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Abstract

The computation of the equation of state of strongly-interacting matter at
extreme temperatures and densities is a crucial endeavour in theoretical particle
physics, being directly related to heavy-ion collision experiments, the evolution of the
early Universe and the properties of neutron stars. In this thesis, several aspects of
this matter have been studied, starting with a study of the thermodynamics of SU(2)
and SU(3) pure gauge theories in the confining phase: first-principles computations
from lattice simulations have been described in terms of a non-interacting glueball
gas using a string-inspired model for the high-lying glueball spectrum. An alternative
approach, which includes an effective description of repulsive interactions between
glueballs, provides an even more precise description of the equation of state in the
proximity of the transition.

In this thesis we report also recent findings on the use of the ξ/ξ2nd ratio to test
effective Polyakov loop models, as it may play an important role in the determination
of the action that characterizes such models. This ratio is able to provide precious
insight on the spectrum of excitations of the flux tube in non-Abelian gauge theories
and thus it represents a simple and cheap way to understand if such effective models
are able to capture fundamental properties of the original theory.

The last part of this thesis is focused on a new way of computing the equation
of state in lattice gauge theories through the use of a well-known result in nonequi-
librium statistical mechanics, called Jarzynski’s equality, which relates fluctuations
in the work performed during a nonequilibrium transformation to the free energy
difference between two equilibrium ensembles. In this thesis, we will analyze how it is
possible to implement this result in lattice gauge theories by using out-of-equilibrium
transformations in Monte Carlo simulations, in particular for computationally chal-
lenging problems such as the calculation of interface free energies and of the pressure.
Most importantly, this new technique has been tested on a large-scale determination
of the equation of state of the SU(3) non-Abelian gauge theory, and compared with
recent determinations obtained with different methods, some of which proposed in
the last few years.
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Introduction

In the framework of the Standard Model, quantum chromodynamics (QCD) is
the fundamental theory of the strong interaction, which is one of the four forces that
govern our Universe along with gravity, electromagnetism and the weak interaction.
The strong interaction exhibits two truly peculiar properties that have been extremely
well tested over the years: confinement and asymptotic freedom. The fundamental
particles that are involved in this interaction are quarks and gluons, which are
characterized by a color charge. At low energies these particles display the so-called
color confinement: in a nutshell, quarks and gluons cannot be isolated, but they must
always be confined into colorless composite states called hadrons, which they cannot
be separated from. Such states are classified into baryons (such as the nucleons that,
in turn, make up nuclear matter), mesons (such as pions and kaons) and further,
more exotic, states such as tetraquarks, pentaquarks and glueballs, the latter of
which are states composed only by gluons and no quarks.

Conversely, at high energies the strong interaction features the so-called asymp-
totic freedom [1, 2]: at asymptotically large energy scales and, correspondingly,
as the length scales decrease, the true nature of the fundamental constituents is
shown, as the strength of the interaction becomes vanishingly small and perturbative
calculations are made possible. One of the most relevant implications of asymptotic
freedom is that, under extreme conditions, the dynamics of the theory is profoundly
modified with respect to what we observe at hadronic energy scales, as a completely
new behaviour of strongly-interacting matter emerges. In particular, a crucial pre-
diction of QCD is that at extremely high temperatures, or at extremely high baryon
densities, a new phase of matter exists, usually denoted as the quark-gluon plasma
(QGP): under these conditions, quarks and gluons are thought to be asymptotically
free. Understanding the thermodynamics of strongly-interacting matter is, thus,
imperative: moreover, the study of an exotic new phase such as the QGP and, in
general, of the phase diagram of QCD, has not purely theoretical motivations. In
fact, extreme conditions of temperature are thought to have happened in the first
moments of the Universe after the Big Bang, while extreme baryon density (that is,
cold and dense QCD) is thought to characterize the crucial properties of neutron
stars. In the last decades a huge experimental effort has been directed towards the
study of the QCD phase diagram; in particular, heavy-ion collision experiments such
as RHIC at Brookhaven National Laboratories, LHC (namely, the CMS, ATLAS and
ALICE collaborations) at CERN are able to reproduce signatures of a new phase of
strongly-interacting matter. Indeed, this long-lasting experimental programme will
continue in the foreseeable future also in new facilities such as FAIR at GSI.

The study of the equation of state of strongly-interacting matter, that is the
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2 INTRODUCTION

relation between state variables such as temperature, pressure, energy or entropy,
clearly plays a crucial role: indeed, its determination from first principles represents
a crucial endeavour in theoretical particle physics. While the QCD equation of state
is interesting by itself, it has direct, practical applications in different fields, such
as nuclear physics and cosmology: it serves as an input for the analysis of thermal
systems such as those created in heavy-ion collisions or for the study of the early
phases of the Universe itself.

From the theoretical side, the most significant and reliable contribution to this
effort comes undoubtedly from the lattice formulation of QCD, which represents
a tool for first-principles numerical predictions with ever-increasing precision and
accuracy. From its inception in the ’70s [3], lattice gauge theory has provided
an invaluable contribution in terms of quantitative predictions in several lines of
research in QCD and QCD-like theories: however, there are very few analytical
predictions, and Monte Carlo numerical simulations represent the main instrument
at our disposal. Still, lattice QCD is the mathematically rigorous, gauge-invariant
non-perturbative regularization of the theory, as it is well-defined for any value of
the coupling constant. This is particularly appealing when studying thermodynamic
observables: the quark-gluon plasma produced in experiments appears to be still
strongly-coupled and, thus, intrinsically non-perturbative tools are required to study
phenomena such as the deconfinement transition or the chiral symmetry restoration.

In the first chapter of this manuscript we will present a general overview of
some crucial features of QCD at nonzero temperature and a brief introduction to
the framework of lattice gauge theories, with a specific focus on thermodynamics.
In particular, at the end of this chapter, we will try to present with some detail
the most relevant methods that are routinely used to compute, via Monte Carlo
simulations, equilibrium observables such as the pressure and the entropy.

In the last few years, thanks to constant progress in computational power and
algorithmic sophistication, and also to a better understanding of all the systematic
effects related to simulations with fermions, there have been major advancements in
the computation of equilibrium thermodynamics for full QCD with 2 + 1 (or even
more) dynamical quark flavors. However, other QCD-like theories can still play a
central role in the understanding of the mechanisms underlying the deconfinement
transition and, more in general, of the thermodynamics of strongly-interacting
matter. A typical example is that of pure gauge theories, in which no dynamical
quarks are included: even if they have no physical counterpart in nature, they offer a
theoretically cleaner setup with respect to QCD, without the technical complications
due to the regularization of fermions on the lattice. Several studies analysed the
thermodynamics of pure-glue theories, such as the SU(3) Yang-Mills theory [4–7],
SU(N) theories in the large-N limit [8] and in 2 + 1 space-time dimensions [9, 10].
Chapter 2 will be dedicated to the work of refs. [11, 12], in which the equation of
state in the confined phase of the SU(2) and SU(3) pure gauge theories computed
on the lattice has been described in terms of a non-interacting gas of glueballs with
a string-inspired spectrum. The roots of this phenomenological approach are to be
found in the work of Hagedorn in the ’60s [13] on the statistical bootstrap model,
and also in its more recent version, the hadron resonance gas model, both of which
will be reviewed. Most importantly, we will analyse how the studies of refs. [11,
12] represent a perfect interplay between first-principles results from the lattice,
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and the phenomenological description of a glueball gas, which is able to provide
precious insight on the contributions to physical observables in the confining phase.
Moreover, we will show how thermodynamic observables can be used to investigate
the high-lying glueball spectrum, since, as we will see in detail, the non-interacting
gas prediction is reliable provided that an Hagedorn-like spectrum for heavy glueballs
is included.

Although lattice results are available for a very large set of thermodynamic
variables, there are some fundamental limits: the most relevant example is that of
the so-called “sign problem”, which prevents numerical simulation from providing
reliable results at nonzero baryon chemical potential. One possibility to avoid in large
part this issue is through the study of effective Polyakov loop (EPL) models, which
have been the object of several studies in recent years with different approaches [14–
34]. Even if not strictly related to the equation of state, the third chapter of this
thesis will be devoted to the study of the ratio between the correlation length ξ and
the second moment correlation length ξ2nd presented in [35]: we will see how this
quantity is able to provide precious information on the spectrum of excitations of
the flux tube. The measurement of this ratio in EPL models would be crucial in
understanding if these proposals are able to capture essential features of the flux
tube of non-Abelian gauge theories, and, if not, guiding what kind of additional
terms EPL actions need, in order to recreate the same predictions of the original
theory.

If we look again at high-precision determinations of the equation of state in the
literature, we see that full QCD calculations still require an impressive numerical
effort and many systematic effects have to be taken into account. Thus, recently there
has been renovated interest in the study of new ways of computing the equation
of state, in addition to techniques that are routinely used, such as the integral
method [36]: among the latest advancements, we mention studies in a moving
reference frame [7] and using the gradient flow [37].

The rest of this thesis is devoted to a novel proposal for the computation of
the equation of state, based on a well-known result from nonequilibrium statistical
mechanics, called Jarzynski’s equality. This relation, discovered only 20 years ago [38,
39], relates the difference in free energy F between two equilibrium states A and
B with the average of the exponential of the work W that is done on the system
during transformations between A and B. Since there are no particular restrictions
on how such transformations are performed, this is truly a result of thermodynamics
out of equilibrium. This nonequilibrium work relation is to be considered as a
generalization of a series of theoretical advancements previously developed during
the ’90s [40, 41] and deeply related with another crucial result in nonequilibrium
statistical mechanics, Crooks’ theorem [42]. When these discoveries were made, the
experiments at the nanometer scale were also reaching full maturity, providing the
possibility to test in the proper microscopic systems these theoretical results: this
was the case for Jarzynski’s equality, that was experimentally confirmed a few years
after its discovery [43].

Besides its numerous applications in microscopic systems such as proteins and
DNA/RNA filaments, Jarzynski’s equality has been derived and successfully imple-
mented also for stochastic processes and, in particular, for Markov processes and
Monte Carlo simulations. However, this result has seen no applications in lattice
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field theory until the work of ref. [44], where we proposed an implementation to
the case of pure gauge theories. Thus, in the fourth chapter we will provide an
in-depth analysis of Jarzynski’s equality, with a particular focus on its relation with
the second law of thermodynamics, its derivations for isolated Hamiltonian systems,
Markov processes and Markov chains. Then, in the last part we will move from
statistical mechanics to lattice gauge theory, with a detailed description of the results
obtained in [44] for the free energy of an interface in the Z2 gauge model.

In lattice field theory, the computation of free-energy differences is related to
a multitude of physically interesting quantities: thus, applications of Jarzynski’s
equality are in principle possible in many different lines of research. If we focus on
thermodynamics, then the determination of the pressure is a perfect candidate, as it
is equivalent to minus the free energy density: in chapter 5 we will analyse how to
compute the pressure in a lattice gauge theory using Jarzynski’s equality. Moreover,
we will present some preliminary tests performed in the SU(2) pure gauge theory and
reported in [44], aimed at providing a quantitative estimate of the efficiency of this
technique, in particular with respect to the integral method. In the second part of
this chapter, a large-scale determination for the equation of state of the SU(3) pure
gauge theory will be presented: even if the thermodynamics of this theory can be
considered as a solved problem, thanks to the seminal work of [4], recent high-precision
determinations with different methods [6, 7, 45] displayed relevant discrepancies,
which cannot be simply interpreted as due to statistical fluctuations. More in
general, the revived interest in novel methods for the calculation of equilibrium
thermodynamics may in principle be able to highlight systematic errors due to a
specific methodology. In light of this, we will see how the novel method based
on Jarzynski’s equality is able to provide a very competitive and highly reliable
determination of the SU(3) equation of state. Finally, the last chapter of this thesis
is devoted to some concluding remarks and final observations.



Chapter 1

The equation of state of
non-Abelian gauge theories

The study of the thermodynamic properties of quantum chromodynamics, and in
particular of the equation of state, represents an ongoing effort of a large sector of the
theoretical physics community, due to the far-reaching applications that the study
of the QCD phase diagram has. The main tool at our disposal to investigate from
first principles how strongly-interacting matter behaves under extreme temperatures
are numerical simulations of the original theory regularized on the lattice. Indeed,
the reliability of perturbative expansions in g2 is severely limited because of the
inherently nonperturbative nature of phenomena such as the deconfinement transition
itself. The aim of this introductory chapter is, first, to introduce some of the most
important concepts related to QCD at nonzero temperature and, second, to present
the numerical methods and techniques that are routinely used in this field of research.

The present chapter is structured as follows: a short introduction to the phe-
nomenology of quantum chromodynamics at finite temperatures and densities is
presented in section 1.1, mainly focusing on the nature of the deconfinement tran-
sition and the relevant symmetries of the theory. Section 1.2 is devoted to the
presentation of the lattice field theory framework used to perform the nonperturba-
tive computations of equilibrium thermodynamics in non-Abelian gauge theories.
Then, the observables related to the equation of state will be presented, and a set of
common strategies used to compute them will be described and analysed with some
detail in section 1.3. Finally, in section 1.4 some recent numerical results from the
lattice will be presented, with a particular focus on the SU(3) pure gauge theory
and cutting-edge results for full QCD with 2+1 and 2+1+1 dynamical quark flavors.

1.1 QCD at nonzero temperature and density

A complete understanding of the behaviour of strongly-interacting matter in
a regime of extreme temperatures and densities is one of the most fascinating
and important theoretical challenges in contemporary particle physics. Recent
experimental advancements confirmed the theoretical prediction of the existence of a
new phase of matter at high enough temperature and/or baryon density, commonly
known as the “quark-gluon plasma” (QGP). In this new region hadrons are not

5



6 CHAPTER 1. THE E.O.S. OF NON-ABELIAN GAUGE THEORIES

anymore the relevant degrees of freedom: the color charges, i.e. quarks as well
as gluons, are said to be “deconfined”. The quark-gluon plasma is never observed
directly, but its existence has been confirmed by the observation of several phenomena
which separately indicate the presence above around 160 MeV of a nearly ideal
fluid which undergoes rapid thermalization. This new phase is separated from the
confined, hadronic phase (where the QCD vacuum is located) by a deconfining change
of state: a qualitative representation of the phase diagram of QCD is presented
in fig. 1.1. The properties of the deconfinement transition depend strongly on the
values of the temperature and baryon chemical potential: for small values of µB, the
transition is a crossover, but if the baryon density increases it has been conjectured
that a critical point with a second order transition is present; at even higher µB, the
deconfinement transition may become of the first order type, even if strictly rigorous
predictions are lacking. A thorough analysis on how the phase diagram changes
as quark masses are varied (for example, in the chiral limit) is present in ref. [46].
Even more exotic phases of matter may be present at very high baryon densities, as
reported in the rightmost region of fig. 1.1, characterized by color superconductivity
and superfluidity.

Figure 1.1: QCD phase diagram: on the lower left the QCD vacuum and the confined,
hadronic phase; in the upper region the quark-gluon plasma (QGP); on the lower right, the
color-flavor locked (CFL) phase. The blue line is the a first-order deconfinement transition
line, the red point is the second-order critical point while the violet line denotes the entrance
into the color-superconductivity region. Image from ref. [46].

A very successful phenomenological description of the properties of the quark-
gluon plasma observed in experiments is provided by relativistic fluidodynamics,
while the hadron resonance gas model has been very effective in the description of
equilibrium properties in the confined phase. However, deriving a reliable description
of the hot and dense strongly-interacting matter from first principles, i.e. from the
Lagrangian of quantum chromodynamics, is not an easy task.

The perturbative approach based on the weak-coupling expansion in finite
temperature QCD is highly problematic, as the deconfinement phase transition is an
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intrinsically non-perturbative phenomenon whose properties cannot be fully captured
by an expansion in the coupling. The best and most successful approach from first
principles is without any doubt the lattice regularization of QCD: indeed, the
framework provided by numerical simulations on the lattice is the non-perturbative
way of studying QCD and it has provided an enormous amount of predictions for
many physical quantities. However, before reviewing the lattice QCD framework
in section 1.2, we will give a short review of the statistical mechanics of quantum
chromodynamics at T 6= 0.

The grand partition function for QCD is

Z(V, T, µf ; g,mf ) = T̂r
[
e−(H−µfQf )/T

]
where Qf is the conserved quark number and µf the corresponding chemical potential;
the thermodynamic average of an observable O can be obtained using

〈O〉 = Z−1T̂r
[
O e−(H−µfQf )/T

]
.

The path integral representation of the grand partition function can be written as

Z(V, T, µf ; g,mf ) =
∫

[DA][Dψ̄][Dψ]e−Sg [Aµ]e−Sf [ψ̄,ψ,Aµ], (1.1)

where the Euclidean gauge action reads

Sg[Aµ] =
∫ 1/T

0
dτ
∫
V

d3x
1
2Tr [Fµν(x)Fµν(x)]. (1.2)

The Euclidean fermionic action is

Sf [ψ̄, ψ,Aµ] =
∫ 1/T

0
dτ
∫
V

d3x

Nf∑
f=1

ψ̄f (x) (γµDµ +mf − µfγ0)ψf (x), (1.3)

where we stress that the compactified temporal direction with extent 1/T defines
the inverse of the temperature; moreover the conserved quark number density for
the flavor f is

Qf = ψ̄f (x)γ0ψf (x).

As usual

Dµ = ∂µ − igAµ, Aµ(x) = T aAaµ(x), Fµν(x) = i

g
[Dµ, Dν ] (1.4)

where the T a are the generators of the SU(N) gauge symmetry algebra, with index
a = 1, ..., N2 − 1; the index f denotes the quark flavor: f = u, d, s, c, b, t. To ensure
the correct Bose-Einstein and Fermi-Dirac statistics, the path integral of eq. (1.1)
must be evaluated using periodic boundary conditions along the Euclidean-time
direction for the gauge bosons

Aµ(τ,x) = Aµ(τ + 1
T
,x) (1.5)

and antiperiodic ones for the quark spinors

ψ(τ,x) = −ψ(τ + 1
T
,x). (1.6)
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Besides the usual dependence on the macroscopic parameters (temperature T , volume
V and chemical potentials µf ) the partition function of eq. (1.1) depends also on
the gauge coupling g and on the masses of the fermions mf .

Having established the basics for the study of QCD properties at T 6= 0, we
devote the following paragraphs to the analysis of some of the most important
symmetries underlying the behaviour of hot and dense strongly-interacting matter.

1.1.1 Center symmetry

When the (Euclidean) temporal direction is compactified and the appropriate
boundary conditions are imposed, a new kind of symmetry of the Yang-Mills theory
emerges (we will see later what happens when quarks are included). Let’s consider
first a standard local gauge transformation of the fields, namely

g(x) : Aµ(x)→ Agµ(x) = g(x)
(
Aµ(x) + i

g
∂µ

)
g†(x);

this holds if the gauge transformations satisfy g(τ,x) = g(τ + 1/T,x). Now, we
can also define new transformations h(x) which are periodic up to a global SU(N)
matrix denoted as z

h(τ,x) = z h(τ + 1
T
,x) (1.7)

and this transformation implies that the transformed fields now obey

Agµ(τ,x) = z Agµ(τ + 1
T
,x)z†. (1.8)

This implies that h(x) keeps the action invariant only if z is an element of the center
of the group, which in the case of SU(N) gauge theories is an element of the cyclic
group ZN

z = exp
(2πi n

N

)
1

with n = 0, 1, ...N−1; these transformations take the name of center transformations
and the action is invariant under the center symmetry. As we will see in detail
in a moment, the center symmetry is truly the symmetry which is spontaneously
broken in the deconfined phase; but before doing this, we have to identify the order
parameter related to this phase transition.

Thanks to the periodicity of the temporal dimension, a new set of gauge-invariant
observables can be computed: let us consider for example a Wilson line winding
around the compactified dimension

W (x) = P exp
{
ig

∫ 1
T

0
dτA0(τ,x)

}
(1.9)

where P denotes the path-ordered exponential; under gauge transformations we have
that

W g(x) = g(0,x)W (x)g( 1
T
,x)†;

the trace of this Wilson line is the so-called Polyakov loop P (x)

P (x) = TrW (x).



1.1. QCD AT NONZERO TEMPERATURE AND DENSITY 9

Under center transformations, due to the periodic property of eq. (1.7), the Polyakov
loop becomes

h(x) : P (x)→ P h(x) = exp
(2πi n

N

)
P (x), (1.10)

i.e. it acquires a phase belonging to ZN , while it is still invariant for a standard
gauge transformation (P g(x) = P (x)). The physical interpretation of a Polyakov
loop is related to the propagator of a static quark with coordinates x wrapping
around the torus: its expectation value can be seen as

〈P (x)〉 ∝ e−Fq/T

where Fq is the free energy associated to the isolated static quark. The Polyakov
loop is a crucial quantity for the study of Yang-Mills theory at nonzero temperature,
as it is the order parameter of the deconfinement transition. In order to see this,
we observe that at low temperatures the theory is confining and we expect the free
energy of an isolated quark to be infinite. This is exactly what happens, as for
T < Tc we have that 〈P (x)〉 = 0: indeed, the vacuum expectation value of the
Polyakov loop is invariant under center transformations. Conversely, for T →∞ the
expectation value becomes nonzero (〈P 〉 6= 0) and the vacua of the theory are not
center-symmetric anymore. There are N different expectation values (connected
with each other by center transformations) and when crossing the transition the
system picks one of them.

We remind that the center symmetry is a true symmetry only for the pure gauge
theory, or, in other terms, for QCD with infinitely heavy quarks. If the theory
includes also dynamic quark flavors, then the situation is markedly different: first of
all the center symmetry of the pure gauge action is broken explicitly by the fermionic
degrees of freedom. Indeed, for gauge transformations of the kind of eq. (1.7) one
has boundary conditions of the type

ψ(τ,x) = −z ψ(τ + 1/T,x) (1.11)

which are antiperiodic only for z = 1. In such cases (whenever the quark masses are
finite) the center symmetry is broken explicitly and 〈P 〉 6= 0 always holds.

1.1.2 Chiral symmetry

If we consider the full QCD Lagrangian with Nf massless quark flavors, we can
identify an invariance under global transformation of the quark fields of the following
symmetry:

U(Nf )R ⊗U(Nf )L = SU(Nf )V ⊗ SU(Nf )A ⊗U(1)V ⊗U(1)A. (1.12)

The U(1)V symmetry deals with transformations of the type

ψf → exp(iα)ψf (1.13)

where the conserved charge is the baryon number B; from here one the index f
denotes a massless quark flavor.
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Instead, SU(Nf )V vector rotations mix the flavors under

ψf → exp(iθaT a)f ′fψf with a = 0, 1, ..., N2
f − 1 ; (1.14)

for Nf degenerate (not necessarily massless) flavors the quark spinors can be thus
written as an Nf -plet whose components transform under eq. (1.14). This symmetry
is softly broken in nature when Nf = 2 by the not-perfectly degenerate up and down
quark masses, leading to the approximate (but still very good) isospin symmetry in
the light-hadrons spectrum. When considering also the strange quark (Nf = 3) this
invariance leads to the approximate strangeness symmetry.

The SU(Nf )A symmetry corresponds to axial transformations of the kind

ψf → exp(iθaT aγ5)ff ′ψ′f with a = 0, 1, ..., N2
f − 1 ; (1.15)

it is spontaneously broken at zero and low temperatures and it gives rise to N2
f − 1

massless Goldstone bosons. For Nf = 2 the three Goldstone bosons are the pions
(whose masses are indeed very small when compared to those of the nucleons and
are generated by the fact that in nature mu,d 6= 0); for Nf = 3 we have also the
kaons and the η meson (which are even more massive due to the relatively large bare
mass of the strange quark). However, for large enough temperatures the symmetry
is restored: the correct order parameter is the so-called chiral condensate

〈ψ̄ψ〉f = T

V

∂ lnZ
∂mf

(1.16)

which has a nonzero expectation value in the QCD vacuum below the transition
temperature; above Tc (whose value is very close to that of the deconfinement
transition) it is zero.

Last, the U(1)A axial symmetry is indeed a symmetry of the QCD Lagrangian,
but not of the quantum theory. Indeed, under the transformations

ψf → exp(iαγ5)ψf (1.17)

the measure of the path integral is modified

[Dψ][Dψ̄]→ exp
(
−iαg2Nf

32π2

∫
d4x εµνρσF

a
µν(x)F aρσ(x)

)
[Dψ][Dψ̄]. (1.18)

Indeed there are gauge configurations for which the integrand of eq. (1.18) is nonzero
and the current

jµ5 = ψ̄γµγ5ψ

is not conserved: this is the so-called axial anomaly [47, 48], a typically quantum
effect because of which there is no conserved charge and no Goldstone boson.

1.2 Thermodynamics in lattice gauge theories
The lattice regularization of quantum field theories has proven to be the main

tool in the investigation of the properties of quantum chromodynamics at nonzero
temperature from first principles, being able to compute a large number of equilibrium
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observables related to the QCD plasma. Many problems directly related to the
quark-gluon plasma have been thoroughly analysed through lattice simulations, such
as the nature of the deconfinement and of the chiral restoration, electromagnetic
fields in the QGP, freeze-out conditions and, of course, the equation of state for
vanishing baryon chemical potential, which will be analysed separately in section 1.3.

In the following paragraphs we will review the theoretical framework under which
numerical simulations are performed: in section 1.2.1 the discretized version of the
Yang-Mills action will be analyzed and the lattice counterparts of some observables
introduced in section 1.1 will be presented. A short introduction to the discretization
of fermions on the lattice has been included in section 1.2.2, leaving aside most of
the details. Section 1.2.3 is dedicated to some crucial features of computations on
the lattice, with particular attention to the setting of the scale. Further details and
analyses, especially concerning fermionic actions and their improvements, can be
found in ref. [49].

1.2.1 The gauge action and related observables

Lattice computations are usually performed in a finite hypercubic lattice (that
we will generally denote as Λ) of spacing a and hypervolume L3

s ×Lt = a4(N3
s ×Nt),

in which periodic boundary conditions for the gauge fields and antiperiodic ones for
the quark variables are imposed along the compactified dimension. As described in
the section 1.1, the temperature T of the system is taken to be the inverse of the
temporal size, via the relation T = 1/Lt, while the sizes of the system in the other
three “spatial” directions are usually taken to be much larger ( Ls � Lt) to avoid
finite-volume effects. In practice, (anti)periodic boundary conditions are imposed
also in the spatial directions.

The simplest choice for the Euclidean Yang-Mills action of the lattice theory is
the standard Wilson action, introduced by K. Wilson at the dawn of lattice field
theory [3], that reads

SW = − 2
g2

∑
x∈Λ

∑
0≤µ<ν≤3

Re TrUµν(x) (1.19)

where g denotes the (bare) lattice coupling and

Uµν(x) = Uµ(x)Uν (x+ aµ̂)U †µ (x+ aν̂)U †ν (x) (1.20)

is the so-called plaquette, i.e. the smallest loop one can have on the lattice. The
Uµ(x) is a SU(N) group element (in the defining representation): it represents a
parallel transporter (in color space) from the site x to the site x + aµ̂. In the
following, we also introduce the Wilson parameter β = 2N/g2, which should not be
confused with the inverse temperature.

In the continuum limit, the Wilson action differs from the Yang-Mills action by
terms of order O(a2); a common alternative to eq. (1.19) is the use of an improved
action, which guarantees a better continuum extrapolation from nonzero lattice
spacing results, in the sense that O(a2) terms are eliminated and only corrections
O(a4) survive. One well known example is the Symanzik improved action [50, 51]:

Simp = − 2
g2

c0
∑
x∈Λ

∑
µ<ν

Re TrU1×1
µν (x) + c1

∑
x∈Λ

∑
µ 6=ν

Re TrU2×1
µν (x)

 (1.21)
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where U1×1
µν is the standard 1×1 plaquette of eq. (1.20), while U2×1

µν is the rectangular
loop of size 2× 1. The coefficients c0 and c1 are set in order to improve the scaling
with a at tree level.

Naturally, the periodic boundary conditions for the SU(N) link variables

Uµ(x, 0) = Uµ(x, aNt)

are imposed as in the continuum (see eq. (1.5)).
At the quantum level, the dynamics of the lattice pure gauge theory is defined

by the partition function Z

Z(β) =
∫

[DU ] exp (−Sg(U)) =
∫ ∏

x∈Λ

3∏
µ=0

dUµ(x) exp (−Sg(U)) , (1.22)

where dUµ denotes the SU(N) Haar measure and Sg the desired pure gauge action.
In this way the expectation value of a generic, gauge-invariant quantity A is given
by

〈A〉 = 1
Z

∫ ∏
x∈Λ

3∏
µ=0

dUµ(x)A exp (−Sg) . (1.23)

Expectation values of this form then can be estimated numerically via dynamical
Monte Carlo integration. In a numerical lattice simulation large sets of configurations
of the fields Uµ(x) are generated by appropriate algorithms following, in the case
of the pure gauge theory, the Haar measure of eq. (1.23). Then, on each of these
configurations the desired observable A is directly measured and, in the end, the
vacuum expectation value of eq. (1.23) is computed simply by taking the average.

The reliability of any simulation on the lattice is closely related to the ability to
sample the phase space with the correct Boltzmann weight: we will see in the next
section one case in which this is not possible.

Among the observables of interest in this thesis we define the normalized, traced
Polyakov loop through a spatial point x

P (x) = 1
N

TrL(x), (1.24)

where
L(x) =

∏
0≤τ<Nt

U0(x, τa) (1.25)

which corresponds to the continuum definition given in section 1.1.1. Another related,
crucial quantity is the two-point Polyakov loop correlation function

G(r) =
〈

1
3N3

s

∑
x∈Λs

P (x)
∑

1≤i≤3
P (x + ri)

〉
(1.26)

(with Λs being the spatial volume) which is related to the static interquark potential
Vqq̄, as we will see in section 2.2.1 in detail.
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1.2.2 Fermions on the lattice

A generic lattice discretization of the fermionic action of QCD can be written as

Sf = a4 ∑
x,y∈Λ

∑
f

ψ̄f (x)Dx,y(mf )ψf (y) (1.27)

where the index f denotes the quark flavor (with the respective mass mf ) and Dxy

is the Dirac operator; the usual antiperiodic boundary conditions

ψ(x, 0) = −ψ(x, aNt)

are imposed to preserve Fermi statistics. The complete partition function is

Z(β,mf ) =
∫

[DU ]
∏
f

[Dψf ][Dψ̄f ] exp
(
−Sg(U)− Sf(U,ψf , ψ̄f )

)
(1.28)

which becomes (under the rules for the integration of Grassmann variables)

Z(β,mf ) =
∫

[DU ]
∏
f

det [D(mf )] exp (−Sg(U)) . (1.29)

Now, before the actual discretization of fermions on the lattice, we can analyse a well-
known problem of Monte Carlo numerical simulation: whenever a nonzero baryonic
chemical potential µB is included in the theory (as in eq. (1.3)), the determinant
of the Dirac operator becomes complex. This issue, known in the literature as the
“sign problem” is truly fundamental, as a complex number cannot be interpreted
in terms of a Boltzmann weight for importance sampling: the evaluation of the
path integral via Monte Carlo simulations is, thus, impossible. Various solutions
have been proposed in order to circumvent this problem, with varying degrees of
success. In chapter 3 we will analyse one possibility, based on the use of effective
Polyakov loop (EPL) models to obtain reliable predictions on finite-density QCD
and QCD-like theories.

