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Abstract
We prove new variation formulae for the volume of coassociative submanifolds, expressed in
termsofG2 data. These formulae highlight the role of the ambient torsion andRicci curvature.
As a special case, we obtain a second variation formula for variations within the moduli space
of coassociative submanifolds. These results apply, for example, to coassociative fibrations.
We illustrate our formulae with several examples, both homogeneous and non.

Keywords Calibrated geometries · G2 manifolds · Coassociative submanifolds · Volume
variation formulae

1 Introduction

This paper concerns the calculus of variations of the volume functional for submanifolds, in
a specific geometric context. It is based upon two guiding principles.

Variation formulae in calibrated geometry. Recall, in the general setting of Riemannian
geometry, the first variation formula for volume (notation explained below):

d

dt
Vol(�t )|t=0 = −

∫
�

H · Z⊥ vol0 .

It is an interesting question whether this formula, and/or the second variation formula, have
alternative expressions in the more restrictive context of calibrated geometry [9].

Calibrated geometry is defined by a global differential form α such that |α| ≤ 1. We then
say that a submanifold� is calibrated if |α|� | = 1; equivalently, α|� = vol� . In this context,
there are two fundamental facts that should be taken into account:

• α provides an extension of the volume form of a calibrated submanifold to a global form
on the ambient space. One might expect that, in this context, an alternative first variation
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formula will incorporate ambient data related to the calibration, rather than data defined
only along the submanifold by the Riemannian structure (such as H ).

• If one adds the condition dα = 0 then any calibrated submanifold is automatically area
minimizing, thus in particular minimal. Any variation formula should reproduce this fact.

Analogous considerations hold for the second variation formula. In particular, the area-
minimizing property implies stability, i.e. the second variation is non-negative. In this sense,
in the closed case dα = 0 most of the information typically contained in the variation
formulae is already known by other means.

We shall be interested in the more general scenario, in which closedness is not required.

G2 vs. Kähler geometry. More specifically, the goal of this paper is to show how the above
plays out in the context of G2 geometry. Here, one deals with 7-dimensional manifolds
endowedwith a certain non-degenerate 3-form φ, whichwe shall always assume to be closed:
dφ = 0. From some points of view, this set-up strongly resembles the case of 2n-dimensional
Kähler manifolds, which are endowed with a non-degenerate closed 2-form ω. Indeed, the
formal analogies between these two geometries have classically been one of the guidelines in
the development of G2 geometry. Concerning submanifolds �, the analogy continues on the
G2 side with the class of coassociative submanifolds, defined by the condition φ|� = 0, on
the Kähler side with the class of Lagrangian submanifolds, defined by the conditionω|� = 0.

The link to the first point, above, is the fact that coassociative submanifolds can
alternatively be described as calibrated by ψ :=�φ, the Hodge dual 4-form.

Putting all this together, the main goal of this paper is to investigate the first and second
variation formulae for coassociative submanifolds, in the general scenario in which ψ is not
closed. In deference to the above analogy, along the way we shall compare our results to a
second variation formula obtained by Oh [16] for Lagrangian submanifolds.

The analogy between G2 and Kähler geometry breaks down, however, on two vital, inter-
related, issues.

1. In the G2 case, all other structures (metric, orientation, etc.) are generated by φ itself.
This is in stark contrast with theKähler condition, which can be defined as a compatibility
condition between three a priori independent structures (J , g, ω): the remaining degrees
of freedom, i.e. the possibility of “playing one structure against the other", provides a
useful handle in many directions of research in Kähler geometry.

2. Kähler manifolds are automatically torsion-free, in the sense that the Levi–Civita con-
nection defined using the SO(2n)-frame bundle restricts to the U(n)-frame bundle. G2

manifolds are torsion-free in the analogous sense if and only if a second condition is
imposed: dψ = 0. We have already mentioned that this condition has strong implica-
tions for coassociative submanifolds. More generally, it has very strong implications for
the whole of G2 geometry, suddenly pushing it much closer to the geometry of Calabi-
Yau manifolds: a very small part of the wide world of Kähler geometry. For both reasons,
we will avoid assuming dψ = 0.

Our main result is a new second variation formula, specific to coassociative submanifolds:
Theorem 3.4. One of the typical goals of such a formula is to allow us to detect geometric
conditions ensuring that a minimal submanifold is also stable. This is achieved in Corollary
4.3.

Along the way, in order to facilitate comparisons, we discuss both the standard and the
Lagrangian variation formulae. In this regard, we wish to emphasize the following points:

1. The standard second variation formula contains a non-geometric jumble of curvature
terms. One of the main merits of Oh’s Lagrangian formula is to show how, in the Kähler
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context, these terms can be rearranged into the Ricci curvature. Interestingly, our formula
for coassociative submanifolds also contains a Ricci term.

2. As perhaps should be expected, torsion forces itself into the second variation formula
for coassociative submanifolds leading to a new challenge: in order to ensure stability of
the submanifold, it is also necessary to control the sign of the torsion term. In Sect. 4, we
show how this can be done in the context of G2 manifolds satisfying a natural “quadratic
condition", introduced by Bryant [3]. This is the key ingredient to Corollary 4.3.

The last three sections present several classes of examples, which also serve as a useful
testing ground for our results. Section5 shows how our formulae play out in the context of
Bryant’s “Extremally Ricci-Pinched" G2 manifolds. Here, we study two concrete ambient
manifolds due to Bryant and to Lauret, and several families of coassociative submanifolds,
some of which are new in the literature. Section6 provides a reformulation of our formulae in
the context of coassociative fibrations defined by a Riemannian submersion. This is applied
to a classical example due to Fernández [7]. Section7 presents a method to build new, non-
homogeneous, examples by perturbing the Fernández closed G2 structure.

2 First variation formulae

Let us start by reviewing the classical formula.

The classical setting. Let �k be a compact oriented manifold. Let (Mn, g) be a Riemannian
manifold. Let ιt : � ↪→ M be a curve of immersions. The induced metric defines volume
forms volt on the image submanifolds �t . We may pull them back to �, obtaining the curve
of volume forms ι∗t volt . This allows us to compute the volume of the image submanifolds
using the fixed manifold �: Vol(�t ) = ∫

�
ι∗t volt .

We are interested in understanding how the volume changes with t . As a first step, let us
investigate the variation of the volume forms.

Since the bundle of volume forms is trivial there exists a family of functions f (t) : � → R

such that
ι∗t volt = f (t) ι∗0 vol0 .

The variation of ι∗t volt corresponds to the t-derivative of f (t).
Concerning notation, set Z := d

dt ιt . With respect to the submanifolds, we can write Z as
a sum of tangential and normal components: Z = Z� + Z⊥. Let H = tr�(∇⊥) denote the
mean curvature vector field of �0.

Lemma 2.1 d
dt f (t)|t=0 = div�(Z�) − H · Z⊥.

Proof Since both sides are well defined independently of coordinate systems, to prove the
statement at any point p ∈ � we can choose normal coordinates with respect to the metric
at time t = 0. This provides a local basis v1, . . . , vk which is orthonormal at p. The equality
ι∗t volt = f (t)ι∗0 vol0 then implies that, at p, f (t) = |ιt∗v1 ∧ · · · ∧ ιt∗vk |.

Notice that

d

dt
f (t)|t=0 = 1

2

2(∇Z (ιt∗v1 ∧ · · · ∧ ιt∗vk), ιt∗v1 ∧ · · · ∧ ιt∗vk)
|ιt∗v1 ∧ · · · ∧ ιt∗vk |

∣∣∣∣
t=0

=
k∑

i=1

(ιt∗v1 ∧ · · · ∧ ∇Z (ιt∗vi ) ∧ · · · ∧ ιt∗vk, ιt∗v1 ∧ · · · ∧ ιt∗vk)|t=0.

123



   24 Page 4 of 27 Annals of Global Analysis and Geometry            (2024) 65:24 

By construction [Z , ιt∗vi ] = 0 so ∇Z (ιt∗vi ) = ∇ιt∗vi Z . Substituting t = 0 we find

d

dt
f (t)|t=0 =

k∑
i=1

(v1 ∧ · · · ∧ ∇vi Z ∧ · · · ∧ vk, v1 ∧ · · · ∧ vk).

Clearly, the only relevant component of ∇vi Z is (∇vi Z · vi )vi . Separating the tangential and
perpendicular components and using orthogonality, we find

d

dt
f (t)|t=0 = (∇vi Z

� · vi )|v1 ∧ · · · ∧ vk |2 + (∇vi Z
⊥ · vi )|v1 ∧ · · · ∧ vk |2

= div�(Z�) − H · Z⊥.


�
Corollary 2.2 d

dt Vol(�t )|t=0 = − ∫
�
H · Z⊥ι∗0vol0.

In other words, −H is the L2-gradient of Vol, defined on the infinite-dimensional space
of submanifolds in M .

G2 manifolds and coassociative submanifolds. Let M7 be a 7-manifold endowed with aG2

structure φ (not necessarily closed or co-closed). Let ψ = �φ, where � denotes the Hodge
operator determined by the metric gφ and the orientation induced by φ. We shall follow the
conventions in Bryant [3], so the pointwise models on R

7 for φ and ψ are

φ = 123 + 1(45 + 67) + 2(46 − 57) − 3(47 + 56),

ψ = 4567 + 23(45 + 67) − 13(46 − 57) − 12(47 + 56),

where 123 (or, at times, e123) is shorthand for e1 ∧ e2 ∧ e3, etc. Notice, in both cases,
the appearance of self-dual forms with respect to 4,5,6,7. Moreover, we shall use Bryant’s
compact notation

φ = 1

6

∑
i, j,k

εi jk e
i ∧ e j ∧ ek =

∑
i< j<k

εi jk e
i ∧ e j ∧ ek =

∑
i, j,k

εi jk e
i ⊗ e j ⊗ ek,

where the εi jk ∈ {±1, 0} are anti-symmetric with respect to the indices and are chosen so as
to reproduce the initial expression for φ.

