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Abstract

This thesis concerns the development of a new method for the local subtraction of in-
frared singularities, affecting generic infrared-safe observables in massless QCD. The
content of the manuscript is based on two different research directions: the study of
a general method to construct local infrared subtraction counterterms, and the imple-
mentation of an efficient subtraction scheme, designed up to next-to-next-to-leading
order (NNLO) in the strong coupling constant. To address the first target, we start
from the factorised structure of virtual corrections to scattering amplitudes, where soft
and collinear divergences are organised in gauge-invariant matrix elements of fields and
Wilson lines. Then, we define radiative eikonal form factors and jet functions which are
fully differential in the radiation phase space, and can be shown to cancel virtual poles
upon integration by using completeness relations and general theorems on the cancella-
tion of infrared singularities. Our method reproduces known results at NLO and NNLO,

and yields substantial simplifications in the organisation of the subtraction procedure,
3

which we have verified to generalise at order a;. Regarding the second direction, our
method attempts to conjugate the minimal local counterterm structure arising from a
sector partition of the radiation phase space with the simplifications following from ana-
lytic integration of the counterterms. In this first implementation, the method applies
to final-state massless partons. We show how our method compactly organises infrared
subtraction at NLO, we deduce in detail the general structure of the subtraction terms
at NNLO, and we provide a proof of principle with a complete application to a simple

process at NNLO.



Chapter 1

Introduction

1.1 Overview

The increasing precision of experimental measurements at the Large Hadron Col-
lider (LHC), together with the complexity of the final states currently probed in
hadronic collisions, constitute a severe challenge for theoretical calculations. This
challenge has driven the development of a number of novel techniques, for preci-
sion calculations of scattering amplitudes to high orders, for the study of final-state
hadronic jets, and for the accurate determination of parton distribution functions
(see, for example, Refs. [3/|4] for a review of recent developments). In particular, a
consequence of the current and expected precision of experimental data is the fact
that the next-to-next-to-leading perturbative order (NNLO) in QCD is rapidly
becoming the required accuracy standard for fixed-order predictions at LHC. A
crucial ingredient for the calculation of differential distributions to this accuracy
is the treatment of infrared singularities, which arise both in virtual corrections
to the relevant scattering amplitudes, and from the phase-space integration of

unresolved real radiation.

In principle, the problem is well understood. Infrared singularities (soft and col-
linear) arise in virtual corrections as poles in dimensional regularisation, and all
such poles are known to factorise from scattering amplitudes in terms of universal
functions, which admit general definitions in terms of gauge-invariant matrix ele-
ments |5-14]. These functions are in turn determined by a small set of anomalous
dimensions which, in the massless case, are fully known up to three loops [15}16],
and partially at four loops [17,[18]. General theorems then ensure that, when
considering infrared-safe cross sections, virtual infrared poles must either can-
cel, when combined with singularities arising from the phase-space integration

of final-state unresolved radiation [19-22], or be factored into the definition of
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parton distribution functions, in the case of collinear initial-state radiation [23].
Real-radiation matrix elements have also been shown to factorise in soft and col-
linear limits, and the corresponding splitting kernels are fully known at order
a? [24429], with partial information available at o2 as well [30-34]. Even with this
detailed knowledge of the relevant theoretical ingredients, the practical problem
of constructing efficient and general algorithms for handling infrared singularities
for generic infrared-safe observables beyond next-to-leading order (NLO) proves
to be highly non-trivial. The concrete implementation of the IR singularities
cancellation in perturbative calculations for massless gauge theories is relatively
straightforward only for low-multiplicity final states and for highly inclusive cross
sections. In these cases the involved phase-space integrals and the structure of
typical observables are sufficiently simple (witness, for example, the four-loop cal-
culation of the total cross section for annihilation of electroweak gauge bosons into
hadrons [35,36]). The situation is considerably more challenging for higher mul-
tiplicities and for typical collider observables. The origin of the difficulty lies in
the fact that typical hadron-collider observables have a complicated phase-space
structure, nearly always involving jet-reconstruction algorithms as well as complex
kinematic cuts; furthermore, real-radiation matrix elements become increasingly
intricate, and they cannot be analytically integrated in d dimensions. Integration
over unresolved radiation must therefore be performed numerically in d = 4, and
all infrared singularities must be cancelled before this stage of the calculation is
reached.

At NLO, the IR singularities cancellation were first implemented in the so-called
‘slicing’ approaches [37,38]: these involve isolating singular regions of phase space
by means of a small resolution scale (the ‘slicing parameter’), approximating real
radiation matrix elements by the relevant infrared kernels below that scale, and
integrating the latter in d dimensions, so as to explicitly cancel the infrared poles
of virtual origin. This procedure yields a correct result up to powers of the slicing
parameter, which then has to be taken as small as possible, compatibly with
numerical stability. In order to avoid this parameter dependence, ‘subtraction’
algorithms, such as the Frixione-Kunszt-Signer (FKS) [39,40], the Catani-Seymour
(CS) [2,41] and the Nagy-Soper [42,43] schemes, were later developed at NLO: in
these schemes, one introduces local infrared counterterms containing the leading
singular behaviour of the radiative amplitudes in all relevant regions of phase space.
One then subtracts the local counterterms from the radiative amplitude, leaving
behind an integrable remainder, and one adds back to the virtual correction the
exact integral of the local counterterms over the radiation phase space, cancelling
explicitly the virtual infrared singularities. The resulting finite cross section can
safely be integrated numerically, and the whole procedure is exact, not involving
any approximation. These NLO subtraction algorithms are currently implemented
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in efficient generators [44-52], and the handling of infrared singularities is not a
bottleneck for phenomenological predictions at this accuracy.

At NNLO and beyond, the construction of general subtraction algorithms is the
subject of intense current research. The technical difficulties are significant, due
to the proliferation of overlapping singular regions when the number of unresolved
particles is allowed to grow, and due to the increasing complexity of the soft and
collinear splitting kernels at higher orders. Several schemes have been proposed
to address the NNLO problem, belonging either to the slicing [53-60] or to the
subtraction [61-74.(74,/75] families. Novel ideas are also being introduced [76-78|,
and the first studies of simple N®LO processes have recently appeared [79-82].
The variety of NNLO methods developed so far underscores both the phenomen-
ological interest and the technical difficulty of the problem, which so far has not
been solved in full generality. There are several reasons to surmise that existing
methods for NNLO subtraction can be generalised and improved: on the one hand,
current applications have been computationally very demanding, either in terms
of the analytic calculations involved, or because of the large-scale numerical effort
required; on the other hand, it is clear that precise NNLO predictions will soon
be needed for more complicated processes and higher perturbative orders.

1.2 This thesis

In this thesis, we propose a theoretical framework to systematically analyse the
structure of soft and collinear local subtraction counterterms to any order in per-
turbation theory. Our guiding principle is the well-understood structure of infrared
divergences in virtual corrections to scattering amplitudes. We note that the de-
tailed structure of virtual factorisation must be reflected in the organisation of
local counterterms: this implies significant simplifications, in particular for over-
lapping soft and collinear singularities, which are straightforwardly handled in the
virtual case. Furthermore, we note that explicit high-order calculations of soft an-
omalous dimensions have shown that many kinematic and colour structures which
could potentially contribute to infrared divergences are in fact absent or highly
constrained, a feature that must also be reflected in the form of the real-radiation
counterterms. Finally, we note that virtual corrections to infrared singularities ex-
ponentiate non-trivially, providing connections between low-order and high-order
contributions. These interesting and well-understood properties have not so far
been fully exploited for the analysis of real-radiation subtraction counterterms,
and we hope that our studies will lead to progress in this direction. Indeed, one
of our main results is a set of definitions for local soft and collinear counterterms,

written in terms of gauge-invariant matrix elements of fields and Wilson lines,
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and valid to all orders in perturbation theory, which can be shown to cancel all
virtual and mixed real-virtual singularities on the basis of general cancellation the-
orems [20}21], and of simple completeness relations. These definitions can easily
be shown to reproduce known results at NLO and NNLO, and provide the basis
for a first-principle calculation of higher-order universal infrared kernels. Applying
this technology at NNLO, we find a simple and physically transparent organisation
of soft and collinear subtractions, including in particular the treatment of double
counting of the soft-collinear regions.

Given the knowledge of the counterterm general organisation, we implement a new
subtraction scheme, valid up to NNLO, which attempts to re-examine the funda-
mental building blocks of the subtraction procedure, to feature a minimal struc-
ture and a intuitive interpretation. The ideal subtraction algorithm, in our view,
should aim to achieve the following goals: complete generality across infrared-safe
observables; exact locality of infrared counterterms in the radiative phase space;
independence from ‘slicing’ parameters identifying singular regions of phase space;
maximal usage of analytic information in the construction and integration of the
counterterms; and, of course, computational efficiency of the numerical implement-
ation. These are, clearly, overarching goals, and in this thesis we present the first
basic tools that we hope to use in future more general implementations. In partic-
ular, we focus for the moment on the case of massless final-state coloured particles.
In order to achieve the desired simplicity, we attempt to take maximal advantage
of the available freedom in the definition of the local infrared counterterms, ex-
ploiting and extending ideas that have been successfully implemented at NLO. In
particular, a key element of our approach is the partition of phase space in sec-
tors, each of which is constrained to contain a minimal subset of soft and collinear
singularities, in the spirit of FKS subtraction [39]. A crucial ingredient is then
the choice of ‘sector functions’ used to build the desired partition: these functions
must obey a set of sum rules in order to simplify the analytic integration of coun-
terterms when sectors are appropriately recombined. A second crucial ingredient
is the availability of a flexible family of parametrisations of momenta within each
sector, allowing for simple mappings to Born configurations in different unresolved

regions.

1.3 IR divergences

As already mentioned, a precise control of the singularities affecting QCD is a fun-
damental requirement to obtain precise theoretical predictions to compare with the
available experimental data. In the perturbative regime, the theory suffers from
singularities of different nature: Ultra-Violet (UV) and Infra-Red (IR). While the
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Figure 1.1: Basic example of IR divergent configuration.

UV divergences derive from the high-energy (or, equivalently, short-distance) limit,
the IR singularities are intrinsically related to the low-energy configurations, in
the sense that we will explain shortly. The UV divergences have been studied for
long time and they are under control, thanks to the Renormalisation technique,
which relies on the universality of the UV behaviour of gauge theories. In contrast,
the IR regimes are still an active field of research, and no fully-general methods
are at the moment able to reduce the IR problem to a mere computational issue.
In order to establish effective procedures to treat IR singularities, it is first neces-
sary to deeply understand their origin, and whether it is possible to model their
contributions with a universal approach. In what follows, we will present how IR
singularities arise in QCD, concluding the Section with a brief introduction to the

factorisation formalism.

To roughly introduce the IR problem, it is sufficient to consider a basic QCD
configuration, see Fig[l.1) where an outgoing fermion of mass m and momentum
p emits a gluon, carrying momentum k. Assuming that both partons are physical,

the process can be written in terms of Feynman rules as

(pAH) —m

e M (1.1)

—igsu(p) ta ¢ (k)i

where g, is the strong coupling constant, u(p) is the fermion spinor, ¢, is the SU(3)
generator, € is the gluon polarisation tensor, and M is a generic matrix element,
with appropriate colour and spin indices. In a reference frame where the gluon
is aligned with the z-axis, and the angular distance between the fermion and the

gluon is ¥,
k= (kg,0,0,ko) , p= (po,poﬁsinﬁ,O,poﬁcosﬁ) , (1.2)
the denominator in Eq. is expressed as
2p - k = 2poko(1 — Bcos ). (1.3)

Given that when computing a physical quantity the momenta k and p have to be
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integrated over, it is evident that the process in Eq. features a logarithmic
divergence when k* — 0. We refer to such singularity as a soft or low-energy
singularity. Moreover, in the subcase where the fermion is massless, i.e. m = 0 and
£ =1, a new singular regime arises when 9 — 0, namely, when the two outgoing
particles are extremely collimated. We refer to this configuration as collinear
divergent, and we notice that this kind of divergencies characterises field theories
involving massless partons interactions. Finally, one could identify a potential
source of divergencies in the p* — 0 limit, which, however, does not materialise
in any singularity: the zero in the denominator is suppressed in the massless limit
by the numerator |u(p)| ~ /po. We can then extrapolate a general concept: soft
divergences arise in gauge theories only, since they are associated with the emission
or exchange of massless vector bosons. Collinear singularities affects any Quantum
Field Theory with interaction vertices involving massless particles only.

The physical interpretation of such singular regimes becomes transparent if we
analyse the problem from first principles. In covariant perturbation theory (the
approach we have implicitly adopted to write Eq. ), the four-momentum is
conserved in every vertex, while the resulting intermediate propagators are natur-
ally off-shell, and then related to unphysical particles. In IR regimes, the propag-
ator of the intermediate lines goes on-shell, and therefore the corresponding phys-
ical particles can propagate indefinitely before the emission. As a consequence,
the integral over the possible space-time positions of the interaction vertex runs
over an unbounded spectrum, giving rise to a singularity. The same conclusion
holds also if one adopts the time-ordered perturbation theory. In this approach
all particles are on-shell, while, in general, the energy is not conserved in the ver-
tices. If the emitted particle is soft and/or collinear, the energy is conserved and
the interaction vertex can be anywhere. The origin of divergences can be then
traced back to long-distance interactions, which spoil the definition of the S mat-
rix. Asymptotic states cannot be made by free charged particles, as is necessary,
for instance, to apply the LSZ procedure to relate scattering amplitudes to Green
functions. In this sense, final states with a fixed number of massless particles are
not well-defined in perturbative quantum field theory.

Two main therapies have been investigated to cure the IR problem. The first solu-
tion is based on the idea that scattering amplitudes, as well as Feynman diagrams,
cannot be directly measured, and therefore their IR singularities are not directly
physical objects. The construction of observable transition probabilities reveals
indeed that measurable quantities are finite in the IR, thanks to a delicate can-
cellation occurring among all the contributing degenerate states. This statement
can be generalised to any quantum field theory, order-by-order in perturbation
theory, as stated by the KLN theorem, that we will discuss in details later on in
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the manuscript. To have a concrete idea of the KLN consequences, one can simply
examine the process eTe™ — ¢ in the massless limit. At order g2, two different
kind of diagrams contribute: the emission of real radiation, and the one-loop cor-
rections. Both diagram categories are affected by singularities of IR nature, which
cancel when computing the sum of their cross-section-level counterparts. By ex-
plicitly computing the real radiation and the virtual contributions, one can verify
the cancellation of the IR singularities, appearing as 1/e pole in dimensional reg-
ularisation, 7.e. moving from 4 to 4 — 2¢ dimensions. As an alternative approach,
one could implement an alternative definition of the asymptotic states of the the-
ory, such that the S matrix is finite when computed between appropriate initial
and final states. The core procedure results in setting an energy cut-off A and
factorising the field dynamics below the cutoff into asymptotic evolution operat-
ors 1 (A). Here, with + we identify the initial and the final states respectively.
We can then introduce a modified-S matrix Sg, which is regular in the Fock basis

{11},
(FISr(A) |F) = (F|Q-(A) SQL(A) [F) (1.4)
and then recognise the states set
la(A)) = QL (A) | F) (1.5)

as a new basis. The S matrix is then finite by construction, when working with
such coherent states. This method has been implemented both for QED [83] and
for QCD [84].

In what follows, we will focus on the first solution, and on the consequences of
the KLN theorem, with particular emphasis on its applications to final state QCD
processes.

The simple example presented in Eq. is clearly distant from a significant rep-
resentation of a realistic scattering processes. To achieve a fully-general description
of IR-divergent configurations, it is essential to generalise the kinematics depend-
ence of the process on the external and internal momenta and to include loop
corrections. In the next subsections we will present a general method to identify
the singular IR configurations, affecting an arbitrary E-external particles process.
The discussion is naturally set up in a d-dimensional Minkowski space-time, where
d=14— 2e.
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1.4 IR content of a generic process: from the Landau equa-

tion to the Coleman-Norton picture

In the previous Section we have shown how IR singularities may arise from the
zeros of the denominators deriving from the Feynman rules. From the example
depicted in Fig[l.T] we have also understood that not all the denominator zeros
give rise to actual singularities (the limit py — 0 corresponds to an integrable
singularity). More in general, in Minkowski space-time one can exploit Cauchy’s
Theorem to deform the integration path away from the singular points, obtain-
ing finite results. Requiring a vanishing denominator is then only a necessary,
non-sufficient condition for a divergent amplitude. The identification of all the
denominator zeros is however a fundamental intermediate step to organise a sys-

tematic procedure to spot the effective IR singularities.

To begin with, we introduce a generic diagram, featuring L loops, enumerated
with the index j, E external legs, counted by the index r, and I internal lines,
labelled by the index i. By naming {p}, {¢} and {k} respectively the external, the

internal and the loop momenta, the E-point correlator is given by

G({p}) = (Z/ ddk) 1%(%’k;> — (1.6)

mg + in)

where the numerator N includes coupling constants, symmetry factors, on top of
the spin and colour content of the diagram, and 7 is a real, positive quantity. As
already mentioned, the formalism of Feynman diagrams in covariant perturbation
theory dictates the momentum conservation in each vertex and the off-shellness
of the intermediated particles. The internal momenta {¢} are then completely
determined, once the external and the loop momenta have been fixed. Any mo-

mentum ¢; can be expressed as a linear combination

li = Ci(pr, k ZAlmk +ZBmpn, (1.7)

where A and B are incidence matrices, whose elements span the range {—1,0, 1}.
To simplify the evaluation of the loop integrals, we parametrise the integrand
function by introducing as many Feynman parameters {a} € [0, 1] as the number
of internal lines. The resulting correlator reads

G({p}) = (H/ dal) 5(1—2120%) (H/ ak; ) ]fk]{;”o‘j‘))] , (L.8)

k=1
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Imk

° Rek

Figure 1.2: Integration path for a fixed momentum k: an integrable singularity
and a pinch singularity.

where we have traded the product in Eq.([1.6)) for a weighted combination of the

initial denominators
I
D(py, kj, z;) EZO&Z 82—m —1—277 (1.9)
J=1

The denominator D can be further expanded in the external and loop momenta

D(p,, kj, z:) ZMab {a}) kq kb+2ZN {a}, {p}) -k

a,b=1
+F ({a}, pn - pmym) + i, (1.10)

where in this fashion it is evident that D is quadratic in the loop momenta, and
linear in the Feynman parameters.

The integrals contributing to Eq. involve d - L + I integration variables, each
of them integrated along a path that can be modified according to Cauchy’s The-
orem. However, some specific singular configurations can spoil the freedom in
deforming the integration contour. These configurations are the pinch singularit-
ies and the end points. A pinch singularity occurs when the integration path is
trapped between two coalescing poles (see Fig. , while an end point singularity
corresponds to pole located at the initial and/or the final point of the integration
contour. Pinch singularities may arise from double solutions of quadratic equa-
tions, which in the case of Eq. involve the loop variables only. This statement
can be easily translated in the condition

aD(ph k]a ai)

G =0 (1.11)

which, in the light of Eq.(1.9)), can be rewritten as

I
Ol (pr, k)
ZQZW = Z l Ajn=0. (1.12)
=1

j€loopn
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Here the incidence matrix A;; € {—1,0,+1} derives from the decomposition in
Eq..
Regarding the possibility to have end points, a distinction is necessary: both Feyn-
man parameters and loop momenta can a prior: present an end point. However,
since the integration domain of loop momenta ends to infinity, and the high-energy
limit k£; — #+00 is under control thanks to UV renormalisation, end point singular-
ities may only affect Feynman parameters. In particular, the denominator could
be independent of «; and consequently dD/0a; = 0 <+ [2 — m? = 0, or could
manifest a singularity in a; = 0 (the case a; = 1 is not a denominator zero). The
condition

a; oD =0 (1.13)

Doy ’

includes both cases. We stress again that end points and pinch singularities have
to occur for every component of the integrated four-momenta, and for every Feyn-
man parameter: in the multi-variable complex space covered by the integration
domains, the presence of a pinch along a single direction does not prevent us from
deforming the integration contour in the plane of one of the remaining variables.
The constraints in Eqs.— represents then a set of necessary conditions
known as the Landau equations (LE) [85]

Zjeloopn a; léj Ajn =0 \V/[I,,TL P
(I} —m7) =0 Vi .

(1.14)

Finding a solution for the system of equations given in Eq. is highly non-
trivial, since [; have, in general, an involved dependence on external legs and
masses. However, the search for solution of the Landau equations is simplified by
the fact that they admit an intuitive physical representation. Such representation
is the core structure of a method to identify the effective IR singularities developed
in the ’60 by S. Coleman and R. E. Norton [86]. The Coleman-Norton (CN) method
relies on the observation that the LE are satisfied only if the Feynman parameters
are all zero, a; = 0, and the corresponding line can be off-shell, or when for each
on-shell line 9D/0k}" = 0. If we now define Vi the quantity

Ast = o 0, (1.15)

where for ;1 = 0 we have o; = AsY/¢?, from which

Vs
Ast' = As) (E—’O> = As) ol (1.16)
The quantity vt = (1,1;/1) represents the four-velocity of the particle carrying
momentum /¢;, and As; = a;l; the displacement of the particle in a time ;7. The



Chapter 1. Introduction 11

LE are then equivalently given by

Zjeloopn AS? Ajn =0 %f 1 = m? (1.17)
As =0 if 12#m?.

The interpretation of Eq.(1.17) is as follows: the propagation of off-shell lines is
suppressed, while on-shell lines must propagate along close classical paths, such
that the total displacement is zero. This intuitive method can be further simplified
by introducing a graphical prescription. One starts with the initial Feynman
diagrams, interpreting each line as a displacement. Then, all the lines that do not
verify the mass-shell condition have to be shrunk to a point, while the on-shell
lines have to correspond to classical trajectories. The solutions of the Landau
Equations can be then mapped to a set of reduced diagram defined according to
the procedure we have just described.

To substantiate the Coleman-Norton method, we consider, for instance, the one-
loop correction to the three-leg vertex of a generic massless scalar theory. Let us
name p; and p, the ingoing momenta, and k£ the momentum circulating in the
loop. If one assume the loop momentum to vanish, k# — 0, then all the internal
lines, carrying momenta ps+k, p1 —k and k, are on-shell. In this configuration, the
reduced diagram corresponds to the initial one. Moreover, if the virtual momentum
is instead proportional to one of the external momenta, for instance k* = apf,
then the internal lines carrying momentum p; — k£ and k are automatically on-
shell, while the remaining line is forced to be off-shell. The corresponding reduced
diagram manifests an effective four point vertex, deriving from shrinking into a
point the off-shell line. The same argument holds also in the case k* = bph.
In conclusion, only three reduced diagrams can be identified, so that only three
kinematics configurations may give rise to IR singularities (see Fig.

To further investigate the correspondence between the Landau Equations and
the Coleman-Norton method, we can implement our example and focus the one-
loop correction to the electromagnetic vertex. By labelling p* and p* respectively
the momentum of the incoming massless fermion and anti-fermion, the all-order
electromagnetic (e.m.) form factor can be expressed as a single scalar function
multiplying the non-trivial spin structure of the tree amplitude

2

P p) = 0140 ) = i1 (e Joprtut) . (19

The one-loop approximation of I'* includes the self-energy correction to each fer-
mion line, the vertex correction, and the corresponding UV counterterms. Now,
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E N I N
/..
(a) (b) ()

(d)

Figure 1.3: Reduced diagrams for the one loop correction to the vertex in a scalar
theory. (a) original diagram, (b) soft reduced diagram, (d) collinear reduced
diagram. In diagram (c) we highlight with a cross the off-shell propagator
which is shrunk to a point, returning diagram (d). Here, dashed lines mark
on-shell propagators.

the electromagnetic current is conserved, and therefore the form factor is renorm-

alisation group invariant

0 0 e B
(M@‘i‘ﬁ(@o&s) a—as> F(;,Ozs,€> =0 s (119)

such that QCD does not violate the QED Ward Identity Z; = Z,. As a con-
sequence, the sum of the self-energy counterterms, which contribute with a factor
1/2 Z, each, and the vertex counteterm that is proportional to Z;, vanishes. Fi-
nally, in Feynman gauge and in dimensional regularisation, the self-energy correc-
tions vanish, since for massless external lines p?> = p* = 0 they are proportional
to scaleless integrals (this is however not true in general, as for instance in axial
gauge, where the auxiliary gauge vector n* induces non null energy scales, as n-p).
All this considered, the only significant contribution to I'* at one-loop order is the
vertex correction. The aim of the next paragraphs is then to identify the poten-
tial IR singularities arising from such diagram, by explicitly solving the Landau
Equations and by enumerating the reduced diagrams.

The vertex correction can be written in terms of Feynman propagators as

'k (P (EAF) (p—F) Yau(p)
2m)d (k2 +in)[(p — k)* +in][(p + k)2 +in] ’

where Cf is the Casimir eigenvalue in the fundamental representation, @) is the
electric fraction of the annihilating quarks, and p is the renormalisation energy
scale. To better treat the integral, we parametrise the integrand function by
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introducing three Feynman parameters

ddk} 1 3 3
oo 2 2 2e v d 15 1 — ;
1% g CFQe/(QW)d/o H oY < ila)
v(p)y* @AF ) (p—F)vau(p) (121)
l1k? + ao(p — k)? + as(p+ k)2 +in] '
In this fashion, the Landau equations can be directly read from Eq.((1.14))
(ozlk“—ag(p—k)“—i-ozg(ﬁ—kk)“:0, Vu=1...d,
=0 V k2=0,
o (1.22)

ay =10 V (p—k)QZO,
las=0 Vv (p+k)?>=0.

Following the discussion presented for the scalar theory, we deduce the solutions
of Eq.(1.22)

- soft solution: for £* = 0, all the intermediated lines are on-shell, and the first
condition in Eq.(L.22) simply returns as/a; = as/a; = 0. The corresponding
Coleman-Norton diagram is identical to the initial graph (see the left panel in
Fig|1.4)).

- collinear solution: the gluon momentum can be proportional to one of the ex-
ternal momenta. In particular, if k# = a p* the virtual gluon is on-shell, as well as
the intermediate fermion carrying momentum (p — k). In contrast, the remaining
intermediate fermion is off-shell, and the corresponding Feynman parameter is set
as = 0. Finally, the first Landau equation imposes o = ITT“ as. A second collin-
ear solution arises in the case k* = bp#: the gluon and the line carrying (p — k)
are on-shell, while the other virtual particle is off-shell. The collinear reduced
diagrams are easily obtained by shrinking the off-shell line to a point, preserving
the momentum conservation in each vertex (see the central and the right panels
in Fig|1.4)).

The correspondence between the Coleman-Norton picture and the Landau Equa-
tions can be also exploited to obtain all-orders results. A possible example is the
two-point Green function G(p*,m?) in a scalar theory, with only one species of
massive particles. We want to prove that the only singularities of the process
are the normal thresholds p*> = (nm)?, where n # 1 is an integer number. Let us
start by considering the energy region p? > 0, and setting an appropriate reference

frame where

p = (v/p%0,0,0) . (1.23)

The Coleman-Norton process is the creation of n > 1 particles at rest, which do
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=

\]i

S

q=p+p qg=p+p

k

P =
a) Reduced diagram corres- b) Reduced diagram cor- c¢) Reduced diagram cor-
g g g
ponding to the soft solution. responding to the collinear responding to the collinear
solution, k* = ap*. solution, k* = bp*.

Figure 1.4: Reduced diagrams according to the Coleman-Norton picture, applied
to the one-loop correction to the e.m. form factor.

not move, and interact until they are reabsorbed, after an arbitrary long time (see
Fig{l.5). One can easily realise that no other reduced diagram satisfies the CN
picture: if two particles are emitted with non vanishing momentum, they cannot

meet again in free motion.

P

T

Figure 1.5: Reduced diagram of the two point Green function, with p? = 36m?.
Courtesy of D. Bonocore [1] .

1.5 IR Power counting: a sufficient condition

Up to this point, we have presented a prescription to identify all the potential
sources of long-distance divergencies. The method is based on the request that
the integration path, defining a given Feynman diagram, must be forced to cross a
singularity. This request is only a necessary condition to the actual divergency to
occur: positive powers of the integration momentum can appear in the integrand
function and mitigate the divergence. A sufficient condition to identify the kin-
ematics configurations that result in IR singularities can only derive from power
counting techniques, which are a reminiscence of the UV power counting. The key
idea is to formally parametrise the distance between a potentially singular con-
figuration and the hyper-surface given by the solutions to the Landau Equations.
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It is then possible to identify a value of such distance that dictates whether the
divergency is unavoidable.

To begin with, we consider the hyper-surface in the (d- L 4 I')-dimension space of

the integration variables, defined by the solution of the Landau equation

Next, we parametrise the pinch surface S, by introducing intrinsic coordinates
{52“}, that lie on the surface, and normal coordinates {5}} that measure the
distance from S,. To specify how fast the pinch surface is approached by the
potential singular configuration, we introduce a reference scale A and a parameter
a; such that

gh=x gt (1.25)

7

The singularity is then reached as soon as A — 0. We can then define the superficial
IR degree of divercence n as the collection of the leading power of A\ exposed by
every factor of the graph,

Niines

N
n:iai— Z Aj 4 N - (1.26)
i=1 j=1

Here, the first term derives from the integration measure, where N, is the num-
ber of normal coordinates we integrate on, the second term is due to propagator
denominators, while the last term incorporates the numerator leading power in \.
The condition n < 0 can be proven to be a sufficient condition for the specific
scattering process to be IR-divergent, where the case n = 0 indicates a logarith-
mical singularity.

To provide a practical implementation of the IR power counting technique we
consider again the electromagnetic form factor. In the previous Section we have
already solved the LE and exploited the CN picture to identify all the possible
trapped surfaces S, in the space {k!', a;}. At this point, for every S, we have to
choose among the {k;} variables the intrinsic and the normal coordinates. To this
end, it is useful to introduce light-cone coordinates, such that any four-vector can
be expressed as = = (z, 27, x ), with

To + 23 To — T3

Ty = ol r_ = . (1.27)




Chapter 1. Introduction Chapter 1 Introduction

The metric tensor becomes

01 0 O
10 0 O
v = ; 1.28
00 0 -1
and consequently the scalar product reads
vy=aty +ayt—x, -y, (1.29)

Then, we analyse one pinch surface at a time: in the soft case the four-momentum
components of k* have to equivalently vanish to approach a solution of the LF,
thus they represent normal coordinates that tend to zero at same rate. Assuming
k' ~ (A, A A, ), we can easily construct the eikonal approzimation of Eq.(1.20)
by identifying its leading contributions for A — 0. As a first step we examine the
numerator, whose linear dependence on k£ can be dropped since subleading in the
desired limit

N o< 5(P)Y* (B + E)vu(p — F)vaulp) ~ 4p - po(p)y*u(p) ~ A°. (1.30)

Next, we turn to the integration measure that contributes to the superficial degree
of divergence as d?k ~ A\ d’k. Finally, the propagator denominators can be simpli-
fied by taking the lowest power in X: k% ~ A\2k?, (p—k)?* ~ N2k*—2Ap-k ~ =2\ p-k
and (p + k)2 ~ AN2k? + 2\ p - k ~ 2\ p - k. The resulting eikonal integral reads

- dek p -0 9(p)y"u(p)
" = —\*C 2 25/ . 1.31
etk F Qegyp (2m)d (k2 41in)(p -k —in)(p- k + in) (1.31)

Remarkably, in the soft approximation the denominators have become linear in

the integration variable, and the spin structure appearing in the numerator has
greatly simplified, showing a trivial dependence on the tree-level amplitude. The

superficial degree of divergence is then
n=d—4, (1.32)

which vanishes in dimensional regularisation for ¢ — 0, returning a logarithmic
divergence.

Two other pinch surfaces arise from the collinear configurations, that we choose
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to describe in the photon rest frame, setting

i _ @ 2
¢ =P = QL0000 = Z5(1,1,0), QF>0, (1.33)
p,u = %(1,0,0, 1) = %(1,0,01_) = (eraOiaOJ_) ) (134>
P = %(1,0,0, —1) = %(0, 1,0,) = (0",57,0,). (1.35)

In the collinear configuration & || p, the internal line with momentum p — k goes
on-shell, and then

(p—k)P =k —2p-k=2k"k" -k —2p"k™ =0. (1.36)

A natural choice for the normal coordinates is {k~,k%}, which are assumed to
vanish with the same rate: k= ~ A2k~ and k2 ~ A*k?. Since the plus-component

is unconstrained, we have

k'~ (1,02)0) . (1.37)

As done for the soft singularity, it is now necessary to extract the leading behaviour
of Eq.(1.20) for A going to zero. To compute the collinear approzimation we begin
by decomposing the integration measure in its light-cone components

Ak = dktdk~d* %k, = dktdk k| 3d ]k |dQg_g ~ A2 (1.38)

Moreover, we exploit the Dirac equation v~ u(p) = 0(p)y* = 0 to approximate the

numerator and get

N o 5(p)y* (P + k)" (p — K)vau(p)
=o(p)y~ (P + By (p — F)vHulp) (1.39)
p(p" = ko) u(p) ~ A°.

®

Finally, the momenta combinations appearing in the denominator read

k> =2k~ kT — |k |? = 2kThkT ~ A2, (1.40)
(p— k)= (" + k%)~ N2, (1.41)
(p+k)P=2p"kT ~ A\, (1.42)
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This way, the collinear approximation I.,; of the integral contributing to V* is
given by

I:U«

Bo= A0 Qe g / dkTdk~d|ky ||kL|*?dQg_o X (1.43)
" v(p)y~ @AF (=) u(p)
(2D~ kT +1in)(2kTk™ — k2 +in)(2ktk— — k2 — 2pTk~)

and the consequently superficial degree of divergence is
n=d—4=-2—0. (1.44)

With this simple computation we have proven that the potential singularities high-
lighted with the C'N method are all sources of effective IR singularities, according
to the power counting technique. By solving the integrals in Egs.(1.31))-(1.43)
one realises that, in dimensional regularisation, IR singularities of virtual origin
show up as explicit poles in the regulator €, up to e 2. In particular, single poles
derive from soft wide-angle and hard-collinear configurations, while double poles
are symptoms of a soft-collinear singular regime. As we will emphasise in the
following sections, the pattern of overlapping soft and collinear singularities be-
comes more intricate at higher orders in perturbation theory. Avoiding the double
counting of soft-collinear divergencies is then a non-trivial, crucial task in view of

implementing fully-general IR subtraction methods.

1.6 Generalisation to higher orders

The analysis of the one-loop e.m. form factor has pointed out the need for a
procedure to find and organise the effective IR singularities, valid at all orders in
perturbation theory. This Section aims indeed at presenting a strategy to express
the IR content of the e.m. form factor in terms of universal building blocks, whose
definitions involve simple combinations of fields and gauge operators: the Wilson

lines.

Let us consider the ¢(p) g(p) — ~* scattering in the centre-of-mass frame, where
the quark and the anti-quark collide head-on. In the massless limit, there are no
threshold singularities, contrarily to the example in Fig[T.5] Furthermore, the col-
linear divergences can be expected to organise into two jets, J; and Js, i.e. into
two bunches of collimated particles. To justify such prediction one could analyse
the physical emission of a gluon (with non-vanishing momentum) from the quark
line: since the QED interaction requires the colliding particles to be fermions, the

gluon has to be reabsorbed after a certain time. For momentum conservation, this



Chapter 1. Introduction 19

occurs only if the gluon travels along a direction parallel to the quark direction of
motion. Any subsequent gluonic splitting does not modify this argument, given
the fact that the secondary emissions must carry (in total) the same momentum
as the parent gluon. Iterative splittings give then rise to a cloud of parallel-moving
partons, a jet. Non-vanishing momentum exchanges cannot occur between jets,
since they move in opposite directions. This general description is not modified
by admitting the presence of a hard subregion H, close to the QED vertex. The
short-distance interactions included in this subdiagram are off-shell and thus they
can be contracted to a point, according to the CN picture. Finally, other physical
emissions can be still exchanged, provided they carry zero momentum. Accord-
ing to CN, both fermions and bosons in the soft limit can propagate from the
hard subregion to the jets, and between the jets themselves. In particular, soft
particles may generate an intricate tangle of loops and radiations, which however
can only involve low-momentum partons. We can then recognise a soft region, S,
linking the jets and interacting with the hard region via soft lines. A pictorial
representation of these comments is reported in the left panel of Fig[I.6] where in
red we have marked an arbitrary subdiagram, including soft lines only (lines that
attach to the red blob are understood to be soft). The blue ellipses represent the
jet subregions, while the green circle stands for the hard subdiagram, that can be
linked to the jets through collinear lines.

The key aspects of the previous analysis are completely general and go beyond the
specific example:

- the number of jets must be smaller or equal to the number of ingoing hard par-
tons, otherwise the condition of collinear motion will be violated;

- for this reason, only one hard vertex, defined as the meeting point of an arbitrary
number of jets, appears in the reduced diagram;

- particles belonging to different jets may interact through soft momentum medi-
ators, that can be merged in one soft subdiagram.

The next crucial step consists in implementing a formal procedure to completely
factorise the subregions, and further simplify the reduced diagram in the left panel
in Fig|l.6| Thus, in what follows we will try to prove that the existence of lines
connecting different regions yields non-singular or IR-subleading configurations.

We first need to find the superficial degree of divergence of a generic process
[87-89], adapting the power counting technique to the subregion decomposition
we have just discussed.

Given the set of normal coordinates {{k*},{k},, k7. },{k} ,k},} }, chosen in agree-
ment with what already discussed for the one-loop correction to the e.m. form
factor, we recall the scaling of the fundamental kinematic structures contributing
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(a) Reduced diagram ob-  (b) Simplified reduced dia-  (c) Simplified reduced dia-
tained with the CN mthod. gram in Feynman gauge:  gram in axial gauge.

bold curvy lines are scalar-

polarised gluons.