The simplest attempt to put fermions on the lattice is via the naïve discretization
of the Dirac operator: in the non-interacting case one simply substitutes the derivative
with the finite difference

∂µψ(x)→ ∇µψ(x) = ψ(x+ aµ̂)− ψ(x− aµ̂)
2a

which gives ∂µψ(x) in the a→ 0 limit with O(a2) corrections. Similarly, the covariant
derivative Dµψ becomes

Dµψ(x)→
Uµ(x)ψ(x+ aµ̂)− U †µ(x− aµ̂)ψ(x− aµ̂)

2a
that gives the correct result in the continuum limit with O(a) corrections. Thus, we
can write down the naïve discretization of D as

Snaive =a4 ∑
x,y∈Λ

∑
f

ψ̄f (x)Dnaive
x,y (mf )ψf (y) (1.30)

Dnaive
x,y =mfδx,y +

3∑
µ=0

γµ

(
Uµ(x)δx+aµ̂,y − U †µ(x− aµ̂)δx−aµ̂,y

2a

)
. (1.31)
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where we have made the color and Dirac indices explicit. It is a well-known fact
that this discretization suffers from a serious problem: if one computes the (discrete)
Fourier transform of Dnaive

xy and computes the propagator D−1(p), 2D poles appear
in the chiral limit (mf = 0). Thus, there are 2D − 1 unwanted modes which go by
the name of doublers and that survive the continuum limit: the naïve lattice Dirac
operator actually describes 16 (in D = 4) different quark flavors.

Different solutions have been proposed in the literature to deal (at least to some
extent) with the presence of fermion doublers in the lattice regularization: among the
most used and relevant ones for the calculation of thermodynamical observables (and
in particular for the equation of state) we mention Wilson fermions and staggered
fermions.

The solution proposed by Wilson [52] gets rid of fermion doublers by including
an irrelevant, dimension-five operator which is proportional to the lattice version of
the Laplacian. The new Dirac operator now reads

DWilson
x,y (mf ) =mfδx,y +

3∑
µ=0

γµ

(
Uµ(x)δx+aµ̂,y − U †µ(x− aµ̂)δx−aµ̂,y

2a

)
(1.32)

− r
3∑

ν=0

(
Uν(x)δx+aµ̂,y − 2δx,y + U †ν (x− aν̂)δx−aν̂,y

2a

)
(1.33)

and now the coefficient of the ψ̄ψ term (i.e. the bare mass of the quark) is mf +4r/a.
It is customary to introduce the hopping parameter

κf = 1
2a(mf + 4r/a)

and rewrite the Dirac operator as

DWilson
x,y (κf ) = δx,y−κf

3∑
µ=0

(r−γµ)Uµ(x)δx+aµ̂,y+(r+γµ)U †µ(x−aµ̂)δx−aµ̂,y (1.34)

The main effect is that the mass degeneracy between the fermion doublers is lifted
and in the continuum limit the 2D − 1 unwanted modes acquire an infinite mass
and are effectively decoupled from the theory. Please note that this operator is not
invariant anymore under transformations of eq. (1.15): it breaks chiral symmetry
explicitly and there is no spontaneous breaking of it, even in the massless quarks
limit.

More possibilities have been proposed in the literature since the one by Wilson.
We mention here in particular an extremely popular discretization of the fermionic
action put forward by Kogut and Susskind [53, 54], which goes by the name of
staggered fermions. We refer to [55] for an introductory analysis of this approach
and others, such as domain wall fermions, while for further information on their use
in lattice thermodynamics we refer to [49].

1.2.3 Features of lattice simulations at nonzero temperature

In order to obtain precise results for the thermodynamics in lattice gauge theories
an accurate tuning of the temperature to the desired value is essential. We recall
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that the temperature is the inverse of the extent of the compactified dimension
(usually chosen to be the “time” direction), i.e.

T = 1
Lt

= 1
a(β)Nt

.

On the lattice, it can be varied both by increasing or decreasing the number of
lattice sites Nt in the temporal compactified dimension, or by changing the lattice
spacing a itself. Most importantly, both a and Nt can be varied in a complementary
manner in order to extrapolate the results to the continuum; moreover we will see in
detail in section 1.3 that both ways are viable options when computing the equation
of state.

If the lattice spacing a(β) is used to tune the temperature T to the desired value,
it is crucial to have an accurate functional relation between the spacing and the
inverse coupling β = 2N/g2. Such a relation is given by the renormalization group:
in perturbation theory we can define the Callahan-Symanzik β-function βLAT via
the renormalization group equation

−a∂g
∂a

= βLAT = −b0 g3 − b1 g5 + ... (1.35)

where the first two coefficients b0 and b1 of the expansion of βLAT are independent
of the renormalization scheme; they are known in perturbation theory and are

b0 = 11N
48π2 , b1 = 34

3

(
N

16π2

)2
(1.36)

respectively. Eq. (1.35) yields the relation between a and g2 (in units of the
integration constant ΛLAT )

aΛLAT =
( 1
b0g2

)b1/2b2
0

exp
(
− 1

2b0g2

)
(1 +O(g2)); (1.37)

similar relations hold for the quark masses.
However, the range of lattice spacings a that are interesting for studying thermal

properties of Yang-Mills theory is not usually accessible by perturbation theory
and thus eq. (1.37) cannot be used as a reliable relation between a and β for
thermodynamics. A different, non-perturbative way of setting the scale is obtained
by expressing each of the observables of interest in units of physical quantities that
can be computed separately on the lattice and whose experimental value is known.
One possibility is for example to compute non-perturbatively on the lattice the
mass of the pion amπ (in units of the spacing), and then use it to express all other
observables. Namely, for the temperature we would have that

T

mπ
= 1
amπNt

(1.38)

and then we would use the experimental value of mπ to give a physical value in MeV
to the temperature.

Another viable way of setting the scale for lattice simulations is through the
calculation of the static potential of a quark-antiquark pair, Vqq̄, or of the interquark
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force, Fqq̄. These observables are easily accessible on the lattice by the computation
of Wilson loops or Polyakov loop correlators: the relevant dimensionful quantities are
in particular the string tension σ or the Sommer scale r0 (and its variant r1). Such
quantities cannot be directly observed and measured easily in an experiment though:
because of this, the lattice spacing and all other observables are usually expressed
adimensionally, either in the proper units of σ or r0 (e.g. a

√
σ or a/r0). A practical

determination of the scale will be showed later more in detail in section 2.2.1.
In pure gauge theories, once the scale setting relation a(β) is known, we are able

to perform the continuum extrapolation: the limit a→ 0 (or equivalently β →∞)
is taken by keeping the temperature T in physical units fixed by using a sequence of
larger and larger values of Nt. On the other hand, when considering the full theory
with dynamical quarks, the situation is somewhat more complicated by the fact
that physical quark masses must also be kept fixed (along with the temperature T )
when varying the lattice spacing. In practice, this means that also the bare quark
masses amf must be tuned in order to keep the physical masses constant. A concept
which is useful for the correct calculation of continuum-extrapolated thermodynamic
observables in lattice QCD is that of “lines of constant physics”. A line of constant
physics is a curve in the parameter space of the theory, along which the renormalized
quark masses are kept constant by tuning the bare masses and the inverse coupling:

mR
f (amu,d(β), ams(β), β) = const.

In practice, one chooses other physical observables which are computed more straight-
forwardly than mR

f , such as hadron masses or decay constants. As we have just seen,
the determination of the lines of constant physics and the setting of the scale play
a crucial role for thermodynamics, even if they are computed in zero temperature
simulations.

When performing lattice simulations there are some intrinsic physical constraints
related to how fine and how large the lattice has to be that must be taken into
account. On one hand, the spacing must be small enough to accommodate all the
relevant energy scales: this means that in the confining phase

a� m−1
H

where mH is the mass of the physical states that one wishes to study. On the other
hand the spatial size of the lattice must be larger than the Compton wavelengths of
the pions, which are proportional to the inverse of their mass; this leads to

aNs � m−1
π .

This explains why simulating physical pion masses is extremely expensive on the
computational side, as very fine and very large lattices are needed: it has been made
possible only recently, and initially only with staggered fermions.

In the high-temperature, deconfined phase the screening masses go as m ∼ T : if
we take the constraints for the low-temperature phase

a� m−1 � aNs

they become
1� Nt � Ns
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that means that the spatial size must be significantly larger than the temporal
one, limiting the range of temperature that can be reached at fine lattice spacing.
Actually, screening masses at T > Tc go as m ∼ gT or m ∼ g2T (g being the
coupling), which, especially at very high temperatures, are rather different from T ,
and must be taken into account in lattice simulations.

One last word must be spent for what concerns the multiple extrapolations
that may be needed for the results of the simulations. As we have seen, lattice
computations are usually affected by systematic uncertainties related to the finite
size of the lattice volume and to finite lattice spacing effects: because of them we
need careful extrapolations to an infinite volume and to the continuum, respectively.
Another source of systematic errors is due to choosing unphysically heavy pions
for the simulations, whose contribution to the fermionic action is computationally
cheaper to evaluate. The resulting values then must be extrapolated (using, for
example, chiral perturbation theory) to the physical point or, alternatively, to the
chiral limit, depending on the desired observable. It is important to stress that one
has to extrapolate first to the infinite-volume limit V →∞, then to the continuum
limit a→ 0 and finally to the physical pion mass.

1.3 Computing the equation of state on the lattice

The determination of the equation of state represents an extremely important
theoretical prediction which is not only in principle accessible by heavy-ion collision
experiments, but has also a highly relevant role for the quantitative description of
the state of the early Universe. Indeed, one of the main goals of lattice calculations
at nonzero temperature and quark density has been the precise determination of the
equilibrium properties of QCD and QCD-like theories. By means of Monte Carlo
lattice simulations one can obtain accurate results for observables such as pressure,
energy density and entropy density.

The “equation of state” is the set of relations between the thermodynamic
parameters (pressure, volume, temperature ...) that is valid when the system is at
equilibrium. We start with the pressure p, which in statistical mechanics is defined
as

p = ∂(T lnZ)
∂V

where Z is the partition function of the system under analysis. In the thermodynamic
limit V →∞ we can rewrite it as the opposite of the free energy density f = F/V

p = − lim
V→∞

f = lim
V→∞

T

V
lnZ. (1.39)

Next, we consider the energy E

E = T 2∂ lnZ
∂T

and the entropy S

S = ∂(T lnZ)
∂T

.
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The entropy density s can be written as

s = S

V
= 1
V

∂(T lnZ)
∂T

= 1
V

lnZ + T

V

∂ lnZ
∂T

= p

T
+ ε

T
(1.40)

where we also introduced the energy density ε:

ε = E/V = T 2

V

∂ lnZ
∂T

. (1.41)

A useful quantity is also the trace of the energy-momentum tensor Tµν (also
known as “trace anomaly”), which we write as ∆(T ) = ε− 3p. It is immediate to
prove that it can be conveniently expressed as

∆(T ) = ε− 3p = T 5 ∂

∂T

(
p(T )
T 4

)
. (1.42)

In the following we will often refer to these quantities via the adimensional ratios
p/T 4, ε/T 4, s/T 3 and ∆/T 4. Last, we define the “speed of sound” in the thermal
medium as

c2
s = dp

dε . (1.43)

Several methods have been proposed in the last decades to compute these quanti-
ties on the lattice: we will devote this section to an overview of these methodologies
with a particular focus on those that are most relevant and have been used the
most. We will take into consideration primarily how the computation is performed in
Yang-Mills theories, while adding in some cases a few examples for the generalization
to the full theory with dynamical fermions.

1.3.1 The integral method

The so-called “integral method” has been introduced for the first time many years
ago in ref. [36]: the starting point is rewriting the pressure, eq. (1.39), adimensionally
in units of T 4

p = T

V
lnZ = 1

N3
sNt

1
a4 lnZ ⇒ p(T )

T 4 = N3
t

N3
s

lnZ(T ). (1.44)

Now, instead of computing directly the partition function, we want to take its
derivative with respect to some parameter and then integrate it to obtain again the
pressure. In practice, the derivative is taken with respect to the inverse coupling β
and the integration is performed between two values of the Wilson parameter that
correspond to two different temperatures. Thus, this operation allows us to compute
the difference of the pressure (in units of T 4)

p(T )
T 4 −

p(T0)
T 4

0
= N3

t

N3
s

∫ β(T )

β(T0)
dβ′ ∂ lnZ

∂β′
; (1.45)

the lower limit, that is β(T0), can be set to a value such that the corresponding
physical pressure p(T0)/T 4

0 is practically zero and can be safely neglected, or it can
be fixed using a different theoretical input such as the contribution of a glueball gas,
as we will see in chapter 2.
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The positive aspect of this procedure is that now the integrand of eq. (1.45) can
be readily computed from plaquette expectation values, namely

〈Up〉T = 1
6NtN3

s

〈
∂ lnZ
∂β

〉
T

(1.46)

where the factor 6 comes from the number of plaquette associated with each site of
a four-dimensional lattice (it is 3 in D = 3 and 1 in D = 2).

We still have to renormalize the pressure to get rid of a quartic divergence, and
we do it by explicitly subtracting the vacuum expectation value at T = 0 from the
integrand for each value of β. The pressure thus becomes

p(T )
T 4 −

p(T0)
T 4

0
= 6Nt

4
∫ β(T )

β(T0)
dβ′ (〈Up〉T − 〈Up〉0) . (1.47)

The first plaquette expectation value is computed on the usual Nt × N3
s lattice

(keeping Nt constant) while the second term is evaluated on a symmetric lattice of
sizes N4

s,0, which are large enough so that it is effectively at zero temperature for
that value of β.

The primary quantity that is computed in this procedure is actually the trace
of the energy-momentum tensor of eq. (1.42), that was indeed a derivative of the
pressure. It is simply proportional to the aforementioned difference in plaquette
expectation values

∆(T ) = − 6
a4

∂β

∂ ln a (〈Up〉T − 〈Up〉0) (1.48)

where the ∂β/∂ ln a factor can be computed via the scale setting relation a(β). It is
easy to rewrite the pressure using eq. (1.42) and eq. (1.48) as

p(T )
T 4 −

p(T0)
T 4

0
=
∫ T

T0
dT ′∆(T ′)

T ′5
(1.49)

while ε and s are readily computed with the usual linear combinations, namely
eqs. (1.40) and (1.42).

In the presence of dynamical fermions the relation of eq. (1.47) is easily generalized:
in this case the derivative of the partition function with respect to the inverse coupling
β adds a term which depends on the mass of the fermions. Namely, for the trace of
the energy-momentum tensor we have that

∆(T )
T 4 = −N4

t

∂β

∂ ln a

[
6 (〈Up〉T − 〈Up〉0)− ∂mf (β)

∂β

(
〈ψ̄ψ〉f,T − 〈ψ̄ψ〉f,0

)]
(1.50)

where mf (β) is the renormalized quark mass (which depends non-trivially on the
lattice spacing a) and 〈ψ̄ψ〉f is the chiral condensate for the f quark flavor, see
eq. (1.16). For each quark flavor that is added to the system under analysis one
has to consider one more term in eq. (1.50) containing the respective mass mf and
chiral condensate 〈ψ̄ψ〉f . Now, besides the derivative already present in eq. (1.48),
we have to determine also mf (β).

Among the drawbacks of this procedure we want to stress the necessity of
performing simulations on symmetric T = 0 lattices to subtract the divergence
from the trace anomaly and the pressure for each desired temperature. Moreover
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the continuum extrapolation at low temperatures is hindered by the rather coarse
lattices (at reasonable Nt) one has to introduce to set T to the desired value.

A possible but somewhat limited turnaround to these issues is the so-called
“fixed-scale” approach (for a recent example, see ref. [56]), in which the number
of sites in the temporal, compactified direction is varied while keeping β (i.e. the
lattice spacing a) fixed. In this way the temperature is tuned in discrete steps only
by changing Nt: first one computes the trace anomaly using eqs. (1.48) and (1.50)
and then integrates over the desired temperatures (see eq. (1.49)). Of course one
has to numerically interpolate first the limited number of values of ∆(T ) before
proceeding with the numerical integration. This approach needs only one value
for the subtraction (since only one lattice spacing is used) and allows for rather
fine lattices at low temperatures; conversely large discretization effects appear at
high temperatures. Finally, the continuum limit is taken simply by repeating the
simulations for a set of different lattice spacings a. A full-scale determination of
thermodynamic observables using this approach has been performed in ref. [57]; for
a recent development with shifted boundary conditions see ref. [58].

1.3.2 The derivative method

An interesting way to compute directly pressure and energy density is by formu-
lating the theory on an anisotropic lattice of temporal size Lt = atNt and spatial
size Ls = asNs [59, 60]. Temperature and volume are defined as

T = 1
atNt

, V = (asNs)3,

respectively. We define the ratio of the two lattice spacings as ξ ≡ as
at
, while the

corresponding generalized Wilson action is

Sg[U ] = βs
∑
sp

(
1− 1

N
ReTrUsp

)
+ βt

∑
tp

(
1− 1

N
ReTrUtp

)
(1.51)

where βs ≡ 2N
ξg2
s
and βt ≡ 2Nξ

g2
t

are the anisotropic inverse couplings. Using simply
the usual statistical mechanics definition of pressure and energy density one gets

ε =T 2

V

∂ lnZ
∂T

= T 4
(
Nt

ξNs

)3
〈at

∂S

∂at
〉 (1.52)

p =T

V
lnZ = −T

4

3

(
Nt

ξNs

)3
〈as

∂S

∂as
〉 (1.53)

The quantity inside 〈...〉 in eq. (1.52) can be directly calculated:

at
∂S

∂at
=
(

1 + g2
sat

∂g−2
s

∂at

)
βs
∑
sp

(
1− 1

N
ReTrUsp

)

+
(
−1 + g2

t at
∂g−2

t

∂at

)
βt
∑
tp

(
1− 1

N
ReTrUtp

)
(1.54)
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and the same for the one in eq. (1.53)

as
∂S

∂as
=
(
−1 + g2

sas
∂g−2

s

∂as

)
βs
∑
sp

(
1− 1

N
ReTrUsp

)

+
(

1 + g2
t as

∂g−2
t

∂as

)
βt
∑
tp

(
1− 1

N
ReTrUtp

)
(1.55)

So eqs. (1.52) and (1.53) become finally (in units of T 4)

ε

T 4 =3N4
t

ξ3

[(
1 + g2

sat
∂g−2

s

∂at

)
βsPσ +

(
−1 + g2

t at
∂g−2

t

∂at
s

)
βtPτ

]
(1.56)

p

T 4 =− N4
t

ξ3

[(
−1 + g2

sas
∂g−2

s

∂as

)
βsPσ +

(
1 + g2

t as
∂g−2

t

∂as

)
βtPτ

]
. (1.57)

Here Pσ and Pτ are the expectation values of spacelike and timelike plaquettes
respectively:

Pσ,τ = 〈1− 1
N

ReTrUsp,tp〉. (1.58)

If we fix ξ = 1 (that is, as = at) we find eq. (1.48), as expected. As usual at this point,
the pressure and the other thermodynamic quantities have non-vanishing vacuum
contributions which must be eliminated by subtraction. Moreover, the dependence
of gs and gt on the respective lattice spacing has to be studied independently (see
for example [61]).

Even if this methodology has not been used often in the literature, recent works
exploited it extensively for precision calculations (see for example ref. [62]).

1.3.3 The equation of state from a moving frame

A radically different method for the computation of the equation of state based
on the use of shifted boundary conditions has been proposed in a series of recent
papers [7, 63–67]. The underlying idea is that in relativistic thermal theories the
entropy is proportional to the total momentum of the system as measured by a
moving reference system: the Euclidean path integral formulation is indeed quite
simple. On the temporal direction, whose physical size is Lt = aNt, the following
boundary conditions are imposed:

Uµ(Lt, ~x) = Uµ(0, ~x− Lt~ξ ) , (1.59)

where the spatial shift vector ~ξ characterizes the moving frame in the Euclidean
spacetime [65]; namely, iξ corresponds to the imaginary velocity of the system. In a
system with such boundary conditions the free energy density is

f(Lt, ~ξ) = − 1
LtV

lnZ(Lt, ~ξ) (1.60)

and it can be proved (see for example ref. [65]) that the invariance under SO(4)
rotations implies that

f(Lt, ~ξ) = f(Lt
√

1 + ~ξ2,~0). (1.61)
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Thus, one effect of the shifted boundary conditions is that the actual temperature of
the system is no longer the inverse of the temporal extent of the lattice, but

T = 1

Lt

√
1 + ~ξ2

(1.62)

and thus it is decreased with respect to a system with periodic boundary conditions
and temporal extent Lt.

By repeatedly deriving eq. (1.61) with respect to both Lt and ~ξ it is possible to
generate new interesting Ward identities. In particular the relation (no summation
over k indices)

〈T0k〉~ξ = ξk
1− ξ2

k

(
〈T00〉~ξ − 〈Tkk〉~ξ

)
(1.63)

holds, where Tµν is the energy-momentum tensor in Yang-Mills theory. It is defined
starting from the usual field strength F aµν as

Tµν(x) = 1
g2

[
F aµρ(x)F aνρ(x)− 1

4δµνF
a
ρσ(x)F aρσ(x)

]
. (1.64)

Since parity symmetry is softly broken by the presence of such boundary conditions,
the off-diagonal terms T0k are not necessarily zero anymore. From eq. (1.63) one
can extract the entropy density s(T )

s(T ) = −Lt(1 + ~ξ2)
3
2

ξk
〈T0k〉~ξ ZT (1.65)

where ZT is a renormalization constant that has to be computed separately.
In order to compute both s(T )/T 3 and ZT (g2

0) on the lattice, one has to give a
definition of the energy-momentum tensor: one such possibility is using the so-called
“clover” definition [68] for the field strength F aµν :

F aµν(x) = − i

4a2 Tr [(Qµν(x)−Qνµ(x))T a] (1.66)

with

Qµν(x) = Uµν(x) + Uν−µ(x) + Uµν(x) + U−µ−ν(x) + U−νµ(x). (1.67)

For details on the determination of the renormalization constant ZT (g2
0), see

ref. [67]; once ZT (g2
0) is known, one can compute 〈T0k〉 and use eq. (1.65) to obtain

the entropy density s(T ), using only a single simulation for each temperature. Indeed,
unlike in the integral method (see eq. (1.48)) where also T = 0 simulations are
performed to get rid of the quartic divergence, no further subtraction is needed.

In the end, the entropy in units of T 3 is computed using

s(T )
T 3 = −L

4
t (1 + ~ξ2)3

ξk
〈T0k〉~ξ ZT (1.68)

while the pressure requires the numerical integration

p(T ) =
∫ T

0
dT ′s(T ′) (1.69)

Recent high-precision results are reported in ref. [7] and a generalization to fermionic
degrees of freedom is ongoing.
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1.3.4 Using the gradient flow

In principle many different thermal properties of the theory could be extracted
by studying directly the energy-momentum tensor Tµν : however, in order to do so
a proper definition is needed, which is correctly normalized and conserved in the
continuum limit. The integral method avoids this problem by computing not the
tensor Tµν itself, but its trace, and then obtaining p, ε and s afterwards. The use of
shifted boundary conditions tackles this issue more directly, through the derivation
of new Ward identities valid on a moving frame, that allow for the calculation of
both the entropy s(T ) and the necessary renormalization constants.

Recent theoretical developments that make use of the Yang-Mills gradient flow
[69–71] allow for a definition of the energy-momentum tensor that can be used to
practically compute thermodynamic observables on the lattice: this line of research
has been carried forward in the last few years both in the pure-gauge theory [45,
72–74] and in full QCD [37, 75].

The Yang-Mills gradient flow is a deformation of the gauge fields Aµ(x) along a
fictitious “flow time” t; the new field at t > 0 is denoted as Bµ(t, x) and defined by
the diffusion-like differential equation

∂tBµ(t, x) = DνGνµ(t, x) (1.70)

with the condition Bµ(t = 0, x) = Aµ(x). The positive flow time field strength Gµν
is

Gµν = ∂µBν(t, x)− ∂νBµ(t, x) + [Bµ(t, x), Bν(t, x)] (1.71)
and the covariant derivative of the flowed field is

DνGνµ(t, x) = ∂νGνµ + [Bν(t, x), Gν,µ(t, x)] . (1.72)

An important property of the gradient flow is that correlation functions of the
Bµ(t, x) fields are ultraviolet finite for flow times t > 0 [70]; this is due to the fact
that the diffusion in t introduces a natural regulator in the theory.

The next step concerns the definition of the correct operator at nonzero flow-time
t: in particular we have that a generic local operator Õ(t, x) of the flowed fields
Bµ(t, x) can be written in the small-t limit as

Õ(t, x) ∼
∑
i

ci(t)ORi (x)

where the ORi (x) are the renormalized operators in the t = 0 original gauge theory
and the ci(t) are coefficients that are calculable in perturbation theory. Two such
operators are

Ũµν(t, x) = Gaµρ(t, x)Gaνρ(t, x)− 1
4δµνG

a
ρσ(t, x)Gaρσ(t, x) (1.73)

Ẽ(t, x) = 1
4G

a
µν(t, x)Gaµν(t, x) (1.74)

which are UV finite for t > 0. Most importantly they can be expanded in terms of
renormalized local operators of increasing dimensions; namely we have

Ũµν(t, x) = αŨ (t)
(
TRµν(x)− 1

4δµνT
R
ρρ(x)

)
+O(t) (1.75)

Ẽ(t, x) = 〈Ẽ(t, x)〉0 + αẼ(t)TRρρ(x) +O(t) (1.76)
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where TRµν is the renormalized energy-momentum tensor in the original gauge theory,
the higher-dimensions operators are suppressed for small flow time t and the expan-
sion coefficients αŨ (t) and αẼ(t) can be computed perturbatively (see ref. [72]). We
can then rearrange eqs. (1.75) and (1.76) so that we can finally define a consistent
energy-momentum tensor at finite t

Tµν(x, t) = 1
αŨ (t) Ũµν(t, x) + δµν

4αẼ(t)
(
Ẽ(t, x)− 〈Ẽ(t, x)〉0

)
(1.77)

which has the desired property

TRµν = lim
t→0

Tµν(x, t). (1.78)

Since Tµν(x, t) is UV-finite and does not depend on the regularization scheme, it can
be computed on the lattice. The actual computation follows this procedure: firstly
the gauge configurations are created on the lattice, then the gradient flow equations
are solved up to flow times in the window a�

√
8t� T−1 or Λ−1

QCD. These values of
t are chosen as to suppress finite lattice spacing, finite volume and nonperturbative
corrections, respectively. The operators of eqs. (1.75)-(1.76) are constructed and
evaluated on the flowed field configurations and finally the extrapolations first to
a→ 0 and then to t→ 0 are performed.

The thermal observables can be easily extracted from the renormalized energy-
momentum tensor: for example the trace anomaly (1.42) is

∆(T ) = ε− 3p = −〈TRµµ(x)〉 (1.79)

and the entropy density (1.40) times the temperature is

sT = ε+ p = −〈TR00(x)〉+ 1
3

3∑
i=1
〈TRii (x)〉 (1.80)

where the expectation value includes also the average over all lattice sites x.

1.4 A review of lattice results for the equation of state
Nowadays several research groups are continuously improving the results for the

equation of state not only in QCD, but in a variety of QCD-like theories too. A lot
of attention is still focused on results from the pure gauge sector, which is the object
of high-precision studies that are able to reach increasingly high temperatures well
above Tc. The large scale study of ref. [6] presented results with small errors for the
SU(3) theory equilibrium thermodynamics on very large set of temperatures, thus
improving considerably from the seminal work of ref. [4]; data for the trace anomaly
is presented in fig. 1.2.

In this work the integral method [36] was used to compute the pressure; the
only difference with respect to the usual methodology is in the way the trace of
the energy-momentum is computed. Instead of simply computing the plaquette
difference of eq. (1.48), one takes(∆(T )

T 4 − 1
16

∆(T/2)
(T/2)4

)
+
( 1

16
∆(T/2)−∆(0)

(T/2)4

)
(1.81)
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Figure 1.2: Results for the trace of the energy-momentum tensor in units of T 4 from
ref. [6] computed with a variant of the integral method (see section 1.3.1). The yellow
solid line represents the continuum extrapolation, the violet dash-dotted line indicates older
results of ref. [4]; the complete set of results goes up to temperatures T ∼ 1000Tc.

in which the term on the left is computed at a certain β on (2Ns)3 × Nt and
(2Ns)3 × 2Nt lattices, respectively; the term on the right is computed instead on
N3
s × Nt and N4

s lattices at another β′, such that the lattice spacing is twice the
one associated with β. In this way the physical spatial volume is always the same
in all simulations: the reason for this methodology lies in the fact that the trace
anomaly depends on the volume in the vicinity of Tc and in this way one can avoid
simulating enormous lattices of size (2Ns)4 at zero temperature.

More recently, a new determination in a slightly smaller temperature range has
been presented in ref. [7] using shifted boundary conditions (see section 1.3.3), again
with high accuracy; the results are presented in fig. 1.3.

We note that these two calculations agree quite well with each other with a notable
exception: in the region corresponding to the peak in the trace anomaly a relevant
discrepancy can be observed, as well represented in fig. 1.4; similar discrepancies
are also present in related equilibrium observables such as pressure, energy density
and entropy density. Here, the Padè interpolation of results obtained with shifted
boundary conditions (green line) agrees well with the well-known determination of
ref. [4] but not with the more recent one of ref. [6].

While we will not attempt in this section a thorough discussion on the reason
underlying this non-negligible disagreement, we merely observe that the determina-
tion of the SU(3) equation of state, albeit not strictly an open problem anymore,
may still be subject to some systematic errors which, in turn, might depend on the
methodology used to compute it. Thus, we stress the fact that the equation of state
of the SU(3) pure gauge theory is a perfect benchmark for any new proposals of
methods for the computation of thermodynamic equilibrium observables: indeed,
it could also be used to understand if potential systematics are present in other
methods. We will return on the thermodynamics of the SU(3) Yang-Mills theory in
chapter 5, where a novel determination of the equation of state, performed with a
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Figure 1.3: Continuum-extrapolated results for the trace anomaly ∆/T 4 (black points)
obtained in ref. [7] using shifted boundary conditions (see section 1.3.3). Results are available
up to T ∼ 250Tc.

Figure 1.4: Continuum-extrapolated results in the Tc < T < 1.3Tc region for the trace of
the energy-momentum tensor ∆/T 4 obtained in ref. [6] (red points), ref. [7] (black points)
and ref. [4] (blue line). Image taken from ref. [76].

method based on nonequilibrium transformations, will be presented.
Finally, we would like to mention some cutting-edge results in the computation

of the equation of state for full QCD, with 2+1 and 2+1+1 dynamical quark flavors
such as the work of ref. [77] and ref. [78], the latter of which is also reported in
fig. 1.5.

Enormous progress has been achieved in the last 20 years, both in terms of
computational power and of algorithmic advancements: this has led to an incredible
push to overcome apparently insurmountable obstacles, such as the inclusion of the
charm quark as a dynamical degree of freedom in the simulations. We refer to the
respective papers for a thorough discussion of statistical errors, systematic effects
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(a) Trace anomaly (b) Pressure

Figure 1.5: Lattice results of the equation of state in QCD with 2+1+1 quark flavors
from ref. [78], along with a comparison with the prediction of hard thermal loop (HTL)
resummed perturbation theory. Left: results for the trace of the energy-momentum tensor
in units of T 4 for 2+1 (green dots) and 2+1+1 (black dots) dynamical quark flavors and
the HTL prediction (blue line), up to temperatures of T ∼ 1000 MeV. Right: same as left
figure, but presenting results for the pressure p in units of the temperature to the fourth;
the arrows on the right side indicate the Stefan-Boltzmann limit.

and comparison with hard thermal loop (HTL) predictions.