Both φ and ψ satisfy the calibration inequality:

• for any oriented 3-plane π in T M , |φ|π | ≤ volπ . The 3-plane is called associative if
equality holds;

• for any oriented 4-plane π in T M , |ψ|π | ≤ volπ . The 4-plane is called coassociative if
equality holds.

It is important to stress the fact that associative and coassociative planes have a canonical
orientation: that for which volπ = φ|π . We shall always consider them with this orientation.

A 3-plane is associative if and only if its normal 4-plane is coassociative. The group G2

acts transitively on the space of associative 3-planes, thus also on the space of coassociative
4-planes ([9, Theorem 1.8, p. 114]).Wemay thus always assume that, in the pointwisemodel,
a coassociative plane π is spanned by e4, e5, e6, e7 and that its normal space is spanned by
e1, e2, e3. Furthermore, the isotropy subgroup of π acts like SO(3) on the normal space ([9,
eq. (1.9) p. 115]).Wemay therefore also assume that any given normal vector Z coincideswith
e1. This often facilitates studying the behaviour of certain tensors and contractions in terms
of the pointwise models of ψ and φ. In particular, the operation Z 
→ (Z�φ)|π produces an
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isomorphism between the normal (associative) space π⊥ and the space of self-dual 2-forms
�2+ on π .

Concerning the above inequalities, Harvey–Lawson [9] provide explicit characterizations
of the difference. Regarding ψ , they show: ∀v1, . . . , v4 ∈ TpM ,

(ψ(v1, . . . , v4))
2 + |C(v1, . . . , v4)|2 = |v1 ∧ · · · ∧ v4|2,

where C ∈ 
(T ∗M⊗4 ⊗ T M) is the coassociator tensor, depending linearly on φ.
Let � be a 4-dimensional compact oriented manifold. We will say that an immersion

ι : � ↪→ M is coassociative if ι∗ψ = ι∗ vol; equivalently, up to orientation, ι∗φ = 0. We
will often identify � with its image.

As mentioned in the Introduction, the fundamental lemma of calibrated geometry shows
that, if dψ = 0, then any coassociative submanifold is automatically volume minimizing in
its homology class. In particular it is minimal, thus H = 0, and stable. We shall be interested
in understanding what happens in the alternative setting dφ = 0.

Recall, cf. e.g. [12], that there exists a global endomorphism T on M such that ∇Zφ =
T (Z)�ψ . Recall also the decomposition of the bundle of p-forms on M into G2-irreducible
subspaces �

p
k , where k denotes the dimension of the subspace. In particular,

�1 = �1
7, �2 = �2

7 ⊕ �2
14, �3 = �3

1 ⊕ �3
7 ⊕ �3

27.

Up to the standard musical isomorphisms, one can apply this decomposition to T . It turns out
that, when φ is closed, T (Z) = τ2(Z , ·)�, where τ2 ∈ �2

14. One also finds dψ = τ2 ∧ φ =
−�τ2.

The tensor T (or τ2) is known as the torsion of φ: it is apparent from the above formulae
that it appears naturally in calculations. In particular, one can prove that T = 0 if and only ifψ
is also closed; equivalently, if and only if φ andψ are parallel with respect to the Levi–Civita
connection.

The first variation formula for coassociatives. Let ιt : � ↪→ M be a curve of immersions
as above, such that ι0 is coassociative.

Lemma 2.3 Assume dφ = 0. Then

d

dt
f (t)|t=0 ι∗0 vol0 = (dιZ�ψ + τ2 ∧ (ιZ⊥φ))|�.

Proof Using normal coordinates, identifications and notation as above,

d

dt
f (t)|t=0 = d

dt

√
ψ(ιt∗v1, . . . , ιt∗v4)2 + |C(ιt∗v1, . . . , ιt∗v4)|2|t=0

= (1/2)
2ψψ̇ + 2(C · CZ )√

ψ2 + |C|2 |t=0

= ψ̇|t=0,

because coassociativity implies ψ(v1, . . . , v4) = 1, C(v1, . . . , v4) = 0. We remark that,
above, CZ is shorthand for ∇Z (C(ιt∗v1, . . . , ιt∗v4))|t=0.

We now write

ψ̇|t=0 = d

dt
(ι∗t ψ)|t=0(v1, . . . , v4)

= (LZψ)(v1, . . . , v4)

= (dιZψ + ιZ (τ2 ∧ φ))(v1, . . . , v4)
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= (dιZψ + τ2 ∧ (ιZφ))(v1, . . . , v4),

because coassociativity implies φ|� = 0. To conclude, coassociativity and the pointwise
model show that ιZ⊥ψ ≡ 0 and ιZ�φ ≡ 0 along �. 
�
Comparing the formulae in Lemma 2.1 and Lemma 2.3 first for vector fields tangent to �,
i.e. Z = Z�, then for normal vector fields, shows that

div�(Z�) ι∗0 vol0 = dιZ�ψ|�,

−(H · Z⊥) ι∗0 vol0 = τ2 ∧ (ιZ⊥φ)|� = τ2 ∧ �(ιZ⊥φ)|� = (τ+
2 · ιZ⊥φ|�) ι∗0 vol0 .

It follows that these equalities hold for any vector field Z .
The further identity −H · Z⊥ = − 1

2 ιHφ · ιZ⊥φ|� allows us to identify −H with the
self-dual component of the restriction of τ2. Specifically,

−ιHφ|� = 2 τ+
2|�.

In particular, H = 0 if and only if τ2|� ∈ �2−(�).

Corollary 2.4 Assume dφ = 0. Then

d

dt
Vol(�t )|t=0 =

∫
�

τ+
2|� ∧ ιZ⊥φ.

Notice that if also dψ = 0 then τ2 = 0, so our formulae agree with calibration theory:
�0 is minimal.

Moduli spaces.The condition dφ = 0 implies that the space of coassociative deformations of
an initial compact coassociative submanifold� forms a smoothmoduli spaceM, cf. e.g. [12].
The theory shows that

(i) the isomorphism T�⊥ � �2+(�) relates infinitesimal deformations in M to self-dual
harmonic 2-forms;

(ii) these integrate to actual deformations, so the dimension ofM coincides with that of the
space of self-dual harmonic 2-forms on �. Hodge theory implies that this dimension is
topological: dim(M) = b+

2 (�).

The restriction to normal vector fields corresponds to the fact that M is defined modulo
reparametrizations, i.e. it contains non-parametrized submanifolds.

Given infinitesimal deformations Z1, Z2 ∈ T�M, the L2 metric
∫
�
Z1 · Z2 vol� defines

a canonical Riemannian structure on M.
We could decide to vary � only within this moduli space. In this case, the proof of the

first variation formula simplifies, because

d

dt
Vol(�t )|t=0 = d

dt

∫
�

ι∗t ψ|t=0 =
∫

�

LZψ.

The proof now continues as before. The conclusion is of course weaker: this proof allows us
to identify only the L2-projections of −H and τ+

2|� onto TM.

Fibrations. Assume M (as usual satisfying dφ = 0) admits a coassociative fibration over a
base space B, with compact fibres. Let � be the fibre above b ∈ B. It is natural to view B
as a submanifold in the moduli space M defined by �. The relationship between TbB and
T�M is defined by the fact that any Z ∈ TbB admits a unique lift to a vector field normal
to � (with respect to the metric on M). The fibration structure implies that this vector field
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corresponds to a deformation through coassociative fibres, so it lies in T�M. We can endow
B with the metric induced by the metric on M. In particular, B can be locally identified
with M if and only if they have the same dimension, i.e. if and only if b+

2 (�) = 3: this is a
topological condition on �.

The fact that � fits into a coassociative fibration has further consequences. Indeed, the
projection provides an isomorphism between each Tp�

⊥ and TbB so the normal bundle,
thus �2+(�), is trivial. Choose a basis Z1, Z2, Z3 for TbB. We will use the same notation to
denote the corresponding normal vector fields along �. The forms Zi�φ provide a basis for
the self-dual forms at each point. Any other self-dual form α on � must be, at each point,
a linear combination of these: α = ai Zi�φ. Coassociative deformation theory implies that
Zi�φ are harmonic.

In general, therewill be no particular constraint on the pointwise lengths of the lifted vector
fields. These lengths are constant if and only if the fibration is a Riemannian submersion;
this condition leads to further constraints on the fibres. Specifically, Baraglia [2] shows that
B can be endowed with a Riemannian structure such that the projection is a Riemannian
submersion if and only if the fibres, with the induced metric, have a hyper-Kähler structure
(his proof only requires dφ = 0).

In particular, general theory shows that such fibres must be either K3 surfaces or flat tori.
In both cases, b+

2 (�) = 3, so B � M. Baraglia shows that (up to a constant factor) this
identification further equates his metric on B with the L2 metric on M. In other words, in
this setting the moduli space construction is perfectly aligned to the fibration structure.

In Sects. 5 and 6, we will find examples of coassociative fibrations whose fibres are flat
tori. We may then apply the above.

