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1 Introduction

Transverse momentum dependent (TMD) parton distribution functions (PDFs) and frag-

mentation functions (FFs) depend on the longitudinal and transverse components of the

momentum of partons with respect to the parent hadron momentum, as well as on their

flavor and polarization state. The TMD PDFs and TMD FFs enlarge the amount of

nonperturbative information carried by ordinary integrated PDFs and FFs because they

open the window on explorations of the multi-dimensional structure of hadrons in mo-

mentum space in terms of their QCD elementary constituents. For example, in the last

years several data for single- and double-spin asymmetries in semi-inclusive deep-inelastic

scattering (SIDIS) have been accumulated and can be interpreted as originating from the

effect of specific combinations of (polarized) TMD PDFs and TMD FFs (for a review, see

refs. [1–4]).
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The TMD PDFs and TMD FFs can be defined only by a careful selection of physical

observables that are sensitive to processes with two separate scales. In addition one needs

to study the appropriate factorization theorems for these observables. For example, the

appropriate factorization theorem for SIDIS holds true if the hard photon virtuality is

accompanied by transverse momenta of the order of nucleon mass [5, 6], which then are

observed as a mismatch of collinear momenta. It is necessary that the definition of TMD

functions includes all factorizable long-distance contributions to the physical cross section.

These nonperturbative contributions, related to collinear gluon radiation, are summed into

socalled gauge links that make the TMD functions color gauge invariant objects. Gauge

links provide also the necessary phase to generate the above mentioned spin asymmetries [7–

9]. Because initial-state and final-state gluon interactions are summed into different gauge

links, the TMD functions may be process dependent, although parity and time-reversal

invariance can simplify this non-universality to a simple proportionality factor [10, 11]. To

account for scale dependence, the TMD functions obey evolution equations that generalize

the standard Renormalization Group Evolution (RGE) to a multi-scale regime in hard

processes. TMD evolution equations have been derived for unpolarized TMD PDFs and

TMD FFs [12, 13], and for polarized ones only in a limited number of cases [14–16]. But

despite these recent achievements, the phenomenological implementation of these effects

is still under active debate [16–19]. From the experimental point of view, only few data

sets are available with enough statistics that allows for a multidimensional analysis and

a direct access to transverse momentum distributions [20, 21]; in other cases, the studies

were limited in the multidimensional coverage and by the restricted variety of targets and

final-state hadrons [22–26].

In a preceding paper [27], the dependence of the intrinsic transverse-momentum distri-

bution of both unpolarized TMD PDFs and TMD FFs upon the flavor and the longitudinal

momentum of the parton involved was discussed using the recently published data from

the Hermes collaboration [20] on multiplicities for pions and kaons produced in SIDIS

off proton and deuteron targets. Although the flavor-independent fit of the data was not

statistically excluded, a clear indication was found that different quark flavors produce

different transverse-momentum distributions of final hadrons, especially when comparing

different species of final hadrons. This feature corresponds quite naturally to the well

known strong flavor dependence of integrated PDFs [28–31], and to indications from some

models [32–37] and lattice calculations of TMD objects [38]. The SIDIS process is useful

because it gives simultaneous access to TMD PDFs and TMD FFs. But the factorized

cross section always involves a convolution of transverse momenta of the initial and the

fragmenting partons: anticorrelation hinders a separate investigation of the two intrinsic

distributions. Moreover, the Hermes data were collected at such a limited range in the

hard scale that the statistical analysis of ref. [27] was reasonably performed even without

involving modifications due to evolution effects.

In this paper, we consider the semi-inclusive production of two back-to-back hadrons

in electron-positron annihilations. In analogy with the SIDIS process, we define the multi-

plicities in e+e− annihilations as the differential number of back-to-back pairs of hadrons

produced per corresponding single-hadron production. Then, we study their transverse
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momentum distribution at large values of the center-of-mass (cm) energy, starting from

an input expression for TMD FFs taken from the analysis of Hermes SIDIS multiplic-

ities at low energy performed in ref. [27]. In this framework, we can extract clean and

uncontaminated details on the transverse-momentum dependence of the unpolarized TMD

FF, which is a fundamental ingredient of any spin asymmetry in SIDIS and, therefore, it

affects the extraction also of polarized TMD distributions (see ref. [18] for a recent anal-

ysis of the Collins asymmetry when including TMD evolution effects). Moreover, we can

make realistic tests on the sensitivity to various implementations of TMD evolution avail-

able in the literature, since the hard scales involved in e+e− annihilations are much larger

than the average values explored in SIDIS by Hermes , which is assumed as the starting

reference scale.

An important difference between PDFs and FFs is the role of the gauge links arising

mostly from resummation of gluons with collinear polarizations. T-odd effects for PDFs

enter through the operator definitions of the PDFs after inclusion of appropriate gauge

links having also transverse pieces. For FFs T-odd effects are contained in the hadronic

states and as a consequence there are less universality-breaking effects for FFs [6, 39–41].

In section 2, we outline the theoretical tools needed to work out the cross sections for

annihilations in two hadrons and define the e+e− multiplicities. In section 3, we introduce

the QCD evolution of TMD FFs as the action of an evolution operator on input fragmenta-

tion functions, we describe some procedures to separate perturbative from nonperturbative

domains of transverse momenta, and we provide some prescriptions to parametrize the

nonperturbative contributions to the evolution kernel and the resummation of soft gluon

radiation. In section 4, we introduce the flavor decomposition of fragmentation processes.

In section 5, we make predictions for the spectrum in transverse momentum of e+e− mul-

tiplicities for production of two back-to-back hadrons, focusing on the sensitivity of results

to the flavor of the fragmenting parton and to the different prescriptions for describing

TMD evolution. Final comments and remarks are summarized in section 6.

2 Multiplicities for e+e− annihilation into two hadrons

We consider the process e+e− → h1h2X depicted in figure 1. An electron e− and a positron

e+ annihilate producing a vector boson with time-like momentum transfer q2 ≡ Q2 ≥ 0.

A quark and an antiquark are then emitted, each one fragmenting into a residual jet

containing a leading hadron that for simplicity we will consider unpolarized: the hadron h1

with momentum and mass P1,M1, and the hadron h2 with momentum and mass P2,M2.

The two hadrons belong to two back-to-back jets, i.e. we have P1 ·P2 ≈ Q2. In the following,

we will limit Q2 values to a range where the vector boson can be safely identified with a

virtual photon. Using the standard notations for the light-cone components of a 4-vector,

we define the following invariants

z1 =
2P1 · q
Q2

≈ P−1
q−
≈ P1 · P2

q · P2
z2 =

2P2 · q
Q2

≈ P+
2

q+
≈ P2 · P1

q · P1
y =

P2 · `
P2 · q

, (2.1)

where ` is the electron momentum. The z1 is the fraction of parton momentum carried by

the hadron h1, and similarly for z2 referred to the hadron h2. Covariantly, we can define
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Figure 1. Kinematics for the e+e− annihilation leading to two back-to-back hadrons with momenta

P1 and P2.

the normalized time-like and space-like directions

t̂µ =
qµ

Q
and ẑµ =

Q

P2 · q
Pµ2 − t̂µ =

2

z2Q
Pµ2 − t̂µ . (2.2)

Correspondingly, we can define the projector into the space orthogonal to ẑ and t̂:

gµν⊥ = gµν − t̂µt̂ν + ẑµẑν = gµν − Pµ2 q
ν + qµP ν2
P2 · q

+O

(
M2

Q2

)
. (2.3)

The lepton momentum is then given by

`µ = 1
2q
µ +

(
y − 1

2

)
Qẑµ +Q

√
y(1− y) ˆ̀µ

⊥ , (2.4)

where ˆ̀µ
⊥ = `µ⊥/|`⊥| and `µ⊥ = gµν⊥ `ν .

The gµν⊥ projects onto the space orthogonal to q and P2. The projector onto the

space orthogonal to P1 and P2, namely in the hadron cm frame where P1 and P2 have no

transverse components, is given by

gµνT = gµν − Pµ1 P
ν
2 + Pµ2 P

ν
1

P1 · P2
+O

(
M2

Q2

)
= gµν⊥ +

Pµ2 q
ν
T + qµTP

ν
2

P2 · q
+O

(
M2

Q2

)
, (2.5)

where the non-collinearity is defined as

qµT = qµ − Pµ1
z1
− Pµ2

z2
= gµνT qν

= −P
µ
1⊥
z1

+O

(
M2

Q2

)
= −gµν⊥

P1ν

z1
+O

(
M2

Q2

)
. (2.6)

In the electron-positron cm frame of figure 1, we define the angle θ = arccos(` · ẑ/|`|)
where ẑ = −P2. It is related to the invariant y ≈ (1 + cos θ)/2. In analogy to the Trento

conventions [42], we define the azimuthal angle

cosφ =
P2 × `

|P2 × `| ·
P1⊥ × P2

|P1⊥ × P2|
, (2.7)
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so that Pµ1 = (0, |P1⊥| cosφ, |P1⊥| sinφ, 0) in this frame, and in any frame obtained from

this one by a boost along ẑ. In general, the covariant definition is cos φ = −qT · ˆ̀⊥/|qT |.
The cross section for the e+e− annihilation into back-to-back pairs of unpolarized

hadrons can be written in a factorized formula at low transverse momenta [12, 16, 43, 44]:

dσh1h2

dz1 dz2 dq2
T dy

=
6πα2

Q2
A(y)H(Q2, µ)

×
∑
q

e2
q

∫ ∞
0

dbT bT J0(qT bT )
[
z2

1 D
q~h1
1 (z1, bT ; ζ1, µ) z2

2 D
q̄~h2
1 (z2, bT ; ζ2, µ) + (q ↔ q̄)

]
+ Y (q2

T /Q
2) +O(M2/Q2) , (2.8)

where qT ≡ |qT | and A(y) = 1
2 − y + y2. The H is the hard annihilation part. The

Dq~h1 (z, bT ; ζ, µ) is the TMD FF in impact parameter space for an unpolarized quark

with flavor q fragmenting into an unpolarized hadron h and carrying light-cone momentum

fraction z and transverse momentum conjugated to bT [45]. Both H and Dq~h1 are separated

at the renormalization/factorization scale µ and evolve with it through renormalization

group equations. The Dq~h1 depends also on the scale ζ (with ζ1ζ2 = Q4) and evolves with

it via a process-independent soft factor. The term Y (q2
T /Q

2) ensures the matching with

perturbative calculations at large transverse momenta.