Figure 1.6: A generic annihilation process in which the subregions soft, jet and
hard are emphasised

to a generic process:

collinear fermion denominator: ———— ~ AL

(p—k)
1
soft gluon: ol A2
(M) ~ A_l
2 Y
(p—k)
soft three gluons vertex: (p — k)* ~ A!.

soft fermion:

The superficial degree of divergence can be then expressed in terms of the number
of loops and lines contributing to the different subregions. Suppose N, lines and
L, loops for each jet, with ¢ = 1,2, and Ng lines and Lg loop for the soft subdia-
gram. Considering the integration volume, that involves two normal coordinates
for each collinear loop and four normal coordinates for each soft loop, we have

2
n=> (2Lj, = N; + N;) + nefs - (1.45)
i=1
Here N; is the damping factor due to the fermion numerators and ng.g is the
superficial degree of divergence for the soft region. To further manipulate Eq. (|1.45])
we introduce the following notation:

Ngfa = number of lines of type a,internal to the soft subregion,
N;”Cf = number of lines of type a, connected to the soft subregion,
V; = number of vertices involving ¢ legs ,

g3 = number of three-gluon vertices,
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where the type a can be fermionic a = f or bosonic a = b. This way, we get
Neoty = 4Ls — 2(N§y, + N§) — (NG + N&7) + g5 - (1.46)

The number of soft loops and lines involved in each loop are related by two simple
identities

Euler identity : Nigop = Nint lines — ZZ Vi+1
Graphical identity : 2Njo0p + Nextlines +1 =, iVi

that allow us to rewrite nes as

3
Neott = NGy + §N§jﬂ; . (1.47)

Now we can assume that no lines connect S and H directly: if we attach a soft
line to an off-shell propagator, we obtain a subleading contribution. Therefore the
external soft lines only connect the soft subdiagram to the jets, such that Eq.(|1.47)
turns out to be )
3
Ngofe = Z NG+ SN (1.48)
=1
where Ni“'; is the number of soft particles of type a, attached to J;. This way, we

get
2

n= 3Ly~ Nt Nt Ny + N5 ). (1.49)
i=1

The next step is to examine the suppression factor ;. The momenta appearing
in the jet numerator are due to three-gluon vertices and to fermion propagators.
Accounting for both, the number of factors of numerator momenta in 7; is equal
to the number of three-line vertices in the entire jet subregion vi(?’). Each of these
momenta contracts to form an invariant, which is linear in the normal variables,
since g, = g = 0. Actually, a jet momentum can also contract with the
polarisation vector of a soft vector in &, or of a jet vector attached to H. This
configurations pose a lower bound to the suppression factor

Nz ma {0,507 = 6= p) | = 5 (o7 = 6= o) (1= O+ 65— 7).
(1.50)
here ¢; is the number of scalar-polarised vectors connecting the jet to the hard
vertex, and p; are the soft vectors linking the jet to the soft part. Again, the Euler
Identity and the graphical relation can be used to relate lines and vertices, in such
a way that

30 + 4vl +t; + ¢ = 2Ny, + Nyy+ Nyp+ 1, (1.51)
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where t; are the transverse-polarised particles that attach to . In the end, let us

substitute Eq.(1.50) and Eq.(1.51)) in Eq. (1.49), and write

2
1 1 1
n>y {5(’51‘ — 1)+ Ny s+ §(NJi,b — ;) + §(Pz‘ + o — v )0(p; + ¢ — vf)

(1.52)
All the factors, apart from the first one, are positive or null, thus the sign of the

superficial degree of divergence is set by the ¢; value. In particular
n >0 if t,>1 (1.53)

The pinch surface is then associated to a logarithmic divergence in Feynman gauge
if [90]:

e a single fermion, or a scalar-polarised or physically polarised vector connects
J; and H,

e the only additional lines linking J; and H are scalar-polarised vectors,
e 1o lines connect S and H,

e for each jet, the number of external soft vectors plus the number of jet vectors
attached to the hard part is not grater than the total number of three-point

vertices.

It is important to notice that some of our assumptions are gauge-dependent. In
particular, in physical gauges, as for instance in axial gauge, the jets are connected
to the hard region by a single fermion line. This can be justified by analysing the
gluon propagator, that in axial gauge (n - A=0) reads

G k) = k? 4 in

1 ntk? 4+ nvkH kHEY
g BETE e (1.54)
n-k (n-k)?
If the gluon connects the jet to the hard subreagion, its momentum is collinear to
the jet direction. Thus, when G*¥(k) attaches the jet subdiagram, it results to be
contracted with a momentum that is proportional to the gluon momentum itself,

yielding

1 n’k?
k,GM (k) = — [ n* — 1.55
G ) = (= ) (1.55)
which has no pole at k% = 0 (except for k ~ 0). Consequently, in axial gauge, all
the diagrams displaying gluons connecting 7; to H are IR-subleading. In covariant
gauges, the contraction k,G* (k) does not feature the same suppression. For
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(a) Factorisation of a soft virtual (b) Factorisation of a collinear
gluon through eikonal approxima- gluon through eikonal approxima-
tion. tion.

Figure 1.7: IR interactions modelled by eikonal Feynman rules. (a) soft gluon
exchange: both the interaction vertices become eikonal, (b) in the case k || p
only the vertex involving the anti-quark leg becomes eikonal.

instance, in Feynman gauge we have

v k¥
k,G" (k) = 7z (1.56)
This way, multiple longitudinally polarised gluons may connect the jets to H. How-
ever, such configurations are suppressed in gauge invariant quantities by the Ward
Identity, when all the diagrams have been summed. On a diagram-by-diagram
basis this is not guaranteed and we will further manipulate the longitudinal po-

larised gluons to divide H and 7;.

To summarise the results of this Section, we refer to the central and the right panel
in Fig[l.6} in Feynman gauge (which we will use in the following) the reduced
diagram manifests a soft subdiagram connected via soft gluons to jet subdiagrams
only. Moreover, no connections between & and H occur, and one fermion line
plus several longitudinal gluons link H and J; (see central panel). In axial gauge,
the reduced diagram presents no connections between H and J;, except for one
fermion line (see right panel).

1.6.1 Eikonal Vertices

To investigate the possibility to push further the factorisation of a generic reduced
diagram, we take a step back and focus on the one-loop correction to the e.m.
form factor. In this specific case, the reduced diagrams are particularly simple
and may provide an efficient guideline for the all-orders generalisation. As already
discussed, the IR singularities are associated to the graphs in Fig[l.4 and to the
corresponding homogeneous integrals in Eqs.—. If we concentrate on
the soft component, we can notice that to compute the eikonal integral we have
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implicitly performed the following approximations

(=) Yo u(p) #50 _ Pa

u(p) + O(k?)

R
% 0 ;ak 5(p) + O(k?) | (1.57)

where the Dirac equation has been used. Eq. provides an example of eikonal
approximation, which will play a crucial role in the next Section. Soft interactions
can be then expressed in terms of the scalar, eikonal Feynman rule of the form
p"/p - k. This peculiar behaviour is a symptom of the fact that soft radiations do
not resolve the details of the emitting particle except for its direction and colour,
and, in particular, they are blind to the emitter spin. The eikonal integral can be

identically rewritten as

dk o 8 G Oa
1, =/ o(p) g t*L— (ieQ ") guetbﬁu(p) <—zg 22 b) (1.58)

2y Pk
d'k B5  cp B[ Gosdu
= — “t° ‘t — I'(p,p 1.59
/ A (p, D) , (1.59)
where in the second step we have assumed p* = Q5 and p* = Qpy. From

Eq. one deduces that the soft divergences encoded in the reduced one-loop
e.m. form factor can be modelled by replacing the standard QCD vertices with
effective vertices, given by the eikonal Feynman rule. Such a procedure induces the
decoupling of the gluon virtual correction from the remaining QED interaction and
finds a pictorially representation in the left panel of Fig[l.7] The eikonal vertices
are represented as the merging of gluon propagator with a double line.

The remaining collinear configurations can be treated with a similar procedure.
For a collinear emission k || p (Fig. [1.4] (b)) in the light-cone frame the amplitude

is given by
b o o d'k v(p)y~ (P + F)(eQ ") (p — k)y ulp)
It = ig*u*Cr / oL Fo P 1 bT , (1.60)

then, by using the approximation
vp)y B +E) =@y @+k) YT =(+k) 0297 =2(p+ k) 0(p), (1.61)
we manage to write the core structure of the integrand function in Eq.(1.60)) as

o(p) (1eQY*) (P — K)vuulp) p*
k2(p — k)2 Pk

(1.62)
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Here only the anti-quark vertex becomes eikonal, and can be associated to an
effective rule of the same kind as before (see right panel of Fig. Let us stress
that in this case one could set p* = Qn*, where n* is an auxiliary vector, analogous
to the vector S* introduced in the soft case. However, in order to avoid spurious
collinear singularities, the vector n* has to be slightly moved away from the light-

cone, as we will discuss in more details in what follows.

1.6.2 Wilson line and eikonal approximation

The example provided in the previous Section proves that, at one-loop order, soft
and collinear radiations contribute to the process divergencies via effective vertices.
As a consequence, such singular radiations can be appropriately factorised from the
remaining non-singular component of the scattering. The fact that this property
can be exploited at higher orders to divide the subregions of the reduced diagram
in the central panel of Fig[I.6]is in general non-trivial.

Figure 1.8: Factorisation of a gluon attached to the hard subreagion, through
Ward Identity.

To achieve a complete factorisation at an arbitrary perturbative order, we begin
by showing the splitting of the jet subregion from the hard one. Let us assume to
have a longitudinally polarised gluon attached to H, which is connected through
a fermion line to the rest of the diagram. Thanks to the Ward Identity, we are
allowed to move the gluon line from the hard region to the fermion line, obtaining
the amplitude (see Fig/1.8])

éf ]f)é Y u(p) eql(k) (1.63)

Given the Dirac equation v~ u(p) = 0, and the trivial factor k=8 /k~ T, where
pt = (61,07,01), Eq.(1.63) can be rewritten as

S W=K A ()]
(p k)? k=p+ (p k)

= —Hu(p)°

u(p)e (k)

(1.64)
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In the last step we have again exploited the Ward Identity, considering f =
P — (p — ). Eq. emphasises the eikonal rule for the extra gluon. This
analysis can be generalised to higher orders: in case of multiple radiations the
number of possible insertions due to the Ward Identity increases. However, the
eikonal approximation still holds, and all the emission can be expressed in terms
of effective Feynman rules. We conclude that the gluons connecting 7; and ‘H can
be detached from the hard region, provided we substitute their interactions with

the hard component with eikonal vertices.

The only missing ingredient is the factorisation of the soft gluons connecting S and
Ji. We expect such soft interactions to be described by the eikonal Feynman rules
introduced in the previous Section, and therefore to be allowed to detach them from
J;. Modelling multiple soft gluon radiations can be tackled by considering a generic
process. From an amplitude M, we isolate an outgoing on-shell fermion line, which
emits an arbitrary number of low-energy gluons. Such radiations are identified with
the labels {{a;}, {ki},{m}}, with i = 1...n, respectively describing the colour,
the momentum, and the spin of the emitted partons (Fig. [1.9). The process

M1, a1 Hony Gy

Figure 1.9: Multiple soft radiations from a fermion line carrying momentum p.

expressed in terms of Feynman rules reads

Mo (o ARi}) = ﬂ(p)(igsﬂft“”vun)%gzitéé%% . (1.65)

NN (0 2 Ry )
e (1gs 1t ) (p+kn+...+k1)2M(p+;ki>'

Under soft approximation, k; = M; with A — 0, the leading soft behaviour of
Eq.(|1.65)) is extracted by approximating each numerator N; to the zeroth-order in

ki, and each denominator D; to the first non-trivial power in k;, namely

N~ pi Di~2p- )k, Vi=1...n. (1.66)
j=1
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W

Figure 1.10: Eikonal identity: complete factorisation of multiple eikonal vertices.

Following the example of the e.m. form factor, we further manipulate Eq.(|1.65)
exploiting iteratively the Clifford algebra and the Dirac equation, obtaining

Mean (k) N}j igul tm}% (p—l—Zk’) (1.67)

The soft approximation returns then a collection of effective Feynman rules cor-

responding to the eikonal vertex
€ ya p#
s P —— . 1.68
g1 " (1.68)

The expression in Eq. undergoes a further simplification if we assume to
restrict our analysis to the abelian case, i.e. considering photons instead of gluons.
In the academic example where only two photons are emitted, we have to take
into account their indistinguishability and sum over all the possible momenta
permutations, as graphically explained in the lLh.s. in Fig. [1.10}] Then, the
kinematic structure of the corresponding process obeys the identity

1 1 N 1 1 1 1
p-ki p-(ki+ky) p-ki p-(ki+k:) p-ki p-k’

(1.69)

where on the r.h.s. the successive emissions are independent and uncorrelated.
Eq.(1.69) represents a simple example of the eikonal identiy, which easily gener-
alises to an arbitrary number of photons according to the relation

n 1 n 1
i N Lo (1.70)
7;%(%11]9(2;1/@)) Hpkz

where P[k;| enumerates all the possible permutations of the momenta {k;}. This
property becomes non-trivial when a non-abelian theory is considered: the non
commutative nature of the colour operators requires to introduce the path ordered
prescription, as we will explain in the following. As a concluding remark, we
notice that the Feynman effective rule in Eq. is invariant under incoming
momentum scaling. In fact, for p* — Qp* the eikonal vertex remains unchanged,
removing the soft function sensitivity from the external energy.

Before proceeding further, it is useful to summarise the results obtained up to this
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(a) Factorisation of the soft sub- (b) Factorisation of the jet subreagion from
reagion: multiple soft gluon emis- the hard part: Ward Identity allows for ex-
sions are modelled wvia eikonal pressing the collinear gluons interaction in
Feynman rules. terms of eikonal vertices.

Figure 1.11: Different steps of factorisation procedure

point. Starting from the reduced diagram of the e.m. form factor, we have applied
the power counting technique to organise the singularities in different subregions.
We have deduced that such subregions are connected uniquely through gluons.
Then we have noticed that soft gluons, linking the soft region to the collinear one,
are insensitive to the details of the jet subdiagram, and therefore they factorise (see
left panel in Fig. The main caveat is the introduction of effective Feynman
rules replacing the standard QCD interactions. Finally, Ward Identities allow for
the factorisation of the hard component from the jet region, given the same caveat
as before (see the right panel in Fig.. All this considered, the initial reduced
diagrams is now organised as a combination of dominant regions, one independent
of the others.

Although this picture is much more simplified than the initial configuration, and
manifests a certain degree of generality, the formalism can be improved to achieve
a fully universal and process-independent description. One could start by noti-
cing that, in the IR limit, the gluons emitted from the hard line carry vanishing
momentum, and therefore they do not alter the direction and energy of the hard
parton, but only its colour charge. At semiclassical level, this means that the
hard particle travels along a straight path in space-time, eventually parametrised
by its proper time. Along the trajectory, the fermion emits a continuum of zero-
momentum gluons, that results in collecting a gauge phase. All this considered,
one could try to mimic the eikonal interactions through an appropriate gauge op-
erator, defined at all-orders in perturbation theory. For this purpose, we introduce
the Wilson line. In non-Abelian field theories a Wilson line is an ordered expo-
nential of a gauge boson field, projected along the direction n*, and integrated
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over the trajectory parameter \

A
D, (A2, \p) = Pexp{igs/fta/ 2 dAn - A“()\n)} : (1.71)
A1

where P is the path ordering, needed to preserve the causality structure. Let
us stress that there are no constraints on the nature of the emitting particle, or
equivalently of the Wilson line. In principle, the definition in Eq. can be
associated to both gluons and fermions, provided that the colour generator is
expressed in the proper representation. By expanding the definition in Eq.(L.71)
and Fourier transforming the gauge field,

AP(An) = / % e~ hAn Ai (L) | (1.72)

it is evident that Wilson lines reproduce the eikonal interactions

. € > a _ € ddk nﬂ o 2
exp{zgs,u ta/o d\n-A ()\n)} =1+gsu / Gr)in -k A*(k)+0(g%) . (1.73)

In the integrand function one reads the effective rule for an incoming line of mo-
mentum p* = Qn*. As mentioned, particular attention has to be paid to the
path ordering, which is a direct effect of the non commutative nature of the colour
degree of freedom. The action of the path ordering is visible starting from the
second order of the Wilson line expansion

) 2
ot ([ ) -
0

[e'e) A1
= (z’gs;f)Q/ d\ / dhan - A(An)n - A(Aan)

d d A1
= (igspc)? /éfl dk?/ d>\1/ dXg e~ IRk T ALY A(K)

. d%k, dk —ixvikrn (—idiken
= (igsp )2/<27T)1d (2ﬁ)2d/0 d\; e~k (6 Atk _1> X

l

g e Alh) 1 Al
&'k, dk | )
_ 2,2 1 2 B ‘ ‘
= g5l / (27T)d (27‘(‘)61 |:k=1 -n k2 -n k2 ‘n (kl + kg) ] n:| n A(kl) n A(kfz)

5 26/ d’ky dky n- A(kr) n- A(ks) (1.74)

— b 2m)d (2m)¢ ky-n (k14 ko) n

which is perfectly consistent with the diagrammatic expression of a double emission
(see the first configuration in Fig. [1.10). The pattern in Eq.(1.74) generalises to
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all orders in perturbation theory, yielding

Pexp{z’gsufta/ d\n - AY( )\n}—1+ZH/ dk; gsuit n- A%(ki)
0

n=1 i=1 1n'ki+”7
(1.75)

Wilson lines benefit from several significant properties, such as

e Hermiticity & (a,b) = ®_,(b,a) ,
e Causality &,(b,¢)P,(a,b) = D,(a,c)
e Unitarity &/ (a,b) ®,(a,b) =1 ,

Furthermore, Wilson lines are subject to gauge transformations, as they are defined
though gauge fields

D, (A, Ag; A) — D, (A, \; UAU ! +1i/g,(0,U) U, (1.76)

where the r.h.s. reads

Pexp{igsu€ /%2 da" [U(2)Au(z)U ™ (x) + i/gs(auU(x))Ul}} : (1.77)

1

with \;n# = 2. The expression in Eq.(1.77) can be manipulated to return
@(.’L’l, X9, A) — (I)/(Ilfl, X9, A) = U(l’g)@(l’l, X9, A)Ufl(xl) . (178)

The transformation is particularly simple and enforces the idea that a sequence of
soft emissions from a hard particle, which does not recoil, is analogous to dressing
the particle with a gauge phase.

Given the correspondence between the effective Feynman rules and the perturb-
ative expansion of @, (the graphical representation of Wilson operator will be
indeed chosen to be a double straight line), we can describe the singular regions
of the e.m. form factor as matrix elements of gauge invariant operators, defined
as combinations of fields and Wilson lines. To this end, for each external leg we
define a jet function,

Ji (piy niy s (1), €)u(pi) = (0] @, (00,0)1(0) Ipi) (1.79)

where, according to standard notation, the quark wave function is factored out
from the jet definition. Eq.(|1.79)) describes the annihilation of an incoming fermion
with momentum p;, in a fixed point in space-time x* = 0, where a Wilson line is

created. It collects all the collinear singularities associated to the direction of p;,
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since the interactions between the Wilson line and the fermion field returns exactly
the collinear limit of the standard QCD interactions. The direction n!' plays the
double role of factorising the collinear region for particle ¢ and enforcing the gauge

invariance of the collinear factor. One non-trivial aspect related to the auxiliary
n
i

designed in order to avoid the presence of spurious collinear divergences associated

vector nf' concerns the mass-shell condition. The requirement that n? # 0 is
with emissions from the Wilson lines. In practical calculations, however, it is
highly economical to take the n? — 0 limit, provided one can precisely control the
contributions of spurious poles [91]. The jet function is a single-particle quantity
and does not carry any colour correlation from the full amplitude: the fact that
collinear poles have this property is a highly-non trivial consequence of gauge
invariance and diagrammatic power counting.

Secondly, we introduce the soft function

S(ﬁl - P2, Oés(/ﬁ2), 6) = <0‘ @52<OO, 0) (I)ﬁl (07 _OO) ’O> ) (18())

where the four-velocities §; are defined as QB! = p!'. The soft function is respons-
ible for the singular colour-correlated singularities: soft gluons, at leading order in
their momentum, cannot transfer energy between hard particles, but they induce
long-range colour mixing. S is therefore a colour operator.

At this point it is useful to notice that gluons which are both soft and collinear
to one of the hard coloured particles are present both in the jet function and in
the soft function, and thus they are counted twice. To solve this double counting

problem we introduce the eikonal jet function [9)
Jive(Bin, as (1), €) = (0] @n(00,0) @5, (0, —00) |0) (1.81)

that coincides with the soft limit of the the jet function in Eq.(1.79). The eikonal
jet can be combined in different ways to avoid the double counting of the soft-
collinear poles. In particular, we can define

e for each external leg, the ratio of jet and eikonal jet function

= (0 j(pz * Ny, O‘S(/f)’ E>
T (pi s, €) %,E(ﬁi;nhaS(/ﬁ)’e) ’

which encodes the hard-collinear singular content of the initial amplitude.

(1.82)

The soft-collinear poles are encapsulated by S.
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e the ratio of soft and eikonal jet functions, named reduced soft function (see
for instance |11])

< S(Bl : 627as(/~b2)76)

S (Plz,as(,LL?),e) = 7B ) i) ) (1.83)
where
(B By)?
i = 2(52;%)2 2(3j'glj)2 . (184)

i J

The reduced soft function encodes the soft wide-angle radiations. The soft-

collinear poles are given by the jets.

In the following, we will prefer to normalise the jets by their eikonal counterpart,
and our results will be organised in soft and hard-collinear components.

According to this choice, a generic two-particle annihilation amplitude can be
expressed in a factorised fashion, according to the factorisation formula [5-14,92]

)Ty | o i ) o

where, for simplicity, we suppressed the dependence on the renormalised coup-
ling as(p?) and on the regulator €. In Eq. the colour vector H is a finite
remainder, defined by matching the factorised amplitude with the initial process.
The hard function has also the role of compensating the introduction of the aux-

iliary vectors n!', which have no physical meaning.

To conclude this section, we remark two more important concepts: the functions
introduced above are universal, meaning that they do not depend on kinematic
variables, except for the external momenta. For this reason, such functions do
not suffer from the features of a specific process, absorbed in the hard function.
Secondly, we stress that arbitrary large momenta can flow in each of the operator
matrix elements defined in Eqs.—. The rise of ultraviolet poles can be
justified, for instance, by looking at the soft function in Eq.. The series
representation of S

S Baas(n) ) =Y (1) S, (1.86)

n=0

clearly returns S = 1, as all the Wilson lines appearing in Eq.(1.80)) are trivially
equal to the identity at the leading order in g, (see the left panel in Figll.12)).
Starting from n = 1, the soft function involves loop corrections, defined through
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Figure 1.12: Contributions to the soft function at tree level (left) and at one
loop, where the diagram on the right is the UV counterterm

scaleless integrals, which vanish in dimensional regularisation. The result, prior to
UV renormalisation, is then identically zero, order-by-order in perturbation theory

S(n)

¢, bare

=0, Vi>0. (1.87)

The zero on the r.h.s has to be interpreted as the cancellation of UV poles against
the IR ones ] ]
Se,bare X — — — =0 (1.88)
€uv  €IR

One can therefore extract the infrared content of Sc(n), by computing its ultraviolet
poles and exploiting standard renormalisation group techniques. As an alternative
strategy, one could perform the computation with auxiliary regulators for soft and
collinear poles: one may for example tilt the 5; Wilson lines off the light cone, and
introduce a suppression for gluon emission at large distances, as done, for example,
in [93,94]. General theorems [95-97] then guarantee that the resulting anomalous
dimensions are independent of the chosen collinear and soft regulators.
Considering ¢ = 1, the soft function receives contribution only from the vertex
correction diagram (see central panel in Fig, since self-energies on eikonal
light-like lines are zero thanks to the choice 37 = 0. Given the argument above,
to extract the IR content of S an UV counterterm is required (see right panel
in Figl1.12). The full one-loop soft function is then equal to [98]

SO(By - o) = L850 =~ %0, 2 (1 — log (—f1 - @2>> . (1.89)

4 P dr " € \ €

As pointed out in Ref. [9], the argument of the logarithm in Eq. can be modi-
fied by rescaling the eikonal Feynman rules. In particular, for each soft interaction
one could associate a factor a8* /a3 - k, obtaining a rescaling of a factor a? in the
logarithm argument. However, this ambiguity does not affect physical quantities,
since the dependence on a cancels between the soft function and the eikonal jet
function. The diagrammatic representation of the one-loop eikonal jet function
includes two diagrams [9]: the eikonal vertex correction and the self-energy on

the Wilson line oriented along the direction n! (here we assume n? # 0). The
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diagrams return respectively

Jiﬁm(%*) = o[+ 11°g<<5n1—?nl>>]
T e = —%CF%. (1.90)

The complete one-loop eikonal function reads

T ((ﬁzn:%) ) = %ng’mg) + 5% v - (1.91)
where the factor 1/2 accounts for the square root of the residue of the relevant two-
point function in a normalised S-matrix element. The comparison between the soft
and the eikonal functions reveals, as expected, that the soft-collinear double pole
cancels in the combination S/ H?zl Jis- The last ingredient is the jet function,
whose diagrammatic expansion includes, at one-loop order, the vertex correction
and the self-energies on both the quark and the eikonal lines. The full one-loop
jet function is then given by the combination

(pi-na)* N 1 ¢ "
\71( 77,12[1,2 ’E>_2j( + ‘71 se)+\7i7(v)7 (192)
where
m o esg
‘71',(5.6) A FE,
2 2,2
() = e [heeos () < ohas
Jiwv) iz O la T2 rloe (g ) ) (€)11.93)

Having collected all the necessary ingredients, the one-loop expansion of the fac-
torisation formula in Eq.(1.85)) returns

2 ) 2
Ties = S (B1 o, )+m(%,e>— f,lé(M,e)

ny
(O ) - (o

2
2 2
SM )+ 7D <(P1'n1) | )_ () ((ﬂrm) | )
(/Bl 62 ) I(V) n%,u2 € jl,E,(V) n% €
M ((p2-ns)? (1) (B2 - ng)? (1)
+j27 V) < n%MQ ? E) - ‘72,E, (V) (n—%y E) + 2 ‘71, (s.e) (194)

that can be easily checked to match the pole structure of the e.m. form factor

P = ——CF ( 52) (6% + % + O(eo)) . (1.95)
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Factorisation

2.1 From the Factorisation formula to the dipole formula

The factorisation formula as presented in the previous Section is an extremely
powerful tool to treat the IR singularities of a generic gauge amplitude. Thanks
to the introduction of appropriate universal functions, it is possible to model sep-
arately soft, collinear, and mixed soft-collinear divergences. This sub-structure
turns out to be the key feature that allows for a natural application of the fac-
torisation principles to a subtraction procedure. From a more general point of
view, namely considering the IR divergencies without focusing on their origin, the
infrared content of fixed-angle multi-particle gauge-theory amplitudes obeys the
multiplicative law [11H13]

Ao (Bastit)e) = 2o (Bt e) £ (Batitne) . 2)

Here {p;} is a set of n momenta referring to the external massless partons involved
in the process. The non-trivial colour content of amplitude 4, is hidden in the
definitions of the elements appearing in Eq.(2.1)). In full generality, both A,, and
F, are vectors in the finite-dimensional space of colour configurations, while Z,,
is a color operator acting on F,. The most remarkable aspect of Eq. is its
universal validity: Z, entirely encodes the IR sensitivity of the amplitude, and
depends on external momenta only. The characteristics of the specific process are
completely due to the hard component F,,, which is finite for ¢ — 0. Given the
importance of the colour structure it could be useful to make it more explicit.
We first notice that the n-parton amplitude A,, has n open colour indices {a;},
1 = 1...n, each of them belonging, in general, to different colour representations
of the gauge group. To correctly take into account the colour degrees of freedom

of A, all the relevant quantities in the factorisation formula have to be projected

35
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onto an appropriate colour basis. Such a basis can be chosen in two different ways.
On the one hand, it is possible to define a set of colour tensors cfai} that span the
vector space of colour configurations, and then decompose Eq.(2.1) in terms of the

same basis as

A )] = (Bt ) el 2.2

In this fashion, the factorisation formula can be compactly rewritten as
Ar = Z,F7, (2.3)

where, as already mentioned, Z is a colour matrix acting on the colour vector F.
On the other hand, one could also directly express the operator Z as a function of
colour operators T;, which are defined in the appropriate colour representation for
the i-th leg and act only on the corresponding colour indices. In particular, consid-
ering the emission from parton i of a gluon with colour index ¢ (c =1,..., N2 —1)
, the colour operator is

T, = (| T7, (2.4)
where the effect of acting with T; on a colour vector |b; ...b,,) is

<Cl,...,Ci,...,Cm,C|TZ‘|b17...,bi7...,bm>:(Sclbl...Tc,bi...(s

Cq

(2.5)

Ccmbm, -

In this notation, the colour representation of parton i determines the explicit
expression of the matrix elements of T;, namely T% = i feqp if ¢ is a gluon, T7; = 175
if 7 is a quark in the fundamental representation (a, 8 = 1,...,N,), and T3, =
ap = 5, if the emitter is an anti-quark. The colour operators are designed to

obey a simple algebra

T, T, if 7 ]
LT =TT = ] A (26)
T2=(C,  ifi=j

where C; is the Casimir eigenvalue in the appropriate representation, i.e. C; =
Cr = (N2 —1)/2N, for fermions, and C; = C4 = N, for gluons. Since the colour
vector A, is by definition a colour singlet, colour conservation implies

ZTz‘ An(pi) = 0. (2.7)

This useful approach has been developed by [99] and later adopted by [2], and
will also be our main strategy to deal with colour structures in what follows.



Chapter 2. Factorisation 37

The behaviour of Z and its universal properties have been a crucial research topic
for several yeas, giving rise to different and sophisticated approaches to determine
and predict its form in perturbation theory. In 2009, an Ansatz for Z was proposed
in [10,11] and independently in [1213]. In the former paper, the authors managed
to show that Z obeys a renormalisation group equation that can be solved in an
exponential form in terms of the soft anomalous dimension I'. This conclusion
was supported by investigating the kinematic properties of the universal functions
(soft, jet and eikonal functions) describing the IR behaviour of gauge amplitudes.
In Refs. [12,/13], similar results were obtained by exploiting the renormalisation
group equations governing the n-jet SCET operators. Following the notation in
Ref. |10] one may write

Z, (%,as(/f),e) = Pexp

1 [ dx? i
5/0 BVl r, <X7Oés(/\2>€)>] ) (2.8)

where all infrared singularities are generated by the integration of the d-dimensional
running coupling over the scale A, extended to A = 0 [100,/101]. The integral at
A = 0 converges in dimensional regularisation thanks to the behaviour of the [
function in d = 4 — 2¢, for € < 0 (d > 4). Indeed, in dimensional regularisation

one has
dos
du — B(@O‘s) ) (29)
with
Be,a5) = —2eas + B (i) . (2.10)

In Eq. |D B is the four-dimensional 5 function, which we can expand in series
of the coupling constant as

2

B(ay) = —;‘—; ibn (%)" | (2.11)

The multiplicative factors agree with the normalisation by = w in QCD.
If one solves Eq.(2.9) for small coupling and fixed, negative ¢, it is easy to verify
that the d-dimensional running coupling a,(u,€) is power suppressed at small
scales, namely it vanishes at ;1 = 0 according to
2 AP\ 2 2
as (N2 e) = (?) [as(,u ,€) +(’)(0z3)] . (2.12)
This way, the corresponding initial condition for Z is Z(u = 0) = 1.

The infrared anomalous dimension matrix I';, has been studied for a long time,
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and it is still an active research topic. One of the most important aspects is its
dependence on different colour structures, and whether colour patterns are pre-
served by higher orders in perturbation theory. In the pioneering investigations
performed at NNLO [10-13], the expression for I' was proposed as an Ansatz,
assuming its exclusive dependence on colour dipoles, i.e only two-particles correl-
ations are supposed to be involved. I' was then written according to the so called

dipole formula

F(%M(A)’E) _ %(a;(A, 6)) Z": ln(%ﬁ T — Zn:m (as(N€)) . (2:13)

ij=1 i=1
J>i

In the expression, o0;; is a phase factor equal to 1 if both 7 and j are in the initial
or in the final state, while it is zero otherwise (we will always refer to the former
case, setting ™% = —1, with the understanding that the logarithm is taken
above the cut). With vz (o (), €)) we refer to the jet anomalous dimension, which
determines the dependence of the jet function in Eq. on the renormalisation
scale p. The v, (Oés()\, e)) functions assume different forms depending on whether
¢ is a fermion or a gluon, and on the spin of parton . To compute 77, it is possible
to exploit the calculation of the quark and the gluon form factors: at three-loop
order the computation was performed by Refs. [102,/103], and at four-loop order by
Ref. [17]. Finally, 7k (as()\, e)) is related to the cusp anomalous dimension 7%) ().
In the derivation of Eq. , the (light-like) cusp anomalous dimension, in colour
representation r, has been assumed to obey the “Casimir scaling”, i.e. to depend
on the colour content of parton r only through the relation

1 () = CrAk(ay) (2.14)

where C) is the quadratic Casimir eigenvalue for colour representation r, while
k() is the universal (representation-independent) function appearing in the
dipole formula. 7k (as) was computed at three-loop order by Ref. [104,]105] and
recently at four-loop order by Refs. [17,/18]. The computation of the four-loop
correction of Ak (a) has proven that the Casimir scaling is violated beyond three-
loop order.

Given the importance of the Eq., we believe it is instructive to sketch the
basic arguments that led to its formulation, following the discussion reported in
Ref. [11]. Some preliminary remarks have to be reported before presenting the
actual argument. First, we recall that the interaction of a soft gluon with a

hard parton carrying momentum p is described by the eikonal Feynman rule (see
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Eq.(1.68))

eapﬂ saﬁ,u
s "= =gs t )
gstt Dk gstt 3k

(2.15)

with S* being the four-velocity corresponding to the hard momentum p*, p* =
Q/+/2". The expression on the the r.h.s. is independent on the energy scale of
the hard parton, and invariant under rescaling 8 — af3. Secondly, we remind that
the low-energy interactions of a generic n-point amplitude are reproduced by the
soft function S (that is defined in the simple case of n = 2 in Eq.(L.80))), which
can be decomposed over a colour basis as

D (L) tanSux(Bi- By as(i®),€) = Y (O[] @5 ™ (00,0)10) (k) gy (2:16)

L {m} =1

where the contributing Wilson lines are strictly on the light-cone. As one can
confirm by explicit computation, (see for instance Eq.), the soft function de-
pends on the scalar products ;- 3;, and therefore it breaks the rescaling symmetry
manifested by the eikonal rule in Eq.. This sensitivity to the normalisation
of the f3; vectors is clearly unphysical and cannot survive in the amplitude A,,. The
necessary cancellation of any rescaling violation has to occur between the soft and
the eikonal function, which suffers from the same rescaling breaking. Moreover,
soft and eikonal functions are identically zero in dimensional regularisation order-
by-order in perturbation theory, thanks to the precise cancellation of UV and IR
singularities. Upon renormalisation, both functions manifest double poles of soft-
collinear nature, which are responsible for the rescaling violation at the single pole
level. As already mentioned, the issue of correctly taking into account the over-
lapping of soft and collinear singularities can be avoided by considering the reduce
soft function, defined as the ratio of the soft function and the eikonal jet functions

= S(Bi - By, as(p?), )

S (pij, as(p?),€) = L Jie((B: - 10)2/n2, as(1i2), €)

(2.17)

This way, S is free of double poles, and, at the same time, of rescaling violations.
Considering the kinematic dependence of the numerator and the denominator, and
the recovery of the symmetry 5; — a;0;, the reduced soft function can only depend
on the quantity

_ BBy

Pii = S6ena? 26,
7w

(2.18)




Chapter 2. Factorisation Chapter 2 Factorisation

The soft function, as well as the reduced soft function, obey a renormalisations
group equation of the form

d
M@S{K(ﬂi'ﬁj,as,E) - _ZF Bz 6]70@’ )SJK(Bi'/Bj,Oés,E)7(2-]-9)

d —
M@ SIK(pijaa57€) = _ZFU Pzgaa57 S (pijaa/SaE) : (2-20)
where I'¢; is a priori a complicated function of all the invariants contributing to
the process. Given the fact that S depend on p,;; and manifests single poles only,
the corresponding anomalous dimension I'® is a function of p;; and it is finite for
¢ — 0. Starting from the definition in Eq.(2.17)), it is possible to relate I'Y; and
7y

S . S ﬁk nk>2
FIJ(pijyoés) = F[J(ﬁi'ﬁjaa& 51]27\% E( 04876>

= F?J(ﬁi : 5]',049,, 51JZ { 5.7” (as)

2

+ i'yg)(as) log <<5kn—znk)> + Z . d;; ® (as(fzvas))} 7(2-21)
where 77, ,, is the anomalous dimension relevant for the eikonal jet renormalisation
group equation. It is evident from the equation above, that some crucial cancel-
lations have to occur in order for the double poles and the rescaling breaking
encoded by I'?; to cancel. In particular: since the entire term in square brackets
is diagonal in the colour space, the off-diagonal elements of I'f; have to be finite,

and depend on the conformal cross ratios

p (ﬁz ﬁ])(ﬂk 51) _ (pijpkl>1/2
MG BB B \pwen)

(2.22)

Moreover, diagonal terms in I'{; have to contain singularities according to
S d€2 (k 0
77 (Bi - By as, €) =01y Z (as(€%, as)) + O(€"). (2.23)

On top of the singularities, I'Y; has also to display finite contributions in ;- ;, that
have to combine with the ﬁnlte contributions stemming from the jet anomalous

dimension, which depend on (; - n;)?/n?, to return a finite function in p;;.
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These arguments are formalised by the following equation
Z (,01 as) = 1 ”y(i)(as)(SU Vi, I,J. (2.24)
810g pij) 7 4 'K ’ T

For each external particle contributing to the process, we have a matrix equation
that holds in any colour basis and to all orders in perturbation theory. Remarkably,
the L.h.s. is a sum of non-diagonal matrices in colour space, while the r.h.s. is
proportional to the identity matrix.