Remark It should be noted that Baraglia [2] proved that, for topological reasons, if M is
compact and both its G2 calibrations are closed (i.e. dφ = 0 and dψ = 0) then it does not
admit smooth coassociative fibrations. Our methods and statements, however, are local, we
will never require M compact, nor will we require both calibrations to be closed.

Other references for coassociative fibrations include [8], which first triggered interest in
this topic, and [5].

3 Second variation formulae

Let us again start by reviewing the classical formula [18].

The classical setting. We shall use the same notation as before, but to simplify we shall
assume Z is always perpendicular to�t : this will not change the volumes. The samemethods
show that, for any t ,

d

dt
Vol(�t ) = −

∫
�

H · Z ι∗t volt .

The starting point for the second variation formula is the assumption that �0 is minimal, i.e.
H = 0. The main goal is to then detect conditions, ensuring that �0 is a local minimum:
stability.

Differentiating the above expression, we find

d2

dt2
Vol(�t )|t=0 = −

∫
�

∇Z (H · Z) ι∗0 vol0 +
∫

�

(H · Z)2ι∗0 vol0

= −
∫

�

∇Z H · Z ι∗0 vol0 .
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These formulae indicate clearly that, as expected, if ιt is a curve of minimal immersions
then the volume remains constant and Z is a Jacobi vector field. They provide, however, no
means of controlling the stability. This can be achieved by examining the integrand more
closely, as follows.

Proposition 3.1 Assume Z normal and �0 minimal. Then,

d2

dt2
Vol(�t )|t=0 =

∫
�

(−(∇ei Z · e j )2 − R(ei , Z)Z · ei + (∇ei Z · f j )
2) ι∗0 vol0,

where e1, . . . , ek is an orthonormal basis of Tp� at any given point, f1, . . . , fn−k is an
orthonormal basis of Tp�

⊥, and R is the curvature tensor of M.

Basically, the first term is the norm squared of (∇Z)� (restricted to�), the second term is
the trace along � of the appropriate curvature tensor and the third term is the norm squared
of (∇Z)⊥ (restricted to �). This explains why the expression is independent of the chosen
bases.

By emphasizing geometrically meaningful components in this way, we obtain useful
conclusions, such as the following.

Corollary 3.2 If �0 is totally geodesic and the ambient curvature is negative, then �0 is

strictly stable, i.e. d2

dt2
Vol(�t )|t=0 > 0.

Proof of Proposition 3.1 The proof of the proposition is the combination of the following two
calculations. As before, v1, . . . , vk will denote the local basis defined by normal coordinates
on � at p, at time t = 0. We can extend it in the direction Z using ιt∗.

1. At p,

−∇Z (H · Z) = −∇Z (gi j∇vi v j · Z)

= −(∇Z g
i j )∇vi v j · Z − gi j∇Z (∇vi v j · Z),

where gi j = vi · v j generates a matrix G and gi j are the coefficients of G−1. Then,
differentiating GG−1 = Id, we find that, at p, ∇Z gi j = −∇Z gi j . This shows that

−∇Z (H · Z) = (∇Z gi j )∇vi v j · Z − gi j∇Z (∇vi v j · Z).

Now notice

∇Z gi j = ∇Z (vi · v j ) = (∇Zvi ) · v j + vi · (∇Zv j )

= (∇vi Z) · v j + vi · (∇v j Z)

= −Z · ∇vi v j − Z · ∇v j vi = −2Z · ∇vi v j ,

using the symmetry of the second fundamental form. This leads to the following
conclusion: at p,

−∇Z (H · Z) = −2(∇vi v j · Z)2 − ∇Z (∇vi vi · Z).

2. At p and using [Z , vi ] = 0,

R(vi , Z)Z · vi = −R(vi , Z)vi · Z
= −∇vi ∇Zvi · Z + ∇Z∇vi vi · Z
= −∇vi ∇vi Z · Z + ∇Z (∇vi vi · Z) − ∇vi vi · ∇Z Z
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= −∇vi (∇vi Z · Z) + ∇vi Z · ∇vi Z + ∇Z (∇vi vi · Z)

− (∇vi vi )
� · (∇Z Z)� − (∇vi vi )

⊥ · (∇Z Z)⊥.

The latter two terms vanish because H = 0 and the coordinates are normal. We conclude
that

R(vi , Z)Z · vi = −∇vi (∇Zvi · Z) + (∇vi Z)� · (∇vi Z)� + (∇vi Z)⊥ · (∇vi Z)⊥

+ ∇Z (∇vi vi · Z)

= div�((∇Z Z)�) + (∇vi Z · v j )
2 + (∇vi Z · f j )

2 + ∇Z (∇vi vi · Z).

Substituting the second formula into the first proves the proposition. 
�
Remark One can also study the variation of the volume forms before integrating them. If
we collect all terms appearing in the above calculations and, as above, we write ι∗t volt =
f (t)ι∗0 vol0, we find

f ′′(0) = − g(∇ei e j , Z)2 − g(R(ei , Z)Z , ei ) + div�((∇Z Z)�)

− g(H , (∇Z Z)⊥) + g((∇ei Z), f j )
2 + g(H , Z)2,

where we assume Z normal (but �0 not necessarily minimal).

The second variation formula for coassociatives. Now assume M is endowed with a closed
G2 structure. Assume the initial submanifold � = �0 is coassociative; for our first calcu-
lations, there is no need to assume that it is also minimal. Our goal is to work out a new
expression for the second variation formula, adapted to this set-up.

Restricting our attention to normal variations Z , we find

f ′′(0) ι∗0 vol0 = d2

dt2

√
ψ2 + |C|2|t=0

ι∗0 vol0 = (ψ̈ + CZ · CZ ) ι∗0 vol0

= LZLZψ|� + |CZ |2ι∗0 vol0
= (dιZ + ιZd)(dιZ + ιZd)ψ|� + |CZ |2ι∗0 vol0
= dιZdιZψ|� + ιZdιZdψ|� + |CZ |2ι∗0 vol0 .

The term dιZdιZψ , restricted to�, vanishes under integration. Alternatively, it disappears by
the calculation ιZdιZψ|� = 0. Indeed, let X1, X2, X3 ∈ T�. We may assume [Z , Xi ] = 0,
for i = 1, 2, 3. Then, using the invariant formula for the exterior derivative of ιZψ , we find

ιZdιZψ(X1, X2, X3) = dιZψ(Z , X1, X2, X3) = · · · = Z(ιZψ(X1, X2, X3)) = 0,

since ψ vanishes under contraction with one normal (associative) and three tangent (coas-
sociative) vectors. We shall perform a similar calculation, in more detail, for ιZdιZφ in the
proof of Lemma 3.3.

Furthermore,

ιZdιZdψ = ιZdιZ (τ2 ∧ φ)

= ιZd(ιZ τ2 ∧ φ + τ2 ∧ ιZφ)

= ιZ ((dιZ τ2) ∧ φ − ιZ τ2 ∧ dφ + dτ2 ∧ ιZφ + τ2 ∧ dιZφ)

= ιZdιZ τ2 ∧ φ + dιZ τ2 ∧ ιZφ + ιZdτ2 ∧ ιZφ + ιZ τ2 ∧ dιZφ

+ τ2 ∧ ιZdιZφ,
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where we use the facts dφ = 0, ιZ ιZφ = 0.
Substituting this into the original calculation and using φ|� = 0, we find

f ′′(0) ι∗0 vol0 = dιZ τ2 ∧ ιZφ|� + ιZdτ2 ∧ ιZφ|� + ιZ τ2 ∧ dιZφ|�
+ τ2 ∧ ιZdιZφ|� + |CZ |2ι∗0 vol0

= d(ιZ τ2 ∧ ιZφ)|� + 2ιZ τ2 ∧ dιZφ|� + ιZdτ2 ∧ ιZφ|�
+ τ2 ∧ ιZdιZφ|� + |CZ |2ι∗0 vol0 .

Lemma 3.3 Assume � is coassociative and minimal. Then,

τ2 ∧ ιZdιZφ|� = τ2 ∧ γZ |�,

where γZ ∈ �2−(�) is defined in terms of the second fundamental form:

γZ (X1, X2):=ιZφ((∇X1 Z)�, X2) + ιZφ(X1, (∇X2 Z)�).

Proof Given α ∈ �2(M), recall the formula

dα(X0, X1, X2) = X0α(X1, X2) − X1α(X0, X2) + X2α(X0, X1)

− α([X0, X1], X2) + α([X0, X2], X1) − α([X1, X2], X0).

Let us apply it to α:=ιZφ, so as to calculate dιZφ. Calculating ιZdιZφ corresponds to
choosing X0:=Z . Restricting to� means thatwemust choose X1, X2 ∈ T�. In our situation,
we may assume [Z , X1] = [Z , X2] = 0. Only one of the above terms is then non-vanishing,
so

ιZdιZφ(X1, X2) = dιZφ(Z , X1, X2)

= Z ιZφ(X1, X2)

= Z φ(Z , X1, X2)

= (∇Zφ)(Z , X1, X2) + φ(∇Z Z , X1, X2) + φ(Z ,∇Z X1, X2)

+ φ(Z , X1,∇Z X2)

= (∇Zφ)(Z , X1, X2) + φ((∇Z Z)⊥, X1, X2)

+ φ(Z , (∇X1 Z)�, X2) + φ(Z , X1, (∇X2 Z)�)

= ιZ (∇Zφ)(X1, X2) + φ((∇Z Z)⊥, X1, X2) + γZ (X1, X2),

where we use the fact that φ vanishes under contraction with one tangent (coassociative)
and two normal (associative) vectors or with three tangent (coassociative) vectors. Notice
the appearance of the second fundamental form of �, making γZ tensorial in Z .