In this paper, we will consider a kinematics where q2
T � Q2 and M2 � Q2. Hence, in

eq. (2.8) the Y (q2
T /Q

2) term and corrections from higher twists of order M2/Q2 or higher

will be neglected. Moreover, the soft gluon radiation is here resummed into the TMD

FF at the Next-to-Leading-Log level (NLL). It implies that the hard annihilation part is

consistently calculated at leading order (LO) in αs, namely H(Q2, µ) ≈ 1. Equation (2.8)

then simplifies to

dσh1h2

dz1 dz2 dq2
T dy

≈ 6πα2

Q2
A(y)

×
∑
q

e2
q

∫ ∞
0
dbT bT J0(qT bT )

[
z2

1 D
q~h1
1 (z1, bT ; ζ1, µ) z2

2 D
q̄~h2
1 (z2, bT ; ζ2, µ) + (q ↔ q̄)

]
.

(2.9)

In section 5, we present our results for the qT spectrum of hadron pair multiplicities

in e+e− annihilation. In strict analogy with the SIDIS definition [20], we construct the

e+e− multiplicities as the differential number of back-to-back pairs of hadrons produced

per corresponding single-hadron production after the e+e− annihilation. In terms of cross

sections, we have

Mh1h2(z1, z2, q
2
T , y) =

dσh1h2

dz1 dz2 dq2
T dy

/
dσh1

dz1 dy
, (2.10)

where dσh1h2 is the differential cross section of eq. (2.9). The dσh1 describes the production

of a single hadron h1 from the e+e− annihilation and it is obtained from the previous cross

section by summing over all hadrons produced in one emisphere [43]:

dσh1

dz1dy
=

12πα2

Q2
A(y)

∑
q

e2
q D

q~h1
1 (z1) . (2.11)
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3 TMD evolution of fragmentation functions

In the following, we describe in more detail the dependence of the fragmentation functions

Dq~h1 of eq. (2.9) upon the renormalization/factorization scale µ and the scale ζ. Different

scenarios are possible according to the choice of the initial starting value for the factoriza-

tion scale, and of the low-energy model describing the nonperturbative part of the evolution

kernel. We first describe the structure of the input Dq~h1 at the starting scale.

3.1 Input fragmentation functions at the starting scale

We consider the unpolarized TMD FF extracted by fitting the hadron multiplicities in

SIDIS data at low energy from Hermes [20]. The assumed functional form displays a

transverse-momentum dependent part which is described in impact parameter space by

the following fixed-scale flavor-dependent Gaussian ansatz:1

Da~h1 (z, bT ; Q2) = da~h1 (z; Q2)
1

z2
exp

[
− 1

4z2

〈
P 2
⊥
〉a~h(z) b2T

]
, (3.1)

where
〈
P 2
⊥
〉a~h(z) with a = q, q̄, is the flavor- and z-dependent Gaussian width at some

starting scale Q2
0 [27, 46, 47]. The choice of having separate Gaussian functions for different

flavors is motivated by the significant differences displayed by the Hermes data between

pion and kaon final-state hadrons [20]. The factorized collinear dependent part da~h1 (z; Q2)

is described by using the DSS parametrization of ref. [48].

Following refs. [49, 50], a possible energy dependence of the Gaussian distribution was

taken into account introducing the logarithmic term

exp

{
− g2

b2T
4

ln
Q2

Q2
0

}
, (3.2)

with g2 a free parameter. Choosing Q2
0 = 1 GeV2, it was soon realized that the best-fit

value for g2 was compatible with zero. As a matter of fact, the Q2 range spanned by

Hermes is small and the obtained experimental data for multiplicities are not sensitive to

evolution effects. For this reason, the fit was performed by using eq. (3.1) at a scale fixed

to the experimental average value, namely Q2 = Q2
0 = 2.4 GeV2. With this choice, the

possible energy dependence of eq. (3.2) is automatically eliminated.

In summary, the input to our studies on the evolution of Da~h1 with the scales µ and ζ is

referred to the expression in eq. (3.1) to be considered at the starting scale Q2
0 = 2.4 GeV2.

However, depending on the choice of the initial value of the factorization scale this identi-

fication is not always straightforward, as will be explained in the following sections.

3.2 The µb prescription

As shown in eq. (2.9), the TMD FFs generally depend on the factorization scale µ and

on the scale ζ, that for convenience we name the rapidity scale. The TMD FFs satisfy

1The 1/z2 factors appearing in eq. (3.1) are due to bT being conjugated to the partonic transverse

momentum kT , whereas the TMD FFs in ref. [27] are defined and normalized in momentum space with

respect to the hadronic transverse momentum KT = −zkT .
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evolution equations with respect to both of them [12, 13]. The evolution with respect to µ

is determined by standard RGE equations, whereas the evolution in ζ is determined by a

process-independent soft factor [12, 13].

The functional form of TMD FFs at small bT can be calculated in perturbative QCD.

Conversely, the nonperturbative part at large bT must be constrained by fitting experi-

mental data. At the medium/large energies of the Bes-III and Belle experiments, the

perturbative tail of TMD FFs needs to be taken into account. Using the technique of

Operator Product Expansion (OPE), it can be represented as a convolution of (perturba-

tively calculable) Wilson coefficients C with the (nonperturbative) collinear fragmentation

functions d1 [12, 13]:

Da~h(z, bT ; ζ, µ) = [C ⊗ da~h1 ](z, bT ; ζ, µ)︸ ︷︷ ︸
small bT

+O(bTΛQCD)︸ ︷︷ ︸
large bT

. (3.3)

The convolution is defined as

[C ⊗ da~h1 ](z, bT ; ζ, µ) =
∑

j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, bT ; ζ, µ

)
dj~h1 (s;µ) . (3.4)

The dependence of the coefficients upon both factorization and rapidity scales can be

represented in a factorized form:

Cj~a
(z, bT ; ζ, µ) =

(
ζ

µ2
b

)−K(bT ;µ)

Cj~a
(z, bT ;µ2

b , µ) , (3.5)

where µb is defined as

µb =
2e−γE

bT
, (3.6)

and γE is the Euler constant. The K function in eq. (3.5)2 arises from the process-

independent soft factor that is necessary to proof the factorization theorem leading to

the definition of the TMD FFs; it drives the evolution of TMD FFs in the ζ variable. The

convolution in eq. (3.4) is only valid for small bT , namely bT � 1/ΛQCD. Moreover, the

expression of the C coefficients consists in a power series in αs ln (µ2/µ2
b) (including also

double logarithms of the same argument). The OPE is valid only when the logarithms

do not diverge; this is accomplished, e.g., by choosing µ = µb or qT , so that the series

converges. Accordingly, if we choose µ = µb we can write the TMD FF as

Da~h(z, bT ; ζ, µb) =

(
ζ

µ2
b

)−K(bT ;µb) ∑
j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, bT ;µ2

b , µb

)
dj~h1 (s;µb)

+O(bTΛQCD) . (3.7)

The evolution of this fragmentation function from µb to another value of µ (e.g., µ = Q)

is driven by RGE equations. Instead, the evolution from an initial rapidity scale ζi to ζ is

2Our K function corresponds to the D function in ref. [13], and to the K̃ function in ref. [12] but for a

factor −1/2.
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controlled by the K function. The final expression of the TMD FF at the scales µ = Q

and ζ is

Da~h(z, bT ; ζ,Q) = exp

{∫ µ=Q

µb

dµ̄

µ̄
γFF

}(
ζ

ζi

)−K(bT ;µb)

×
(
ζi
µ2
b

)−K(bT ;µb) ∑
j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, bT ;µ2

b , µb

)
dj~h1 (s;µb)

+O(bTΛQCD) , (3.8)

where the anomalous dimension γFF reads

γFF = −
(

Γcusp ln
ζ

µ2
+ γV

)
, (3.9)

and Γcusp and γV are also power series in αs in the MS scheme [16].

The above procedure is valid up to a maximum value of bT , that we name bmax, beyond

which we do not trust the perturbative calculation. Hence, it is convenient to reconsider

the OPE by introducing the new variable b̂T that freezes at bmax when bT becomes large:

lim
bT→∞

b̂T (bT ) = bmax . (3.10)

For bT . bmax, the evolution in ζ is controlled by the function K(b̂T ;µb̂), where

µb̂ =
2e−γE

b̂T
. (3.11)

The nonperturbative part at large bT is defined as what is left over [51]:

gnp(bT ) = −K(b̂T ;µb̂) +K(bT ;µb) . (3.12)

By adding the intrinsic transverse distribution at the starting scale (see eq. (3.1)),

eq. (3.8) becomes

Da~h(z, bT ; ζ,Q) = exp

{∫ Q

µb̂

dµ̄

µ̄
γFF

}(
ζ

ζi

)−K(b̂T ;µb̂)−gnp(bT )

×
(
ζi
µ2
b̂

)−K(b̂T ;µb̂)−gnp(bT ) ∑
j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, b̂T ;µ2

b̂
, µb̂

)
dj~h1 (s;µb̂)

× 1

z2
e−
〈P 2
⊥〉
a~h(z)

4z2
b2T

(
ζi
Q2

0

)−gnp(bT )

. (3.13)
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If we insert ζi = µ2
b̂

and ζ = µ2 = Q2, the above equation reduces to

Da~h(z, bT ;Q2, Q) = exp

{∫ Q

µb̂

dµ̄

µ̄
γFF

}(
Q2

µ2
b̂

)−K(b̂T ;µb̂)−gnp(bT )

×
∑

j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, b̂T ;µ2

b̂
, µb̂

)
dj~h1 (s;µb̂)

× 1

z2
e−
〈P 2
⊥〉
a~h(z)

4z2
b2T

(
µ2
b̂

Q2
0

)−gnp(bT )

≡R(bT ;Q2, Q, µ2
b̂
, µb̂) D

a~h(z, bT ;µ2
b̂
, µb̂) . (3.14)

Hence, the net effect of evolution can be represented as the action of an evolution operator

R on the input TMD FF evaluated at the scale µb̂, which is running with b̂T . This peculiar

feature grants that there is a smooth matching between the perturbative domain at small

bT and the nonperturbative domain at large bT . It is interesting to remark that from

eqs. (3.13) and (3.14) we deduce that modelling the nonperturbative part affects the whole

bT spectrum, not only the large bT region.