Solving Eq. easily becomes highly non-trivial, as soon as the number of
particles increases: n(n—1)/2 kinematic variables are constrained by n equations,
so that, for n = 2,3, I'S, can be uniquely determined [10], while this is not the
case starting from n = 4. To solve Eq.(2.24] - we have to exploit other information,
as the explicit dependence of ny on colour. Assuming Casimir scaling to be valid
at least up to three loops (this assumption has been verified by Refs. [104,/106],
while it is known to break down at four loops due to the presence of fourth-order
Casimir invariants [17.|18,107,/108]), we get

71 (as) = Ci AR () + 3¢ () (2.25)

where %? provides non vanishing contributions that violate the Casimir scaling

starting at four-loops. Given this evidence, Eq.(2.24) can be rewritten as
> o 15 () = 1[G A ) + 7 (0)] (2.26)
0log(pij) 7 4

If we neglect for a moment the corrections to the Casimir scaling, a solution to

Eq.(2.26]) reads

1 i
Fs(pij,as):—g'y;( as) Y log(py) T - T, +5 5( Z T, - T; (2.27)
(6,3)

where 6? governs single poles beyond 7. The sum runs over the possible colour
dipoles, including both the pair (4, j) and (j,7). The kinematics dependence is en-
tirely encoded by the first term, which also includes all the non-trivial dependence
on colour structures. The second term is indeed independent of kinematics, and
only features a trivial colour content. Given the knowledge of 'S, it is possible to
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integrate Eq.(2.20)), obtaining

Spsnane) = enf - /OMQdA—fB%(asw,e))ga
Ao 0) X tosto) T2 T 229

(4,9

At this point, we have to add the contributions of the collinear singularities, re-
produced by the jet functions. The renormalisation group equation that can be
introduced for each partonic jet J; returns

2p; - ;)2 1 (" d\2
«Z<M>0¢s(ﬂz):€> = Hg(as,e) exp{ — _/o vfm(as()?,e))

n; 2

2
(2p;-n4)

T3, v{‘ T (0s(3%.0) log (S5575)
1~
+ 3 S(as(AQ,e))} } (2.29)

where H 7 is a non-singular function. Collinear singularities are produced by v,
while soft singularities are encoded by the cusp anomalous dimension and by gg,
which features at most single poles.

We are now in the position to introduce a precise description of the IR content of
the Z operator. By comparing the Eqs.— we see that in the combination
IL J; S the contributions of gg cancel, while those stemming from 7k combines

non trivially according to

(2p; - ”i)2 (2p; - ”i)2 (B: - ﬁ')Q
log (n—?) + log <T> + log TG z(fﬁj. = 2log(2p; - pj) -

n;)?
2

l ’ (2.30)

n

The resulting organisation of the IR singularities is then compatible with the pre-
diction in Eq.(2.13]). We stress that the the result in Eq.(2.30) is also crucial to
ensure the cancellation of the dependence on the auxiliary vector n* in the Z op-

erator.

In the derivation of the dipole formula provided by Ref. [11], the authors admitted
the possibility to include further corrections to the expression of rS. T hey iden-
tified as a possible source of corrections the higher-order Casimir contributions,
namely the presence of non-vanishing yx. Such corrections are however still of
the form of dipoles for two or three-legs amplitudes, while for higher multiplicity

processes, non-trivial structures that couple more than two partons may arise. A
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Figure 2.1: Two-loop diagrams involving three eikonal lines.

\

second source of correction, provided the Casimir scaling is valid, is represented
by the homogeneous solutions to Eq.(2.26)), where we neglect 7. Any function
verifying the condition

0
; dlog(pi;) A(pij, as) =0, (2.31)

can be added to the expression of I'S without violating any constraints. Thus the
dipole formula has to be improved to account for them

L (%)) = T80 (30 + A (gmai®)) . (232)

It is interesting to notice that, a priori, any generic function of p;j; is acceptable.
In the four parton case, example for A were proposed by Ref. [10]

J#k#l

Z i fabe Tja T/? 1y log (pijkl) log (piklj) log (piljk) 5

jokil
Nl

> dape TP TP TY 1og” (pijia) 1og® (pinis) log® (pise) - (2.33)
jikil

Functions of this kind may only arise beyond the two-loop approximation, since
at two loop order, colour connections may involve at most three partons. Such
conclusion justifies, a posteriori, the results obtained in 2006 by Ref. [109]: the
autors provided the expression for I' at NNLO, showing that also in the two-loop
approximation it manifests at most two-particle colour correlations. This feature
is anything but trivial, since at this perturbative order also three lines may contrib-
ute to connected diagrams, and they are expected to produce tripole-colour-linked
contributions (see Fig. However, these graphs are proven to be null as long
as light-like partons are involved, thanks to simple symmetry arguments.

At three-loop order, the presence or the absence of non-vanishing A,, contributions
remained conjectural for many years [110-114]. In 2016 Ref. [15] explicitly com-
puted at three-loop order the correction A,,, by evaluating of all relevant Feynman
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diagrams

A® — 16fabefcde{—02 >y, Tf}T?T;}

i=1 1<j<k<n
Jisk#i

+ ) [T? T T}, T F(pirs pije) + T5 T TS T F(pijr pirns)
1<i<j<k<I<n

+T¢ T TS T¢ F(pijux Pz‘klj)} ; (2.34)

where C' = (5 + 2(» (3, and F is a combination of single-valued harmonic poly-
logarithms. Afterwards, the authors of Ref. [16] obtained the same result using
a bootstrap procedure, based on the analysis of the nature of the mathematical
functions that the result can depend on.

For the present purposes, it is sufficient to consider the NLO and the NNLO
expansion of the soft anomalous dimension, or equivalently the dipole formula
upon setting A,, = 0.

One important consequence of the dipole formula is that the scale integration in
Eq. can be performed without affecting the colour structure (which is scale-
independent): one may therefore omit the path-ordering in Eq. , considerably
simplifying the necessary calculations.

2.1.1 NLO virtual poles

To provide an example of the dipole formula effectiveness, we derive the poles
content of a generic one-loop amplitude and, then, the singularities residues at the
cross-section level. With this straightforward exercise we will introduce the main
steps of the procedure that will then be applied at NNLO.

By expanding in series Eq., the one-loop amplidute reads

Ag;,l) (pz7 s, 6) = Zq(ql) (pla Qg, 6) ]:r(LO) (p”w A, 6) + Z1(10) (p27 Qg, 6) ‘Fr(Ll) (p”w A, 6) ) (235)

where we have introduced a short-hand notation for the operator arguments and
implicitly defined

iy (Ys iy Qs iy (s’

A, = z; A,ﬁ(?) , Z, = 2; zg><?> . Fo= z; }',S)(?> . (2.36)
Given the definitions in Eq., it is evident that the IR divergences may arise
only from the first term on the r.h.s. in Eq., since JF,, is assumed to be finite
for € — 0 order-by-order in perturbation theory. The main goal is then to compute
yAS by exploiting its relation with the soft anomalous dimension (see Eq.(2.8)).
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As done for the factorisation formula, we start by expressing the relevant quantities
in Eq.(2.13)) in powers of o

= n) [(Ys\" ~ - ~(n) (Cs\" - n) [ Qs\™
= ZF( )(?> o kl(as) = Z%%)(?> o vilas) = Z% )<?) )
n=1 n=1 n=1

and then selecting the one-loop coefficient of T"

n

1. Si; + in ~ 1) 1_g I
o - 2% Zl ( J >Ti-Tj—Zvl-()+Z'y§()ln<ﬁ) T, T,
i#j=1 =1 i#j=1
Lo N, (it ~ oo Loy (Y
= LAk Z m( - )TZuTj—Z% - 19K m(ﬁ)za,
i#j=1 1=1 =1 (237)

where colour conservation (see Eq.(2.7))) has been used. The resulting Z™) expres-
sion is thus given by

1) al/\2
i/ AONEY —/ LW ()\2 2y 2.
— (pi, s, €) = o), 2 J(N%) s (N%) (2.38)

The coupling constant dependence on A? at LO can be deduced from Eq.(2.12)),
and, together with the functional dependence in Eq.(2.37)), it gives rise to two

fundamental integrals

K N2 1 TAN N 1
2\ _ 2 2\ _ 2
/O (V) = o). /0 T () 0) = G - (239)
Having such integrals at hand, it is easy to deduce the NLO approximation for Z,
71 mﬁpic 173 il <_s,-j+in>T T 1i W
= —5 5 il e n{——— )L 1;—c '
¢ 8 i=1 €l 8 ij=1 W b2 i=1 E
(1) n ~1) n
1 vk 117k Sij 1 1)
SR D ICEHE WL
i=1 i#j=1 =1
T
i C, 2.40
Him ” Z (2.40)

PR T R (. 2.1
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At this point, we can proceed by computing the corresponding singularity struc-
tures at the cross-section level. At NLO, the squared amplitude receives contribu-

tions according to
AP = A9+ % 2Re [(49)"AV] + 0(a?)
= |FOF + = 2Re [(FO) FO 4 (FO) Z0FO] 1+ 0(a?), (242)

where the singularities are entirely encoded in the second term in squared brackets,

as explained above. This way

9 Qs i :
(Ao = Z2Re (FO)Y FO 4 (FO) 20 7O (2.43)
_ % H+ _iﬁic
oo e 4 — ‘
17 < Sij ~ )
A8 S £
i1 M i=1

with B,, = |ASLO) = ‘.7-7(L0)|2 being the Born matrix element, and H = FOTF1) 5

finite process-dependent remainder. We now have all the ingredients to push our

‘ 2

investigation a bit further, and consider the NNLO approximation of the amplitude

A.

2.1.2 NNLO virtual poles

The T function can be expanded in series as

_ p(%s @) (%) 3
T'(a) = T (W)+r (W) +O(d) (2.44)
(@i o (@No | pe) (@)2 , (2.45)
T T T

where we have emphasised with the notation that at this perturbative order the
coupling constant has to be expanded up to one-loop approximation. The full
one-loop solution of Eq.(2.9) can be cast in the following form

A2y 1 A2\ e b -
2\ __ 2 0 2
%W—O‘s(”ﬂ(ﬁ)‘z(l‘ﬁ Ir )} ’ (2:46)
whose expansion in ay returns

20 _ (X i) | 100 [(ﬁ) - 1} b (BN 0 (ad) . 247

T 12 T e \ 2 112
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On the other hand, the I' coefficient at two- loop is given by the analogous of
Eq. upon substituting ﬁg) and %( to 'y ) and % . Before tackling the
actual computation, it can be useful to single out A\ from the variables on which
I' depends. In analogy with Eq. , we define

T (pi, s, €) = %1 En:ln( S”Hn)T T, Z% ’YKIH()\2>ZO
i#j=1
2

Ty (pis s, €) + Ty (o, €) In (iz) (2.48)

yielding to the two-loop expression

2

T (pi,as€) = {(2—2)61“5” + (:—z) i (55) FS)} asUt) {(2—2)261“52)

™

e () ) e
+%(2—z)_ ((2—Z>_ _ 1) bo 1) <‘;§) pgw} (0‘8552))2 Yo (2.49)

To compute Z, only few integrals have to be computed on top of those in Eq.(2.39)

BLAN (N AN (NPT (P 1
/ o (_2) — / e <_2) In (“_2) — . (250)
o A2 \pu pe 0o A% \u A pe

The results of these integrals underline one of the non-trivial features of the di-

pole formula: all infrared poles of gauge theory amplitudes arise in dimensional
regularisation from scale integrations. Furthermore, to simplify the computation,
we will consider an intermediated step, and apply the logarithm to both sides of

Eq.2.8)

InZ = [ R +—P<”]
2¢ T

@, 1 @ b o 3b (%)2 5
S r? + 2Lp® - 22 (=) 4o
+[ 4 et T e pealz |(5) TO)
~(1) n . n
Tk —Sij T1i1) 1 (1) | X
_ C; — 1 ( )Ti B IR pHE) el
l 862 ; 8¢ Z N p? it 2¢ Z% T
=1 i#j=1 =1
1) 50 Sij "’ in .
+{1283 ZC+642b0 Zl ( )Ti'TJ
i#j=1
by 1 ’Y§<) - Wg) . =S +1n
( C; — T 1 (;_)T T
TI6e 4T 32e £ 16¢ g;l T2 J

23] () o). 251
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Eq. (2.51) agrees with Becher and Neubert [13], with the anomalous dimension
coeflicients

~ 67 5
= <1_8 - C(Q))C'A — g (2.52)
3 3 3 961 11 13
1P = (= S+ 502 = 5C3) G+ (= o7 — 16C2) + 2C(3) CaCr
65 1
+<E + §6(2)) NyCr,
9= (— 10 200+ 1) Ot (5~ 55¢@) NCat g NiC
Too =T 108 AT \27 7 2 fraT g

We observe that, as expected, In Z contains 1/¢ poles up to e 3. From the structure
of the calculation, it is also clear that InZ at order ol will contain poles up to

e "1, At this point, the two-loop approximation of Z can be simply computed

by exponentiating Eq. (2.51)). Explicitly, we may write
(N2 n
L (i)

2
70 = _L< gi)
a1 (2

=1
63%2<ic>[ DRI St < >}

+§<2”;w>>2 4 <i )3 (s >
+M Z z": In (—_SU i 177) In (—_Skl i 177>Ti - T T - Tl]

2 2
128 ij=1 k=1 H H
+1 [ %?) znzl (_Sij + i77>T T, + IR (2)] (2.53)
- |- = n(———|)T;-T;+- i .
€ 16 Pyt 12 | — i

We stress again that the soft anomalous dimension exposes only dipole colour
correlations, so that Z exhibits at most colour structure of the form (T;-T;) (T} -
T);). No tripole-colour-connected terms may in any case arise at this perturbative
order, as already mentioned in the previous sections.

2.1.3 NNLO virtual poles at squared-amplitude level

In order to obtain the full singular structure of the amplitude, we have to take a
step back and consider the factorisation formula in Eq.(2.1)). It has to be expanded
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up to NNLO and then squared, taking care of the interference terms

A'fl (pi>a87 6) = ‘FT(LO) (pi7a87 6)
+ % [‘Fél) (pla Qg, 6) + Zgzl) (p27 A, 6) ‘/—:120) (p“ A, E)i|
T

2
+ <%> |:‘F'r(7,2) (pia Ag, E) + Zle) (pi, g, 6) ,7:7(11) (pz-, g, E)

T

+Z512) (ps, s, €) ]_—7(10) (pi, as, e)] + O(ag’) , (2.54)
where we recall that Z%O) = 1. The equation above implicitly defines the series
coefficients for A, whose first non-trivial term is reported in Eq.(2.35). At o?
order we also need to introduce

A2 — ]:7(12) + Z7(11)]:7(L1) + Z2 FO) (2.55)

n n n

so that the squared amplitude reads

AP = A9 + 2 2Re (A©) 4]

+(%>2 [gRe((Am))*A(?)) + ]A(1)|2] 4o

™

— |FO)” + Z2Re (FOYFO 4 (;<o>)fz<1>;<o>}

™

Qg 2 ] 1 + t
+<_) [2R9<(]:(0)) FO 1 (FO)'Z0OF0 4 (FO) Tz FO

7

H(FD) ZOFO) 4 |FOP 4 (FO) (20) 20 FO] 4. (2.56)

In the second step, on top of the Born matrix element, it is easy to recognise the
squared-amplitude NLO contribution as defined in Eq.. It has been verified
to return either colour-summed or colour-connected Born matrix elements. At
two-loop order colour and pole structures are more involved. First of all, we stress
that terms proportional to YA only, i.e. FOTFE and ‘.7:(1)}2, are finite by con-
struction. Secondly, contributions proportional to a single YA operator manifest
the same structure discussed al NLO upon substituting the Born matrix element
with a virtual hard correction. Thus, the term Re (}"(O)TZ(U}—(U + }"(O)TZ(I)}—(O))
contributes at most to the double pole coefficient with colour-summed or colour-
connected matrix elements. The contribution of Z,(f), already discussed below
Eq., is responsible for quadruple and triple poles, which also arise from the
interference term Z%UTZ,(J).

For our purposes, it is useful to further manipulate the relation in Eq. in
order to obtain a final expression where explicit poles multiply only Born-level

matrix elements. For this purpose, we restrict our analysis to the singular O(a?)
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terms, neglecting the finite remainders

ARero. = (2) i 2Re(FOZOFD 1 FO'ZOFO 4 FOTZ0FO)

L FOTzMTZ0) ;(m] . (2.57)

To simplify the analysis, we introduce a shorthand notation to define colour-linked

and double-colour-linked Born matrix elements
Bij = (A9|T; - T; |A®) | By = (AQ{T; - T;, Ty - T,}|AY) . (2.58)

and we examine one term at a time. The contributions proportional to Z® and

ZM1ZM can be trivially manipulated and give

(20 0 g (R[22 2+ S (3e)
SR ACORUREO MR SHAL
() S () B g S () () ]

it i
k12K
1
§[4 Y ?B-32Y I ( ) ] (2.59)
1 1,j7#1

where B can be obtained starting from the first equation in Eq.(2.58)) and summing

over ¢, and then exploiting color conservation. In particular

Z B = Z (AT, - T; |AD) = — (AO|T; - T; |AD) = —C, B.  (2.60)

We stress that the sum over ¢ can be carried out as in Eq.(2.60)) only if there is no
kinematic dependence on parton z. Moreover, we have also used the relation

> () () T T T T
12

1,771 H
klAk
1
=5 > w3 ) w(3) {1 T (2.61)
0,j 74 # a
kl#k

To treat the last contribution in Eq.(2.57)), proportional to

2Re<}" fZOFO 4 f(l)TZ(l)]-“(o)) —2Re [J—"(O)T<Z(1) + z<1>*);f<1>] . (2.62)
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it is useful to express the hard content of the formula above in terms of the full
amplitude AM as

FO = A0 _ 70 F0) (2.63)

This way, the contribution in Eq.(2.62) is equal to

2

2Re [}“(O)T<Z(1) n Z(l)*)Au)] _;<0>T(Z<1> L7z > FO) _

()] am (San)v d(SA0)v -5 Su(a)v)

1,771

_é<zcﬂ)3——(20ﬁ)[ 21H<SU) ( W) ]

% 1,71

| () B (2) Sn(a) 2

1,J 71

% > () m(2) B,.j,d} | (2.64)

In the first line of the r.h.s. we have introduced the colour-summed and the
colour-connected virtual matrix element, which are respectively defined as

V=2 2Re ADTAD] vy = % 2Re [AO"T, Ty A0 L (2.65)

The explicit forms in terms of € poles and Born matrix elements of the two objects
introduced in Eq.(2.65) are

Vo= i (- 3G+ z%)B—Ezm(%)BU] (2.66)

kl£k

Vij = %{Hifr( szcfﬂf 27(1)> m——Z <8kl> zakzl]-

kl£k
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Collecting all the contributions computed above, it is easy to obtain the full €
structure of a generic double-virtual amplitude

= (2 (Ze) B (Ten) (Gm + 250 5
u—é[(—%ﬂz e ()
()b S ()0

1,J7#1 1,J71

4%

€

o [T () m- S ()
(@)~ 55 (Ze) (T} 207

Some remarks: the pole content of the double virtual can be written in an ex-
tremely simple and compact form. While the quadruple and the triple pole mani-
fest a residue that is completely determined by a universal factor and a Born mat-
rix element, the double and the single pole depend on a finite-process-dependent
quantity H. In particular, in the last line of Eq.(2.67) the finite contribution
to the virtual matrix element multiplies a double and a single pole. The colour
structure is also quite trivial, since it involves at most double colour-connected
matrices, without any tripole-colour connection. This is indeed in agreement with

the colour content of Z, as anticipated.

2.2 Cancellation of infrared singularities: the KLN the-

orem

In the previous chapters we have discussed how infrared singularities arise from
virtual corrections, as a direct consequence of low-energy and collinear configura-
tions, stemming from virtual radiations. To treat such divergences in dimensional
regularisation a sophisticated machinery has been introduced, based on the factor-
isation properties of gauge amplitudes. As a remarkable achievement, the infrared
virtual singularities have been modelled in terms of universal functions. In this
section we review how such divergences arise also from real radiation, and in which
way they combine with the analogous virtual pole structure.

It is a well-known fact that also real partons may induce singular regimes that are
not due to the real-radiative matrix element itself, but to unresolved corners of

the real-radiation phase spaces. In particular, the radiative phase space includes
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(as for the virtual singularities) the configurations where the emitted parton is
soft and/or collinear to an other particle. Under specific assumptions, the di-
vergences coming from the virtual correction cancel against those stemming from
the real-radiation at the cross-section level, order-by-order in perturbation the-
ory. This claim coincides precisely with the main statement of the KLN theorem
[19-22], which was proven back in the ’60, by exploiting simple quantum mechan-
ics arguments and, independently, with an elegant diagrammatic approach. Before
discussing the definition of IR safety and providing an example of the IR singular-
ities cancellation for a simple observable, we find useful to review the main steps
of the theorem, according to the proof presented in |21].

Given a Hilbert space H with N particles endowed with an orthonormal and com-
plete basis of states |n), a generic state belonging to H, and a generic operator
can be respectively expressed as

@) = anln) . Awn=(mlAln) . AL, = ((m|Aln))" = (m| A'[n) (2.68)

n

In the Schrodinger picture, the time dependence of a generic state is determined

by the time-evolution unitary operator U (s, t1)
la(t)) = e [a) = U(t,0) |a) (2.69)

where the Hamiltonian H is split into a free component H, and an interaction
term Hy; as H = Hy + gH;. At the boundaries of the time range, the system is
assumed to be asymptotically free and the corresponding state are given by

lim |a(t)) = |a°U(t)) = Uy(t, 0) |al™/om) . (2.70)

as as
t—Foo

We can then define the incoming/outgoing time-operator
Ur = lim Uy(t,0)U'(t,0), (2.71)
t—F oo

such that the asymptotic states can be related to the ones living far away from
the time boundaries according to

la) = Us lagy) ,  [b) = U-[b3") - (2.72)

The probability density for the system to pass from the state |b) to the state |a)
is encoded by the S matrix

Gl * = [ @ Slaim) | = 32 [(U-)5(0),) [0 (02);] - @73)

i?j



Chapter 2. Factorisation Chapter 2 Factorisation

Assuming the theory to depend on a parameter i that regulates the degeneracy of
the energy spectrum, we define D(E,) to be the set of states that share the same
energy level. In a generic gauge theory, p may represent the fermion mass: as pu
tends to zero, the process exposes singular regimes corresponding to the emission
of soft and/or collinear partons. Such configurations are indeed degenerate states.
The Hamiltonian of the system can be diagonalised by means of the U = U,
operator, in terms of the diagonal matrices Hy and F

U'(Hy+gH\)U=E < [UE]=(gH+A)U, (2.74)

where we have exploited the unitary nature of U, and introduced A that represents
the negative energy shift induced by the interaction component. By expressing A
and U in powers of the coupling, it is straightforward to derive the lowest orders

contributions to U. In particular, setting
A=) "g"aA U= "grum, (2.75)
n=1 n=0

the expression in Eq.([2.74]) can be solved with respect to U at the first and second

order in g, giving

— 6

(Ux),; =i+ B, —FE tia

(H1),; +O(g*) . (2.76)

with o being an infinitesimal positive quantity, and FE; the i-th element of the
diagonal of the matrix E. In this form, it is evident that the expression in Eq.
exposes divergences if 7, j,a (orb) belong to the same degenerate set. The KLN
theorem then states that such singularities cancel upon summing over all the
degenerate configurations. In other words, the quantity

> 0, 0, = 1B, =Y TE), e
a€D(Ey) n=0

exists order-by-order in perturbation theory. The proof of this statement is trivial
for the lowest perturbative orders, and generalisable to higher orders by exploiting

an elegant induction procedure. For n = 1 the T operator reads

r0E)], = 3 (22 gy, e 2t ), | e

weDBL) E, - E; Fia Jjo B, — FE;, i«

At this point, three relevant cases arise naturally:

o i ¢ D(Ea) . the second contribution in Eq.(2.78) is finite independently of
whether j belongs to D(Ea) or not. The first term, that would be divergent
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if j € D(Ea), is suppressed by ;4.
e j ¢ D(E,) : this case is analogous to the previous one, upon changing i < j.

i j€ D(Ea) : for ¢ = j both terms are divergent, but also suppressed by the
0 functions in the numerators. In case i # j, the first contribution surviving

with a = 7 and the second one with a = j cancel exactly given the relation

(Hl);i - (Hl)ij'

These considerations lead to the conclusion that Tl-(jl)

exists Vi, j. We then have
to prove that the theorem holds for n > 2. For this purpose, one can proceed by
induction showing that

3 imA™ ¥Yn<N = 3Ilim [T (E,)].. Vn<N+1, Vij.(2.79)

p—0 u—0 v

The claim above can be rephrased by assuming as hypothesis the convergence of
A™ up to n = N, the convergence of T n) up ton < M < N + 1, and then
showing that Tz(J n) converges for n = M + 1. The idea is then to write the explicit
expression for Ti(JMH) in terms of Ti(jM), which is finite by hypothesis in the three
relevant cases considered below Eq..
As an intermediated step, we rewrite the definition for T as

[T Z > Jutmy” (2.80)

m=0 GGD(EG)

If the state ¢ lies outside the degenerate set of states D(FE,), the series expansion
for U;, in Eq.(2.76]) can be easily generalised to an arbitrary perturbative order m
as

(U(m))m - ﬁ |:Z (Hl) U(m 1 + Z = l))ia:| ’ (281>

=1

that, if plugged in Eq.(2.80)), returns

[T(MH)L‘]‘ -~ F iE {Z (Hl)zk [T(M)}kj T Z (A(l))ii {T(MH_I)LJ} - (282)

=1

Since Tz(] ) exists, as well as T} (M-+1-1) , for all 7, j thanks to the working hypothesis,

then Ti(jjwr ) exists. If j ¢ ( E.), but i may or may not belong to D(E,), the
expression in Eq.(2.82)) may be ill defined, and it turns out to be more convenient
to exchange i <> j in Eq. (2.80)), considering the complex conjugate of the T’
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operator. In particular

M+1
[TM(E)] = >0 L0
m=0 ac (Ea)
M+1
S YD SRCENCE)
ja
m'=0 a€D(E,)
- [T(MH)(EG)L]" (2.83)

where, after the substitution ¢ <> j, we are considering the case i ¢ D(F,). Such a
case has already been analysed, therefore we conclude that [T(M +1) (EQ)LJ. exists
for j ¢ D(E,). The only remaining case stems i, j € D(E,) and it can be tackled

(M+1)

by recasting T’ in the following form

M+1

[T E)], = > D (U), (U)

m=0 a€D(E,)
M+1

=y {Z(...)— > (...)]. (2.84)

m=0 L ¢ b¢D(Ea)

In the equation above, the first term in the square bracket gives a vanishing con-
tribution, since it is equal to (U U T) (M) nd the unitarity condition for U implies

(UUT)(n) =0 for n > 1. This way

M+1
TEN, - Y 3 @ e

given that i,j € D(FE,) therefore i,7 # b and TZ-(].MH) converges. This concludes
the proof of the KLN theorem. From the computation above, the cure of the
IR problem seems then to be summing over degenerate configurations. From an
experimental point of view, this means to sum over indistinguishable states: since
detectors have a finite resolution in energy and angle, there is no chance to detect
an arbitrary low energy particle, or to distinguish between a particle carrying mo-
mentum ¢ and two collinear partons with momenta z ¢ and (1 — z)¢q, z € [0, 1].
We emphasise that this implies to sum both on initial states, as well as final states
with the same total energy. Only few exceptions lead to a simplified application
of such a rule: in abelian theories with m; # 0, as massive QED, a sum over
degenerate final states only suffices [19]. In PQCD the KLN theorem holds, but
it is not implemented in practice when summing over initial state is unavoidable.
Hadrons are indeed complex objects that we know to be ill-approximated by a per-
turbative expansion. A non-perturbative implementation of the theorem would be
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Figure 2.2: NLO contributions to ete™ — ¢q. IR singularities arise from the
collinear and the soft configurations of the red gluon.

then necessary to effectively exploit it and provide relevant theoretical predictions.

Before discussing one of the main strategies to overcome such bottleneck (infrared
safety), we focus on final state QCD processes, as for example eTe~ — hadrons. In
this case, final state singularities have to cancel by their own, since the initial state
does not participate in QCD interactions. At NLO, for example, such cancellation
has to occur between the contributions deriving from the diagrams in Fig..
To explicitly verify this statement, we consider the decay width of a photon of
momentum ¢ into a ¢(p)g(p’) pair, the contribution of the radiative corrections
(the emission of an extra gluon of momentum k from each of the fermionic line)
at amplitude level reads

PR
m(—lw)v(p)

y—¥
p—k

Mia = ulp)(—igst*) ¢ (k)i

+u(p)(—ier”) iﬁ(—igst“) ¢(k)v(p) .  (2.86)
In the soft approximation, i.e. assuming k < p,p/, it is possible to neglect power
corrections in k in the denominators and keep only the external momenta in the
numerators. This way a natural factorised structure arises from Eq.(2.86)

il - v a pl/ p/y
Mgl = ) (iey")o(p) " (k) gt {p‘k - p,.k} . (287

where the multiplicative factor in front of the square brackets is equal to the Born-
level matrix element, My = u(p) (—ievy*) v(p’) € (k). The squared amplitude, upon
summing over polarisation and colour, gives

(n2:,

o
)2 _ |M0’2930Fp2p p

m . (2-88)

soft
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The evaluation of the total cross section requires to integrate over the 3-body
phase space

d3k 2p - p
soft __ 2
Ord = 0095 Cr / 2023 p-kp - k
20, (! Fmax g0 1
= Crp— dcos@ —_— 2.89
cotr T 1 o8 /0 ko (1 —cos)(1+cosh)’ (2.89)

where g is the soft squared Born-matrix element, integrated over the g phase
space, and p, p’ are assumed to be back-to-back. As expected, the radiative cross
section exposes singularities in the limits A — 0 and # — 0,7, corresponding to
the soft and the collinear configuration respectively. By exploiting dimensional

regularisation and moving from four to d = 4 — 2¢ dimensions, the integral in

Eq.(2.89) becomes

Cra Pmax = q0 ™ (sin )3

soft F ts

prm— e —— de 2.
Orad =90 9a=s pi2-1 P(L£2) /0 (K0)5—d /0 T cosf)(1 T cos) " 20

so that the IR singularities of the radiative cross section show up as poles in the

regulator ¢, yielding

as|2 3 19
Orad = 00Cp — | = 4+ =+ — — 72| . (2.91)

2r e e 2
Such IR sensitivity is however compensated by the virtual corrections. As already
discussed, virtual diagrams are affected by singular soft and collinear configura-
tions, which can be regulated by performing the loop integral in d dimensions.

The corresponding result reads
3 2
ovirt = 00Cp—| ——=——— +7|. (2.92)
€
As announced, the complete result up to NLO is then finite and equals

3 ag
olete” = qq) = Orad + Oviry = 300 [1 + Cp 1 & + .. ] ) (2.93)
T

In agreement with the KLN theorem, the IR divergences have been eliminated
once all the singular configurations have been correctly taken into account.

An other way to present the IR-safety of inclusive observables, as the one just
described, is based on unitarity. The natural notation to introduced such concepts
is by means of cut diagrams (see for instance the discussion in Ref. [6]). The
statement we are interested in is the following: the imaginary part of a scattering
diagram G, describing the transition probability between two different sets of fized

momenta {p;} and {k;}, is related to the sum of all the corresponding cut diagrams.
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Figure 2.4: Unitarity for the process ete™ — ¢¢. The symbol ® understands
the integration over the phase space of all the particles crossing the cut.

With cut diagram G¢ we mean the amplitude of the process (p1...pn) = (l1 ... L)
times the amplitude for the scattering (I;...l,) — (k1 ...k, ), integrated over the
phase space of the intermediate states crossing the cut C. In formulas, we can

then write

ZGc(pi;kj) = 21m<—iG(pi;kj)> , (2.94)

allC
whose graphical representation is depicted in Fig As a consequence of Eq. ,
the total cross section for ete™ annihilation is proportional to the imaginary part
of the correction to the photon propagator. In Fig[2.4] this claim is graphically
presented for the NLO correction to the annihilation process. It is then possible
to write

2
o' (%) = S Im () (2.95)

ete—
q

where the function I1(¢?) can be defined as the vacuum expectation value of the

time-ordered product of two electroweak currents .J, according to

() (g0 — @ g) = § / dhz e (0T J(2)J,(0) |0) . (2.96)
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Figure 2.5: Schematic representation of the process ete™ — 2jets.

To conclude that the total cross is IR finite, it is sufficient to consider that TI(¢?) is
related to a forward scattering originating from an off-shell photon. Such a photon
cannot decay into on-shell particles that propagate freely and then annihilate to
return a new photon with the same invariant mass. As a matter of fact, the set
of particles originating from a point will spread in different directions and they

cannot merge again by physical propagation.

The explicit calculations has shown that for the IR cancellation to occur it is
sufficient to consider quantities that are inclusive enough. As an example, we
compute the total cross section for the process ete”™ — ~v* — jets. The first
necessary step is the definition of jet: many different proposals have been developed
in the past years, and various numerical algorithms have also been implemented.
The simplest one is due to Sterman and Weinberg [115] and it is schematically
presented for a two-jet configuration in Fig[2.5] The main idea is to consider
as contributing configurations only events that manifest two opposite cones of
angular opening ¢, capable of containing all the energy of the event, except for an
e fraction. In the specific case of two-jet cross section, the cones are back-to-back
along a fixed axis, as presented in Fig[2.5] If one defines with e; the energy flowing
into the i-th cone, and with E the total energy, the definition of a two-jet event
can be summarised in the relation

61—|—62

>1—¢. (2.97)

At order «y the only events that contribute to the 2-jet production are those
featuring an extra soft gluon, emitted at any direction, or a collinear one, with
arbitrary high energy. All the other configurations would give rise to a 3-jet
production contributions. The different contributions are presented in Fig[2.6 and
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Figure 2.6: (a) Born-level contribution, (b) virtual correction, (c) soft emission,
(d) hard-collinear emission.

they return

(a) Oborn = 00 ;

0 oy 2 [ [

(c) Oreal, soft = 00 CF 2:5 /EE s / ccS);I;de

(d)  Oreat,he = 00 CF 276:8 /GE i {/ /7T J Cz:;% . (2.98)

The sum of all the terms above gives

200, dkP 0 do
Ogjet = ao[l—CF :/ / sin —1—(’)(04?)]

cos2f — 1

4
= o9 [1 — Cp % log e logd + O(a?)] : (2.99)

which is clearly finite. A further generalisation includes the possibility to design
IR-safe observables starting from weighted cross sections. The final states of the
processes in exam are indeed weighted by an event-shape functions S, (p;1...pn),
which may or may not enhance the jet-like configurations. In full generality, a

weighted cross section looks like

do
_ dry ~—— Sy(pr - -pu) 2.100
os En / T dTnS(pl Pn) ( )

where d7, denotes the n-particle final state phase space. The condition for Eq.([2.100))
to be infrared-safe is the insensitivity of the weight function to the long-distance
physics. In particular, S, cannot distinguish between a parton propagating freely
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and a parton emitting radiation at low energy or along the same direction. In
formulas this can be rephrased as

limO Spt1(P1, o3Py ) =Sn(D1, - Dj—1, Pit1s -4 )

M
p;—

lim  Sppa(pr, -5y Pky ) = Salp1, -+ 0j + D1y ) - (2.101)
Py —opl
Several examples of event-shapes are exploited for their phenomenological relev-
ance. Among them the trust [116] and the jet mass, defined respectively as

T s it [Pi DY oy _ 1 Y 2.102
m = MaXp = » Pm’" = 5 sz ’ (2.102)

> ity Ipil E N\

where H is one of two hemisphere identified by the thrust axis.

As anticipated, a large variety of observables are protected by the KLN theorem
and insensitive to the long-distance physics effects. It is also clear from the discus-
sion above that not all the relevant observables are IR-safe and, more importantly,
that also IR-safe quantities may be quite complicated to treat. Before introducing
the main techniques implemented to automate the treatment of IR-safe quant-
ities, we summarise the crucial steps to obtain reliable predictions for hadronic

observables:

e we require a hard scale Q% to rule the partonic process, such that a per-
turbative approach is allowed, i.e. a,(Q?) < 1. We compute partonic cross
sections a, regulating their IR behaviour through the preferred regularisation
technique (we will always make use of dimensional regularisation setting the
regulator € to be ¢ =2 — d/2 < 0). This way

. (@ m3 (1)
a:a(ﬁ,pi-p]—, as(1?); L€ . (2.103)
e We select quantities that are finite as long as €,m; — 0

. (@ m2\Pp
O-_O-(%api'pjaas(H?); 0, O) +O((,u2> ) 6) : (21O4>

e We interpret these IR/C safe ¢ as perturbative estimates of the corresponding
hadronic cross sections, valid up to O<(A22CD / u2)p>.
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2.3 Slicing and Subtracting

As discussed in the previous sections, infrared singularities arise from specific kin-
ematic configurations, as the exchange of soft or collinear massless partons. A huge
effort has been invested in understanding the IR problem in perturbation theory,
and numerous results are now available |5-H14,/92]. The long-distance sensitivity of
a generic massless gauge amplitude is ruled by a small set of universal quantities,
that are functions of soft and collinear anomalous dimensions [15][16]. Several
important studies have also been focused on the real-radiation matrix elements:
under singular limits such elements quasi-completely factorise (in the sense that we
will explain) into universal kernels and lower-point amplitudes [25,27,28]. All the
relevant kernels needed for NNLO calculations are known [24}26,27,29], with par-
tial information available at N3LO as well [30-34]. For a subset of observables, the
IR-safe observables, infrared singularities cancel when combining virtual and real
corrections, as a consequence of the KLN theorem [19-22]. In contrast with the
apparent simplicity of this cancellation mechanism, the concrete implementation
of accurate predictions for an arbitrary n-parton scattering is significantly more
involved. In particular, a straightforward application of the theorem is only feas-
ible for low-multiplicity final states and for highly inclusive cross sections, where
the structure of typical observables are sufficiently simple. For higher multiplicit-
ies and for typical collider observables, the real radiation is subject to intricate
phase-space constraints, possibly involving non-trivial recursive jet algorithms. In
these cases the phase-space integration must be performed numerically, and the
cancellation of soft and collinear divergences has to occur before such integration.
Two main strategies have been developed to face the problem of cancelling the
IR divergences: the slicing schemes and the subtraction schemes. The differences
between the two approaches can be explained by a simple example [117]. Suppose
we have to compute the integral
Vdx 1
I:Iim{/ —a“F(x) — - F(0)|, (2.105)
e—0 0o T €

where F'(x) is a complicated function that prevents any analytic evaluation of
the first integral. To have an idea of how this example can be translated into a
physically relevant computation, the variable x can be thought of as the angle
between two partons, or the energy of a gluon. The integral in Eq.(2.105) is
singular in z = 0 and results in a 1/e pole that cancels against the second term
in square brackets, which represents the virtual correction. The problem is to
numerically evaluate I, without relaying on the analytic estimation of the integral
over .