The calculations above have generated three terms. We now need to wedge them with τ2.
Recall that minimality implies τ2|� ∈ �2−(�). Let us consider the three terms in turn.

1. Consider the term ιZ∇Zφ = Z�(τ2(Z)��ψ). The first contraction is with respect to a
normal (associative) vector. Restricting to � means that we will be further contracting
ψ with two tangent (coassociative) vectors. The remaining contraction must thus again
be with a normal (associative) vector, i.e.

ιZ∇Zφ|� = Z�((τ2(Z)�)⊥�ψ)|�.

Recall from themodel expression ofψ that the result lies in�2+(�), so this term vanishes
after wedging.
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2. The second term is of the form �2+(�), so it vanishes after wedging.
3. To conclude, we need to show that γZ ∈ �2−(�). This is a pointwise computation which

we can perform on R
4 with the standard structures. It is a special case of the following

general statement.
Let α ∈ �2+(R4) and f ∈ End(R4) be symmetric and trace-free. Then,

α f (X1, X2):=α( f (X1), X2) + α(X1, f (X2))

is anti-self-dual.
To prove this let E12+34, E13−24, E14+23 be the matrices corresponding to the standard
basis of�2+(R4). The matrix A representing α is a linear combination of these. Let M be
thematrix representing f . It then suffices to check thatMA+AM is a linear combination
of the matrices corresponding to the standard basis of �2−(R4).


�
Integration leads to the following conclusion.

Theorem 3.4 Let M be endowed with a closed G2 structure. Assume�0 is coassociative and
minimal. Then, for any normal variation Z,

d2

dt2
Vol(�t )|t=0 =

∫
�

2ιZ τ2 ∧ dιZφ + ιZdτ2 ∧ ιZφ + τ2 ∧ γZ + |CZ |2ι∗0 vol0 .

In particular, assume the variation takes place within the coassociative moduli spaceM, i.e.
Z ∈ T�M. Then,

d2

dt2
Vol(�t )|t=0 =

∫
�

ιZdτ2 ∧ ιZφ + τ2 ∧ γZ .

The two terms dτ2, CZ admit alternative formulations, as follows.

1. Recall from [3] the existence of a pointwise G2-equivariant isomorphism

i : S2 → �3
1 ⊕ �3

27, (1)

defined on the space S2 of symmetric 2-tensors. Viewed on R
7, it admits a compact

expression in terms of Bryant’s notation, [3, eq. (2.17)]: given h = ∑
i, j hi j e

i ⊗e j ∈ S2,

i(h) =
∑

r , j,k,l

εrklhr j e
j ∧ ek ∧ el

=
∑

r , j,k,l

1

3

(
εrklhr j + εr jkhrl + εrl j hrk

)
e j ∧ ek ∧ el

= 2
∑
j<k<l

∑
r

(
εrklhr j + εr jkhrl + εrl j hrk

)
e j ∧ ek ∧ el .

This formula shows that i(gφ) = 6φ.Moreover, the image of the subspace S20 of trace-free
symmetric 2-tensors coincides with �3

27.
Recall also the following two formulae, respectively [3] eq. (4.36) and (4.39), valid when
dφ = 0. The first describes the scalar curvature of M , showing it is non-positive:

trg(Ric) = −1

2
|τ2|2,

dτ2 = 3

14
|τ2|2φ + 1

2
�(τ2 ∧ τ2) − 1

2
i(Ric0),
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where Ric0 is the trace-free Ricci tensor of M, i.e. Ric = Ric0 + 1
7 tr(Ric)g. It follows

that i(Ric) = i(Ric0) + 6
7 tr(Ric)φ. Combining these formulae, we find

dτ2 = 1

2
�(τ2 ∧ τ2) − 1

2
i(Ric). (2)

If we plug equation (2) into our second variation formula, we obtain an alternative
expression which emphasizes the role of the ambient Ricci curvature.

2. Recall that CZ was defined in the proof of Lemma 2.3. This term already appears in [19].
In their Lemma 3.13 (which holds also in the case dφ = 0, without assuming dψ = 0),
it is shown that

CZ := ∣∣∇Z (C(ιt∗v1, . . . , ιt∗v4))|t=0
∣∣2 = |dιZφ|� |2. (3)

If one also assumes dψ = 0, then this is the only term appearing in the second varia-
tion formula so our formula coincides with that of [15] and confirms that coassociative
submanifolds are stable minima, as expected.

Remark Notice that the second variation formula becomes tensorial with respect to Z when
restricted to coassociative variations. This is related to the fact that the moduli space is
finite-dimensional, so these variations cannot be perturbed via arbitrary functions.

The second variation formula for Lagrangians. The appearance of the ambient Ricci
tensor is an interesting fact. It replaces the curvature term which appears, without taking any
compact geometric form, in the standard second variation formula. An analogous situation
occurs also in [16] in a way that is perhaps more transparent than above.

Assume (M2n, J , ω) is Kähler and �n ↪→ M is Lagrangian, i.e. ω|� ≡ 0. The Kähler
form then provides an isomorphism

T�⊥ � �1(�), Z 
→ ζ :=ιZω.

Lagrangian submanifolds are not calibrated, so Oh’s context is closer in spirit to the general
Riemannian situation than to ours. On the other hand, notice the analogies with φ, with the
coassociative condition φ|� ≡ 0 and with the isomorphism T�⊥ � �2+(�).

Oh’s second variation formula is as follows. Assume�0 is minimal Lagrangian. Consider
any normal variation Z . Then,

d2

dt2
(Vol(�t ))|t=0 =

∫
�

((�ζ, ζ ) − Ric(Z , Z)) ι∗0 vol0,

where � denotes the Hodge Laplacian on �0 and Ric is the ambient Ricci curvature. In
particular, it shows that �0 is stable if Ric ≤ 0.

The proof consists in rearranging the terms in the standard second variation formula.
Using normal coordinates on �0,

(∇ei Z · f j )
2 = (∇⊥

ei Z ,∇⊥
ei Z)

= ∇ei (∇⊥
ei Z , Z) − (∇⊥

ei ∇⊥
ei Z , Z)

= (1/2)�(|Z |2) − (�⊥Z , Z).

The first term on the RHS vanishes by integration by parts. The Weitzenböck identity on �

shows that �ζ = −ω(�⊥Z , ·) + Ric�(J Z , ·). Evaluating this on J Z , we find

−(�⊥Z , Z) = �ζ · ζ − Ric�(J Z , J Z)
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= �ζ · ζ − R�(ei , J Z)J Z · ei .
The Gauss equation for curvature, together with ∇ J = 0 and H = 0, yields

R(ei , J Z)J Z · ei = R�(ei , J Z)J Z · ei + |(∇ei J Z)⊥|2 + (∇ei ei )
⊥ · (∇J Z J Z)⊥

= R�(ei , J Z)J Z · ei + |(∇ei Z)�|2.
Also recall that, since M is Kähler, R(ei , J Z)J Z · ei = R(Jei , Z)Z · Jei . Comparing this
with the standard second variation formula allows us to complete the curvature term so as to
obtain −Ric(Z , Z) and to cancel the term depending on the second fundamental form.

We may apply these same calculations to the formula found above for f ′′(0), correspond-
ing to the second derivative of the volume form.We then find that, for�0 minimal Lagrangian
and using normal variations,

f ′′(0) = (1/2)�(|Z |2) + (�ζ, ζ ) − Ric(Z , Z) + div�((∇Z Z)�).

Conclusions. Let us take a moment to summarize analogies and differences between the
three second variation formulae discussed in this section:

1. The ambient manifolds for the Riemannian and the Lagrangian formulae are automati-
cally torsion-free, so the torsion tensor plays no role. Our formula makes precise the role
played by torsion in the G2 context.

2. The coassociative formula, via equations (2), (3), can be summarized as

d2

dt2
(Vol(�t ))|t=0 =

∫
�

(Laplacian-Ricci+torsion).

Up to torsion, this is remarkably similar to the Lagrangian formula.
3. Both the Riemannian and the coassociative formulae show the special role played by

totally geodesic submanifolds.

Furthermore, the coassociative formula is particularly well adapted to the special geometric
features of G2 geometry; in particular, to the existence of moduli spaces.

4 Controlling the torsion

We wish to find geometric situations in which our second variation formula, Theorem 3.4,
produces a non-negative (or positive) result even in the presence of torsion: this will mean
that the submanifold �0 is a (strict) local minimum point for the volume functional.

As already seen, we can cancel the term dιZφ by moving within the coassociative moduli
space. We can cancel the term γZ by imposing that the submanifold be totally geodesic. The
main question is thus how to control the term ιZdτ2 ∧ ιZφ. In essence, this entails controlling
dτ2.

In [3, eq. (4.65)],Bryant introduces the class ofG2 structures satisfying a certain “quadratic
condition". This is a strong constraint, but we shall show below that it provides a good
framework within which to enforce our desired positivity. It relies on the following linear-
algebraic construction.