Chapter 2

Hagedorn spectrum in the SU(2)
and SU(3) gauge theories

Numerical simulations on the lattice have proven to be an invaluable tool in the
investigation of the thermodynamic properties of strongly-interacting theories: recent
results of the last decade reached a high degree of precision, allowing for accurate
comparisons with other approaches, such as phenomenological models and effective
theories. In particular, the determination of the equation of state provides precious
information on several aspects of the theory under analysis: the study presented
in this chapter, based on the work of refs. [11, 12], will show how recent progress
for the thermodynamics of pure gauge SU(2) and SU(3) theories in the confining
phase is a perfect tool for the investigation of the glueball spectrum for large masses.
Indeed, the numerical results will be described through the use of a non-interacting
glueball gas, provided that, in addition to the glueball spectrum computed on the
lattice, the heavier states are included with the use of a string-inspired Hagedorn
spectrum.

This approach has actually a very long history, since its roots must be searched in
the work of R. Hagedorn in the ’60s: in the first part of this chapter, contained in sec-
tion 2.1, we will review the original statistical bootstrap model and its more modern
counterpart, the hadron resonance gas (HRG) model. In particular section 2.1.2 will
be devoted to a short review of recent comparisons of HRG model predictions with
cutting-edge lattice results. The second part of this chapter will be entirely focused
on the work of ref. [11] with several in-depth analyses of many different aspects of
this study. Firstly, in section 2.2.1, we will review the scale setting computation
for the SU(2) pure gauge theory, which serves as a preliminary work needed also
for the accurate determination of the temperatures; then the numerical results
from nonzero temperature lattice simulations will be presented in section 2.2.2. In
section 2.2.3 we will analyse the description of Yang-Mills thermodynamics in terms
of a non-interacting glueball gas, comparing analogies and differences with respect
to the HRG model. Then the string-inspired model needed for the glueball spectrum
will be reviewed (also from a historical point of view) in sections 2.2.4 and 2.2.5 and
used to describe the thermodynamics of SU(2) in the vicinity of the deconfinement
transition. Eventually, in section 2.2.6 the results for the SU(2) and SU(3) gauge
theories will be compared and the full predictive power of the model will be tested.

29
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The last part of this chapter (section 2.3) will be focused on the excluded-volume
approach for the study of Yang-Mills thermodynamics, presented in ref. [12], which
represents an alternative approach for an high-precision description of the lattice
results of the equation of state.

2.1 Statistical bootstrap and the HRG model
Before the advent of the quark model and, later, of quantum chromodynamics,

a truly novel approach for the description of the strong interaction was proposed
by the German physicist R. Hagedorn more than 50 years ago [13, 79–82]; a recent
review of the most important results by Hagedorn can be found in ref. [83]. His
model was introduced to provide a quantitative description of the production of
the huge number of heavy hadronic particles that were first observed in particle
accelerators during the ’50s and ’60s. The basic idea was extremely simple: any of
the heavy hadrons is nothing but a resonant particle of lighter particles, which in
turn were composed of even lighter particles, until one reaches the lightest one, i.e.
the pion. This is best explained by Hagedorn himself in his famous words [13]

“a fireball consists of fireballs, which in turn consist of fireballs, and so
on...”

The concept that Hagedorn had in mind can be tackled in a quantitative way by
first analyzing a similar mathematical problem, namely looking at how many ways
can be used to partition an integer number n into ordered partitions. Paraphrasing
Hagedorn, we want to think of “large integers, made of smaller integers...”; indeed, a
way of solving this basic problem can be found in a recursive way:

ρ(n) = δ(n− 1) +
n∑
k=2

1
k!

k∏
i=1

ρ(ni) δ
(∑

i

ni − n
)

this goes by the name of bootstrap equation and immediately shows the idea of
self-similarity, i.e. how the structure of ρ(n) is explained by ρ(n) itself.

The physical system Hagedorn wanted to describe was one with lighter particles
in motion and with a total energy that corresponds to the mass of the heavy particle.
The bootstrap equation for a particle of mass m in this case becomes

ρ(m,V0) = δ(m−m0) +
∑
N

1
N !

(
V0

(2π)3

)N−1 ∫ N∏
i=1

dmi d3pi ρ(mi) δ
(∑

i

pi − p
)

(2.1)
that is the basis of the statistical bootstrap model. V0 is the “composition volume”,
that indicates the intrinsic range of strong interactions. The statistical bootstrap
equation was solved analytically shortly afterwards by Nahm [84], giving

ρ(m,V0) ∼ m−3em/TH (2.2)

which highlights the typical exponential-like behaviour that will be ubiquitous
throughout this chapter. The TH parameter is the well-known Hagedorn temperature,
given by

V0T
3
H

2π2

(
m0
TH

)2
K2

(
m0
TH

)
= 2 ln 2− 1 (2.3)
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where K2 is a modified Bessel function of the second kind of index 2; we will analyze
the physical meaning of TH later in this section. Let us simply add that if V0 scales
like the inverse of the pion mass, namely V0 ' 4π/(3m3

π), then an approximate
estimate of the Hagedorn temperature is TH ' 150 MeV.

The self-similar picture painted by the statistical bootstrap model implies that
the spectrum of hadronic particles is composed by heavier and heavier states, whose
number grows exponentially with the mass and is approximately given by the
density ρ(m,V0). This peculiar behaviour has clearly huge implications in the
thermodynamics of strong interacting particles: in order to see this we consider a
gas of identical scalar particles of mass m, whose grand partition function is

Z(T, V ) =
∑
N

1
N !

[
V

(2π)3

∫
d3p e−

√
p2+m2/T

]N
that after some manipulation becomes

lnZ(T, V ) = V Tm2

2π2 K2

(
m

T

)
;

note that V is the physical volume and is not to be confused with V0. The next
crucial step is to consider a gas of hadronic resonances of mass mi, in which
all the interactions are included in processes of resonance formation: this means
approximating a strongly-interacting gas with a non-interacting gas that contains
all possible hadronic species of a certain mass m with the respective degeneracies. If
we put this consideration in a more mathematical form we have that

lnZTOT(T, V ) =
∑
i

ρ(mi) lnZi(T, V ) =
∑
i

V Tm2
i

2π2 ρ(mi)K2

(
mi

T

)
(2.4)

where the index i represents a specific hadronic mass. The weight ρ(mi) indicates
how many resonance states of mass mi exist and it is here where the statistical
bootstrap model enters. Indeed, if we start from eq. (2.2), then we approximate the
modified Bessel function with

K2

(
m

T

)
∼

√
T

m
e−m/T

and finally we replace the sum
∑
i of eq. (2.4) with an integral, we will have at the

end the following partition function

lnZTOT(T, V ) =V T

2π2

∫
dmm2ρ(m)K2

(
m

T

)
∼V T 3/2

∫
dmm−3/2 exp

(
m

TH
− m

T

)
. (2.5)

This grand partition function is clearly divergent for T → TH: in the original
interpretation of Hagedorn, TH was a limiting temperature dictated by the strong
interaction. The physical meaning of this apparent behaviour lies in the fact that
the average energy of the constituents of the resonance gas (i.e., the ratio between
the energy density and the number of constituents) does not increase with T . This is
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because the increase in energy is not used to increase the momenta of the constituents,
but the number of species instead.

However, this interpretation of the Hagedorn temperature has been surpassed at
the beginning of the ’70s after the advent of QCD as the theory of strong interactions:
indeed, TH is not anymore a limiting temperature, but it signals the presence of a
phase transition instead. In ref. [85] N. Cabibbo and G. Parisi proposed a generalized
version of the statistical bootstrap model, in which the solution of eq. (2.1) was
slightly different, namely

ρ(m,V0) ∼ mα−3em/TH ;

indeed, they showed that at TH the model has a second order phase transition
for α < 1. For temperatures higher than TH, the thermodynamic quantities still
have finite values, but the physical representation provided by eq. (2.5) is not
valid anymore. Indeed, nowadays we have solid evidence that at extremely high
temperatures or densities a new state of matter, usually denoted as quark-gluon
plasma, appears. This does not mean that the model elaborated by Hagedorn has
been forgotten though: it will be shown in section 2.1.1 that the original intuition
has been recovered and reformulated, albeit in a somewhat different manner, in the
form of the hadron resonance gas model.

2.1.1 The hadron resonance gas model

In the previous paragraphs we have seen how the statistical bootstrap model
had great influence in the description of the hadronic state of matter in the ’60s, but
was substantially obsolete by the time QCD was established as the correct theory
of strong interactions. However, in the last decades great advancements in the
nonperturbative computation of the QCD equation of state on the lattice produced
high-precision results for a variety of thermodynamic quantities and in general for
the phase diagram of strongly-interacting matter. This provided an opportunity to
bring the original intuition of Hagedorn alive again, since the resonance gas allows for
a simple and solid framework that can be compared to lattice data in the confining
phase and even used to describe them. This more modern approach, which in the
literature goes by the name of hadron resonance gas (HRG) model, is somewhat
different from the statistical bootstrap model, since there is no need of a density of
states as the one of eq. (2.2) to describe most of the hadronic resonance spectrum. In
fact, since thousands of mesonic and baryonic resonances have been discovered and
studied with great detail in multiple particle accelerator experiments, their masses
are well known and their single contribution to thermodynamic quantities can be
computed exactly. Still, the original approach of considering a non-interacting gas
of hadrons is intact and it has been used with great success to describe numerical
lattice results obtained from first principles.

As in the idea of Hagedorn (see eq. (2.4)), the pressure of the HRG model
can be written as a sum of independent contributions from non-interacting hadron
resonances:

pHRG(T ) =
∑

M∈mesons
pM (T, V, µXa ,mM ) +

∑
B∈baryons

pB(T, V, µXa ,mB) (2.6)

where in principle one takes into account not only the contribution of mesons and
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baryons, but also from other states such as glueballs, tetraquarks and further exotic
resonances. In particular, the pressure of a meson M or of a baryon B is

pM,B(T, V, µXa ,mM,B) = T

V
logZM,B(T, V, µXa ,mM,B). (2.7)

The partition function of a single non-interacting particle i can be written in d = 3
spatial dimensions as

logZi(T, V, µXa ,mi) = V gi ηi
2π2

∫ ∞
0

dp p2 log
(
1 + ηizie

−Ei/T
)

(2.8)

where V is the volume of the system and T its temperature, mi is the mass of the
particle i, gi its degeneracy factor and ηi distinguishes between mesons (bosons,
η = −1) and baryons (fermions, η = 1). Ei is the energy of the species i

Ei =
√
m2
i + p2

and zi its fugacity
zi = exp

(∑
aX

a
i µXa

T

)
; (2.9)

Xa
i represent all the possible conserved charges associated to the species i, including

baryon number B, electric charge Q and strangeness S and µXa represents the
respective chemical potential. The resulting prediction for the pressure (eq. (2.6))
has a direct dependence only on the temperature T and on the chemical potential
µXa associated to the conserved charge Xa.

2.1.2 Comparison with lattice data

The HRG model has been very successful in describing thermodynamic quantities
in the confining regime, as reported in a variety of papers in the last few decades [86–
91]. The values for the masses of hadron states and resonances are taken from the
experimental results (i.e. from the particle data group) and hundreds of hadron
resonances are usually included in the total prediction. The exact number depends
on the mass cut, that is the threshold above which no further resonances are taken
into account in the HRG prediction and that is usually put at very high energies.

Very recent comparisons between high-precision data for the equation of state of
QCD with dynamical quarks and the HRG model include those in refs. [77, 92]. In
fig. 2.1 two different determinations of the equation of state for 2+1 quark flavors
are presented along with the prediction of the HRG model: excellent agreement is
found up to very high temperatures of the order of the pseudo-critical temperature
Tc ∼ 155 MeV. For the determination of ref. [77] all states below 2.5 GeV were
included.

We also mention that in recent years the hadron resonance gas model has been
used successfully for precision studies of the fluctuation of conserved charges in
the hot QCD matter. We refer to refs. [89, 93–96] for more details and recent
advancements.

The excellent agreement between lattice results and the resonance gas on a variety
of thermodynamic observables provides clear evidence that hadronic resonances are
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(a) Wuppertal-Budapest collaboration [92] (b) HotQCD collaboration [77]

Figure 2.1: Comparison between the lattice results of the equation of state in QCD
with 2+1 quark flavors and the hadron resonance gas (HRG) model prediction by two
different collaborations. Left: results for the pressure in units of T 4 (blue band) and the
HRG prediction (dashed line) from ref. [92]. Right: results for pressure p (red band),
energy density ε (blue band) and entropy density s (green band), with the respective HRG
predictions (solid lines), from ref. [77].

essential degrees of freedom near the deconfinement phase transition. On the other
hand, it is an excellent question to ask if lattice results can give any hints on the
composition of the high-lying hadronic states of the spectrum when compared with
the HRG model prediction. Indeed, several papers (see for example refs. [97–102])
already put forward the possibility of including the contribution of still undiscovered
states (which can be non-negligible very close to Tc) via an interpolation of high-
precision lattice results. We also point out the work of refs. [103, 104] on the value
of TH in QCD.

As we will see in the section 2.2, a similar analysis, albeit on a larger scale, can
be done for the pure gauge theory with no quarks: in this case the spectrum of the
relevant states in the confining phase (i.e. glueballs) is much less known than the
mesonic or baryonic one. In such case the original idea of a Hagedorn spectrum will
be derived from a string model perspective and extensively used in the comparison
with lattice data.

2.1.3 Ideal relativistic Bose and Fermi gases

We end this section by briefly reviewing the computation of thermodynamic
quantities in the framework of an ideal relativistic Bose or Fermi gas, which are
crucial in calculating HRG predictions and which will be extensively used later in
this chapter. We start by considering the partition function Z of an ideal relativistic
Bose or Fermi gas in d spatial dimensions

logZ = V g η
Ωd

(2π)d
∫ ∞

0
dp pd−1 log

(
1 + ηe−

√
m2+p2/T

)
(2.10)

where as before η = −1 for bosons and η = +1 for fermions, m is the mass of the
bosonic/fermionic particle, g is its degeneracy factor and Ωd is the d−dimensional
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solid angle

Ωd = 2π
d
2

Γ
(
d
2

) (2.11)

and for simplicity the fugacity has been set to 1. Integrating by parts and expanding
using the geometric series yields

logZ = V g η

d T

Ωd

(2π)d
∞∑
n=1

∫ ∞
0

dp pd+1√
m2 + p2 (−η)ne−n

√
m2+p2/T

and setting cosh u =
√

1 + p2

m2 gives

logZ = md+1 V g

d T

Ωd

(2π)d
∞∑
n=1

∫ ∞
0

du (−η)n+1 exp
(
−nm

T
cosh u

)
sinhd+1 u

= 2V g
T

(
m2

2π

) d+1
2 ∞∑

n=1

(
T

nm

) d+1
2

(−η)n+1K d+1
2

(
n
m

T

)
(2.12)

where Kν(z) is the modified Bessel function of the second kind of index ν = d+1
2

and argument z = nmT :

Kν(z) =
√
π
(
z
2
)ν

Γ(ν + 1/2)

∫ ∞
0

du e−z coshu sinh2ν u. (2.13)

The pressure p can now be calculated: from eq. (1.39) we have

p = T

V
logZ = 2g

(
m2

2π

) d+1
2 ∞∑

n=1

(
T

nm

) d+1
2

(−η)n+1K d+1
2

(
n
m

T

)
(2.14)

while for the (internal) energy density ε of eq. (1.41) we have

ε = T 2

V

∂ logZ
∂T

= d · p+ 2g
(
m2

2π

) d+1
2 ∞∑

n=1

(
T

nm

) d−1
2

(−η)n+1K d−1
2

(
n
m

T

)
(2.15)

obtained using the property

∂Kν(z)
∂z

= −Kν−1(z)− ν

z
Kν(z). (2.16)

The trace of the energy-momentum tensor ∆ (see eq. (1.42)) can then be easily
written as

∆ = ε− d · p = 2g
(
m2

2π

) d+1
2 ∞∑

n=1

(
T

nm

) d−1
2

(−η)n+1K d−1
2

(
n
m

T

)
(2.17)

and remarkably the trace ∆ in d dimension is related to the pressure in d − 2
dimensions via

∆d = m2

2π pd−2. (2.18)
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Using an asymptotic expansion of the functions Kν , which is valid for large z we
have that

Kν(z) '
√
π

2z e
−z
[
1 + 4ν2 − 1

8z +O

( 1
z2

)]
(2.19)

and the pressure p and the trace anomaly ∆ become respectively

p = Tg

(
T m

2π

) d
2
∞∑
n=1

(−η)n+1

n
d
2 +1

exp
(
−nm

T

)[
1 + d(d+ 2)

8n
T

m
+O

(
T 2

n2m2

)]
(2.20)

and

∆ = mg

(
T m

2π

) d
2
∞∑
n=1

(−η)n+1

n
d
2

exp
(
−nm

T

)[
1 + d(d− 2)

8n
T

m
+O

(
T 2

n2m2

)]
.

(2.21)

2.2 The SU(2) and SU(3) equation of state in the confin-
ing regime

The study via lattice simulations of the equation of state of SU(N) pure gauge
theories (both in D = 2 + 1 and 3 + 1 spacetime dimensions) has been the object
of several works in recent years [5, 6, 9–12, 105, 106], also for what concerns the
investigation of the confining phase. In particular in its seminal paper [5] Meyer
provided the first consistent description of thermodynamic observables of the SU(3)
pure gauge theory in proximity to Tc in terms of a gas of glueball with a string-
inspired Hagedorn spectrum. This kind of approach was very successful and indeed
it was followed and expanded by further studies: in particular the work of ref. [9]
examined the thermodynamics of SU(N) theories (with N = 2, 3, 4, 6) in D = 2 + 1
dimensions, showing once again the efficacy in describing the equation of state of
several gauge models within this simple framework.

In this section we will analyse the recent work of ref. [11] which focuses on the
SU(2) and SU(3) gauge theories in 3 + 1 dimensions. It is of the utmost importance
to stress that this work is not simply meant as a refinement of the original analysis by
Meyer: in fact, even if the analysis of the N = 3 case is a crucial and essential part of
this work, the most important aspect is devoted to the comparison with the N = 2
Yang-Mills theory. Indeed the theory with SU(2) gauge symmetry presents some
crucial properties which are instrumental when using a string-inspired Hagedorn
spectrum to describe its thermodynamics, as it will be shown in detail later. In
particular, since the representations of the SU(2) group are (pseudo-)real, only
glueball states with charge-conjugation quantum number C = +1 exist; on the other
hand SU(3) allows also C = −1 states: this will have crucial repercussions in the
proximity of the transition. Moreover, the deconfinement transition itself is first
order for SU(3), while it is second order for SU(2): again, this will significantly
change the estimate of the Hagedorn temperature TH, that is a crucial parameter of
the model.
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2.2.1 Setting the scale

As already mentioned in section 1.2.3, knowing the precise physical value of the
lattice spacing a (in units of some physical quantity) used in Monte Carlo simulations
is of the utmost importance: in particular for nonzero temperature calculations, it
allows for an accurate scan of the temperatures simulated on the lattice. The spacing
a can be computed in different ways: one possibility is to do so non-perturbatively
via the interquark potential V (r), which can be computed on the lattice using

V (r) = − 1
Lt

lnG(r); (2.22)

where Lt = aNt is the physical extent of the compactified (“temporal”) dimension
and G(r) is the Polyakov loop correlator, as defined in eq. (1.26). A physical quantity
which can be used to link a to its value in physical units is the string tension σ: it
can be extracted via a fit of the potential V (r) using the following functional form:

aV (r) = aσr + aV0 −
πa

12r (2.23)

where the string tension σ is the coefficient of the linear term in r and the aV0 term is
an additive constant which takes into account an overall renormalization. Eq. (2.23)
is in the form of the phenomenological Cornell potential [107] (that is, V ∼ σr+α/r),
but it is actually justified by a slightly more modern approach. Indeed, the interquark
potential can be described in the framework of the effective string theory for the flux
tube and in particular in an expansion in the low-energy, long-string limit. It was
realized long ago [108] that the coefficient of the 1/r term, which is usually denoted
in the literature as the “Lüscher term”, is fixed unambiguously by the transverse
fluctuations of the flux tube. Further terms in the 1/r expansion can be fixed using
the underlying symmetries of the effective string action (see for example [109, 110]).

Another way which can be pursued to set the scale and which is more appropriate
for intermediate distances (as opposed to the potential V , which requires larger
interquark distances r) was introduced in ref. [111] and extensively applied in
ref. [112] for the SU(3) Yang-Mills theory. This method is based on the calculation
of the interquark force F (r), which at finite lattice spacing it is defined as

F (rI) = V (r)− V (r − a)
a

(2.24)

in which rI is an improved distance chosen such that the force of eq. (2.24) corresponds
to the one in the continuum at tree level; for further details on the computation of
rI we refer to ref. [112], in which the methods of ref. [113] were generalized to three
dimensions. In order to connect the spacing a we need a new scale that is directly
related to the interquark force. In the literature two such possibilities have been
proposed and extensively used, these being the length scales r0 and r1, which are
defined as

r2
0F (r0) = 1.65 (2.25)

and
r2

1F (r1) = 1. (2.26)
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The limit of large r which was needed for the computation of σ is not necessary
anymore, and this makes this method a viable possibility for the scale setting in
QCD with dynamical quarks, where string breaking hampers the computation of σ.

In ref. [11] the string tension σ was used to set the scale. The interquark potential
V (r) was computed from Polyakov loop correlators on lattices with Lt = 32a up to
distances of r = 16a, using the improved distances rI of ref. [112]. The results of the
fit for simulations performed with several values of the Wilson parameter β = 4/g2

are presented in table 2.1 and showed on fig. 2.2 along with lattice data.

Table 2.1: Results for the string tension (in units of the inverse squared lattice spacing,
third column) σa2 at different values of the inverse coupling β = 4/g2 (first column),
calculated in ref. [11] by fitting the quark-antiquark potential V (r) as a function of the
tree-level improved interquark distance rI [112] to eq. (2.23). The potential was extracted
from Polyakov loop correlators on lattices of temporal extent Lt = 32a. The minimal
distances (reported in the second column, in units of a) for the fits to eq. (2.23) follow the
prescription r

√
σ > 1. The “perimeter-like” term aV0 (fourth column) and the χ2

red values
of the fit (fifth column) are also reported.

β rmin/a σa2 aV0 χ2
red

2.27 2.889 0.157(8) 0.626(14) 0.6
2.30 2.889 0.131(4) 0.627(30) 0.1
2.32 3.922 0.115(6) 0.627(32) 2.3
2.35 3.922 0.095(3) 0.623(20) 0.2
2.37 3.922 0.083(3) 0.621(18) 1.0
2.40 4.942 0.068(1) 0.617(10) 1.4
2.42 4.942 0.0593(4) 0.613(5) 0.1
2.45 4.942 0.0482(2) 0.608(4) 0.4
2.47 4.942 0.0420(4) 0.604(5) 0.3
2.50 5.954 0.0341(2) 0.599(2) 0.1
2.55 6.963 0.0243(13) 0.587(11) 0.2
2.60 7.967 0.0175(16) 0.575(16) 0.3

Finally, in order to accurately set the scale in a non-perturbative way, one needs
an appropriate functional form which relates the string tension (in units of the
inverse lattice spacing squared) and the Wilson parameter β. In the work performed
in ref. [11], the interpolation of the values of the logarithm of σa2 was done using a
cubic polynomial fit. Namely, following ref. [112], the functional form

log(σa2) =
npar−1∑
j=0

aj(β − β0)j (2.27)

was used, where npar = 4 represents the number of free parameters to be determined
from the fit and β0 = 2.4. The resulting parameters are a0 = −2.68, a1 = −6.82,
a2 = −1.90 and a3 = 9.96 respectively, while the reduced χ2 of the fit yields
χ2
red = 0.01; the final scale setting function is represented in fig. 2.3 along with the

lattice results for σa2. We recall that eq. (2.27) is not the only possibility, as other
functional forms, such as that proposed in ref. [114], have been used in the past. Now,
using the scale setting relation of eq. (2.27) we are able to give a correct estimate of
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Figure 2.2: Results for the interquark potential computed in ref. [11] are showed for
different values of the improved distance rI and for several values of the Wilson parameter
β (different colors). The corresponding fits to the functional form of eq. (2.23) are also
presented.

the lattice spacing a in units of
√
σ; thus we can also express the temperature as

T√
σ

= 1
a
√
σNt

(2.28)

and change the lattice spacing to tune T with great accuracy.

2.2.2 Numerical results for the SU(2) equation of state

Most of the computational effort of ref. [11] was devoted to the non-perturbative
computation of the equation of state in the confining region of the SU(2) pure
gauge theory. In order to do so, the integral method (for more details we refer to
section 1.3.1) was used: the primary observable is the trace of the energy-momentum
tensor (eq. (1.48) which is computed starting from plaquette expectation values at
finite and zero temperature at the same value of the lattice spacing. A comprehensive
review of the details of the runs performed for the studies of ref. [11] and ref. [12] is
presented in table 2.2.

In order to express the results in terms of the temperature in units of the critical
(deconfinement) temperature, the value

Tc√
σ

= 0.7091(36) (2.29)

computed in ref. [115] was used.
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Figure 2.3: Values of the string tension in lattice units obtained in ref. [11] (red circles)
are showed along with those reported in ref. [115] (blue squares). The solid black curve
represents the interpolation to the functional form of eq. (2.27); associated uncertainties are
shown by the dashed black lines.
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Table 2.2: Setup of lattice simulations performed in ref. [11] and ref. [12]. Nonzero-
temperature plaquette expectation values are evaluated on lattices of sizes Nt ×N3

s (first
two columns), while those at T = 0 are obtained from simulations on lattices of sizes Ñ4

(third column), at the same β values. This is done for nβ (fourth column) values of the
inverse coupling β, in the interval reported in the fifth column. The total number of the
thermalized configurations created in these runs is reported in the last two columns. The
sample measured at Nt = 5, 6, 8 has been used in ref. [11], while Nt = 7, 10 and additional
Nt = 8 results have been presented in ref. [12].

Nt Ns Ñ nβ β range nconf at finite T nconf at T = 0
5 60 32 17 [2.25, 2.3725] 1.5× 105 1.5× 105

6 72 40 25 [2.3059, 2.431] 1.5× 105 1.5× 105

7 80 40 12 [2.38, 2.476] 1.5× 105 105

8 80 40 14 [2.42, 2.516] 1.5× 105 105

10 96 40 12 [2.51, 2.58] 6× 104 105

The results for the trace of the energy-momentum tensor at finite lattice spacing
for temporal sizes Nt = 5, 6, 7, 8, 10 in the low-temperature confined phase are showed
in fig. 2.4.
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Figure 2.4: Complete lattice results for the trace of the energy-momentum tensor in the
SU(2) Yang-Mills theory in units of T 4 from simulations with Nt = 5, 6, 8 from ref. [11] and
Nt = 7, 10 (plus further Nt = 8) results from ref. [12].

2.2.3 The glueball gas prediction

The hadron resonance gas model has been widely successful in describing several
thermodynamic observables computed non-perturbatively on the lattice, as reviewed
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in section 2.1 in some detail. Thus, it is reasonable to think that a similar kind of
approach applies for pure gauge theories, albeit with a completely different spectrum
and at different temperatures. Since no mesons or baryons are present in Yang-Mills
theory, the only states contributing to the thermodynamics of the confining phase are
the so-called glueballs. As in the case of the HRG model for mesons and baryons, we
are under the assumption that such states are weakly interacting with each other and
so we will examine the case of a non-interacting gas of glueballs: this consideration
is supported by both theoretical [116] and experimental [117] arguments. A possible
generalization of this approach that includes some sort of interaction between glueball
states has been proposed in ref. [12] and it will be discussed in section 2.3.

From an experimental point of view, the search for glueballs is still an open issue
and these states remain elusive: thus, there is no experimental input for their masses,
in contrast to what happens for the rich hadronic spectrum of full QCD. However,
the very existence of glueball states is a typical non-perturbative prediction of QCD
and indeed the glueball spectrum can and has been studied on the lattice with
great detail for decades. Recent computations in unquenched QCD include those
performed in refs. [118–120]. The masses computed from Monte Carlo simulations
will be used as an input for the prediction of a non-interacting glueball gas described
in terms of a free relativistic Bose gas (see section 2.1.3).

In practice, taking eqs. (2.14) and (2.17) and setting d = 3 we can write down
the pressure as

p = m2T 2

2π2

∞∑
n=1

1
n2K2

(
nm

T

)
(2.30)

and the trace of the energy-momentum tensor as

∆ = m3T

2π2

∞∑
n=1

1
n
K1

(
nm

T

)
. (2.31)

Using eq. (2.19) and rewriting p and ∆ adimensionally in units of T 4 we have that

p

T 4 =
(
m

2πT

)3/2 ∞∑
n=1

1
n5/2 exp

(
−nm
T

)[
1 + 15T

8nm +O
(

T 2

n2m2

)]
(2.32)

and

∆
T 4 = m

T

(
m

2πT

)3/2 ∞∑
n=1

1
n3/2 exp

(
−nm
T

)[
1 + 3T

8nm +O
(

T 2

n2m2

)]
; (2.33)

we observe that the expansion in T/m is justified by the fact that for SU(N) theories
Tc � m0++ , that is, the glueball masses are much larger than any of the temperatures
of interest in the confining phase. We remark that the subleading terms of the sum
over the index n appearing in eqs. (2.32) and (2.33) are exponentially suppressed
and the series will be truncated accordingly.

The spectrum used to calculate the glueball gas prediction for the SU(2) pure
gauge theory is the one computed in ref. [121], which we report in table 2.3. The
prediction for the trace of the energy-momentum tensor ∆(T ) of the first, lightest
state with quantum numbers JPC = 0++, for temperatures in the range between
0.65Tc and Tc, is showed in fig. 2.5 (dotted line). If we include all the glueball states
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with masses smaller than 2m0++ , i.e. all the states below the so-called two-particle
threshold, the total contribution is the one showed with a dashed line in fig. 2.5. In
practice, the contribution to a certain quantity (in this case, ∆) is the sum of the
contribution of the single states, i.e.

∆(T )
T 4 =

∑
mi<mth

(2Ji + 1)∆(mi, T )
T 4 (2.34)

where Ji is the spin of the i-th glueball and 2Ji + 1 its spin degeneracy. In ref. [11]
the mass threshold was set to mth = 2m0++ : this somewhat arbitrary choice will be
discussed later in detail. Suffice it to say that including also the remaining states
of table 2.3 would induce a change in ∆(T ) that would be hardly relevant and
essentially negligible both at low (T � Tc) and high (T ∼ Tc) temperatures.

Table 2.3: SU(2) glueball spectrum com-
puted via lattice simulations in ref. [121].
Note the absence of C = −1 states.

JPC m/
√
σ

0++ 3.74(12)
2++ 5.62(26)
0−+ 6.53(56)
2−+ 7.46(50)
1++ 10.2(5)
3++ 9.0(7)

Table 2.4: SU(3) glueball spectrum below
the two-particle threshold, computed on the
lattice in ref. [122]. In this case, there is
no degeracy between C = +1 and C = −1
states.

JPC m/
√
σ

0++ 3.347(68)
0++∗ 6.26(16)
2++ 4.891(65)
2++∗ 6.54(22)
0−+ 5.11(14)
2−+ 6.32(11)
1+− 6.06(15)

From a qualitative analysis of the glueball gas prediction it emerges that this
phenomenological approach works rather well at relatively low temperatures, i.e.
around 0.7Tc, where the dominant contribution of the 0++ state can describe well
the lattice results. With the inclusion of the states below the two-particle threshold
the glueball gas prediction can be considered acceptable at higher temperatures,
up to T ∼ 0.8Tc. When approaching the transition, the glueball gas clearly fails to
properly account for the sudden increase in the value of the trace anomaly: this is
to be contrasted to what happens when the HRG model is used to describe QCD
thermodynamics up to temperatures very close to the pseudo-critical one (for details
see section 2.1.2). Still, we can observe how the contribution from the heavier states
included in the dashed line of fig. 2.5 becomes more and more relevant when the
temperature increases, when compared with the contribution of the lightest state
only, which is increasing very slowly. This is the first hint that we are missing the
contribution of heavy glueball states in our analysis, whose contribution could be
the dominant one when describing thermodynamic quantities up to Tc.