In this paper, we resum the soft gluon radiation up to NLL contributions in ln (µ/µb),

which corresponds to include terms linear in αs in the perturbative expansion of K and

γV , and quadratic in the expansion of Γcusp [16]:

K(bT ;µ) =
CF
2π

αs ln
µ2

µ2
b

,

γV = −3CF
2π

αs ,

Γcusp =
CF
π
αs

{
1 +

αs
4π

[(
67

9
− π2

3

)
CA −

20

9
TF nf

]}
, (3.15)

where CA = Nc, CF = (N2
c − 1)/2Nc, are the usual Casimir operators for the gluon and

fermion representations of the color group SU(Nc) with Nc colors, and TF = nf/2 with nf
the number of active quark flavors. Consistently, the coefficients C are computed at LO in

αs, namely they reduce to δ functions such that eq. (3.14) simplifies to

Da~h(z, bT ;Q) = exp

{∫ Q

µb̂

dµ̄

µ̄
γ
FF
∣∣
NLL

}(
Q2

µ2
b̂

)−KNLL(b̂T ;µb̂)−gnp(bT )

× da~h1 (z;µb̂)
1

z2
exp

{
−
〈
P 2
⊥
〉a~h(z)

4z2
b2T

}(
µ2
b̂

Q2
0

)−gnp(bT )

. (3.16)

The definition of gnp(bT ) in eq. (3.12) obviously implies that this function depends

on bmax, i.e. on the value of the impact parameter that sets the separation between the

perturbative and nonperturbative regimes. Indeed, by perturbatively expanding K(bT ;µb)

at lowest order we have [51]

gnp(bT ) ≈ αs(µb̂)CF

π
ln

(
1 +

b2T
b2max

)
. (3.17)
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For bT � bmax, this expression recovers the quadratic parametrization 1
2g2b

2
T adopted in the

fits of refs. [50] and [52], and it suggests that the parameter g2 is not free but anticorrelated

to bmax, and proportional to b2max through a perturbatively calculable coefficient. The gnp

function accounts for the radiation of soft gluons emitted from a parton. A small (large)

value of bmax implies that the QCD perturbative description is valid up to relatively small

(large) bT values. Consequently, the amount of soft gluons emission is larger (smaller) and

we expect a large (small) value for g2. More generally, this anticorrelation is motivated by

the fact that both the exact function K(bT ;µb) and the TMD FF itself must not depend on

the arbitrary choice of bmax. So, bmax should not be regarded as a free parameter to be fitted

to data, but it should be considered as an arbitrary scale that separates perturbative from

nonperturbative regimes: changing bmax implies a rearrangement of all terms in eq. (3.13)

such that the TMD FF does not change [51].

For the purpose of this work, we will consider anticorrelated pairs of values for {bmax, g2},
inspired to the values adopted in refs. [50] and [52]. We will also explore different expres-

sions for each one of the b̂T and gnp functions. For b̂T , our first choice is the socalled

“b-star” prescription [12, 50]

b̂T ≡ b∗T =
bT√

1 +
b2T
b2max

. (3.18)

The second choice is based on the exponential function

b̂T ≡ b†T = bmax

{
1− exp

[
− b4T
b4max

]} 1
4

, (3.19)

that is steeper and it approaches the asymptotic constant bmax more quickly. For gnp, we

choose a linear function of b2T similarly to refs. [49, 50, 52] (see also eq. (3.2)):

glin
np(bT ) =

g2

4
b2T . (3.20)

The second choice is suggested by eq. (3.17):

glog
np (bT ) = g2 b̄

2
T ln

(
1 +

b2T
4b̄2T

)
, b̄T = 1 GeV−1 . (3.21)

This expression was considered also in ref. [53], and it reduces to eq. (3.20) for small bT .

In principle, we have four different combinations of prescriptions: {b∗T , glin
np}, {b∗T , g

log
np },

{b†T , glin
np}, and {b†T , g

log
np }. However, after some preliminary exploration we realized that

some of them were producing redundant results. Therefore, they have been neglected. In

summary, the transverse-momentum spectrum of the multiplicities in eq. (2.10) will be

analyzed by varying the anticorrelated pair of parameters {bmax, g2}, and by considering

only the two combinations {b∗T , glin
np} and {b†T , g

log
np }.

Finally, we remark that if we choose Q = µb̂ in eq. (3.16), i.e. if we switch off evolution

effects, we should recover the Gaussian model expression of eq. (3.1) for the TMD FF at

the initial scale Q0. Formally, this is not the case because in the second line the collinear

d1 is evaluated at µb̂ and the term (µ2
b̂
/Q2

0)−gnp(bT ) survives. However, the Gaussian model

– 10 –
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of eq. (3.1) is deduced by fitting the Hermes SIDIS data, whose kinematics overlaps the

domain of very large bT � bmax, namely where b̂T ≈ bmax. If we use the prescription b̂T ≡
b∗T of eq. (3.18), it is easy to check that for bmax = 0.7 GeV−1 we have µ2

b̂
≈ Q2

0 = 2.4 GeV2.

Hence, the Da~h(z, bT ;µb̂) of eq. (3.16) at Q = µb̂ actually behaves like the Da~h(z, bT ;Q0)

of eq. (3.1) at the scale Q0 and at very large bT values, or equivalently for very small parton

transverse momenta.

3.3 The fixed-scale prescription

In eq. (3.14), we have expressed the evolved TMD FF at a scale Q as the result of an

evolution operator R acting on the same TMD FF evaluated at the scale µb̂ running with

bT . Alternatively, we can fix the initial scale at the value Q2
i = Q2

0 = 2.4 GeV2 for the

whole bT distribution:

Da~h(z, bT ;Q) = R(bT ;Q,Qi) D
a~h(z, bT ;Qi) . (3.22)

With this choice, it is not possible to apply the OPE for calculating a perturbative tail to

which the TMD FF should match at low bT , as it was done in eq. (3.3): we need a model

input over the whole bT spectrum. In our case, it is now very easy to identify the input

TMD FF at the starting scale Qi with the Gaussian parametrization of eq. (3.1) at Q0.

Then, for µ2
i = ζi = Q2

i = Q2
0 = 2.4 GeV2 the TMD FF evolved at NLL up to a final scale

µ2 = ζ ≡ Q2 becomes

Da~h(z, bT ;Q) = exp

{∫ Q

Qi

dµ̄

µ̄
γFF

∣∣
NLL

} (
Q2

Q2
i

)−KNLL(bT ;Qi)

× da~h1 (z;Qi)
1

z2
exp

{
−
〈
P 2
⊥
〉a~h(z)

4z2
b2T

}
. (3.23)

The contribution from the gnp term in the input distribution does not appear because of

the choice of the starting scale ζi = Q2
i = Q2

0.

The choice µi = Qi of identifying the starting factorization scale with a fixed scale for

the whole bT spectrum has important consequences also on the function K. From eq. (3.15),

we can expand K in powers of ln (µ/µb): if µi 6= µb, the series may not converge. One

possible workaround is to apply the resummation technique to the K function itself [13].

Here, we will discuss two different prescriptions: computing K from ref. [12] at a fixed order

in αs; or dressing K by resumming large logarithms of the kind ln (µ/µb) [13]. In the first

case, K is expanded in powers of αs; in the second case, the expansion is in αs ln (µ/µb).

If µi = µb, the two expansions are the same.

We will refer to the first choice as the ”fixed-scale” prescription. Contrary to the

prescription described in the previous section, there is no need to define an arbitrary scale

bmax to separate perturbative from nonperturbative regimes. However, the function K is
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evolved from µb̂ to Qi through its anomalous dimension:

K(bT ;Qi) =K(b̂T ;µb̂) +

∫ Qi

µb̂

dµ̄

µ̄
Γcusp + gnp(bT )

≈
NLL

∫ Qi

µb̂

dµ̄

µ̄
Γcusp + gnp(bT ) , (3.24)

where gnp(bT ) can get either the expression in eq. (3.20) or in eq. (3.21). The pertur-

bative contributions are calculated at NLL as in eq. (3.15), according to which we have

KNLL(b̂T ;µb̂) = 0.

The second choice is connected to the results of ref. [13], because we resum all large

logarithms of the kind ln (µ/µb) in the perturbative part as

K(bT ;Qi) = DR(bT ;Qi) θ(bT,c − bT ) + ḡnp(bT ) θ(bT − bT,c) , (3.25)

where DR is the resummed contribution computed in ref. [13], and bT,c is the convergence

radius of the perturbative expression. Apart from the resummation of logarithms, the

main difference with eq. (3.24) is the presence of the θ functions: no b̂T prescription is

used to connect the perturbative and nonperturbative domains. And the nonperturbative

contribution acts differently: while gnp in eq. (3.24) applies to the whole bT spectrum, in

eq. (3.25) it does only for bT > bT,c. Hence, we use the notation ḡnp to account for this

difference. For example, the K function must be at least continuous at bT = bT,c. We can

match this constraint by defining the nonperturbative contribution at bT > bT,c as

ḡnp(bT ) = DR(bT,c)

[
1 + gnp(bT − bT,c)

]
, (3.26)

where gnp can be again either the glin
np prescription of eq. (3.20) or the glog

np prescription of

eq. (3.21).

For Qi � Q, the perturbative component DR in eq. (3.25) diverges for bT < bT,c.

Hence, its contribution to the evolution of the fragmentation function becomes negligible,

being of the kind (Q/Qi)
−DR . Since K is a smooth function in bT , also the contribution of

the nonperturbative part ḡnp for bT > bT,c becomes numerically negligible [13]. However,

this result cannot be generalized to any value of Q. Since we will make explorative calcu-

lations also at the Bes-III scale Q =
√

14.6 GeV which cannot be considered to be much

larger than the initial scale Q0 =
√

2.4 GeV of our input TMD FF, we will consider only

the ”fixed-scale” prescription of eq. (3.24).

