L{1}[T, :] + 2L{1}[N, :]
)︂⊤

u

= u{123} − u{23} + u{1} − u{∅}.

q⊤{12} u =
(︂ ∑︂
T∈PN\{∅,N}

L{12}[T, :] + 2L{12}[N, :]
)︂⊤

u

= u{123} − u{3} + u{12} − u{∅}.

4.3 Alternative Characterizations of X -Shapley
This section looks at X -Shapley from a cooperative game theory viewpoint. In

particular, Section 4.3.1 suggests a formal definition of the game map, that is, the
concept similar to the value allocation (Definition 4.1.11) when focusing on coalition
allocations. The section culminates in the proof of Theorem 4.3.14, which provides
an axiomatic characterization of X -Shapley that makes the pair with the classical
Theorem 4.1.43. Section 4.3.2 suggests a counter-objections characterization of
X -Shapley: inspired by the balanced contribution property for players (Definition
4.1.45), Theorem 4.3.18 derives a uniqueness result for the balanced contribution
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property for coalitions (Definition 4.3.16), holding for X -Shapley. Finally, Section
4.3.3 discusses other properties of the X -Shapley, focusing on its scaling factor and
the connections with the Shapley value ϕ.

4.3.1 Axiomatic Characterization
This section provides a characterization of the coalitional value expressed by

the formula of Equation (4.78) that is inspired by the one recalled in Section 4.1.4
for the Shapley value. First, a new definition of allocation to coalitions is given,
called game map. Second, it recalls definitions about properties of coalitions in a
game. Third, it defines the axioms for a fairness concept about coalition allocation.
Finally, Theorem 4.3.14 shows a uniqueness result for game maps satisfying an
axiomatic fairness property that pairs with Theorem 4.1.43 for the Shapley value.
Definition 4.3.1 (Game map). A game map is a function γ : GN → GN .
Remark 4.3.2. To the best of the author knowledge, the definition of game map
provided here is a novel definition. For coalition allocation, the game map have
the same role of the concept of value for players (Definition 4.1.11). An alternative
choice for the codomain of the game map would be ΞN = {ξ : PN → R}, that is,
the set of set functions [89]. Compared to ΞN , the choice of codomain GN assumes
implicitly that the image of a game map v = γ(u) evaluated on the empty set
should be zero, that is, v(∅) = 0. This assumption is straightforward, because if γ
is interpreted as an allocation to coalitions, then the worth allotted to the empty
coalition should be assumed zero.
Notation 4.3.3. If γ is a game map and u ∈ GN , denote by γS(u) :=

(︂
γ(u)

)︂
(S).

In what follows, γS := γS(u), that is, the dependency over u is omitted to simplify
the notation.
Definition 4.3.4 (Null coalition). Given u ∈ GN , S ⊆ N is said a null coalition
if, ∀R ⊆ (N \ S), u(R ∪ S) = u(R)
Definition 4.3.5 (Dummy coalition). Given u ∈ GN , S ⊆ N is said a dummy
coalition if, ∀R ⊆ (N \ S), u(R ∪ S)− u(R) = u(S)
Definition 4.3.6 (Symmetric coalitions). Consider a game u, and σ ∈ SN such
that the permuted game σ∗(u) = u. Two coalitions S, T ⊆ N are said symmetric if
σ(S) = T , and σ(T ) = S.
Definition 4.3.7 (Axioms for game maps). The game map γ : GN → GN is
said to satisfy one of the following axioms if the corresponding statement holds:

EFFS Efficiency: ∀u ∈ GN , ∑︁S⊆N γS(u) = u(N).

NLLS Null Coalition: ∀u ∈ GN , if S ⊆ N is a null coalition for u, then γS(u) = 0.
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SYMS Symmetry: ∀u ∈ GN , given S, T ⊆ N symmetric coalitions for u, γS(u) =
γT (u).

LINS Linearity: ∀u, u′ ∈ GN , ∀a, a′ ∈ R, γ(au+ a′u) = aγ(u) + a′γ(u′).

CSS Constant sum: ∀u ∈ GN γS(u) + γN\S(u) = γN(u)

BLTS Bilaterality: ∀u ∈ GN , given a bilateral coalition S ⊆ N for u (Definition
4.1.24), then

γS(u) = γN\S(u)

Remark 4.3.8. An equivalent formulation for the null coalition axiom is the fol-
lowing: ∀T ⊆ N, u(T ∪ S) = u(T \ S) =⇒ γS(u) = 0. Indeed, if R = T \ S,
any T ⊆ N can be expressed as T = R ∪ (T ∩ S), obtaining R ⊔ S = T ∪ S, and
concluding:

∀R ⊆ N \ S, u(R ∪ S) = u(R)⇐⇒ ∀T ⊆ N, u(T ∪ S) = u(T \ S).

Note that the coalition ∅ is both a null and dummy coalition.
Definition 4.3.9 (X -Shapley). Given u ∈ GN , define the function X , called also
X -Shapley or coalitional Shapley, as

∀S ⊆ N, XS(u) := 1
2n
(︂
u(N)− u(N \ S) + u(S)

)︂
(4.81)

Proposition 4.3.10 (Properties of X -Shapley). For each u ∈ GN :

(i) X is a game map.

(ii)
∀u ∈ GN , XN(u) = 1

2n−1u(N). (4.82)

(iii) Denoting by ū the dual game of Definition 4.1.21, then

∀u ∈ GN , X (u) = 1
2n (ū+ u) (4.83)

Proof. Prove the single statements in sequence.