The crucial observation is that, for a gas of non-interacting bosons, observables
of interest like the pressure and the trace anomaly possess an exponentially-like
decreasing behaviour in m/T coming from the modified Bessel functions Kν . This
explains why including also the states computed on the lattice which are heavier
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Figure 2.5: Comparison between lattice results for the trace anomaly in SU(2) Yang-Mills
theory from simulations with Nt = 5, 6 and 8 of ref. [11] and the behavior expected for
a gas of non-interacting massive glueballs in the confining phase (T < Tc). The dotted
line corresponds to the contribution of the lightest state only, which has quantum numbers
JPC = 0++. The dashed line includes all the low-lying glueballs whose masses are smaller
than the threshold associated to the appearance of two 0++ glueballs (taken from [121]). The
solid line corresponds to the case in which we included also the contribution from high-lying
states, described by a bosonic string model. The trace of the energy-momentum tensor ∆ is
displayed in units of the fourth power of the temperature, and is plotted as a function of
T/Tc.

than the mass threshold 2m0++ (and that are not reported in tables 2.3 and 2.4)
have a negligible contribution to the equation of state: the reason lies in the fact that
there are simply too few of them to make an overall relevant contribution. Thus,
the only hope of describing the sharp increase in the lattice data for ∆(T ) is to have
a glueball spectrum in which the number of states increases exponentially with m.

This kind of spectra goes generally by the name of Hagedorn spectra, since they
are of the same form of the solution of the statistical bootstrap equation, eq. (2.2). As
we will see in the section 2.2.5, such a spectrum arises naturally if an effective string
theory for the flux tube is used to describe heavy glueball states. More generally, a
Hagedorn-like spectrum arises whenever (heavy) hadrons are described in terms of
long, thin and string-like color flux tubes: mesonic states are modeled in terms of
open bosonic strings while glueballs by closed bosonic strings. In section 2.2.4 we
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will briefly review previous attempts to describe the glueball spectrum using closed
string models.

2.2.4 Closed string models for glueballs

In the past there have been many attempts to describe the full glueball spectrum
with different phenomenological models: among the most relevant and successful
ones there are bag-type models [123, 124] and string-inspired models [125, 126]. In
this section we will briefly review a few qualitative aspects of the latter: in particular,
the original model [125] by Isgur and Paton aimed at modeling glueball states as
“rings of glue”, that is tubes of chromoelectric flux which close on themselves. Then,
such flux tubes can be described in terms of closed bosonic string states: more
precisely, each phononic configuration corresponds to a particular glueball state.

The starting point is a closed string of flux, that is a loop of fundamental color
flux, whose thickness is neglected: the glueball spectrum is obtained by finding its
energy eigenstates after quantization. If we take a circular flux string of radius ρ
and bare string tension σb, its bare energy is

Eb = 2πσbρ; (2.35)

fluctuations of the string are decomposed into phonons of frequency m/ρ, whose
contribution depends on their total number M

Ephonons = M

ρ
= 1
ρ

∑
m=2

m (n+
m + n−m) (2.36)

where n+
m and n−m are the number of phonons with angular momentum J = ±m

respectively. After renormalization the energy corresponding to left-moving and
right-moving modes can be written as

E(n+
m, n

−
m) = 2πρσ − 13

6ρ + 1
ρ

∑
m=2

m (n+
m + n−m) (2.37)

where the divergent contribution to vacuum energy has been partly absorbed in the
renormalized string tension σ and the rest makes up the second term of eq. (2.37).

The first correction to this approach concerns the finite width of the flux tube:
it is not a one-dimensional object but rather a tube of width of the order of 1/

√
σ.

This implies that phononic excitations for small closed string radii are suppressed:
one way to incorporate this in the model is by a “fudge factor” F (ρ) that multiplies
the energy contribution of the string excitations. Putting all together we have

EM (ρ) = 2πρσ + M + γ

ρ
F (ρ) (2.38)

where γ = −13/6, M is the total phonon number and in the original model F (ρ) =
1− e−fρ.

We recall that flux tubes (for N > 2) carry an arrow, that is they have an
orientation which indicates their charge conjugation number C: in the original model
these two sectors do not mix and thus the C = ±1 spectra are perfectly degenerate
(contrarily to what is observed in spectra computed on the lattice, see table 2.4).
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More recently, there have been some attempts at improving the original Isgur
and Paton model [126, 127] by including a set of modifications that is able to
replicate with good success the glueball spectrum computed on lattice (such as
that of table 2.4), in particular in D = 2 + 1 dimensions. Among the possible
generalizations of this model we mention: closed strings not in the fundamental
representation, an effective elasticity for the flux tube, a more elaborate suppression
of phonons at small distances (that is, a different fudge factor F (ρ)) and also mixing
mechanisms to split the C = ±1 degeneracy in the spectrum.

Crucially, the consequence which is most relevant for what concerns the high-lying
glueball spectrum (and thus, as we will see, thermodynamics) is the following: as
we will see, the string model indicates that there exist an infinite tower of radially
excited states of increasing mass for each phonon combination. In the next section
we will analyse how to extract a good description of the glueball density of states in
the framework of the Nambu-Gotō bosonic string action.

2.2.5 A Hagedorn spectrum from effective string theory

The starting point of the simple approach that has been used in ref. [11] (and,
previously, in refs. [5, 6, 9]) is the consideration that glueballs can be described, in
the limit of large masses, by the Nambu-Gotō action for closed bosonic strings. This
is not an arbitrary assumption, as the Nambu-Gotō action provides an excellent
approximation of the actual effective string action, up to small corrections in the long-
string limit; this has been confirmed by a large body of works in recent years [109,
110, 128–133].

In this context, the spectrum of closed bosonic strings in D spacetime dimensions
reads

m2 = 4πσ
(
N⊥L +N⊥R −

D − 2
12

)
(2.39)

where σ is the string tension, and N⊥L,R are integer numbers which account for the
contribution of left- and right-moving transverse excitations (“phonons”) along the
string. The −(D − 2)/12 term arises from the zero-point energy and it can be
neglected in the large masses limit. We recall also that N⊥L = N⊥R ≡ N⊥ for closed
strings.

A crucial aspect of the closed string spectrum is that the degeneracy of these
states is given by the number of partitions π(N⊥L,R) (similarly to what happens in
the original statistical bootstrap model, section 2.1). In our case, we have also to
generalize the number of partitions for excitations on D − 2 transverse directions,
which we denote by πD−2(N⊥L,R). For a pedagogical derivation of these results and
of string thermodynamics in general we refer to Chapter 22 of ref. [134]. In the
case of closed strings, the density of states is expressed through the product of the
partitions of left-moving and right-moving phonons:

ρD(N⊥L , N⊥R ) = πD−2(N⊥L )πD−2(N⊥R ) (2.40)

but, since N⊥L = N⊥R ≡ N⊥, we have

ρD(N⊥) =
[
πD−2(N⊥)

]2
. (2.41)
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Now, using the Hardy-Ramanujan asymptotic formula for πb(n) [135], suitably
generalized for b transverse directions

πb(n) '
√

1
2n

[
b

24n

] b+1
4

exp

2π

√
bn

6

 (2.42)

we can derive the explicit result for the spectral density as a function of the number
of excitations N⊥:

ρD(N⊥) = 1
2N⊥

[
D − 2
24N⊥

]D−1
2

exp

4π

√
(D − 2)N⊥

6

 . (2.43)

In the end we want ρ̂(m), i.e. the spectral density as a function of the mass m. It is
simply defined via

ρ̂D(m)dm = ρD(N)dN (2.44)

where the relation between dm and dN is found differentiating eq. (2.39). We have

dN = m

4πσdm (2.45)

so that now eq. (2.43) becomes

ρ̂D(m) = m

4πσ
4πσ
m2

[(D − 2)πσ
3m2

]D−1
2

exp

√π(D − 2)
3σ m

 . (2.46)

When studying string thermodynamics, a peculiar behaviour appears: if we consider
a system of closed bosonic string and we increase its (internal) energy we reach a
regime in which the temperature of the system does not increase anymore. This
is quite similar to what happens in the statistical bootstrap model we reviewed in
section 2.1, and indeed this temperature goes by the name of Hagedorn temperature
and is defined as

TH =
√

3σ
(D − 2)π

D=4' 0.691
√
σ. (2.47)

Now, if we insert the Hagedorn temperature THthe spectral density in D spacetime
dimensions as a function of the mass m is

ρ̂D(m) = 1
TH

(
π(D − 2)

3

)D−1 (TH

m

)D
exp

(
m

TH

)
(2.48)

and for D = 3 + 1 it becomes

ρ̂(m) = 1
m

(2πTH

3m

)3
exp

(
m

TH

)
. (2.49)

This is the output of this string-inspired phenomenological model, as it describes, in
the approximation of large masses, the exponential-like behaviour of the glueball
spectrum provided that they can be effectively modelled as relativistic closed bosonic
strings. The Nambu-Gotō action can be trusted completely as a reliable effective
description of the glueball spectrum: in this case eq. (2.49) has no free parameters
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and is fully predictive. However, one can simply take eq. (2.49) as a phenomenological
input in which the Hagedorn temperature TH can be fitted from numerical lattice
results or it can be fixed in other ways. We will comment later and in section 2.3 on
these options.

From a thermodynamic point of view, eq. (2.49) can be extensively used to
account for the exponentially large number of heavy glueball states whose crucial
contribution is missing when approaching the deconfinement transition from below.
Thus, we can add a new term to the prediction given by eq. (2.34) using eq. (2.49).
Namely we have that the trace of the energy-momentum tensor of a non-interacting
glueball gas is

∆(T )
T 4 =

∑
mi<mth

(2Ji + 1)∆(mi, T )
T 4 + nC

∫ ∞
mth

dm′ ρ̂(m′)∆(m′, T )
T 4 (2.50)

where the first term on the right hand side accounts for the known glueball states
whose masses have been computed on the lattice, while the second term considers
the contribution of heavy glueball states of mass m′ and degeneracy ρ̂(m′). Similar
formulas can be written for energy and entropy densities ε and s and for the pressure
p.

Some important points concerning eq. (2.50) must be discussed before proceeding
to a comparison with the numerical lattice results. Firstly, the mass threshold
has been fixed to mth = 2m0++ as done previously in eq. (2.34): this value has a
symbolic significance, since it is the energy threshold above which a massive glueball
can decay into two 0++ states. More importantly, however, it represents a good
practical estimate of the threshold below which glueball spectra computed via lattice
simulations are reliable, in the sense that they are able to identify correctly all states
with certain quantum numbers. Conversely, the spectral density ρ̂(m) clearly is not
able to describe the masses of low-lying glueball states below such threshold, since its
predictive power is limited to the limit of large m. For a reliable description of the
light glueball spectrum one has to consider generalizations of the Isgur and Paton
model [125] that have been mentioned in section 2.2.4. As a final remark we stress
the fact that, since the exact value of mth is somewhat arbitrary, any prediction of
the glueball gas obtained with eq. (2.50) must be checked for small changes of mth

in order to keep systematic errors under control.
Another very important aspect of eq. (2.50) is the presence of the nC factor:

this term is necessary to take into account the fact that for N ≥ 3 (where N is the
number of colors of the SU(N) gauge theory under investigation) glueball states can
have both charge conjugation number C = +1 and C = −1. This fact has a clear
interpretation in terms of the closed string model: in the N ≥ 3 case closed flux
tubes can have two possible orientations and thus it is necessary to insert a double
degeneracy in the spectral density by putting nC = 2. We will see in section 2.2.6
how this further degeneracy will play a crucial role in the thermodynamics close to
Tc. On the other hand, for the SU(2) case that was first considered in ref. [11], only
glueballs with C = +1 are admitted, since all irreducible representation of the group
are real or pseudoreal, and thus nC = 1. Indeed, the low-lying glueball spectrum
calculated in ref. [121] presents only C = +1 states (as can be seen in table 2.3),
which is to be contrasted to the SU(3) one (see, for example, table 2.4).
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The last comment is concerning the value of the Hagedorn temperature TH to
use in eq. (2.49): as already mentioned, in the most general approach this has to be
considered as a free parameter of the model. However, the deconfinement transition
for the SU(2) pure gauge theory is of the second order: this means that we can
identify it with the Hagedorn transition itself and safely put TH = Tc, by using
the value of eq. (2.29). This fixes all the parameters of the model, which is now
fully predictive, since no fit to lattice data whatsoever is needed to compute each
contribution of eq. (2.50).

Finally, we are in a position to describe the results for the equation of state of
the SU(2) Yang-Mills theory in terms of a gas of non-interacting massive glueballs:
as it can be seen in fig. 2.5 the solid curve manages to describe in a remarkable way
the sudden increase that is observed in lattice data up to temperature very close to
Tc. This result confirms how the exponential-like Hagedorn spectrum predicted by
the string model successfully accounts for all the heavy glueball states which are
extremely important in the vicinity of the transition.

A similar comparison can be done for the pressure: following the integral
method [36] (for details see section 1.3.1) the results for the trace anomaly can be
integrated using eq. (1.49). In practice, the results for the trace anomaly were first
interpolated and then integrated numerically: the resulting data can be seen in
fig. 2.6 along with the glueball gas prediction for the lightest glueball (dotted line),
for all states under the two-particle threshold (dotted line) and for the whole glueball
spectrum (solid line). We would like to comment on the fact that usually, in order
to compute p(T )/T 4 with the integral method, the integration constant p(T0)/T 4

0
is needed; in the case of ref. [11] this was set using the glueball gas itself, which
is clearly an excellent approximation at relatively low temperatures. Very good
agreement is present also in this case, thus confirming that the equation of state of
the SU(2) Yang-Mills theory in the confining phase can be very well described in
terms of a gas of non-interacting glueballs, provided that a Hagedorn spectrum is
used to take the contribution of heavy states into account.

A word of caution is needed before moving to the next section: the Hagedorn
temperature in this case was set to be equal to the deconfinement temperature;
not surprisingly the value of Tc (2.29) is remarkably close to that predicted by the
Nambu-Gotō action (2.47), but still the difference is significant. This is immediately
clear if eq. (2.47) is used, as the glueball gas prediction would be completely spoiled
by the presence of an unphysical divergence of the SU(2) partition function before the
deconfining transition. This fact is evidence of the limits of the closed string model
when looking at the thermodynamics very close to Tc: a more detailed discussion is
postponed to the end of section 2.2.6.

2.2.6 A comparison with SU(3)

It is very insightful to repeat the glueball gas study of lattice results for the
equation of state in the case of the SU(3) Yang-Mills theory. The importance of this
further analysis does not lie simply in the fact that the theory with N = 3 colors is
closer to QCD from a theoretical point of view and thus it is more “physical” than
the SU(2) model. Indeed, SU(3) represents an even more stringent test for the closed
string model, since we have to consider also the contribution of C = −1 glueball
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Figure 2.6: Same as in fig. 2.5, but for the pressure p in units of T 4.

states. Moreover the deconfinement transition is (weakly) first-order: this has been
observed numerically on the lattice [4, 136]. The most important consequence of the
first-order nature of the transition is that now TH 6= Tc: this issue and the presence
of C = −1 glueballs must be addressed by the string model.

First of all, in order to compute the prediction of the glueball gas in the same
way it was done for SU(2), the value of the deconfinement temperature Tc and the
masses of the low-lying glueball states are needed. The former is set to be the value
computed in ref. [4], namely

Tc√
σ

= 0.629(3); (2.51)

we remark that actually this is not the only possible choice, with the value computed
in ref. [115] being an alternative. However the recent, high-precision determination
performed in ref. [137] agrees well with the older value of ref. [4], when the result is
properly translated in units of the string tension. Even for what concerns the glueball
spectrum a few different options are available, for example the one of ref. [138] or
the one of ref. [122]. In ref. [11] the latter was chosen for the glueball gas prediction,
following the original work on the Hagedorn spectrum of ref. [5]; we mention however
that for example the analysis performed in ref. [6] used the first 12 glueballs of
ref. [138].
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We can now focus on the effective string model, and in particular on the afore-
mentioned crucial differences with respect to the N = 2 case: to take C = −1 states
into account, the charge conjugation degeneracy for the SU(3) prediction was set
to nC = 2 in ref. [11], while the Hagedorn temperature was fixed by the original
Nambu-Gotō value of eq. (2.47) predicted by the effective string model. In practice
we have that

TH = 1.098Tc (2.52)

and thus the Hagedorn “transition” is located relatively far from the physical
deconfinement temperature, which is to be contrasted with the SU(2) case (TH = Tc).
On the whole the results were obtained again with no free parameters: as one can
observe in fig. 2.7 there is a truly remarkable agreement with the lattice data already
obtained in ref. [6] almost up to Tc.
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Figure 2.7: Comparison between the predictions of a free glueball gas, including the
contribution from states modeled by a closed Nambu-Gotō string model, like in eq. (2.50),
continuum-extrapolated data obtained in ref. [6] for SU(3) Yang-Mills theory and nonzero
lattice spacing results for the SU(2) Yang-Mills theory (from simulations at finite lattice
spacings corresponding to Nt = 6 and 8) obtained in ref. [11], as a function of T/TH.

The results shown in fig. 2.7 are even more instructive when a comparison with
SU(2) is performed: indeed, one can easily observe the doubling of the glueball
spectrum at high temperatures both from the lattice data and the glueball gas
prediction. This comparison is made much clearer by the fact that the data are
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shown as a function of T/TH: indeed, it is the value of the Hagedorn temperature
that controls the exponential-like growth of the number of glueball states. Because
of this, TH represents the correct scale to use when representing lattice data and
glueball gas predictions in the confining phase. However, when setting nC = 2 in
eq. (2.50) we are making a crude approximation, at best: this is because we are
assuming that above the mass threshold mth there is a perfect degeneracy between
C = +1 and C = −1 states, which is clearly unlikely. A more sophisticate prediction
for the glueball gas would take this into account by introducing for example another
free parameter: such an approach was not taken into consideration in ref. [11] for
the sake of simplicity and predictiveness of the string model.

We remark also that the glueball gas predictions both for N = 2 and N = 3 are
robust under reasonable changes in the mass threshold mth, which can be considered
the only partially-free parameter in this model.

It is useful to review a few finer details to fully appreciate the difference between
the two cases: first of all, the apparent “coexistence” of the Hagedorn and physical
transitions makes a proper description of lattice data very close to Tc a little trickier.
It is crucial to observe that the transition located at T = Tc is in the same class of
universality of the three-dimensional Ising model, as predicted by the Svetitsky-Yaffe
conjecture [139]. This is in contrast with the closed string model, which at TH predicts
mean-field critical exponents; thus, technically it cannot be used up to Tc and even
if the results present an interesting qualitative agreement to very high temperatures,
a different mechanism must kick in in the proximity of the SU(2) deconfinement
transition. Indeed, the work of ref. [11] is a semi-quantitative analysis, since no
continuum extrapolation of lattice data was taken and no χ2 tests were made to
check quantitatively the reliability of the closed string model. More elaborate models
can start from the observation of the existence of a string-like Hagedorn spectrum
and, with the addition of phenomenologically motivated free parameters, they can
try to explain with greater accuracy continuum-extrapolated numerical results from
the lattice. One such attempt was made in ref. [12] and it will be reviewed in detail
in section 2.3. On the other hand for SU(3) the Hagedorn temperature is placed deep
in the deconfined phase, and it is not surprising that this case is somewhat easier to
describe in terms of the string-model and that it does not apparently necessitates of
further free parameters.

In conclusion we can affirm that these results are clear evidence of the presence
of a Hagedorn spectrum for very massive glueballs, as it plays a crucial role in
the glueball gas description of Yang-Mills thermodynamics in the confining phase.
Indeed, in the proximity of the critical temperature a spectrum of the type of
eq. (2.49) must be introduced in order to explain lattice results for the equation of
state both in the N = 2 and N = 3 cases. Moreover, these studies also represent an
indirect but very stringent test for the effective string theory in the description of
the excitations of the chromoelectric flux tube: indeed a relativistic bosonic string
model can predict with great accuracy the correct functional form of the density
of glueball states: both the factors in front of the exponential in eq. (2.49) and the
value of the TH parameter.
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2.3 An alternative approach: excluded-volume effects

In section 2.1 we reviewed the recent success of the hadron resonance gas model
in describing several aspects of the thermodynamics of strongly-interacting matter
in the confining phase. Indeed, in a rather simple way typical physical quantities
such as the pressure p can be described in terms of a non-interacting gas of hadron
resonances all of which contribute separately. If we generalize eq. (2.14) by including
the nonzero chemical potential that appears in eq. (2.9), the pressure becomes

pHRG = T 2

2π2

∑
i

gim
2
i

∞∑
n=1

1
n2

[
enµi/TK2

(
n
mi

T

)
− ηj + 1

4 e2nµi/TK2

(
2nmi

T

)]
(2.53)

where the factor ηi is −1 for bosons and +1 for fermions and the chemical potential
for the i-th species µi is

µi =
∑
a

Xa
i µXa = biµB + qiµQ + siµS . (2.54)

A possible improvement to the standard HRG approach is the inclusion of excluded-
volume effects (see refs. [140–142]) that approximately model the repulsive interac-
tions between resonances: a simple way to implement these is by a modification of
the chemical potential µi itself which includes an additional term:

µ̃i = biµB + qiµQ + siµS − vip (2.55)

where vi denotes an “eigenvolume” parameter. This parameter takes the role of
an effective volume which, assuming the resonances are hard, classical spheres (i.e.
essentially neglecting quantum effects), can be written as

vi = 16π
3 r3

i (2.56)

where the effective radius ri appears. This approach can serve as a refinement
of the HRG model predictions and has been applied successfully in the last few
years [143–146]; in particular in comparison with lattice results the fits that included
excluded volume effects generally yielded very good results.

In ref. [12], the investigation of hadronic excluded volume effects was extended
to the particular case of pure gauge theories, which represent a somewhat clearer
theoretical setup where high-precision lattice computations are easily available.
Indeed the work of refs. [5, 9, 11, 105] described in section 2.2 showed how numerical
lattice results for the Yang-Mills equation of state could give precious insight on
the properties of the glueball spectrum: in a similar spirit the work of ref. [12] aims
at providing an alternative description of the equation of state starting from the
considerations of ref. [11], but assuming excluded volumes for glueball states. We
want to stress the fact that this work is not meant as an improvement over previous
papers (an honest, direct comparison cannot be made, as we will see below), but
rather as a stringent test for the excluded volume approach which can lead to a better
understanding of its use in the full theory. We remark that in purely gluonic theory
the physical states have no baryonic number, electric charge or strangeness: thus,
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the only contribution to the modified chemical potential comes from the excluded
volume term, leading to a further simplification with respect to the QCD case.

The excluded volume analysis was performed both in the case of the SU(2) gauge
theory and the more physical case with th SU(3) gauge symmetry group; for the
description of the latter, the continuum-extrapolated data of ref. [6] were used. For
the former instead, the lattice data of ref. [11] were used and combined with a
new set of results: the lattice setup of all simulations is reported in table 2.2. The
extrapolation of the results for the trace of the energy-momentum tensor, which is
the primary observable of the simulations, was performed using for each temperature
a quadratic fit in 1/Nt. In practice, the results for each value of Nt were first fitted
by cubic splines and then, for temperature comprised between 0.79Tc and Tc (with
a step of 0.001Tc), they were fitted with the form

∆(T,Nt) = ∆(0)(T ) + ∆(1)(T )
N2
t

(2.57)

where ∆(0)(T ) is the continuum-extrapolated value of the trace anomaly at tempera-
ture T . These results, along with those at finite lattice spacing with Nt = 6, 7, 8, 10,
are reported in fig. 2.8: as expected, in proximity of the deconfinement transition the
extrapolated results show non-negligible deviations from points obtained at finite
lattice spacing.

Before numerical results can be analyzed, we need to define the parametrization
of the effective radius ri of eq. (2.56), in particular its behaviour with respect to the
mass of the i-th species. Three possible options have been taken into account:

• a fixed effective radius, i.e.
ri = r0++ ∀i;

• a volume directly proportional to the mass,

ri = 3

√
mi

m0++
r0++

• a volume inversely proportional to the mass,

ri = 3

√
m0++

mi
r0++

in which m0++ is the mass of the lightest glueball state and r0++ is its radius and the
free parameter of the fits. These three choices represent some (but, of course, not
all) of the possible ways which effectively encode the interaction between glueball
states.

As showed in previous papers, a Hagedorn spectrum is strictly required in order
to account correctly for all the heavy glueball states whose contribution is crucial in
the proximity of the transition: thus, the same stringlike spectrum of ref. [11] (with
a similar mass threshold mth) has been used also in this work when performing the
excluded-volume fit. Moreover, in the case of the SU(2) gauge theory, the spectrum
for light glueballs (computed on the lattice), the value of the critical temperature
Tc and the value of the Hagedorn temperature TH are the same as those used in
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Figure 2.8: Lattice results for the trace of the energy-momentum tensor ∆ (in units
of T 4) in the confining phase of the SU(2) Yang-Mills theory, from lattice simulations at
Nt = 6 (red diamonds), 7 (blue circles), 8 (magenta triangles) and 10 (cyan squares), and
their extrapolation to the continuum limit (green curve) with the respective error band.
The results are plotted against the temperature T in units of the critical deconfinement
temperature Tc. The figure also shows the fits of the hadron-gas model with or without
excluded-volume effects (violet curves). The solid line is obtained under the assumption that
glueball states are point-like, the dashed line assumes that all states have the same radius,
while the dotted line is based on the Ansatz that volumes of different glueballs are directly
proportional to their mass, and finally the dash-dotted line is computed assuming that the
volume of each particle is inversely proportional to the particle mass. Further details of
these fits are summarized in table 2.5.

ref. [11] and reported in the previous section. The fitting procedure was performed
minimizing the χ2 with respect to continuum-extrapolated data; the results for the
trace of the energy-momentum tensor are reported in table 2.5 and showed in fig. 2.8.

Integration of different fits for the trace anomaly provides the curves for the
pressure, which are shown in fig. 2.9.

Somewhat surprisingly, the parametrization of the effective radius assigned to
glueball states that best describes the SU(2) equation of state close to Tc is the
one that predicts a volume that decreases when the mass increases. On the other
hand the “point-like” description, that is exactly the one of ref. [11] with no free
parameters, clearly is not compatible and thus yields a much higher χ2

red.
The analysis was similarly performed again for the SU(3) gauge theory, using
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Table 2.5: Results of the fits of our lattice data for the SU(2) interaction measure and of
data from ref. [6] for SU(3), to the glueball gas model. The radius, with the corresponding
error, of the lightest glueball state (the ground-state particle in the channel with quantum
numbers JP = 0+ or 0++) and the χ2

red value are shown for different scenarios.
SU(2) SU(3)

V (m) dependence r0+ (fm) δr0+ (fm) χ2
red r0++ (fm) δr0++ (fm) χ2

red
point-like 0 0 8.16 0 0 84.3
constant r 0.65 0.12 0.74 0.733 0.08 2.33
V ∝ m 0.47 0.19 1.87 0.55 0.07 5.41
V ∝ m−1 0.82 0.14 0.39 0.91 0.10 0.82
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Figure 2.9: Pressure (in units of T 4) in SU(2) Yang–Mills theory: the figure shows
a comparison of our continuum-extrapolated lattice results (green line) and the hadron-
resonance-gas predictions obtained by integration of the different fits of ∆/T 4 in fig. 2.8,
assuming point-like particles (violet solid line), particles of constant volume (violet dashed
line), particles with eigenvolume directly proportional to their mass (violet dotted line), or
particles with eigenvolume inversely proportional to their mass (violet dash-dotted line).

the same methodology of the N = 2 case. The low-lying glueball spectrum, the
deconfinement temperature Tc as well as the mass threshold mth for the Hagedorn
spectrum are the same as those used in ref. [11]. An important difference concerns
the value of the Hagedorn temperature: in this work the value computed numerically
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in ref. [5], i.e. TH = 1.024Tc was assumed. The results of the fits with the excluded
volume approach are reported in table 2.5 and the resulting curves for the trace of
the energy-momentum tensor ∆/T 4 are shown in fig. 2.10. Results for the pressure
obtained via integration of the trace anomaly are showed in fig. 2.11.
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Figure 2.10: Same as in fig. 2.8, but for the continuum-extrapolated lattice results from
ref. [6] for SU(3) Yang–Mills theory, assuming TH = 1.024Tc [5, 6]. These fits are summarized
in table 2.5.

Interestingly, even if this pure gauge model presents a few radically different
properties with respect to the SU(2) theory (as discussed in detail in section 2.2),
the fits that take into account excluded-volume effects yield very similar results.
Again, the most accurate description is that of glueballs whose effective volume is
inversely proportional to the mass: also in this case the points close to the transition
play a crucial role in the choice of the best phenomenological description.

Strikingly, when considering the result for the effective radius of the JPC = 0++

glueball state, i.e. the parameter used in the fits, there is substantial agreement
between the values for the SU(2) and the SU(3) theory. Even if the error associated
to such values is rather large, this fact serves as further confirmation that the
description in terms of excluded volume effects leads to consistent results among
various gauge models.

Before moving to further comments on these results, we have to point out that
this work is not supposed to be an improvement of the analysis of ref. [11], but more
as an independent and alternative approach for the description of the equation of
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Figure 2.11: Same as in fig. 2.9, but for SU(3) Yang–Mills theory: the plot shows a
comparison of the lattice results from ref. [6] (green symbols) and the statistical-model
predictions (violet lines) obtained by integration of the curves shown in fig. 2.10, assuming
the integration constant p/T 4 = 0.0015(1) for T/Tc = 0.7 [6].

state of Yang-Mills theories in the confining phase. Any attempt at studying the
thermodynamics of pure gauge theories cannot disregard the need of a Hagedorn
spectrum (possibly of string-like origin) for glueball states close to the transition:
this is the main result of refs. [5, 9, 11], obtained with no truly free parameters,
as described at length in section 2.2. On the other hand, a precision analysis of
lattice data is possible only by introducing some physically-motivated parameters
which allow for a sensible fit of numerical results. In this light the excluded volume
approach provides a clean phenomenological framework that is able to include,
albeit with some limits, an effective description of repulsive interactions between
glueballs. The work reported in this section then aims at testing the efficacy of this
methodology on models which are quite different from QCD: in this way we can
show its consistency and provide novel insights which may be helpful also for full
QCD.

An important difference with respect to the analysis of ref. [11] is the value
of the Hagedorn temperature for the N = 3 case: in that work simply including
the C = −1 glueball sector and using the Nambu-Gotō value for TH provided an
excellent qualitative description of thermodynamic observables. However, there is no
reason to discard a priori the value of TH computed in ref. [5], which was obtained by
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determining the temperature at which the inverse correlation length of the temporal
flux loop vanishes. In fact, this value provides an excellent quantitative agreement
with lattice results when excluded-volume effects were taken into account, albeit
with the use of a free parameter.