The slicing approach prescribes to slice the integration domain into two regions,
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delimited by the small parameter § < 1. This way, Eq.(2.105)) is recast as

I ~ ygé{F(o —3: +/ o Fx —%F(O)
= F(0) 10g5—|—/ ?xEF(az) (2.106)

The second line of the equation above is thus free of singularities, and therefore
suitable for numerical evaluation. Computing IR-safe observables with a slicing
method proceeds as follows: i) singular regions of phase space are isolated with
a small resolution scale, i) the real radiation matrix elements are approximated
by the relevant infrared kernels below the resolution scale, iii) singular kernels are
integrated in d dimensions, to explicitly cancel the infrared poles of virtual origin.
This procedure yields to a correct result up to powers of the slicing parameter,
which then has to be taken as small as possible, compatibly with numerical sta-
bility. This method was first exploited by Baer, Ohnemus and Owens [118] in the
context of photoproduction of jets, by Aversa et al. [119] for hadroproduction of
jets, and then applied by Giele et al. [37,38,[120] to obtain the first fully differ-
ential results for jet cross sections.

In order to avoid this parameter dependence, subtraction algorithms were later
developed. Starting from Eq., the method suggests to add and subtract a
term capable to reproduce the singularities of the integral, such that

fzhm[/old—%f(F() +F /—xE——F(O)] (2.107)

e—0 x

depends only on integrals that can be evaluated numerically. In practical imple-
mentations, one introduces local infrared counterterms containing the leading sin-
gular behaviour of the radiative amplitudes in all relevant regions of phase space.
One then subtracts the local counterterms from the radiative amplitude, leaving
behind an integrable remainder. The counterterm has to be added back and com-
bined with the virtual correction, after computing its integral over the radiation
phase space. The resulting finite cross section can safely be integrated numeric-
ally, and the whole procedure is exact, and does not involve any approximation.
A method of this kind was exploited by Ellis [121], applied to electron-positron
annihilation by Kunstz and Nason [122], and then to heavy quark production in
hadron collisions by Mangano, Nason and Ridolfi |[123]. Currently, subtractions
methods are implemented in efficient generators [44-52|, and NLO is a standard
level of accuracy. The general strategy sketched in Eq. can be implemented
in different ways, according to the strategy adopted to define the counterterm and
to its characteristics. Among the various subtraction methods developed at NLO,
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we just want to mention the Catani-Seymour scheme [2] and the Frixione-Kunszt-
Signer method [39).

Beyond NLO, the IR subtraction problem is not solve in full generality, and several
different subtraction and slicing methods are currently under construction [53-77].
It is clear that in the near future it will become phenomenologically relevant, and
theoretically interesting, to extend the application of NNLO methods to more com-
plicated processes, and to devise subtraction algorithms at higher orders. Such
extensions will require a high degree of optimisation of existing procedures, and
possibly the implementation of new methods and theoretical ideas.

2.4 The real-radiation factorisation

The implementation of any subtraction scheme relies on the factorisation proper-
ties of the real-matrix elements [99}/124,/125]. To recall the main features we refer
to Ref. [27] and the references therein. We start by introducing a generic scattering
process involving massless final-state QCD partons pq, pa, . ... Non-QCD partons
carrying a total momentum () are always understood. To respectively express
colour, spin and flavour degrees of freedom we introduce different sets of indices
{c1,¢9,...}, {51,82,...} and {aq,as,...}. Given a basis in the colour+spin space
{le1,ca,...) @ |s1,82,...)}, the tree-level matrix element and its corresponding

squared amplitude with spin and colour indices summed read

Agua % (prypa, ) = ( (c1,02,.. .| ® (c1, 02, . ] ) [Aaras,..(P1, D2, - ))

}Aa17a27---(p1’p2’ e )}2 = (Ao as,..(P1, 02, ) Ay o, (P13 D2, ) - (2.108)

The colour content of the amplitude is treated by introducing the colour operators
in Eqs.—, in agreement with colour conservation in Eq..

Let us then consider a tree-level matrix element A, 4. (ki, p1,...,pn), where
the outgoing gluon g, carrying momentum k;, colour ¢ and spin u, becomes soft.
The leading singular contribution to such matrix element fulfils the factorisation

formula

(e | Agar,an (Ko p1s oo Pn)) =2 gs T (Ri) [Aayan (P15 -+ n)) 5 (2.109)

where the factor J represents the eikonal current we have already introduced in
the context of Wilson lines and soft function. Its explicit expression including the

colour factors is

n

n 1
I (k) =Y T, ﬁ = K Ju(k) =) T.=0. (2.110)
=1 c )

c=1
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To simplify the calculation, it is useful to choose a physical gauge (for instance
the axial gauge n - A = 0, where A is a gauge field and n is a light-like auxiliary
vector, already introduced to parametrise the Wilson line direction). At squared-
amplitude level, two eikonal currents have to be contracted with the real gluon
polarisation sum tensor d*”(k;) = (—g"” +ntk] ) /n-k;). By exploiting current con-
servation, expressed by Eq., together with colour conservation in Eq.,
one can easily show that

n
"Ag,m,...,an(kiapla s 7pn>’2 k"z _877-053 /1126 Z I,EZ) |Acadl7m’an (pl, cee ,pn)\Q (2111)

- —0
¢ c,d=1

c,d#i, c#d
Here the eikonal function is equal to

i Sed
74 = 3, 7 (2.112)

Sic Sid

and the squared amplitude matrix on the r.h.s. in Eq. is the colour-
connected tree amplitude we have defined in a shorthand notation in Eq..
The delta function in Eq. forces parton ¢ to be a gluon, while the flavour of
all the other partons is unconstrained. If one wants to keep all the indices explicit,
such amplitude reads

|Acadl,...,an|2 = <~’4a1,..-,an| Tc ' Td |Aa1,--.7an> (2-113)
*
= Ao ] T T, A

where the sum over the spin indices is understood.

Similar factorisation formulas are also valid for multiple soft particle emissions
according to the flavour of the emitted partons. For convenience, we report here
the main eikonal currents, and we refer the reader to Sec.(3.1)-(3.3) of Ref. [27] for
further details. The simplest configuration is the emission of a soft gg-pair. From
a diagrammatic point of view, such configuration arise from a single graph, where
one gluon splits into a fermion-anti fermion pair. The corresponding factorised

expression of the amplitude is

k' —0
’Aq,q,al,...,an (ki, k’j,pl, R ,pn)|2 '~ 2 (47@5#26)2 Tr X
kl'—0
x 3 ZWIAD (e (2.114)
c,d=
c,d;éi,cgéd

with

Sci Sdj 1 Sdi Sej — Sed Sij
(8ij)% (Sci + Scj) (8ai + 545)

T = (05,4 01,3 + 61.01,0) (2.115)
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The combination of delta functions in round brackets sets parton i to be a quark
and parton j to be an anti-quark, and wiceversa. The singular configuration we
have just described represents an example of democratic IR limit, since the mo-
menta k; and k; vanish at the same rate, without any scaling hierarchy. For a
double gluon emission, two different structures arise: a factorised double copy
of a single eikonal current, and a pure double-unresolved current. The squared
amplitude fulfils the relation

I
kj —0

|Aggaran (ki kispr, .o on)? T~ 2(4masp®)? x (2.116)

k' —0

> I9TY 1AL

c,d,e,f=1
C7d7e7f¢i7j
chdief
+ Z Icczlj |'/4a17 Q. (pla s 7pn)|2 )
c,d=1
c,d£ij; cd

where the first term in square brackets is the factorised piece, while the second

one is proportional to the double-colour-connected matrix element

|ACdef ’2 = <~Aa1,...,an’ {TZ ’ Tj> T, - Tf} “Aal:-~~van> ’ (2'117)

A1,...,0n
and to the double eikonal current, which equals

- 1—c¢€ Sci Sdj + Scj Sdi
7w — —2C 4 04,40y, { —— —
od fig Yfig (Sij)g (Sci + Scj) (Sdi + de)
B (Sca)? {1 B Sci Sdj + Scj Sdi 1 Sed { 1 + !
Sci Sdj Scj Sdi (8ci + Scj) (28ai + Saj) Sci Sdj  Sdi Scj

B 2 (1 N (Sci Sdj + Scj Sdi)2):| } . (2.118)
(Sei + Scj) (Sdi + Sdj) 4 S¢i Sdj Scj Sdi

Let us stress that the soft current in the case of a q(k;) g(k;) pair cannot give rise

Sij

to any strong-ordered configuration: the limit k; > k; (or k; > k;) returns indeed
a subleading contribution. In contrast, the gluon double current has a hierarchical
limit, which manifests the same singular scaling as the full current. The strong-
ordered current can be easily deduced by taking the leading therm in the k; (k;)
(i)

expansion of I_;
(ij)s.o. _ ) |70) (i)
., = =204 04,405,905 |Loj +Zd -7 (2.119)

It is then easy to notice that the soft factorisation is quasi complete in the sense

that eikonal kernels and Born-like matrix elements are not entirely independent
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of each other and colour correlations remain.

2.4.1 Collinear limit

At NLO, singular configurations include also collinear limits, which obey a fac-
torisation formula analogous to the one introduced for the soft limit, with colour
connections replaced by spin correlations. For consistency, we adopt dimensional
regularisation and consider two helicity state for massless quarks (s = +1), and
d — 2 helicity states for gluons (u = 1,...,d). Given the consequent non-trivial
spin structure, we define a cross-section-level matrix element that is summed over

all the spin indices, except for parton a;

T
/ . .o
lelf}',an = Z A211,7.'.'..,;r;,31,...,5n (pl, . ,pn) .,42117’....-',;7:51,-..,Sn (ph o ,pn) . (2.120)

3 !
spins#s1,s]

To formally define the collinear limit for two partons of flavour a; and a;, and
momenta p; and p;, we identify a light-like parton carrying momentum p*, which
denotes the collinear direction, and an auxiliary light-like vector n#. How the
collinear direction is approached is specified by the transverse vector k//, that is by
definition orthogonal to both the auxiliary vector and the collinear direction. Each
of the two collinear partons carry a collinear energy fraction z, = Sq4,/(sir + Sjr)
of the parent particle, with a = 4,7, such that z; + z; = 1, hence z; = 2z and
2j = 1 — z. The resulting parametrisation of the two collinear momenta, named
Sudakov parametrisation, reads

k2 n* k2 n*
pi=zpt+ K ——= ;o= =) p =k ——

z 2p-n
K
SijEQPi'pj:_m~

Y

1—22p-n
(2.121)

The collinear limit is approached as long as k; — 0, and the leading behaviour of
the matrix element is encoded by the formula

A

87'('0[ 2e / /
O s (P pa) B35 (2, k15 0) [(2.122)

2

|Aa1,...,an (p17 e 7pn)| kil;o 5
where we have introduced a shorthand notation for the spin-polarisation tensor
T#%', that is actually given by Eq., where flavours and the momenta corres-
ponding to p; and p; have been eliminated, and a single parton of flavour @ and
momentum p is inserted. To determine colour and flavour of the mother parton it
is sufficient to apply the following prescription: anything+gluon = anything, and
quark+antiquark = gluon. The kernel pjj;j is the d-dimensional Altarelli-Parisi
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(AP) splitting function [125], which represents a spin operator acting on the spin
indices s, s’ of the spin-polarisation tensor. Analogously to the soft case, collin-
ear factorisation is not properly complete, meaning that the lower multiplicity
tree matrix element keeps track of the (spin) degrees of freedom of the splitting
particles, and cannot be simply factorised on the right-hand side of Eq..
The explicit expression of the NLO collinear kernels is

~ss! ]_‘I—Z2
qu (Za kJ_;E) - 588' C'F|: 1

—€e(1— z)} : (2.123)

—Z

z

» R
P (z,m;q:(sss,cp{M_ez}

. Kk
szy(zakbe):TR[_QHV+4Z(1_Z) Zf] :
1
1 — RN
‘4 2) S 91— o)1 — oML
kJ_

P (z, ki €) = 2Ca [ - g"”(

1—=2 z

Notice that all the kernels are symmetric under the exchange of a quark with
and anti-quark, i.e. Px, = Pxz From Eq. it is evident that the spin
sensitivity of the kernels, and, consequently, the one of the spin-polarisation tensor,
is trivial in the case of a parent fermion, while gluon splittings preserve a non-
trivial azimuthal dependence.

To obtain the spin-averaged (over the polarisations of the parent parton a) splitting
functions, one only needs to contract the spin-dependent AP kernels with the
factors 1/2 05y or d,.(p)/(d — 2) for a parent quark or gluon respectively. The

averaged splittings are

(Putid) = Co| TEE et =] (Bytasey = | FEE=EE ],
(Pt 0) = Ta1 = 2122,
(Byy(zi€)) = 204 L - —+ ! . S (- z)] . (2.124)

The investigation of higher orders in perturbation theory is a challenging task and
requires the evaluation of multiple collinear limits, and the extraction of the corres-
ponding kernels. At O(a?) this procedure has been completed in the '90 [24}25]
and triple unresolved kernels are now a well known tool. Details on derivation
and explicit expressions of triple splitting kernels can be found for instance in
Sec.(2.2),(2.4) in Ref. [27]. On top of the triple collinear limits, two other con-
figurations contribute at NNLO: the double-independent collinear limit, namely
when two independent pairs of partons become collinear, and the strongly-ordered

limit, including the cases where three partons are collinear and two of them are
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more collimated than the others. These extra configurations are fundamental in
the context of local subtraction methods, since they are necessary ingredient to
define a local counterterm, able to ensure the finiteness of the double-real matrix
element. In particular, we have to take special care in handling strong ordered
limits, which represents the overlapping between double and single unresolved

configurations, as we will explain in the next sections.

2.4.2 Soft-collinear limit

The soft and the collinear unresolved configurations have a non-null intersection.
In the context of virtual factorisation, such overlapping has been treated by taking
the ratio of the jet function (encoding the collinear and the soft-collinear singular-
ities) and the eikonal function, which corresponds to the soft limit of the former.
In an equivalent fashion, one can also decide to subtract from the soft function
(featuring soft and soft-collinear singularities) its collinear limit, obtaining the
pure soft-wide angle contributions. The double counting of the soft-collinear di-
vergences may affect also real-radiation, therefore we find useful to briefly discuss
the universal structure of the mixed soft-collinear singularities at NLO and NNLO.
At NLO, the soft limit of the spin-dependent AP functions can be performed eas-
ily by recalling the definition of the energy fraction z; = z in terms of Lorentz
invariants, and then selecting the dominant terms for k" — 0,

lim P¥(z,ki5e) =0 = lim P2(z, ki),

q9

k=0 kt*—0

lim PSS (z,k1;€) = 0s9 2CF = Sir ,

k' —0 Sir

lim P‘“’(z, kije) = (—g")2Ca SJT (2.125)
Et—0 SZT

where the zero on the r.h.s. has to be interpreted as a regular function that does
not contribute to the singular behaviour of the matrix element under soft-collinear
limit. The resulting factorisation formula reads

16masp®
. ) s
kli}iﬂo [li{I_I)l |-Azz1, -a (pla s 7pn)’ — T <5fz95f19 CA + 6f196fJ{Q‘J} CF)
Sjr
X SL ‘Am A1 aH_lan(pla cosPi—15,Pig1 - - - 7pn)|2 ) (2126)

with 0, (qq1 = 01,4+01.- Equivalently, one could start from the soft limit and select
the leading contributions for k; || k; or s;; — 0. In particular, given the sum over
the emitting partons in Eq., the only terms that actually contribute under
collinear limit are those corresponding to ¢ = j or d = j. The invariants ratio
in Eq. reduces to Sj./(Sic Sij) + Sja/(Sia Sij), where s;;/s; is independent of
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parton [, VI # i, 7. Therefore we can substitute ¢ and d with the same auxiliary
parton 7, obtaining

lim | lim |Ag 4, (P15 ,pn)ﬂ ~ —16mo, e Sir

ki—>0 kf—>0 Sir Sij

5fig X

X |A5{7~~~7ai—1yai+lan (P1s- - Pic1s Pig1 - -5 pa) 2o (2.127)
-1

C

c#ij
Thanks to colour conservation, the sum in Eq.(2.127)) is equivalent to a colour
summed matrix element multiplied by minus the Casimir eigenvalue relative to
parton j

lim [ lim |Ag,.. a0 (D1, ,pn)|2] ~ 167T045,u26i 05,4 Cy, X

k=0 LEF—0 ir Sij

X |Aa1,...,ai_1,ai+1an (pIJ A 7pi—17pi+1 AR 7pn)‘2 . (2128>

In this form it is straightforward to recognise that Eq. precisely equals
Eq., proving that soft and the collinear limits commute at NLO. Although
this property may look trivial, it plays a relevant role in the construction of a sub-
traction algorithm: as already mentioned, the definition of a proper counterterm
has to include all the singular regimes of the real matrix element. Since the soft
limit of a collinear configuration and the collinear limit of a soft configuration
coincide, we only need to add a single contribution in the counterterm, instead of
two. This features allows for a minimal structure of the counterterm, and simpli-
fies any possible numerical implementation.
At NNLO the number of overlapping configurations involving soft and collinear
limits is obviously much richer and requires special care to avoid any possible
double counting. Here we just want to mention the soft-collinear limit featuring
one soft parton ¢ and an external collinear pair j, k [24]. Two different scales
compete in this configuration: the soft momentum k! — 0, and the transverse
direction k% — 0, such that the leading behaviour of the matrix element is cap-
tured by neglecting O(k;) and O(k, ) terms, and keeping k;/k? fixed. The overall
scaling of the squared amplitude is then proportional to (s;x s;; six) ', and the
factorisation formula is

Anara v (s DD [P _8(4%:2)2 x (2.129)

J
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The P, spin-operator is the usual AP kernel (see Eq.(2.123)), while the soft

current can be checked to be

T
J[jk]u(k) [Jk] Z T. - TaZ cd +2 Z T Tyn Z c[gk} (2.130)
c Sl;lézdl k C¢Z7]7
with the prescriptions
0 Sej + Sc
Ty =T+ Ty, T = 0 — (2.131)

Sei (Sij + Sik)

A more extended discussion can be found for instance in Sec.(3.4) of Ref. [27].

In order to summarise the results obtained up to this point, we recall that in Sec[I.6|
we have discussed in details how infrared singularities arise in virtual corrections,
and the sophisticated technology implemented to model them in a fully general
way, by means of virtual factorisation formula. With an alternative version of the
factorisation formula, we have derived in Sec[2.1] the pole structure of a generic
virtual scattering amplitude at NLO and NNLO. Particular attention has been
devoted to the colour content of the amplitude and of the consequent singularit-
ies, in order to emphasise that the infrared divergences at cross-section level can
only be proportional to a small set of colour structures (up to two-loop accuracy).
In Sec]2.2] we have explained that IR singularities cancel for sufficiently inclus-
ive observables upon summing virtual and real contributions, thanks to the KLN
theorem. We have also mentioned that to compute numerically relevant observ-
ables, a straightforward application of the KLN theorem is in practice unfeasible,
especially at non-trivial perturbative orders. In Sec[2.3] we have presented the two
main strategies, slicing and subtraction, developed to face such difficulties, point-
ing out the crucial importance of the factorised behaviour of singular real matrix
elements under unresolved limits. In Sec[2.4] these factorisation properties have
been briefly discussed in order to present the notation and the conventions we will
use throughout the rest of the manuscript.

In the next Section we will combine all the ingredients already introduced to invest-
igate the structure of new local subtraction procedure, based on the factorisation

formalism and on the properties of the universal soft, jet and eikonal jet functions.

2.5 Factorisation tools for local subtraction

In what follows we provide a general method to construct local infrared subtraction

counterterms for unresolved radiative contributions to differential cross sections,
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to any order in perturbation theory. We start from the factorised structure of
virtual corrections to scattering amplitudes, where soft and collinear divergences
are organised in gauge-invariant matrix elements of fields and Wilson lines, and
we define radiative eikonal form factors and jet functions which are fully differen-
tial in the radiation phase space, and can be shown to cancel virtual poles upon
integration by using completeness relations and general theorems on the cancel-
lation of infrared singularities [20,21]. Our method reproduces known results at
NLO and NNLO, and yields substantial simplifications in the organisation of the
subtraction procedure, which will help in the construction of efficient subtraction
algorithms.

2.6 Infrared factorisation for virtual corrections

In order to proceed, we note that the compact expression in Eq. is not suffi-
ciently detailed to extract information relevant to the subtraction problem, where
it is important to distinguish the contributions of soft and collinear configura-
tions, and to understand the issue of double counting of soft-collinear poles. It is
therefore necessary to take a step back to the full factorisation formula underlying
Eq. (2-8), which we have already presented in the following form [5/{14,/92]

N\ i Z((pznz)Q/(nzzﬂz)) i (pi-mi)?
A (]i) N leIl ZE(Wlnl)?/n?) S (e )T (pﬂ2p 7 pn?MQ ) (2.132)

For each hard massless particle with momentum p;, we introduced a four-velocity
vector 3;, 82 = 0, obtained by rescaling p; by an arbitrary hard scale, say 3; = p;/ 1,
and a ‘factorisation vector’ n;, n? # 0. In Eq. , the colour vector H,
is a process-dependent finite remainder, the jet function [J; collects all collinear
singularities associated with the direction defined by p;, the soft divergences are
reproduced by the soft function S, while the eikonal jet function J; » represents
the overlap between J; and &,,. The definition of the soft, the jet and the eikonal
functions have already been explained in the previous sections, thus we only list
them here for completeness.

For outgoing quarks with momentum p and spin polarisation s the jet function

equals

) — (p, s (0) @,(0,00) 0 (2.133)
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where the Wilson line operator is

A2

D,(A2, A1) = Pexp ligs/ d\v - A()\v)} . (2.134)
A1

The soft factor S, is defined in terms of semi-infinite light-like Wilson lines radiat-

ing out of the hard collision, each along the classical trajectory of one of the hard

particles

Su(B;-B5) = (0] [ @s.(00,0)10) (2.135)

k=1

where f; is the dimensionless four-velocity of the i-th hard particle, and where, for
simplicity, we do not display the colour indices of the Wilson lines. Finally, the

soft approximation of the jet function, i.e. the eikonal jet [9], reads

J; M = (0| ®4(0c0,0
A ( > ) 3(00,0) ©,(0,00) |0) , (2.136)
and soft poles cancel in the ratio of the full jet to the eikonal jet, separately for
each hard particle. This simple pattern of cancellation for soft-collinear regions
(which in particular does not contain any colour correlations) will be reflected in
the structure of local counterterms for real radiation.

Some remarks are in order: the definition in Eq. is designed for quark-
induced processes. For (outgoing) gluons with momentum % and polarisation
A, the definition is more delicate, due to the requirement of gauge invariance: a
straightforward substitution of a gluon field for the quark field in Eq. is not
satisfactory, due to the non-homogeneous term in the gluon gauge transformation.
The issue has been well understood for a long time, initially in the context of
giving operator definitions of parton distribution functions for gluons [23]. In that
case, the requirement is to find a gauge invariant quantity reducing to a gluon
number operator in a physical gauge; a possible solution is to use a particular
projection of a field strength operator in place of the gluon field in the equivalent
of Eq. : the homogeneous gauge transformation of the field strength can
then be compensated by the Wilson line insertion. At amplitude level, an elegant
proposal was put forward in the context of SCET in [126}/127], and we will use it
in what follows. We define

(k-n)

2

s 5;(A)(k)%“”< ) = (k, )| [Cbn(oo,()) iD” ®,(0,00) | 0), (2.137)

n2u
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where we have not displayed colour indices, the covariant derivative D, = 9, —
igsA, is evaluated at x = 0, and the extra power of g, on the left-hand side
compensates for the effect of differentiating the Wilson line.

2.7 Subtraction procedure at NLO

We now provide a brief description of a subtraction procedure at NLO, pointing
out the relevant features that can be exported at NNLO, for the case of massless
coloured particles in the final state, identifying the local counterterms required
in this case. Our goal here is to present the general structure of the procedure,
which is sufficient for the purposes of the present discussion. However, we stress
that this approach cannot directly provide an efficient subtraction algorithm: in
the process of defining the necessary counterterms, a precise mapping procedure is
needed to exactly factorise the radiative phase space, from the remaining resolved
phase space. The mapping is then also crucial to analytically integrate the local
counterterms over the radiative phase space. An efficient subtraction algorithm
will be implemented in Chapter

Let us begin by establishing some notation. Given a scattering amplitude with n
massless particles in the final state, we write

Au(pi) = AQw) + AV i) + AD() + AP () + ..., (2.138)

where A (p;) is the Born amplitude for the process at hand, while AP (p;) is
the k-loop correction (with respect to Eq. we have included all the coupling
constants in the coefficients .A,(lk) in order to simplify the equations below). Given
an infrared-safe observable X, one can then construct the perturbative expansion
for the differential distribution of X, as

do . dovo doxio n doxsro + doysro

dX = dX dX dX dX

(2.139)

At each non-trivial order in perturbation theory, the differential distribution con-
tains contributions with different numbers of final state particles, and the cancel-
lation of infrared singularities takes place upon integration over the phase spaces
of unresolved radiation. Denoting with d®,, the Lorentz-invariant phase space
measure for m massless final state particles, and assuming that the observable
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involves n particles at Born level, one can write in more detail

doo

¢, B X 2.14
T — [ a0, B,6,00). (2.140)
do )
Tuo }ffi{ / dd, V,, 6,(X) + / d®, 1 Ry 5n+1(X)}, (2.141)

where 6,,(X) = §(X — X,,,) fixes X,,,, the expression for the observable appropriate
for an m-particle configuration, to the prescribed value X. The integrands of the
various terms can be expressed in terms of the squared scattering amplitudes

involving n and n + 1 particles as

2

By = [AD[ ) Run = AU, Vi = 2Re[ADTAD],  (2142)

where unobserved quantum numbers (such as colour) not affecting the observable
X have been implicitly summed over. As briefly discussed in the Sec[2.3] the
problem of subtraction arises because the expressions X, for typical observables
in the m-particle phase space, as well as the corresponding matrix elements, are
very intricate, requiring numerical integrations of the real emission contributions.
It is then often necessary to perform the cancellation of infrared poles analytically,
before turning to numerical tools. The subtraction approach proceeds by mimick-
ing the singularities of virtual and real origin though appropriate function, which
have to be added and subtracted to the initial distribution. To be more precise,
let us first consider the NLO distribution. The NLO subtraction procedure may
be set up in two equivalent ways. The first method, that we dub the real-radiation
approach, consists in finding a local counterterm in the (n+1)-particle phase space,
denoted here by K,fi)l, which is required to reproduce the singularities of the real-
radiation squared matrix element R,,; everywhere in ®,,;. In our approach,
K,fi)l should be simple enough to be analytically integrated in the single-particle
radiation phase space, yielding an integrated counterterm defined in ®,,,

[n = /dq)rad,l K»,S_)ly (2143)

where we introduced the single-particle phase space measure d®,,41 = d®,,11/d®,,.
We can now subtract the local counterterm K. 75_131 from the real-emission probability
R,,11, obtaining an integrable function in the (n + 1)-particle phase space, and

then add back to the distribution the integrated counterterm 7,,, which must cancel
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the explicit poles of the NLO virtual correction V,,. The result is

dUNLO

e - / 4o, (Vn + In) 5,(X)

+ / AP, [Rnﬂ b1 (X) — KW 0,(X)| . (2.144)

A straightforward comparison can be made between Eq. and the toy-example
in Eq.(2.107)): the difference F'(z) — F'(0) represents the factor in square brackets
in Eq., while the explicit poles are due to the virtual correction. Note that
no approximation has been introduced in passing from Eq. to Eq. :
the subtraction pattern would be the same also if we substitute the exact radiat-
ive phase-space in Eq. with an approximate phase space d{ISrad that has to
coincide with d®,,q in all the IR limits.

Thanks to the infrared safety of the observable X (X fulfils the properties in
Eq.(2.101))), the differential distribution in this form is therefore amenable to a

direct numerical evaluation. In particular

n

lim d®,uq,1 (R — K%)= integrable = do', | (RY, — (K, P)@), (2.145)
% I

where the real matrix element, as well as the counterterm K, is a well-defined
object in d = 4, since it has no pole in € and can be written in the symbolic form

R:T0+€T1—|—627’2+O(€3). (2146)

The coefficients r; feature singularities in d®,,q, which are regulated by defining
d®,.q in d # 4, and by consistency R has also to be computed in d # 4. Moreover,
upon integrating the real contribution in d®,,q, the real phase-space singularities

become 1/¢€ poles, that are equal to the virtual explicit poles

vz%+%+vo+0(e). (2.147)
This way,
lim (v + / A, R,M) = lim (v+ / A i Kn@l) — finite,  (2.148)
—

d—4

where the first equality holds in all the infrared limits, which are the only rel-
evant corners of the phase space that are needed to verify the IR singularities
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cancellation. All this considered, Eq.(2.144]) can be recast in the following form

doxro

o / d<I>n<Vn+In> W 5 +

+ / dD, dD.L) | {Rf;le Onia(X) = (BK3)W 6,(X) |, (2.149)

and then implemented numerically. In the real-radiation approach, the local coun-
terterm K, (1 )1 can be formally written as a limit of the real radiation squared matrix
element R, ;. In particular, we can extracts from R, .; the leading power in the
appropriate normal variable in each one of the singular regions of R, ;. The res-
ulting expression for K ( +)1 is a sum of terms, each representing a limit in which
a physical quantity \;, an energy or an angle, becomes small: the real radiation
matrix element is then Laurent-expanded in that variable, and only the leading
(singular) power is retained.

Following this approach, K ) np1 takes the form of a singular universal kernel multi-

plied by a Born-level matrix element (see for instance Ref. [27]).

A second, independent strategy relays on the factorisation properties of the virtual
matrix element, and we refer to this method as the virtual-correction approach. As
explained in the previous Section, the infrared content of V,, can be expressed in
terms of universal soft, jet and eikonal jet functions, whose poles can be shown to
cancel against the phase space integral of the corresponding radiative functions (see
Eqs.— below). Such cancellation is prescribed by the completeness
relations that we will describe in detail in what follows. As a consequence, we

are able to identify an object, LY

, whose sum with V,, is free of € poles. Lgl)
provides then a natural candidate integrated counterterm, that assumes the form
of a phase space integral. The corresponding integrand function plays the role of

1) )

the counterterm K, ;. If one pursues the virtual-correction approach, K, (1 a1 turns

n
out to be a combination of radiative soft, jet and eikonal jet functions, whose
explicit expression can be derived by exploiting standard quantum field theory
techniques. Such explicit computations are presented in the next section and
prove that the two approaches coincide: the combination of universal functions
defining K n( +)1 is precisely equivalent to the leading singular behaviour of the real
matrix element under IR limits. However, we stress that the two methods are
designed according to different philosophies: with the real-radiation approach the
focus is on subtracting the phase-space singularities of the real matrix element by
means of K +)1, with I ) deduced as the phase-space integral of the latter In
contrast, in the virtual-correction approach, the fundamental object is as Whlch
is introduced exploiting completeness relations, to cancel the explicit poles of the

virtual matrix element, and K +)1 is identified with its integrand.
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2.8 Local counterterms for soft real radiation

Our general strategy to define local counterterms is to construct eikonal form
factors and radiative jet functions including real radiation: these functions, when
integrated over the final-state phase space and combined with their virtual coun-
terparts using completeness relations, build up eikonal and collinear total cross
sections, which are finite by the general theorems of Refs. [19-22]. Let us begin
with the case of purely soft final state radiation (which of course includes soft-
collinear particles as well). Considering n hard particles, represented by Wilson
lines in the soft approximation, radiating m soft gluons, we define the eikonal form

factor

Sn,m(klw--vkm;ﬁi) = <k1>)\1§---;kmv)‘m’ Hq)ﬁi(oo7o) |0>

i=1

= E* (/\1)(]{31) . EZT(:\M)(km) ng---ﬂm (kl, e ,km; 51)

M1

> SW (ky ks Bi) (2.150)
p=0

where in the second line we have defined multiple soft gluon currents J§' ™, in
the third line we have introduced the perturbative expansion of the form factors,
and we are not displaying colour indices to simplify the notation. A well known
property of the soft approximation at leading power in the soft momenta is spin-
independence: thus the multiple soft gluon currents are independent of the gluon
polarisations \;, and the definition easily generalises to the emission of final state
soft fermions. Note that at this stage the form factor contains loop corrections to
all orders in perturbation theory.

Our underlying assumption is that the exact amplitude for the emission of m
soft gluons (which may in turn radiate soft quark-antiquark pairs) from n hard

coloured particles obeys, to all orders, the factorisation

An,m (kb ) kmapl) = Sn,m (kla cee 7km7 51) %n(pz> + Rn,m 5 (2151)

where the remainder R,, ,, is finite in four dimensions, and integrable in the soft
particle phase space. After renormalisation, the amplitude A, ,, is ultraviolet fi-
nite, and all virtual soft poles, as well as all contributions that are non-integrable in
the soft particle phase space, are contained in the soft form factor S, ,,. Eq.
is proven to all orders for m = 0, and it is consistent with all known perturbative
results, in particular with the arguments of [24,27,29]; a formal all-order proof
has however not yet been provided: we treat it as a working assumption, which is
known to be correct at NNLO.
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Squaring Eq. (2.151)), and performing the trivial helicity sum, one finds, at leading-
power in the soft momenta

{As}

where we introduced the eikonal transition probability

S (k1o ks B) = > SW (et ks 1) (2.153)
p=0
= ) (O[] ®6.(0,00) k1, Ati -5 Koy M) (1 M- 3 s A [ ] @5,(00,0) 10)
() i=1 i=1

for fixed final-state soft momenta k;. Eq. (2.153)) provides a natural definition of
local soft counterterms, order by order in perturbation theory: indeed, integrating
over the soft particle phase space for fixed m, and then summing over m, one can

use completeness to get

S [ 40 S i ) = (01 ][ @8.0.00) [] @a(oc.0)0) - (2150
m=0 =1 =1

Eq. , up to simple modiﬁcationﬂ can be interpreted as an eikonal total
cross section. When all coloured particles are in the final state, such a cross
section is finite to all orders by the standard cancellation theorems (which can
be verified by explicit power counting); with initial state colour, the eikonal cross
section is affected by collinear divergences which can be treated by conventional
collinear factorisation [128]: indeed, in our framework, these collinear divergences
are included in eikonal jet factors to be discussed in Section 2.9, As far as soft
divergences are concerned, we conclude that the kernels S,, ,,, provide completely
local soft approximations to the relevant squared matrix element, valid at leading
power in the soft momenta, and they cancel the virtual soft poles order by order in
perturbation theory: this identifies them as candidate counterterms for subtraction

in the soft sector.

Let us now illustrate this general framework with simple examples, recovering
known results at low orders. A classic case in point is single-gluon emission from
a multi-particle configuration at tree level. Eq. (2.151]) for m = 1 and at lowest

!For example, if the m-particle phase space includes a momentum-conservation d-function setting the
total final state energy to a fixed value u, which is irrelevant in the present context, the constraint can
be implemented by shifting the origin of one of the two sets of Wilson lines on the r.h.s. of Eq.
in a timelike direction by an amount A, and introducing a Fourier transform with a weight Au. Notice
that operator products in all our matrix elements are understood to be time ordered when needed.
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order reads
Ak, pi) = €O (k) - I (k, B:) HY () + O(K), (2.155)

with the definition

eNk) ISk, B) = S0 (k) = (kA [ @alo0,0)10)] . (2.156)
i=1 tree
Explicit calculation expanding the Wilson-line operators in powers of the coupling,
or directly with eikonal Feynman rules, easily yields the well-known result for the
tree-level soft-gluon emission current [27,99] that we have recalled in Eq.([2.110)

TEOk; B) = g, Z (2.157)

LT
< Bk
Squaring the tree-level amplitude one finds the leading-power transition probabil-
ity

AL kw0
A

~ HOY(p,) S (k: B;) HO (py)

—~  Bi- B
= —dma, Y T kﬂj AV p) Ty - T; AQ(py), (2.158)
2,j=1 J

where we used the fact that at tree level there is no need to distinguish between (S
and A%O); we recognise the colour-correlated Born probability, multiplied times the
standard eikonal prefactor. It is then straightforward to recognise in Eq.
the analogue of Eq..

One of the main advantages of exploiting the factorisation properties of gauge
amplitudes and the universal functions in Eq. relays on the natural capab-
ility of this approach to be extended at higher orders in the coupling constant. As
an example, we consider multiple soft-particle radiation at tree level. We start by
computing the double real emission from a single Wilson line, (the result can be

trivially generalised to any number of hard legs)

S1.2 (b1, ko B) = (k1, A1s ko, Ao @5(00,0) |0)

tree

_ <k1,A1;k2,A2|1+igsTa5~/ dv A (v)
0

2 [o.¢]
-2, 1,88 /0 dv dva |80 — v2) A (01 8) AL (v25)

F0(vs = ) A (028) AL B)] + ... [0) . (2.159)
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The first term of the Wilson line expansion gives null contribution, the O(g;)
term (SfAQ)) provides a non-vanishing contribution only upon inserting a lagrangian
interaction, while the O(g?) term (ng)) returns directly a non-zero term. We can
then obtain

S = —g2 £, B / d'z / dv (k1, Ais ko, Ao| A2 (05) (0, AL(2)) A2 (2) AF(2) |0)
0

e / " v (0] an, (r) any (ko) A%(0B)
x (8, Aj(2)) A2(2)A7(2) |0) (2.160)

where a,(p) is a bosonic creation operator that returns €} (p)e”* when contrac-
ted with a gluon field Afj(x) If one excludes the Wick contractions that give
disconnected diagrams, only three combinations of fields and creation operators
are allowed, and they are related by symmetry relations. All this considered, we
obtain

— g2 Ta fabc

S = R () B (Ko €'(k) € (ka) + k- (1) 7€ (ha) + perm).