Proof of (i). To show the claim, it is sufficient to show that ∀u ∈ GN ,
(︂
XS(u)

)︂
S⊆N

is a game itself, that is, X∅(u) = 0:

X∅(u) = 1
2n
(︂
u(N)− u(N) + u(0)

)︂
= 0
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Proof of (ii).

∀u ∈ GN , XN(u) = 1
2n (u(N)− u(∅) + u(N)) = 2u(N)

2n = 1
2n−1u(N)

Proof of (iii). Follow from the definition of ū and X :

∀u ∈ GN , ∀S ⊆ N, XS(u) = 1
2n (u(N)− u(N \ S) + u(S)) = 1

2n (ū(S) + u(S))

Proposition 4.3.11 (X -Shapley satisfies the axioms for game maps). ∀u ∈
GN , the game map X satisfies the axioms CSS, EFFS, NLLS, SYMS, LINS, and
BLTS.

Proof. Show the axioms for X one by one.

CSS For a given game u, compute XS + XN\S:

XS(u) + XN\S(u) = 1
2n (u(N)− u(N \ S) + u(S) + u(N)− u(S) + u(N \ S))

= 1
2n−1u(N) (4.82)= XN(u)

EFFS. For each game u:

2
∑︂
S⊆N
XS(u) =

∑︂
S⊆N
XS(u) +

∑︂
S⊆N
XN\S(u) = bijection S ⇐⇒ N \ S

=
∑︂
S⊆N

(︂
XS(u) + XN\S(u)

)︂
=

=
∑︂
S⊆N
XN(u) By CSS for X

= 2n 1
2n−1u(N) By Equation (4.82)

=⇒
∑︂
S⊆N
XS(u) = u(N).

NLLS. For a given game u, fix S ⊆ N null coalition. Choose T = N \ S and
apply Definition 4.3.4:

u(T ) = u(N \ S) = u
(︂
(N \ S) ∪ S

)︂
= u(N).

Choose T = ∅ and apply the same definition: u(T ) = u(∅) = u(∅∪S) = 0. Finally,
apply the definition of X to S:

XS = 1
2n (u(N)− u(N \ S) + u(S)) = 1

2n (u(N)− u(N) + 0)) = 0.
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SYMS. Given a game u, let σ ∈ SN be such that σ∗(u) = u and let S, T ⊆ N
be such that σ(S) = T and σ(T ) = S. Observe that σ(N \ S) = N \ T and
σ(N \ S) = N \ T . Therefore:

XS = Xσ(T )

= 1
2n
(︂
u(N)− u(σ(N \ T )) + u(σ(T ))

)︂
=

= 1
2n
(︂
u(N)− σ∗(u(N \ T )) + σ∗(u(T ))

)︂
=

= 1
2n
(︂
u(N)− u(N \ T ) + u(T )

)︂
= XT .

LINS. Fix S ⊆ N . Given u, u′ ∈ GN ; a, a′ ∈ R

XS(au+ a′u′) = 1
2n (au(N) + a′u′(N)− au(N \ S)− a′u′(N \ S) + au(S) + a′u′(S)) =

= 1
2n
(︂
au(N)− au(N \ S) + au(S) + a′u(N)− a′u(N \ S) + a′u(S)

)︂
= aXS + a′XS

BLTS. If u ∈ GN , S ⊆ N , and u(S) = u(N \ S), then

XS = 1
2n
(︂
u(N)− u(N \ S) + u(S)

)︂
= 1

2nu(N) = XN\S.

Lemma 4.3.12 (About game maps satisfying EFFS and CSS). Let γ be a
game map. If γ satisfies EFFS and CSS, then

∀u ∈ GN , γN(u) = 1
2n−1 γN . (4.84)

Proof. Recall the definition of constant sum CSS for γ:

∀S ⊆ N, γS + γN\S = γN . (4.85)
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By EFFS for γ: ∑︂
S⊆N

γS(u) = u(N)
∑︂
S⊆N

γS(u) +
∑︂
S⊆N

γN\S(u) = 2u(N) bijection S ←→ N \ S
∑︂
S⊆N

(︂
γS(u) + γN\S(u)

)︂
= 2u(N)

∑︂
S⊆N

γN = 2u(N) Use CSS

2n γN = 2u(N)

γN(u) = 1
2n−1 u(N)

Remark 4.3.13 (BLTS for A3). Fix a coalition S /= ∅ and consider the basis of
unanimity games {θS}S /=∅ as in Definition 4.1.33. If T ⊆ N , there are two possible
cases:

(i) T ∩ S = S ⇐⇒ T ⊇ S.

θS(T ) = 1⇐⇒ T ⊇ S ⇐⇒ N \ T /⊇ S ⇐⇒ θS(N \ T ) = 0.

In particular θS(T ) /= θS(N \ T ).

(ii) T ∩ S /= S ⇐⇒ T /⊇ S, then we have θS(T ) = 0 and

θS(N \ T ) =
⎧⎨⎩0 T ∩ S /= ∅

1 T ∩ S = ∅

In particular, θS(T ) = θS(N \ T )⇐⇒ T ∩ S /= ∅ and T ∩ S /= S. Focusing on the
A-Partition of the powerset PN defined in Lemma 4.2.20, note that A3 = {T ⊆
N | θS(T ) = θS(N \ T )}. This means that the BLTS axiom on unanimity games
involves all and only the coalitions in T ∈ A3.
Theorem 4.3.14 (Axiomatic uniqueness of X -Shapley). Coalitional Shapley
X is the unique game map satisfying the axioms of EFFS, BLTS, NLLS, LINS and
CSS.