3.4 Summary of evolution kernels

In summary, we consider two possible ways of evolving the TMD FF, according to the

choice of the initial factorization scale µi. It is understood that all formulae are computed

at the NLL level of accuracy, according to eq. (3.15).
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A The ”µb” prescription: then µ2
i = µ2

b̂
= ζi, ζ = µ2 = Q2, and we have

Da~h(z, bT ;Q) = exp

{∫ Q

µb̂

dµ̄

µ̄
γFF

} (
Q2

µ2
b̂

)−K(b̂T ;µb̂)−gnp(bT )

× da~h1 (z;µb̂)
1

z2
exp

{
−
〈
P 2
⊥
〉a~h(z)

4z2
b2T

} (
µ2
b̂

Q2
0

)−gnp(bT )

, (3.27)

where γFF and K are described by eqs. (3.9) and (3.15), µb̂ is given by eq. (3.11)

with eqs. (3.18) and (3.19), and gnp is described in eqs. (3.20) and (3.21).

B The ”fixed-scale” prescription: then µ2
i = Q2

i = ζi, ζ = µ2 = Q2, and we have

Da~h(z, bT ;Q) = exp

{∫ Q

Qi

dµ̄

µ̄
γFF

} (
Q2

Q2
i

)−K(b̂T ;µb̂)−
∫Qi
µ
b̂

dµ̄
µ̄

Γcusp−gnp(bT )

× da~h1 (z;Qi)
1

z2
exp

{
−
〈
P 2
⊥
〉a~h(z)

4z2
b2T

}
, (3.28)

where γFF , µb̂, gnp are defined in the same equations as above, while K is given in

eq. (3.24).

4 Flavor dependence of fragmentation functions

The flavor sum in eq. (2.9) can be made explicit and further simplified using the symmetry

upon charge-conjugation transformations:

Dq~h1 (z, bT ; Q2) = Dq̄~ h̄1 (z, bT ; Q2) . (4.1)

At the starting scale Q0, we distinguish the favored fragmentation where the fragmenting

parton is in the valence content of the final hadron h. All the other channels are classified

as unfavored fragmentation and are characterized by the fact that the detected hadron is

produced by exciting more than one qq̄ pair from the vacuum. If the final hadron is a kaon,

we further distinguish a favored fragmentation initiated by an up quark/antiquark from

the one initiated by a strange quark/antiquark. We limit the sum to three flavors u, d, s,

and the corresponding antiquark partners.

4.1 Favored and unfavored fragmentation to different hadron species

For the final hadron pair being (h1, h2) = (π+, π−), the flavor sum in eq. (2.9) becomes∑
q

e2
q D

q~π
+

1 Dq̄~π
−

1 + (q ↔ q̄) = Dπ+π−
fav +Dπ+π−

unf , (4.2)

where

Dπ+π−
fav (z1, z2, bT ;Q2

0) =
4

9
Du~π

+

1 (z1, bT ;Q2
0)Dū~π

−
1 (z2, bT ;Q2

0)

+
1

9
Dd̄~π

+

1 (z1, bT ;Q2
0)Dd~π

−
1 (z2, bT ;Q2

0) , (4.3)
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and

Dπ+π−
unf (z1, z2, bT ;Q2

0) =
4

9
Dū~π

+

1 (z1, bT ;Q2
0)Du~π

−
1 (z2, bT ;Q2

0)

+
1

9
Dd~π

+

1 (z1, bT ;Q2
0)Dd̄~π

−
1 (z2, bT ;Q2

0)

+
1

9

(
Ds~π

+

1 (z1, bT ;Q2
0)Ds̄~π

−
1 (z2, bT ;Q2

0)

+Ds̄~π
+

1 (z1, bT ;Q2
0)Ds~π

−
1 (z2, bT ;Q2

0)
)
. (4.4)

Using the charge-conjugation symmetry of eq. (4.1), it is simple to prove that the result

for (h1, h2) = (π−, π+) is identical to the above one in eq. (4.2).

If the final pions have the same charge, (h1, h2) = (π+, π+), we have∑
q

e2
q D

q~π
+

1 Dq̄~π
+

1 + (q ↔ q̄) =

[
4

9
Du~π

+

1 (z1, bT ;Q2
0)Dπ+

unf(z2, bT ;Q2
0)

+
1

9
Dπ+

unf(z1, bT ;Q2
0)Dd̄~π

+

1 (z2, bT ;Q2
0)

]
+(1↔ 2)

+
2

9
Dπ+

unf(z1, bT ;Q2
0)Dπ+

unf(z2, bT ;Q2
0) , (4.5)

where

Dπ+

unf(z, bT ;Q2
0) = Dū~π

+

1 (z, bT ;Q2
0) = Dd~π

+

1 (z, bT ;Q2
0)

= Ds~π
+

1 (z, bT ;Q2
0) = Ds̄~π

+

1 (z, bT ;Q2
0) . (4.6)

Again, because of charge-conjugation symmetry we get the same result for (h1, h2) =

(π−, π−).

If the final hadron pair is (h1, h2) = (K+, K−), the flavor sum becomes∑
q

e2
q D

q~K
+

1 Dq̄~K
−

1 + (q ↔ q̄) = DK+K−
fav +DK+K−

unf , (4.7)

where

DK+K−
fav (z1, z2, bT ;Q2

0) =
4

9
Du~K

+

1 (z1, bT ;Q2
0)Dū~K

−
1 (z2, bT ;Q2

0)

+
1

9
Ds̄~K

+

1 (z1, bT ;Q2
0)Ds~K

−
1 (z2, bT ;Q2

0) , (4.8)

and

DK+K−
unf (z1, z2, bT ;Q2

0) =
4

9
Dū~K

+

1 (z1, bT ;Q2
0)Du~K

−
1 (z2, bT ;Q2

0)

+
1

9
Ds~K

+

1 (z1, bT ;Q2
0)Ds̄~K

−
1 (z2, bT ;Q2

0)

+
1

9

(
Dd~K

+

1 (z1, bT ;Q2
0)Dd̄~K

−
1 (z2, bT ;Q2

0)

+Dd̄~K
+

1 (z1, bT ;Q2
0)Dd~K

−
1 (z2, bT ;Q2

0)
)
. (4.9)
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Charge-conjugation symmetry grants the same result for (h1, h2) = (K−, K+).

If (h1, h2) = (K+, K+):∑
q

e2
q D

q~K
+

1 Dq̄~K
+

1 + (q ↔ q̄) =

[
4

9
Du~K

+

1 (z1, bT ;Q2
0)DK+

unf (z2, bT ;Q2
0)

+
1

9
DK+

unf (z1, bT ;Q2
0)Ds̄~K

+

1 (z2, bT ;Q2
0)

]
+ (1↔ 2)

+
2

9
DK+

unf (z1, bT ;Q2
0)DK+

unf (z2, bT ;Q2
0) , (4.10)

where

DK+

unf (z, bT ;Q2
0) = Dū~K

+

1 (z, bT ;Q2
0) = Ds~K

+

1 (z, bT ;Q2
0)

= Dd~K
+

1 (z, bT ;Q2
0) = Dd̄~K

+

1 (z, bT ;Q2
0) . (4.11)

As before, we get the same result for (h1, h2) = (K−, K−).

The last combination is (h1, h2) = (π+, K−):∑
q

e2
q D

q~π
+

1 Dq̄~K
−

1 + (q ↔ q̄) = Dπ+K−
fav (z1, z2, bT ;Q2

0)

+
1

9

(
Dd̄~π

+

1 (z1, bT ;Q2
0)DK+

unf (z2, bT ;Q2
0) +Dπ+

unf(z1, bT ;Q2
0)Ds~K

−
1 (z2, bT ;Q2

0)
)

+
2

3
Dπ+

unf(z1, bT ;Q2
0)DK+

unf (z2, bT ;Q2
0) , (4.12)

where

Dπ+K−
fav (z1, z2, bT ;Q2

0) =
4

9
Du~π

+

1 (z1, bT ;Q2
0)Dū~K

−
1 (z2, bT ;Q2

0) , (4.13)

and charge-conjugation symmetry applied to eq. (4.11) gives

DK+

unf (z, bT ;Q2
0) = Du~K

−
1 (z, bT ;Q2

0) = Ds̄~K
−

1 (z, bT ;Q2
0)

= Dd̄~K
−

1 (z, bT ;Q2
0) = Dd~K

−
1 (z, bT ;Q2

0) , (4.14)

and grants that the same result in eq. (4.12) holds also for (h1, h2) = (π−, K+).

4.2 Flavor dependent Gaussian ansatz

The starting input to our analysis are the TMD FFs extracted by fitting the hadron multi-

plicities in SIDIS data from Hermes at Q2
0 = 2.4 GeV2 [27]. The assumed functional form

displays a transverse-momentum dependent part which is described in impact parameter

space by the following flavor-dependent Gaussian ansatz:

Dq~h1 (z, bT ; Q2
0) = dq~h1 (z; Q2

0)
1

z2
exp

[
− 1

4z2

〈
P 2
⊥
〉q~h(z) b2T

]
≡ dq~h1 (z; Q2

0)Ghq (z, b2T ) . (4.15)

The cross section of eq. (2.9) (and, in turn, the multiplicity in eq. (2.10)) is then a sum of

Gaussians, and thus no longer a simple Gaussian. The width of the Gaussian depends also
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on the fractional momentum z, as done in several model calculations or phenomenological

extractions [36, 54–58]. The chosen functional form is [27]

〈
P 2
⊥
〉q~h(z) =

〈
P̂ 2
⊥
〉q~h (zβ + δ) (1− z)γ

(ẑβ + δ) (1− ẑ)γ
, (4.16)

where β, δ, γ, are fitting parameters and
〈
P̂ 2
⊥
〉q~h ≡ 〈P 2

⊥
〉q~h(ẑ), with ẑ = 0.5.