The sum over the permutation reconstructs, as expected, the diagram where the
Wilson line emits a gluon that splits into two real gluons. With a similar procedure
one can include the emission of a qq pair: the final state particles in Eq.,
(k1, A1), (k2, A2), have to be substituted with fermionic states (pi,s1), (p2, S2),
and the lagrangian interaction has to be chosen abelian-like, i.e. proportional
to () A (2)¥(2). Turning to Sl(g), the two O(g?) contributions in Eq.(2.159)
reduce to the same term upon relabelling \; <> \s, yielding

S = —@T, T, / dv, / dvs (k1 i K, Aa| A%(v18) AL (03) [0)
0 v1

R T.T B / v, / " duy (0] axy (k1 yar, (k) A% (128) A% (1,6) [0)
0 U1

T., To, N To, T,
ky-B (ki +ks) -8B ki-B(ki+ks) S

= ¢2B-€(ko) B- 6*(/{71)[ (2.161)
The only missing ingredient to obtain the full double-radiative soft current derives
from the factorised double radiation, namely the configuration where two gluons
are independently radiated by two different Wilson lines. By including a sum

over all the initial hard partons, and stripping the gluon polarisations vectors, one



Chapter 2. Factorisation 83

directly recovers the result of [27]

n

[J‘(SO)] aiaz (/{?1: ko ﬁl) = Admag { Z |:ﬁi7,“ﬂi,u2 ( TZ.‘L2TZ-G1 + (1 > 2))

P12 i1 ﬁz : k? ﬁz ' (kl + k2)

_ if aiaz a Bl ) (kQ — kl) Guipz + 251', Mlkl,m — 26i,#2k17u1:|
¢ ‘ 2k - ko B; - (k1 + k2)
+ Xn: Zj—;'al T;IQ ﬂivﬂl ij 12 , (2162)
1 Bi ki Bj - k2

with the last line representing uncorrelated emission from two different hard par-
tons, and the first two lines collecting terms arising from double emission from a
single hard particle. As already mentioned, currents corresponding to the radi-
ation of soft quark-antiquark pairs, or for emissions with higher multiplicity, can
similarly be computed directly in Feynman gauge in a straightforward manner.

At loop level, the organisation of counterterms becomes more interesting. Let us
for example consider single-gluon emission at one loop: expanding Eq. (2.151]) for
m = 1 to first non-trivial order we find

AW (ksp) = SO (ks 8:) HO (i) + S (k; B) HO (i) - (2.163)

) )

The first term corresponds to a tree-level soft-gluon emission multiplying the finite
part of the one-loop correction to the Born process; in the second term the soft
function is evaluated at one-loop, and therefore has both explicit soft poles and
singular factors from single soft real radiation: it multiplies the Born amplitude.

In this case, the proposed factorisation appears to differ from the one proposed
in [29], which reads

A1 (kipi) = €OE) - Joa (K, B) An(pi) . (2.164)

Here the Catani-Grazzini soft current J.¢(k, ;) multiplies the full n-particle amp-
litude, including loop corrections containing infrared poles, whereas in Eq.
for m = 1 the hard function H,(p;) is finite. It is, however, easy to map the two
calculations, using Eq. for m = 0, and solving for the one-loop hard part
# (p;). One finds

Hﬁf)(pi) = A,(f) (Pz) - 8721) (52) Ag]) (pz) ) (2-165)

where we normalised ST(LO) to the identity operator in colour space. This leads to an

expression for the Catani-Grazzini one-loop soft-gluon current in terms of eikonal
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form factors, as
V) Ik, B) = S (ki B) — SO (k; 8) SV (B) . (2.166)

Comparing Eq. (2.254) with the calculation in [29], one easily recognises that the
same combination of Feynman diagrams is involved, and one recovers the known

result

1]H B ag 1 F3(1—6)F2(1+6)
[CGL(’C’@) T 4dm e T(1-2)

A (B BN [ (=B B))
a3 (55 - 575) e - 21

i=1 j#i

Phrasing the calculation in terms of eikonal form factors allows for a straight-
forward and systematic generalisation to higher orders. For example, expanding

Eq. (2.151]), for m = 1, to two loops, one finds

Ag,)l (kypi) ~ 37(:,))1 (k; B;) HP (pi) + 57(11)1 (k; B;) HO(p:)
+82, (ks B:) HO (ps) - (2.168)

The expression for HY is given in Eq. (2.165)); furthermore, one can similarly
derive an expression for 7—[%2) from the two-loop expansion of Eq. (2.151)) for m = 0,

obtaining

HSZQ) (pi) = Aﬁf) (pi) — S’r(ll) (Bs) Agzl)(pi> + [57(11) (@‘)]2 AS” (pi)
— S () AV (i) . (2.169)

Substituting the expressions for the hard parts into Eq. (2.168]), and comparing
with Eq. (2.164]), one finds the two-loop soft-gluon current

eOk) - Ik, B) = S (ks B;) — SN (k; B) SV (By)
= ) (ks 6) [S2 (8 — (8 (8))°] - (2170)

Note that in expressions such as Eq. the ordering of factors is import-
ant, since the form factors S are colour operators. Note also that all terms in
Eq. , except the first one, are already known for general massless n-point
Born processes. The two-loop soft-gluon current was computed for n = 2 by ex-
tracting it from known two-loop matrix elements in Refs. [31L[32,[129]. Eq.
provides a precise framework for the calculation for generic processes with n col-

oured particles at Born level. Clearly, it is not difficult to derive expression similar
to Eq. (2.170]) for the case of multiple soft-gluon radiation at the desired loop level.
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2.9 Local counterterms for collinear real radiation

The strategy to define local collinear counterterms is very similar to the one adop-
ted in the soft case. We begin by allowing for further final-state radiation in the
operator matrix elements defining the jet functions in Eq. and Eq. .
This leads to the definition of radiative jet functions, which are universal, but
distinguish whether the emitting hard parton is a quark or a gluon. In particular,
let us consider first a final state with a hard quark carrying momentum p and spin
s, and radiating m gluons. In this case we define

Ty(p) T (krs oo kmspom) = {posika, M5 ki, Am| 1(0) @,,(0, 00) |0)

Us(p) Y TE, (ky, - ks pin) | (2.171)
p=0

where we extracted the quark wave function, so that 7, ¢ coincides with the virtual
quark jet defined in Eq. , and is normalised to unity at tree level. Gluon
polarisation vectors, on the other hand, are still included in the function 7, ,,, and
could be extracted to define collinear currents in a manner analogous to what was
done in Eq. for soft currents. The radiative quark jet function is gauge
invariant in the same way as the non-radiative one discussed in Section [2.6} it is
a matrix element involving only physical states, where the gauge transformation
properties of the field operator are compensated by the Wilson line; furthermore,
like its non-radiative counterpart, it does not involve colour correlations with the
other hard partons in the process. The definition is valid to all orders in perturb-
ation theory, and the second line of Eq. gives the perturbative expansion,
with J.), proportional to g2»*™. Notice however that the gluon momenta in
Eq. are unconstrained, and collinear limits must be explicitly taken at a
later stage in the calculation.

Let us stress that the guiding principle for defining a radiative jet function as in
Eq. is looking for a minimal implementation of the virtual jet definition (see
Eq.). Other possible definitions have been implemented in the past years
in the context of next-to-leading power factorisation. In particular in Ref. [91] the

jet function at amplitude level is defined as

Jpa(D, 0, ks s, €) u(p) = / dye” =Y (0] ,,(y, 00)t(y) Jua(0) D)+ (2:172)
where j, is the abelian current

() = Y(a) YT, () . (2.173)
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Such a definition produces diagram where the real radiation can be exclusively
emitted by the hard fermion inducing the process. This way, the Wilson line plays
the role of a source of virtual collinear radiations only. Further developments of the
definition involving the current manage to include also non-abelian interactions,

thought improvements terms Ref. [130]

Jh (@) = V(@) ' Ta (@) = f°(FL (@) Ava() + 0, (A} (2) AL(x))) . (2174)

Also in this fashion, the jet function does not include radiation from the Wilson
line, except for the diagram featuring a self energy correction on the line, that
generate a real radiation though a three-gluon vertex. In constrast, by exploiting
the definition in Eq. we are free to generate real radiation directly from the
Wilson line, increasing the number of Feynman diagrams contributing to a given
perturbative order in an unphysical gauge. A precise comparison between the two
definitions has not been investigate in details yet, although it could represents
an interesting task. Here we just mention that the definition in Ref. [130] is a
crucial ingredient to prove the factorisation of the radiative amplitude, thanks
to the Ward identity fulfilled by J* that reduces the radiative function to its
virtual counterpart. The same cannot be obtained with the definition involving
Ip, s;kj, Aj) (p, s; kj, \j|, since the corresponding Ward identity return zero.

At cross-section level, the definition of radiative jet functions is slightly more
elaborate than was the case for soft functions, since one must allow for non-trivial
momentum flow. This can be done in a standard way by shifting the position of
the quark field in the complex conjugate amplitude, and then taking a Fourier
transform in order to fix the total momentum flowing into the final state, setting
" =pi4+>" k. In the unpolarised case, one may sum over polarisations and

define the cross-section-level radiative quark jet function as

q,

Tom (ks ks Lpon) = Y W) (ky, . ks 1p,) (2.175)
p=0

= /ddxe”'x D 0] @u(00, ) () |, 55 kjs Aj) (b 53 g, A 1(0) @,,(0, 00) |0)
N}

The perturbative coefficients Jy. m (»)

of the radiative jet function J ,,, computed in
the collinear limit, provide natural candidates for collinear counterterms, to any
order in perturbation theory, as will be illustrated below, in Section at NLO

and in Section 2.11] at NNLO.

For gluon-induced processes, we can apply the same philosophy as for the quark-
induced processes, starting with Eq. (2.137)), and introducing the (amplitude-level)
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radiative gluon jet functions as

9o sV R) T (kKo keon) = goet M (k Zj B Ry, K o)

= (k, A\ ki, Ars e Ry A | @(00,0) 1D @, (2, 00) |0)

. (2.176)

z=0

where again we are not displaying colour indices, and polarisation vectors for the
radiated gluons are included in the definition of 7}*;,. The definition (2.176) can
be used to construct a cross-section-level radiative gluon jet function, as was done

for the quark. It reads
G2 I (ki ki lkon) = g2 ZJP) (s ks L k)

_ /dd;ce”-wz (0] [@, (00, ) § D B, (z, 00)] [k, sy, A,

1%
X (k, A; kj, Aj| @ (00, )i D” @, (2, 00) |0)

(2.177)

=0

To illustrate the usefulness of radiative jet functions as collinear counterterms, let
us focus, as an example, on the quark-induced jet function. In analogy to what
was done in the soft sector, we note that summing over the number of radiated
particles, and integrating over their phase space, by completeness one finds

Z/d¢m+1 Jom (k1. ks 1, p,n)
m=0
= Disc { / d?x e (0] @, (00, 2)(2)1p(0)®,(0,00) |0)| . (2.178)

The r.h.s. of Eq. gives the imaginary part of a generalised two-point
function, which is a finite quantity, since it is fully inclusive in the final state.
The m = 0 contribution contains the virtual collinear poles associated with an
outgoing quark of momentum p, and therefore the real radiation contributions for
m # 0, given by Eq. , must cancel those poles order by order in perturbation
theory, as desired. Inclusive cross-section-level jet functions such as the integrated
quantity in Eq. have been used in the context of threshold resummations for
many years, starting with the seminal papers in Ref. [131,132]. We can perform
a simple test of the correctness of our method by computing the single-gluon
radiative jet for an outgoing quark with momentum p#. In Feynman gauge, the
lowest perturbative order in the coupling constant receives contributions from
three different diagrams, shown in Fig. 2.7 The contribution (c) is a pure abelian
term, whose explicit result can be derived from the r.h.s. Eq. setting m =1
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SF et T

(a) (b)

Figure 2.7: One-loop contributions to cross-section-level radiative quark jet
function

and inserting two lagrangian interactions (one in each bra-ket)
S [ et 06 (0) s ) 53BN G0) ) =
A8
= Z/ddﬂf e (0] () bl(p) @} (k) [0) (0] bs(p) ax(k) $(0) |0)

= a3 [ et 01U T A S0 10)

<0lbs(p)a (k) T[v(y) A (y)w(y)] $(0) 0)
/
2

3
= =g 2m) "0 —p = k) 5 w¥ " 5 (2.179)
The diagram (a) is a mixture of abelian and Wilson interactions, therefore the
Wilson line as to be expanded at the first non trivial order and an extra lagrangian
interaction has to be added

ig, / dir s / A (0] () [p. 55K, ) (s e A D(0) A, (An) [0)
=23 O sty p )L ) )i 0)

A, 8

1
— ens—p- Bl (2.130)
l n-k
Finally, diagram (b) manifests only Wilson vertices, each of them proportional to

nt

q: n”n”Z/ddx eil'r/ d)xl/ de (0| Y (2) Ay (z + Aan) |p, sk, A) X
W 0 0

x (D, sk, Al (0)Au(Ain) [0)

7’L2

= g @0 (L= p W) s (2.181)

The term corresponding to diagram (b) vanishes in the massless limit n? = 0, thus
it does not contribute to the collinear limit. However, such term plays a crucial
role in guaranteeing the gauge invariance of the procedure. As an example, we
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(a) (b) (c)

Figure 2.8: One loop contributions to cross-section-level radiative gluon jet
function

mention that in axial gauge (with n? # 0) the gluon polarisation sum features

also a contribution proportional to n?/(k - n)?, which is precisely reproduced by

diagram (b). The sum of all the terms returns the full single radiative jet function
47 asC’ F

> Jea(kilpn) = W(Qﬂ)d(sd(l—p—k)

[V

), (2.182)

where p?> = k? = 0, and up to corrections proportional to n2. It is easy to trace
the contributions of the three diagrams in Fig. in the axial gauge calculation of
Ref. [27]. Notice however that in Eq. the collinear limit for k, corresponding
to I — 0, has not been taken yet. This is easily achieved by introducing a Sudakov
parametrisation for momenta p* and k*, and taking the k; — 0 limit, setting

pt=z"+0(1y), Bt = (1-2)"+0(.), n* =0. (2.183)

Due to the prefactor of order O [(12)7'], the leading behaviour in the I, — 0 limit
is recovered by setting [; = 0 in the square bracket. This yields

_ 8ma,C 1+ 22
ZJqlklp, = — 2 Qm)d st (1 —p — k) o —e(l-2)| (2184)

up to corrections of order [, . In the square bracket, as expected, we recognise the
leading order unpolarised DGLAP splitting function F,_,,.

It is interesting to perform the same check for the cross-section-level radiative
gluon jet definition, which must reproduce the splitting kernel P/ = when m = 1.
The diagrammatic contributions, in Feynman gauge, are similar to those in Fig.
2.7] and are displayed in Fig. 2.8 in an axial gauge, n - A = 0, only the third
graph, Fig. ), survives. Computing the single-radiative gluon jet function at
cross-section level, we can use the Sudakov parametrisation

3 nt 2 nt

k“:d““i_?zz.n’ K= Q=2 =1 —
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To leading power in [, and setting n? = 0, we end up with the expression

» 16ma,Cy
> I kil kyn) = — (2m)4 64 (1 — ky — k) (2.186)
Ai

z
z 1— 2\ pd
— + .
1—2 z l-n

The first two terms in the square bracket reproduce the expected splitting function;

1 1
x[—g’“’(liz+ Z>—2(1—e)z(1—z) e
1

the third term, where the braces denote index symmetrisation, is proportional to
either [* or [”: in the collinear limit, these corrections vanish when contracted
with the factorised hard amplitude, which depends on the on-shell parent gluon
momentum [. It is easy to check, by considering a final-state gq pair in Eq. ,
that one may similarly recover the appropriate splitting function P .; kernels
for double collinear emission can be reproduced with similar manipulations.

To complete our discussion, we note that the cross-section-level jet functions
presented in Eq. generate all collinear singularities, including soft-collinear
ones. These are therefore double counted, since they were already included in the
soft region. In order to avoid this issue, following the logic suggested by the fac-
torisation of virtual corrections in Eq. , we may introduce radiative eikonal
jet functions, defined by replacing the field (0) in Eq. (2.171)) with a Wilson
line (in the same colour representation), oriented along the hard parton direction
pY = p¥/p. At cross-section level, this leads to the definition

Jom (bt kiU Bn) =3 IO (b, Ko, Bon) (2.187)

p=0

= /ddx e (0] @, (00, 2)Ps(w,00) |kj, A;) (kj, Aj| (00, 0)®,,(0,00) |0) .

Notice that the radiative eikonal jet does not depend on the spin of the hard
parton, so that Eq. (2.187)) applies to gluons as well; the Fourier transform fixes

{* to be the total momentum of the final state.

To test this definition, we compute the soft-collinear local counterterm for single

radiation, and we easily find

2p-n

m . (2.188)

D Jei(kil.Bn) = g; Cr (2m)"6%(1 = p)
A

In the limit of p* collinear to k*, we can employ the relations

= (p+k)?=2p-k, p-n=zl-n, k-n=(1-2)10-n, (2.189)
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to obtain the explicit soft-collinear counterterm

87Ta C, 2z

1—2

ZJE L (k1 B,n) = (2m)26%(1 — p) (2.190)

We note that the factor 2z in the numerator is necessary to enforce the commut-
ation relation between soft and collinear limit at NLO: a basic feature that allows
significant simplifications in the subtraction procedure.

2.10 Constructing counterterms at NLO

In this section we present a simple procedure to define real-radiation matrix ele-
ment counterterms by modelling the virtual matrix element singularities thought
universal function, and reduce them to finite objects by means of the completeness
relation in Eqs.. We expect such counterterms to match with the
kernels that regulate the real matrix element factorisation, as we have discussed

in Sec2.4

We now proceed to illustrate how this works with the simple case of NLO massless
final-states. Expanding Eq. (2.132)) to NLO, and using the fact that virtual jet
functions are normalised to equal unity at tree level, we easily find

AV = SOEIH @),
ADw) = SPEHD ) + S G )
+32 (F0) - 7)) SPGB HD ). (@210)

=1

Using Eq. (2.269), it is straigthforward to construct the NLO virtual correction
V.., entering NLO distributions as in Eq. (2.141]), and to express it in terms of the
cross-section-level soft and jet virtual functions. One finds

V, = 2Re [AS{J)*AS})} (2.192)
= 1O (p) S B HD (i) + S HD i) (T we) = T0(8)) HO ().
=1

The contributions above encodes the singular content of the virtual matrix element
in the soft, collinear and soft-collinear regimes respectively. Such singularities are
compensated by equivalent (up to a sign) poles stemming from radiative func-
tions, as a direct consequence of the completeness relations mentioned above. In
particular, in the soft regime, the relation in Eq. , at NLO, implies the
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cancellation
S0 60 + [ a0 (k) = fnite, (2.193)

whose diagrammatic representation is schematically presented in Fig. 2.9 Sim-

B B
: Bi | Bi=—=— +
\B

Figure 2.9: Pictorial representation of the soft completeness relation at NLO

n

">[ " + >[ = finite
k
b

Figure 2.10: Pictorial representation of the collinear completeness relation at
NLO, for a quark-induced process

ilarly, the collinear completeness relation in Eq. (2.178]), at NLO, implies the can-

cellation

)

Ji(lg(l,p, n) + /dcbl Jiol)(k;l,p, n) = finite, (2.194)

with a similar relation holding for the cross-section-level eikonal jets defined in
Eq. (2.187) (in Fig/2.10] we show the completeness relation fulfilled by the quark jet
function for a sample of the contributing diagrams). The relations in Egs.([2.193)-
(2.194]) lead naturally to define the integrated counterterms

W = Mg (e jl)se (2.195)

n n

= /d@rad,l HOT Sflo)l HO +/dq)rad,1 Z HOT (Ji(ol) - ‘]i(,olg,l> HYO .
i—1

) )

The integrand functions appearing in the equation above are by definition the
local counterterms contributing to the last line in Eq.(2.144)). In particular NLO
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soft poles are cancelled by integrating the combination

Ky = HO (i) SO (k. B2) HO (i) (2.196)

)

over the single-particle soft phase space. The explicit expression for 57(1(,))1 (k, 5;) has

been provided in Eq.(2.158)), which agrees with the eikonal kernel in Eq.(2.111]).
Similarly, NLO collinear poles are cancelled by integrating the combination

Ko = ZHgo)T (p1s -5 Pie1, L ity - Pn) Ji(,ol)(ki; L, piyni) ¥
i=1
X H;O) (plv'-'ap’i—lylap’i+17"'apn) ; (2197)

note that, for gluons, the function J; ; is a spin matrix acting on the spin-correlated
Born. The double subtraction of soft and collinear singularities overcounts the soft-
collinear regions: one must therefore add back a local soft-collinear counterterm,

given by

sc 0
Ko = ZH%O)T(Z%---7Pi—1vl,pi+1a---,pn) Ji(,E),l(ki;l,pi,m) X
=1
X Hg)) (plv v 7pi—lalvpi+17 L apn) ) (2198)

which returns precisely the singular structure in Eq.. Note that, in the
collinear sector the definition of the candidate counterterm in — is
not minimal, since jet functions in general contain non-singular contributions: in
order to work with a simpler counterterm, one may take the leading power of
the jet function as the branching momentum goes on-shell, /> — 0. The explicit
computation of the collinear and the soft-collinear counterterms, implemented
under the /2 — 0, reveals that the counterterms defined via wvirtual-correction
approach precisely coincides with the collection of the leading behaviour of the
real matrix element under IR limits (see for instance the expression of the jet
function Ji(yol) in Eq., corresponding to the ¢ — gq splitting, which matches

Eq.[2-122)).

Let us emphasise that the present approach provides a simple proof that the list
of singular regions for real radiation considered here is exhaustive, and collinear
regions for radiation from different outgoing hard particles do not interfere. While
these facts are well-understood at NLO, their generalisations at higher orders are
much less obvious. On the other hand, we note that these result do not yet con-
stitute a subtraction algorithm at NLO: indeed, one can see that the tree-level
matrix elements appearing in Eq. involve particles that are not on the

mass-shell, except in the strict collinear limit, while momentum conservation is
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not properly implemented in Eq. (2.196)), except in the strict soft limit. A prac-
tical algorithm must provide a resolution of these issues, with the construction of
suitable momentum mappings between the Born and the radiative configurations,
either with global treatment of phase space, as done for example in [2,|133], or
with a decomposition into different singular regions, as done for example in [39).

2.11 Subtraction pattern at NNLO

The compact subtraction pattern implemented at NLO in Eq. may suggest
that a natural generalisation can be also presented at NNLO. Although this simple
statement is actually true in principle, the intrinsic complexity of the problem
leads to highly non-trivial consequences. In particular, on top of the difficulties
of evaluating and integrating complete radiative matrix elements in d dimension,
at this perturbative order we also need to compute two-loop matrix elements, and
mixed real-virtual corrections. As a matter of fact, a generic distribution at order

O(a?) can be symbolically written as

do .
dl\;lz'Lo B (lil—rﬁ {/ d®, V'V, 6,(X) + /dq)nH RVyi10n1(X)

+ / d®, 5 RR o 5%2()()} : (2.199)

where the relevant integrands are the UV-renormalised double virtual matrix ele-
ment V'V the double real correction RR and the UV-renormalised real-virtual
correction RV'. Such contributions are defined in terms of amplitude-level matrix

elements as

RRus=[A[ V¥ = [AD] + 2Re [ADT AP

‘2
RV, = 2Re [Aﬁfﬂ Aﬁjl} . (2.200)

The infrared content of Eq.(2.200)) is much richer with respect of the analogous at
NLO, and requires special care. In dimensional regularisation, the double virtual
displays up to a quadruple pole in €, while the double real, which is finite in d = 4,
is characterised by up to four singularities in the double unresolved phase space.
These singularities are due to the fact that up to two emissions may become soft
and/or collinear simultaneously. Finally, RV manifests up to a double pole in
€, originating from its one-loop nature, on top of two phase-space singularities.
To achieve a complete subtraction, following the wvirtual-correction approach men-
tioned above, we modify Eq. by adding local integrated counterterms, and
subtracting back the corresponding unintegrated counterterms, in order to build
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an expression which is free of poles. We start by examining the double virtual
correction. As we will discuss in more details in Sec[2.14] the completeness re-
lations relevant for the double virtual matrix element involve single- and double-
unresolved phase space integrals. Therefore, two different integrated counterterms
are necessary to cancel all the explicit poles of V'V,,. We label 1'® the integrated
counterterm defined through a double phase space integral,

I = / APraq 2 K\ | (2.201)

and I{®Y) the integrated counterterm corresponding to a single-unresolved integral
IR _ / AP KT (2.202)

In analogy with the NLO case, we define radiation phase spaces by d®,aq 2 =
d®,12/d®, and dPyag1 = dPpi2/dP, 1. Given the properties of the integrated

counterterms, the combination
VV, + 12 + I;R")] , (2.203)

is finite in d = 4 by construction. According to the definitions in Eqs.(2.201))-
(2.202), the counterterms Kéi)z and K,(LT{) are naturally combined respectively
with the double-real and the real-virtual matrix elements. Eq.(2.199)) can be then

rewritten as

doxnro

dX

- / 4o, [vvn +I@ 4 LgRV)] 5(X)
T / 00,1 [ RV, 16,00 (X) — KLY 5,(X)]
+ / D, o [RRn+2 Snia(X) — K2, MX)} . (2.204)

In this form it is evident that the first and the third lines in Eq. are finite
in the limit ¢ — 0. The second line in Eq. still contains poles stemming
both from RV, and from KTSE{FY). The explicit divergences of RV, can be cured
by applying the same procedure adopted at NLO, and introducing one integrated
counterterm Irfi)l

A / AP 1 K, | (2.205)

where Krf}r)Q has to be combined with RR,,. Finally, as we will explain in more

details in Secf2.12] it is possible to define a peculiar completeness relation that

states the cancellation of the Kg\{) poles though a further integrated counterterm
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I (121), defined as

n

I = / A paq 1 K03 (2.206)
We finally get
d
UdN;O = / dd, [an +1? 4 I,QRW} 5, (X) (2.207)

+ /d@nﬂ [ (RVn+1 + ]n(i)l> Op+1(X) — (Kgﬁ,) + [71(121)> 5n(X)}
b [ d0ia| Ry b0~ KL, b - (K123, - K12 6,00)|.

The interpretation of Eq. (2.207)) is as follows: the first line is finite in €, since
the combination Iéz) + IT(LRV) exposes precisely the same poles as the V'V,,. Such

) returns ex-

poles have however a different origin: the integrated counterterm 1,2
plicit 1/e singularities stemming from unresolved double real configurations, once
they are integrated over the double radiative phase space d®,,q, 2. The integrated

) is instead responsible for the divergences produced by the unre-

counterterm I,(LRV
solved single-radiative configurations, computed at one-loop order. In the second

line, the combinations

are separately free of 1/e poles. The difference between the two parenthesis may,
in principle, feature unsubtracted phase space singularities that are invisible to
the completeness relations we have exploited to cure the explicit poles of RV,
and K,(ffll). However, such spurious singular phase space contributions may only

return finite terms to be added in the first line.

We can interpret Eq., from a complementary point of view, analysing the
counterterms in view of the real-radiation approach. In the last line of Eq.,
the local counterterm Ké_l& features the subset of phase space singularities of RR,
stemming from the configurations where one parton becomes unresolved. Kn(i)Z is
responsible for subtractions in regions where two partons become simultaneously
unresolved. Factorisation dictates that KTS_)2 must be given by an appropriate
soft or collinear splitting kernel, multiplied times the full squared matrix element
for single radiation in ®,,,;. This matrix element, in particular, contains singular
configurations when the single radiated parton becomes unresolved: these config-
urations, however, are also included in the local counterterm K,E?Z, which leads

to a double counting. To remove this double counting, we introduce the local
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counterterm K +2), which is obtained by taking the single unresolved limits of

Kf&. The configurations encoded by Kn(—2i-)2 are those where two partons become
unresolved, but one of them becomes unresolved at a faster rate: in words, Kf&
is the strongly-ordered limit of Kn(—l‘,-22)‘ To give an example, one can consider a
configuration containing three collinear partons, where two of them are more col-
limated than the others. Such kind of configurations are collectively referred as
strongly-ordered or hierarchic limits. Finally, the real-virtual counterterm is ex-
pected to match the phase- space singularities of RV, ;. From this perspective,
the counterterms Kn(_g, Kn 1o and K ) are naturally defined as the collection
of the leading power in the approprlate normal variables of the double-real and
the real-virtual matrix element, respectively Moreover, the counterterm K, (12)
corresponds to the leading terms of K 2 under single IR limits. With these deﬁn—
itions, the KLN theorem guarantees that the first line in Eq. (2.207) will be free
of infrared poles in dimensional regularisation; the third line is integrable in ®,, o,
since all phase space singularities have been subtracted without double countings;
in the second line, the two combinations in parentheses are free of poles. The
absence of poles in € in the first parentheses in the second line of Eq. is a
straightforward application of the KLN theorem. The cancellation of poles in the
second parentheses, on the other hand, is slightly more subtle, while still related
to the KLN theorem: we obtain K,EJIFZQ) by focusing on strongly-ordered configura-
tions where two partons become unresolved in a hierarchical sequence: if we now
integrate over the degrees of freedom of the ‘softer’ parton, we must recover the
poles of the real-virtual squared matrix element, in the limit when the emitted
parton is also becoming unresolved. However, the two parenthesis are individually
not integrable in ®,, 1. As already mentioned, the cancellation of the phase space
singularities in the second line is highly non trivial, and in general it is not pro-
tected by the KLN theorem. To make the second line integrable, the integrated
counterterm I (*?) has then to play a double role: it has to cancel the poles of
K®Y) and match I under IR limits. The first requirement is automatically

(12) yiq completeness relations, while the second constraint

verified by defining [
is not controlled by the wirtual-correction approach nor by the real-radiation ap-
proach. We emphasise that a full subtraction of the phase space singularities can
always be achieved by modifying the natural definition of K *? (or alternatively
of K®V)) by adding appropriate contributions which integrate to finite quantities

when all phase space integrals have been performed.

In the remainder of this section, we discuss a systematic construction of the local
counterterms, which we will carry out explicitly at NNLO, but which is applicable
in principle at any perturbative order. We stress that the main goal of this section

is not the calculation of NNLO kernels, which have been known for a long time 24,
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26,27,29]: rather, we plan to show how information from the factorisation of virtual
corrections allows to organise and simplify the NNLO subtraction procedure.

We adopt an extremely simple strategy that, as mentioned, is trivial to automate.
Let us start from the top line in Eq.([2.207)), which features the combination

VV, + 1@ 1 [®Y) = yy / AP0q K + / AP K2 (2.209)

that is free of explicit poles by construction. To identify the counterterms, the first
step is to express the double virtual matrix element in terms of the universal soft,
jet and eikonal functions, by expanding and the squaring the factorised amplitude
in Eq.. We then apply the completeness relations in Eq.— to
cancel the virtual poles by means of appropriate single and double phase space
integrals of radiative functions. Such integrals can be associate to the two integ-
rated counterterms I and I®Y) thus a definition for the corresponding K (BY)
and K ) (middle and bottom line Eq.(2.207)) can be straightforwardly extracted.
With the same procedure we also identify K () by examining the singularities of
RV. The only missing ingredient is the definition of the strong-ordered coun-
terterm K (12 that requires a dedicated discussion.

Let us begin by computing the N2LO expansion of the virtual amplitude

Aup) = AQ(p) + AV + AD(p) + ... (2.210)
= {350)(@) +SM(B) +SP () + .. } X

X{H;O)(pi)-i-?'lé (pz)+7‘[ 1><H Ji(pi)
,Llel/B’L

where the hard-collinear component is the most interesting part. The quotient
between the collinear and the eikonal function manifests indeed a non-trivial struc-
ture, which represents a significant example of how the factorisation approach
provides a simple strategy to avoid the double counting of the soft-collinear sin-

gularities. The series expansion of the jet functions ratio returns

1_?;:% b Z( (1)<51>) (2.211)
+ Z(x- (v —Jé}m)) (7w - 78)))

ij=1
7>t

>[50 - 7250 - 7006 (50 w0 - IE@)]

In the first line we recognise the hard-collinear contribution at NLO, that we have
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Figure 2.11: Cancellation of soft poles illustrated with sample representative
diagrams.

already discussed in Sec[2.10] The second and the third lines represent the actual
N2LO contributions, featuring the singularities stemming from one and two hard-
leg respectively. The former term presents a NLOXNLO structure, and thus it
automatically encodes only hard-collinear poles. Also the third line can be shown
to not generate any soft divergence: indeed, while the function .71-(2) (p;) contains
up to two soft poles, generated by gluons that are both soft and collinear to the
i-th hard particle, the contributions in which both gluons are soft (on top of being
collinear) are cancelled by the second term in square bracket, Z(?(ﬂz) Finally the
contributions in which only one of the two collinear gluons is soft are cancelled by
the last term in the square bracket. Notice the factorised form of that last term:
when one gluon is hard and the other one is soft, the soft gluon factorises from
the matrix element in the usual way. This cancellation mechanism is illustrated,
for a sample diagram, in Fig. All this considered, we write the second order

amplitude
AP (p) = SPB)HD () + S (B HY (0:) + S0 (8:) 1Y (p1)

+30 7000 - 326 = 3L0) (7 w) - TR 1)
+ 30 (2000 = 7 B) (7 ) = T3 ) 1O )

+ 3 () = B[SV B () + SO BIHD ()]
= (2.212)

Several comments are in order. We begin by noting that the first term on the
first line is finite, being given by the action of the finite tree-level soft operator on
the two-loop finite hard remainder. The second term contains two-loop soft and
soft-collinear poles from the soft operator, giving singularities up to the maximum
allowed degree, 1/e!. In the third term the one-loop soft operator acts on the
one-loop finite hard remainder, giving a single soft pole and a double soft-collinear
pole. The second line contains all double hard-collinear poles arising from two-loop
virtual corrections associated with a single hard external leg, yielding singularities
up to 1/e2. The last two lines in Eq. have a simpler interpretation: the third
line contains single hard collinear poles arising simultaneously on two different
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hard legs, ¢+ and j; the fourth line contains single hard collinear poles on the i-th
hard leg, accompanied by a soft single pole, or a soft-collinear double pole, or just
multiplied times a finite correction.

The next step is to construct the virtual contributions to the squared amplitude at
NNLO, namely the double virtual, and the real virtual corrections. In order for our
procedure to work, these must in turn be expressed in terms of the cross-section-
level virtual jet and soft functions, which is less than trivial since, at NNLO, all
functions involved receive contributions both from the interference between the
Born amplitude and the two-loop correction, and from the square of the one-loop
amplitudes. For example, the two-loop cross-section-level virtual soft function is

given by
S = i@ 4 s@igl) 1 sigh) (2.213)

The two-loop unpolarised cross-section-level radiative jet function for a quark emit-
ting m gluons reads

Jq(i)n = /dd:c eil-xz {jq(’lr)nT(xqu(}%(()) + %(70%(1:)]5‘7;7231(0)
{ri}
+ T (@) pITEN0)] (2.214)

where p arises from the sum over the quark spin states. It is relatively simple to
organise the virtual poles in the real-virtual contribution to the squared matrix
element: this amounts essentially to a repetition of the NLO calculation, with
n + 1 hard particles in the final state. One easily finds

RV,;1 = 2Re [AE?EAS)H]

n+1
0 (1 1 0 .
- Hn+1 Sn+1 oHn+1 + ZIH;-&)-I (Jg - Jf,é,o) ng-s)-l + finite
=1
n+1
= RV 4+ RV, (2.215)

=1

where in the last equality we have divided the real-virtual singularities according
to their nature, specifying in the superscription the number of unresolved partons
and the regime in which the singularities are produced (soft or hard-collinear). To
compensate the explicit poles appearing in Eq. we exploit the completeness
relations computed at NLO both for the soft and jet and eikonal jet functions, as
presented in Eq.—. The integrand functions introduced in these equa-
tions represent indeed the single-unresolved local counterterms, that we organised
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as follows
1 1,1s) 1, 1hc)
Kn(+)2 - Kq(wrz Ky(wz

0)t 0 0 (0) 0 0
= HL S M+ ZH,&QI( G-I )HY 2216)

Double virtual poles, on the other hand, receive several non-trivial contributions,
that we classify as

VvV, = (VI)® 4 )l 4 Z (VV)2he) Z (VV) 2hc>

=1 i,7=1
j>1

+ Z VV lhc 1s) + Z VV lhc (2217)

where the superscriptions have to be read according to the conventions introduced
for the real-virtual. We will now go through the various contributions to the r.h.s.
of Eq. , identifying in each case the real radiation counterterms that are
needed to cancel the corresponding virtual poles. We start by considering the
pure soft sector, which includes the double-soft virtual contribution (VV)gS), as
well as the single-soft virtual contribution (VV)SS), that we reorganise in terms

of cross-section level functions as

(VV)SS) = HOI 5(2) HO) (2.218)
V0D = HOTgD0) 4 W15 20 (2.219)

where Sr(f)o was given in Eq. (2.213)). The second line undergoes the same procedure

adopted for the soft component of the real-virtual matrix element, up to modifying
the number of the hard legs involved, and expanding the hard function to one-loop
order. The resulting counterterms, since they derive from an integral over a single-
unresolved phase space, contributes to K®Y). In particular, from Eq.([2:219) we
obtain

KBV — 0150 4D 4 5D 50 4O, (2.220)

n n, 1 n
To cancel the poles of Eq.(2.218|) the procedure is slightly more involved: we need
the completeness relation for the soft sector to NNLO, which reads

SE(B:) + / dd, S (k, B;) + / dDs SO (ky, ko, Bi) = finite.  (2.221)

n, )

It is natural at this point to identify two separate soft counterterms, character-
ised by their kinematic structure. In Eq.(2.221]), the second term features an
integral over a single radiative phase space, thus contributes to the real-virtual
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counterterm, while the last term is defined in the double radiative phase space,
then its integrand provides a contribution to K (). This way we introduce the

terms
qu?li;) _ ’}{20”5,3)2%5?), (2.222)
KR — 01 g 9400 (2.223)

where the second line together with Eq.([2.220]) realise the full subtraction of the

real-virtual soft poles. We then have

RV,s RV, 1 RV, 2
K( )= KT(L+1 S)+KT(L+1 ”

n+1
HOTSOHD + HOT SO HO + HOTSH HO . (2.224)

Turning to hard collinear poles, we first tackle the contribution with two hard
collinear virtual gluons attached to the same hard outgoing leg. It is given by

(Vv)gilc) _ H;O)T[Ji(’zo) B J'(z)70 _ Ji(,lE),0<Ji(,1(3 B J-(l),oﬂ 24(0) (2.225)

i, 7, n

In order to cancel the poles of the first two terms in Eq. (2.225)), we can use the
NNLO expansion of Eq. (2.178]), which gives the finiteness condition

Ji(,%]) + /dq)l Ji(,ll) + /0@2 Ji(702) = finite, (2.226)

and the analogous expression for eikonal jets. The third term of Eq. (2.225) has
a different structure, since it is a product of two one-loop functions. One can

however cancel its poles with the same general approach, by using the fact that
{Ji{ﬁg,o + / AP, J;,Og,l} [J;Q — I+ / ! (Ji,of - JZ.{"]QJ” = finite . (2.227)

Once again, the contributions to different local counterterm functions can be iden-

tified by their phase space structure. We define

K(2,2hc)

) = H(O)T[Ji(,oz) — g0, =g (Jz‘(,ol) —Ji(,OE),1>]H(O)> (2.228)

1,hc 0 0
K& = HOT(00) = a0, ) 7Y

Kflfj\;,fhc) P YON [ngl) _gm (J'(,lo) —JW >J(’0)

i, E,0

1 0 0 0
_Ji(,E):,O<‘]i(,1) - J'( E)lﬂ Sn,%)H(O) .