Proof. By Proposition 4.3.11, X satisfies the listed axioms, so the existence claim
holds.
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Proof of uniqueness. The uniqueness proof here provided follows the scheme of
Theorem 4.1.43. In particular, it asserts that a game map is uniquely determined
on a basis of GN by the listed axioms.

Consider a generic game map γ. Fix a nonempty coalition S /= ∅ and consider
θS from the basis of unanimity games (θS)S /=∅ of GN , as in Definition 4.1.33. From
Lemma 4.3.12

γN(θS) = 1
2n−1 θS(N) = 1

2n−1 .

Recall the A-partition of PN of Lemma 4.2.20: the following Steps 1-5 are aimed
to compute θS on each partition subset.

Step 1. Observe that A2 = {T ∪ S | T ⊆ N \ S } contains all and only the sets
containing S; hence, by the definition of θS, θS(T ) = 1 ⇐⇒ T ∈ A2. Therefore,
given a generic T ⊆ N , the formula of θS(T ) becomes:

θS(T ) =
⎧⎨⎩0 T ∈ A1 ⊔ A3

1 T ∈ A2
(4.86)

Step 2. This step show that, given a coalition T ∈ A1 = {T ⊆ N \ S }, T is a
null coalition for θS, that is, ∀R ⊆ N \ T, θS(R ⊔ T ) = θS(T ). To prove the claim,
fix T ∈ A1 and take R ⊆ N \ T , that is equivalent to say R ∈ A2 by (4.42) of
Corollary 4.2.25. There are two cases:

(i) R ⊇ S. Then θS(R) = 1 = θS(R ∪ T ).

(ii) R /⊇ S. Then θS(R) = 0, and ∃i ∈ S such that i /∈ R. Because T ∈ A1,
then T ⊆ N \ S, therefore it holds also that i /∈ T . So i /∈ T ∪ R, that means
T ∪R /⊇ S, so θS(T ∪R) = θS(R) = 0.

The above two observations show that, if adding T to R, θS does not change.
Formally, ∀T ∈ A1,∀R ∈ A2, θS(T ∪ R) = θS(R). Therefore, T ∈ A1 is a null
coalition. Because γ satisfy NLLS by hypothesis,

∀T ∈ A1, γT (θS) = 0. (4.87)

Step 3. This step shows that, given a coalition R ∈ A2, γR(θS) = 1
2n−1 . Consider

T = N \R. From Corollary 4.2.25, T ∈ A1, and from Equation (4.87), γT (θS) = 0.
Because R ⊔ T = N , apply CSS to γ:

γT (θS) + γN\T (θS) CSS= γN(θS) (4.84)= 1
2n−1

γR(θS) = γN\T (θS) = 1
2n−1

140



4.3 – Alternative Characterizations of X -Shapley

Until this point, γT (θS) is completely determined if T ∈ A1 ⊔ A2. By Corollary
4.2.23, γ is completely characterized if s = 1, because s = 1 =⇒ A3 = ∅. In
particular, if n = 2, γ is completely characterized over all the basis games

(︂
θS
)︂
S /=∅

.

Step 4. This step shows that ∀T ∈ A3, γT (θS) = 1
2n . From what observed above,

assume n > 2 and s ≥ 1. Deduce that A3 /= ∅, then it is possible to fix a T ∈ A3.
It holds that T ∩ S /= S =⇒ T /⊇ S =⇒ θS(T ) = 0. In addition, using Corollary
4.2.25, it holds also that N \T ∈ A3, and reasoning as before θS(N \T ) = 0. Then,
apply the axiom BLTS:

∀T ∈ A3, θS(T ) = θS(N \ T ) = 0
BLTS=⇒ ∀T ∈ A3, γT (θS) = γN\T (θS). (4.88)

Furthermore, the axiom CSS applied to γ and T says that:

γT (θS) + γN\T (θS) CSS= γN(θS) = 1
2n−1 . (4.89)

Combining Equation (4.88) and (4.89) results in γT (θS) = 1
2n . Now γ is determined

over A3.

Step 5. The previous steps completely characterize γ on each basis game θS, for
S /= ∅. Finally, considering a game map γ /= γ satisfying all the axioms in the
hypothesis, it holds that γ = γ on the basis games (θS)S /=∅, giving a contradiction.
In conclusion, the uniqueness result is proven.

Remark 4.3.15. Notably, the theorem above leverages the axioms of EFFS, NLLS,
and LINS, which are simply a generalization of the same properties for values. In-
stead, SYMS is not assumed, although satisfied by X -Shapley, as stated by Propo-
sition 4.3.10. Comparing with Theorem 4.1.43, SYMS is substituted by CSS and
BILS. This discussion suggests a research direction to investigate the actual role of
SYMS.

4.3.2 Counter-objections Characterization
This section shows a stability concept for X -Shapley inspired by the characteri-

zation recalled in Section 4.1.5 for the Shapley value ϕ. In this case, the definition
of objection or counter-objection derives from the following reasoning: during the
negotiation, a coalition S could instantiate an objection against another disjoint
coalition T from a candidate allocation γ, that is, a game map. Consequently, the
coalition T could counter-object against S. If the objection and counter-objection
are not balanced, they cause γ changing to a different γ. Thus, the allocation γ is
not stable. Otherwise, if there is a balancing, the allocation γ is stable. The main
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result of this section is Theorem 4.3.18: it shows the uniqueness of X among the
class of game maps satisfying balanced contribution property for coalitions.