Given any β ∈ �2
14, [3, Section 2.7.4] shows that:

1. �(β ∧ β) ∈ �3
1 ⊕ �3

27. Its irreducible decomposition is

�(β ∧ β) = −1

7
|β|2φ +

(
1

7
|β|2φ + �(β ∧ β)

)
.
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2. Set γβ := 1
7 |β|2φ + �(β ∧ β) ∈ �3

27, depending quadratically on β. Then,

|γβ | =
√

6
7 |β|2.

Furthermore, [3, eq. (4.33)] shows that dφ = 0 implies that dτ2 ∈ �3
1 ⊕ �3

27. It decomposes
as dτ2 = 1

7 |τ2|2φ + γ , for some γ ∈ �3
27. Bryant’s condition concerns the situation where

γ arises from the above construction, applied to the case β = τ2.

Definition 4.1 Let M be endowed with a closed G2 structure φ with non-vanishing torsion.
We say that the G2 structure satisfies the quadratic condition if there exists λ ∈ R such that
the irreducible decomposition of dτ2 is of the form

dτ2 = 1

7
|τ2|2φ + λ γτ ,

where, as above, γτ := 1
7 |τ2|2φ + �(τ2 ∧ τ2).

Given β ∈ �2
14 and λ ∈ R, we are thus interested in the algebraic properties of the 3-form

on R
7

γλ,β :=1

7
|β|2φ + λ γβ ∈ �3

1 ⊕ �3
27.

Proposition 4.2 Assume |λ| ≤ 1√
21
. Choose any β ∈ �2

14 and any coassociative 4-plane π

in R
7. Then, the bilinear form

Bπ
λ,β : π⊥ × π⊥ → �4(π), Bπ

λ,β(Z1, Z2):=ιZ1γλ,β ∧ ιZ2φ|π ,

is non-negative: Bπ
λ,β(Z , Z) ≥ 0, for all Z ∈ π⊥.

Proof Write

Bπ
λ,β(Z , Z) = 1

7
|β|2ιZφ ∧ ιZφ|π + λ(ιZγβ ∧ ιZφ|π ).

Using the G2 action (which will send β to some other β ′, with |β| = |β ′|), we may assume
Z = |Z |e1, π = 4567. Both terms are then multiples of vol4567. In particular,

ιZφ|π ∧ ιZφ|π = |Z |2(45 + 67) ∧ (45 + 67) = 2|Z |2 vol4567,

|ιZγβ ′|π ∧ ιZφ|π | ≤ |Z ||γβ ′ ||ιZφ|π | = |Z |2
√
6

7
|β|2√2.

Non-negativity is thus ensured by the condition

2

7
|Z |2|β|2 ≥

√
12

7
|λ||Z |2|β|2.


�
Applying this to β:=τ2, thus γλ,β = dτ2, we obtain the following result.

Corollary 4.3 Let M be endowedwith a closedG2 structure satisfying the quadratic condition
with |λ| < 1/

√
21. Assume�0 is coassociative and totally geodesic. Then,�0 is strictly stable

within the coassociative moduli space.
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Remark Of course, the moduli space might consist of a single point: as mentioned, its
dimension is determined by the topology of �. In this case, the conclusion is trivial.

The bilinear forms seen in Proposition 4.2 can be generalized to any element in�3
1⊕�3

27.
The isomorphism with S2 defined by equation (1) then yields the following, equivalent,
expression.

Proposition 4.4 Let h be a symmetric 2-tensor on R
7. Let π be a coassociative 4-plane.

Consider the bilinear form Bπ
h : π⊥ × π⊥ → �4(π),

Bπ
h (Z1, Z2):=ιZ1 i(h) ∧ ιZ2φ|π .

Then, for any Z1, Z2 ∈ π⊥,

Bπ
h (Z1, Z2) = (4h(Z1, Z2) + 2 tr(h|π )g(Z1, Z2)) volπ .

Proof As a first step, let us assume π = 4567. We shall write h = ∑
i, j hi j e

i ⊗ e j and
Z = z1e1 + z2e2 + z3e3.

Choose, for example, Z1 = e1, Z2 = ei . Using the symmetry of h, one finds:

ιe1 i(h) = + (h11 + 2h44)e
4 ∧ e5 + (−h11 − 2h55)e

5 ∧ e4

+ (h11 + 2h66)e
6 ∧ e7 + (−h11 − 2h77)e

7 ∧ e6

+ (h12 − 2h47)e
4 ∧ e6 + (−h12 − 2h56)e

6 ∧ e4

+ (−h12 + 2h56)e
5 ∧ e7 + (h12 + 2h47)e

7 ∧ e5

+ (−h13 + 2h46)e
4 ∧ e7 + (h13 − 2h57)e

7 ∧ e4

+ (−h13 − 2h57)e
5 ∧ e6 + (h13 + 2h46)e

6 ∧ e5.

Using our previous shorthand notation, this implies

ιe1 i(h) ∧ ιe1φ|4567 = (4h11 + 2(h44 + h55 + h66 + h77)) 4567,

ιe1 i(h) ∧ ιe2φ|4567 = (4h12) 4567,

ιe1 i(h) ∧ ιe3φ|4567 = (4h13) 4567.

Similar calculations hold for any Z1, Z2 ∈ {e1, e2, e3}.
We can reduce the general case to the case above via the G2 action (which will send h to

some other h′). 
�
Remark The previous result shows, in particular, that the bilinear form Bπ

h is symmetric.
This can alternatively be proved directly from the definition, as follows.

Let us write i(h) = a φ + γ ∈ �3
1 ⊕ �3

27, for some a ∈ R and γ ∈ �3
27. Then

Bπ
h (Z1, Z2) = aιZ1φ ∧ ιZ2φ|π + ιZ1γ ∧ ιZ2φ|π = aιZ2φ ∧ ιZ1φ|π + ιZ1γ ∧ ιZ2φ|π .

It thus suffices to show that

ιZ1γ ∧ ιZ2φ|π = ιZ2γ ∧ ιZ1φ|π .

From γ ∧ φ = 0, we obtain

0 = ιZ2(ιZ1(γ ∧ φ))

= ιZ2(ιZ1γ ) ∧ φ + ιZ1γ ∧ ιZ2φ − ιZ2γ ∧ ιZ1φ

+γ ∧ ιZ2(ιZ1φ).

Since both the first and the last summand vanish when restricted to the coassociative plane
π , the required identity follows.
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5 Example: ERP structures

The following special case of the quadratic condition provides a good testing ground for the
above results.

Definition 5.1 A closed G2 structure is Extremally Ricci-Pinched (ERP) if it satisfies the
quadratic condition with λ = 1

6 ; equivalently,

dτ2 = 1

6

(|τ2|2φ + �(τ2 ∧ τ2)
)
.

In the compact case, an alternative way of introducing these structures stems from the fact
that, for any closed G2 structure,∫

M
|Ric0 |2 vol ≥ 4

21

∫
M

|s|2 vol,

where s denotes the scalar curvature. One can show that the equality is equivalent to the
quadratic condition with λ = 1

6 , see [3, Remark 13]. This explains the above terminology.

Remark [3, Remark 14] shows that λ = 1
6 is the only possible value for a G2 structure

satisfying the quadratic condition on a compact manifold.

Notice that 1/6 < 1/
√
21: ERP manifolds thus fall within the range of Corollary 4.3.

Let us restrict our attention to ERP structures on compact manifolds; more generally, to
ERP structures admitting a compact quotient. By [3, Theorem 3.7], such structures have
special torsion of positive type in the sense of [1], i.e. τ 32 = 0. The torsion is then modelled
on one of the exceptional orbits of the G2 action on �2

14: specifically, up to the G2 action at
each point, wemay assume that τ2 is of the form cβ+, where β+ = e45−e67 and c ∈ R�{0}.
Notice that

|τ2|2 = |cβ+|2 = 2c2, �(τ2 ∧ τ2) = �(cβ+ ∧ cβ+) = −2c2e123.

The ERP condition then implies that

dτ2 = c2

3

(
e145 + e167 + e246 − e257 − e347 − e356

)
.

Choosing, for instance, the coassociative 4-plane π = 4567, we see that the bilinear form
Bπ
1/6,τ2

: π⊥ × π⊥ → �4π ∼= R introduced in Proposition 4.2 is given by

Bπ
1/6,τ2 = 2

3
c2

(
e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

)
.

This form is positive definite, as expected from Proposition 4.2.

Example 5.2 The first example of ERP manifold of this type is due to Bryant [3], who
described it in terms of the homogeneous space M = (SL(2, C) � C

2)/SU(2). We shall
adopt the equivalent description [4], as a Lie group.

Consider the seven-dimensional, simply connected, solvable Lie group

G:=
⎧⎨
⎩

⎛
⎝exp(t) z x

0 exp(−t) y
0 0 1

⎞
⎠ | t ∈ R, x, y, z ∈ C

⎫⎬
⎭ ∼= Sol3 � C

2.
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Its Lie algebra is isomorphic to a semidirect product g ∼= s �μ h, where s ∼= Lie(Sol3),
h is a 4-dimensional Abelian ideal, and μ : s → Der(h) ∼= End(R4) is a Lie algebra
homomorphism.

More specifically, we may choose the following basis of s

e1 = 1

2

⎛
⎝1 0 0
0 −1 0
0 0 0

⎞
⎠ , e2 = 1

2

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ , e3 = 1

2

⎛
⎝0 i 0
0 0 0
0 0 0

⎞
⎠ ,

and the following basis of h

e4 =
⎛
⎝0 0 0
0 0 1
0 0 0

⎞
⎠ , e5 =

⎛
⎝0 0 0
0 0 i
0 0 0

⎞
⎠ , e6 = −1

2

⎛
⎝0 0 i
0 0 0
0 0 0

⎞
⎠ , e7 = −1

2

⎛
⎝0 0 1
0 0 0
0 0 0

⎞
⎠ .