Isospin and charge-conjugation symmetries suggest four different Gaussian shapes [27]:〈
P̂ 2
⊥
〉u~π+

=
〈
P̂ 2
⊥
〉d̄~π+

=
〈
P̂ 2
⊥
〉ū~π− =

〈
P̂ 2
⊥
〉d~π− ≡ 〈P̂ 2

⊥
〉fav

, (4.17)〈
P̂ 2
⊥
〉u~K+

=
〈
P̂ 2
⊥
〉ū~K− ≡ 〈P̂ 2

⊥
〉uK

, (4.18)〈
P̂ 2
⊥
〉s̄~K+

=
〈
P̂ 2
⊥
〉s~K− ≡ 〈P̂ 2

⊥
〉sK

, (4.19)〈
P̂ 2
⊥
〉all others ≡

〈
P̂ 2
⊥
〉unf

. (4.20)

Correspondingly, we have four different Gaussian functions in eq. (4.15):

Gπ
+

u = Gπ
+

d̄ = Gπ
−
ū = Gπ

−
d ≡ Gfav(z, b2T ) , (4.21)

GK
+

u = GK
−

ū ≡ GuK(z, b2T ) , (4.22)

GK
+

s̄ = GK
−

s ≡ GsK(z, b2T ) , (4.23)

Gπ
−
u = GK

−
u = Gπ

+

d = GK
±

d = Gπ
±
s = GK

+

s = Gπ
+

ū = GK
+

ū

= Gπ
−

d̄ = GK
±

d̄ = Gπ
±
s̄ = GK

−
s̄ ≡ Gunf(z, b

2
T ) . (4.24)

Each one of these four functions depends on the same β, δ, γ, fitting parameters of eq. (4.16),

such that all the Ghq (z, b2T ) in eq. (4.15) are described by seven parameters.

For the collinear functions dq~h1 (z; Q2
0), we adopt the same assumptions of ref. [48]:

- isospin symmetry of the sea quarks

- for h = π+, a direct proportionality between the (d + d̄) and (u + ū) combinations,

i.e. (d+ d̄) = N(u+ ū).

Therefore, we have three independent favored fragmentations,

du~π
+

1 (z;Q2
0), du~K

+

1 (z;Q2
0), ds̄~K

+

1 (z;Q2
0) , (4.25)

and two independent unfavored fragmentations:

dū~π
+

1 = dd~π
+

1 = ds~π
+

1 = ds̄~π
+

1 ≡ dπ+

1 unf(z; Q2
0) , (4.26)

dū~K
+

1 = dd~K
+

1 = ds~K
+

1 = dd̄~K
+

1 ≡ dK+

1 unf(z; Q2
0) . (4.27)

The remaining favored channel d̄→ π+ is then given by

dd̄~π
+

1 = N du~π
+

1 + (N − 1) dū~π
+

1

= N du~π
+

1 + (N − 1) dπ
+

1 unf(z; Q2
0) . (4.28)
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The h = π− and h = K− channels can be deduced from the above ones using the charge-

conjugation symmetry of eq. (4.1).

By inserting the Gaussian ansatz with the above assumptions in the expressions of

section 4.1, we get

Dπ+π−
fav (z1, z2, bT ;Q2

0) =

[
N2 + 4

9
du~π

+

1 (z1;Q2
0) du~π

+

1 (z2;Q2
0)

+
N(N − 1)

9
du~π

+

1 (z1;Q2
0) dπ

+

1 unf(z2; Q2
0) + (1↔ 2)

+
(N − 1)2

9
dπ

+

1 unf(z1; Q2
0) dπ

+

1 unf(z2; Q2
0)

]
Gfav(z1, b

2
T )Gfav(z2, b

2
T ) , (4.29)

Dπ+π−
unf (z1, z2, bT ;Q2

0) =
7

9
dπ

+

1 unf(z1; Q2
0) dπ

+

1 unf(z2; Q2
0)Gunf(z1, b

2
T )Gunf(z2, b

2
T ) , (4.30)

Du~π
+

1 (z, bT ;Q2
0) = du~π

+

1 (z;Q2
0)Gfav(z, b2T ) , (4.31)

Dd̄~π
+

1 (z, bT ;Q2
0) =

[
N du~π

+

1 (z;Q2
0) + (N − 1) dπ

+

1 unf(z; Q2
0)
]
Gfav(z, b2T ) , (4.32)

Dπ+

unf(z, bT ;Q2
0) = dπ

+

1 unf(z;Q2
0)Gunf(z, b

2
T ) , (4.33)

DK+K−
fav (z1, z2, bT ;Q2

0) =
4

9
du~K

+

1 (z1;Q2
0) du~K

+

1 (z2;Q2
0)GuK(z1, b

2
T )GuK(z2, b

2
T )

+
1

9
ds̄~K

+

1 (z1;Q2
0) ds̄~K

+

1 (z2;Q2
0)GsK(z1, b

2
T )GsK(z2, b

2
T ) , (4.34)

DK+K−
unf (z1, z2, bT ;Q2

0) =
7

9
dK

+

1 unf(z1; Q2
0) dK

+

1 unf(z2; Q2
0)Gunf(z1, b

2
T )Gunf(z2, b

2
T ) , (4.35)

Du~K
+

1 (z, bT ;Q2
0) = du~K

+

1 (z;Q2
0)GuK(z, b2T ) , (4.36)

Ds̄~K
+

1 (z, bT ;Q2
0) ≡ Ds~K

−
1 (z, bT ;Q2

0) = ds̄~K
+

1 (z;Q2
0)GsK(z, b2T ) , (4.37)

DK+

unf (z, bT ;Q2
0) = dK

+

1 unf(z; Q2
0)Gunf(z, b

2
T ) , (4.38)

Dπ+K−
fav (z1, z2, bT ;Q2

0) =
4

9
du~π

+

1 (z1;Q2
0) du~K

+

1 (z2;Q2
0)Gfav(z1, b

2
T )GuK(z2, b

2
T ) . (4.39)

5 Predictions for TMD multiplicities

In this section, we present our results as normalized multiplicities

Mh1h2(z1, z2, q
2
T , y)/Mh1h2(z1, z2, 0, y) (5.1)

for the hadron pair (h1, h2), where Mh1h2(z1, z2, q
2
T , y) is defined in eq. (2.10). In such

way, we are able to directly compare the genuine trend in q2
T for each different case. If

not explicitly specified, we choose y = 0.2. For selected values of {z1, z2}, the results

are displayed as a function of P 2
1⊥ = z2

1q
2
T . Hence, the useful range in P 2

1⊥ depends on

z1 in order to fulfill the condition q2
T � Q2. The range obviously depends also on the

choice of the hard scale; we consider Q2 = 100 GeV2, as in the Belle experiment, and

Q2 = 14.6 GeV2, as in the Bes-III one. For each specific case, the results are displayed
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as uncertainty bands: they represent the 68% of the envelope of 200 different values for

the intrinsic parameters in eqs. (4.16)–(4.20) for the D1(z, bT ;Q2
0) at the starting scale Q2

0,

obtained by rejecting the largest and lowest 16% of them. The 200 values are obtained

by fitting 200 replicas of SIDIS multiplicities measured by the Hermes collaboration [20].

If the 200 values for each parameter were distributed as a Gaussian, the 68% band would

correspond to the usual 1σ confidence interval (for more details, see ref. [27]).

The results are organized as follows. In section 5.1, we show the sensitivity of the

normalized multiplicity to different values of the evolution parameters {bmax, g2} described

in section 3.2 for a final hadron pair (h1h2) = (π+π−). In section 5.2, we compare normal-

ized multiplicities for the two different evolution schemes described in sections 3.2 and 3.3.

In section 5.3, we discuss the capability of discriminating among the various prescriptions

illustrated in section 3.2 for the nonperturbative evolution effects. In section 5.4, we concen-

trate on the sensitivity of the normalized multiplicities upon varying the fractional energy

z of final hadrons. In section 5.5, we show how the results get modified when lowering Q2

from the Belle scale to the Bes-III scale. Finally, in section 5.6 we discuss the sensitivity

of ratios of normalized multiplicities for different final states to the flavor structure of the

intrinsic transverse-momentum-dependent part of the input TMD FF at the starting scale

of evolution.

5.1 Sensitivity to nonperturbative evolution parameters

As already remarked in section 3.2, for a specific evolution scheme the nonperturbative part

of the TMD evolution depends on the choice of a prescription for describing the transition

from perturbative to nonperturbative regimes, which in turn depends on the two parameters

bmax and g2. In this section, we explore the sensitivity of our predictions to different

values of the pair {bmax [GeV−1], g2 [GeV2]} (hereafter, we omit their units for simplicity).

We adopt as limiting cases the choices {bmax = 1.5, g2 = 0.18} and {bmax = 0.5, g2 =

0.68}, that were deduced in refs. [52] and [50], respectively, by fitting the transverse-

momentum distribution of lepton pairs produced in Drell-Yan processes. If not explicitly

specified, the first choice is described by uncertainty bands with dot-dashed borders while

the second choice is linked to bands with solid borders. As explained in section 3.2, the two

parameters are anticorrelated. In the following, we show results also for the interpolating

choice {bmax = 1, g2 = 0.43}. The corresponding results are displayed as uncertainty bands

with dashed borders.