Fix a game u ∈ GN , and recall Definition 4.1.16 of subgame. The following
discussion defines the possible objections for a candidate game map γ of a coalition
S ⊆ N against T ⊆ N , with S ∩ T = ∅, indicating s := |S|, t := |T | as usual.
Assume that S wants a greater allocation than the current negotiated γS(N, u),
and asks T to give more to S:

1. S threatens to leave the game, so that T would gain less, normalized by 2−s:

2−s γT (N \ S, uN\S) ≤ γT (N, u); (4.90)

2. S threatens to persuade other coalitions disjoint from T to exclude T from the
game, so that S would gain more, normalized by 2−t:

2−t γS(N \ T, uN\T ) ≥ γS(N, u). (4.91)

Then, the coalition T could counter-object by saying one of the following in re-
sponse, respectively:

1. T says that if S leaves T would lose, but if T leaves then S would lose at least
as much:

γS(N, u)− 2−t γS(N \ T, uN\T ) ≥ γT (N, u)− 2−s γT (N \ S, uN\S); (4.92)

2. T says that if it is excluded, S would gain, but if T persuades the other
coalitions to exclude S, then T would gain at least as much:

2−s γT (N \ S, uN\S)− γT (N, u) ≥ 2−t γS(N \ T, uN\T )− γS(N, u). (4.93)

The balancing between the statements expressed by Equation (4.90) and (4.92), or
Equation (4.91) and (4.93) shows the equilibrium between the negotiation power
between of the two disjoint coalitions. Formally, the balancing is expressed by the
following definition:
Definition 4.3.16 (Balanced contribution for coalitions - BCPS). A game
map γ satisfies the balanced contribution property for coalitions (BCPS) if, ∀S, T ⊆
N such that S ∩ T = ∅,

γS(N, u)− 2−tγS(N \ T, uN\T ) = γT (N, u)− 2−sγT (N \ S, uN\S). (4.94)

Remark 4.3.17. Consider a game u ∈ GN and the pair of coalitions (S, T ) =
(∅, N). Then, the identity of (4.94) holds for each game map γ, indeed:

γ∅(N, u)− 2−nγ∅(∅, u∅) = γN(N, u)− 2−0γN(N, u).

In addition, observe that if a game map γ satisfies BCPS, then also γ = aγ satisfies
the same, with a ∈ R.
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Theorem 4.3.18 (X -Shapley and balanced contributions). X -Shapley is the
unique game map satisfying EFFS and BCPS.

Proof. First, prove the existence by showing that X satisfies the hypothesis; second,
prove uniqueness.

Proof of existence. Given a game u, let S, T ⊆ N be such that S ∩ T = ∅.
Denote by Sc and T c the complementary set in N of the two coalitions, respectively.
Substitute the formula for X in Equation (4.94), and ask (symbol ???= ) if the following
identity holds true:

1
2n
(︂
uN(N)− uN(N ∩ Sc) + uN(S)

)︂
− 2−t

2n−t
(︂
uN\T (N ∩ T c)− uN\T (N ∩ T c ∩ Sc) + uN\T (S ∩ T c)

)︂
???=
1
2n
(︂
uN(N)− uN(N ∩ T c) + uN(T )

)︂
− 2−s

2n−s
(︂
uN\S(N ∩ Sc)− uN\S(N ∩ Sc ∩ T c) + uN\S(Sc ∩ T )

)︂
.

By Definition 4.1.16 of subgame:

1
2n
(︂
uN(N)− uN(N ∩ Sc)) + uN(S)

)︂
− 1

2n
(︂
uN(N ∩ T c)− uN(N ∩ Sc ∩ T c) + uN(S)

)︂
???=
1
2n
(︂
uN(N)− uN(N ∩ T c) + uN(T )

)︂
− 1

2n
(︂
uN(N ∩ Sc)− uN(N ∩ Sc ∩ T c) + uN(T )

)︂
.

the identity is proven.

Proof of uniqueness. The proof is similar to the one of Theorem 4.1.47 shown
in [148, Proposition 291.3].

Proceed by induction on the number of players of the game u ∈ GN . Suppose
∃ γ /= γ game maps satisfying BCSS and EFFS. Prove the base case of the induc-
tion. Assume n = 1. The only pair of disjoint sets to check the property of BCPS

is (S, T ) = (∅, N). In this case, Remark 4.3.17, shows that BCPS holds true for all
game maps. But there is a unique game map satisfying EFFS for n = 1, that is
γ∅(u) = 0; γN(u) = u(N). Therefore, the base case is proven.
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To prove the induction, assume the inductive hypothesis:

∀u ∈ GM such that |M | < n, ∀S ⊆M, γS(M,u) = γS(M,u). (4.95)

Assume to have u ∈ GN . Let two coalitions S, T ⊆ N be such that S ∩ T = ∅,
being s := |S|, t := |T |. Hence:

γS(N, u)− 2−t γS(N \ T, uN\T ) = γT (N, u)− 2−s γT (N \ S, uN\S) (4.96)
γS(N, u)− 2−tγS(N \ T, uN\T ) = γT (N, u)− 2−s γT (N \ S, uN\S). (4.97)

Subtracting Equation (4.96) and (4.97), and using the inductive hypothesis (4.95):

γS(N, u)− γS(N, u) = γT (N, u)− γT (N, u). (4.98)

The above equation holds for all disjoint coalitions S, T . Now, fix T = ∅. Then,
γS(N, u) − γS(N, u) = 0. Therefore, ∀S ⊆ N, γS(N, u) = γS(N, u). This is a
contradiction with the hypothesis of γ /= γ.