The nonzero Lie brackets of s are

[e1, e2]s = e2, [e1, e3]s = e3.

The map μ : s → Der(h) acts as follows:

μ(e1)(e4) = − 1
2 e4, μ(e1)(e5) = − 1

2 e5, μ(e1)(e6) = 1
2 e6, μ(e1)(e7) = 1

2 e7,
μ(e2)(e4) = −e7, μ(e2)(e5) = −e6, μ(e2)(e6) = 0, μ(e2)(e7) = 0,
μ(e3)(e4) = −e6, μ(e3)(e5) = e7, μ(e3)(e6) = 0, μ(e3)(e7) = 0.

Notice that g is a seven-dimensional non-unimodular completely solvable real Lie algebra.
The Lie bracket [·, ·] on g is defined as follows: for all x, y ∈ s and u, v ∈ h,

[x, y] = [x, y]s, [x, u] = μ(x)(u), [u, v] = [u, v]h = 0.

Let B∗ = (e1, . . . , e7) denote the dual basis of B = (e1, . . . , e7). The structure equations(
dei

)
i=1,...,7 of g are the following

(
0,−e12,−e13,

1

2
e14,

1

2
e15,−1

2
e16 + e25 + e34,−1

2
e17 + e24 − e35

)
.

It is now straightforward to check that the left-invariant 3-form

φ = e123 + e1 ∧ (e45 + e67) + e2 ∧ (e46 − e57) − e3 ∧ (e47 + e56),

defines an ERP structure on G with intrinsic torsion form

τ2 = 3
(
e45 − e67

)
.

In particular, the basis B is gφ-orthonormal and |τ2|2 = 18.
Within this manifold, we shall examine three different coassociative fibrations, exhibiting

very different properties. The first is due to Bryant [3]. The other two are new.
1. Via the usual identification g ∼= T1GG, the ideal h = 〈e4, e5, e6, e7〉 ⊂ g corresponds to
the tangent space at the identity 1G of an Abelian subgroup � ∼= C

2 of G. Since φ|� = 0,
� is a coassociative submanifold of (G, φ). Moreover, the restriction of the left-invariant
metric gφ to � is flat.

We can define coassociative deformations using left translations. We conclude that the
map π : G → G/C

2 is a coassociative fibration with flat fibres. It follows from [3] that �

can be compactified by means of a suitable lattice L ⊂ � that is preserved by S. The quotient
space then defines a flat coassociative T 4-fibration.
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In Sect. 2, we discussed the fact that any fibration of this type admits the structure of a
Riemannian submersion. Let us apply this construction to the example at hand.

In general, given any two Lie groups S, H and an action of S on H by automorphisms,
consider the Lie groupG:=S�H.As differentiablemanifolds, we can identifyπ : G → G/H
with π : S × H → S. Since H is normal in G, the identification G/H � S is also a group
isomorphism. Given any e ∈ T1SS, i.e. (e, 0) ∈ T1GG, let e also denote the corresponding
left-invariant vector field on G. Let us write e = d/dt(st )|t=0 for some curve st in S such
that s0 = 1S, and let g = (s, h) ∈ G. Then,

e|(s,h) = (L(s,h))∗(e) = d/dt((s, h) · (st , 1H))|t=0 = d/dt(sst , h)|t=0

= ((Ls)∗(e), 0).

This shows that, under the above identifications, e|g ∈ TgG � (e|s, 0) ∈ TsS ⊕ ThH, so
the vector field e on G projects down to the left-invariant vector field e on S defined by
left-translation on S.

In our case,we have endowed the total space of the fibrationM :=Gwith themetric induced
by φ. The conclusion is that the construction of Sect. 2 induces on the base B:=G/C

2 � Sol3
precisely the metric for which e1, e2, e3 is an orthonormal basis.

Remark In general, the curvature properties of the metric g on M are hard to establish. In
this example, the algebraic structure on M ∼= Sol3 allows us to see that Ricg = −2 g.

Remark The above shows that the vector fields e1, e2, e3 on G are the lifts, in the sense of
Sect. 2, of the corresponding vector fields on S. In the language of Sect. 6, we may say that
the lifted vector fields are “horizontal" and that the horizontal distribution is integrable.

In this context, there are two natural ways to use e ∈ s to deform a coassociative fibre �:
either using the flowof the corresponding vector field onG, i.e.moving each (1S, h) � p ∈ �

horizontally, or via the group action: (1S, h) 
→ exp(te) · (1S, h) = Rh(exp(te)). These
two deformations coincide, but only up to reparametrization of �: indeed, the infinitesimal
deformation

Z|p:= d

dt

∣∣∣∣
t=0

(Rh(exp(te)) = d

dt

∣∣∣∣
t=0

(exp(te), exp(te) · h)

has non-trivial vertical components, but (Z|p)⊥ = e|p . In any case, they define the same
objects in the moduli spaceM. The same reasoning shows that Rh does not act by isometries
on G and that it does not preserve horizontal vectors. In particular, it does not preserve the
horizontal leaves of the submersion.

In this sense, the Riemannian submersion structure is not adapted to the group structure.

We shall now compute the mean curvature vector field H of the fibres. By left invariance,
it suffices to do this for the fibre �, at the point 1G. The second fundamental form II :
T1G� × T1G� → T1G�⊥ can be computed via the Weingarten formula

II(ei , e j ) · ν = −∇ei ν · e j ,
where ν ∈ (T1G�)⊥ ∼= s and ∇ denotes the Levi–Civita connection of gφ . Using the Koszul
formula, we can rewrite the previous identity as follows:

II(ei , e j ) · ν = −∇ei ν · e j = 1

2

(
ν · [ei , e j ] + e j · [ν, ei ] + ei · [ν, e j ]

)
.
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Since h is abelian, the first summand on the right hand side is zero. Furthermore, for i = j
the formula simplifies to

II(ei , ei ) · ν = ei · [ν, ei ]. (4)

Notice that this implies

H · ν =
7∑

i=4

ei · [ν, ei ] =
7∑

i=4

adνei · ei = tr
(
adν |h

) = tr(μ(ν)).

The definition of μ then implies that H = 0, as expected by Sect. 2 and the fact that τ2|� =
3

(
e45 − e67

) ∈ �2−(�).
On the other hand, � is not totally geodesic: the second fundamental form is identically

zero if and only if μ(ν) is a skew-symmetric endomorphism of h with respect to gφ |h, for
every ν ∈ s. In order to compare this example with Theorem 3.4, we must thus compute the
tensor γZ ∈ �2−(�), introduced in Lemma 3.3. One can check that it is given by

γZ = (
(Z1)2 + (Z2)2 + (Z3)2

) (
e45 − e67

)
,

for every Z = Z1e1 + Z2e2 + Z3e3. In particular, one can check that the integrand in the
second variation formula vanishes:

(ιZdτ2 ∧ ιZφ + τ2 ∧ γZ )|� = 0.

This corresponds to the fact that all fibres are minimal, so their volume is constant. Bryant
shows that the fibres are actually calibrated (with respect to an appropriate calibration), thus
minimizing. We can confirm this by observing that ιZ τ2 ∧ d(ιZφ)|� = 0. Plugging this into
the second variation formula yields

d2

dt2
Vol(�t )|t=0 =

∫
�

|CZ |2ι∗0 vol0 ≥ 0,

for all possible variations.
2. Let us now look for a coassociative fibration whose fibres are totally geodesic. A standard
strategy (see, e.g. [11]) is to find a non-trivial isometric involution σ of G such that σ ∗φ =
−φ: each non-trivial connected component of its fixed point set is then a totally geodesic
coassociative 4-fold.

Consider, for example, the restriction to G of the complex conjugation in SL(3, C). Let
us denote it by σ : G → G. Its fixed point set is the 4-dimensional Lie subgroup

K:=Fix(σ ) =
⎧⎨
⎩

⎛
⎝exp(t) z x

0 exp(−t) y
0 0 1

⎞
⎠ | t, x, y, z ∈ R

⎫⎬
⎭ ⊂ G.

The Lie algebra k of K is spanned by the left-invariant vector fields e1, e2, e4, e7, and g admits
an ad(k)-invariant decomposition g = k ⊕ m, where m = 〈e3, e5, e6〉 is an ad(k)-invariant
3-dimensional subspace. Notice that the differential σ∗ : g → g of σ at the identity 1G
satisfies σ∗|k = Idk and σ∗|m = −Idm. From this, we immediately see that σ ∗gφ = gφ and
σ ∗φ = −φ. Therefore, K is a totally geodesic coassociative 4-fold of (G, φ). Left translation
defines a coassociative fibration π ′ : G → G/K which is not a gφ-Riemannian submersion,
since the restriction of gφ

∣∣
1G

to m is not ad(k)-invariant. Also, the fibres of π ′ cannot be
compactified: K is not unimodular, and thus it does not admit any lattice.
3. Our final example concerns a coassociative fibration whose fibres are not minimal: this is
possible only in the non-calibrated case dψ �= 0.
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Consider the Abelian ideal a = 〈e2, e3, e6, e7〉 of g. Denote by A the unique connected
normal Lie subgroup ofGwith Lie algebra a. Sinceφ|A = 0,A is a coassociative submanifold
of (G, φ). Left translation defines a coassociative fibration π ′′ : G → G/A.