In figure 2, the normalized multiplicity

Mπ+π−(z1 = 0.5, z2 = 0.5, q2
T , y = 0.2)/Mπ+π−(z1 = 0.5, z2 = 0.5, 0, y = 0.2) (5.2)

is shown as a function of P 2
1⊥ = z2

1q
2
T ≡ (0.5)2q2

T at the Belle scale Q2 = 100 GeV2 for

the ”µb scale” evolution scheme and with the {b∗T , glin
np} prescription for the transition to

the nonperturbative regime, as explained in section 3.2. The explored range in P 2
1⊥ is such

that for z1 = 0.5 the maximum q2
T satisfies the condition q2

T � Q2. The three uncertainty

bands, corresponding to the three different choices {bmax = 1.5, g2 = 0.18} (dot-dashed

borders), {bmax = 1, g2 = 0.43} (dashed borders), and {bmax = 0.5, g2 = 0.68} (solid
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Figure 2. The normalized multiplicity at z1 = z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T ≡ (0.5)2q2

T

at the Belle scale Q2 = 100 GeV2 for the ”µb scale” evolution scheme and with the {b∗T , glinnp}
prescription for the transition to the nonperturbative regime (see text). The uncertainty bands

correspond to various choices of the nonperturbative parameters of evolution: {bmax = 1.5, g2 =

0.18} for the band with dot-dashed borders, {bmax = 1, g2 = 0.43} for the one with dashed borders,

{bmax = 0.5, g2 = 0.68} for the one with solid borders. The latter is accompanied by a light-gray

band with dot-dashed borders, that represents the result with the same parameters but with the

choice µb/2 for the arbitrary matching scale, and by an overlapping light-gray band with dashed

borders for the choice 2µb. An experimental error of 7% is also indicated.

borders), are well separated. The squared box with error bar indicates a hypothetical

experimental error of 7%. We fix it by propagating to the normalized multiplicity the

typical experimental error of 3% for single-hadron production data in e+e− annihilations

at Q2 = 100 GeV2 and z = 0.5, from which the collinear dq1(z; Q2) are extracted [48]. This

experimental error of 7% seems small enough to discriminate among predictions produced

with different choices of {bmax, g2}.
Two additional light-gray bands are shown, which are partially overlapped (dot-dashed

borders) or completely overlapped (dashed borders) to the band with solid borders cor-

responding to the choice {bmax = 0.5, g2 = 0.68}. These bands reproduce the outcome

of calculations performed in the same conditions but for different (arbitrary) choices of

the scale µb. If the band with solid borders corresponds to calculations with the choice

of eq. (3.6) for µb, then the light-gray band with dot-dashed borders corresponds to the

choice µb/2, and the one with dashed borders to 2µb. The almost complete overlap of these

results shows that for the selected observable, the normalized multiplicity, the theoretical

uncertainty in determining the matching scale µb (that describes the transition from per-

turbative to nonperturbative regimes) is negligible with respect to the sensitivity to the

parameters describing the nonperturbative effects in the evolution.

5.2 Sensitivity to evolution schemes

In this section, we explore the sensitivity of our normalized multiplicity to the choice of

the evolution scheme. In section 3, we described two different schemes, the ”µb scale” and
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Figure 3. The normalized multiplicity at z1 = z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T ≡ (0.5)2q2

T in

the same conditions and with the same notation as in figure 2, but for the ”fixed scale” evolution

scheme. The additional light-gray bands with dot-dashed and solid borders are the result related

to the ”µb scale” evolution scheme for {bmax = 1.5, g2 = 0.18} and {bmax = 0.5, g2 = 0.68},
respectively.

the ”fixed scale”. They differ mainly in the fact that in the latter the whole distribution

in impact parameter space bT of the TMD FF Dq
1 at beginning of evolution is computed

at a fixed scale Q0, namely there is no impact parameter that describes the transition

from low (perturbative) bT to high (nonperturbative) bT . Actually, one would expect

that for small values of g2 and corresponding not too large values of bmax (i.e., where the

perturbative description of the evolution of the bT distribution is still applicable and gives

the predominant contribution) the predictions from the different schemes should tend to

a common result, determined mainly by a fully perturbative calculation. However, the

complexity of the evolution kernels, described in sections 3.2 and 3.3, indicates that this is

too a näıve expectation.

In fact, in figure 3 the normalized multiplicity of eq. (5.2) is shown as a function of

P 2
1⊥ = z2

1q
2
T ≡ (0.5)2q2

T at the Belle scale Q2 = 100 GeV2 with the {b∗T , glin
np} prescription.

There are two groups of uncertainty bands. The former one displays the results for the

”fixed scale” evolution scheme in the standard notation, i.e. for {bmax = 1.5, g2 = 0.18}
(dot-dashed borders), {bmax = 1, g2 = 0.43} (dashed borders), and {bmax = 0.5, g2 = 0.68}
(solid borders). Then, two additional light-gray bands are shown that correspond to the

results with the ”µb scale” evolution scheme for {bmax = 1.5, g2 = 0.18} (dot-dashed

borders) and {bmax = 0.5, g2 = 0.68} (solid borders).

It is evident that for the maximum (minimum) bmax (g2) the band with dot-dashed

borders in the ”fixed scale” scheme is not similar to the light-gray band with dot-dashed

borders in the ”µb scale” scheme. Actually, all the results in the ”fixed scale” scheme

show a much larger distribution in P 2
1⊥, somewhat pointing to stronger evolution effects of

perturbative origin that seem to be absent in the ”µb scale” scheme (where the scale choice

minimizes the effect of large logarithms in the perturbative coefficients). It is important to

notice that there is a significant overlap between the band with dot-dashed borders in the
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Figure 4. The same as in the previous figure, but at z1 = 0.3.

”fixed scale” scheme and the light-gray band with solid borders in the ”µb scale” scheme.

Apparently, the normalized multiplicity seems not to be enough sensitive to discriminate

among different evolution schemes, since two different choices of them can produce similar

results with different evolution parameters {bmax, g2}. However, this result is observed at

a specific value of fractional energies of the final hadrons, namely z1 = z2 = 0.5.

In figure 4, we show the P 2
1⊥ distribution of normalized multiplicities calculated in

the same conditions, notation and conventions as in the previous figure, but at z1 = 0.3

and z2 = 0.5. The band with dot-dashed borders in the ”fixed scale” scheme can now be

easily separated from the light-gray band with solid borders in the ”µb scale” scheme if the

indicated hypothetical experimental error is around 7%. Therefore, only when combining

the study of both the z and P 2
1⊥ dependencies in the normalized multiplicity we may be

able to discriminate among different TMD evolution schemes.

5.3 Sensitivity to prescriptions for the transition to nonperturbative trans-

verse momenta

We now focus on exploring the possibility of discriminating among different prescriptions

that describe the functional dependence in bT of the nonperturbative Sudakov evolution

factor (see eqs. (3.20) and (3.21)) or the transition from the perturbative low−bT domain

to the nonperturbative high−bT one (see eqs. (3.18) and (3.19)).

In figure 5, the normalized multiplicity of eq. (5.2) is shown as a function of P 2
1⊥ =

z2
1q

2
T ≡ (0.5)2q2

T at the Belle scaleQ2 = 100 GeV2 with the {b†T , g
log
np } prescription. Again,

as in figure 3 there are two groups of uncertainty bands. The former one displays the results

for the ”fixed scale” evolution scheme in the standard notation, i.e. for {bmax = 1.5, g2 =

0.18} (dot-dashed borders), {bmax = 1, g2 = 0.43} (dashed borders), and {bmax = 0.5, g2 =

0.68} (solid borders). The two additional light-gray bands correspond to the results with

the ”µb scale” evolution scheme for {bmax = 1.5, g2 = 0.18} (dot-dashed borders) and

{bmax = 0.5, g2 = 0.68} (solid borders). So, also for the {b†T , g
log
np } prescription we find the

same ambiguity as for the {b∗T , glin
np} one in figure 3: the overlap of the light-gray band with
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Figure 5. The normalized multiplicity at z1 = z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T ≡ (0.5)2q2

T

at the Belle scale Q2 = 100 GeV2 for the ”fixed scale” evolution scheme and with the {b†T , glognp }
prescription for the transition to the nonperturbative regime (see text). Notation and conventions

for the uncertainty bands as in figure 3.
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Figure 6. The normalized multiplicity at z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T at the Belle

scale Q2 = 100 GeV2 for the ”µb scale” evolution scheme and with the {b†T , glognp } prescription for

the transition to the nonperturbative regime (see text). Notation for the uncertainty bands as in

previous figure. The additional light-gray bands with dot-dashed and solid borders are the result

with the {b∗T , glinnp} matching prescription for {bmax = 1.5, g2 = 0.18} and {bmax = 0.5, g2 = 0.68},
respectively. Left panel for z1 = 0.5, right panel for z1 = 0.3.

solid borders and of the band with dot-dashed borders indicates that two different evolution

schemes give similar results with different evolution parameters {bmax, g2}. Hence, we

wonder if this similar trend suggests that it might not be possible to distinguish between

the two schemes. Again, the possible way out is to look at the dependence of the results

upon the fractional energy of the final hadrons.

In figure 6, the normalized multiplicity of eq. (5.1) is shown as a function of P 2
1⊥ = z2

1q
2
T

at the Belle scale Q2 = 100 GeV2 for the ”µb scale” evolution scheme. Also in this plot,

there are two groups of uncertainty bands. A group displays the results for the {b†T , g
log
np }

prescription in the standard notation, i.e. for {bmax = 1.5, g2 = 0.18} (dot-dashed borders),

{bmax = 1, g2 = 0.43} (dashed borders), and {bmax = 0.5, g2 = 0.68} (solid borders). The
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Figure 7. The normalized multiplicity at z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T at the Belle

scale Q2 = 100 GeV2 for the evolution parameters {bmax = 1.5, g2 = 0.18} and with the {b∗T , glinnp}
prescription for the transition to the nonperturbative regime (see text). Uncertainty band with

dot-dashed borders for z1 = 0.3, with dashed borders for z1 = 0.5, with solid borders for z1 = 0.7.

The squared box with error bar corresponds to an experimental error of 7%. Left panel for the ”µb
scale” evolution scheme, right panel for the ”fixed scale” one.

group of two light-gray bands correspond to the results with the {b∗T , glin
np} prescription for

{bmax = 1.5, g2 = 0.18} (dot-dashed borders) and {bmax = 0.5, g2 = 0.68} (solid borders).

If we focus on the left panel where calculations are performed at z1 = z2 = 0.5, the two

bands with dot-dashed borders are substantially overlapped, thus reinforcing the suspect

that it might not be possible to discriminate between the {b∗T , glin
np} and {b†T , g

log
np } pre-

scriptions. But if we now turn to the right panel, where the same calculation is performed

at z1 = 0.3, z2 = 0.5, we may hope to have a sufficiently small experimental error that

discriminates between the two bands with dot-dashed borders. Unfortunately, the plot

suggests also that this option seems possible only for the {bmax = 1.5, g2 = 0.18} case.

And further explorations show that the same calculation, when performed in the ”fixed

scale” evolution scheme, produces more confused results. In summary, a combined study

of the z and P 2
1⊥ dependencies in the normalized multiplicity might be able to discriminate

among different prescriptions for the nonperturbative effects in the evolution only for a

selected set of evolution parameters and schemes.