Remark 4.3.19 (Differences between BCPi and BCPS). The definitions of
balanced contribution property for coalitions (BCPS, Definition 4.3.16) and players
(BCPi. Definition 4.1.45) allow making a comparison between the X -Shapley game
map and the Shapley value ϕ. (i) The difference is clearly expressed by the coef-
ficients 2−s and 2−t, which multiplies the game map computed on the respective
coalitions and alternative subgames. For game maps satisfying BCPS, it is possible
to compare the allocation on a subgame and the one on the full game using such
a scaling. In particular, the scaling is exponential in the number of players of the
game. Clearly, the scaling distinguishes BCPS from BCPi, where there is no such
scaling. Indeed, the value obtained by each player is of the same scaling magnitude
of its subgames. (ii) Both the uniqueness theorems involve efficiency for players or
coalitions (EFFi or EFFS). In the case of game maps, efficiency is used only in the
base case of uniqueness induction proof. (iii) In the case of values, the subgames
involved in the definition of objections and counter-objections drop only one player
from the game; instead, in the case of game maps, eliminating one coalition causes
all its subcoalitions being eliminated.

4.3.3 Further Properties of X -Shapley
Notation 4.3.20. Given a game u, call cu := X (u) ∈ GN the image game of u via
the game map X .
Proposition 4.3.21 (ϕi of the image game via X -Shapley). Given a game u
and a player i ∈ N , the Shapley value ϕi computed on cu is:

ϕi(cu) = 1
2n−1ϕi(u) (4.99)
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Proof.
ϕi(cu) =

∑︂
S⊆N\{i}

s!(n− s− 1)!
n!

(︂
XS∪i(cu)−XS(cu)

)︂
. (4.100)

Consider the expression
(︂
XS∪i(cu)−XS(cu)

)︂
:

XS∪i −XS = 1
2n
[︃(︂
u(N)− u(N \ (S ∪ i)) + u(S ∪ i)

)︂
−
(︂
u(N)− u(N \ S) + u(S)

)︂]︃
= 1

2n
[︃
u(N \ S)− u(N \ (S ∪ i)) + u(S ∪ i)− u(S)

]︃
. (4.101)

Therefore, Equation (4.100) becomes:

ϕi(cu) = 1
2n
[︃ ∑︂
S⊆N\{i}

s!(n− s− 1)!
n! (u(S ∪ i)− u(S))+

∑︂
S⊆N\{i}

s!(n− s− 1)!
n!

(︂
u(N \ S)− u(N \ (S ∪ i))

)︂]︃
.

Observe that the first summand is ϕi(u). Furthermore, calling T = N \ (S ∪ i):

• t = n− s− 1;

• n− t− 1 = n− (n− s− 1)− 1 = s;

• N \ S = T ∪ {i}.

Hence, the second summand of the above expression can be restated as:

∑︂
T⊆N\{i}

t!(n− t− 1)!
n!

(︂
u(T ∪ {i})− u(T )

)︂
= ϕi(u).

Finally, Equation (4.100) becomes:

ϕi(cu) = 1
2n 2ϕi(u) = 1

2n−1ϕi(u).

Remark 4.3.22. For a game u, note that for each player i ∈ N , the Shapley value
ϕi(u) can be expressed in terms of X -Shapley similarly to the expression in terms of
the marginal contribution (Definition 4.101). Indeed, observe that for each S ⊆ N :

XN\S(u)−XS(u) = 1
2n
(︂
u(N)− u(S) + u(N \ S)− u(N) + u(N \ S)− u(S)

)︂
= 1

2n−1 (u(N \ S)− u(S))

145



4 – Towards extending Shapley value to coalitions

Using Proposition 4.1.38, it follows that:

ϕi(u) = 2n−1 ∑︂
S⊆N\{i}

s!(n− s− 1)!
n!

(︂
XN\S(u)−XS(u)

)︂
(4.102)

This observation can be repeated for each value which depends on the marginal
contribution, e.g. Banzhaf value [20].
Remark 4.3.23. Combining Equation (4.102) and again Proposition 4.1.38, it is
easy to provide an alternative proof of Proposition 4.3.21.
Proposition 4.3.24 (X -Shapley of X -Shapley). Given a game u, consider the
image game via X , cu. Then,

∀S ⊆ N, XS(cu) = 1
2n−1 XS(u) (4.103)

Proof. Recall that XN(u) = 1
2n−1u(N) by Proposition 4.3.10.

XS(cu) = 1
2n
(︂
XN(u)−XN\S(u) + XS(u)

)︂
= 1

22n

[︃
2u(N)−

(︂
u(N)− u(S) + u(N \ S)

)︂
+
(︂
u(N)− u(N \ S) + u(S)

)︂]︃
= 1

22n

[︃
2u(N)− 2u(N \ S) + 2u(S)

]︃
= 1

2n−1XS(u)

Proposition 4.3.25 (Superadditivity of the image game). cu = X (u) is su-
peradditive if and only if, for each partition {R, S, T} of the set of players N ,

−u(R∪S∪T )+u(R∪S)+u(R∪T )+u(S∪T )−u(R)−u(S)−u(T ) ≥ 0 (4.104)

Proof. By Definition 4.1.17, the condition for cu superadditive is:

∀S, T ⊆ N, S ∩ T = ∅, cu(S ∪ T ) ≥ cu(S) + cu(T ). (4.105)

This holds if and only if:

XS∪T (u) ≥ XS(u) + XT (u) (4.106)
− u(N \ (S ∪ T )) + u(S ∪ T ) ≥ −u(N \ S) + u(S) + u(N)− u(N \ T ) + u(T )

(4.107)
− u(N \ (S ∪ T )) + u(S ∪ T )− u(N) + u(N \ S)− u(S) + u(N \ T )− u(T ) ≥ 0

(4.108)
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Denoting by R = N \ (S ∪ T ), then {R, S, T} forms a partition of N . Therefore,
(4.108) becomes:

−u(R ∪ S ∪ T ) + u(R ∪ S) + u(R ∪ T ) + u(S ∪ T )− u(R)− u(S)− u(T ) ≥ 0

So the claim is proven.