1y

The remaining singular virtual contibutions do not present new difficulties. Hard

collinear virtual poles associated with two different hard legs can be organised in
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the form

(VV)@2e) 90 (J;}g - J(1E70> (Jog _ J(11;70> HO . (2.220)

n, i) n ?, I J

By using again the finiteness conditions stemming from Eq. (2.178]) (and its eikonal

counterpart), we can cancel these poles by integrating the local counterterms

2, 2hc 0 0 ¢ ¥
K( o) _ H(O)T<Ji(,l) _ J;,é,l) (J](,l) — J](7 1;1) ,HSIO)

n+2,1j n
K = w0 (0= a00) (A= a0) + Ge ] 22w

while no single-unresolved counterterm in the (n 4 1)-particle phase space is re-
quired in this case. We are left with single hard collinear virtual poles, accompan-
ied by a single soft pole, or by a finite factor. They are given by

(VV);”;C’“) _ H(on< g - g )5 JHO) (2.231)

7

(VI = H;O”(Jffg—eff;,o) SHD + HDT (I = I ) S

Proceeding as above, we find that these poles can be cancelled by integrating the
local counterterms

7, E

KA = 01 (18 0, )0 2222

KV — O (0 = 0 0 ) SO + 101 (I = )

% %,

KIVI = 01 (1 = ) SOHD + H DI = T SOHD.
which completes the list of local counterterms needed to cancel the double-virtual
and the real-virtual explicit poles (see the Table below for a summary of the
counterterms defined up to this point). The only missing ingredient is the local
counterterm Krf_lé), which is designed to be integrated over the single unresolved
phase space, yielding the integrated counterterm In(ﬁ), which must cancel the ex-
plicit poles of the real-virtual counterterm K 7(15\1/)' K ,5122) can be obtained by taking
strongly ordered soft and collinear limits of the double real matrix element, or equi-
valently the single-unresolved limits of the double unresolved counterterm Kn( +)2
If we focus on the soft component of K ﬁé, namely the contribution in Eq.m,
an explicit calculation of S,(B)Q from its definition in yields naturally to a
double democratic soft current. We dub democratic the conﬁgurations featuring
partons that become unresolved at the same rate. In the case of S( (K1, ko Bi),
this means that the rateo ki/ky is of order one.

The strongly-ordered current can be then extracted from by taking the

limit in which k5 is much softer than %y, or viceversa. The hierarchical limit of K ffj;
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is constructed essentially by treating one of the two soft radiated particles tempor-
arily as a hard one: it gives therefore precisely the desired function K T(Lfé 25), which,
upon integration, will cancel the explicit double-soft poles of the real-virtual local
counterterm. A similar pattern can be replicated for the other double-unresolved
local counterterms, in all cases in which a hierarchy between the two unresolved
particles can be identified. Although the procedure above is clearly correct, it is
also interesting to study the possibility of giving operator expressions directly for
strongly ordered kernels, which can be achieved in principle by re-factorising soft
and jet matrix elements in the appropriate limits. Aside from the intrinsic interest
of these limits, such a description can be useful to provide a formal proof of the
cancellations taking place in our all-order subtraction formula, Eq. , which
here have only been argued on physical grounds. A preliminary analysis of possible
operator expressions for strongly ordered limits is present below, in Section [2.12]
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2.12 Strongly-ordered limits in the light of factorisation

In order to complete our discussion about operator definitions for IR counterterms,
we now tackle the issue of reproducing hierarchical limits starting from the uni-
versal functions appearing in the factorisation formula. The jet and the soft func-
tions in Eq.(2.153)-(2.175]) reproduce the relevant multiple singular configurations
without imposing any hierarchy on the unresolved partons. At NNLO the coun-
terterms derived from these functions are thus naturally identified as contributions
to K1(12+)27 hence a procedure is necessary to extract the strongly-ordered configur-
ations entering K,(l +2) , and similarly for higher-order subtractions.

We start by analysing the double-soft case at tree level. In the limit in which one
of the two radiated gluons is much softer than the other, ks < k;, the strongly-
ordered double-soft current is [27]

]

K12

k
(K, ks Bi) = (J;gm(k )5U + ig, f‘”“?“k z ’;_C ) JO (k) ,(2.233)
2

where

JOk) = g, Z 51 s (2.234)

The same expression could be obtained from factorisation by considering the tree-
level double-radiative soft function S, ©) 5 (k1, & ka3 B;), stripping off the two gluon
polarisastion tensors and retaining the leading power of its limit &, — 0. However,
it is desirable to give a definition to strongly-ordered soft operators without re-
sorting to an a posteriori limit operation on unordered configurations, which can
in fact be achieved by applying soft factorisation in an iterative fashion.

The key idea is that in the limit ky < ky < p, with p a typical hard scale of
the process, gluon 1 (corresponding to momentum k;) is soft with respect to the n
hard Born legs, but is seen as a hard parton if probed by gluon 2 (with momentum
ks). This implies that the soft emission of gluon 1 is described by a soft current
featuring n Wilson lines, corresponding to the Born partons, while the emission
of gluon 2 is ruled by a soft current featuring n + 1 Wilson lines, of which one
(in the adjoint representation) corresponds to gluon 1. We dub wilsonisation such
a description of gluon 1 in terms of a Wilson line, and represent it pictorially in
Fig[2.12] in the simplified case with n = 2. The concept of wilsonisation clearly
encodes the fact that the emissions of gluons 1 and 2 take place at well separated
time scales, whence gluon 1, although soft, becomes a classical source for the softer

emission of gluon 2, as well as the n Born partons.
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Figure 2.12: The wilsonisation mechanism illustrated for two hard lines.

A natural definition for a strongly-ordered tree-level double-soft radiative function
is thus

[S"O)lsio]{<d y ko i) = (ka, a2, 2 [ 2570, 00) @57 (0,00) 0)
i i=1

x (ky, b, A Hcp% (0,00) |0)

tree

= [S"(l?lvl}??dici)}(alb (k27 /827 ﬁ/ﬁ) [Srr(LOJ i)} (kh 57,) )
(2.235)

where one can recognise the factorised emission amplitude of gluon 2 off n + 1
Wilson lines (first line) times the radiation of gluon k; off n Born Wilson lines
(second line). It is straightforward to verify that Eq. (2.235)) yields precisely

s
and the strongly-ordered double-soft counterterm Kﬂsﬁ)’s is obtained by squaring
Eq. (2.235)).

By iterating the wilsonisation procedure, the triple-soft current in the strongly-
ordered kinematics k3 < ko < ky is defined as

—

S

DT s B1) = el ) et ) [JE T (ks ) (2:236)

{(dies)} H1p2

|:ST(LO:ES].O]:| e (k17 k27 k37 ﬁl) =
T {(fied)}

_ (0) 1as (0) qb2 (0)191

- [Sn+2’1} {(fidi)}(a1b1)(az2b2) [8”"'1’1} {(dici)}(b1g1) [Sn’l} {(cieq)}
id; a a

= (ks, az, As| | [ @5 (0, 00) 51" (0, 00) @52 (0, 00)0) x

=1

X (K2, b2, Aol Hq’%ici(oy OO)‘I’%L?(O, 00)[0) x

=1

x (kg M| ] 269(0,00)0)] (2.237)
=1

tree

where, on top of the double radiation already detailed in Eq. (2.235]), we recognise
the emission of the softest gluon 3 (with momentum k3) from a set of n + 2
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Wilson lines (second to last line), of which two correspond to gluons 1 and 2
through a double wilsonisation. The above expression coincides with the intuitive
generalisation of the two-gluon case:

n €us H1

[S(Oislol}amzas _ *(/\5)(]{33) 622(/\2)(]{32) 6*()‘1)(1{31) [J(’;; (k3)5a1b15a2b2

+lg fa1a3b15a2b2 ki‘S lg fagagbzé‘albl kSS
B ki - ks * ko« ks

K2

Juz L (Sblcl . 3 bi1bact
b2<2) +lgf kl'kQ

] T k), (2.238)

in agreement with the strongly-ordered limit of the triple-soft current presented
in Ref. [134].

Based on the above physical discussion, and on the explicit form of the strongly-
ordered currents for up to three soft radiations at tree-level, it is natural to expect
the current for m strongly-ordered soft radiations k,, < k,,_1 < --- < ki to be

given by
ail...aim

|: S O.
n,1,...,1
{(b1e bm+1e)}

m m—i
H i1 Qi Z+1| H ) bie bH-u 700) H (I)a,é’;iaHlp(O’ OO) |0>

=1 p=1 tree

m
[8 i| Aim—i+1
n+m—511{(bip biv10) (@it @ip11) (A m—i Qi1 m—i)

m—i
*()\m 1+1 . Hm z+1 . AipQi41p
- l l Hm i+1 m 7’+1) Jalm i+1 m_z+1) 5

m—i :um i+1

+Zkk

3\\

m—i
[, f@ikGim=i+10it1k H §iitit1j | (2_239)
m i+1 j=1
J#k
We point out that, although our analysis has focused on tree-level soft amplitudes,
the process of wilsonisation described above is expected to be the key for the defin-

ition of the strongly-ordered soft limits at loop level as well.

The last strongly-ordered configuration to be considered is the multiple collinear
limit. For instance, at NNLO, this corresponds to a kinematics in which three
partons i, j, k are collinear, with relative angles 0;;,0;;,0;, < 1, with two of
them featuring a dominant collinearity, ;; < 0;x, 0. It is very well known that

the strongly-ordered collinear limit of scattering amplitudes squared factorises in
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products of Altarelli-Parisi kernels, which, in general, are matrices in spin space.
For instance, the NNLO strongly-ordered collinear limit for the ¢ — ¢|gqs is (see
for example [135])

N2

5125[12]3

21

P3P (219, q1) dap(kpzp n) Pl <—
?[12]

12),c
K,

413593

) kL) dyﬁ(k[12]7 TL) )
(2.240)

where we have defined the normalisation factor as N = S8mwayg (“ irE) the inter-
mediate particle momentum is ko = ki + kg, its collinear energy fraction is 219 =
21+ 29 = 1 — 23, and spg)3 = 2 kpoj - ks, while dpo (k,n) = —gpo + (kono +kony) /k-n
is the gluon polarisation tensor. The momenta ¢, and k, specify the transverse
direction for the branchings ¢ — gsgpg and gpg — 15, respectively, and their
definitions follow from the Sudakov parametrisation of momenta k; (1 = 1,2, 3):

2 W
ki, n

Zi 2p-n

k' =zp'+ ki — ; qL = ki3, ki = 2k — z1kio. (2.241)
The kernel Pgoff describes the splitting of an ancestor quark into a quark-gluon pair,
keeping the spin indices of the gluon un-contracted. As such, it represents the spin
matrix acting on the subsequent splitting of the gluon in a quark-antiquark pair,
described by P,;". The explicit form of the relevant kernels is

" » Kt kY
P (z, k) = Tr(—g"" +42(1—2z) :

k2

PP(z, k) = Cr 2P (1/2,k). (2.242)

94 2w

To obtain the strongly-ordered expression by means of factorisation we first notice
that the jet functions introduced in Eq. — are not yet optimised to
keep track of the spin indices of the radiated gluons, as is necessary to reproduce
Pgojf . However, full spin information can simply be recovered by omitting the sum
over helicities {\;} and dropping gluon polarisation vectors in Eq. (2.175)-(2.177),

namely considering jets with uncontracted indices defined as
m

Joom (B, ks Lpyn) = T (kg K 1p,n) [ a0 (ki) €57 (k)

[£2] Bi
i=1

Th (R, ks L kyn) = T efeemBe (ks k) [ ea( D en (k).
=1

(2.243)
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The tree-level strongly-ordered quark jet radiating a ¢'q’ pair is

Jq37qs(§/<k'17k'27k3,l,p, ) - Jq(?l)aB(Q;l,]fg,N)da“<Q,n) X

Xjé?l)lw(k;l; Qa k?a n) duﬁ(@a n) )
(2.244)

where

QJ_ n'
Q" = 12" — C] - )
[ ] 1 2[12] 2p 'n

(2.245)

and we have implicitly summed over the ancestor quark polarisations. The cor-

responding counterterm is

K2 = lim / 4 dde TS (K, ko, ks 1 p,m) (2.246)
dae  Fz0) @m)tEm)t e

where the double integration gets rid of the momentum conserving Dirac delta
functions implicit in J(@%° . The case of a strongly-ordered splitting involving an
intermediate quark is fully analogous, with the quark polarisation tensor replacing
dau(Q, 1), resulting a simple product between jet functions. For instance, the
abelian contribution to a strongly-ordered ¢ — ¢1g293 splitting is

JOso (b ko kgyn) = JO (ksil, Q,n) SN (ka; Q, kr,m) (2.247)

93, Q192

In analogy with what happens in the soft case, the iterative structure of jet oper-
ators at tree level generalises to all orders, which for instance be checked against
the explicit computation of [136] in the case of four collinear partons.

2.12.1 Strongly-ordered limits and the poles of the real-virtual coun-
terterm

The explicit definition of strongly-ordered kernels opens the possibility of a further
important test for our method. As discussed in Sec2.11] in order to achieve a fully
local subtraction at NNLO, the three lines on the r.h.s. of Eq. have to
be separately finite in four dimensions and integrable over the whole phase space.
In this section we will focus on the pole content of the second line. Since the
combination RV, + 1,5 1 1s finite in four dimensions, owing to the KLN theorem,
in our minimal subtraction scheme ]n +1 ) has to cancel the explicit poles of the real-
virtual counterterm K% +1). This way, the second line of in Eq.(2.207) is globally
free of 1/€* contributions.
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To verify soft pole cancellation between I ( +1) and the real-virtual counterterm, we

first introduce the strongly-ordered soft function at cross-section level as

[0

w7 gy = [50T ] (uay (ks i 52

= <0|H<1>;1fi<oo,o>|k1,m> X
=1

x (0] T] @57 (00, 0) @5, (00, 0) k2, ag) x
=1
X (ky, az| | [ #5(0,00) ©5:7 (0, 00) [0) (k10| [ [ 957(0, 00) |0)
i=1 i=1 tree
— (0)f7m SOf a2 )
= [Sn,l :|{(51f1 (kla 51) [ n+1, 1} {(fig:)}ma1) (kQa ﬁia ﬁkl) X
X [87(1(-)21 1]({1351 ¢;)}Ha1b) (k27 /B’H 6161) [ n 1] {(cieq (kl, 61> s (2248)

which coincides with K 2) in the pure soft regime. Under the same soft limit, we

consider the singular structures arising from the real-virtual matrix element and
encoded by the corresponding counterterm, see Eq.(2.224))

Kr(i\ll s H(O Ts(o H + 'H(l)T S(O ’H + 7—[(0” S(l) 'H . (2.249)

In this form it is evident that the 1/e contributions to Kg\{ %) are entirely re-

produced by Sn 1, since H'Y is finite in the limit € — 0 and S 1 features only
phase-space singularities. Hence, to verify the pole cancellation we have to prove
that

/ A by SICY (kr, eoi Bs) + Si (ks B;) = fimite (2.250)
in d = 4. At this point, by observing the definition in Eq.(2.248)) one can easily
notice that the integral over the phase space of ki only affects the soft functions
with n + 1 hard legs, i.e. SO ni11 and S ((ﬁ 1. They organise themselves in a cross-

n

section-level matrix element

57(1?1)-1,1 <k27 6i7 Bkl) = n+1 1 (kZa B@a ﬂkl) n+1 1 <k27 527 Bkl) ) (2251)

which corresponds to the eikonal transition probability defined in Eq.(2.153)) in
the case n — n + 1, m — 1. As already mentioned for Eq.(2.193)), at one loop
such transition probability satisfies the following completeness relation

SO o (Biy Br) + / Ao iy SO 1 (ki B, B,) = finite . (2.252)
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Therefore, using Eq.(2.248)), the first term in Eq.(2.250)) fulfils (up to finite terms)
the equivalence

)

/ dOr 2 ST (ki kas Bi) = — SOV (ks B:) S8o (B Br) S (s 8:)(2.253)

where the color indices are understood. Furthermore, the one-loop radiative soft
function appearing in the second term of Eq.(2.250]) is known at amplitude level
(see Eq.(2.254)) in terms of the Catani-Grazzini one-loop soft current and reads

Spr (ks ;) = € O (k) - Jed (k, ;) + S,y (k; 8:) S (B) (2.254)

with J& (k, B;) defined in Ref. [29].

We have explicitly verified in Appendix [A| that the 1/¢* poles produced by the
right-hand side of Eq. match exactly, with opposite sign, the ones appear-
ing in the modulus squared of Eq., which are computed starting from the
operator definitions in Eq. and Eq.. This yields a finite sum in the
left-hand side of Eq., which proves our finiteness claim for the soft com-
ponent.

We expect such cancellation to occur also in the collinear sector, which however
involves a much more cumbersome validation. Although the strong-ordered kernel
has a simple operator definition, that can be easily integrated in the single unre-
solved phase-space, the cancellation with the real-virtual counterterm requires the
evaluation of one-loop jet (and eikonal) functions (see for instance the last line in
Eq.). One of the reasons why the collinear sector is less straightforward
than the soft componen is the lack of an explicit relation between the the radiat-
ive jet function (both for quark and gluon induced processes) and the real-virtual
collinear kernel. In particular, the evaluation of a one-loop jet function requires to
make a choice for the auxiliary vector n#: an on-shell massless vector is a necessary
choice to simplify the computation, allowing for a fully analytic result. However,
as already mentioned, the same choice implies the introduction of spurious diver-
gences, which have to be identified and eliminated before tackling the cancellation
with the strongly-ordered operator.

To conclude this part we emphasise that the formalism presented above attempts
to bridge the gap between the well-understood factorisation of infrared poles in
virtual corrections to fixed-angle scattering amplitudes, and the construction and
organisation of local real-radiation counterterms, suited to cancel those poles upon
integration over the unresolved degrees of freedom. This organisation provides
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useful and independent informations for all those subtraction procedure based on
a core pattern analogous to the one in Eq.([2.207)).

2.13 Generalisation to N°LO

The pattern of cancellations described at NNLO can be naturally generalised to
N3LO. In this case, we need to combine three-loop, triple-virtual corrections with
triple-real emission, and we must include the double-real correction decorated with
one loop, and the single-radiative matrix element at two-loop order. The relevant

contributions are given by

2
VVV, = 2Re[ADTA® 4+ ADTA?] | RRR,.; = ‘Aﬁ?jg . (2.255)

2
RVV,., — ‘AE}L + 2Re [Aff’ﬂ Affil] . RRV,,, — 2Re [Affjg A;L)Q} .

The three-loop contribution to the differential distribution of an infrared-safe ob-
servable X can then be written as

Ao
InsLo = lim {/ doe, VvV, 5n<X) + /dq)n+1 RVV, 5n+1(X> (2'256)
dX d—4

+ / AD, .0 RRV,y 5 6y 0(X) + / d®,.5 RRR, 3 5%3()()}.

We now need to add a set of counterterms, and subtract back their integrals,
in order to make each contribution to Eq. separately free of poles. This
requires the introduction of a total of eleven local functions, that we define in
agreement with the wvirtual-correction approach, already applied at NNLO. The
triple virtual matrix element exposes up to 1/€% poles, which can be eliminated

JRVV) (RRV.2) [ (3)

by introducing integrated counterterms, , In , In”’, defined as single-,

double- and triple-unresolved phase space integrals
1o = [ kY = [, kY2 057
[71(3) = /dq)rad,?)KvSi)?n (2258)

where, in general, d®,aq,;m = dP /APyt p_r,. With similar arguments, the double
virtual radiative matrix element requires two integrated counterterms, [,fi)l and
IY(LIE{V’ 1), to return a finite quantity (the subtraction of the RRV,, .5 poles proceeds

analogously to what done for the double-virtual matrix element at NLO). Such
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integrated counterterms are given by
1= [ I = [, KB @

Next we turn to the double-real virtual matrix element, whose poles derive from

its one-loop nature and need a single one-unresolved counterterm to be subtracted
1%, = / A0y K'Yy (2.260)

Given all the counterterms and their integrated counterparts introduced in Eqs. (2.258))-
(2.260]), the distribution in Eq.(2.256)) can be identically rewritten as

doxsio

dX

- / AP, [VVV, + IO + [V) 4 [(RRV-2] ()
+ / A, [ <RVVn+1 +I® + J,S‘j?“)) Snir (X) — KBYV) 5 (X)

+ / D, { (RJ-‘an+2 + 1,532) Snya(X) — KEBRVD 5 (X)
SR 0,00)

b [ | RRR 2 00alX) = K, 00sa(0)
K20 - K2 0,00)|. (2261)

where the first line is now finite by construction, as well as the last line. The re-
maining lines are however still divergent in € (and also non-integrable), since all the
counterterms we have introduced expose explicit poles. For instance, KT(LIEYV) is
affected by up to quadruple poles in ¢, since it encodes double-virtual corrections.
To cancel those divergencies one can introduce specific completeness relations in-

volving double and single phase space integrals
1 = [t = [a K, o)

such that the combination

R 413 4 28, (2263
can be computed in d = 4. Similarly, the counterterms Kﬁgw’l), ,(fgw’z) and

Kﬁgw’lz), embody a single-loop correction, and therefore (as done at NLO) they
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require only one additional integrated counterterm each,

B = [ = [ o)
123 123
[7'(L+2 b= /dq)rad,l K?’(l+3 : :

The combinations
RRV,1 12 RRV, 2 13 RRV,12 123
(REVY+183) . (KP4 08) (K 4 03 L (2.26)
are then separately finite for ¢ — 0. The resulting subtraction pattern reads

d";—)zw = / dd, [vvvn + I3 4 [(BYV) I,(LRRV’Z)] 5 (X) (2.266)

+ / A, 4, [(RVVW + 13 4 [BRV. 1>) 8ir(X)

RVV 23 RRV, 12
— (K + 13 + 1) MX)}

n n

+ /d¢n+2 { (RRVn+2 + ]n(-1+)2> On2(X) — (Kﬁgw’l) + 175122)> On41(X)
[ a0m) - (e ) oo |
+ / dD, s {RﬂRn+3 Onrs(X) = K05 6pia(X)
- (K3 - K33 b ()

- (= KO - K KD 0,0
To present the physical interpretation of the K ém) functions it is useful to exam-
ine one line at a time, exploiting the perspective of the real-radiation approach.
One can begin with the last integral in the triple-radiation phase space ®,.3.
All terms in the integrand are finite, since they arise from tree-level diagrams,
but they display an intricate pattern of phase-space singularities: we proceed by
subtracting single-unresolved configurations, described at leading power by K n(}r)g,
double-unresolved configurations, described by Kﬁ)g, and triple unresolved con-
figurations, described by Krfi)g. In doing so, we have however over-subtracted all
strongly-ordered unresolved configurations, which must be added back: in partic-
ular, the double-unresolved counterterm contains a single strongly-ordered sub-
region, described by Kn(i?; the triple-unresolved configuration, on the other hand,

contains a hierarchy of strong orderings: one parton can become unresolved at a
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higher rate than the other two, a sub-region described by K,(Lf'g), or two partons
can become unresolved at a higher rate than the third one, which is captured by
K,Szfg; once these are subtracted from Krfi)g, one must note that the fully hier-
archical configuration, in which each parton becomes unresolved faster than the
next one, has been counted once with a positive sign and twice with a negative
sign, so that it must be added back: this is described by K,§1+233). Moving upwards
in Eq. (2.266]), we now consider the integral in the (n + 2)-particle phase space.
Explicit poles in the RRV, ;» matrix element are subtracted by 1751)2, which is
obtained by integrating single-unresolved radiation in ®,,.3, represented by the
local counterterm Kﬁr)?). The finite quantity thus constructed is still affected
by phase space singularities involving up to two partons: one must therefore
replicate the construction performed at NNLO for double-unresolved radiation,
introducing three local counterterms in ®,, 5, mimicking respectively the single-
unresolved, double-unresolved, and strongly-ordered singular limits of RRV,, i,
namely Kﬁ?"’”, Kﬂ_?‘”), ngw’m). Each one of these three counterterms,
furthermore, is affected by explicit poles in €, since they are defined at one loop.
These poles must, and can, be subtracted: they are given, with the opposite sign,
by the integrals of the strongly-ordered counterterms in ®,,, 3. To understand this,
consider for example the counterterm for double-unresolved real radiation at one
loop, Kﬁ?"’”: by the KLN theorem, its poles must be cancelled by configur-
ations with three radiated partons, all becoming unresolved, where however one
parton becomes unresolved at a higher rate with respect to the other two. This
is precisely the object defined by 1'7(1132). A similar reasoning leads to the identi-
fication of the other two subtractions cancelling the poles of the remaining RRV
local counterterms.

Double-virtual contributions, to be integrated in ®,,,;, follow a somewhat sim-
pler pattern, since they involve only a single real radiation. The squared matrix
element RV'V,, .1 has two-loop virtual poles, which are cancelled in part by the in-
tegral in d®,,q, 2 of the double-unresolved component of the triple-radiation matrix
element, and in part by the integral in d®,,q,1 of the single-unresolved component
of the real-real-virtual matrix element. This leaves the phase-space singularities
of RV'V, .1, which requires one last local counterterm K,SIIYV). Once again, this
local counterterm is affected by (two-loop) virtual poles: they are cancelled in
part by the integral in &, 5 of the strongly-ordered triple-radiation counterterm
with two partons becoming unresolved faster than the third one, and in part by
the integral in ®,,,, of the strongly-ordered double-radiation counterterm with
one loop. Finally, triple-virtual poles in VV'V,, are cancelled, as might be expec-
ted, by integrating the triple-unresolved triple-radiation counterterm in ®,,, 3, the
double-unresolved double-radiation one-loop counterterm in ®,,,5, and the single-

unresolved single-radiation two-loop counterterm in ®,, ;.
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We stress that the construction just described ensures the cancellation of all the 1/e
poles, line-by-line in Eq.. The same does not necessarily hold for the phase
space singularities, which may survive in the second and in the third lines. We
expect such divergences to be cured by modifying the definitions of the strongly-
ordered counterterms, as at NNLO.

2.14 Soft and collinear counterterms at N°LO

The discussion in Section provides a general picture of the subtraction of
infrared-singular momentum configurations in the distributions of infrared-safe
observables, up to NNLO. This discussion constitutes, however, only the starting
point for the construction of a practical subtraction algorithm. In particular, the
concrete definitions of the counterterms must provide a proper organisation of soft,
collinear, and soft-collinear singular regions, in such a way as to prevent double-
countings and over-subtractions. In this section, we explore the consequences
of the factorisation of infrared singularities in virtual corrections to scattering
amplitudes, as given in Eq. , for the structure of local counterterms for
real radiation, continuing the investigation initiated in Ref. |[137], and extending it
to N3LO . We begin by constructing the perturbative expansion of the factorised
scattering amplitude up to three loops, and commenting on the consequences of
factorisation; then we go on to give detailed prescriptions on the calculation and

organisation of soft, collinear, and mixed local counterterms, up to N3LO .

2.14.1 The factorised amplitude up to N3LO

Before turning to our main focus, which is the structure of singular contributions
to real radiation, it is useful to consider briefly the consequences of factorisation
for virtual corrections. The following discussion is the natural generalisation of
the arguments presents in Sec[2.11] To begin with, let consider the ‘jet factor’ in
Eq. , i.e. the ratio of the products of jet functions and eikonal jet functions
for each hard parton. This factor is supposed to account for all hard collinear
singularities, with no soft poles (as those will be generated by the soft function in
Eq. ), thus providing a single infrared pole per loop. To understand how
this happens, let us expand the jet factor up to three loops: carefully organising
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the results, one obtains
Ji
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) (2.267)

o]

where we have chosen the standard normalisation ji(o) = jf? = 1. The first three
lines in Eq. coincide with the NNLO result presented in Eq., which
has already been discussed. In short, at one loop order the cancellation of the
double-counted soft-collinear poles is apparent, since jfg is constructed precisely
as the soft approximation to ji(l) [9]. At two loops, the cancellation pattern is
less trivial: the third line in Eq. contains pairs of hard-collinear one-loop
contributions from two different hard partons 7 and j, while on the second line
one finds double hard-collinear two-loop contributions arising from a single hard
parton, ¢. In the second line \71(2]3) subtracts from ji(Q) the contributions where
both gluon loops are soft, while the last term in square brackets takes care of
contributions where only one of the two gluon loops is soft.

At three loops, this non-trivial pattern of cancellations generalises naturally: the
last line in Eq. contains one-loop hard-collinear singularities on three differ-
ent hard legs; the second to last line contains all combinations involving two-loop
hard-collinear contributions associated with parton ¢, multiplied times one-loop
hard-collinear contributions involving parton j; finally, the first two lines are re-
sponsible for triple hard-collinear contributions from a single hard leg . One ob-
serves again the factorised structure of these contributions, which is illustrated dia-
grammatically in Fig. [2.13] We emphasise that this organisation of soft-collinear
contributions, which generalises to higher orders, is ultimately a consequence of
gauge invariance, embodied by Ward identities: a diagram-by-diagram analysis,
say by the method of regions, would generate a much larger proliferation of terms,



Chapter 2. Factorisation Chapter 2 Factorisation

P T F ()
T )

Figure 2.13: Cancelling soft poles at three loops in a quark jet function, illus-
trated with sample representative diagrams.

which could be collected in the form of Eq. (2.267)) only after non-trivial cancella-

tions.

Once the jet factor, given by Eq. , is folded in with the soft and hard
factors of the amplitude, as given by Eq. , one easily gets expressions for
the various orders in the perturbative expansion defined in Eq. . The first
three perturbative orders of A, have already been investigated in the previous
Sections, so we just report here the corresponding expressions for completeness

AD = S04 (2.268)

AD = SOHD + SO + 3 (70 - 7D) SOHY, (2269

AP = SOHP + SPHD + SIHD (2.270)
+> [Jf’ ~75-a5 (70-31) ] SOHY

+y ( T ng) ( J- \ﬂg) SO

1,J>1

I Z («Z(l)—ﬂf2> [87(11)7-[510) i 37(10)%;1)] .

In Eq. (2.270)), we recognise that the first term is infrared finite; the second term
contains two-loop soft and soft-collinear singularities, and is the source of all
quartic and cubic 1/e poles in the amplitude; the third term contains one-loop
soft and soft-collinear singularities, interfering with the one-loop hard matrix ele-
ment; the jet factor in the first line, as discussed below Eq. , is responsible
for all two-loop hard-collinear singularities associated with a single hard parton i;
the first term on the second line contains products of hard collinear poles on two
different legs of the amplitude; finally, the last term generates products of hard-
collinear and soft singularities, as well as single hard-collinear poles interfering
with the one-loop hard part.
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It is straightforward to continue the perturbative expansion of the amplitude to
three loops. After some reorganisation of the terms, one finds

A = SON® 1 SHHP 4+ s@M 1 SEHO (2.271)

n n

+ 3 [7P =g - a0 (7 - 2R) | (SOHD + SO
£ (0 - a) (20 - g) (S + SOHD)
£ - IR) [SPHD + SPHY + SOHY]

S { 79 _ g9 _ g0 ( 0 j(1E>>

~I 7 = a8 - 30 (5= 7))
+2 [0 - a2 =R (20 - a)] (2 - ai)

Zi
+ jg; ; (Z(l) _ jz(lE)) (\7j(1) _ jj(lE)) <j(1) j(l)) } 7(10)7_[7(10) )

The physical meaning of the various terms in Eq. is easily reconstructed
following the discussion above. It is perhaps useful to focus on the degree of
singularity of the contributions to Eq. : to do this we note that in our
approach all soft-collinear regions are organised by the soft function; therefore,
S contains poles up to order 2p. On the other hand, in all combinations of jet
and eikonal jet functions in Eq. soft collinear singularities have been fully
subtracted, so that one is left with only one pole per loop; thus, for example, the
last three lines in Eq. contain poles only up to order 1/e3.

Armed with expressions for the poles of virtual amplitudes up to three loops, we
can now proceed to construct virtual corrections to the squared matrix elements
contributing to the physical distributions, and deduce from them the structure of
the real radiation counterterms, generalising the reasoning presented at NNLO.

2.14.2 Constructing candidate counterterms at N*LO

Following the procedure outlined at NNLO in the previous section, at N3LO we
start by identifying all singular contributions to the triple-virtual matrix element
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VV'V,. Singularities can be organised according to their physical content as
vV, = (vvv><3s) (vvv><25) + (Vv

+ Z (Vv V)i 4 Z (VVV)Zh Z VvV

n , 4]
=1 7] 1

j>i
n

+ (V)P 4 Z (VVV)Beho 4 Z (VVVy)e

n 1 n zgk
i=1 i,j=1 i,5,k=1
j;éi k>j>i
=1
+ (Vv (2.272)
z,j]>:il

where we refer to the first line as soft component, to the second and third lines
as hard-collinear component, and to the last two lines as soft-collinear component.
We now construct candidate counterterms for each component separately.

2.14.2.1 Soft component

The purely soft component features configurations with up to three unresolved
partons, manifesting up to 1/e% poles. In terms of cross-section-level functions,
the different configurations can be cast as

(VY@ = O 8 30 (2.273)
VvV = HOTSE HD 1D S HO
(Vv = Ot 4 4 9Dt 3O 3D g L

where the three-loop soft function S is defined as

S = sWis® 1 sigl 1 sBigl) 1 SOTSH) (2.274)

n

By expanding the completeness relation in Eq. (2.153) to the appropriate per-
turbative order, the soft component is made finite through the introduction of the

following set of counterterms:

Kflziggs) _ H%O)T 57(10)3 7-[510) ’ (2.275)
Kggw,z,s) _ H;@)T Sn1)2 %glo) + /H;O)T 57(10)2 Hg) + ”H,S)T 57(LO)2 7_[;0) ’
RVV,s 2) !
KRV = g1 g@ 9400 4 340 5,2)1 Hnl) +HDTS HO
+%(0)T S(O) HP 4 11
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where the notation adopted closely follows that of Eq. (2.266]). This way no

singularities survive in the combination
(VvV)© 4 / AProq 5 K53 + / APy o KTV 29 4 / A0y KV

with (VVV)S) the full contribution of the soft component.

2.14.2.2 Hard-collinear component

The hard-collinear component is the richest one, as far as counterterm construction
is concerned: the variety of the involved singular structures, and chiefly the pos-
sibility to rearrange all counterterms into cross-section-level quantities, provides a
non-trivial test of the generality of the method. Moreover, it emphasises the phys-
ical transparency of an approach based on factorisation, since each contribution
has an intuitive physical interpretation. For convenience, we analyse separately

terms involving a different number of hard legs.

Starting with the singular configurations induced by a single hard leg, we first
isolate (VVV)®) discarding terms that feature H\, with k& > 0. After some

n,1

manipulations, this sub-component can be cast as

n,1

VI = w0 = g = I (A0 - I (2.276)
1 2 2 1 1 1 0
I (I8 = a0 = 0 (30 = 0)) s

(VVV)S:};C) is the natural generalisation of (VV)SIEC), and the combination of jet
functions is such to properly remove all three-loop soft-collinear singularities. The
definition of hard-collinear counterterms requires a delicate sequence of pole can-
cellations, as the completeness relation in Eq. involves up to two-loop

radiative functions according to

I+ / Ao, 1 I + / ADroa 2 Iy + / Ao, 5 )\ = finite, (2.277)
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with an analogous relation holding for the eikonal-jet counterpart. The three

ensuing counterterms read
3, 3h 0 0 0 0 0
K7(1+3,¢C) = HS])T {Jz(k%) - ‘]i(, E),3 - Ji(,E),Z (‘]i(,l) - ‘]i(,E,l)
0 0 0 0 0 0 0
_‘]i(,lg,l (J‘(,z) —J 13,2 - Ji(,lg,l (‘]'(1) - Ji(,E,1)>:|S( %)H(O)

RRV, 2, 3hc 1 1 0 1 1 1 0 0
K7(1+2,i ) = HO |:‘]i(,2) - ‘]i(, B2 Ji(,E,Z (‘]i(,g - Jf,é,o) - Ji(,E,l <‘]i(,1) - ‘]i(,E 1>

RVV, 3hc 2 2
KT(L+1,1‘ : :H(O)T[J‘(,l)_J'(

i, i, i,E, i, i,E, i,8,1 \ Vi, i,
_Ji(,OE),l (Jz‘(,Qo) - J’i(,zE)},O - ‘]i(,llg,(] <Ji(,13 - ‘]i(,lE,O)> } 57(1%7{510) . (2.278)

Although the form of the counterterms may seem complicated, their interpretation
is remarkably intuitive. As an example, we focus on Kfﬁ?‘;’z’?’hc), which features
one loop and two hard-collinear real radiations. For a double radiative diagram
computed at one-loop order, soft poles stem from five different configurations:
both virtual and real radiations are soft, only the two real radiations are soft, one
radiation and the loop are soft, only one radiation is soft, only the loop is soft.
These are indeed the configurations subtracted from Ji(,12) . The following relation

is then verified by construction

n,1

(VVV)ehe 4 / ADpoq 3 K35 + / A oq 2 Koy 25

+ / A poq 1 KV V") = finite.  (2.279)

Furthering the analysis of single-leg contributions, we collect in (VVV)S?C) all
terms that feature H:

VYV = | g o (18 - a) | %

" (H(O)T SO 3 +H(1)TS(°)OH§?)), (2.280)

From Eq.(2.280) to the end of this section we write the jet contributions as factors
outside the colour- and spin-correlated hard matrix elements, to avoid cluttering
the notation. The correct corresponding expressions feature H' factoris at the left
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and H factors at the right of the jet operators.
The resulting set of N3LO counterterms can be deduced from K fff{’ihc) and K ,ﬁiihﬂ
by replacing |A$LO) ‘2 with HOTsOH M 44D 1g0) 20), since the collinear structure

is the same as at NNLO. We get

RRYV, 2, 2hc [ (0 0 0 0 0
KT(L+2,i b= _Ji(,Z) - Ji(,E,Q - Ji(,]g,l (‘]i(,l) - ‘]'L'(,E,l } X

RVYV, 2hc [ 1 1 0 1 1 1 0 0
KV = L0 =g =g (00 = a00) = I (1 = 9]
0 0
x (HOTSOHD + HOTSGHD)

The last single-leg hard-collinear contribution comes from the single-unresolved

component,

(V)T = (50 = J00,) (HOTSOHD + HPTSOHD + HOTSUHD) |

n, 1 n

generating
ST — (= a00,) (RS + M SO + M S

For both the single and the double unresolved configurations the finiteness relations
are slightly different with respect to Eq.(2.279)) and read respectively

(VYY) 4 / A ,oq 2 K B0 2209 4 / Ayoq KV = finite, (2.281)

n, 1

VYV + / AD g1 KV = finite. (2.282)

The hard-collinear component also features a two-hard-leg topology, which gives

rise to

2he 1 1 1 1
(VVV>S’L,ij) = (stg - Ji(,E,()) (J](,g - J(,

> (H 0150 3(1) 4 3D 52%7{7(3)) ,

n n, n n

1 1 0
i,E,O)] (Jj(,g - J;,E,O) H;O)TS’SL,)OH;O) :

n,tJ i, E,0 1, B,

VvV = [J8 = a8 = I

o
N\
Rl
okx
|
~
~

For the first term, one can take advantage of the results obtained at NNLO. In
particular, it is sufficient to substitute the squared Born amplitude in the definition

of K,(Lighl? and KSP{”;;C) with the combination H%O)TS,E%HS) + HS)TSS%H%O) to
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get

K22 = (A= a0) (40 = 0 ) (HOTSOHD + HO TS
RVV, 2hc 1 1 0 0 ) ‘
K’r(H-l,ij b= [(Ji(,g - Ji(,E,l)) <Jg(1) - J](é1> + (i H])} X
x (HOTSOHD + HOTSGHD)

(3hc

)
nij are

The natural counterterms for (VVV)

3, 3hc 0 0 0 0 0 0 0 0
K& = 179 = a0 =70 (0 = 10| (% = 70 ) HOTsOm?