5.4 Sensitivity to hadron fractional-energy dependence

In the previous sections, we found that in several occasions only the combined study of the z

and P 2
1⊥ dependencies of the normalized multiplicity allows for discerning results obtained

from different parametrizations and prescriptions in the description of nonperturbative

effects in the TMD evolution. This is not accidental. With the approximations adopted

in this work, the main difference between the two considered evolution schemes lies in fact

in the z dependence of the collinear fragmentation function d1, as it can be deduced by

comparing eqs. (3.27) and (3.28).

The plots in figure 7 seem to confirm this finding. In the left panel, the normalized

multiplicity of eq. (5.1) is shown as a function of P 2
1⊥ = z2

1q
2
T at the Belle scale Q2 =

100 GeV2 for the ”µb scale” evolution scheme, the {b∗T , glin
np} prescription, and the choice
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Figure 8. The normalized multiplicity of eq. (5.2) as a function of P 2
1⊥ = z21q

2
T ≡ (0.5)2q2

T at

the Bes-III scale Q2 = 14.6 GeV2 for the ”µb scale” evolution scheme and with the {b∗T , glinnp}
prescription for the transition to the nonperturbative regime (see text). Notation and conventions

for the uncertainty bands as in figure 2.

{bmax = 1.5, g2 = 0.18}. The bands display results for the values z1 = 0.3, z2 = 0.5 (band

with dot-dashed borders), z1 = z2 = 0.5 (dashed borders), and z1 = 0.7, z2 = 0.5 (solid

borders). In the right panel, we show the results of the calculations performed in the same

conditions but for the ”fixed scale” evolution scheme. It is quite evident that the latter

scheme produces P 2
1⊥ distributions that are systematically larger for any combination of

{z1, z2}. This finding holds true also for other choices of the evolution parameters {bmax, g2}
and for the {b†T , g

log
np } prescription.

5.5 Sensitivity to the hard scale: from Belle to Bes-III

All previous results have been obtained at the Belle scale of Q2 = 100 GeV2. We may

wonder what happens when reducing the ”evolution path” to lower scales, like, e.g., the

Bes-III scale Q2 = 14.6 GeV2.

In figure 8, the normalized multiplicity of eq. (5.2) is shown as a function of P 2
1⊥ =

z2
1q

2
T ≡ (0.5)2q2

T in the same conditions and notation as in figure 2 but at the Bes-III scale

Q2 = 14.6 GeV2. By comparing these results with the ones in figure 2, we deduce that the

net effect is a systematic enlargement of the uncertainty bands. This finding occurs also

for other combinations of evolutions schemes and nonperturbative prescriptions. Hence,

we deduce that working at the Bes-III scale is not useful if we want to discriminate

among different evolution parameters {bmax, g2}, or between the {b∗T , glin
np} and {b†T , g

log
np }

prescriptions, or between the ”fixed scale” and ”µb scale” evolution schemes.

However, we recall that each uncertainty band is the envelope of the 68% of 200

different curves, each one corresponding to a specific replica of the intrinsic parameters

entering the Gaussian widths 〈P 2
⊥〉a~h(z) of eq. (3.1) for the bT distribution of the Da

1 at

the starting scale in the evolution. Then, we might envisage that the experimental error

is sufficiently smaller than the band width such that it is able to discriminate some of the

replicas, in order to narrow the uncertainty on the intrinsic parameters. In any case, this
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Figure 9. The ratio of normalized multiplicities in eq. (5.3) between the {π+π−} final state and

the {K+K−} final state at z2 = 0.5 and y = 0.2 as a function of P 2
1⊥ = z21q

2
T at the Belle

scale Q2 = 100 GeV2 for the ”fixed scale” evolution scheme, for the evolution parameters {bmax =

1.5, g2 = 0.18}, and with the {b∗T , glinnp} prescription for the transition to the nonperturbative regime

(see text). Uncertainty bands with dot-dashed, dashed, and solid borders for z1 = 0.3, 0.5, 0.7,

respectively. Left panel for flavor independent intrinsic parameters of input TMD FF, right panel

for flavor dependent ones (see text).

goal will be achieved only by performing additional more precise measurements of SIDIS

multiplicities for different final hadron species and on different targets.

5.6 Sensitivity to partonic flavor

The sensitivity to the nonperturbative intrinsic parameters, that describe the bT distribu-

tion of the TMD FF at the initial scale of evolution, is an important issue. The analysis

of SIDIS multiplicities at low Q2 suggests that some of these parameters are different for

different flavors [27]. Hence, we expect that also the distribution in transverse momentum

space of the evolved TMD FF will depend on the flavor of the fragmenting partons. How-

ever, the cross section in eq. (2.9) mixes all flavors in the sum. Therefore, it is useful to

define an observable that is well suited to explore the effect of flavor in the TMD evolution.

In the following, we will show results for the P 2
1⊥ distribution of ratios of normalized

multiplicities corresponding to different final states:

Mh1h2(z1, z2, q
2
T , y)/Mh1h2(z1, z2, 0, y) ×

[
Mh′1h

′
2(z1, z2, q

2
T , y)/Mh′1h

′
2(z1, z2, 0, y)

]−1
.

(5.3)

In figure 9, we show the ratio of eq. (5.3) between the normalized multiplicity for

{π+π−} and the one for {K+K−} at z2 = 0.5 and y = 0.2 as a function of P 2
1⊥ = z2

1q
2
T at

the Belle scale Q2 = 100 GeV2 for the ”fixed scale” evolution scheme, for the evolution

parameters {bmax = 1.5, g2 = 0.18}, and with the {b∗T , glin
np} prescription for the transition

to the nonperturbative regime.

If we suppose to switch off the flavor dependence of the intrinsic parameters, the

bT distribution of the TMD FF in eq. (3.28) is controlled by the same Gaussian width

〈P 2
⊥〉(z) for all channels. This feature remains valid when performing the Bessel transform

to momentum space, such that the q2
T distribution of the cross section can be factorized out

of the flavor sum. Therefore, if we take the ratio of normalized multiplicities at the same z1
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we expect the latter to be independent of P 2
1⊥ = z2

1q
2
T . This is indeed the result displayed

in the left panel of figure 9. It is a systematic feature of the ”fixed scale” evolution scheme:

it holds true for other values of z1, as shown in the panel, but also for other combinations

of nonperturbative evolution parameters and nonperturbative prescriptions.

If we account for the flavor dependence of the Gaussian widths 〈P 2
⊥〉q→h(z), then the

bT distribution is different for the {π+π−} final state from the one for {K+K−}, as it

can be realized by inspecting eqs. (4.29)–(4.35). Consequently, the ratio of normalized

multiplicities has a specific P 2
1⊥ = z2

1q
2
T distribution that, of course, changes with z1. This

is indeed the content of the right panel in figure 9: the uncertainty band of the 68% of

200 replicas of Gaussian widths with dot-dashed borders corresponds to z1 = 0.3, the band

with dashed borders to z1 = 0.5, the band with solid borders to z1 = 0.7.

Almost all the ratios are smaller than unity because in our approximations the frag-

mentation into kaons has two favoured channels while the fragmentation into pions only

one (see eqs. (4.29) and (4.34)), and the P 2
1⊥ distribution of the fragmentation into kaons

seems to be larger than the corresponding one for pions (see the analysis of ref. [27]). In

any case, we believe that the inspection of the P 2
1⊥ distribution of ratios of normalized

multiplicities for different final hadrons produced in future e+e− annihilation experiments

is a useful tool to discriminate among different scenarios in TMD evolution. For example, if

future data for this observable will lie well above unity, the ”fixed scale” evolution scheme

would be ruled out, independently of the flavor dependence of the intrinsic parameters in

the TMD FF at the initial scale of evolution.

In figure 10, in the two panels of the upper row we show the same ratio of normalized

multiplicities in the same conditions and notation as in the previous figure but for the

”µb scale” evolution scheme. The left panel still corresponds to the case when the flavor

dependence of the intrinsic parameters is neglected. However, in the ”µb scale” scheme the

bT distribution of the TMD FF is influenced also by the collinear part of the fragmentation

function: the dq→h1 in eq. (3.27) is evaluated at the running scale µb̂ which is related to bT
via eqs. (3.11), (3.18), (3.19). Hence, when performing the Bessel transform of Dq

1 in the

cross section, the resulting q2
T distribution depends on the flavor of the fragmenting parton

even if the intrinsic parameters do not. This ”perturbative” flavor dependence, induced by

RGE acting on the evolved collinear part of the TMD FF, mixes with the possible flavor

dependence of the intrinsic parameters, making it rather difficult to disentangle the two

effects. The left panel in the upper row shows the ratio of normalized multiplicities as

a function of P 2
1⊥ = z2

1q
2
T for three different values of z1. As in the previous figure, the

band with dot-dashed borders corresponds to z1 = 0.3, the band with dashed borders to

z1 = 0.5, and the band with solid borders to z1 = 0.7. Surprisingly, all the ratios are

larger than unity. When including also the flavor dependence in the intrinsic parameters,

the uncertainty bands become larger because there is a marked sensitivity to all possible

replica values of the intrinsic parameters themselves. Again, as in the previous section we

can argue that experimental data will have a sufficiently small error to discriminate among

the various replicas.

A further constraint can be achieved by considering a different combination of final

state hadrons in the ratio of normalized multiplicities in eq. (5.3). The lower panel in
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Figure 10. Upper panels: same as in previous figure but for the ”µb scale” evolution scheme.