Looking again at the results reported in table 2.5, the finding of an eigenvolume
inversely proportional to the glueball mass may seem surprising or even in contrast
with phenomenological models: for example the Isgur-Paton model treated in
section 2.2.4 clearly predicts larger and larger glueballs as their mass increases.
However, we have to remark that such results are not necessarily at odds with the
possibility of heavy and extended glueball states: indeed, the eigenvolume is not to
be confused with the physical volume, but has to be intended as an effective volume
which accounts for interaction among glueballs. Thus, such results then may indicate
that heavy states interact more weakly than lighter ones with no clear indication on
the actual physical size. More in general, the three parametrizations for the glueball
radius described above must be intended simply as crude idealizations which do not
account for nonperturbative dynamics underlying the existence of such states and
are not able to determine the precise volumes of each particle; still, we can use them
in order to keep the number of free parameters at a minimum and obtain precious
physical intuition on the properties of the heavy glueball spectrum.

It should be noted that very similar results have been found in previous analyses
in QCD [146]: again, the best description was that in terms of effective volumes
decreasing with the mass of hadron resonances. We also add that effective sizes of
glueball states are slightly larger than those found in the full theory for hadrons,
giving some support for the idea that the repulsive interaction is stronger between
glueballs.





Chapter 3

The ξ/ξ2nd ratio in pure gauge
theories

One method to circumvent the notorious “sign problem” that plagues Monte Carlo
simulations in lattice QCD at finite baryonic density, which we already mentioned
in section 1.2.2, is based on a family of models collectively denoted as effective
Polyakov loop (EPL) models. This line of research, whose roots can be found in
the Svetitsky-Yaffe conjecture [139], has enjoyed good success in the last decade,
spawning many contributions in different directions [14–34]. In this approach, the
original theory is mapped on a three-dimensional, center-symmetric spin model: the
remaining dynamical degrees of freedom (the “spins”) are the former Polyakov loops
in the fundamental or higher representations. The main positive aspect of this set
of models is that, in general, the sign-problem is milder or it can be even avoided
entirely: of course, exact integration of timelike degrees of freedom is too difficult,
so the first challenge is to build an effective spin model action that captures all the
relevant properties of the original theory. The most important features that such an
action should possess can be inferred from strong-coupling expansions:

• it should display nonlocality: as far-apart Polyakov loops are involved in the
interaction as the order of the expansion increases;

• Polyakov loops in higher representations should be involved;

• multispin interactions should be included.

The latter of these properties is usually neglected for simplicity, and the dynamics
of this family of models is described by a two-spin interaction with an action of the
type

Seff =
∑
p

∑
|r|≥1

∑
|x−y|=r

λp,r χp(x)χp(y) (3.1)

where the sum on p runs on all the desired representations, χp(x) is the character in
the p representation of the loop in the spatial site x and λp,r is the coupling between
effective spins in the p representation at a given distance r. Thus, the main challenge
for each of these models is to devise a strategy to determine the huge number of
spin couplings of the type λp,r.

61
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In ref. [35] a new quantitative way of evaluating possible EPL models was
proposed, based on their ability of including relevant properties of the original
four-dimensional gauge theory, namely the measurement of the ratio between the
exponential correlation length ξ and the second moment correlation length ξ2nd.

This study has been inspired by the observation that EPL models should be able
to display the 1/R correction in the static quark-antiquark potential V (R), i.e. the
so-called “Lüscher term”, that we already met in eq. (2.23). Such a term has been
detected in the confining phase of SU(N) pure gauge theories from the computation
of Wilson loops and Polyakov loop correlators, and EPL models are expected to
show the same behaviour. However, this is a highly nontrivial requirement, as the
1/R correction is deeply linked with the rich spectrum of excitations of the flux
tube: indeed, the number of excitations shows an Hagedorn-like dependence on the
energy, as discovered long ago [108]. Spin models usually do not reproduce such a
rich spectrum easily, in particular if only short-distance interactions are included.

It is then crucial to find an observable which provides a quantitative way to keep
track of the spectrum that EPL models are able to reproduce and that is also easy
to compute. The ξ/ξ2nd ratio is precisely the right quantity: in section 3.1 we will
analyze how this ratio can give precious information on the composition of the flux
tube excitations. On the other hand in section 3.2 we shall discuss the results of the
ξ/ξ2nd ratio for the SU(2) pure gauge theory from lattice simulations, in order to
show the strikingly different behaviour of ξ2nd with respect to ξ.

3.1 The relation between ξ and ξ2nd

In a d-dimensional spin model the exponential correlation length ξ describes the
long distance behavior of the connected correlator and is defined as

1
ξ

= − lim
|~n|→∞

1
|~n|

log〈s~0s~n〉c (3.2)

where s~n denotes the spin s in the position ~n = (n1, ..., nd) and the connected
correlator is defined as

〈s~ms~n〉c = 〈s~ms~n〉 − 〈s~m〉2. (3.3)

The square of the second moment correlation length ξ2nd is defined as:

ξ2
2nd = µ2

2dµ0
, (3.4)

where
µ0 = lim

L→∞

1
V

∑
~m,~n

〈s~ms~n〉c (3.5)

and
µ2 = lim

L→∞

1
V

∑
~m,~n

|~m− ~n|2〈s~m s~n〉c , (3.6)

V = Ld being the lattice volume.
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It is important to notice that ξ2nd is not exactly equivalent to ξ: in fact the
difference carries important information on the spectrum of the underlying theory.
To better understand this, let us consider “wall” variables, which can be defined as

Sn1 = 1
L2

∑
n2,...,nd

s~n (3.7)

and the corresponding correlation function
G(τ) =

∑
n1

〈Sn1Sn1+τ 〉 − 〈Sn1〉2 ; (3.8)

the average on the (n2, ..., nd) plane indicates a projection to zero spatial momentum.
The exponential correlation length can be extracted from the large-τ behavior of
G(τ)

G(τ) ∼ exp(−τ/ξ) ; (3.9)
on the other hand ξ2nd can be rewritten by noticing that we can re-express µ2 as
follows:

µ2 = 1
V

∑
~m,~n

|~n− ~m|2 〈s~m s~n〉c

= 1
V

∑
~m,~n

d∑
k=1

(nk −mk)2 〈s~m s~n〉c

= d

V

∑
~m,~n

(n1 −m1)2 〈s~m s~n〉c . (3.10)

where we made use of the fact that the lattice is symmetric in all d directions. We
commute the spatial summation with the summation over configurations, getting

µ2 = dL2
∞∑

τ=−∞
τ2 〈S0 Sτ 〉c (3.11)

and
µ0 = L2

∞∑
τ=−∞

〈S0 Sτ 〉c (3.12)

so that if we now insert them in eq. (3.4), we obtain

ξ2
2nd =

∑∞
τ=−∞ τ2 G(τ)

2
∑∞
τ=−∞ G(τ) . (3.13)

Assuming a multiple exponential decay for G(τ),
〈S0 Sτ 〉c ∝

∑
i

ci exp(−|τ |/ξi) , (3.14)

where ci represents the amplitude of the i-th state; replacing the summation by an
integration over τ we get

ξ2
2nd = 1

2

∫∞
τ=0 dτ τ2∑

i ci exp(−τ/ξi)∫∞
τ=0 dτ

∑
i ci exp(−τ/ξi)

=
∑
i ciξ

3
i∑

i ciξi
, (3.15)

which is equal to the square of ξ if only one state contributes. Conversely, if the
spectrum contains several massive states, then the ratio can be significantly larger
than 1. It is clear that the ξ/ξ2nd ratio is able to provide some insight on the
spectrum of the theory and on the amplitude ci of these states.
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3.2 Numerical results for the SU(2) pure gauge theory
We performed a numerical study of the ξ/ξ2nd ratio in the SU(2) non-Abelian

pure gauge theory, regularized on a hypercubic lattice of spacing a and hypervolume
aNt × (aNs)3. The Yang-Mills action is discretized with the standard Wilson
action [3], eq. (1.19); the main observable of interest is the so-called Polyakov loop,
eq. (1.24), that we slightly rewrite here as

P (x, y, z) = 1
2Tr

∏
0≤t/a<Nt

U0(x, y, z, t) . (3.16)

Following the definition used for the spin model, eq. (3.7), we can define the zero-
momentum projection of the Polyakov loop by taking the average over the two
spatial directions x and y

P̄ (z) = 1
NxNy

∑
x,y

P (x, y, z) (3.17)

and we can write down the zero-momentum connected correlator G(τ)

G(τ) = 〈P̄ (0)P̄ (τ)〉 − |〈P 〉|2 (3.18)

which we can identify with the definition of eq. (3.8).
The temperature was varied using both Nt and the inverse bare coupling β: in

order to do so the scale setting relation computed in ref. [11] was used to express the
lattice spacing in units of 1/

√
σ (see section 2.2.1 for more details). Our results were

reported in units of the critical temperature Tc using the value T/Tc = 0.7091(36)
computed in ref. [115]; the lattice setup of the Monte Carlo simulations used in this
work is reported in table 3.1.

Table 3.1: Setup of the Monte Carlo lattice simulations performed for the SU(2) gauge
theory in the confining phase. We report the Wilson parameter β in the first column and
the spacetime volume of the lattice in units of a4 in the second; the resulting temperature
in units of Tc and the statistics for the measurements of zero-momentum Polyakov loop
correlators G(τ) are presented in the third and fourth column.

β N3
s ×Nt T/Tc nconf

2.27 323 × 6 0.59 4.5× 105

2.33 323 × 6 0.71 2.25× 105

2.3 323 × 5 0.78 5.5× 105

2.357 323 × 6 0.78 2.25× 105

2.25 643 × 4 0.84 3× 104

2.4 643 × 6 0.90 2× 104

Results for the zero-momentum correlator G(τ) have been fitted with a functional
form that takes into account also the “echo” due to periodic boundary conditions in
the spatial directions, namely

G(τ) ∼ exp
(
−τ
ξ

)
+ exp

(
−L− τ

ξ

)
(3.19)
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where ξ is the the exponential correlation length of the system, as defined in eq. (3.2),
and L is the size of the three-dimensional space (in our case, L = Ns). Numerical
results for ξ in units of a have been obtained for several temperatures T < Tc and are
reported in table 3.2. For each of the fits with eq. (3.19) the values τ = a and τ = 2a
have been excluded, in order to avoid artifacts due to the lattice discretization.
For the simulations close to the deconfinement transition (those reported in line 5
and line 6 of table 3.2) the spatial size Ns of the lattice was increased in order to
accommodate larger correlation lengths and to reduce the effect of the echo due to
the periodic boundary conditions.

Next, we computed ξ2nd from µ2 and µ0: in order to do so, we followed a
procedure similar to that used in ref. [147]. In particular, for µ2 we employed an
Ansatz that takes into account the contribution of the large-distance terms, which
could be computed otherwise only on prohibitively large lattices. Namely, we used

µ2 =
τmax∑
τ=1

τ2G(τ) +
∞∑

τ=τmax+1
τ2G(τmax) e−(τ−τmax)/ξ (3.20)

and similarly for the calculation of µ0. The contribution of the tail, i.e. of the
second term on the right-hand side of eq. (3.20), depends on the value assigned to
the distance cutoff τmax: during our analysis we kept τmax ∼ 3ξ, which generally
yielded stable results. Using eq. (3.4) (with d = 3) we computed ξ2nd for different
values of the temperature T : the results are reported in table 3.2.

Table 3.2: Results for the exponential correlation length ξ (third column) and the second
moment correlation length ξ2nd (fourth column) in units of the lattice spacing, along with
their ratio ξ

ξ2nd
(fifth column) in the confined phase.

T/Tc Ns ξ/a ξ2nd/a ξ/ξ2nd

0.59 32 1.31(2) 0.887(8) 1.48(3)
0.71 32 2.31(4) 1.842(15) 1.25(2)
0.78 32 2.56(2) 2.22(1) 1.153(11)
0.78 32 3.08(4) 2.67(2) 1.151(16)
0.84 64 3.05(6) 2.74(4) 1.11(3)
0.90 64 6.9(2) 6.6(3) 1.04(6)

In the Ansatz of eq. (3.20), the choice of τmax is somewhat arbitrary and it
introduces a systematic error in the computation of µ0 and µ2: in the former case,
the contribution of the tail is negligible when compared to the first term on the
right-hand side of eq. (3.20). Conversely, the computation of µ2 has a substantial
contribution coming from large values of τ , which becomes prominent for T ∼ Tc;
we made sure that such error is under control by comparing results obtained by
changes in τmax and checking that they were all compatible.

From fig. 3.1 it is clear that the ξ/ξ2nd ratio depends nontrivially on T/Tc,
showing in particular a dramatic increase of ξ over ξ2nd as the temperature decreases.
In order to test if the results are independent from the lattice volume and from
the lattice spacing, we performed the simulations at T/Tc = 0.78 with two different
combinations of β and Nt. The same value of ξ/ξ2nd is found, even if the values of ξ
and ξ2nd in units of the lattice spacing were quite different in the two cases: thus,
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Figure 3.1: The ξ/ξ2nd ratio for different values of the temperature T/Tc in the confining
region.

we are confident that scaling corrections are under control and that our results are
tracing a true physical behaviour of the SU(2) gauge theory.

In order to have a complete picture of what kind of physical mechanisms are
underlying such behaviour, a description in terms of the effective string theory for
the flux tube is in principle possible. Indeed, the effective string approach predicts
in a natural and elegant way a rich spectrum of excitations for the color flux tube:
it was realized recently [110, 148] that the Nambu-Gotō action [149, 150] is an
excellent approximation of the true effective action, and it can be used explicitly.
In this framework, the Polyakov loop correlator can be written in D spacetime
dimensions [148, 151] as

〈P (x)∗P (y)〉 =
∞∑
n=0

wn
2rσLt
En

(
π

σ

)D−2
2
(
En
2πr

)D−1
2
KD−3

2
(Enr) (3.21)

where r = |x − y|, Lt is the extent of the compactified dimension, σ the string
tension, while wn and En are the multiplicity and the energy level of the n-th state,
respectively. These can be computed, resulting in

wn ∼ exp

π
√

2(D − 2)n
3

 (3.22)

and
En = σNt

{
1 + 8π

σN2
t

[
− 1

24 (D − 2) + n

]}1/2
. (3.23)
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Figure 3.2: Left: the logarithm of the multiplicity wn defined in eq. (3.22) as a function
of the level n, for the first fifty levels. Right: the gap between the energy En of the n-th
state and the energy of the lowest level E0, as a function of T/Tc, for 1 < n < 9, from n = 1
(red solid line) to n = 9 (blue dashed-dotted line); the black horizontal line represents the
two particle threshold En = 2E0.

This is exactly the kind of qualitative behavior that we expect: on one hand the
spectrum is of the Hagedorn type, with an exponential increase of the states with
En; on the other hand all the states tend to accumulate towards the lowest state
with energy E0 as the temperature decreases. To see this, we just have to recall
that T = 1/Lt and Tc/

√
σ =

√
3/(2π) in D = 3 + 1 dimensions, so that eq. (3.23)

becomes

En = 2πT 2
c

3T

{
1 + 12 T

2

T 2
c

[
n− 1

12

]}1/2

. (3.24)

The increase in the number of states of the string-like flux tube and the energy gap
(En − E0)/E0 as a function of the temperature are reported in fig. 3.2.

Qualitatively speaking, it is precisely the combination of these effects that drives
the ξ/ξ2nd ratio to larger values as the temperature decreases. However, the effective
string approach is not able to provide reliable quantitative predictions for the ξ/ξ2nd
ratio: this is due to the fact that this framework can be used only in a context in
which the relevant distances are larger than the Nambu-Gotō critical scale 1/

√
2σ.

Unfortunately a significant contribution to the ξ/ξ2nd ratio comes from short-distance
effects which cannot be described in terms of effective strings, setting a limit on its
usefulness.

In the end, the work presented in ref. [35] showed how the ξ/ξ2nd ratio is a
crucial quantity when one studies the spectrum of the flux tube excitations; thus,
EPL models should replicate this behaviour in case they are used to investigate
regions of temperature below the deconfinement transition. Moreover, both ξ and
ξ2nd can be computed in an easy and computationally cheap way: thus, their ratio
could represent a useful tool to perform a preliminary selection of the potentially
very large set of parameters in the actions of the form of eq. (3.1).





Chapter 4

Jarzynski’s equality

When dealing with systems which are far from equilibrium, the usual statistical
mechanics relations are not valid anymore, leaving an large sector of phenomena
which cannot be studied with near-equilibrium approximations. However there is
a family of relations, called fluctuation theorems, that are applicable even out of
equilibrium, and one of the most important ones goes by the name of Jarzynski’s
equality [38]. The discovery during the ’90s of this set of relations in nonequilibrium
statistical mechanics, has been developed in parallel with huge advancements on the
experimental side in the study of microscopic systems at the molecular level. Such
systems present peculiar properties which the scientific community could finally
begin to study both from a theoretical and from an experimental point of view.

As we will see in this chapter, the theoretical framework on which Jarzynski’s
equality in particular is based can be extended and implemented in systems which
are very far away from the ones in which they have been used originally. Namely,
the application of Jarzynski’s equality to Monte Carlo simulations opens up a large
number of applications in high-energy physics and in particular in lattice field theory.
This chapter is devoted first to a thorough analysis of the nonequilibrium work
relation by Jarzynski and second, to an analysis of how it has been implemented
successfully for the very first time in the study of strongly-interacting theories.

The first part of this chapter, section 4.1, is an introductory review to the nonequi-
librium work relation, starting from classical thermodynamics and the behaviour
of macroscopic systems, then examining in detail the equality by Jarzynski with
some tools of statistical mechanics, and eventually reaching fluctuation theorems
for microscopic systems. Section 4.2 is entirely devoted to the analysis of some
derivations of Jarzynski’s equality, both for deterministic and stochastic systems.
In section 4.3 we will review some more recent theoretical advancements in the
understanding of the nonequilibrium relation which are quite relevant for its practi-
cal use also in numerical experiments. The last part, section 4.4 will focus on the
application of the nonequilibrium work relation for Monte Carlo simulations, along
with a generalization of the equality for varying temperature; finally, the first true
application of the nonequilibrium relation in the context of lattice gauge theories of
ref. [44] will be reviewed at length.

69



70 CHAPTER 4. JARZYNSKI’S EQUALITY

4.1 The nonequilibrium work relation

In this section we will analyze the significance of the nonequilibrium work
relation discovered by C. Jarzynski 20 years ago assuming from the reader no
particular knowledge of nonequilibrium statistical mechanics. After a short review of
classical thermodynamics (and in particular of the Second Law) the attention will be
shifted to microscopic systems and thus to statistical mechanics; in section 4.1.2 the
nonequilibrium equality will be stated and explained in detail and in section 4.1.3
its simple but deep relation to the Second Law itself will be highlighted. Its relation
with recent advancements in nonequilibrium statistical mechanics and in particular
with fluctuation theorems discovered in the ’90s will be described in section 4.1.4.
Finally, the experimental test of the nonequilibrium work relation presented in
ref. [43] will be reported in section 4.1.5. We refer to the original paper [38], the
pedagogical introductory review of ref. [152] and references therein for further details
and insights. A clear and exhaustive introduction to the matter can be also found
in ref. [153].

4.1.1 A few facts about macroscopic systems

This chapter will be mainly devoted to the behaviour of microscopic systems
through the tools of statistical mechanics. However, it is certainly instructive to
investigate a few basic facts about macroscopic systems by making a short review of
classical thermodynamics.

We can start by examining a macroscopic system that depends only on two
variables: the temperature T of the heat bath it is in thermal contact with, and a
generic external parameter λ. A typical assumption of equilibrium thermodynamics
is that for any set of values (T, λ), there exists only one “equilibrium state” that
the system will eventually reach if (T, λ) are kept fixed. In thermodynamics we can
introduce a set of state functions that take unique values for any equilibrium state,
such as the internal energy E(T, λ) and the entropy S(T, λ).

Now, we can state the First Law of thermodynamics

∆E = Q+W (4.1)

where ∆E indicates the difference in internal energy between a final state B and an
initial state A, Q is the exchange of heat of our system with the external one and
W is the work done on (if W > 0) or by (if W < 0) the system.

Then, we can proceed to the Second Law of thermodynamics, specifically in the
form of the Clausius inequality [154, 155]:∫ B

A

δQ

T
≤ ∆S = S(B)− S(A); (4.2)

here we are considering a thermodynamic transformation of our system from equilib-
rium state A to B performed through a series of heat reservoirs of varying temperature
T . It is crucial to observe that the equality holds only for reversible transformations,
that is transformations which at any moment are always at equilibrium with the
heat reservoir. The infinitesimal heat exchange δQ is then integrated along this
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particular transformation; if the transformation is isothermal, i.e. only one single
heat reservoir (at fixed temperature T ) is taken, then we have

Q

T
≤ ∆S. (4.3)

Now it is a good moment to introduce a new state function, the Helmholtz free
energy F

F = E − ST. (4.4)

We can easily rewrite eq. (4.3) using the First Law (4.1) and the definition of free
energy (4.4)

∆E −W
T

≤ ∆S = ∆E −∆F
T

(4.5)

which leads to a compact version of the Second Law for isothermal transformations:

W ≥ ∆F = F (B)− F (A). (4.6)

Let us take briefly a closer look at the workW : we can imagine a system equilibrated
at a temperature T and some value λA of the external parameter, which undergoes
an isothermal transformation and reaches a state (T, λB). If the transformation is
reversible, then the work will be equal to the difference in free energy between the
state (T, λB) and the state (T, λA); if it is irreversible, then only the inequality of
eq. (4.6) will hold.

4.1.2 The nonequilibrium equality

From the general thermodynamical facts of section 4.1.1 we can now look at
microscopic systems through the lens of statistical mechanics. Let H(Γ, λ) be the
Hamiltonian which describes the behaviour of the microscopic degrees of freedom
that compose our system. Γ denotes a microstate of our system: for example, a
system with N point-like particles will be characterized by microstates of the type

Γ(r1, ..., rN ; p1, ...,pN )

where ri and pi are three dimensional vectors that indicate position and momentum
of the i−th particle.

As usual we can define the partition function Zλ(T ) of this system

Zλ(T ) =
∫

dΓe−βH(Γ,λ) (4.7)

where β = 1/(kBT ); the ensemble average of a generic quantity A is defined as the
integral over the phase space

A = 1
Zλ(T ) =

∫
dΓA(Γ) e−βH(Γ,λ). (4.8)

The free energy of the equilibrium state associated to the values (T, λ) is directly
related to the partition function

Fλ(T ) = −β−1 logZλ(T ) (4.9)
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which trivially leads to the thermodynamic definition of eq. (4.4) if energy and
entropy are properly written in the canonical approach:

Eλ = −∂ logZλ
∂β

and Sλ = kB(logZλ + βEλ). (4.10)

Finally, we introduce the Boltzmann-Gibbs distribution [156]

fBGλ (Γ) = 1
Zλ
e−βHλ(Γ) (4.11)

which gives the probability of finding the system in the Γ microstate.
Following the approach of section 4.1.1 we consider transformations between

an initial state with λA and a final one with λB: the Second Law (eq. (4.6)) now
becomes

〈W 〉 ≥ ∆F = FλB − FλA (4.12)

where the 〈...〉 indicate an average over an ensemble of transformations A→ B; we
stress the fact that the average of eq. (4.12) is not the ensemble average of eq. (4.8),
since the former is performed on values measured across different transformations.

For each transformation the system is first brought to the equilibrium state
(T, λA), and then the work W is measured over different realizations of the trans-
formation, in which the parameter λ is changed at a finite rate using the same
prescription. In particular if the transformation is reversible, that is the λ parameter
is changed infinitely slowly so that the system is always at equilibrium, then the
equality W = ∆F holds. The same considerations hold if λ represents a set of
parameters: any combination of them identifies a unique equilibrium state.

Now we are ready to state the nonequilibrium equality discovered by Jarzynski [38]

〈e−βW 〉 = e−β∆F (4.13)

which allows for the calculation of the difference in free energy ∆F = FλB − FλA
between initial and final states A and B by taking the average of the exponential of
the work W . In general this average is taken over an ensemble of nonequilibrium
transformations of the set of parameters λ of the type λA → λB . We can also rewrite
eq. (4.13) equivalently as

∆F = −β−1 log〈e−βW 〉. (4.14)

The result is independent of

• the path in the λ parameter space chosen to perform the ensemble of transfor-
mations A→ B

• the rate at which the switching process is done (or, equivalently, the prescription
used to change the λ parameters) as long as it is kept fixed for any realization
used to take the average.

The crucial quantity to measure is of course the work W , which we can define as

W =
∫ ts

0
dt λ̇∂Hλ

∂λ
(Γ(t)) (4.15)
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where, without loss of generality, we are considering the switching of a single
parameter λ(t), that is varied from an initial state at t = 0 to a final one at t = ts
following an unspecified switching prescription. Γ(t) indicates the microstate of the
system at a certain point of the transformation, i.e. the trajectory of the system in
phase space which describes the time dependence of every variable in phase space.
We remark that, in order to take the average of eq. (4.13), we need an ensemble of
these transformations, that must be characterized by the same switching process
λ(t) and (in general) the same path in parameter space. When these conditions
are fulfilled, then the average is in practice taken over the different trajectories Γ(t)
made by the system during the different realizations. In order to see how eq. (4.15)
is not an arbitrary choice to define the work done on the system, we can simply
observe how the total derivative of the Hamiltonian Hλ can be written as

Ḣλ = λ̇
∂Hλ

∂λ
+ Γ̇∂Hλ

∂Γ (4.16)

which can be interpreted as the First Law of thermodynamics: the left hand side is
the variation of internal energy, while in the right hand side we recognize in the first
term the work performed on the system and in the second term the heat absorbed
by the system.

Before moving to section 4.2 to analyse the possible derivations of eq. (4.13),
we will analyse some insightful limiting cases where the nonequilibrium equality is
already known to be valid. The first one is the case of an infinitely slow switching
process (ts →∞), in which the system is always in equilibrium at any intermediate
state (T, λ(t)), or, more precisely, the system is in quasistatic equilibrium with the
reservoir. In this limit, the nonequilibrium relation (4.14) reduces to

∆F =
∫ λB

λA

dλ
〈
∂Hλ

∂λ

〉
λ

(4.17)

where the 〈...〉λ average refers to the canonical average taken at the generic in-
termediate (equilibrium) state λ; in other words, for a quasistatic transformation
∆F = W .

The opposite case is the one of an instantaneous switching process, that is ts → 0.
In this case the work is simply

W = HλB −HλA = ∆H

and eq. (4.14) becomes

∆F = −β−1 log〈e−β∆H〉λA (4.18)

where the average here is again a canonical average, taken at the (initial) equilibrium
state λA.

The most important difference between eqs. (4.17)-(4.18) and the original nonequi-
librium equality is that the former give the difference in free energy in terms of
canonical averages, while the latter deals explicitly with trajectories Γ(t) out of
equilibrium.

Without loss of generality, we can write the nonequilibrium relation as∫
dWρ(W )e−βW = e−β∆F (4.19)
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where ρ(W ) is the distribution of the values of the work on a ensemble of realizations
of the transformation. In general, it will depend on the details of the system and on
how the switching process is done. In practice what happens is that a finite number
of realizations nR is performed on the system and the work is measured for each of
them. Eq. (4.19) becomes

1
nR

nR∑
i=1

e−βWi ' e−β∆F . (4.20)

Since the averaged quantity is highly nonlinear, a large number of realizations nR
might be needed in an experiment to get the correct ∆F . Further and more detailed
considerations and comments on the statistics that is needed to get convergence to
the right result will be made in section. 4.3.

4.1.3 Relation to the Second Law

We know that the Second Law of thermodynamics must be interpreted statisti-
cally: indeed, eq. (4.12) does not imply that the work W will be always be greater
than the difference in free energy, since occasionally the opposite can be true, even
if the probability of such an occurrence in a macroscopic system is extremely small.
In fact, only the average over an ensemble of transformation has to be greater than
∆F : is this statement compatible with the nonequilibrium work relation?

The answer is yes, and it can be shown in a very simple way. We can consider
Jensen’s inequality [157]

〈ex〉 ≥ e〈x〉 (4.21)

which holds for an average on any value of a real variable x. If we combine it with
eq. (4.13) we get

e−β∆F = 〈e−βW 〉 ≥ e−β〈W 〉 (4.22)

which trivially leads to the Second Law, eq. (4.12).
The nonequilibrium work relation gives also a hint to how small the probability

that one realization of a nonequilibrium transformation violates the Second Law.
Following eq. (4.19), ρ(W )dW is the fraction of realizations that correspond to
trajectories with total work comprised betweenW andW+dW . Then, the probability
the Second Law is “violated” by a single transformation equals the probability that
during one realization the work performed on the systems is W = ∆F − ε, with
ε > 0 being an energy, is ∫ ∆F−ε

−∞
dWρ(W ).

A series of inequalities follow:∫ ∆F−ε

−∞
dWρ(W ) ≤

∫ ∆F−ε

−∞
dWρ(W ) eβ(∆F−ε−W )

≤ eβ(∆F−ε)
∫ +∞

−∞
dWρ(W ) e−βW

≤ e−βε ,



4.1. THE NONEQUILIBRIUM WORK RELATION 75

in the last step eq. (4.19) was used. This brief calculation implies that a violation
of magnitude ε has a probability of happening that decreases exponentially with
βε. For a macroscopic violation ε� kBT the related probability is extremely small,
thus confirming the validity of the Second Law for macroscopic systems (4.6).

4.1.4 Relation to fluctuation theorems

A few years before the discovery of the nonequilibrium work relation by Jarzynski,
a series of new developments began to shed new light on the behaviour of small system
out of equilibrium. These advancements were in the form of so-called fluctuation
theorems, which are valid for systems perturbed far away from equilibrium by some
time-dependent work process. Among the most important ones we mention the one
by Evans and Searles [40] for driven thermostated deterministic systems and the one
by Gallavotti and Cohen [41] for thermostated deterministic steady-state ensembles.
They share the same general form

P (+σ)
P (−σ) ' e

τσ (4.23)

where P (+σ) is the probability of observing a entropy production rate σ over a
nonequilibrium trajectory of time τ keeping the system in contact with an heatbath.
The entropy production rate σ measures how much the system exchanges a certain
amount of heat Q with the external heatbath at temperature T , i.e.

σ = Q

Tτ
.

Theorems of the form of eq. (4.23) are able to explain quantitatively why macroscopic
systems always tend to dissipate or, in other words, we never observe a breakdown of
the Second Law. The heat Q is an extensive quantity, so for large systems σ grows
with their size; eq. (4.23) tells us that the probability ratio of observing a dissipation
(i.e. positive σ) over an equally large absorption (σ negative) grows exponentially with
the size. Fluctuation theorems of this kind explain how macroscopic irreversibility
arises from the time-reversible laws that govern microscopic systems: trajectories
which would violate the Second Law become exceedingly rare when the system size
increases.

A generalization of these results for stochastic and microscopically reversible
systems was derived a few years later by Crooks [42]: it reads

PF(+ω)
PR(−ω) = e+ω (4.24)

where ω is the entropy production of the system driven out of equilibrium over
some time interval. PF(ω) is the probability distributions associated with ω, while
PR(ω) is related to the same transformation performed in a time-reversed way. An
important distinction with respect to fluctuation theorems of the type of eq. (4.23)
is that here we do not consider the entropy production rate, and the nonequilibrium
process is a time-dependent one, as for Jarzynski’s equality. For a detailed derivation
of eq. (4.24) we refer to Section II of ref. [42].
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Interestingly, Crooks’ fluctuation theorem can be seen as a generalization of
the nonequilibrium work relation by Jarzynski: first we make use of the following
relation

〈e−ω〉 =
∫ +∞

−∞
dωPF(+ω)e−ω =

∫ +∞

−∞
dωPR(−ω) = 1; (4.25)

then, Crooks theorem (eq. (4.24)) is valid for systems that start the process from an
equilibrium state (as in the case of Jarzynski’s equality) and that in such case

ω = −β∆F + βW. (4.26)

Now, simply substituting eq. (4.26) in eq. (4.25) leads to the nonequilibrium equality,
eq. (4.13). Equivalently, the theorem (eq. (4.24) can be expressed for a system that
starts in equilibrium as

PF(+W )
PR(−W ) = exp [β(W −∆F )] . (4.27)

A direct consequence of this relation is that if we are able to draw the probability
distribution of the forward process PF(+W ) and the specular one of the reverse
process PR(−W ), the value of the work W for which they are equal, i.e. where
they cross each other, is a good estimate of ∆F itself. For example, this method
was compared to Jarzynski’s equality and to usual thermodynamic integration in
ref. [158] in the case of Monte Carlo simulations for the two-dimensional Ising model.