As usual, let us compute the mean curvature H of the fibre at the identity of G. Since a is
abelian, we can again use (4), with ν belonging to the subalgebra a⊥ = 〈e1, e4, e5〉 of g. We
obtain

II(e2, e2) = e1, II(e3, e3) = e1, II(e6, e6) = 1

2
e1, II(e7, e7) = 1

2
e1.

Consequently,

H = II(e2, e2) + II(e3, e3) + II(e6, e6) + II(e7, e7) = 3 e1.

Notice that τ2|A = −3 e67 = − 3
2

(
e23 + e67

) − 3
2

(−e23 + e67
)
. It follows that

τ+
2|A = −3

2

(
e23 + e67

) = −1

2
ιHφ|A,

as expected from Sect. 2.

Example 5.3 A second example of ERP manifold is due to Lauret [14].
Consider the Abelian Lie algebra a spanned by all diagonal matrices of sl(4, R), and

the Abelian Lie algebra R
4. Let a = 〈e1, e2, e3〉, R

4 = 〈e4, e5, e6, e7〉, and define the
seven-dimensional Lie algebra g:=a �μ R

4, where μ : a → Der(R4) ∼= End(R4) is given
by

μ(e1)(e4) = e4, μ(e1)(e5) = e5, μ(e1)(e6) = −e6, μ(e1)(e7) = −e7,
μ(e2)(e4) = e4, μ(e2)(e5) = −e5, μ(e2)(e6) = e6, μ(e2)(e7) = −e7,
μ(e3)(e4) = e4, μ(e3)(e5) = −e5, μ(e3)(e6) = −e6, μ(e3)(e7) = e7.

The Lie algebra g is solvable and unimodular. Its structure equations can be written with
respect to the dual basis (e1, . . . , e7) of (e1, . . . , e7) as follows:(

0, 0, 0,−e14 − e24 − e34,−e15 + e25 + e35, e16 − e26 + e36, e17 + e27 − e37
)

.

Let G = A � R
4 be the simply connected solvable Lie group with Lie algebra g. The

left-invariant 3-form

φ = e123 + e1 ∧ (e45 + e67) + e2 ∧ (e46 − e57) − e3 ∧ (e47 + e56),

defines an ERP structure on G with intrinsic torsion form

τ2 = −2
(
e45 − e67

)
− 2

(
e46 + e57

)
+ 2

(
e47 − e56

)
.

By [13], theLie groupG admits a lattice
 ⊂ G, and thus one obtains a compact 7-manifold

\G endowed with an ERP structure. In detail, 
 = exp(AZ + BZ + CZ) � ρ(Z4), where
(A, B,C) is a basis of a such that exp(A), exp(B) and exp(C) leave invariant a lattice ρ(Z4)

of R
4, for a suitable ρ ∈ GL(4, R).

With the usual identification g ∼= T1GG, the ideal R
4 ⊂ g is the tangent space at the

identity of a coassociative submanifold � = R
4 of G. Since τ2|� ∈ �2−(R4), � is minimal.

Its second fundamental form at the identity can be computed as in Example 5.2. In particular,
we obtain

II(e4, e4) = e1 + e2 + e3, II(e5, e5) = e1 − e2 − e3,
II(e6, e6) = −e1 + e2 − e3, II(e7, e7) = −e1 − e2 + e3.
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This shows that � is not totally geodesic. It defines a left-invariant coassociative fibration
with flat fibres that compactify to T 4. We can analyse its properties using exactly the same
methods as for Bryant’s example. In particular, it is a Riemannian submersion and the fibres
are volume minimizing.

Remark Further examples of homogeneous spaces admitting invariant ERP structures are
known. We refer the reader to [1] for the complete classification.

6 Example: Riemannian submersions

Let� be a minimal coassociative submanifold. The term ιZdτ2|� ∧ ιZφ|� in the second vari-
ation formula contains a mix of directions, both tangent and orthogonal to �. The content
of Proposition 4.4 can be seen as providing a reorganization of these contributions, separat-
ing the two directions. This reformulation is ideally suited to the context of coassociative
fibrations mentioned in Sect. 2.

We shall assume that the fibration defines a Riemannian submersion π : M → B, so that
we have a Riemannian structure on B. As seen in Sect. 2, this is a strong condition.

We shall adopt the usual notation TpM = TpMver ⊕ TpMhor to describe the splitting
defined by dπ .

Recall that a horizontal vector field X on M is called basic if, along each fibre, the pro-
jections dπ(X) are constant. Whenever an infinitesimal normal deformation Z corresponds
to a variation through fibres, it is a basic vector field.

Let X , Y denote basic vector fields and V ,W vertical vector fields.Notice thatπ∗[X , V ] =
[π∗X , π∗V ] = [π∗X , 0] = 0, so [X , V ] = [X , V ]ver.

We shall use the notation e1, e2, e3, e4 to denote an orthonormal basis of Tp� = TpMver

and f1, f2, f3 to denote a orthonormal basis of TbB, where π(p) = b. Locally, the
corresponding basic vector fields define an orthonormal frame of T�⊥ = T Mhor|� .

Following O’Neill [17], set

TVW :=(∇VW )hor, AXY :=(∇XY )ver.

Notice that X · f j is constant along the fibres, so

|(∇XV )hor|2 = |(∇V X)hor|2 = (∇V X · f j )
2 = (∇V (X · f j ) − X · ∇V f j )

2

= (X · ∇V f j )
2 = (X · ∇ f j V )2 = (∇ f j X · V )2

= (A f j X · V )2,

showing that A controls such terms also. A similar calculation shows that T controls terms
of the form (∇V X)ver.

Using these facts, O’Neill provides extensions of T , A so that they define tensors on M .
These two tensors exert strong control over the submersion. In particular, T ≡ 0 if and only if
the fibres are totally geodesic and AXY = 1

2 [X , Y ]ver, so A ≡ 0 if and only if the horizontal
distribution is integrable.

Example TheRiemannian submersion corresponding toBryant’sERPmanifold, seeExample
5.2, has A ≡ 0.

The simplest way to construct a Riemannian submersion is via a free isometric action of
a compact Lie group G on M : the orbits then define a Riemannian submersion π : M →
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B:=M/G. In our context, if we assume that the action preserves φ then it will also preserve
the metric gφ . We shall further assume that the orbits are coassociative submanifolds.

Remark This construction implies that G defines automorphisms of the hyper-Kähler struc-
ture on the fibres, discussed in Sect. 2. K3 surfaces have finite automorphism groups, so they
cannot arise as fibres in this construction. The construction thus implies that the fibres are
flat tori.

In the above setting, we can apply Theorem 3.4 to the fibres. Notice that:

(i) The volume functional on the fibres defines a function V : B → R, V(b):=Vol(�b).
(ii) Restricting to coassociative variations corresponds to choosing Z to be a basic vector

field on M .
(iii) The integrand in the second variation formula is invariant under the group action.

Assume b ∈ B corresponds to a totally geodesic fibre, so that T = 0 at each point p ∈ �b.
We can then rewrite the second variation formula as follows:

d2

dt2
V(bt )|t=0 =

∫
�b

ιZdτ2 ∧ ιZφ

=
∫

�b

(4h(Z , Z) + 2 tr(h|�b )g(Z , Z)) vol

= (
4h(Z , Z) + 2 tr(h|�b )g(Z , Z)

)V(b),

where i(h) = dτ2. Notice: in this context the second variation formula corresponds to the
Hessian of V . The above expression shows that it depends on the induced bilinear symmetric
form h : T B × T B → R and on the induced function tr(h|�) : B → R.

Recall from equation (2) that dτ2 contains a term depending on �(τ2 ∧ τ2) and a term
− 1

2 i(Ric). One might expect that, in specific situations, the first term can be explicitly calcu-
lated: this is the case, for instance, in the example discussed below. Here, we are interested
in showing how the second term, which appears in the integrand in the form

−1

2
ιZ i(Ric) ∧ ιZφ = −2Ric(Z , Z) − |Z |2 tr(Ric|�),

can be related to the curvature of B using O’Neill’s curvature formulae.
As usual, let R denote the curvature of M . We shall use the convention

R(X , Y )Z :=∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y ]Z . Let RB denote the curvature of B. [17] (which
uses the opposite sign convention for R) shows that

R(X , Y )Y · X = RB(X , Y )Y · X − 3|AXY |2.
It follows that

Ric(Z , Z) = R(ei , Z)Z · ei + R( f j , Z)Z · f j

= R(Z , ei )ei · Z + RB( f j , Z)Z · f j − 3|A f j Z |2
= R(Z , ei )ei · Z + RicB(Z , Z) − 3|A f j Z |2.

We may also write

tr(Ric|�b ) = Ric(ei , ei ) = R(ek, ei )ei · ek + R( f j , ei )ei · f j = R( f j , ei )ei · f j ,

where we use the fact that � is totally geodesic and Ricci-flat. We conclude that, at b,

−2Ric(Z , Z) − |Z |2 tr(Ric|�) = −2RicB(Z , Z) + 6|A f j Z |2
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− 2R(Z , ei )ei · Z − |Z |2R( f j , ei )ei · f j .

This proves the following result.