Lower panel: the ratio between the normalized multiplicities Mπ+π−
(z1, z2 = 0.5, q2T , y =

0.2)/Mπ+π−
(z1, z2 = 0.5, 0, y = 0.2) and Mπ+K−

(z1, z2 = 0.5, q2T , y = 0.2)/Mπ+K−
(z1, z2 =

0.5, 0, y = 0.2) as a function of P 2
1⊥ = z21q

2
T at the Belle scale Q2 = 100 GeV2 in the same

conditions and with the same notation as in the upper panels, but for flavor independent intrinsic

parameters of input TMD FF (see text).

figure 10 shows the results for the ratio between a {π+π−} final state and a {π+K−} final

state when neglecting the flavor dependence of intrinsic parameters of the TMD FF at

the initial scale. The notation and conventions are the same as in the other panels. All

the ratios are now lower than unity. Hence, combining this result with the content of the

upper left panel could represent a very selective test of the ”µb scale” evolution scheme. In

fact, when neglecting the flavor dependence of intrinsic parameters the P 2
1⊥ distribution

of normalized multiplicities for the {π+π−} final state should be larger than the one for

{K+K−} at any z1, while at the same time it should turn out narrower than the one for

{π+K−} at any z1. Moreover, if future data for the {π+π−} back-to-back production in

e+e− annihilation will display a much narrower P 2
1⊥ distribution than for the {K+K−}

production, at least by 20%, this will represent a further selective test for calculations

performed in this evolution scheme, as it can be deduced by combining the results in the

panels of the upper row.

Finally, we notice that because of charge conjugation symmetry (see section 4.1) we
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predict that the ratio between normalized multiplicities leading to (π+, K−) and (π−, K+)

final states should be equal to unity, irrespective of the choice of evolution schemes, non-

perturbative evolution parameters and prescriptions. It would be interesting to cross-check

this prediction by measuring this ratio as a function of P 2
1⊥.

6 Conclusions

In this paper, we consider the semi-inclusive production of two back-to-back hadrons in

electron-positron annihilations. We study the transverse momentum distribution of such

pairs of hadrons by observing the mismatch between their collinear momenta, and we

focus on charge-separated combinations of pions and kaons. We conveniently define the

multiplicities in electron-positron annihilations as the differential number of back-to-back

pairs of hadrons produced per corresponding single-hadron production, in analogy to the

definition of multiplicity in SIDIS process. In particular, we analyze the multiplicities

normalized to the point of vanishing transverse momentum in order to extract clean and

uncontaminated details on the transverse momentum dependence of the functions describ-

ing the fragmentation process (transverse-momentum dependent fragmentation functions -

TMD FFs). The normalized multiplicities are advantageous also because they turn out to

be almost insensitive to the theoretical uncertainty related to the arbitrary choice of the

renormalization scale.

We consider electron-positron annihilations at large values of the center-of-mass (cm)

energy, namely in the experimental conditions of the Belle and Bes-III experiments. We

study how TMD FFs evolve with the hard scale. The input expression for TMD FFs is

taken from a previous analysis of SIDIS multiplicities measured by Hermes at low energy,

which is assumed as the starting scale. Since the hard scale in annihilation processes is

much larger, we perform realistic tests on the sensitivity to various implementations of

TMD evolution available in the literature.

We find that within a specific evolution scheme the transverse momentum distribution

of normalized multiplicities at the Belle scale can be very sensitive to the choice of the

parameters describing the nonperturbative part of the evolution kernel. A hypothetical

7% error in such data (compatible with the observed experimental error in collinear back-

to-back emissions in electron-positron annihilations) could discriminate among different

choices of parameters that are justified and adopted in the literature.

But we observe also that at the same Belle scale different evolution schemes with

different nonperturbative parameters can give overlapping transverse momentum distribu-

tions. Our global results indicate that different evolution schemes can be discriminated

only by considering the combined dependence of normalized multiplicities on both the

transverse momentum and the fractional energy carried by the final hadrons. And this

finding holds true (with some limitations) also for the purpose of discriminating among

different prescriptions for describing the transition from nonperturbative to perturbative

regimes in transverse momentum.

The dependence on the fractional energy of the final hadrons is contained in the

collinear part of the TMD FFs. Different evolution schemes produce different evolution ef-
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fects also in the collinear fragmentation functions, which in turn emphasize the differences

in the final transverse momentum distribution of evolved TMD FFs. The dependence on

the fractional energy is contained also in the average squared transverse momenta that de-

scribe the width of the input distribution of the TMD FFs at the starting scale. Therefore,

by studying this dependence it may be possible to reduce the uncertainty on the intrinsic

parameters that describe these input distributions.

To this purpose, focusing on the normalized multiplicities at the Bes-III scale looks

more promising. In fact, we observe that in stepping down from Belle to Bes-III scale

the transverse momentum distributions of normalized multiplicities become much more

sensitive to the details of the input distribution at the starting scale. The uncertainty

in the determination of the intrinsic parameters needed to fit the Hermes SIDIS multi-

plicities reflects in a larger spread of normalized multiplicities as functions of transverse

momentum. At the Bes-III scale, a hypothetical experimental error of 7% does not dis-

criminate among results coming from different nonperturbative evolution parameters or

from different evolution schemes. But within a specific choice of evolution scheme it can

discriminate among results that come from different values of the intrinsic parameters.

The Hermes results al low energy show significant differences between SIDIS mul-

tiplicities for final-state pions and kaons. Hence, these data were fitted using transverse

momentum distributions for the input TMD FFs that contain flavor dependent parame-

ters. Here, we explore also how the final results for normalized multiplicities at Belle and

Bes-III scales are sensitive to the details of this flavor dependence at the starting scale.

In doing so, we find that the most convenient observable is represented by the ratio of

normalized multiplicities for different final hadron species, particularly at the Belle scale.

The most striking evidence is for evolution schemes where the flavor dependence is

strictly localized only in the intrinsic parameters of the input TMD FFs at the starting

scale. If we switch off such flavor dependence, the transverse momentum distribution of

normalized multiplicities is always the same, irrespective of the species of final hadrons. So,

if we select for example pions and kaons, the ratio of the corresponding normalized multi-

plicities is constant and equal to unity. If the flavor dependence of the intrinsic parameters

is switched on, then the ratio deviates to values (mostly) lower than unity, in agreement

with general expectations that kaons have a larger distribution in transverse momentum.

The situation is more confused for evolution schemes where the flavor dependence

is indirectly contained also in the initial conditions of the evolution equations through

the (flavor dependent) collinear part of the fragmentation functions. In this case, this

effect mixes up with the flavor dependence contained in the intrinsic transverse momentum

distribution, and it is difficult to disentangle one from the other. At variance with the

previous class of evolution schemes, in this case the ratio of normalized multiplicities for

pions with respect to kaons turns out to be (mostly) larger than unity. Fortunately, more

selective criteria are offered by considering a variety of species of final hadrons. If we

consider ratios of normalized multiplicities for pions with respect to mixed pion-kaon pairs,

the results are (mostly) lower than unity. By combining the results for various final states

all together, one would hope to constrain the arbitrary ingredients of TMD FFs as much

as possible.
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We conclude by stressing that all the results and remarks above refer to the unpolarized

TMD FFs that describe the fragmentation of an unpolarized parton into an unpolarized

hadron. However, this function is an essential ingredient in all the (spin) azimuthal asym-

metries extracted in hard processes like electron-positron annihilation, hadronic collision,

and SIDIS. Hence, a better control on the transverse momentum dependence of unpolarized

TMD FFs implies also a better knowledge of polarized TMD FFs as well as of (un)polarized

TMD parton distributions. For this reason, we are looking forward to a multidimensional

analysis of data accumulated by the Belle and Bes-III collaborations, possibly including

a study of normalized multiplicities for various hadron species as suggested in this work.

Acknowledgments

Discussions with Christine Aidala, Ignazio Scimemi, Leonard Gamberg, Gunar Schnell,

Charlotte van Hulse, Francesca Giordano, Isabella Garzia and Ted Rogers, are gratefully

acknowledged. The work of AS and MGE is part of the program of the Stichting voor

Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Ned-

erlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders and M. Schlegel, Semi-inclusive

deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093

[hep-ph/0611265] [INSPIRE].

[2] V. Barone, F. Bradamante and A. Martin, Transverse-spin and transverse-momentum effects

in high-energy processes, Prog. Part. Nucl. Phys. 65 (2010) 267 [arXiv:1011.0909]

[INSPIRE].

[3] D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization,

tomography, arXiv:1108.1713 [INSPIRE].

[4] C.A. Aidala, S.D. Bass, D. Hasch and G.K. Mallot, The Spin Structure of the Nucleon, Rev.

Mod. Phys. 85 (2013) 655 [arXiv:1209.2803] [INSPIRE].

[5] X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering

at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].

[6] J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering

factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].

[7] S.J. Brodsky, D.S. Hwang and I. Schmidt, Final state interactions and single spin

asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B 530 (2002) 99

[hep-ph/0201296] [INSPIRE].

[8] X.-d. Ji and F. Yuan, Parton distributions in light cone gauge: Where are the final state

interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [INSPIRE].

– 30 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1126-6708/2007/02/093
http://arxiv.org/abs/hep-ph/0611265
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611265
http://dx.doi.org/10.1016/j.ppnp.2010.07.003
http://arxiv.org/abs/1011.0909
http://inspirehep.net/search?p=find+J+"Prog.Part.Nucl.Phys.,65,267"
http://arxiv.org/abs/1108.1713
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1713
http://dx.doi.org/10.1103/RevModPhys.85.655
http://dx.doi.org/10.1103/RevModPhys.85.655
http://arxiv.org/abs/1209.2803
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.2803
http://dx.doi.org/10.1103/PhysRevD.71.034005
http://arxiv.org/abs/hep-ph/0404183
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404183
http://dx.doi.org/10.1103/PhysRevLett.93.252001
http://arxiv.org/abs/hep-ph/0408249
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0408249
http://dx.doi.org/10.1016/S0370-2693(02)01320-5
http://arxiv.org/abs/hep-ph/0201296
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0201296
http://dx.doi.org/10.1016/S0370-2693(02)02384-5
http://arxiv.org/abs/hep-ph/0206057
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206057


J
H
E
P
1
1
(
2
0
1
5
)
0
7
6

[9] A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton

distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].

[10] J.C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic

scattering, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004] [INSPIRE].

[11] D. Boer, P.J. Mulders and F. Pijlman, Universality of T odd effects in single spin and

azimuthal asymmetries, Nucl. Phys. B 667 (2003) 201 [hep-ph/0303034] [INSPIRE].

[12] J. Collins, Foundations of Perturbative QCD, Cambridge Monographs on Particle Physics,

Nuclear Physics and Cosmology, Cambridge University Press, Cambridge U.K. (2011).
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