4.1.5 Experimental evidence

A few years after the introduction by Jarzynski of the nonequilibrium work
relation, its validity was confirmed experimentally [43]. The system of interest has to
be microscopic, since the standard deviation of the average of the work should not be
greater than kBT so that the number of realizations of the transformation necessary
to use in the equality is not too large. The value of the free-energy obtained with
the nonequilibrium work relation is compared to that obtained using the value of
the work performed in a reversible transformation (such that ∆F = 〈W 〉). The
experimental setup is presented in fig. 4.1: during a transformation a molecule of
RNA is stretched between two beads, thus letting it fold or unfold; the force acting
on the molecule was measured by a light trap on the top bead.

The test was made possible by the fact that in this experimental setup the
mechanical unfolding could be performed both reversibly (stretching the molecule
very slowly) and irreversibly (when the RNA was stretched more rapidly). In this
way the results of reversible transformations (for which 〈W 〉 = ∆F ) can be compared
to those obtained from nonequilibrium transformations using Jarzynski’s equality.
The comparison between these two approaches is illustrated in fig. 4.2.

In a nutshell, after nR ∼ 40 realizations of the nonequilibrium transformation, i.e.
of the unfolding of the molecule in an irreversible regime, the estimate of ∆F coming
from Jarzynski’s equality converges to the estimate obtained with slow, reversible
unfolding within statistical error; further realizations would improve the convergence
even more.
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Figure 4.1: Experimental setup for the nonequilibrium work relation test in which a
molecule of RNA is attached to two beads and folded and unfolded both in a reversible and
irreversible way. The bottom bead is moved and stretches the RNA; its position is controlled
by a piezoelectric actuator. A laser trap captures the top bead; the force exerted on the
molecule connecting the beads is determined by the change in momentum of the light that
exits the trap. Image taken from ref. [153].

Figure 4.2: Convergence of results for the free energy difference ∆F obtained with
Jarzynski’s relation as a function of the number of realizations nR of the transformation
(in the image denoted as N), from 1 to 47, for various values of the extension z. On the
vertical axis, the difference between the estimate of Jarzynski’s equality and the estimate of
reversible transformations. Image taken from ref. [43].
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4.2 Derivations
In this section we will review some of the derivations of eq. (4.13) that have been

proposed throughout the last two decades [38, 39, 42, 159–164]. In section 4.2.1
we will focus first on the case of a deterministic Hamiltonian evolution in order to
understand the steps that bring to eq. (4.13) using only basic statistical mechanics.
Then in section 4.2.2 we will review a more general derivation which extends the
validity of the nonequilibrium relation to systems that evolve stochastically; this is
by far the most interesting case if one has in mind an application to Markov chains
and Monte Carlo simulations.

4.2.1 Hamiltonian evolution of an isolated system

A first, possible derivation of the nonequilibrium work relation (4.13) was pre-
sented in the original paper by Jarzynski [38] and it can be obtained in the rather
simple case of no heat reservoir in thermal contact with the system.

The trajectory Γ(t) describes the deterministic evolution of the system that
evolves under Hλ when λ is changed throughout the transformation. At t = 0 (and
λ = λA) the system is at equilibrium and is described by the Boltzmann-Gibbs
distribution

f(Γ, t = 0) = fBGλA (Γ) = 1
ZλA

e−βHλA (Γ) (4.28)

and it evolves under the Liouville equation

∂f

∂t
+ {f,Hλ} = 0. (4.29)

Note that, in general, the system at t > 0 will not be described by the BG distribution
(unless the variation of λ is performed very slowly), but by the potentially very
complicated function f(Γ, t).

A crucial point of this particular derivation is that, since the evolution is deter-
ministic, a particular point at time t in phase space uniquely specifies the trajectory
in phase space, which we denote Γi(t) (where i is an index that runs on the total
number of realizations of the nonequilibrium transformation). This allows us to
define a work function w(Γi, t) that represents the work performed on the particular
trajectory Γi up to time t: the total work W of eq. (4.15) of a particular trajectory
is simply w(Γi, ts). Now we can finally write down the ensemble average over all
possible realizations (trajectories in phase space) of the exponential of the work of
single trajectories as

〈e−βW 〉 =
∫

dΓ f(Γ, ts) e−βw(Γ,ts). (4.30)

Since the system is isolated, the work is the variation in internal energy, i.e.

w(Γ, t) = Hλ(t)(Γ(t))−HλA(Γ(0)) ;

moreover the phase space density is conserved along any trajectory thanks to
Liouville’s theorem

f(Γ(t), t) = f(Γ(0), 0) = 1
ZλA

e−βHλA (Γ)
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and if we insert these last two relations inside eq. (4.30) we have

〈e−βW 〉 = 1
ZλA

∫
dΓ e−βHλB (Γ(ts)) = ZλB

ZλA
(4.31)

which is the central result of ref. [38].
For the case of a system in thermal contact with a heat reservoir, the derivation

is similar: now the Hamiltonian of the overall system (system of interest + reservoir)
is written as

HλΓ +H(Γ′) +Hint(Γ,Γ′) (4.32)

where Hint is the interaction term which depends on the microstates Γ and Γ′ of the
system and the reservoir respectively. The only additional hypothesis that is needed
is that the coupling with the heat reservoir is weak and that Hint may be neglected.

Another way of understanding the derivation of the nonequilibrium work relation
is by noting that we do not want to use the phase space density f(Γ, t) to describe the
evolution of our system, since it can be extremely complicated and most importantly
non-universal. However, we can introduce an alternative statistical representation
which is able to weigh any trajectory according to the work performed on the system
up to a specific time. Let us consider a set of realizations of the transformation
characterized by several distinct trajectories Γi, with i = 1, ..., nR and nR � 1. We
can write the usual phase space density for t > 0 as

f(Γ, t) dΓ ∼ 1
nR

∑
Γi∈V

1 (4.33)

which essentially gives the number of realizations inside a volume V of size dΓ
centered around a point Γ in phase space. Such a density counts all realizations
in the same way; but we can introduce another density g(Γ, t) with a weight that
depends on the work:

g(Γ, t) dΓ ∼ 1
nR

∑
Γi∈V

e−βw(Γ,t). (4.34)

We can write these distribution in a more formal way as

f(Γ, t) = 〈δ(Γ− Γ(t))〉 (4.35)

and
g(Γ, t) =

〈
δ(Γ− Γ(t))e−βw(t)

〉
(4.36)

respectively; here the angular brackets represent the average on the ensemble of
trajectories. At the beginning of the transformation λA → λB the two must be equal
to the Boltzmann-Gibbs distribution:

g(Γ, 0) = f(Γ, 0) = 1
ZλA

e−βHλA . (4.37)

When t > 0 we have no hope of writing the general evolution of f(Γ, t) (which follows
the Liouville equation (4.29)), but we can do it for g(Γ, t). First, we define a new
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phase space density h(Γ, w, t), that is an extended probability distribution of the
trajectories which also takes into account the work associated to each trajectory:

h(Γ, t) = 〈δ(Γ− Γ(t)) δ(w − w(t))〉 ; (4.38)

this distribution evolves in time following

∂h

∂t
= {Hλ, h} − ẇ

∂h

∂w
= {Hλ, h} − λ̇

∂H

∂λ

∂h

∂w
(4.39)

where in the last step we used the definition of w(Γ, t) =
∫

dt λ̇ ∂Hλ/∂λ. We can
now rewrite g(Γ, t) in a more useful form as

g(Γ, t) =
∫

dw h(Γ, w, t) e−βw (4.40)

which agrees with the formal definition given in eq. (4.36). Now, the evolution of
g(Γ, t) is described by

∂g

∂t
= {Hλ, g} − βλ̇

∂H

∂λ
g (4.41)

which follows from the evolution equation written for h(Γ, t, w) (4.39) after integrating
in dw.

The evolution equation (4.41) has the solution

g(Γ, t) = 1
ZλA

e−βHλ(t)(Γ) (4.42)

assuming the initial condition (4.37) and using the chain rule for Poisson brackets

{Hλ, e
−βHλ} = −βe−βHλ{Hλ, Hλ} = 0. (4.43)

Then, if we formally integrate g(Γ, ts) in phase space we get∫
dΓ g(Γ, ts) = ZλB

ZλA
(4.44)

and recalling the definition of g(Γ, ts) (eq. (4.36)) we can rewrite the left-hand side
as

〈e−βW 〉 = ZλB
ZλA

(4.45)

which is the central result of ref. [38].

4.2.2 Master equation approach

In this section we will derive the nonequilibrium relation in the framework of
stochastic processes with the use of a master equation, following mostly the work
of ref. [39]. We start by considering the case of a system whose time evolution is
described by a stochastic phase space trajectory denoted as Γ(t) like in the previous
section. We will assume that the trajectory Γ(t) is entirely characterized by a
transition probability function

P (Γ, t+ ∆t|Γ′, t) (4.46)
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that represents the probability of obtaining the system in a state Γ at time t+ ∆t
given that at time t it was in a certain state Γ′. Stochastic processes that satisfy
this condition are called Markov processes: in practice, the new microstate Γ is
determined only from the previous microstate Γ′ and from any random numbers
generated at time t. We define the transition function R by taking the derivative of
P with respect to the time interval ∆t

R(Γ′ → Γ, t) ≡ ∂

∂(∆t)P (Γ, t+ ∆t|Γ′, t)
∣∣∣∣
∆t→0

(4.47)

which gives the instantaneous rate of transitioning to a state Γ coming from Γ′
at time t and specifies the continuous-time Markov process. We assume that the
dependence of R(Γ′ → Γ, t) on t arises through the set of parameters λ of the
system that are changed throughout the out-of-equilibrium trajectories, as it has
been described in detail in the previous sections. Thus, we can write

R(Γ′ → Γ, t) = Rλ(t)(Γ′ → Γ) (4.48)

that means that all the characteristics of the heat reservoir are constant and all the
time dependence enters only via the λ parameter (from now on we will consider the
case of only one parameter).

Now, since we are mostly interested in many different trajectories, we will consider
the evolution of an ensemble of the Markovian processes which is described by a
time-dependent phase space density f(Γ, t), exactly as in the Hamiltonian evolution
case. The evolution of such processes is described by the following equation:

∂f

∂t
(Γ, t) =

∫
dΓ′ f(Γ′, t)Rλ(t)(Γ′ → Γ) (4.49)

which is abbreviated as
∂f

∂t
(Γ, t) = R̂λ(t)f (4.50)

where R̂λ(t) is a time-dependent operator which acts in the space of phase space
densities f(Γ, t). Eq. (4.50) is the master equation, which completely determines
the evolution of the density f whenever the time-dependence of the parameter λ(t)
(that is the protocol of the switching process) is known and the initial distribution
f(Γ, t = 0) is specified. In the case of stochastic processes, the master equation takes
the role that the Liouville equation for f(Γ, t) has for the Hamiltonian evolution of
section 4.2.1.

Another assumption on our stochastic process is required before moving to the
derivation of the work relation. If we keep λ fixed, then we are dealing with a
stationary Markov process in which the external forces acting on the system (by
changing λ) are time-independent: we require the canonical distribution to be
invariant under such evolution. In the formalism used in this section, this translates
to

R̂λ(t) exp−βHλ(Γ) = 0 (4.51)

that is, the R̂ operator annihilates the Boltzmann-Gibbs distribution; Markovian
processes that satisfy eq. (4.51) are called thermal Markov processes. There is a
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stronger version of this assumption, that is usually referred to as detailed balance,
which can be expressed as

Rλ(Γ′ → Γ)
Rλ(t)(Γ→ Γ′) = exp−βHλ(Γ)

exp−βHλ(Γ′) . (4.52)

With proper multiplication and integration in Γ′ of the terms of eq. (4.52) one can
easily recover eq. (4.51).

Now we proceed as in the second half of section 4.2.1: we define the new phase
space density g(Γ, t) which incorporates a new density Q(Γ, t):

g(Γ, t) = f(Γ, t)Q(Γ, t) ; (4.53)

the function Q(Γ, t) denotes the average value of exp−βw(t) over a set of trajectories.
As before, we can readily express the ensemble average of the total work W = w(ts)∫

dΓ g(Γ, ts) = 〈e−βW 〉. (4.54)

Now g(Γ, t) obeys an evolution equation very similar to the one obtained previously:

∂g

∂t
=
(
R̂λ(t) − βλ̇

∂H

∂λ

)
g. (4.55)

With the usual initial conditions of eq. (4.37) we write the solution

g(Γ, t) = 1
ZλA

e−βHλ(t)(Γ) (4.56)

from which the nonequilibrium relation is easily obtained, this time for arbitrary
thermal Markov dynamics.

4.3 Rare events and dissipation

The peculiar nature of the exponential average of the nonequilibrium work
relation, eqs. (4.13) and (4.14), has an unwanted consequence: the practical determi-
nation of the free energy difference is dominated by relatively few realizations of the
nonequilibrium transformation among all those performed. The behaviour of the
final result of the exponential average depends strongly on such “rare” realizations:
because of this, convergence to the right result can be poor and the total number
of realizations, that from now on we denote with nR, can be rather large when
the correct value is reached. In the last two decades, Jarzynski and collaborators
developed a theoretical background to understand this issue and elaborate its best
treatment in a series of works [165–167].

In order to understand this phenomenon we start by analysing the distributions
showed in fig. 4.3: the first, ρ(W ), describes the distribution of the work W that
is measured across several realizations of the transformation. We stress the fact
that it does not have to be a Gaussian, as in general it will depend strongly on the
properties of the system and how the transformation is performed.



4.3. RARE EVENTS AND DISSIPATION 83

Figure 4.3: In this figure from ref. [165] the ρ(W ) distribution represents the distribution
of the work among the realizations of a nonequilibrium transformation: the measured work
will be found in the region around the peak of ρ(W ) with high probability. The distribution
g(W ) = ρ(W )e−βW represents the distribution of the values of the work that dominate the
exponential average of Jarzynski’s equality.

Of course ρ(W ) is the distribution we use to compute the average of the work:

W =
∫

dW ρ(W )W. (4.57)

Conversely, the other distribution that appears in fig. 4.3, defined as g(W ) =
ρ(W ) e−βW , is the one relevant for the nonequilibrium work relation. Indeed, the
exponential average is nothing but

〈e−βW 〉 =
∫

dW ρ(W ) e−βW =
∫

dW g(W ); (4.58)

thus, the values of W distributed around the peak of g(W ), denoted with W † (not to
be confused with the notation for hermitian conjugation), are the ones that dominate
the exponential average; because of this the realizations whose work happen to be
close to W † are also known as dominant realizations. To compute W † we write

W † = c−1
∫

dW g(W )W (4.59)

with c =
∫

dW g(W ). In practice, the dominant realizations are those that are in
the far left tail of ρ(W ) and, depending on its shape, can be quite rare if compared
to the remaining ones centered around W , which are usually denoted as typical
realizations.

It is now clear that the tail of work distribution ρ(W ) has a special role in the
nonequilibrium work relation; but how many realizations do we need in order to
obtain convergence? In order to obtain an estimate of the minimum value of nR,
we have to take into consideration both the forward (“F”) and the reverse (“R”)
processes: their respective work distributions, PF and PR, are showed in fig. 4.4
and, as predicted by Crooks’ theorem, they cross each other exactly in W = ∆F .
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Figure 4.4: In this figure from ref. [165] the work distributions, PF and PR, of the same
transformation performed in two opposite directions (forward and reverse, respectively) are
presented. Note the minus sign for the reverse distribution to account for the specularity of
the transformation; plus, the shape of the two distributions is different as in general they
are not symmetric with respect to each other and depend strongly on the switching process
and on the physical properties of the system.

In ref. [165] a crucial result for a solid estimate of nR was presented: the
idea is that dominant realizations of the forward process are conjugate twins of
typical realizations of the backward process, and vice versa. Firstly, conjugate twins
realizations are defined as phase space trajectories Γ (one forward, one reverse)
which are related by time reversal: if ΓF(t) is a possible trajectory of the forward
process, then its conjugate pair will be

ΓR(t) = ΓF∗(tfin − t).

The asterisk refers the reversal of the momenta in phase space, that is (q,p)∗ =
(q,−p); this means that the conjugate twin will describe the same events of ΓF(t)
but with time running backwards. A variant of Crooks’ theorem can be written for
twin trajectories

PF[ΓF]
PR[ΓR] = exp(βWF

d [ΓF]) = exp(−βWR
d [ΓR]). (4.60)

which represents a particular relationship between the two probability distributions.
In other words, dominant forward trajectories are typical reverse trajectories in

which time seems to be running backwards: for a thorough physical description of
this behaviour and a formal derivation of this result we refer to [165].

Making use of this duality between dominant and typical realizations, it is
possible to make a good estimate of the probability that one forward trajectory falls
into the dominant region. In particular, the number of realizations needed to reach
convergence can be estimated using

nFR ∼ exp(βWR
d ) and nRR ∼ exp(βWF

d ) (4.61)



4.4. FROM STATISTICAL MECHANICS TO LATTICE GAUGE THEORY 85

for forward and reverse processes respectively. Here Wd = W −∆F is the dissipated
work, which is the crucial quantity for the nonequilibrium relation as the number of
needed realizations grows exponentially with it. In general, if the transformation
is performed relatively slowly, then the dissipated work will be small and the two
distributions will be rather close, leading to good convergence with few realizations,
while if W d turns out to be large the distributions will be distant and the results
may not converge rapidly. Somewhat surprisingly, eq. (4.61) says that the number
of necessary realizations of the forward process is determined by how much work
is dissipated in the reverse process, and vice versa: counterintuitively the direction
in which the process dissipates more is the one in which the exponential average
converges more rapidly.

It is useful to mention that another way to examine this issue is by looking at
how much the two work distributions PF and PR overlap. The amount of overlap
can be quantitatively measured using the Kullback-Leibler divergence, or relative
entropy, which for two generic distributions p0 and p1 is defined as

D[p0||p1] =
∫
p0 ln

(
p0
p1

)
≥ 0; (4.62)

if D = 0 the two distributions are perfectly overlapping. Computing the relative
entropy for the forward and reverse distributions leads to

D[PF||PR] =
∫

dΓFPF[ΓF] ln
(
PF[ΓF]
PR[ΓR]

)
(4.63)

where ΓF and ΓR are conjugate twins; using eq. (4.60) we get the simple result

D[PF||PR] = β
(
W

F −∆F
)
≡ βWF

d ≥ 0 (4.64)

and similarly
D[PR||PF] = βW

R
d ≥ 0. (4.65)

When the dissipated work is too large the overlap is small and thus there is no
convergence; if the distance D is smaller (ideally close to 0), then the nonequilibrium
work relation becomes reliable.

A more quantitative analysis of this issue, in particular a precise estimate of the
bound on nR, is reported in ref. [167].

4.4 From statistical mechanics to lattice gauge theory
In the context of lattice gauge theories the computation of differences in free

energy via Monte Carlo numerical simulations is naturally related to a large number
of physically interesting observables. The most typical case is the determination
of the equation of state of QCD and QCD-like theories and more in general the
exploration of the phase diagram of strongly-interacting theories by evaluating
the pressure, i.e. minus the free energy density. Other notable examples include
the free energy density associated with interfaces between center domains (see
for example [168–170]) and the expectation values of operators such as ’t Hooft
loops [171], which are tightly related to the study of confinement and have been
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closely analyzed on the lattice. In some models even other extended operators, like
Wilson and Polyakov loops, can be expressed in terms of ratios of partition functions
in a proper dual formulation of the theory.

For all the aforementioned observables, the computation either of the free energy
difference or of the ratio of partition functions is usually rather complicated and
cumbersome. Good examples are the “integral method” for the computation of the
pressure (see section 1.3.1) or the “snake algorithm” (see for example its application
for the computation of the v.e.v. of ’t Hooft loops [172]): while these methods
are rather reliable and widely used, they need several independent simulations and
obtaining the final result is usually a non-trivial endeavour.

The constant need for new and efficient methods for the computation of free
energy differences in Monte Carlo simulations is the motivation underlying the
implementation of the nonequilibrium work relation. Indeed, Jarzynski’s equality
can be the foundation for new techniques in lattice gauge theory in which out-of-
equilibrium numerical simulations are exploited to compute a large ensemble of
observables both in an efficient and elegant manner. In this section we review the
demonstration of the validity of the nonequilibrium relation in the context of Markov
chains (even when the temperature is not constant) and then we present its first
actual implementation in a simple lattice gauge model. A full-scale, high-precision
numerical experiment will be later presented in chapter 5.

4.4.1 Jarzynski’s equality for Markov chains

The derivation of the nonequilibrium relation in the case of a Markov chain
follows the steps of the general derivation reviewed in section 4.2.2, with a few
important distinctions. We introduce a slightly different notation with respect to
the previous sections of this chapter, which reflects the fact that we have in mind an
application to discrete statistical systems (such as spin models) that are simulated
numerically. The collective values of the microscopic degrees of freedom of our
system are denoted as φ, which is called a configuration of the system. The partition
function is

Zλ =
∑
φ

exp
(
−Hλ[φ]

T

)
(4.66)

where Hλ is the Hamiltonian of the system which depends on the usual set of
parameters λ. T is the temperature, having set kB = 1. The Boltzmann-Gibbs
distribution is

πλ[φ] = 1
Zλ

exp
(
−Hλ[φ]

T

)
(4.67)

and we recall that it is normalized to 1∑
φ

πλ[φ] = 1. (4.68)

In a Markov chain, new configurations of the system are generated according to the
transition probability function Pλ[φ→ φ′], which gives the probability of going from
a configuration φ to φ′. It is normalized to 1 too:∑

φ′

Pλ[φ→ φ′] = 1. (4.69)
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Like in section 4.2.2, we assume that the system satisfies the detailed balance
condition, which in this case reads

πλ[φ]Pλ[φ→ φ′] = πλ[φ′]Pλ[φ′ → φ]. (4.70)

The evolution of the system in a Monte Carlo simulation is of course not
continuous, but goes through a discrete sequence of configurations φ1, φ2, ...; the
jump from one configuration to the next will be denoted as an update. The out-
of-equilibrium evolution driven by external forces that change the value of the
parameters λ, which has been described in detail in section 4.1.2, now has to
be discretized into a certain number of subintervals. Moreover, the continuous
time t becomes a discrete Monte Carlo time tn; thus the switching process of the
λ(tn) parameters has to be discretized too. For clarity we will simply denote the
intermediate values as λn = λ(tn), so that the entire transformation induced by an
external force on the system will be

λ0 → λ1 → ...→ λN

where N is the number of subintervals. If we consider one particular trajectory of
our system, we will also have a discrete set of N configurations

φ(t1)→ φ(t2)→ ...→ φ(tN )

which represent the microstates of the system during the nonequilibrium transfor-
mation.

The continuous-time definition of the work of eq. (4.15) has to be modified too,
to accommodate the discrete-time dynamics of the Markov chain. In particular the
work is nothing but the sum of the difference in the Hamiltonian at each step of the
Markov process:

W =
N−1∑
n=0

(
Hλn+1 [φ(tn)]−Hλn [φ(tn)]

)
. (4.71)

It is of the utmost importance to state unambiguously how the entire nonequilib-
rium transformation is implemented in the language of a Markov chain. These are
the steps that must be rigidly followed in order to obtain the correct results:

1. the nonequilibrium relation requires that the system at the beginning of the
trajectory is in equilibrium. This means that the starting configuration φ(t0)
must obey the Boltzmann-Gibbs distribution πλ0 [φ(t0)] with respect to the
initial value of the parameters λ0;

2. then, the parameters switch from the initial value λ0 to the first intermediate
value λ1, following the given protocol for the transformation

λ0 → λ1;

3. afterwards, the work done on the system with this first “switch” of λ has to
be computed simply by taking the difference of the Hamiltonian

Hλ1 [φ(t0)]−Hλ0 [φ(t0)];

note that the Hamiltonian is evaluated using the same configuration (mi-
crostate) but different λ;
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4. now the system can go to the configuration φ(t1) by updating the old configu-
ration using the new value λ1

φ(t0) λ1−→ φ(t1);

5. steps 2, 3 and 4 now must be repeated until the end of the transformation. In
general, the parameters are changed following the given prescription

λn → λn+1,

the work performed on the system to do so is calculated

Hλn+1 [φ(tn)]−Hλn [φ(tn)],

and the system is updated using the new value of the parameters

φ(tn) λn+1−−−→ φ(tn+1);

6. at the end of the trajectory, the total work (4.71) is computed.

7. a new equilibrium configuration φ(t0) is generated by thermalizing the system
with λ0, and a new realization of the nonequilibrium transformation can begin.

The validity of the nonequilibrium relation implemented in Markov chains using
the aforementioned procedure will be shown in section 4.4.2 with a derivation in a
slightly generalized framework.

4.4.2 An extension for non-isothermal processes

In the first derivation that Jarzynski proposed in ref. [38] for the nonequilibrium
relation he considered an isolated system whose dynamics are driven by Hamiltonian
evolution. Crucially, the system is first brought to equilibrium with a heat reservoir
at temperature T and then isolated from it so that no heat exchanges are possible:
any variation of T has no effect at all on the transformation. The relation still
holds when considering the system of interest in thermal contact with the heat bath,
but only when interaction with it is weak enough to be negligible. However, when
deriving the relation within the framework of Markovian dynamics like in ref. [39],
the situation is somewhat different: now any interaction with the “heat reservoir”
is encoded in the transition rates and thus heat exchanges are taken properly into
account.

It is clear then that there is no motivation to leave the temperature of the heat
bath unchanged during the transformation, and it is a simple exercise to re-derive
the nonequilibrium equality treating the temperature T as a generic λ parameter.
This was first done explicitly in ref. [173] in the case of a Markov chain; as we will
see, the case of varying temperature leads to a new, generalized Jarzynski’s equality
which can be of great use especially in Monte Carlo simulations.

We review the derivation of ref. [173], which follows the one by Crooks at fixed
T [159], properly adapted to the notation used in ref. [44] and in this thesis. The
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temperature and the λ parameter(s) are changed using a given protocol along the
N steps of the discretized transformation:

λ0 → λ1 → ...→ λN

T0 → T1 → ...→ TN

where λ0 and T0 identify the state the starting configuration φ0 is in equilibrium
with. We start by generalizing the total work of eq. (4.71) to a new quantity that
accounts for the variation in temperature of the “heat reservoir”:

N−1∑
n=0

(
Hλn+1 [φ(tn)]

Tn+1
− Hλn [φ(tn)]

Tn

)
. (4.72)

Then, the quantity that is averaged over multiple realizations of the nonequilibrium
transformation is the exponential of eq. (4.72), which can be rewritten using the
Boltzmann-Gibbs distribution (4.67) as

exp
[
−
N−1∑
n=0

(
Hλn+1 [φ(tn)]

Tn+1
− Hλn [φ(tn)]

Tn

)]
=

N−1∏
n=0

Zλn+1 πλn+1 [φ(tn)]
Zλn πλn [φ(tn)] . (4.73)

We know that this quantity must be averaged over an ensemble of trajectories
(λ0, T0) → (λN , TN ): in order to do so we introduce an average over all possible
“histories” of the system throughout the transformation as an average on all possible
intermediate states. Formally, we write the sum on any trajectory {φ(t)} as a sum
on every intermediate step ∑

{φ(t)}
... =

∑
φ(t0)

∑
φ(t1)

...
∑
φ(tN )

...

so that the average on any trajectory of the quantity of eq. (4.73) is

∑
{φ(t)}

πλ0 [φ(t0)]
N−1∏
n=0

[
Zλn+1

Zλn

πλn+1 [φ(tn)]
πλn [φ(tn)] Pλn+1 [φ(tn)→ φ(tn+1)]

]
(4.74)

where we used the fact that

• the system at t0 is in equilibrium, and thus the configuration φ(t0) obeys the
Boltzmann-Gibbs distribution,

• every time the system is updated with a new parameter λn+1, it has to follow
the transition probability Pλn+1 [φ(tn)→ φ(tn+1)].

All the partition functions but two cancel in eq. (4.74); if we apply the detailed
balance condition (4.70) for πλn+1 and Pλn+1 we get

ZλN
Zλ0

∑
{φ(t)}

πλ0 [φ(t0)]
N−1∏
n=0

[
πλn+1 [φ(tn+1)]
πλn [φ(tn)] Pλn+1 [φ(tn+1)→ φ(tn)]

]
.
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Again, all the distributions cancel except for one, leaving

ZλN
Zλ0

∑
{φ(t)}

πλN [φ(tN )]
N−1∏
n=0

Pλn+1 [φ(tn+1)→ φ(tn)]

which can be easily rewritten recalling the definition of
∑
{φ(t)}, namely

ZλN
Zλ0

∑
φ(t0)

∑
φ(t1)

...
∑
φ(tN )

πλN [φ(tN )]
N−1∏
n=0

Pλn+1 [φ(tn+1)→ φ(tn)].

Here each of the terms of the type∑
φ(tn)

Pλn+1 [φ(tn+1)→ φ(tn)]

can be set to 1 using eq. (4.69), leaving

ZλN
Zλ0

∑
φ(tN )

πλN [φ(tN )]

which, after using the normalization of the Boltzmann-Gibbs distribution (4.68),
leads to the central result. Namely, we have that, for transformations in which also
the temperature T is varied, the nonequilibrium relation〈

exp
[
N−1∑
n=0

(
Hλn+1 [φ(tn)]

Tn+1
− Hλn [φ(tn)]

Tn

)]〉
= ZλN (TN )

Zλ0(T0) (4.75)

holds; if T is constant then we obtain the usual work relation〈
exp

[
− 1
T

N−1∑
n=0

(
Hλn+1 [φ(tn)]−Hλn [φ(tn)]

)]〉
= ZλN (T )
Zλ0(T ) = exp

(
−FλN − Fλ0

T

)
.

4.4.3 A first application to lattice gauge theory

The interface free-energy in the two-dimensional Ising model has been already
studied using Jarzynski’s equality via out-of-equilibrium Monte Carlo numerical
simulations in recent years [158, 174]; we mention also studies for the surface tension
in three dimensions [173].

However, the nonequilibrium equality has been effectively implemented in the
context of lattice gauge theories for the first time in ref. [44], in the study of the free
energy associated to an interface in the Z2 gauge model. This model is a perfect
benchmark for a large-scale test of the efficiency of Jarzynski’s equality in a rather
different context such as lattice gauge theories: indeed, it is the simplest lattice
gauge theory in which a high-precision numerical study of interfaces is possible and
it is a perfect bridge between statistical mechanics and lattice gauge theory. In the
following we will review some of the theoretical aspects of this gauge model and
will analyse in some detail how the calculation of the free energy was performed
using the nonequilibrium work relation. Part of the motivation for this work was to
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compare new accurate numerical results with the prediction of an effective string
theory following a series of works by the Turin group over the last few years. This
analysis will not be covered here; for more details about this and also for further
physical insight on interfaces and their properties we refer to [44] and references
therein.