(2

RRYV, 2, 3h 0 0 0 0 0 1 1
Ky ™ = { Y =g = I (1 =) (18 = )

(RVV,3hc)
Kn—i—l,ij =

—I04 (280 = a00) | (45 = a0) }Hﬁ?“&i%%ﬁ?* (2.283)

For the (2hc) configuration a relation analogous to Eq.(2.281]) holds, provided the
relabel ¢ — ij in the subscripts, while for (3hc) the same replacement applies to

Eq.([®.279).

At N3LO , the hard-collinear component of the squared amplitude receives also
contribution from the three-hard-leg topology. Owing to the independence of jet
functions of the details of the processes, ultimately stemming from their being
colour-singlet quantities, the contribution of each legs is completely factorised
from the others as emphasised by the pattern

Vv = (I8 = 700) (I8 = 1%0) (I = Iiho) HOTSHD

n,ijk — 1,
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whose inspection allows us to define

K& = (20 =70 ) (19 = 8

J

o (RRV,2,3h) _ {({]i(’ol) _ Ji(701371> <J(0) _ (](UEJ) <J]£13) _ J}EII)E()) + perm} X

n+2,ijk J,1 Js
XHP TS HY,
ng\;\;j,kghc) — {(Ji(}l) _ (]i(71];1) (J](,lg _ J](’IE&) (J,E?()) — J,i?)Eﬂ) + perm] X
xHOTSOHD .

Here ‘perm’ indicates the sum of the exchanges i <+ k and j <» k. This way

n,ijk

(Vv V) ‘f’/dq)rad,iinz?fg,)ijk +/d@rad72Kr(z§§\z'fj7k273hC)

+ / AP, KBy 0 = finite . (2.284)

2.14.2.3 Soft-collinear component

The soft-collinear component exhausts the singular topologies of the virtual matrix

element. The topologies included in this section are

(vvy)isa vy v y)@s o vyy)Us i (2.285)

n,ij n,t

Starting with the terms that feature a double-collinear radiation from a single hard

leg we have

WYV = (18 2, — g0, (18— g0, KOS | (2250

% %, %,

whose hard-collinear structure is the same as for VVVTfi-hC). The construction of

the appropriate counterterms is then straightforward and yields

3, 1s, 2hc 0 0 0
K( )= [Ji(,Q)_Ji(,lgﬂ _Jz'(,E),1< i,

n+3,1 7, n n, n
RRYV, 2, 1s,2hc 0 0 0 0 0 1
L e A O A | A

E
RVV,1s,2hc 2 1 1 1 0
K1(1+1,2' )= |:Ji,0) - Jz'(,E),o - Ji(,E,O (Ji(,O) - Ji(,E,0>:| HnO)Tsﬁb,)lHSLO)
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By relabelling (3hc)— (1s, 2hc) in Eq.(2.279)) we get the finiteness relation fulfilled
by this subcomponent. In particular, the combination

(VVV)(IS"2hC)+/d®rad73Kr(Lii31’SZz2hC)+/d®rad72K£L§§\i’7271572hC)

n, i

+/dq)rad,1 KS:YY 1209 — finite . (2.287)

The configuration in which one loop is soft and two are hard-collinear also features
terms with two different hard legs. Similarly to VVVszhC)

ij 0
hard-collinear dependence as VVVn(}iS]? 2he)

which has a the same

, we obtain

Vvt = (18 = a50) (70

n,tj 7,

=)
|
<
=~
o=

o) HOTSSHO - (2288)
The resulting counterterms are
Koo = (50 = g0) (90 = T ) HO SO

RRYV, 2, 1s, 2h 1 1
K7(1+2,ij ) = [(J‘(o) - ‘]i(,E,O

RVV, 1s, 2hc 1 1
K1(1+1,ij ) = [ ‘]i(,g - J‘( 0)

Here it is sufficient to modify adding a second particle j in the subscriptions
to get the finiteness relation valid for (VVV)SSZ-’].%C)

In case we add a soft radiation, the collinear part is forced do belong to a single
leg. This configuration is similar to (VV)S};C 1s) barring an extra loop in the soft

function, and reads

n, 1

(VVV)@sthe) <J;}g - J;}g?o) HOTSEHO (2.289)
The identification of the counterterms is then immediate and returns

Jo (328 1he) _ ( J-(01) _jo

n+3,1 7,
RRV, 2,2s, 1hc 1 1 0
K1(1+2,i ) = <Ji(,0) - Jz'(,E),0> H;O)TS )27'[(0

+
J(RVV, 25, 1he) _ (J(1(]) B J‘(IE,o) H(O)TS(I)lanO) i <J§01) _ J(70E71> 7—[,(10”5,2?)07—[7(10) )

n+1,1
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This way we have

/ AD,aa. 1 K(T{‘[ 2109 — finite . (2.290)
The remaining term is the configuration one soft loop and one hard-collinear loop

VYVt = (U89 = a00) (HOTSTHD + HOTSHHO) | (2.201)

2

which leads to the final set of couterterm functions:

K£§§Y7z,ls,1hc> _ (Jf,of _J< ) (7—[(0 TSO e +H<m5 Hgo)) 7

n,

RVYV, s, 1hc 1 1 0 (0)
KAVt — () = Jf o) (HOTSIOHD + 1O TS HD)

(A9 =) (OIS + HDISHD)

7

and to the last finiteness relation
(VV V)5t / A0, Ky 31510 / A poq 1 KV Y51 = finite(2.292)

The collection of all the counterterms introduced up to this point ensures that the
combination

[VVVn 1B [RVY) LSRRV’m] (2.203)

is finite in four dimensions, and then suitable for numerical implementation. To
complete the set of democratic counterterms we still need to analyse the structures
that arise from RV'V,, .1 and RRV, 5. Their factorised expressions are deducible
from those of (VV),, by including one further partons in the final state, and from
V,, with n+2 hard partons instead of n, respectively. To reduce RRV,, . to a finite
object we only have to define a single unresolved counterterm, K TE +)3, given by the
NNLO K* +2 promoted to a phase space with n + 2 detected particles. Finally, the
@ 3 and K,(fgw Y can be derived from K2 o and K,(LEY)
once we have replaced n + ¢ with n + ¢ + 1 in the corresponding definitions. This

remaining counterterms K

completes the set of N3LO candidate counterterms, necessary to cancel the poles
of virtual origin stemming from VV'V,,, RVV, .1, RRV,.».






Chapter 3

Subtraction

3.1 The Subtraction problem

In the previous Chapter we have presented a fully general procedure to formally
define the necessary counterterms to subtract the IR singularities stemming from
an arbitrary IR-safe observable. The resulting subtraction pattern has been dis-
cussed in details for the NLO and for the NNLO approximations of the observable,
and a preliminary analysis has also been provided at N*LO. In several occasions we
have highlighted the capability of the factorisation approach to provide a physical
transparent method to organise the counterterms, and to explore higher orders in
perturbation theory. At the same time, we have also stressed that this method
does not provide a subtraction procedure that can be directly implemented as a
fully working algorithm. Such implementation requires the introduction of further
technical ingredients, such as a phase-space mapping procedure. This key element
is fundamental for factorising the unresolved radiative phase space from the re-
solved phase space obtaining an on-shell, momentum-conserving kinematics inside
the Born matrix elements. More in general, the practical problem of construct-
ing efficient and general algorithms for handling infrared singularities for generic
infrared-safe observables beyond NLO proves to be highly non-trivial. In the past
years, several slicing and subtraction schemes have been proposed at NLO and
numerous attempts to generalise them with different techniques at NNLO are still
ongoing. As already anticipated in the Introduction, among the NLO subtraction
methods, we take inspiration from the FKS [39] and the CS [2] schemes, based on
the idea of introducing local counterterms and then integrating them exactly, in
order to achieve the cancellation of poles without the need for slicing parameters.
These algorithms are currently implemented in efficient NLO generators [44-52],
so that the ‘subtraction problem’ can be considered solved to this accuracy.

131
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At NNLO, numerical and conceptual challenges related to the proliferation of
overlapping singular regions become much more significant. This has led to the
development of several different methods, which have been successfully applied to
a number of simple collider processes. NNLO differential distributions for had-
ronic final states in electron-positron annihilation were first computed in [61,62].
Among the first hadronic processes involving coloured final-state particles to be
studied differentially at NNLO, we mention the production of top-antitop quark
pairs, achieved in [67,/68] within the Stripper framework [66], and the associated
production of a Higgs boson and a jet, achieved with the N-Jettiness slicing tech-
nique [5558]. A number of hadronic processes with up to two final-state col-
oured particles at Born level have since been studied at the differential level with
various approaches, including ¢z slicing [53}[54}/138,/139], and Antenna subtrac-
tion [63H65]. Other methods include the CoLoRFulNNLO framework [74,/140,141],
currently applied to processes with electroweak initial states, the Projection to
Born method [75], and the technique of Nested Soft-Collinear subtractions [69,[70].
Novel methods have been presented by [76,77], and the first limited applications
to differential N®LO processes have appeared [79L80,82].

Despite this remarkable variety of sophisticated methods, the issue of IR singu-
larities subtraction beyond NLO is not completely solved. Most of the schemes
already developed rely on involved analytic integrations or demanding numerical
computations. These two main disadvantages encourage further investigation and
drive us to present a new approach to the subtraction problem beyond NLO. The
main idea is to exploit the advantages of the existing NLO methods, and combine
them to obtain a new minimal, local, analytic subtraction scheme at NLO. The
key features of the NLO implementation are then generalised at NNLO, defining
an efficient and physically transparent subtraction procedure.

Our method benefits from an optimised partition of the phase space in sectors,
in the spirit of FKS subtraction [39], and from a remarkable flexibility in choos-
ing the appropriate momentum parametrisations within each sector, allowing for
simple mappings to Born configurations in different unresolved regions. Finally,
we also take maximal advantage of the simple structure of factorised kernels in
multiple singular limits, which follows in general from the factorised structure of
scattering amplitudes. We define sector functions satisfying our requirements, we
introduce local counterterms and appropriate parametrisations, and we integrate
the counterterms on the unresolved phase space.

With this general strategy in mind, we begin in Section by revisiting the NLO
subtraction problem and the main ingredients exploited to solve it according to the
FKS and CS subtraction schemes. This preliminary section aims at highlighting
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the main advantages and disadvantages of the two schemes, that are respectively
exploited and avoided in our method.

3.1.1 FKS and CS schemes at NLO: pros and cons

To begin with, we briefly review the general structure of a subtraction scheme
at NLO, setting some convention and notation that will be useful later on in the
manuscript. We define n to be the number of coloured particles contributing
to the final state (colourless parton can be always included without spoiling the
procedure) at Born level. We name k;, i = 1,...,n the n final-state parton
momenta, with k2 = 0. In agreement with what already discussed, we write the

NLO prediction for an m — n scattering observable as

do NLO

Tue /d®n<V+]>6n(X)

+ / <d®n+1R5n+1(X) —dP, 1 K MX)) , (3.1)

where we allow for the possibility of simplifying the phase-space measure d®,,
to d@nﬂ in the counterterm, under the assumption that the two coincide in all
singular limits. Defining the (single) radiation phase space as A®,q = d@nﬂ /d®,,
we have implicitly introduced the quantities

doxio

dX

- / AP, 1 K 6,(X), I = / AP, K . (3.2)

ct

In full generality, the combination d@nﬂ K must reproduce all singular limits
of the real-radiation contribution d®,,., R, such that the integrated counterterm
gives the same poles, up to a sign, as the ultraviolet-renormalised virtual matrix
element. In the following we will use interchangeably the alternative notation

doyio + doio /

Born
X do=™ 0, (X) + /

n

davirt.(sn(X) + / doredl 5n+1(X) (3-3)

n+1

and its subtracted counterpart as

d d .
O'NLod;'( Oro _ /n[dO'Bom—f-dO'VIrt' _i_/ldo_subtr} 5n<X)

+ / [darea15n+l(X) —daS“b“'cSn(X)}, (3.4)
n+1
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where, for instance, the real radiation contribution is given by the integral over
the n + 1 phase space of the squared radiative matrix element

do™ = | A1 2 d®p i = Ry d®p . (3.5)

3.1.1.1 The FKS method

To present the FKS method, hereby also referred to as the plus distributions
method, we assume for simplicity that only one singular region may occur in our
academic example. In the c.m. frame the unresolved parton, carrying momentum

k, can be described by the variables
2k0
\/g )

where s is the squared-centre-of-mass energy, 6 is the angle of the emitted parton

&= y = cosb, o, (3.6)

k relative to a reference direction (usually another parton), and ¢ is the azimuthal
variable, defined with respect to the same reference direction. In these variables,
the phase space of the unresolved radiation is parametrised as

dd—l k 51—5

St = amei S (LY ddy (sing)dgdTE . (3.7)

The integration boundaries for the £ and the y variables include the possibility for
¢ to approach zero, which corresponds to the singular soft regime, and for y to be
equal to one, relevant for the collinear region. Given our knowledge of the leading

behaviour of the real matrix element under IR limits, we introduce the identity
11
21—y

where in the square brackets R has been regularised both in the soft (¢ — 0) and

in the collinear (y — 1) limits. The function in Eq.(3.8)) has to be integrated in
the k-phase space, resulting in explicit e-poles due to the integration over £ and y

Ea-yr|, (3.8)

according to the following core structure
1 1
[ava-y [as pey.  Few=[ea-nr. 69
—1 0

The integral in Eq.(3.9)) can be split into an explicit divergent contribution, show-
ing 1/€" poles (with n < 2), and a finite remainder. This decomposition is easily
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achieved by expanding both integration variables as

g1 o0+ (g), — 2 (F55), o).
A=y~ ==s-n+ (=), + 0, B

where the subscript + indicates a plus distribution, defined so that its integral
with any sufficiently smooth function g is finite. Its contribution is then regular
in the sense of distributions and can be formally expressed as

[ () o0 = [ 910,
[ e (R25) gt = [ ag MO g,
/dy(liy) g(y)z/_lldy%i(l)- (3.11)

If we plug the expansions in Eq.(3.10]) into the integral in Eq.(3.9), neglecting the

O(e) contributions, we obtain

[ asa—ye [dee rew = - [ vy -9 F0)

[ @), ) Jre
+/11 dy/o1 % (ﬁL(%LF(&y) +0(e). (3.12)

The first two terms in Eq.(3.12)) derive from a J-function with argument £ and/or

1—y. Such terms feature the same singular structure as the virtual matrix element,
with which they have to be combined, and involve real-matrix elements that are

approximated in the soft and/or collinear regime. In particular,

(€)= 5(6) lim R({p}) = =8N —Bua({p}) (3.13)
3(1 = )R =81 5) i R((p)) =31 = DN == (1)1 1),

with N = 8magu®. This way, the terms containing d-functions are candidate
integrated counterterms, while the last term in Eq.(3.12)) is actually integrable in
the whole phase space and can be rewritten as

[ [ac(2) () Few= [ an [Laeer. @
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where

r=¢((3), (G5) [#a-ng]). (3.15)

In Eq. we have extracted a factor &, in order to reconstruct the p;-phase
space integral in d = 4. The finite quantity R can be thought of as the differ-
ence between the divergent real-matrix element and the appropriate counterterm.
Referring to Eq.7 the term defined in Eqs.— represents the combin-
ation do™ — do*"P™™ while the first two terms of Eq.(3.12)) are the equivalent of
I, dosubtr.

In this simple example, the decomposition of the real-matrix element into singu-
lar regions proceeds through an intuitive procedure, based on the fact that only
one singular parton is involved. For more realistic processes, namely scattering
involving n final state partons at the Born-level, such sector decomposition may
become highly non trivial. In particular, due to the complexity of n + 1-body kin-
ematics, and to the existence of overlapping singular configurations (soft-collinear
limits), the real matrix cannot be integrated over the whole phase space. It is then
necessary to decompose R into a sum of terms, each of them having singularities in
no more than one singular region. Each term of the sum can then be parametrised
by appropriate & and y variables, in order to simplify the integration procedure.
To implement the requirement of having only one singular region at the time, the
pioneering subtraction method by Kunszt and Soper [117] proposed to decompose
the real matrix element into single-singular terms, each of them to be integrated
in the relevant infrared region only. Although this strategy is in principle ap-
plicable to any value of n, the actual implementation is very intricate, especially
for high multiplicity processes. In the subsequent paper by Frixione, Kunszt and
Signer [39] the same problem was overcome by partitioning the phase space by
means of functions S;;. For a given value of 7, j, the corresponding sector features
at most one collinear and one soft configuration. The resulting real contribution
is then the sum over all the parton pairs, or equivalently, over all the phase-space

regions. In formula

n+1
dote? — Ryi1d®,, = Z S@'j Ry1d®,4q, (3.16)

i,j=1
JF

where we can introduce the following notation

Rn+1 = Z(RnJrl)ij ) (RnJrl)ij = Sij Rn+1 . (317>
1,771
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The explicit expression for S;; is a priori arbitrary, provided it satisfies three re-
quirements: the S-functions vanish in all the singular limits except for the case
where ¢ becomes soft or partons ¢, 7 become collinear, the sum over all the parton
pairs returns one, and the sum over regions sharing the same singular configura-
tions is one (see Sec[3.1.1.2] for more details). This way, for given values of ¢ and
J, (Rpu+1)q; is divergent only in the phase space regions that are not damped by
Sij, and it is parametrised in the (n 4 1)-body phase space through the energy of
the i-th parton (¢;) and the angle between ¢ and j (v;;)

& = % s yij — COS Hij . (318)
As a consequence, each term of the sum appearing in Eq.(3.17)) is parametrised
differently, according to the chosen sector S;;. The relevant phase-space for the
contribution (R,,41);; can be then expressed in the c.m. frame in d = 4 — 2¢ as

d sd o d'k
dPpiy = (2m)%0 (q—Zk)[HW} «
i=1 I#i
8176 y . . L )
< Gyt §7% (1 — y2)“dé; dy;; (sing) " dp dQ . (3.19)

where ¢ is the centre-of-mass four momentum ¢ = (1/s,0). The singularities
induced by integrating the radiative matrix element (whose leading behaviour in
the IR limits is of the type 1/[&(1 — y;;)]) in Eq.(3.19) are due to the limits
& — 0 and y;; — 1, and are treated in analogy to what discussed in the previous
paragraphs. The real matrix element can be then easily regularised by adopting
the plus prescription with respect to both §; and y;; variables, returning

< éi )5 <1 —1 yij)ao §i (1= i) Sij Rogr AP (3.20)

The structure above implicitly defines the subtracted radiative matrix element in
the sector i, j

i =¢ (), (125), [€0-m)@en] ). G2

where the total subtracted real matrix element is the sum over all the contributing

sectors

én+1 = Z(Rn+1)ij = Z Sij Rn+1 . (322)

i,j7# i,j7#i
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The terms above are defined by the prescription

/dz (1 )x o) = [ da f(@) = f(0) O(zeu — ) | (3.23)

i T

with &.4 and 0y being parameters such that 0 < &y < 1 and 0 < §y < 2.
A necessary condition for the method to work is its independence of the non-
physical parameters &.,; and dg. The last necessary ingredient is a momentum
mapping, which allows for the factorisation of the single radiative phase space,
from the remaining n-body resolved phase space. Moreover, the introduction of a
momentum mapping is also fundamental for obtaining a factorised radiative phase
space involving only on-shell momenta. The goal of this procedure is indeed to

decompose
dq’nﬂ(q; ki, kn+1) = dq)n(q; /_ﬁa R ]_fn) d‘bl(l_ﬁ, cee l_fn; U1, U2>U3) ) (3-24)

and to properly define the set of momenta {k} and the variables {u} to obtain such
factorisation. The notation adopted in Eq. is the following: the integration is
only performed with respect to the variables appearing after the semicolon, while
the remaining variables specify a pure functional dependence. Thus, the one-
unresolved phase space proceeds by integrating over the {u} variables, which are
independent of the remaining {k} degrees of freedom. For simplicity, we assume
the singular region to involve only the n-th and the (n + 1)-th partons: we refer
to the former parton as the FKS sister, and to the latter as the FKS parton.
We also introduce the FKS parent parton, whose three-momentum is defined as
k =k, + Ek,. 1. Our aim is then to express d®,,; as

Ad,,, = Jdédpdcos dd,, . (3.25)

Here £ = 2k0,,/+/s is the rescaled energy of the (n + 1)-th parton, 6 and ¢ are
respectively the polar and the azimuthal angle between k., and the FKS parent,

kn-i—l ' kn

m s Qb = QZS(’I’] X k, kn+1 X k) R (326)

y =cosf =
where 1 is an arbitrary direction that serves as the origin of the azimuthal angle
of k,,1 around k. The notation ¢(v;, vs) indicates the angle between vy and vy,
so that ¢ is the azimuth of the vector k,.; around the direction of the mother
parton k. Finally, 7 is the Jacobian factor stemming from the change of variables
introduced to disentangle d®,, from d®,,,;, where the former is a n-body Born-level

phase space, involving only on-shell momenta, that we name {k;}, i = 1,...,n.
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We start by introducing the recoil four-momentum

n—1

rec Z kz =q— k — krec =—k. (327)

Then, we construct a Lorentz boost B along the direction ke

S — (kl(r]ec + |kreC|)2

P8 = TR0+ Red?

(3.28)

such that the four momentum (q—B kye.) is light-like, (¢—B kyec)? = 0. The barred
momenta, {k;}, are then related to the initial n + 1 momenta thought the boost B

ki =Bk, i=1,...,n—1, kn = q — Bkec (3.29)

in a way that automatically guarantees momentum conservation

n n—1
> ki=) Bki+q—Bhic=gq. (3.30)
=1 =1

At this point we can make Eq.(3.25) more explicit and write

n+1 dd 1]{7 n+1
i1 = H%O(%)d (2m) 5d<q_zk>

Ay Ak T dOMk e —
T2, (2m) T 2R0(2m) AT H L oKD (@)1 (2m)%0 (q —k- Zl k)

— Jd¢dcosdo ﬁﬂ w)déd(q—il_@-)
=1

2k2(2m)¢ i
APyoq AP, . (3.31)

Some remarks are in order: in the second equality we have traded k,, for k, where
k° = k2., + k2. In the second relation the barred variables allow to factorise an
n-body phase space and a single radiative component, expressed in terms of the
variables {u;} = {{,y, ¢} times a Jacobian factor. The next step is manipulating
the relation between the second and the third line in Eq. to identify J.
Since k and k, have the same direction,

dk = dQ2 k|2 d k| d* 'k, = dQ2 |k, | 2d |k, (3.32)
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the solid angle can be simplified. The phase space for the recoiling system, includ-
ing the momentum-conservation d-functions, is invariant under the boost trans-

formation, thus

dik; A, . onol
s anyet (1) (40— k- Z ) = a2 (4= Fn = D" Fi) (333)
=1

where on both sides a product over i = 1,...,n —1 is understood, and B(q — k) =
B(Z;:ll kz> = Z;:ll ki = ¢ — k,,. Next we compute the infinitesimal phase space
relevant for the n + 1 parton

dd—lkn+1 46(471’)6_5/2 sl—e o ' N
W Eml T raz—q °  emysing)Tdidgdeosy
= Kd¢dpdcosy , (3.34)

with ¢ being the angle between k, ., and k. By substituting Eqs.(3.32))-(3.33])-

(3.34) into Eq.(3.31) we get

k|92d|k k,|%%d|k,
s B 71y B
||~ K| T3 T
= K dcosy T = JdcosO |k,|"2d|k,| (3.35)

n

We just need to express y and k,, in terms of cost) and k, at fixed &. This can be

done by exploiting the following relations

ko = Ik + ki1 |? — 2/K[[kps| cos ¢

Mrzec - kr2ec = ( 0— kO) k2 (q - |k7’b+1’ |k |)2

_ — M? kE? — k2 — k2

|k, | = e V3 : y = ntl (3.36)

2\/5 2 2|kn| |kn+1|
which yield
oka oy )
— 1. k: k2
deosOd|k,| = | 2Kl 9Kl geosy dlk| = [|k |- }dcosz/)d|k|

oka oy K 2¢/s

dcosy  Ocosy

where k? = 2|k,| |kn41|(1 —y). As a consequence

|k|d74 |k7n|2 2 -1
=K——||k,| — .
7 TRl AR (3.37)
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and the relevant radiative phase space, according to the definition in Eq.(3.31)),
reads

/d@rad(kl,...,kn;f,y, @) = JdEdcosBde (3.38)
EC=9 A -y)] " 26—
1 € d 2e d
/mm ¢/ 6/ [422 -y l¢(2-¢e1—y)?

where G = (47)2/(7'/?T'(1/2 — ¢€)). In each sector the radiative phase space is
parametrised according to the partons involved in the singular region, so that the

contribution selected by the sector S;; has to be integrated over

/dq)rad(s C Szayl]a

- / d¢sin” 25925/ dé’/ Y [gz 2—&1 - ;Jy);)yc@ 2—&5(1-?1_—&@)17'))2

Crucially, the counterterm integration is not affected by sector functions, as they

cancel under singular limits when appropriately combined

2 0(E)S = > 0(&) Z Jim, Sy = 206, (3.39)

1,71
Z 5 yzg i Z 5 yzy Szg + S]z Z 5 yzg hm SZ] + sz Z 5 yzg
1,71 1,7 >1 7,7 >1 1,5>1

A disadvantage of such approach is represented by the difficulty in integrating the
singular kernels. In particular, by looking at the soft kernel, expressed in the terms
of the appropriate angular variable

@) 1 —cosf,,,
I o
(1 = 08 0;,) (1 — cos b))

(3.40)

it is evident that the integration procedure may become non trivial, since the
phase-space parametrisation does not adapt to the quantities appearing in the
kernel. On the other hand, a positive feature of the FKS method, concerning the
integration procedure, is its independence of sector functions. As a matter of fact,
they sum to one when combined with other sectors sharing the same singular limit,

and therefore they do not enter the integrand function.

3.1.1.2 On the FKS sector functions

As already mentioned, one of the most remarkable aspects of the FKS subtraction
scheme is the introduction of a phase space partition achieved by sector functions
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Sij. Although the final result has to be independent of the chosen form of S;,
different definitions may reflect on the numerical performances. In particular, in
the original papers by [39,40] the sectors were constructing using Heaviside ©’s:
this choice allows for an exact phase space partition, namely without overlapping
regions, but at the same time it is not optimised in view of algorithmic implement-
ation (in Monte Carlo codes, for instance, step functions have indeed to be avoided
as much as possible). In subsequent studies |142], the S functions were modified
to feature a smoother definition, resulting in an improved numerical behaviour.
The proposal of [142] involved Lorentz invariants of the kind kj - k;. A further
generalisation was provided by [143], who exploited energy and angle variables (in
agreement with the original FKS approach) to define S;;. The ample freedom in
defining S is only constrained by three fundamental requirements:

1) > i i S;; = 1 : in order to recover the entire phase space when all the regions

have been summed,

2) S;; has to go to zero in all regions of the phase-space where the real matrix
element is singular, except for the configurations where parton ¢ is soft, or

partons i, j are collinear. In formulae

: E; . : _ : _
lim S;; = h(EZTE]) ,  with {llg(l) h(z) =1 A llir% h(z)=0

L7

AR(z)+h(1—2) = 1}

kl?iinosij = Cij with 0<c¢; <1 A ZCij —1
J

kik,

E9—0

3) sectors sharing the same singular configurations have to sum to one

li Sij = Oim li Sii 4+ S5 ) = 8im Oir + 0t Oim - 3.42
k?irgo j ’ k:llr;ﬁz< i J> o (342

Following [143], and the algorithmic implementation in [4§], one defines

1 h(zy)
D dy

S (3.43)
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where Zij = EZ/(Ez + E]) and

D = ZM (3.44)

k, ik dp
2Ek as 2El as
dy = (—) (—) 1— cosO)'s = €95 €55 (1 — yu)s . (3.45
Kl \/§ \/g ( kl) fk 51 ( ykl) ( )

Here as and bs are real, positive, arbitrary numbers that can be tuned to im-
prove the numerical stability. Given the relation in Eq.(3.44]), it is straightforward
to verify that the definition provided for S;; fulfils constraint 7). Moreover, h
functions are set equal to

(1 — z)2mn

M) = o (3.46)

where ay, is a positive free parameter in the method, that for simplicity is chosen
equal to one. The reason for the S;; functions in Eq. to be suitable for
numerical implementation relays on their good behaviour in the whole n+ 1 phase
space. In particular, the denominator appearing in Eq. can be manipulated
as follows

'Ddij =1+ Z % + Z % h(Zkl) . (347)

il £ dit kel i

keg{i,j}orlg{i,j}
The second term does not depend on F; and therefore Dd;; can be computed
numerically both in the soft and in the collinear limits.

3.1.2 The CS method

The CS scheme is significantly different from the FKS method, from several per-
spectives. First of all, the counterterm K is designed to mimic the IR behaviour
of the real matrix element in the entire phase space, thus no sector functions are
implemented. This choice automatically implies a more involved structure of the
counterterm, which is defined as a sum over all the possible pairs of partons (di-
poles) that may become unresolved. Each term of the sum is then a combination
of Lorentz invariants involving three partons, two belonging to the dipole, and one
playing the role of spectator. The consequent mapping is designed precisely to ad-
apt to the invariants appearing in the countertems, and the radiative phase space
is then parametrised according to the chosen mapping. This way, each contribu-
tion to the conterterm is mapped and integrated in a different way. However, this
is not sufficient to guarantee a trivial integration, since the counterterm structure

is quite involved. It is useful to analyse the scheme in more detail.
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Referring to Eq., the CS scheme is designed to find an expression for %!
that satisfies four key properties: 1) for any given process, it has to be independent
of the particular observable, 2) it has to match exactly the singular behaviour of
the real contribution in d dimensions, 3) it has to be suitable for numerical imple-
mentations, /) it has to be exactly integrable analytically in d dimension in the
single-unresolved phase-space. In order to achieve the desired definition, one can

subtr- named dipole subtraction formulae, that

propose a formal expression for do
features a factorised structure composed by a finite, Born-level matrix element,

and a singular piece

dosHbtr: — Z doBorn ® d‘/dipole ) (348)

dipoles

Eq. is a reminiscence of the factorisation formulae presented in the previous
chapter, given the underling assumption that dVy,.. is able to reproduce both
the soft and the collinear kernels arising from the unresolved radiation. In the
formula above, the Born-level cross section is the only process-dependent element
and features appropriate colour and spin indices that have been understood. Such
indices are contracted with the analogous indices stemming from universal factor
dVipole, as denoted by the ® product. Finally, the sum runs over all the dipoles
contributing to the process. To identify a dipole one has to consider a process in-
volving n partons, and then let one of them decay into two particles (see left panel

real configurations that are kinematic-

in FigJ3.1). This procedure provides the do
ally degenerate with a given m-parton state. As a consequence, the counterterm
approximates the real correction in all singular regimes with the same probability,
guaranteeing that the difference do™® — do®"""" is finite in the whole (n + 1)-body
phase space. The last ingredient is the momentum mapping, which is designed
to divide the n phase space from the unresolved single radiative subspace, and
make dVpore fully integrable analytically. The integration procedure can be then

outlined as follows

/ da_subtr. — Z /dO_Born ®/d‘/dipole — /dO_Born ®I7 (349)
n+1

dipoles ¥ ™ 1 n

where the universal integrated counterterm I is symbolically defined as

I = Z [d%ipole . (350)

dipoles

Thanks to the KLN theorem, doP°™ @ I shows the same explicit singularit-

virt: such that the combination

ies (up to a sign) as the virtual correction do
doV™ + doBom @ I is free from 1/¢ poles. We stress that a necessary condi-

tion for the subtraction to work is the ability of the factor dVypee to mimic the
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Figure 3.1: Pictorial representation of the dipole subtraction formula: (a) the
IR singularities of a generic (m + 1)-parton scattering factorise into a sum over
all the possibile dipole ij, and a third parton k called spectator. In (b) a zoom
on the dipole system is presented: the pair ij is generated by the parent particle
[ij], named emitter, whose momentum ];[ij} is given in Eq.(3.57)). Courtesy of [2].

singular behaviour of the real matrix element, which is known to factorise into a
universal singular kernel and a finite n-parton matrix element. We then have to
verify that

[Ana]* = A @ Vi (3.51)

where the singularities correspond to ¢ becoming soft, and/or collinear to parton
J, have to be reproduced by the dipole factor V;; ;. The third parton £ appearing
in Eq. is the so-called spectator, and encodes the non-trivial color and spin
correlations arising in the singular limits between the unresolved parton and the
remaining Born-level scattering. In order to find an explicit definition for V;;,
we start by introducing the dipole factorisation formula in the limit k; - k; — 0,
under the assumption that no initial parton enter the process

n+1

|An+1(k1; cee n+1 Z ng k ]{71, ce kn+1) © (352>

k#m

where the ellipsis stands for subleading terms, and the dipole function is given by

T
Dijr(kr, ... kny1) = —S— (A, |TT
LY [i5]

Virld) . (353)

Here the matrix element on the r.h.s. of Eq.(3.53)) is obtained starting from the
initial n + 1 matrix element and modifying the momentum and the quantum

number of the unresolved partons and the spectator. In particular
AnEAn(kjh---a];[ij];“wi%ka"-7kn+1)7 (354)

with Kp;) representing the parent parton of the splitting [ij] — @ + j, carrying
quantum numbers compatible with the colour and spin conservation, and kx being
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the modified spectator. For convenience, we define the dimensionless variables

B ki - /{Zj _ Sij
Yij.k ki kj+ ki ki+ke ki syr
~ ki -k Sik
Zi = - ’

kj-kk‘i‘ki‘kk Sjk + Sik

yA— fry
J k]kk—i-]flkk Sjk—f—sik

With Sepe = Sap + Sac + Spe- In terms of the quantities introduced in Eq.(3.55)), the
momenta of emitter and spectator inside the n-parton scattering amplitude can
be conveniently expressed as

- 1 Siin

= —— = 3.56
F1- Yijk P st Sk ¥ ( )

7 Yij ke Sij

[ Iy VU L L k:“_k:“—l—k“ — g 3.57
o ' Tl =y Sik + Sjk " (3:57)

In this fashion, the on-shell condition l%,% = 12[22 g =01s automatically implemented,
as well as momentum conservation

k4 kel | =K+ R+ Ry (3.58)

[ij

Moreover, the spin matrices V;; 5 have the following form, depending on the flavour
of the splitting partons,

2
\' ~i; 1] =N |: = — (1 ~7; — 1— ~7; i|(sssl
aig;k (i3 Yij k) Cr T 500 = yun) (1+2)—€(l1—2)

~ v 4 ~ ~ ~ 14 ~ 1 v
Vs Gii visa) = N T| = g = — (Gt = K (G — 58] = V!

y q:q;,k
1]

1 1
Voo 1 (G yiin) = 2N C [— W( . T —2)
TR Ay 1=z =yyr) 1= 20 —yix)
2(1 —
+(S—6)(2k — LR -SR] = Ve (359)
i

It is now important to verify that the dipole factor V;; is capable of reproducing
the singular structure of the real matrix element under soft and collinear limit.
This check proceeds via two steps: firstly, the n-parton amplitude A, in Eq.
has to tend to the initial n 4+ 1 amplitude, where parton ¢ is removed, or partons
i, j are replaced by their sum (with appropriate colour and spin indices). Secondly,
the dipole factor has to mimic the relevant eikonal and splitting kernels. Recalling
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the Sudakov parametrisation already presented in Sec. [2.4.1],

k? nH K2 n#
k' = zpt + kM — —L k= (1 —2)pt — K — ——
At z22p-n’ j ==z L o1l—z2%-n’
ki
P N— ke =0, 3.60
Sij z(l—z) 1 ( )

the limit k; || k;, or equivalently k; — 0, returns the following relations

=R -k = P, k= —
Sik + Sik Sik + Sik

fgu

3 K KL (3.61)

Moreover, the quantities in V;;; transform as

ap= it L=1-% — =2
Yigk = Sijk 22(1—2) kg -p’ " ! ’

where, in the last limit, the p* contribution vanishes when contracted with the
n-parton amplitude due to gauge invariance. This way, V;;  can be easily checked
to give the AP functions

Ve — N Py(zkise) . (3.63)

Since in this limit the dipole factor loses its dependence on kj,, the colour structure
in Eq. can be simplified by applying the colour conservation at Born level,
i.€. Z?:ll’l#iyj T; + T;; = 0, and recalling that T; - T; = T? = wa]. Now, plug-
ging Eqs.— into Eq. one can verify that the dipole factorisation

formula, under the collinear limit k; || k;, gives precisely

ST aug %

| A1 (Fr, - kg k} (3.64)

=0 Sij

X AAp(kr, .0y k)| Pz, ks €) | An(kry oDy k)

which coincides with the known factorisation formula (see Eq. [2.122]). The last
limit to check is the soft one, k; — 0. In this case the CS variables behave as

vir = 0, H =0, % =1, ki =k, Ky — k), (3.65)
and the dipole term tends to
Vs — o2NT2, —* (3.66)

ij] o | o
Wl 835 + si
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where the kinematic factor can be manipulated knowing the identity

Sjk Sjk; Sjk
= + ) 3.67
Sij Sik Sik (Sij + Sik)  Sij (Sij + Sik) ( )

Again, by substituting Egs.(3.65)-(3.66]) into Eq.(3.53)), one obtains the usual fac-

torisation formula

n+1
S,
(Anr(kr, o k)P = —8magu® > —2 x (3.68)
) Sij Sik
ik, k]

X <.An(k1,..7]{:171,]{;7]4,17..’kn+1)’Tk'T‘7 ’An(k:l,...’ki717ki+17...,kn+l)> 3

where in the second line we have emphasised that the amplitude depends on all
the n + 1 momenta except for k;. To summarise the results obtained up to this
point, we can say that the CS counterterm is defined as a sum over all the possible

pair of partons, each of them involving a third spectator particle

K=Y Y K. (3.69)

pair ¢j k#i,j

The contributions on the r.h.s. involve a non trivial colour and helicity structure,
which becomes more transparent if one isolates the spin-dependent and the spin-
averaged components of the dipole factor

1 - .
Kin({k}Y =k, kpa) = ;[Vij,k Biijie ({k} 158> Krits k)

v

+V1% B[U]hw(‘{k}ﬁk? ]%[ij}a lsz)}, (3.70)

where Vj;; mimic both the soft and the collinear limits of the radiative matrix

element, according to the following relations

p’f—)O v p?—)O

Vi " N e (3.71)
Sij Sik '
% 5 wv IM my
Vijk Blijik NP B, Vi Bigk, —NQij B

given Q7 the spin component of the AP splitting kernels. The phase space is
parametrised differently for each term of the sum in Eq.(3.69) through the variables
Sz’jk = (kz —+ k’j =+ l{?k)2 = (l{ik + ]{I[ij])z, yz’j,k = S,’j/sijk and Ez = 3ik/<5ik —+ Sjk) as

d®,, 1 ({k}) = d®, ({k} e ki, Eiigy) dPraa (Sijis Yiser 5, ) (3.72)
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with
. = _ 1—e " s —2€
/dq)rad<5ijkayij,kazia¢) = G(Sz‘jk) /d¢31ﬂ ¢ X
0
1 1 e
X /dyij,k /dgl [yij,k 21 (1 — 21)] (1 — yij7k>1726 . (373)
0 0

The integration of Kjj; over d®,,q can be then performed analytically, noticing
that the spin dependent component of V//7, namely the term Q7 in Eq.(3.70),
vanishes after integration. Nonetheless, the spin correlations are fundamental con-
tributions for achieving a local subtraction of the real matrix element singularities,
and thus cannot be neglected. Although the integration procedure is doable with
standard techniques, it suffers from the non-trivial structure of the counterterm.
One may easily expect that this issue appears to be more severe if a generalisation
at NNLO is attempted by following the same philosophy.