Corollary 4.3.26 (Constant sum and superadditive game via X -Shapley).
Given a constant sum and superadditive game u, then its image game via X , cu, is
superadditive.

Proof. Consider as in Proposition 4.3.25 a partition R, S, T of N . Because u is
constant sum and R is the complementary set of S ∪ T , it is possible to write:

u(R ∪ S ∪ T ) = u(R) + u(S ∪ T ).

This can be used in Equation (4.104):

−u(R) + u(R ∪ T ) + u(R ∪ S)− u(R)− u(S)− u(T ) ≥ 0
+u(R ∪ T )− u(R)− u(T ) + u(R ∪ S)− u(R)− u(S) ≥ 0.

The last inequality is true by superadditivity of u applied to the pairs R, T and
R, S (Definition 4.1.17).

Remark 4.3.27. ccu = X (X (u)) is superadditive if u is superadditive (and so on,
applying X iteratively). This result could also have been proven also by using
Proposition 4.3.24.
Proposition 4.3.28 (X -Shapley of a cohesive game). If u is a cohesive game
(Definition 4.1.17), then

XS(u) ≥ 1
2n−1u(S).

In particular, the above inequality becomes an equality if and only if u is also con-
stant sum.

Proof. If u is a cohesive game, then, because {N \ S, S} is a partition of N :

∀S ⊆ N, u(N) ≥ u(N \ S) + u(S)

Hence,

XS(u) = 1
2n
(︂
u(N)− u(N \ S) + u(S)

)︂
≥ 1

2n
(︂
u(N \ S) + u(S)− u(N \ S) + u(S)

)︂
(4.109)

= 1
2n−1u(S). (4.110)
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Assuming further that
∀S ⊆ N,XS(u) = 1

2n−1u(S),

then for each coalition u(N)−u(N \S)+u(S) = 2u(S), so u is constant sum. Vice
versa, if u is constant sum, then the inequality of (4.109) becomes an equality.

Remark 4.3.29. Let us consider a game u ∈ GN with n = 2. Then the usual
Shapley value is given by

ϕ1(u) = 1
2
(︂
u({1, 2})− u(2) + u(1)

)︂
ϕ2(u) = 1

2
(︂
u({1, 2})− u(1) + u(2)

)︂
.

The above observation extends from two player games to quotient games by the
following proposition.
Proposition 4.3.30 (X -Shapley and the quotient game of 2 players). Given
a game u, fix a coalition S, consider partition of N , P = {S,N \S} and the quotient
game uP as in Definition 4.1.22. Then,

XS = 1
2n−1ϕ1(uP) ∀S ⊆ N (4.111)

XN\S = 1
2n−1ϕ2(uP) ∀S ⊆ N (4.112)

Proof.

ϕ1(uP) = 1
2
(︂
u(N)− u(N \ S) + u(S)

)︂
= (4.113)

= 2n−1XS(u)

ϕ2(uP) = 1
2
(︂
u(N)− u(S) + u(N \ S)

)︂
= (4.114)

= 2n−1XN\S(u)

Remark 4.3.31. From Proposition 4.3.30, for a fixed game u, the axiom CSS for
X -Shapley explains as:

XS(u) + XN\S(u) = 1
2n−1

(︂
ϕ1(uP) + ϕ2(uP)

)︂
ϕ EFFi= 1

2n−1 (uP)(N) = 1
2n−1u(N) = XN(u)

that is the axiom EFFi translated to the quotient game uP.
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Remark 4.3.32. The results shown in this section suggest a new, interesting game
map. In particular, it is easy to observe that in Proposition 4.3.21, 4.3.28, and
4.3.30 4.3.24 it appears the factor 1

2n−1 , . Thus, a new game map can be defined as
follows.
Definition 4.3.33 (X ′-Shapley). For each game u and coalition S, define

X ′S(u) = 2n−1XS(u) = 1
2
(︂
u(N)− u(N \ S) + u(S)

)︂
. (4.115)

Remark 4.3.34. By linearity, all the equations of the propositions listed above
cancel the scale factor 1

2n−1 . Therefore, X ′-Shapley is a game map such that:

(i) it preserves the Shapley value, that is, defining c′u as the image game via X ′,
ϕi(c′u) = ϕi(u);

(ii) X ′(c′u) = c′u;

(iii) if u is a cohesive game, c′u(S) ≥ u(S)

(iv) it is the Shapley value of the quotient game of two players S and N \ S.

Clearly, X ′ game map satisfies all the axioms, except EFFS. But the EFFS can be
restated as an average efficiency axiom that X ′ satisfies:
Definition 4.3.35 (AvEFFS). Given a game map γ, it is said that γ satisfies the
Average Efficiency property for coalitions (AvEFFS) if,

∀u ∈ GN , 1
2n−1

∑︂
S⊆N

γS(u) = u(N) (4.116)

Remark 4.3.36. The X ′ game map has a second interesting property, derived
from X -Shapley. Restating the balanced contribution property BCPS of X -Shapley
without the scaling factors, it is possible to obtain an almost identical result to
Theorem 4.3.18. Formally, first define BCP’S and then state the new Theorem of
stability for X ′.
Definition 4.3.37 (Balanced contribution for coalitions without scaling).
A game map γ satisfies the balanced contribution property for coalitions, without
scaling, (BCP’S) if, ∀S, T ⊆ N such that S ∩ T = ∅,

γS(N, u)− γS(N \ T, uN\T ) = γT (N, u)− γT (N \ S, uN\S) (4.117)

Theorem 4.3.38 (X ′-Shapley and balanced contributions). X ′-Shapley is
the unique game map satisfying AvEFFS and BCP’S.