The dynamics of the Z2 gauge theory in three Euclidean dimensions is described
by the respective Wilson action

SZ2 = −βg

∑
x∈Λ

∑
0≤µ<ν≤2

σµ(x)σν(x+ aµ̂)σµ(x+ aν̂)σν(x) (4.76)

which is structurally the same as the one defined in eq. (1.19): βg is the usual inverse
coupling, and the σµ are link variables that take value in the Z2 group, that is
σµ(x) = ±1. The partition function of the theory can be explicitly written as

ZZ2 =
∑

{σµ(x)=±1}
exp (−SZ2) (4.77)

where the sum runs over all possible configurations of the link variables. This gauge
model possesses a confining phase for small values of βg and a second order phase
transition at βg = 0.76141346(6) [175]. This theory is a perfect bridge between
statistical mechanics and lattice gauge theory: indeed, using the Kramers-Wannier
duality [176, 177] the partition function of eq. (4.77) can be exactly rewritten as the
one of the three-dimensional Ising model, whose Hamiltonian reads

H = −β
∑
x∈Λ̃

∑
0≤µ≤2

Jx,µsxsx+aµ̂, (4.78)

where the sx = ±1 variables are defined on the sites of the dual lattice Λ̃ and the
Jx,µ couplings are defined on the links of the lattice. The new parameter β is related
to the gauge coupling βg via the relation

β = −1
2 ln tanh βg; (4.79)

this notation will be used for simplicity only throughout this section: we stress that
in all other chapters β = 2N/g2. Note that the confining regime of the gauge model
corresponds to the high-β, low-T ordered phase of the Ising model.

The couplings Jx,µ can be set to any value between 1 and −1, corresponding to
ferromagnetic and anti-ferromagnetic couplings respectively. The first step in the
analysis of the behaviour of an interface in this model is to consider one specific
direction µ = 0 and one slice of the lattice containing all the links from the sites x
to sites x+ a0̂: by setting Jx,0 = −1 only for the sites belonging to that slice (while
keeping all the remaining couplings set to 1) we can effectively impose antiperiodic
boundary conditions. This has the effect of creating a frustration in the system,
thus inducing the formation of an interface between two domains with opposite
magnetization. On the other hand, periodic boundary conditions correspond to
Jx,0 = +1 for all links in the system, including those on the aforementioned slice of
the lattice.



92 CHAPTER 4. JARZYNSKI’S EQUALITY

If we denote with Za and Zp the partition function of the three-dimensional Ising
model with antiperiodic and periodic boundary conditions respectively, we can give
a first possible definition of the (adimensional) free energy associated to an interface:

F (1) = − ln
(
Za
Zp

)
+ lnN0. (4.80)

N0 represents the number the sites in the µ = 0 direction, and the rightmost term
accounts for the fact that the interface can be located anywhere in the 0 direction.
Only one large interface should be created in the µ direction, and zero in the
remaining two directions with periodic boundary conditions; however, in order to
take into account the possibility of multiple interfaces forming in the system, an
improved definition was proposed in ref. [178]

F (2) = − ln arctanh
(
Za
Zp

)
+ lnN0 (4.81)

which has been derived under the assumption that such interfaces are indistinguish-
able, dilute and non-interacting.

In ref. [44] a new methodology for the calculation of the free energy of an interface
based on Jarzynski’s equality was introduced. The main idea is to perform out-of-
equilibrium Monte Carlo simulations in which the system switches from periodic to
antiperiodic boundary conditions and vice versa: calculating the work performed
when doing so allows one to compute the ratio Za/Zp that defines the desired free
energy via the nonequilibrium relation. The λ parameter defined in section 4.1.2,
which is varied by external forces throughout the transformation, is identified in this
situation with the couplings Jx,µ in the direction µ = 0 and in a specific slice. In
particular, the transformation is performed between two systems:

• one in which the couplings in the 0 direction and in the N0 − 1 slice are set to
−1, i.e. JN0−1,0 = −1, while all the others are set to Jx,µ = 1,

• and one in which all the coupling are set to Jx,µ = 1.

The protocol that implements the switching process between these two systems is a
linear one, namely

λ (t0 + nτ) = J(N0−1,x1,x2),0 (t0 + nτ) = 1− 2n
N
, with τ = tN − t0

N
(4.82)

where tn represent the “time” that keeps track of the steps performed during the
nonequilibrium trajectory; we recall that the exact prescription that must be followed
during the out-of-equilibrium Monte Carlo simulation is the one described in detail
in section 4.4.1.

Several numerical simulations with different combinations of the number of
steps N during a transformation and of the number nR of realizations of such
transformations have been performed. We report below in table 4.1 the results
obtained for a lattice of sizes N0 = 96, N1 = 24 and N2 = 64; in fig. 4.5 the same
results, both from direct and reverse transformations, are presented and compared
with those obtained independently in ref. [178].
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Table 4.1: Results for the interface free energy of eq. (4.80) from “direct” and “reverse”
realizations of the nonequilibrium transformation from periodic to antiperiodic boundary
conditions in the µ = 0 direction, on a lattice of size N0 × N1 × N2 = 96 × 24 × 64, at
β = 0.223102 (corresponding to βg = 0.758264), and for a different number N of intermediate
steps used to discretize the nonequilibrium evolution of λ. nR is the number of realizations
used in the average over nonequilibrium processes: the product N × nR corresponds to the
number nconf of configurations generated. The reference value for the interface free energy
determined in ref. [178] for these combination of parameters is F 1

s = 6.8887(20). The results
listed in this table are also plotted in fig. 4.5.

N nR nconf F (1), direct nR nconf F (1), reverse
103 64 · 320 2× 107 6.27(20) 64 · 80 5× 106 7.241(67)

5 · 103 64 · 320 1× 108 6.794(20) 64 · 80 2.5× 107 6.996(24)
104 64 · 320 2× 108 6.845(12) 64 · 80 5× 107 6.941(17)

5 · 104 64 · 80 2.5× 108 6.888(8) 64 · 80 2.5× 108 6.893(8)
105 64 · 80 5× 108 6.881(6) 64 · 80 5× 108 6.892(5)
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Figure 4.5: Convergence of our results for the interface free energy—defined according to
eq. (4.80)—obtained in direct (blue bullets) and reverse (red triangles) transformations from
Zp to Za in Monte Carlo simulations at β = 0.223102 (corresponding to βg = 0.758264) on
a lattice of sizes L0 = 96a, L1 = 24a, L2 = 64a. The green band denotes the value of the
interface free energy determined in ref. [178] for these values of the parameters, and with a
different method. N is the number of intervals used to discretize the temporal evolution
of the parameter by which the boundary conditions of the system in direction µ = 0 are
switched from periodic to antiperiodic, according to eq. (4.82).
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A clear pattern emerges when looking at the results for F (1): when the number
N of steps is increased, the values obtained from direct and reverse transformations
neatly converge to the reference value. This behaviour is exactly the one needed
to have a reliable result, which is possible only if the number of realizations nR is
large enough to sample all possible transformation correctly. This is the first clue
that a technique based on Jarzynski’s equality is most effective in the context of
a lattice gauge model when N is pushed to larger and larger values, i.e. when the
transformation is performed as much close as possible to equilibrium.

There are, however, some caveats: the most important one is that a more correct
comparison has to be made by keeping the number of configurations that are created
during all the realizations fixed, that is for a given amount of computational resources.
This is not the case of the data presented in table 4.1, except for the comparison
between the results of line 3 and line 4: these are essentially obtained with the same
number of configurations N ×nR, but the difference in the final result is immediately
evident, nevertheless.

A word of caution is in order also in the estimate of the correct error to be
assigned to the result: the methodology chosen in the analysis performed in ref. [44] is
to use the statistical error (computed with the jackknife technique among all different
realizations) only if the systematic error is negligible. We remark that by systematic
error here we mean the discrepancy between direct and reverse transformations:
its origin is to be found in the insufficient sampling of the exponential average of
the nonequilibrium relation. This is clearly not the case for the results of line 1
in table 4.1, in which the difference between the two results (direct and reverse)
is much larger than the statistical error associated with the average. In such a
case there are two ways to increase the statistics, that is the total number N × nR
of configurations: either by adding more realizations (i.e. increasing nR) or by
repeating the transformation from scratch with more intermediate steps N (i.e. more
slowly). The analysis performed in ref. [44] states that the latter option is much
more efficient than the former, in the sense that convergence to the right result is
reached much faster.

A further comment is useful to explain why in fig. 4.5 the results of direct and
reverse transformations are respectively below and above the reference value in a
systematic way. We already know that, as explained above, any final result must be
independent of the direction of the transformation and so it can be accepted only if the
discrepancy is completely under control or, in other words, the exponential average
is reliable. However, a satisfactory explanation is needed in order to fully appreciate
what happens during the nonequilibrium simulations: as soon as the first step of the
process is initiated the statistical distribution of the system starts to lag behind the
equilibrium distribution, and this lag becomes larger as the transformation goes on.
Since the direct and reverse transformations start from two rather (and sometimes
completely) different distributions, they will reach the final step in different ways,
leading to systematically different results. This phenomenon and the minimum
amount of realizations of the transformation needed to obtain correct results have
been discussed in ref. [166] and briefly reviewed in section 4.3.

Finally, we remark that in general, the use of Jarzynski equality is not supposed
to be symmetric when switching the direction of the transformation, in the sense
that one of them will be more efficient and will converge more rapidly than the
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opposite one. This is clear when analysing the results for the interface free energy:
if we consider again the results of line 1 of table 4.1 it is clear from fig. 4.5 that
the result of the reverse transformation is both closer to the reference value and
with a smaller statistical error. Thus, we conclude that for this particular physical
system, using transformations in which the interface is destroyed is more efficient
and reliable than using transformations in which it is created. We also have to add
that in this setup this distinction is in practice not relevant, since the only regime
in which our results are truly reliable is the one in which the number of steps N is
very large. In such conditions the system is much closer to equilibrium throughout
the transformation and the asymmetries between the two possible directions become
smaller as N grows larger: because of this, the results for the largest value of N are
essentially equally precise and accurate.





Chapter 5

The equation of state from
Jarzynski’s equality

In the last section of chapter 4 we studied how Jarzynski’s equality can be
readily implemented in the context of lattice gauge theories, albeit in a rather simple
case such as the Z2 gauge model. However, the problem of computing differences
in free energy is rather common, as they are related to a vast set of physically
relevant observables. Indeed, a most natural candidate would be the pressure,
which, in the thermodynamic limit, is simply minus the free energy density, see
eq. (1.39). This chapter, thus, will be entirely devoted to an in-depth analysis of
the ongoing effort [44, 179] to use, in the context of non-Abelian gauge theories,
Jarzynski’s equality for high-precision computations of the equation of state. Namely,
we envision nonequilibrium transformations during a Monte Carlo simulation, in
which the temperature of the system is varied, thus allowing the determination of
differences in the pressure.

In section 5.1, following the work of ref. [44], we will analyse in great detail
several aspects of this novel technique; namely, the efficiency of the method, in
particular with respect to older techniques, the dependence on the volume and other
features will be thoroughly discussed. In the second part of this chapter, contained in
section 5.2, we will discuss recent results for the equation of state of the SU(3) pure
gauge theory, with a particular focus on the setup of the out-of-equilibrium numerical
simulations and on the comparison with existing high-precision determinations. A
preliminary version of these results has been presented in ref. [179].

5.1 The pressure via Jarzynski’s equality

Recalling eq. (1.44), we know that the pressure in units of the temperature to
the fourth power is directly related to the logarithm of the partition function Z(T )
of our lattice model in the thermodynamic limit. Moreover, we are usually interested
in differences of the kind p(T )/T 4 − p(T0)/T 4

0 which can be immediately written as
follows:

p(T )
T 4 −

p(T0)
T 4

0
= N3

t

N3
s

[lnZ(T )− lnZ(T0)] = N3
t

N3
s

ln
(
Z(T )
Z(T0)

)
; (5.1)
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the final value of p(T )/T 4 is usually obtained either by choosing T0 small enough so
that p(T0)/T 4

0 ' 0, or fixing p(T0)/T 4
0 with some other theoretical input.

Now, the idea is that the ratio of partition functions on the right-hand side of
eq. (5.1) can be evaluated using the nonequilibrium relation by Jarzynski. Since the
partition functions correspond to two different temperatures, the nonequilibrium
trajectories will vary the parameters that define the temperature in the system under
investigation, switching from T0 to T (and vice versa). We know from chapter 1 that
in Euclidean field theories the temperature T is identified with the inverse of the
extent Lt of the compactified dimension, namely

T = 1
Lt

= 1
a(β)Nt

.

In principle, both Nt and a can be varied during a nonequilibrium transformation in
order to change the temperature; however, the former option has not been taken
into consideration in this work, as it presents a few more technical difficulties in the
practical implementation during a simulation. It would be interesting in the future
to explore this direction too, taking as a reference the fixed scale method briefly
reviewed at the end of section 1.3.1.

The best and most flexible way to implement nonequilibrium trajectories in
which the temperature is switched between two values, is certainly by varying the
lattice spacing a: in practice, this is done by changing the inverse coupling β (which
is not to be confused with the inverse temperature) between the corresponding values
of T . We denote these values respectively β0 and βN (such notation will be clear in
a moment), so that

T0 = 1
a(β0)Nt

←→ T = 1
a(βN )Nt

and the nonequilibrium trajectory can be discretized into N intermediate steps, as
thoroughly discussed in the context of Markov chains and Monte Carlo simulations
earlier in section 4.4.1. The switching protocol for the Wilson parameter β can be
implemented, similarly as in the Z2 gauge model in eq. (4.82), as a linear increase,
namely

βn = β0 + n
βN − β0

N
≡ β0 + n∆β (5.2)

with n = 0, ..., N − 1 indicating the intermediate steps and ∆β the increase in
the Wilson parameter at each step in the transformation. Other protocols (e.g.
non-linear ones) are perfectly valid, but have not been taken into account in this
series of works: however, we remark that different switching processes may increase
the efficiency of the method and more work is needed in this direction.

The exact steps one has to follow during such a nonequilibrium transformation
in a Monte Carlo simulation is described in detail in section 4.4.1: we still have to
specify what in this case is the total “work” (see for example eq. (4.71)), that is,
what we have to actually measure during a trajectory. What we need is the quantity
defined in eq. (4.72), which has to be translated from the language of statistical
mechanics to the language of lattice field theory. In a natural way, the differences
in the ratio H/T appearing in eq. (4.72), that must be computed each time the
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temperature T is varied, are interpreted as differences in the Euclidean action of the
lattice theory when the β parameter is varied.

In fact, this is a somewhat delicate point, since the temperature appearing in
eq. (4.72) must not be confused with the temperature defined in the lattice model.
The temperature T is varied indirectly by changing the bare coupling g2 (which
is absorbed into the definition of the action S) and this lets us compute the ratio
of partition functions of systems characterized by physical temperatures T and T0
respectively.

Before moving on, we observe that from now on, we will focus on the specific
case of pure gauge theories, with no dynamical fermion fields included. The action
S will be the Wilson action, eq. (1.19), or in principle also the Symanzik-improved
version, eq. (1.21) (used, for example, in refs. [6, 106]).

Finally, starting from eq. (4.75), we can write the slightly modified nonequilibrium
relation that can be used to compute the pressure p/T 4 in the lattice theory:

p(T )
T 4 −

p(T0)
T 4

0
= N3

t

N3
s

ln
〈

exp
[
N−1∑
n=0

(S[βn+1, U(tn)]− S[βn, U(tn)])
]〉

(5.3)

and in the following we will denote the total difference in the Euclidean action with

∆S[β0, βN ] =
N−1∑
n=0

(S[βn+1, U(tn)]− S[βn, U(tn)]) ; (5.4)

in this notation, U(tn) represents the configuration of the link variables U at the
Monte Carlo time tn, where t0 indicates the first configuration (at equilibrium) and
tN−1 the last configuration of the trajectory. We stress again the fact that each
term of the sum of eq. (5.4) must be computed using the same configuration Un;
for more details on how to compute these terms correctly we refer to section 4.4.1.
In practice, if we take for example the Wilson action —see eq. (1.19)— the total
difference in the action for a linear switching process such as that of eq. (5.2), can
be written

∆S[β0, βN ] = 6N3
sNt∆β

N−1∑
n=0

Up(tn) (5.5)

where Up(tn) is the action density, i.e. the average plaquette at the n-th configuration
during the nonequilibrium trajectory. Moreover, we remind the fact that the 〈. . . 〉
notation indicates precisely the average over an ensemble of nR realizations of the
transformation β0 → βN , as discussed at length in chapter 4.

As usual, before being able to compute the physical value of the pressure p,
we have to get rid of the quartic divergence in the lattice spacing: a simple and
intuitive way to do so is to follow what is routinely done for example in the integral
method [36]. As explained in section 1.3.1, each plaquette expectation value (i.e.
action density) is computed also at T = 0 and its value is subtracted from the
T 6= 0 value. In the same way, the exponential average on several trajectories of
the quantity defined in eq. (5.4) must be computed also at zero temperature; the
resulting value must be then “subtracted” in order to obtain the correct result for
the pressure. This leads to the following final formula for the determination of the
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physical value of p/T 4:

p(T )
T 4 = p(T0)

T 4
0

+
(
Nt

Ns

)3
ln
〈exp

[
−∆SNt×N3

s

]
〉

〈exp
[
−∆S

Ñ4

]
〉γ

. (5.6)

On the right-hand side of eq. (5.6), ∆SNt×N3
s
is the total variation in the Euclidean

lattice action calculated on a lattice of sizes Nt × N3
s during a non-equilibrium

trajectory starting from a configuration of the initial, equilibrium ensemble with
Wilson parameter β0, to a final configuration, obtained driving the system out of
equilibrium until the inverse coupling reaches its value βN . Similarly, ∆S

Ñ4 denotes
an analogous total variation in the gauge action, but evaluated on a symmetric
lattice of sizes Ñ4; the exponent γ =

(
N3
s ×Nt

)
/Ñ4 is the ratio between the sizes

of the two lattices and it is necessary since the lattice spacetime volumes at T = 0
and T 6= 0 are in general different.

We note that, for a linear switching process such as that of eq. (5.2) and using
the standard Wilson action, we can rewrite eq. (5.6) as

p(T )
T 4 = p(T0)

T 4
0

+
(
Nt

Ns

)3
ln
〈exp

[
−6N3

sNt∆β
N−1∑
n=0

UT 6=0
p (tn)

]
〉

〈exp
[
−6Ñ4∆β

N−1∑
n=0

UT=0
p (tn)

]
〉γ

; (5.7)

this formula will be useful for the comparison with the integral method in section 5.1.2;
moreover, it is clear from this equation that the only quantity that is actually
measured during the nonequilibrium transformation is the value of the plaquette
averaged over the spacetime volume at each intermediate step of the transformation.

In the work reported in section IV of ref. [44], a first benchmark study on the
applicability of the nonequilibrium relation for the equation of state of the SU(2) pure
gauge theory was performed. The pressure in units of T 4 was calculated with eq. (5.6)
using the Wilson action SW –see eq. (1.19)– on lattices of size Nt×N3

s = 6×723; data
obtained both with direct transformations, i.e. when the temperature is increased,
and reverse transformations (in which T is decreased) are presented in table 5.1.

The results obtained with this novel technique have been compared with the
values of the pressure obtained with the integral method in ref. [11] in the very
same conditions, that is using identical lattices and update algorithms; these results
were previously discussed in section 2.2.5 and shown in fig. 2.6. The temperature
range that corresponds to the values of β reported in table 5.1 is approximately
between 0.9Tc and Tc: indeed, the simulations were performed in a rather delicate
region, in the very proximity of the deconfinement transition, where thermodynamic
quantities such as p and ∆ grow rapidly. As it can be inferred from fig. 5.1, there
is a remarkable agreement with older results and among the results of direct and
reverse trajectories. A detailed comparison of the results and of the technique with
the integral method will be discussed later in section 5.1.2.

In principle, the out-of-equilibrium transformations can be performed in several
ways: indeed, in addition to the choice of how many steps N and how many
realizations nR, there is a relative freedom in choosing other characteristics of the
transformation. First of all, we must choose how to perform the “update” of the
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Table 5.1: Results for p/T 4 at different values of β (first column), from simulations on
lattices with Nt = 6 and spatial sizes N3

s = 723 (while the simulations at T = 0 were run on
lattices of sizes Ñ4 = 404) using Jarzynski’s relation eq. (5.6) with a direct (second column)
or a reverse implementation (third column) of the parameter switch, in comparison with
those obtained with the integral method [36] in ref. [11] (fourth column). The temperature
range probed by these values of the inverse coupling β for Nt = 6 is ∼ [0.9Tc, Tc]. The
data in the last line provide a comparison of results from the method based on Jarzynski’s
relation and the integral method, for the same number (3× 104) of gauge configurations.

β p/T 4, direct p/T 4, reverse p/T 4, integral method
2.4058 – – 0.00980(22)
2.4108 0.01122(9) 0.01130(11) 0.01114(22)
2.4157 – – 0.01274(22)
2.4158 0.01276(15) 0.01304(14) –
2.4186 – – 0.01381(22)
2.4208 0.01492(20) 0.01505(16) –
2.4214 – – 0.01501(22)
2.4228 – – 0.01569(22)
2.4243 – – 0.01656(22)
2.4257 – – 0.01751(22)
2.4258 0.01780(35) 0.01774(24) –
2.4271 – – 0.01867(22)
2.428 – – 0.01956(22)
2.429 – – 0.02068(22)
2.43 – – 0.02198(22)

2.4308 0.02354(37) 0.02402(27) –
2.431 – – 0.02341(22)
2.4108 0.01122(9) 0.01130(11) 0.01116(51)

system after the change of the parameter, as described in section 4.4.1. Since we
are dealing with a pure gauge theory on the lattice, the choice naturally comes
down to the heatbath and the overrelaxation algorithms, which are routinely used
in Monte Carlo simulations. A good question is, how many times do we have
to use these update routines before proceeding to the next step in the switching
protocol? Or, equivalently, how do we perform step 4 of the procedure described in
section 4.4.1? Our choice was a rather conservative one, opting for one heatbath
step plus 5–10 overrelaxation steps before changing again β and evaluating the value
of the action: this is quite customary in this kind of simulations, when computing
plaquette expectation values. We remark however that this is not compulsory, since
the nonequilibrium relation by Jarzynski is valid independently of the specifics of
the update: what may vary is the efficiency of the relation in computing p/T 4. By
adding updates we are of course increasing the computational cost of each trajectory,
but on the other hand the system is going closer to equilibrium after each step,
possibly improving the accurateness of the transformation. Each step would also be
less correlated with the previous one, but the implications of this are not entirely
clear yet. In conclusion, more work is needed to understand the dependence of the
efficiency of this method on how the update is practically implemented.
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Figure 5.1: Results for the pressure p (in units of T 4) in the confining phase of SU(2)
Yang–Mills theory, as a function of the inverse coupling β (which controls the lattice spacing
a, and, thus, the temperature T = 1/(aNt)), from simulations on lattices with Nt = 6
and spatial sizes N3

s = 723 (while the corresponding simulations at T = 0 were performed
on lattices of sizes Ñ4 = 404). The results obtained using Jarzynski’s relation eq. (5.6)
with a direct (red squares) and a reverse (blue circles) implementation of the parameter
transformation converge to those obtained in ref. [11] using the integral method [36] (green
triangles).

Before discussing the combined choice of N and nR, it is worth noting that in
order to get the final value of p/T 4, eq. (5.6) can be used in several ways: one can
either build a unique, very long transformation from T0 to T , or combine several
independent transformations T0 → T1, T1 → T2... until reaching the final value
T . In the latter case, the final value of the pressure is obtained by progressively
summing terms obtained with independent calculations, i.e.

p(T )
T 4 −

p(T0)
T 4

0
=
(
p(T1)
T 4

1
− p(T0)

T 4
0

)
+
(
p(T2)
T 4

2
− p(T1)

T 4
1

)
+ ... ;

this is the technique that we chose in order to compute the data in table 5.1: the
results presented in the second column are indeed obtained summing the corre-
sponding terms in the parentheses on the right-hand side of the previous formula.
Thus, in practice the transformations performed in ref. [44] were rather “short”, in
contrast for example with the possibility of a single transformation from β = 2.4058
to β = 2.4308. We will see in detail in section 5.2 that in addition to N and nR, this
implementation of Jarzynski’s equality is quite sensitive to how long the trajectory
is, and thus the temperature range that one intends to probe must be divided
accordingly.
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As mentioned in the previous paragraph, the results from Jarzynski’s relation
presented in table 5.1 were obtained with 5 independent transformations: each of
these was discretized using N = 2000 steps and repeated in nR = 15 independent
realizations. A total of 3×104 configurations were generated for each transformation
(not including thermalization), but we recall that the average of eq. (5.6) was taken
only on the results for ∆S of the nR = 15 realizations. Such transformations were
thus performed very close to equilibrium, as for each step the change in the Wilson
parameter is only of ∆β = 0.0000025. We would like to remark that this approach is
something slightly different from the spirit of Jarzynski’s equality, which is applicable
when the system during the transformation is truly far from equilibrium.

It is interesting then to ask what happens when other combinations of N and nR
are chosen, possibly keeping the number of generated configurations fixed: in order
to do so, we performed more realizations of the transformation β = 2.4158→ 2.4208,
discretizing it with N = 100, 250, 500 and 1000 intermediate steps. The results,
repeated with enough realizations so as to keep N × nR constant, are presented in
fig. 5.2. Here the histograms of the values of ∆SW obtained in direct and reverse
transformations are shown; the logarithm of the exponential average of eq. (5.3),
that we symbolically denote as ∆A:

∆A = ln〈exp
[
−∆SNt×N3

s

]
〉

is shown in fig. 5.2 as a vertical line with the relative error.
Several insightful aspects of Jarzynski’s relation can be analysed by looking at

these histograms: first of all, in the bottom figure (N = 1000 steps) the system during
the transformation is closest to the equilibrium distribution, while it is farthest from
it in the upper one (N = 100 steps). The shape of the distributions of ∆SW is clearly
modified, as they become broader and less centered on ∆A the farther they are from
equilibrium. In the top figure we can distinguish the dominant realizations that we
described in section 4.3: the tails of both the direct and reverse transformations
which dominate the exponential average are clearly visible. On the other hand,
when getting closer to equilibrium, the overlap of the two distributions massively
increases, until they are almost coincident and centered on ∆A. This is clearly
what we expect, since we know from the Second Law (see section 4.1.3) that for
quasistatic transformations the relation 〈W 〉 = ∆F holds: in our case it translates
to 〈∆SW 〉 = ∆A. Moreover, all values of ∆A are approximately in agreement with
each other, indicating good convergence for any combination of N and nR.

If we look at the efficiency in computing the average instead, we know that both
the statistical and the systematic error must be taken into account: for both of them
a pattern emerges, as the lower figure presents the smallest discrepancy between
direct and reverse transformations and also the smallest error bars. We also would
like to add that, since each realization must be independent, the initial configuration
at temperature T0, which must be at equilibrium, has to be uncorrelated from the
initial configuration used for the other trajectories. This means that the number
of configurations that must be generated grows with nR: thus, if nR is very large,
using Jarzynski’s relation is not convenient anymore in terms of computational cost,
since many initial independent configurations must be produced. For this reason, in
the analysis presented in fig. 5.2 we did not consider transformations with N < 100.
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Figure 5.2: Histograms for the total difference in the Euclidean action ∆SW of forward
and reverse distributions of nonequilibrium transformations in the SU(2) gauge theory on a
lattice of spatial size V = N3

s = 723 and temporal extent Nt = 6. ∆SW has been computed
for the transformation between β = 2.4158 and β = 2.4208. Vertical lines represent the value
of the free energy difference ∆F = ln〈exp

[
−∆SNt×N3

s

]
〉 (with the relative error) calculated

with the corresponding distribution. The T = 0 contribution (see eq. (5.6)) has not been
subtracted yet.



5.1. THE PRESSURE VIA JARZYNSKI’S EQUALITY 105

In the end, this test provides qualitative support for the idea that choosing
transformations which are “slow”, i.e. closer to a quasistatic transformation, is
the most efficient way of using the nonequilibrium equality for systems with many
degrees of freedom such as a lattice gauge theory. This is to be contrasted with
the other “specular” option, i.e. constantly increasing nR while keeping the same
discretization of the transformation, which in some cases may be more practical,
since one has simply to increase the statistics of the trajectories instead of generating
new ones. However, in section 5.2, where we will deal with “long” transformations
on larger ranges of temperatures, we will observe that by simply increasing nR the
convergence to the correct result is much slower.

5.1.1 Volume dependence

It is extremely interesting to examine the behaviour of this computational method
when the volume of the system increases: in this section we will attempt to perform
a qualitative test of how the distributions of the total change in the action ∆S are
modified when V changes. First of all, in fig. 5.3 and in fig. 5.4 we can observe the
same ∆SW distribution of fig. 5.2, i.e. with identical lattice spacing, but for spatial
volumes V = 963 and V = 1123, respectively.

From the Ns = 96 simulations we cannot easily discern any qualitative difference
in the patterns that already emerged in the smaller volume case. Instead, in fig. 5.4,
for Ns = 112, the two distributions are visibly farther apart from each other with
respect to the Ns = 72 results; in other words, for a given number of steps N the
overlap of the two distributions is smaller. We can easily provide an explanation of
this behaviour: on one hand, the distribution of ∆SW becomes narrower whenever
the volume is increased since, quantitatively, the width of the distributions has to
go as ∼ 1/

√
V . This happens because the statistics increases with the volume, since

at each step the plaquette is averaged over a larger set of variables.
In order to fully appreciate the qualitative dependence on the volume of the

∆SW distributions, the histograms of the direct distributions for Ns = 72, 96, 112
are showed in fig. 5.5 for a given N .

From these graphs, which are plotted on the total difference in the action
normalized with the volume, the narrowing of the distributions is clearly visible. In
principle this is a potential problem of this technique, since increasing the volume
means that the tails of the distributions are less populated: thus, it would be
more complicated to sample the dominant realizations that control the exponential
average. A possible way to address this problem would be again to choose slower
transformations, i.e. to increase the number of intermediate steps: in this way the
distributions would be essentially centered around ∆A and the relevant trajectories
would be sampled without effort. However, in fig. 5.4 both statistical and systematic
errors are visibly smaller when compared with Ns = 72 and 96, and the results
appear to be highly accurate for any value of N : this peculiar behaviour is still
under investigation and provides a strong motivation for further analyses of this
issue.
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Figure 5.3: Same as fig. 5.2, but for spatial volume V = 963.
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Figure 5.4: Same as fig. 5.2, but for spatial volume V = 1123.
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5.1.2 A comparison with the integral method

In section 4.1.2, we showed how two different limiting cases of Jarzynski’s
equality actually correspond to two methods widely used for numerical simulations
in statistical mechanics. One of these is the so-called thermodynamic integration,
which is reached in the limit of an extremely slow (quasistatic) transformation, so
that every intermediate configuration of the system is in (quasi-)equilibrium. In this
special limit, the ∆β defined previously is very small and the average over different
realizations of the transformation in eq. (5.7) disappears, as its place is taken by the
expectation value of the plaquette of the system in equilibrium at a certain β. Most
importantly, the sum over all the steps of the transformation becomes an integral
on the infinitely many intermediate steps and the discrete increase ∆β becomes an
infinitesimal dβ: in the end, what we obtain is nothing but the main formula of the
integral method, eq. (1.47).

Indeed, whenever one is interested in computing ratios of partition functions,
there is a deep relation between this approach and the integral method, in the sense
that the nonequilibrium relation can be seen as a generalization of the methodology
introduced in [36]: since many details, such as the subtraction of the zero temper-
ature contribution, are the same, a quantitative comparison can be set up rather
straightforwardly.