Corollary 6.1 Let M be endowed with a closed G2-structure φ. Assume there exists a group
action preserving φ whose orbits are compact and coassociative. Let V : B → R denote the
volume function of the fibres of π : M → B = M/G. Assume a fibre �b is totally geodesic.
Then, at b,

Hess(V)(Z , Z) = (2k(Z , Z) + |Z |2 tr(k|�b ) − 2RicB(Z , Z))V(b)

+ (6|A f j Z |2 − 2 R(Z , ei )ei · Z − |Z |2 R( f j , ei )ei · f j )V(b),

where k is the unique symmetric 2-tensor such that i(k) = �(τ2 ∧ τ2).

Remark The curvature terms above, of the form R(hor, ver) ver · hor, can be further analysed
using O’Neill’s formula:

R(X , V )V · X = (∇XT )V V · X + (∇V A)X X · V − |TV X |2 + |AXV |2.
Recall that Bryant’s example does not fit into this framework: the right action of H does

not preserve the metric. A trivial example to which Corollary 6.1 does apply is given by
the T 4-action on the flat G2 manifold R

7/Z
7. In this case, τ2 = 0. We shall now discuss a

non-trivial example due to M. Fernández [7], with non-vanishing torsion.

Example 6.2 Consider the 2-step nilpotent matrix group

N:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 0 x2 x4 x6

0 1 x3 x5 x7

0 0 1 0 x1

0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ | xi ∈ R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⊂ GL(5, R).

As a Lie group, N ∼= H(1, 2) × R
2, where H(1, 2) denotes the 5-dimensional generalized

Heisenberg group. A basis of left-invariant 1-forms on N is given by

ei :=dxi , i = 1, 2, 3, 4, 5, e6:=dx6 − x2dx1, e7:=dx7 − x3dx1,

so that the structure equations of the Lie algebra n ∼= h(1, 2) ⊕ R
2 of N are

(
0, 0, 0, 0, 0, e12, e13

)
.

Let B = (e1, . . . , e7) denote the basis of n with dual basis B∗ = (e1, . . . , e7). Then, h =
〈e1, e2, e3, e6, e7〉 is a 5-dimensional ideal of n isomorphic to h(1, 2), and we have n = h⊕a,
where a = 〈e4, e5〉 is a 2-dimensional Abelian ideal.

The left-invariant 3-form on N

φ = e123 + e1 ∧ (e45 + e67) + e2 ∧ (e46 − e57) − e3 ∧ (e47 + e56)

defines a closed G2 structure inducing the metric gφ = ∑7
i=1 e

i ⊗ ei . Its intrinsic torsion
form is

τ2 = e27 − e36.

Let Z denote the 4-dimensional centre of N. Its Lie algebra is z = 〈e4, e5, e6, e7〉 so Z is a
coassociative submanifold of N.
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The matrix group N admits a lattice 
:=N ∩ GL(5, Z), and the left-invariant 3-form φ

descends to an invariant closed G2-structure on the compact quotient 
\N. By a result of
Eberlein [6, Prop. 5.5], M :=
\N is the total space of a Riemannian submersion π : M → B
with the following properties:

• Z/(
 ∩ Z) is a 4-torus isomorphic to Iso0(M);
• Iso0(M) acts freely on M and the orbits are flat, totally geodesic 4-tori isometric to

z/(log
 ∩ z), log : N → n being the inverse of the Lie group exponential exp : n → N.
These orbits are the fibres of π ;

• the base B is a flat 3-torus given by the quotient ofm:=n⊥, regarded as an additiveAbelian
group, by the lattice πm(log(
)), where πm : n → m is the orthogonal projection onto
m.

Since theG2-structure φ on N is left-invariant, it follows that the 4-torus preserves the invari-
ant closed G2-structure on M, too. Moreover, the fibres of π are coassociative submanifolds
of M .

Since dτ2 = 2e123, the restriction of ιZdτ2 to the fibres vanishes identically for every
normal variation Z . This shows that, if we restrict to variations in the moduli space, then
Hess(V) = 0, as expected. One can alternatively calculate each term in Corollary 6.1,
obtaining the same result.

Remark If we look at general variations, the facts above and integration by parts allow us to
rewrite the second variation formula as follows:

d2

dt2
(Vol(�t ))|t=0 =

∫
�

(�ιZφ + 2d(ιZ τ2)
+) ∧ ιZφ,

where all forms are restricted to �, � is the Laplacian on � and d(ιZ τ2)
+ denotes the

self-dual component.
This expression can be further modified, taking the form

∫
�

(Q(Z), Z) vol0 or∫
�

(Q(ιZφ), ιZφ) vol0, for appropriate operators Q. This emphasizes their nature as quadratic
forms on, equivalently, the space of normal vector fields or the space of self-dual 2-forms.
However, differently from Bryant and Lauret’s examples above, it remains unclear whether
the fibres are stable.

Remark In examples such as the one above, the vanishing of both tensors A, T would be an
exceedingly strong condition.

Indeed, let M be endowed with a closed G2 structure and a map π : M → B defining
a Riemannian submersion. If T ≡ 0 then [10] shows that the lifting of geodesics from
B to M generates isometries between different fibres. Restricting to geodesically convex
neighbourhoods of B, one thus obtains identifications between the fibres. If also A ≡ 0 we
can then build local identifications with the Riemannian product M � � × B (see [17] for
the global theory).

Assume the fibres are coassociative. Choose a local ON frame e1, e2, e3 defined on some
open subsetU ⊆ B. The vector fields ei lift to define infinitesimal coassociative deformations
of the fibres, so ωi :=ιei φ|� are orthogonal harmonic self-dual 2-forms on the fibres. We may
then write φ = 123+1∧ω1+2∧ω2+3∧ω3. Locally, 123 is a 3-form on B, so d(123) = 0.
Using also dωi = 0, the condition dφ = 0 easily implies that de1 = de2 = de3 = 0. This
implies that the vector fields e1, e2, e3 commute, so they define local ON coordinates on B.
It then follows that M is locally of the form � × R

3, so φ is torsion-free.
M is then Ricci-flat, so many terms in O’Neill’s curvature formulae vanish.
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7 Example: perturbations

The previous examples provide a good testing ground to verify our formulae, but their homo-
geneous structure implies that the fibres have constant volume. The first and second variations
thus vanish automatically.

Homogeneity simplifies the construction of examples, but is not required by Theorem 3.4.
The theorem does, however, simplify when the initial submanifold is totally geodesic. We
will now show how to produce an infinite set of examples of this type via perturbation of
the homogeneous example seen in Sect. 6. The construction relies on an idea already used in
Sect. 5.

Let N be as in Example 6.2. Consider the map

c : N → N,

⎛
⎜⎜⎜⎜⎝

1 0 x2 x4 x6

0 1 x3 x5 x7

0 0 1 0 x1

0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ 
→

⎛
⎜⎜⎜⎜⎝

1 0 −x2 x4 x6

0 1 −x3 x5 x7

0 0 1 0 −x1

0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

One can easily check that c is a group homomorphism preserving the lattice
. It thus induces
a map on M :=
\N which we will continue to denote by c. It is also simple to check that
c∗φ = −φ and that c2 = Id. The T 4-fibre � passing through [1N] ∈ M coincides with
the fixed point set of c. As in Example 5.2, this confirms that � is totally geodesic and
coassociative.

Now choose any 2-form α on M . Set α′:=c∗α − α and φ′:=φ + εdα′, for ε ∈ R. Then:

1. The condition of being a G2 structure is open, so φ′ is a closed G2 structure for any
sufficiently small ε.

2. Clearly c∗φ′ = −φ′, so the usual argument proves that the same fixed point set � is
coassociative also for φ′ and totally geodesic for its induced metric.

3. The topology of � has not changed, so the moduli space M′ of φ′-coassociative
deformations of � is again 3-dimensional.

The generic such α leads to a metric for which � has non-trivial second variations.
At this level of generality, it is, however, unclear whether the new moduli space M′

corresponds to a new coassociative fibration of M : the deformed submanifolds might now
intersect each other. We can obtain further properties by restricting the class of 2-forms, as
follows.

The fact that c : M → M maps fibres into fibres implies that it descends to a map
c : B → B. The two maps are related by the property π ◦ c = c ◦ π .

If we choose α to be a 2-form on B, we can set α′:=c∗α − α on B, then consider the
3-form φ′:=φ + εd(π∗(α′)) on M . Once again c∗φ′ = −φ′, but now:
4. The perturbation term d(π∗(α′)) is of the form λ e123, for some λ = λ(x1, x2, x3). If

(e1, . . . , e7) denotes the invariant coframe on M induced by B∗, we have

φ′ = (1 + ελ) e123 + e1 ∧ (e45 + e67) + e2 ∧ (e46 − e57) − e3 ∧ (e47 + e56).

Linear algebra shows that

gφ′ = (1 + ελ)2/3
3∑

i=1

ei ⊗ ei + (1 + ελ)−1/3
7∑

i=4

ei ⊗ ei .

Thus, φ and φ′ induce homothetic metrics on any fibre.
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5. Consider the T 4-action on M described in Example 6.2. Given g ∈ T 4, π ◦ g = π so
g∗π∗ = π∗. It follows that g∗(π∗(α′)) = π∗(α′). Since also g∗φ = φ, it follows that
g∗(φ′) = φ′. In particular, the action on M is again isometric with respect to the new
metric induced by φ′.

6. Both φ and d(π∗(α′)) vanish tangentially to the T 4-orbits, so these are coassociative
with respect to φ′.

We conclude that the same fibration of M , already discussed in Example 6.2, is again a
Riemannian submersion with respect to the new metric, and that its fibres are again flat and
coassociative. As above, � is totally geodesic so its first variations vanish, while its second
variations are generally non-trivial.
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