Proof. The proof requires showing the same identity of Theorem 4.3.18, without
the scaling factors.
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4.4 Conclusion and Perspectives for Future Re-
search

In this chapter, the properties of the X -Shapley game map have been compared
with those of the Shapley value ϕ. The parallelism between the two concepts is ev-
ident from the illustrated characterizations: the axiomatic, the counter-objections,
and the Hodge theoretic one. In particular, focusing on the Hodge theoretic char-
acterization, X -Shapley has been characterized in a similar fashion to ϕ. This
suggests a strong link between the defined game graphs and the game-theoretic
properties, in both the graph representations for players or coalitions. However,
this chapter is only a starting point for the study of the connection between co-
operative game theory and graph theory, and it leaves many open questions for
further investigations. This section tries to describe and discuss at least some open
questions for further research.

4.4.1 On the Game-Theoretic Interpretation of X -Shapley
The derivation of X -Shapley via the Hodge theoretic characterization is quite

straightforward, given the one of Stern et al. [180]. Nonetheless, from the game-
theoretic viewpoint, the interpretation of concepts and definitions presented in Sec-
tion 4.2 is more complex.

As expressed in Remark 4.3.2, the game map definition is a simple translation
of the concept of value for players, including the requirement of allocating 0 to
the empty set. Nonetheless, the concept of allocation for coalitions is not easy to
be understood in application domains. The Shapley value derives from the idea
that the grand coalition has formed, and the total payoff should be split among
the players. Instead, the process of allocating part of the grand coalition payoff to
single coalitions has no direct meaning in game theory. Giving worth to coalitions
formed by multiple players contrasts with the assumption of starting already with
the computed payoff for each coalition.

By changing the point of view over the matter, it could emerge a more practical
interpretation path. In fact, a value represents an allocation among players, and
the Shapley value represents one fair version. The game map is a transformation
from a game to a game on the same set of players. Thus, game theory could look
at X -Shapley as a transformation from a game to a fair version of a game, where
the fairness derives from the axioms listed in Definition 4.3.7. More precisely, X ′-
Shapley of Definition 4.3.33 suits better for this aim because it does not involve the
rescaling factor, which depends on the number of players. In this sense, X ′-Shapley
of an image game via X ′-Shapley remains the same; the suggested interpretation
is that a fair cooperative game should satisfy the axioms and should not change to
become fair, as the image game through X ′-Shapley does.

The average efficiency property of X ′-Shapley, as stated in Definition 4.3.35,
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provides a different scale to observe the worth computation procedure in a fair
game. The null coalition axiom has the same interpretation as for values: a fair
game should give worth 0 to null coalitions. The constant sum and bilaterality
properties show a deep connection between complementary coalitions in a fair game.
In particular, whatever worth is gained by one coalition, the complementary should
gain the remainder, and their allocation should be equal if they gain the same. The
symmetry property of a value is different from the one of coalitions, because the
comparison affects every pair of players in the first case, while in the second involves
only pairs of coalitions with the same size. The role of symmetric coalitions and
its relationship with the other properties is yet to be understood; thus, it is left to
future works.

Moreover, recall that a cohesive game is motivated by the rationality of players
for the grand coalition formation (Remark 4.1.18). Then, looking again at Remark
4.3.32, c′S(u) ≥ u(S), so c′u(S) allocates more than what already gained by u(S) for
each coalition, and the equality holds if u is constant sum. Therefore, c′u(S) is to be
preferred over u(S), if S is rational. The property of the cohesiveness of the image
game suggests links between the interpreted fair game c′S(u) and the rationality of
players.

The balanced contribution property provides another clue for parallelism with
the Shapley value, and specifically the version without scaling. Indeed, it shows a
stability result for X (or X ′) of the negotiation between coalitions: the agreement
between coalitions is stable for the allocation given by X (or X ′) as far as every
coalition objection is balanced by a counter-objection of a disjoint coalition. Further
investigation could broaden the link between the graph-theoretic differential and
the balanced contribution property, similar to what was done by [98] for the Shapley
value.

Clearly, the proposed interpretations are far from complete or formal. Thus,
new research efforts and ideas could help to broaden the usage of X -Shapley.

4.4.2 Open Questions of Cooperative Game Theory
Theorem 4.1.43 shows a uniqueness results from a set of axioms. For the original

Shapley value, the uniqueness result is accompanied by examples for axioms inde-
pendence (see [148, Exercise 294.2]). In other words, whatever axiom is dropped
from the hypothesis, there exists a second value different from the Shapley value
satisfying the remaining axioms. Thus, the uniqueness result becomes false when
not assuming all the axioms, and the axioms are not redundant. The same is not
straightforward for game maps. Two easy examples are found when dropping EFFS
or NLLS. For EFFS, it is easy to show that the game map γS(u) = 2XS(u) satisfies
the other axioms, but not EFFS (or every other rescaling of X , as X ′). For NLLS,
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the following game map is an example:

γS(u) =

⎧⎪⎪⎨⎪⎪⎩
0 S = ∅

1
2n−1u(N) S = N
1

2nu(N) otherwise
.

For the other axioms, an example needs yet to be found.
The role of constant sum and bilaterality properties in the framework of graph

theory is a second open question. Recall that the properties shown in Theorem
4.2.15 are true for each entry of the S-differential game vectors uS. Properties
similar to constant sum and bilaterality seem not to hold for the games uS.