However, before entering the details of such comparison, a word of caution is in
order: in practice, the integrand of eq. (1.47) is often evaluated only for a limited
number of values of β which are subsequently fitted with some reasonable functional
form. For example, in ref. [11] the pressure was determined by integrating a fit with
spline curves, as reported in section 2.2. This methodology is widely used, but in
principle it can introduce some systematic errors that, in practice, are kept smaller
than the statistical ones and thus under control. It cannot be ignored, though, the
fact that the choice of how many values of β for which Up is computed in eq. (1.47)
is somewhat arbitrary and any related effect on the integration is somewhat difficult
to directly control. This fact makes the comparison with the nonequilibrium relation
more complicated and less rigorous, as the effect on the final result of p/T 4 with
respect to the number of values of β which are effectively simulated is difficult to
discern. Even if we do not deem this observation to be of the utmost importance, we
stress that using Jarzynski’s relation we can check directly the effect of changing N
and nR on the final result, simply by comparing direct and reverse transformations.

In ref. [44] a comparison between the procedure based on Jarzynski’s relation
and the integral method for the determination of the pressure in the SU(2) pure
gauge theory was attempted. The results are reported in table 5.1 and correspond
to a range of temperatures in the confining phase rather close to the deconfinement
transition; the same starting value of p(T0)/T 4

0 is used, while statistical errors are
propagated using the jackknife technique in both methods. With the exception of
the last line, the relative data are not obtained with the same statistics: we recall
that for the integral method we considered the sum of the configurations used to
compute all values of Up, while for the nonequilibrium relation the full statistics is
given by N × nR.

From the data reported in table 5.1 we observe that:

• in our method the error steadily increases with β, as expected, while for the
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integral method it is extremely stable instead: the statistics in the latter case
is higher, since many values of β were simulated, but the spline interpolation
may have also a role in this unusual behaviour;

• in the last line the two methods are compared with the same statistics for the
computation of a single value with high precision: the nonequilibrium relation
seems to be more precise, but on the other hand, it is just a single point and
thus it represents a small sample of the temperature range of interest;

• more in general, the quantitative comparison is somewhat inconclusive: even
if the two methods are closely related to each other, a direct, fair comparison
is complicated by the fact that the pressure is a primary observable in our
technique, but it is not in the integral method.

We would like to conclude this section by noting that, even if directly comparing
the efficiency of these methods for a given amount of computer time is subject to a
degree of arbitrariness, the technique based on Jarzynski’s equality is a clean and
reliable method to compute the pressure in lattice gauge theories.

5.2 SU(3) thermodynamics with Jarzynski’s equality

The determination of the equation of state of the SU(3) pure-glue theory has
been a perfect testing ground for any novel technique that has been proposed in
recent years to compute equilibrium thermodynamics: this is the case of the gradient
flow-based method (see section 1.3.4 and refs. [45, 73]) and for the equation of state
with shifted boundary conditions (see section 1.3.3 and refs. [7, 66]). Indeed, the
pure gauge sector is immune from many of the systematic errors and technical issues
that plague computations with fermion fields, thus presenting in principle a cleaner
framework in which it is possible to analyze the efficiency of any new tool and
method. Moreover, many features of the Yang-Mills theory are very similar to full
QCD, at least on the qualitative and semi-quantitative level, so that high-precision
tests, especially at temperatures not accessible with simulations that include quark
fields, are physically interesting nonetheless.

In this section we present results for SU(3) equilibrium thermodynamics in
the [0.7Tc, 2.5Tc] temperature range, obtained using eq. (5.6) via nonequilibrium
transformations in Monte Carlo simulations. A preliminary version of this study
was reported in ref. [179]. In the following, we will describe with great detail the
setup of these transformations, how systematic errors related to Jarzynski’s equality
have been handled and how these results compare with respect to existing ones.

5.2.1 Lattice setup

As for the benchmark test for the SU(2) case (see section 5.1), the standard
Wilson action, eq. (1.19), was used in all computations. The simulations were
performed on lattices with temporal extents Nt = 6, 7, 8 and 10, in order to provide
a reliable continuum extrapolation. The aspect ratio was always kept quite large,
namely at least Ns/Nt ≥ 12 and in most cases around 16, so that we are in a position
to safely neglect finite volume effects.
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The scale of lattice simulations was set using the Sommer scale r0: in particular,
we used the scale setting relation determined in [112], which is suitable for tempera-
tures up to 2.5Tc for any of the values of Nt that we used. In order to express the
temperature associated to our results in units of the deconfinement temperature Tc,
we used the value Tcr0 = 0.7457(45) computed in [137]. This is not the only option,
though: for example in ref. [7] the authors used Tcr0 = 0.750(4) from [4] (properly
converted in units of r−1

0 from
√
σ); since the difference is very small in principle

there should not be issues from this slight discrepancy.
As already mentioned previously in this chapter, the temperature range of interest

was not probed by a single nonequilibrium transformation, but it was divided in a
number of independent transformations that we will denote with ntransf. A single
transformation is not practically feasible, first of all because of the existence of the
deconfinement phase transition, which puts strong constraints on how Jarzynski’s
equality can be used in the proximity of Tc. We will discuss in section 5.2.2 the
technical problems that the (weakly) first-order transition poses when computing
p/T 4. Anyway, even in regions far away from Tc, very long transformations have
not been used for two different reasons: first, they are not very practical, since the
number of configurations required to have convergence and good precision is usually
very large and, thus, very long simulations would be necessary. Most importantly,
however, they are not efficient: in order not to lag too much behind the equilibrium
distribution during a transformation, the value of intermediate steps N has to be
relatively high; otherwise, i.e. simply increasing the number of realizations nR,
convergence is reached very slowly.

A review of the details of all simulations performed in this work, including the
number of nonequilibrium transformations ntransf and the total number of generated
configurations nconf used during them, are included in table 5.2.

Table 5.2: Setup of lattice simulations for the SU(3) equation of state using Jarzynski’s
equality in the confined and deconfined phase, from 0.7Tc up to 2.5Tc. Nonzero temperature
transformations are performed on lattices of sizes Nt ×N3

s (first two columns), while those
at T = 0 are always performed on lattices of sizes Ñ4 = 484. The range of interest of
the inverse coupling β and the corresponding temperature range are indicated in the third
and fourth columns respectively. The number of transformations ntransf used to cover the
relative temperature range is reported in the fifth column. The approximate total number
of configurations generated during the nonequilibrium transformations is indicated in the
sixth column.

Nt Ns β range T range ntransf nconf

6 96 [5.72785, 5.89985] [0.7Tc, Tc] 3 1.7× 105

6 96 [5.89985, 6.50667] [Tc, 2.5Tc] 6 3.7× 105

7 112 [5.79884, 5.98401] [0.7Tc, Tc] 3 2.4× 105

7 112 [5.98401, 6.6279] [Tc, 2.5Tc] 4 3.3× 105

8 120 [5.86415, 6.06265] [0.7Tc, Tc] 3 2.6× 105

8 120 [6.06265, 6.72223] [Tc, 2.5Tc] 9 1.2× 105

10 120 [5.98408, 6.2068] [0.7Tc, Tc] 5 3.1× 105

10 160 [6.2068, 6.9033] [Tc, 2.5Tc] 8 1.3× 105
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Different ways of dividing the temperature range have been analysed and ex-
perimented with: for instance, only 4 transformations were needed to probe the
deconfined phase on Nt = 7 lattices, while 9 were used for Nt = 8. What emerged
from the analysis performed in this work, is that the length of each transformation
plays a major role in determining the most efficient setup to simulate the desired
temperature range. On one hand, longer transformations require slower switching
protocols and, thus, larger N and more statistics: this is needed in order to avoid
large discrepancies with the result of reverse realizations. On the other hand, a
larger number of transformations ntransf can provide in principle more reliable results,
but, at the same time, requires more thermalized configurations at the start of each
transformation. Indeed, equilibration time has a role in choosing the right setup: in
this work we always used 5000 configurations for T = 0 transformations and 15000
for finite-T transformations.

The general strategy we devised consisted in evaluating first the reliability of
the method with a given combination of N and nR by comparing direct and reverse
transformations; then, if the results were not satisfying, we increased N while keeping
nR fixed until all discrepancies were under control. The other way around, i.e. simply
increasing nR and adding more realizations, was not as fast in reaching convergence
and was mostly deprecated.

We would like to remark that the use of Jarzynski’s relation for the computation
of the pressure, eq. (5.6), provides a very fine analysis of the equation of state with
a handful of configurations. Indeed, for each trajectory we can compute the change
in the Euclidean action not necessarily on the whole transformation, but at any
intermediate step N ′, i.e.

N ′∑
n=0

(S[βn+1, U(tn)]− S[βn, U(tn)]) ; (5.8)

this in principle allows us to compute the pressure difference at any intermediate
step, i.e. for a very large set of temperatures. However, in this work, we opted to
compute differences in p/T 4 every few hundred steps: thus, we produced very fine
results that are also uncorrelated between each other.

5.2.2 Numerical results and discussion

The complete set of results for the pressure in units of T 4 computed on the lattice
at nonzero lattice spacing is reported in fig. 5.6; data obtained in the confining phase
is also showed separately in fig. 5.7.

The setup we chose to probe the temperature range of interest is the following:
each of the ntransf transformations was realized with a number N of intermediate
steps comprised between 103 and 104, corresponding approximately to a change in
the inverse coupling for each step of

βn+1 − βn ∼ 10−4 or 10−5.

For what concerns the number of trajectories nR of each transformation, we always
kept it fixed between 10 and 20.

Computations in the confining phase were particularly challenging, especially for
the largest value of Nt, for which the signal is rather small because of the T = 0
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Figure 5.6: Overall results at finite lattice spacing for the pressure in units of the
temperature to the fourth power in the [0.7Tc, 2.5Tc] temperature range obtained with
Jarzynski’s relation. Data include values obtained on lattices with Nt = 6 (blue circles),
Nt = 7 (green triangles), Nt = 8 (red triangles) and Nt = 10 (orange squares).

subtraction in eq. (5.6). In this region, the number of steps N reached its largest
value across the whole set of transformations: we note that in the end this strategy
proved very effective, radically decreasing statistical and systematic errors even with
modest increases in N .

We recall that, as explained in section 1.3.1 for the integral method, a value for
the initial value of p(T0)/T 4

0 deep in the confining phase has to be set. Either T0 is
low enough so that the pressure is negligible and p(T0)/T 4

0 can be set to zero, or it
can be evaluated with the prediction of a glueball gas, as explained in chapter 2. As
in ref. [11] we chose the second option, computing the pressure of a gas of glueball
states at T0 = 0.7Tc using the masses reported in table 2.4 and using it as the
starting value. In particular we have that the glueball gas predicts

pg(T0)/T 4
0 = 0.00086

for T0 = 0.7Tc. We recall that all differences in p/T 4 computed with Jarzynski’s
equality are added progressively to that value.

In the previous sections of this chapter we stressed the importance of reverse
transformations as an independent check on the result from the usual direction of the
trajectories: indeed, this check has been done for every transformation performed
in this study. An interesting fact emerged from this analysis: in several instances,
even if results from direct and reverse transformations at nonzero T had a relevant
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Figure 5.7: Lattice results for the pressure in units of T 4 in the confining phase (T < Tc)
at finite lattice spacing as in fig. 5.6.

discrepancy, the final, physical result (i.e., the one in which the T = 0 contribution
has been subtracted) was in perfect agreement. This phenomenon is imputable to
the fact that for each difference in p/T 4, two nonequilibrium transformations are
involved, as stated in eq. (5.6): simulations at finite T can present discrepancies
which are attributable to an insufficient sampling of the ensemble of realizations, as
explained at length in section 4.3. At the same time however, such discrepancies are
the same as those observed from simulations on symmetric lattices: what happens,
then, is that these systematic errors mostly cancel each other, resulting in a generally
very good agreement on the renormalized, physical value of p/T 4. A word of caution
is in order though: whenever a discrepancy in the final result is observed, one has
to investigate if and why this cancellation is not present; one way to do so is by
examining the distributions of T 6= 0 and T = 0 transformations separately, as in
the analysis performed on the “work” distributions in section 5.1.

An important consideration that we want to stress is that the transformations
used in this method cannot cross the deconfinement transition: strong disagreement
is observed between results of trajectories going from the confined to the decon-
fined phase, and trajectories which perform the same transformation in the reverse
direction. However, this is not a insurmountable issue, as all trajectories can be
tuned so that they never cross the transition: transformations in the confining phase
terminate at T = Tc, exactly where those in the deconfined phase begin.

Even more intriguing options are in principle available to avoid the transition
completely: one possibility would be to slowly add a coupling to Polyakov loops
in the action during a transformation that crosses the transition and then, when
T > Tc, slowly removing it. In this way one could elegantly bypass the transition
by moving in a sort of transverse phase space, and, at the same time, obtaining
the true physical result. Such inventive approaches to the study of the equation of
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state can be implemented straightforwardly in this kind of technique, albeit their
practical effectiveness is a matter of further study.

To take the continuum limit, the results for each value of Nt have been inter-
polated using cubic spline curves and then the continuum extrapolation has been
performed at fixed temperature with a linear fit in 1/N2

t of finite lattice spacing
results, i.e. with a functional form of the type

p(T,Nt) = p(0)(T ) + p(1)(T )
N2
t

(5.9)

where p(0)(T ) and are p(1)(T ) the fit parameters, the former of which corresponds
to the value of the pressure in the continuum limit. The complete set of continuum-
extrapolated results for the pressure in units of T 4 are reported in table 5.3 and also
in fig. 5.8, along with determinations by the Wuppertal-Budapest collaboration [6]
and by L. Giusti and M. Pepe [7].
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Figure 5.8: Results for the pressure in units of T 4 in the continuum limit obtained with
an implementation of the nonequilibrium relation by Jarzynski. Data obtained in this
work (orange squares) are presented along with recent results by the Wuppertal-Budapest
collaboration [6] (violet circles) and by L. Giusti and M. Pepe [7] (blue triangles).

With the help of fig. 5.8 we can attempt a comparison between results obtained
with radically different methods in the region above the deconfinement transition: we
can safely affirm that good qualitative agreement is found between our novel method
based on Jarzynski’s equality and previous determinations. However, it is rather
evident from this set of data that such agreement is not perfect: indeed, a significant
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discrepancy between the results of the Wuppertal-Budapest collaboration [6] and
the ones obtained by L. Giusti and M. Pepe [7] appears for T > Tc.

This issue was discussed at length in ref. [7]: this discrepancy is clearly visible
for temperatures comprised between Tc and 1.5Tc, and it slowly decreases when the
temperature increases, eventually disappearing for T > 3Tc. We already mentioned
this tension in the data in section 1.4 and it is well illustrated in fig. 1.4, where
results for the trace anomaly are shown in a narrow temperature range. In the
same work, it was observed that results obtained with the integral method in [6] at
very fine lattice spacings agreed well with those extrapolated in the continuum limit
obtained with shifted boundary conditions.

The accuracy reached in computing the pressure p using Jarzynski’s equality
and nonequilibrium transformations is such that a precise comparison with other
computations is possible. Our results apparently tend to favor those of ref. [7] for
temperatures above 1.6Tc, displaying a similar discrepancy with those of ref. [6]. On
the other hand, in the region just above the transition, our results are in disagreement
with both previous determinations, as the data for p/T 4 show a slightly different
shape. More in general, our statistical errors are comparable with those associated
to the results of shifted boundary conditions, while those of ref. [6] are reportedly
much smaller, almost by an order of magnitude.

In order to investigate this issues more in detail, we also computed other equilib-
rium observables, such as the trace of the energy-momentum tensor ∆, the energy
density ε and the entropy density s. We recall that, in order to obtain these quan-
tities, it is necessary to numerically derive the pressure p with respect to T . For
example, the trace anomaly is obtained via eq. (1.42), that we report here

∆(T ) = T 5 ∂

∂T

(
p(T )
T 4

)
.

This is to be contrasted with the integral method [36] and computations in a moving
frame, in which a secondary observable such as the pressure requires numerical
integration of the quantity that is directly computed on the lattice, i.e. the trace
anomaly ∆ or the entropy density s = (ε+ p)/T .

In order to perform the numerical derivation of the pressure, we opted for a
reliable fit of the data that could also be easily derived. In particular, following
ref. [7], we performed first a Padé interpolation of the continuum-extrapolated results
for the pressure, namely using in the region T ∈ [Tc, 2.5Tc] the functional form

p

T 4 = p1 + p2w + p3w
2

1 + p4w + p5w2 (5.10)

where w = ln(T/Tc) and the pi are the coefficients of the fit; the fit yielded χ2
red = 0.33.

By deriving the functional form of eq. (5.10) we obtain the results for the trace of
the energy-momentum tensor, which are reported in table 5.3 and shown in fig. 5.9.

Values for the energy density and for the entropy density can be recovered simply
using a linear combination of p and ∆:

ε = ∆ + 3p and s = ∆ + 4p
T

.
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Figure 5.9: Same as in fig. 5.8, but for the trace of the energy-momentum tensor ∆ = ε−3p
in units of T 4. Also results by Kitazawa et al. [45] (red triangles) are shown.

Results for ε/T 4 and s/T 3 are reported in table 5.3 and shown in fig. 5.10 and
fig. 5.11, respectively.

Looking at fig. 5.9 we can conclude that, again, the determination of the equation
of state performed with nonequilibrium transformations is in remarkable quantitative
agreement with the results of [7] for temperatures above 1.6Tc, while in the proximity
of Tc the situation is markedly different, as the peak of ∆/T 4 does not seem
to correspond with that of previous computations. The agreement with [7] is
substantially better in figs. 5.10 and 5.11, where no discrepancies are observed above
1.2Tc. Again, significant discrepancies with [6] are still present throughout the region
of interest, with the exception of the highest temperatures simulated in this work
(where all determinations tend to agree) and also briefly very close to Tc. The
fact that the disagreement with [6] is more significant for secondary observables, is
certainly due to the fact that, from the perspective of our method, the values of ∆,
ε and s are (at least partially) obtained from derivation of the pressure. Thus, they
are more sensitive to slight changes in the behaviour of p: indeed, apparently small
discrepancies in fig. 5.8 are now more evident.

In figs. 5.9 and 5.11 we also added recent results obtained with the method
based on the gradient flow (see section 1.3.4 for more details). In the case of the
trace anomaly ∆, only a few points are available and they are in good quantitative
agreement with our data; the same cannot be said for the entropy density s, though.
A severe discrepancy with our results appears in the region around 1.4Tc and is
present also at higher temperatures.



118 CHAPTER 5. THE E.O.S. FROM JARZYNSKI’S EQUALITY

 0

 1

 2

 3

 4

 5

 6

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2  2.1  2.2  2.3  2.4  2.5

ε/
T

4

T/Tc

SU(3) - continuum, using Jarzynski's relation

SU(3) - continuum, using integral method [JHEP 07 (2012) 056]

SU(3) - continuum, using moving frame [Phys. Lett. B769 (2017) 385–390]

Figure 5.10: Same as in fig. 5.8, but for the energy density ε in units of T 4.

For what concerns the equation of state in the confining phase, the results for
the pressure are illustrated in fig. 5.8; good agreement is found with results obtained
with all previous determinations

For the computation of the trace anomaly we picked, for the fit of the pressure,
a different functional form with respect to that of eq. (5.10): following what done
in ref. [6], we used a fit inspired by the closed bosonic string model described in
section 2.2.5, namely

p

T 4 = a
T

Tc
+ b log

(
TH
Tc
− T

Tc

)
(5.11)

in which the TH/Tc ratio was set to be 1.098, following [11]; the fit yielded a = −0.0133
and b = −0.0122. From the derivation of eq. (5.11), the trace is readily obtained, as
well as energy and entropy density: all these observables show good agreement with
previous results within statistical errors.

Before moving to the conclusions, we would like to add a few more comments
regarding the comparison between our results and other determinations.

• In the secondary observables for T > Tc, the agreement between our results
and [7] is not as good as it is for the pressure: this is particularly evident for
the trace anomaly ∆, which presents non-negligible discrepancies. One possible
explanation could lie in the Padé interpolation used to numerically derive the
pressure p, which might add a systematic effect not completely under control.

• More in general, when comparing our results with previous determinations,
the discrepancies are quantitatively different depending on the observable:
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Figure 5.11: Same as in fig. 5.8, but for the entropy density s = (ε+ p)/T in units of T 3.
Also results by Kitazawa et al. [45] (red triangles) are shown.

this might be a clue that the numerical derivation/integration performed to
compute secondary quantities in each technique might not provide the correct
statistical error.

• Finally, if one picks the value of r0Tc used in [7] (instead of that computed
in [137] and used in this work), the disagreement with the data obtained
in a moving frame is more modest, even if these two values of the critical
temperature are compatible with each other; thus, we would like to remark
that uncertainties in Tc may play a role in understanding such discrepancies.

The method based on Jarzynski’s equality has proved to be highly reliable in
computing the pressure and, thus, the observables related to the equation of state of
the SU(3) pure gauge theory. We have to remark that the use of nonequilibrium
transformations to compute differences in p/T 4 requires a careful planning: indeed,
it is highly recommended to perform a preliminary study on the efficiency and on the
reliability of such transformations. Three main factors must be taken into account
when establishing the setup of the simulations: the number ntransf of transformations
to use to cover the entire temperature range, the number nR of realizations used to
repeat each transformation and the number N of intermediate steps used to discretize
each nonequilibrium trajectory in the Markov chain. The interplay between these
factors is crucial in minimizing the computational cost, while keeping at the same
time any systematic discrepancy under control.

We cannot stress enough the importance that reverse transformations have when
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Figure 5.12: Same as fig. 5.8, but in the confining phase, for temperature comprised
between 0.7Tc and Tc.

using Jarzynski’s equality: they represent a crucial tool for checking in an independent
way the reliability of each transformation. The comparison between the results of
direct and reverse trajectories is able to tell if the sample of realizations is good
enough, and in principle even which of the two directions is to be preferred. They
are truly independent, since the initial configuration of the reverse transformation is
thermalized with a distribution which is quite different with respect to the direct
one.

Another interesting implication of the possibility of performing transformations
either increasing or decreasing the temperature can be found in the proximity of
the transition, where it is more difficult to correctly thermalize the system and in
general any simulation is more expensive. In this situation, we can easily perform
transformations that go towards the critical temperature, from above or from below,
since the initial configuration has been thermalized far from Tc: indeed, we observed
that the results are far more reliable than those from transformations that begin
close to Tc.

We also remark that this method can be extremely efficient: instead of producing
large amounts of configurations (approximately) at equilibrium like in other methods,
during a nonequilibrium transformation we can exploit the autocorrelation between
configurations. This is true since, in the end, the average is not done on the
measurements of each configuration, but on different (and uncorrelated) realizations
of the same transformation. Moreover, this technique is also very effective in
producing several points at different temperatures within the same transformation:



5.2. SU(3) THERMODYNAMICS WITH JARZYNSKI’S EQUALITY 121

in eq. (5.8) we observed how at any intermediate step the difference in p/T 4 can be
calculated. If a transformation is discretized in a few thousand steps, ten or even
more values of p/T 4 can be extracted, making the most of each configuration that
we generate.

Table 5.3: Complete set of results in the continuum limit for the equation of state of
the SU(3) pure-glue theory as a function of the temperature, namely the pressure (second
column), the trace of the energy-momentum tensor (third column), the energy density
(fourth column) and the entropy density (fifth column).

T/Tc p/T 4 ∆/T 4 ε/T 4 s/T 3

0.72 0.0023(3) 0.0137(38) 0.021(17) 0.023(17)
0.78 0.0041(15) 0.0200(57) 0.032(20) 0.036(21)
0.84 0.0040(23) 0.0286(87) 0.041(23) 0.045(25)
0.90 0.0078(17) 0.044(14) 0.067(24) 0.075(26)
0.96 0.0117(26) 0.072(23) 0.107(32) 0.119(35)
1.02 0.0418(28) 2.001(78) 2.127(78) 2.169(79)
1.08 0.1698(32) 2.426(27) 2.936(30) 3.106(32)
1.14 0.3064(42) 2.520(34) 3.439(39) 3.746(41)
1.20 0.429(6) 2.438(25) 3.724(38) 4.153(43)
1.26 0.550(5) 2.276(16) 3.927(27) 4.477(32)
1.32 0.651(5) 2.089(14) 4.041(23) 4.693(27)
1.38 0.739(5) 1.902(15) 4.118(22) 4.856(26)
1.44 0.816(7) 1.728(16) 4.177(24) 4.993(30)
1.50 0.878(6) 1.571(16) 4.206(27) 5.084(32)
1.56 0.938(7) 1.432(15) 4.245(26) 5.182(31)
1.62 0.988(7) 1.309(14) 4.273(26) 5.261(31)
1.68 1.043(7) 1.201(12) 4.329(27) 5.372(34)
1.74 1.083(6) 1.106(10) 4.355(25) 5.437(30)
1.80 1.122(6) 1.022(9) 4.389(25) 5.511(31)
1.86 1.146(6) 0.949(8) 4.386(24) 5.532(30)
1.92 1.179(7) 0.883(8) 4.420(25) 5.599(32)
1.98 1.202(8) 0.825(8) 4.431(27) 5.633(35)
2.04 1.229(8) 0.773(8) 4.459(28) 5.687(35)
2.10 1.248(8) 0.727(9) 4.471(29) 5.719(37)
2.16 1.264(8) 0.685(9) 4.476(27) 5.739(34)
2.22 1.282(7) 0.647(10) 4.494(27) 5.776(34)
2.28 1.301(8) 0.613(11) 4.516(30) 5.817(37)
2.34 1.316(8) 0.582(11) 4.530(29) 5.846(37)
2.40 1.333(7) 0.554(12) 4.554(26) 5.887(33)
2.46 1.353(7) 0.528(12) 4.588(28) 5.941(35)





Concluding remarks

In this thesis, many aspects regarding the thermodynamics of pure gauge theories
have been investigated, with a particular focus on the determination of the equation
of state. The calculation of quantities such as the pressure and the trace of the
energy-momentum tensor of strongly-interacting theories encloses precious physical
information on the mechanisms at work both in the confining and deconfining
phases, which can be revealed through the predictions of effective theories and
phenomenological models.

For what concerns the confining phase, the study discussed at length in chap-
ter 2 [11] is a clear example of how it is possible to use precise thermodynamical
results from lattice simulations to extract new insights on the physical degrees of
freedom of the theory, and in particular to investigate the spectrum of high-lying
glueball states. Indeed, the equation of state of SU(2) and SU(3) pure-glue theories
is a perfect test not only for the hypothesis that a weakly-interacting glueball gas is
able to describe the behaviour of these models for T < Tc, but also to quantitatively
determine whether the glueball spectrum is indeed Hagedorn-like, and what kind
of density of states it might possess. In this work, which is a natural prosecution
of older studies [5, 9], the theoretical input of an effective string model for the flux
tube of SU(N) theories has been crucial, providing an accurate prediction for the
exponential-like spectrum with no free parameters. The fact that this approach
provides remarkable agreement between lattice results and the contribution of a
gas of glueballs both in the N = 2 and N = 3 cases highlights its predictiveness:
even if they are qualitatively similar, their quantitative differences (the order of the
transition and the presence of C = −1 states) are elegantly taken into account by
the effective closed string model. Moreover, this study also serves as a new and
intriguing way to analyze the predictions of effective string theory: namely, we find
quantitative support to the idea that low-energy dynamics of SU(N) non-Abelian
gauge theories can be well described with a bosonic string model, whose details
coincide with those predicted by the Nambu-Gotō action.

This line of research can be developed also with an alternative, more phenomeno-
logical approach [12], which has also been discussed at the end of chapter 2. For the
first time in pure-glue theories, repulsive interactions among glueball states have
been taken into account by including effective-volume effects, as previously done in
QCD with the HRG model [143–146]. As in the non-interacting case, pure gauge
theories provide a relatively simple framework from a conceptual and computational
point of view, in which new approaches can be accurately tested. Starting from the
inclusion of an Hagedorn-like glueball spectrum, as in [11], this study modeled the
contribution to thermodynamics of a repulsive interaction with a new free parameter,
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namely the “effective radius” for the lightest glueball. An accurate quantitative
description of lattice data is indeed possible: the best results have been obtained by
assuming that the eigenvolume assigned to a glueball state is inversely proportional
to its mass. Remarkably, the value of the 0++ effective radius obtained from these
fits was consistent between SU(2) and SU(3) pure gauge theories, confirming a
posteriori the robustness of the analysis.

Even if not directly related to the equation of state, in chapter 3 we introduced
the use of a new quantity in gauge theories (i.e., the ξ/ξ2nd ratio) which could be
instrumental, albeit in an indirect way, in the study of the QCD phase diagram.
Indeed, the ratio between the exponential correlation length and the second moment
correlation length provides extremely precious information on the spectrum of the
excitations of the flux tube, with modest computational effort. In practice, this
quantity can be computed in the context of effective Polyakov loop models, to
see if they are able to capture the rich spectrum of the original theory and, in
principle, which kind of terms have to be added to the Polyakov loop action that
characterizes them. In a recent work [35], the ξ/ξ2nd ratio has been calculated in the
confining region of the SU(2) pure gauge theory. The results provided clear evidence
of what kind of behaviour one has to expect from the original theory: namely, that
this ratio is very close to 1 in the very proximity of the transition, and that it
gets larger and larger as the temperature decreases. Moreover, as shown at the
end of the chapter, effective string theory provides a qualitative description of the
mechanisms underlying the sudden increase of ξ/ξ2nd; however, intrinsic limitations
of the effective string approach prevent a quantitative study of the phenomenon. We
also mention that, very recently, the ξ/ξ2nd ratio has been computed in ref. [180]
for an effective Polyakov loop model built with the relative weights method on a
SU(3) gauge theory with dynamical staggered fermions of mass 695 MeV. In this
work, large-distance couplings between Polyakov loops were included; in this setup
the value ξ/ξ2nd = 1.27(3) was found, clearly compatible with a rich spectrum of
excitations.

The last part of this manuscript is devoted to the introduction of a novel method
for the calculation of the equation of state in pure gauge theories, based on Jarzynski’s
equality. In chapter 4 we discussed how this well-known relation of nonequilibrium
statistical mechanics has been recently [44] generalized and implemented for the first
time in numerical simulations of lattice field theories, namely in the computation
of the free energy associated to an interface in the Z2 gauge model. The possible
applications of this result in lattice gauge theory cover a vast range of observables,
as, in principle, any quantity related to differences in free energy (or, equivalently, to
ratios of partition functions) can be computed using Jarzynski’s equality. We remark
however that the practical implementation of this relation is limited to cases in which
the expectation value of the observable can be sampled efficiently in a Monte Carlo
simulation: a perfect example is the measurement of the pressure of non-Abelian
gauge theories at nonzero temperature. As noted multiple times throughout this
thesis, new methods [66, 72] have been recently proposed as an alternative to the
integral method [36], i.e. the standard (but computationally challenging) way to
calculate p and other quantities. In chapter 5 we showed how Jarzynski’s equality
provides a simple and efficient technique to compute directly the equation of state
of SU(N) Yang-Mills theories, through the use of nonequilibrium transformations



125

during Monte Carlo simulations. Results obtained with this technique proved to be
very competitive when compared to recent determinations [6, 7, 45]: moreover, a
few discrepancies with results of other methods emerged, more or less significant
depending on the observable under investigation. It would be interesting then, to
generalize this method to simulations with dynamical fermion fields, in order to
pursue this kind of comparisons also for results of the equation of state of full QCD,
either with Wilson or staggered fermions.
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