A third open question is a complete comparison with respect to other recent
concepts giving a version of value to coalitions, for example [100]. Clearly, the aim
to provide a value of a coalition to another coalition leads to a different formulation
of the solution concept. In addition, no Hodge theoretic characterization is present
in [100]. A second comparison to face is the one with the interaction indices of [90].
Indeed, both game maps and interaction indices belong to the class of set functions
[89]. The interaction of a set of players and the X -Shapley of the same are different
objects that deserve further analysis. An investigation about a possible relationship
is left for future work.

Another question concerns the study of X -Shapley if not all the subset coalitions
are admissible. Indeed, the work of [138] include a graph describing the possibilities
or impossibilities of negotiation. The graph nodes represent players, and connected
components describe the feasibility of the negotiation among players in each com-
ponent. The work of [129] is a recent paper moving forward in the same direction:
it applies a version of the Shapley value to a negotiation described by Simplicial
complexes.

A fifth open question regards the possible relationships between values computed
on the image game via X -Shapley, cu, or computed on the original game u. Indeed,
by Proposition 4.1.38, it is possible to link the value computed on cu and on u, if
the solution concept depends linearly on the marginal contribution of players. By
Proposition 4.3.21 and Remark 4.3.32 it holds that the Shapley value on the image
game via X ′ remains equal to the original Shapley for each player in the game,
that is ∀i ∈ N, ϕi(c′u) = ϕi(u). Instead, the understanding of the relationship is
not evident if the computed value does not depend on the marginal contribution of
players, as the values suggested in [132]. For instance, consider the Deegan-Packel
value [52], which depends only on the coalition payoff cu(S) of the coalitions S
containing a specific player:

ψDP
i (cu) =

∑︂
S⊆N :i∈S

XS(u)
s
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4.4.3 X -Shapley and Explainable Artificial Intelligence
A recent appealing intertwining between cooperative game theory and Machine

Learning is the Shapley value application to Explainable Artificial Intelligence
(XAI) [126]. In XAI, the Shapley value is commonly employed to compute fea-
ture importance for an analyzed model, thus providing clues for explanations. The
presented X -Shapley game map could potentially represent another game theoretic
result significant for XAI. Indeed, at least three different research directions derive
from X -Shapley in XAI.

The first direction is the computation of an importance directly for sets of fea-
tures, instead of single features. In fact, there are already studies trying to extend
the Shapley value to groups of features [110]. Being an allocation for coalitions,
X -Shapley can be suitable for this aim. The second direction consists of the compu-
tation of an interaction index between features, inspired by the interaction indices
presented by [90] in cooperative game theory. Being an allocation for coalitions,
X -Shapley can be suitable for this aim. As before, some researchers have recently
explored possibilities for an application in the XAI domain, for example, [183]. A
third direction comes from the Hodge theoretic characterization of X -Shapley. In
particular, for the Shapley value, the Hodge theoretic characterization has been
used by [121] to inspect explanations. The claim is that, by computing all the
entries of the S-differential games, it could be possible to derive new usages to
apply X -Shapley on XAI. Summarizing, other research areas could benefit from
deepening the knowledge of X -Shapley. Specifically, the critical areas where XAI
is needed to employ black-box Machine Learning models.

Finally, the following example shows how to compute a coalitional version of the
SHAP attributions based on X -Shapley, similar to the reported Example 4.1.53
from [2].
Example 4.4.1 (X -SHAP for a linear model and independent features).
Let ˆ︂F , x∗ and uˆ︁F as in Section 4.1.6. Furthermore, assume that ˆ︂F is a linear model
and the features of X are independent, as in Example 4.1.53. For a fixed subset of
features S ∈ N , it holds that:

XS(uˆ︁F ) = 1
2n
(︃∑︂
j∈S

φj(ˆ︂F ) +
∑︂

j∈N\S
θjE [xj] +

∑︂
j∈S

θjx
∗
j

)︃
= 1

2n
(︃∑︂
j∈S

φj(ˆ︂F ) + u
ˆ︁F (S)

)︃
.

Specifically, if S = {i} is composed by a single player:

XS(uˆ︁F ) = 1
2n
(︃
φi(ˆ︂F ) +

∑︂
j∈N\i

θjE [xj] + θix
∗
i

)︃
= 1

2n
(︃
φi(ˆ︂F ) + u

ˆ︁F (i)
)︃
.
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4 – Towards extending Shapley value to coalitions

Therefore, X -SHAP for S becomes:

XS(uˆ︁F ) = 1
2n
(︂
u
ˆ︁F (N)− uˆ︁F (N \ S) + u

ˆ︁F (S)
)︂

= 1
2n
(︃ ∑︂
j∈N

θjx
∗
j −

(︂∑︂
j∈S

θjE [xj] +
∑︂

j∈N\S
θjx
∗
j

)︂
+
(︂ ∑︂
j∈N\S

θjE [xj] +
∑︂
j∈S

θjx
∗
j

)︂)︃

= 1
2n
(︃∑︂
j∈S

θj
(︂
x∗j − E [xj]

)︂
+

∑︂
j∈N\S

θjE [xj] +
∑︂
j∈S

θjx
∗
j

)︃

In particular, if the features are zero-mean, that is ∀j ∈ N,E [xj] = 0, then

XS(uˆ︁F ) = 1
2n−1

∑︂
j∈S

θjx
∗
j = 1

2n−1

∑︂
j∈S

φ∗j(u
ˆ︁F )

This example is a simple case that allows analytically linking the relevance com-
puted by φj and the relevance by X . The challenge is to derive an algorithmic
version of the above reasoning that is suitable for analytically intractable Machine
Learning models, like the ones belonging to the class of Deep Learning.
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