3.1.3 Summary: FKS vs CS scheme

A summary of the main features of FKS and CS method is given in Table 3.1}

Feature FKS

>

Counterterm definition though plus distributions

Partition of the radiative PS (*)

Different parametrisation for each sector

Analytic integration after getting rid of sector functions (*)
Counterterm defined in the whole PS

Counterterm are sum of terms, involving three parton each (*)
Each term of the sum has different remapping (*)

Different PS parametrisation for each term of the sum (*)
Easy analytic integration (*)

x X X X X NN NS
X NSNS N\ %X %X % X%

Table 3.1: Comparison between the main features of the FKS and CS schemes.

The phase space partition implemented by FKS allows for the treatment of a phase
space region at a time, featuring at most one soft and one collinear singularity.
The corresponding counterterms are then defined region by region, by regulating
the real matrix element via the introduction of plus distributions. This way, the
explicit expression for the subtracted real matrix element, as well as the struc-
ture of the counterterms, is quite simple. In each sector a specific counterterm is
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defined and has to be integrated in the proper radiative phase space. Such single-
unresolved phase space is parametrised in terms of energy and angular variables
designed to be consistent with the given sector. Moreover, the sector functions
can be combined in order to disappear before performing the phase space integ-
ration. With different characteristics, also the CS scheme results to be a very
efficient subtraction procedure at NLO. The phase space singularities of the real
matrix element are cancelled by a counterterm defined on the entire phase space,
and capable of reproducing both soft and collinear limits at once. This can be
achieved by identifying all the possible pairs of unresolved partons, and, for each
pair, a third particle playing the role of spectator. The radiative phase space is
then parametrised differently for each pair contributing to the singularities of the
real correction. Both methods have been efficiently implemented numerically: the
FKS scheme is the subtraction method exploited in the code MadFKS by Frederix,
Frixione, Maltoni and Stelzer [48], while the CS subtraction has been implemented
by [45-47,49,(144]. Despite both procedures relying on efficient strategies to solve
the intrinsic difficulties in subtracting IR divergences, they both imply non-trivial
counterterm integration. In the FKS approach, the parametrisation of the coun-
terterms is chosen according to the specific sector and does not take into account
the expression of the counterterms. Following a complementary strategy, the CS
counterterm is parametrised by looking at the counterterm structure, which how-
ever can be highly non-trivial, resulting in an involved integration procedure. We
can then design an efficient and optimised subtraction method by conjugating
the main advantages of both schemes (that we have identified with a (*) in the
table above), implementing a phase space partition as in the FKS scheme, and a
parametrisation strategy inherited by CS. This allows for a minimal structure of
the counterterms, which are subsequently parametrised according to the Lorentz
invariants appearing in the singular kernel. The phase-space integration is then
feasible with standard tools and the integrated counterterms at NLO are known
to all orders in the regulator e.

3.2 Local analytic sector subtraction at NLO

Having identified the main strengths of the FKS and CS schemes, we can build a
new subtraction procedure that benefits from a minimal local counterterm struc-
ture arising from a sector partition of the radiation phase space, and from the
simplifications following from an adaptive mapping procedure and phase space

parametrisation.
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3.2.1 Sector functions

Our first step in setting up the subtraction formalism at NLO is to introduce
a partition of the real-radiation phase space by means of sector functions W;;,
inspired by the FKS method [39]. The W;; functions are designed to satisfy the
same properties as the one discussed in Sec[3.1.1.2]

Wy =1, (3.74)

i, j#i

SiWa = 0, Vi#a, (3.75)

CiiWa = 0,  Vab¢n(ij), (3.76)
;Y Wi =1,  Cyd Wa =1, (3.77)

k#i ab € 7 (i5)

where 7(ij) = {ij, ji}. S; and C;; are projection operators on the limits in which
parton ¢ becomes soft (i.e. all components of its four-momentum approach zero),
and partons ¢ and j become collinear (i.e. their relative transverse momentum
approaches zero), respectively: the action of these operators on matrix elements
and sector functions will be described in detail below. Eq. is a normalisation
condition that recognises the W;; functions as a unitary partition of phase space.
Eq. and Eq. express the fact that a given sector function W; selects
only one soft and one collinear singular configurations, S; and C,;, respectively,
among all those present in the real-radiation matrix element. The sum rules in
Eq. imply that, upon summing over all combinations of indices associated
to sectors that survive in a given soft or collinear limit, the corresponding sector
functions reduce to unity. This fact proves crucial for the analytic integration of
the subtraction counterterms, as is well known in the FKS method, and as we will
further discuss in the following; analytic counterterm integration in turn makes it
possible to show in closed form the correctness of the singularity structure of the

subtraction terms.

There is ample freedom in the choice of sector functions, the only requirement
being that they satisfy the relations (3.74) to (3.77). In order to provide an
explicit definition of W;j, let us introduce some notation: let s be the squared
centre-of-mass energy, ¢* = (1/s,0) the centre-of-mass four-momentum, and k'
(t=1,...,n+1) the n + 1 final-state momenta of the radiative amplitude. We

set

S = 2q-ki, Sij = 2k; - ky,

SZ P
e = & wy = —9 (3.78)
S Sqi qu
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We now define NLO sector functions as (see Sec|3.1.1.2)

045 . 1
—_— th i = : 3.79
§ , Okl ’ A 74 €; Wij ( )

k, 12k

Wy =

The double sum in Eq. runs over all massless final-state partons, including
those that are not associated with singular limits. This choice is made in order
to ease NNLO extensions, as detailed below. With the definition in Eq. , it
is easy to verify that all properties in Eqgs. (3.74]) to (3.77) are satisfied, and in

particular one finds that

1/U)ab €p
SiWa = bia =77 Cij War = (0ia0jp + 0it05a ; 3.80
Wab S 1wy iWa = (8iabjp + bj)ea_|_6b (3.80)
l#a

from which the desired properties follow.

3.2.2 Definition of local counterterms

As discussed above, properties (3.75) and ensure that, in a given sector
ij, only the S; and the C;; limits (as well as their product) act non-trivially. A
candidate local counterterm Kj;; for the real matrix element R in this sector can
thus be built collecting all terms in the product RW;; that are singular in such
soft and collinear limits, and taking care of correcting for the double counting of
the soft-collinear region. We define therefore

K = Z K;; = Z (Si + Cij —Si Ciy) RW;
i, i i, j#
= > [Z S; Wij] SiR+ ). [Cij (Wi + Wﬂ)] Cij R
i A i, j>i
5 [si C;; Wij} S,Cy; R. (3.82)
i

Here and in the following, projection operators are understood to act on all quant-
ities to their right, unless explicitly separated by parentheses: for instance in
the expression (S; A) B the soft limit is meant to act only on A, and not on
B. In Eq. , the term featuring the composite operator S; C;; removes the
soft-collinear singularity, which is double-counted in the sum S; + C;;; the or-

der in which the projectors act is arbitrary, since they commute, as mentioned in
Secl2.4.2l As will be detailed in Section [3.2.3] and can be deduced from the sum
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rules in Egs. (3.77)), the content of each square bracket in Eq. (3.82) is equal to 1

upon summation over sectors, a crucial property for counterterm integration.

Our candidate counterterm Kj;; is structurally similar to, and as simple as, the
FKS counterterm for sector ij, however it has the advantage of being defined
without any explicit parametrisation of the soft and collinear limits. Its constituent
building blocks are the universal soft and collinear NLO kernels which factorise
from the radiative amplitude in the singular limits. We have already discussed
in detail the formulae that describe the singular behaviour of real radiations (see

Sec)2.4)), so here we just report the main results to set our notation. We write

R({k}) = -M Z ") Bim ({k};) (3.83)

l#i
mi
N »
ROKY = T [Py B0 h) + QF B (b)) |
= ASP;;” By ({k}s5. k) (3.84)
SiCuRUKY) = 208, Py B({kby k) = 200 C T B((k)) , (35)

ij

where we introduced several notations. Specifically, the prefactor N; is defined as

2,76\ €
e
= 8 . 3.86
M 7ras< yo ) : ( )

{k} is the set of the n + 1 final-state momenta in the radiative amplitude, while
{k}; is the set of n momenta obtained from {k} by removing k;; when a function
takes the argument ({k},;, k), it depends on the set of n momenta obtained from
{k} by removing k; and k;, and inserting their sum k = k; + k;; finally, B is the

Born-level squared matrix element, while
By = AVN(T, - T,,) AD (3.87)

and B, is the spin-connected Born-level squared matrix element, obtained by
stripping the spin polarisation vectors of the particle with momentum £ from the

Born matrix element and from its complex conjugate.

The NLO soft and collinear kernels are of course well known. In our notation, the

eikonal kernel Il(g, relevant for soft-gluon emissions, is given by

IO = gy (3.88)

Sil Sim
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where f; indicates the flavour of parton 4, so that dy,, = 1 if parton 7 is a gluon, and
0t = 0 otherwise. In order to write the collinear kernels, we begin by introducing
a Sudakov parametrisation for the momenta k!' and kf , as they become collinear.
We introduce a massless vector £, defining the collinear direction, using

= R [ VL N (3.89)
Sir 1 Sjr

where k%2 = 2k; - k; = si;, and k, is a massless reference vector (for example one of
the on-shell momenta of the set {k}, with r # i, j), so that k> = 0. We now write
a Sudakov parametrisation of k, (a =1, j), as
ko= k“+l§:“—iik“ (3.90)
“ ¢ ©wy 2kk, T
where we defined the transverse momenta /55 with respect to the collinear direction

k, and the longitudinal momentum fractions x, along k, as

= kg‘—xak“—(k]!;a—xa)kirkﬁ, MR =0,
T, = IZZIZ _ S”S—irsz, ri+x;=1. (3.91)
The transverse momenta k,, for a = i, j, satisfy
ko k= ko ke = 0. (3.92)

We can now write the spin-averaged Altarelli-Parisi kernels Pj;, in a flavour-

symmetric notation, as

Py = Pij(zi,z))

T, T 22,7 ;
= 05,407,42Cx (:L‘_] + ZE_Z + l‘ﬂ:j> + 5{fifj}{qq} TR<1 — 1 é)
1+ 22 14+ 22
+ 8t Or0 Cr (——t — €2) + 0100y Cr (—— — exi) . (3.98)

J 7

where we defined the flavour delta functions ds¢yq) = 074 + d7g, and 0y, ,1(qq) =
0f,40f,4 + 05,405,4- In the following we will use interchangeably the notations P,
Pyj(x;,z;), or Pyj(sir, sjr) to denote the collinear kernels of Eq. , and similarly
for the azimuthal kernels Q;;" and for P/;". The Casimir eigenvalues relevant for

the SU(N,) gauge group are Cr = (N2 —1)/(2N,) and C4 = N., consistent with
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iz

the normalisation T = 1/2. The azimuthal kernels Qj;" can be written as

1% uv Nz ]%f]%;/

o= @y (@) =Qy| — g +<d_2>? ;

QCCZ‘QJJ'
Qij = Qi 25) = = 05,9059 2Ca 25 + O pyyen Th 7

(3.94)
As we have already mentioned, the presence of the azimuthal kernels ij” is neces-
sary in order to achieve a local subtraction of phase-space singularities, although
it does not survive the integration over the unresolved phase-space. The collinear

kernels satisfy the symmetry properties P;; = Pj;, Qij = Qji-

The final ingredient is the soft-collinear kernel for sector ij, which can be obtained

g

by acting with the soft projector S; on the collinear kernel P;; (indeed, i 1s soft-

finite). One gets

=207V, (3.95)

X Sjr SZ Pij
Siby = 07920y, = 05,920~ = ——
i ir iJ

where Cy, = C40y,4 + CF 0y 4q1- Importantly, the same soft-collinear kernel is
obtained also by taking the collinear limit of Eq. (3.88]). Subtracting from the
collinear kernels their soft limits, one gets the hard-collinear kernels

2$i

2x;

h h _ J
PijC — Pijc(xi’xj) = Pij — 5figcfj_x- — 5fngfi -
i J

22,7
5f195fjg 2C'y Tixj + 5{fifj}{qq} TR<1 - 1= Z) (3.96)

+ 5fz‘{q,¢?}5fj9 CF(l - 6) Tj+ 6fi96fj{q7l?} CF(l - 6) Z.

Although the candidate counterterm K;; defined above contains all phase-space
singularities of the product R W,;, with no double counting, the kinematic depend-
ences on the right-hand sides of Egs. , and are not yet suited
for a proper subtraction algorithm. Indeed, {k}, is a set of n momenta that do not
satisfy n-body momentum conservation away from the exact S; limit, and, simil-
arly, in the set ({k},;, k) momentum k = k;+F; is off-shell away from the exact C;;
limit. The Born-level squared amplitudes B appearing in the counterterm must
instead feature valid (i.e. on-shell and momentum conserving) n-body kinemat-
ics for all choices of the n + 1 momenta in the radiative amplitude. A kinematic
mapping is thus necessary, in order to factorise the (n + 1)-body phase space into
the product of Born (n-body) and radiation phase spaces, thereby allowing one to
integrate the counterterms only in the latter.
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As already mentioned, an important property of the projectors S;, C;; is that they
commute when acting on both sector functions and matrix elements, so that the
order with they appear is not relevant. The explicit proof of such commutation
can be carried on by considering the action of operators S; and C;; on ratios of

elementary massless invariants s;; is given by

s, 2l 2 g, S, 2% — 0, Yabe#i, (3.97)
Sib Sbe

Cij il A 0, C;; Sia independent of a, Vab ¢ m(ij). (3.98)
Sab Sja

We start by verifying that the sequential action of the singular projectors on sector
functions does not depend on their ordering. To this end note that

1/w;;
J ; 1/w1l J J < )
Cij Wij = c. jf .. — Sz Ci]' Wij =1 , (3100)
i T €

where in Eq. (3.99) we used the fact that only I = j gives rise to a singular
contribution 1/w; in the collinear limit, while in Eq. (3.100) we have noted that
e; — 0 in the soft limit.

Next, we consider the action of the composite projector S; C;; on the physical
real-radiation amplitude squared, where, without loss of generality, we drop all
kinematic dependences in the real and Born-like matrix elements. Starting from

Eq. (3.84) we find

s,c,r =M [

Sij

S, P;B+S; W] . (3.101)

We now note that Q;;’, defined in Eq. (3.94), is not singular in the soft limit for
parton 4, hence S; Qj;" = 0. The same happens for all terms in P; which do not
contain a denominator 1/x;. We now rewrite the remaining contributions in terms
of Mandelstam invariants, using the definition of z; and z; in Eq. , with the
result

1+ x
Pij = 044054 2CA + Ofig 0f;{0.3y OF

Iy,

2
1 + [Sjr/ (Sir + Sjr)}
Sir/ (Sir + Sjr)

= 01,9085 2CA +5flg 04 (a0 Cr + ..., (3.102)
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where the ellipses denote terms that remain regular as parton ¢ becomes soft.
Taking now the S; limit according to Eq. (3.97)), we get

25,

SiPij = 5fg5f3920A8_+5f195fg{qq}CF

mr ir

= 5fzg 5fgg 2CA + 5)29 5}”; {8,9

(3.103)

In particular, we note that the soft limit S; does not correspond to taking x; — 0,
rather to taking s;, — 0 (the two definitions differ by subleading soft terms). The
soft-collinear limit is thus

N 25,
S; C”R B -1 <5f295f1920A +6f196fj{qq} Cr 5 ) . (3104)

i Sir

We can now verify commutation by considering the two singular limits in reversed

order. We find
ki I
Among all the terms in the double sum, only those with k = j or [ = j are singular

in the collinear limit, hence

CuSiR = —M2c, S ip,. (3.106)

Sij 1£i Sil

According to property (3.98)), in the collinear limit C;; the ratio s;;/s; is inde-
pendent of [: we can therefore set [ = r and get

2 s 2 s,
CijSikR = —Nidgp— 55 Zr ZBJZ = N — o SZT Cy, B
M 255y
— B S—l (5f19 5f3g 2CA + 5fzg 6f]{q q} OF > 5 (3107)
*J Z Z”"

where in the last two steps we have used colour algebra, and the definition of
the Casimir operator Cy, = C4dy,q + Crdy,(qq3- The equality of Eq. (3.107) and
Eq. (3.104)), together with relations (3.99) and (3.100]), shows the desired commut-

ation of limits in each sector 7j.

Since the kernels in Egs. — are built in terms of Mandelstam invariants,
and have not yet been parametrised at this stage, there is still full freedom to
choose the most appropriate kinematic mapping in order to maximally simplify
the analytic integrations to follow. In particular, at variance with what done in
the FKS algorithm, in any given sector one can employ different mappings for
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different singular limits, or even for different contributions to the same singular
limit. In order to take advantage of this freedom, we introduce now a generic
Catani-Seymour final-state mapping and parametrisation 2|, as follows. Let k,
and k;, be two final-state on-shell momenta, and let k. be the on-shell momentum
of another (massless) parton, with ¢ # a,b. Now one can construct an on-shell,

momentum conserving n-tuple of massless momenta {k}(®¢) as

{k} (abe) _ { ’San)}m;éa , E’,EabC) == ki; if [ 7£ a, ba c,
R T U T T
Sac Tt Sbe Sac + Sbe

where Sqpe = Sap + Sac + Spe, and in particular the condition
I_Clgabc) + ]%gabc) =k, + ky + k. (3.109)

ensures momentum conservation. Note that the collection of the n light-like mo-

menta {k}(%) can also be expressed as

{]%}(abC) — {{k}ﬂié’ abC) k,abc} ‘ (3_110)

Next, we select different values of a, b, ¢ in different sectors and limits. Consistently
with the general structure of factorised virtual amplitudes [137], we treat separ-
ately the soft and the hard-collinear limits. For the hard-collinear kernel in sector
ij, (Cij — S; Cyij) RW;;, we choose to assign the labels a, b, and ¢ of Eq.
as a = i, b = j, and ¢ = r: partons ¢ and j specify the collinear sector, while
parton r, introduced in Eq. , is the ‘spectator’. For the soft kernel, S; RW;;,
we choose to map differently each term in the sum over I,m in Eq. , with
assignments a = i, b = [, and ¢ = m. We then define the local counterterm as

Z [ZS WZJ:| SiR+ Z [ ij le—i-Wﬂ)]Ein

7 1,5>1
-y [Si Cyy Wy| STy R, (3.111)
i g2

where the barred projectors select soft and collinear limits, and assign the appro-

priate set of on-shell momenta to the kernels. Explicitly

R({k}) = =MD I B ({k}"™) (3.112)

1#£1
I'el N V 1.0\ (ag7
R({k}) = P} Bu({F}") (3.113)
ij

SiCyR({k}) = 2N Cp TV B({k}D) (3.114)
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where we stress that r # i, 7 can be chosen differently for different ij pairs, with
the constraint that the same r should be chosen for all permutations of 77. We
stress that when defining the barred counterterms in Eq., the following
consistency relations need to be respected:

SiR({k}) = SiS;R({k}), (3.115)
C; R({k}) = CyCyR({k}), (3.116)
S;Ciy R({k}) = SiS;Cy R({K}) , (3.117)
C;SiR({k}) = Cy;S;C;R({k}). (3.118)

This ensures that the complete counterterm (Eq) features the same phase-
space divergences as R in all one-unresolved singular regimes, sector-by-sector.
The validation of the consistency relations in Eqs.— reduces to simply
check whether the barred kinematics inside the Born matrix element appearing
therein returns the Born kinematics in Eqs.—. This is indeed the case,

since

S, (k) = s, {{k}w, Jolied) /2“‘“‘)} — {{k} g0 ker k) = (ks (3.119)
Ci; {];;}(ijr) = U{{k}ljrv () /?J,(,ijr)} = {{k}iﬁ?ki + k:j,kr} = {{k}”,k} ,

where k = k; + k;. To prove the remaining relations a slightly more care should
be taken. Let us start from Eq.(3.117))

S:Ci; R = ( i Pf;”) B (Si {k}UM) = 2N, €, j”B(si (k30 |

S;S,Cy R = <Si2/\f1 Cy, T ) B(S: {F}7) = 2N, C, T8 B(S; {R}7) |

where in the first line we have exploited Eq.(3.95)). It is evident that the two
limits coincide no matter S; {k}®" is equal to. Finally, Eq.(3.118)) can be proven
by considering

CySiR = —Cy(N > I Bin({R}™) ) (3.120)
l,m#i
= —MZ (X By ) + 3 By ({E}O) ) |
l#i,j m#i,j

where in the second line we have exploited the fact that the collinear limit selects
on those contributions where [ or m is equal to j. The corresponding eikonal factor
is then independent of [ or m, and is thus pushed out of the sum, replacing [ or
m with the auxiliary particle r. At this point the collinear limit acts to the Born
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kinematics, returning

(i) 7.(ilj
Cij { R iy B K™ § = {8 gy b by B} = ({1 )
The two momentum sets reduce to the same n-parton momenta, and they lose

their dependence on [ and m. Therefore, colour conservation can be applied to get
rid of the colour correlations featured by the Born matrix element. This way

CySiR = 2N, C, TV B({k}. k) . (3.121)
On the other hand, the r.h.s. of Eq.(3.118) gives

CiiS;Ciy R({k}) = (CijQNlcijj(?)B(cij{/g}<ijr))
= 2N Cy, I B({k} 5. k) | (3.122)

which coincides with Eq.(3.121]), completing the consistency checks.

The expression in Eq. (3.111]) can be rewritten in terms of a sum over sectors of
local counterterms K, each containing all the singularities of the product R W;:

K =) K, K = (S;+C;; —S;Cyj) RWj;, (3.123)
i\j#i
where it is understood that the action of barred projectors on sector functions is the
same as that of un-barred ones, namely S; Wy, = S; W, and Ezj Wap = Cij Was.
To obtain Eq. we have used the symmetry under exchange ¢ <+ j in our
definition of éij R.

3.2.3 Counterterm integration

The counterterm defined in Eq. is a sum of terms, each factorised into
a matrix element with Born-level kinematics, multiplying a kernel with real-
radiation kinematics. The analytic integration of the latter in the radiation phase
space proceeds by first summing over all sectors, as done in FKS. This opera-
tion matches the fact that the integrated counterterm must eventually cancel the
singularities of the virtual contribution, which obviously is not split into sectors.
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Upon summation over sectors, the integrand becomes independent of sector func-
tions. In fact

K = > SiR+) Cy(1-S;-S))R. (3.124)
i i, j>i
In the soft term we have considered that the kinematic mapping is j-independent,
and performed the sum over j, exploiting the soft sum rule in Eq. ; in the
hard-collinear contribution we have used the symmetry of the kinematic mapping
and of the collinear operator Cij under the interchange i <> 7, exploited the
collinear sum rule in Eq. , and the fact that S, C;; W;; = S; C;; Wj; = 1 (see
Eq. and Eq. ) The form of the counterterm in Eq. is now

suitable for analytic phase-space integration.

We start by introducing the Catani-Seymour parameters

. (3.125)
Sabe Sac + Sbe

which satisfy
Sab = Y Sabe , Sae = 2(1 = Y) Sape , Sbe = (1= 2)(1 = y) Save, (3.126)

so that 0 <y < 1and 0 < z < 1. We use these variables to parametrise the
(n + 1)-body phase space, consistently with the mappings in Eq. (3.108)), as

d®,,,1 = dO) 4o A0 = 4, (gggbc>;y,z,¢) . (3.127)

rad

leading to the explicit expression
/dq)rad (s;y,2,¢) = N(e) sl_e/ do sin~*¢ x
1 01 .
X /dy/ dz [y(l —y)Pz(1—2)| (1—y), (3.128)
0 0

where d@,(fbc) is the n-body phase space for partons with momenta {l%}(“bc), ¢ is
the azimuthal angle between k, and an arbitrary three-momentum (other than
ky, k.), taken as reference direction, and we have set

— (47‘-)672 g(abc)
T /rl(1/2 —¢€)’ be

We first consider the integral I of the hard-collinear counterterm

N(e) = 2k B — 5. (3.129)

R* = Y0 (1= 8= 8) R = S TR BL(R) L @130
i, j>i i,j>i Y
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where
Pi?c,uszﬂy<{]%}(ijr)) _ Pz?C B({EZ}WT)) _|_Q§tjl/ Bﬂy({/;:}(iﬁ)) ‘ (3'131)

Each term in the double sum in K ™ is parametrised assigning labels a =i, b = j,
and ¢ = r, as detailed below Eq. (3.109). We have

phe _ Snil Z /dq)r;](;) C” 1—S _ S, ) R({k}) , (3.132)

i, J>1

where ¢, indicates the symmetry factor associated to the k-body final state. We

note that the integral does not receive any contribution from the azimuthal kernels
parametrisation, the variable z coincides with the collinear fraction z; defined in
(igr)

as the latter integrate to zero in the radiation phase space. In our chosen

Eq. (3.91)), while s;; = ys;7 7. The analytic integration of the counterterm is
therefore straightforward, and can be carried out exactly to all orders in €. By
defining
hc 1 Pi?C(Z’ 1 - Z)
Jij (876) = g dq)rad(s;yaza(ﬁ)T
Am) 2 T(1 -l (2—¢)[ Ca
= — df.40 3.133
¢ eT(2—3¢) |3—2¢ 199 (8-133)
2TR
(5fz{q D050 + OrstaaOne) + 35 5{fzfj}{qq}]
one finds
c Sn+1 c ijr) 7.1 (2gr
o= NS (547, €) B({R}") (3.134)

B, J>1

2\ e . Ca+4TrNs 1 8
= 5 () B [y SR (e S

Cr /1 _
+6fp{‘]‘1} 2 (E +2 lnnPT)] +O<€>7

where in the last step we replaced the sum over i, j with a sum over ‘parent’

partons p (which has absorbed the ¢, /¢, symmetry factor), carrying momentum

l;:](-ijr) (see Eq. (3.108))), we included a 1/2 Bose-symmetry factor in the C'y term,

accounting for gluon indistinguishability, and we considered Ny light qq pairs. The
invariant 7, is defined as 7,, = 5;; (igr) /s = sijr/s, with r # p. Notice that the result
contains only a single 1/e pole, consmtently with the fact that soft singularities

are excluded.
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Next we turn to the integral I° of the soft counterterm
=Y SiR. (3.135)

We parametrise it by assigning different labels to each term in the eikonal sum,
with a = ¢, b = [ and ¢ = m, as detailed below Eq. (3.109)), obtaining

roe ey [ s8R (R
= NS B (R [aellz). (sas)

n i i
m£i

In our chosen parametrisation $;,,,/$;m = (1 — 2)/z, and s = ys(d ). the soft
counterterm can then be analytically integrated, once again to all orders in €. By
defining, for each term of the eikonal sum,

1 1—2  (4m) 2T -er(2

S - . o —6)
J3(s,€) = S/dérad(s,y,z,qﬁ) o« TR 3 (3.137)

we get the simple result

75 = _Nl Sn+1 Z 5]292 JS <Sl:,llm)7 > Blm({%}(zlm))

7 l#1
m#£i

— ( ) {Zoﬁ ({k}) ( +2+6——§2)
+ Y Bin({k}) In i (%—i—?—%lnﬁlm)] + O(e), (3.138)

1, m#l

where in the second step we have remapped all identical soft-gluon contributions
on the same Born-level kinematic configuration {k}, and the sum >, d;,, has
absorbed the symmetry factor ¢,1/,. Note that Eq. (3.138) correctly features a
double 1/e pole, coming from soft-collinear configurations.
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We can finally combine soft and hard-collinear integrated counterterms, obtaining,
up to O(e) corrections,

I({k}) = I*({k}) + 1™ ({k})
— %(%){[ Z(ka %)+ > Bu({k}) élnﬁkl]

k k, 1k
{ ({k}) Z (MQMQMM _ ;)
k
+ 89 Ca (6 - 5@) + 5fk{qﬁq}%(1o G+ i) )

+ 7 Bu ({k}) i (2 %mﬁk,ﬂ } (3.139)

k, £k

where we introduced the spin-dependent one-loop collinear anomalous dimension

110, — 4 TR N;
6

3
Yo = Opg + Ofifaat 5CF - (3.140)

The integrated counterterm in Eq. successfully reproduces the pole struc-
ture of the virtual NLO contribution (see for example [7]), which provides a check
of validity of the subtraction method. Moreover, we note the simplicity of the
integrated counterterms to all orders in €, which is a direct consequence of having
optimally adapted term by term the kinematic mapping and parametrisation.

We conclude this Section with three considerations on the structure of the coun-
terterm. First, the strong coupling ag has been treated as a constant throughout
the computation. A dynamical scale for the coupling can simply be reinstated in
the counterterm by evaluating it with the Born-level kinematics {k}. Second, in
the counterterm definition in Eq. we have chosen to apply projectors S;
and Cij only on the product R W;;, while treating exactly the phase-space measure
d®P,.q. In other words, the counterterm phase space is exact, and coincides with
that of the real-radiation matrix element. We stress that this feature is not cru-
cial to our method: one could as well consider approximate phase-space measures
d&)rad, provided they correctly reproduce the exact d®,,q in the singular limits.
In the massless final-state case, as evident from the above calculation, no compu-
tational advantage would result from such an approximation, however the latter
may become relevant in more complicated cases. Analogously, restrictions on the
counterterm phase space could be applied in order to improve the convergence of

a numerical implementation. We leave these possibilities open for future studies.

Third, Eq. (3.123) and Eq. (3.124) are analytically equivalent, but they under-
pin different philosophies in the implementation of the subtraction scheme. In
Eq. (3.123)), which is our preferred choice, subtraction is seen as the incoherent
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sum of terms, each of which features a minimal singularity structure and is separ-
ately optimisable, in the same spirit of the FKS method but, we believe, featuring
enhanced flexibility. Eq. (3.124), which in what we have presented is employed
only for analytic integration, represents a single local subtraction term containing
all singularities of the real matrix element, hence it has the same essence as CS
subtraction, but with much simpler counterterms. Our method at NLO repres-
ents thus a bridge between these two long-known subtraction methods, aiming at
retaining the virtues of both, and not being limited by the mutual suboptimal
features.

3.3 Local analytic sector subtraction at NNLO

3.3.1 Generalities

The generalisation to NNLO of the subtraction pattern presented in Eq. has
already been discussed in detail in Chapter 2l Here for completeness we just
summarise the main aspects of the subtraction procedure at NNLO, according
to the real-radiation approach. The NNLO contribution to the differential cross
section with respect to a generic IR-safe observable X can be schematically written
as

do NNLO

dX

= / AP, VV 5,(X) + / AP i1 RV 8,1 (X)
+ / AP0 RR 6y ia(X), (3.141)

where RR, V'V, and RV are the double-real, the UV-renormalised double-virtual,
and the UV-renormalised real-virtual corrections. The sum of these three con-
tributions is finite due to the IR safety of X and to the KLN theorem. It is
however clear that the difficulty of evaluating and integrating complete radiative
matrix elements in arbitrary dimension at NNLO is significantly more severe than
at the NLO, hence the necessity of a subtraction procedure. Subtraction at NNLO
amounts to modifying Eq. by adding and subtracting three sets of coun-
terterms: single-unresolved, double-unresolved, and real-virtual, which we write

as
/ A%, s KM 6,01 (X) / 4, (F(z) —F(”)) 5,(X),

/ A%, K™ 6,(X). (3.142)



Chapter 3. Subtraction Chapter 3 Subtraction

The single-unresolved counterterm dC/I\)nH K™ features the subset of single-unresolved
phase-space singularities of d®,,,, RR.

The combination d(/I;n—i—? (f A K(IZ)) contains all singularities stemming from
kinematic configurations where exactly two partons become unresolved. Notice
that the term f(lz) represents the overlapping between the double-unresolved

) (1)

counterterm K ) and the single-unresolved K ', and therefore it will appears

with a minus sign, in order to avoid double-subtractions. The distinction between

K® and T will be described in detail in Section m The third subtraction
~  —(RV

term, d®,, .1 K

the corresponding phase-space-integrated counterterms with

) cancels the phase-space singularities of d®,,.; RV. Denoting

~ —(1 -~ —(2
I(l) = /dq)rad,l K( )7 1(2) - /dq)rad,QK( )7

7a2) _ / (10 K2, JERY) _ / A ™) (3.143)

where we have introduced the quantities darad,l = d$n+2 / d@nﬂ, d@radg = dEI\JnJrg /d®,,,
and d@md = d:I;nH /d®,,, the subtracted NNLO cross section can be identically

rewritten as

doxnro

dX

= / d®, (VV + 13 + 18V))§,(X) (3.144)

+ / (40 1 RY + dBy1 1) 8,1 (X)

—d, ., (F‘RV’ + ](12))6n(X)}

+ / [d@n+2 RR8pea(X) — d®, o K 6,00 (X)
~d8,.2(K® =T ")su()

where, with respect to Eq., we have slightly simplified the notation, omit-
ting the subscripts for the counterterms and the matrix elements. In the third and
fourth lines of Eq. (3.144), all terms are separately finite in d = 4, and their sum
is finite in the double-radiation phase space. In the second line, I (1) features the
same poles in € as RV, up to a sign, so that their sum is finite in d = 4. The coun-
terterm F(
however explicit poles in €, and the local counterterm K

’Y) locally subtracts the phase-space singularities of RV’; it contains
%) {5 such that the integ-
ral 7 (*2) cancels those poles; furthermore, the finite sum RV + I () features phase
space singularities, and these must be cancelled by the finite sum ") +1(12),
In total, the sum of the four terms in the second line of Eq. is both finite in
d = 4 and integrable in the single-radiation phase space, making this contribution

numerically tractable. Finally, in the first line of Eq. (3.144)), the sum [ 4 [(RV)
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features the same poles in € as V'V | up to a sign, making the Born-like contribution
finite and integrable.

3.3.2 Sector functions

As in the NLO case, we start by partitioning the phase space in sectors, each
of which selects the singularities stemming from an identified subset of partons.
We thus introduce sector functions Wp.q, with as many indices as the maximum
number of partons that can simultaneously be involved in an NNLO-singular con-
figuration. We reserve the first two indices for singularities of single-unresolved
type, implying that b, ¢, and d differ from a. As far as double-unresolved config-
urations are concerned, in particular those of collinear nature, they can involve
three or four different partons, hence either indices b, ¢, and d are all different,
or two of them are equal. Without loss of generality we choose the third and the
fourth indices to be always different, so that the allowed combinations of indices,

that we refer to as topologies, are
Wijjk y Wijkj y Wijk:l s i,j, k,l all different . (3145)

Since the sector functions must add up to 1, in order to represent a unitary par-
tition of phase space, they can be defined as ratios of the type

Wabcd = O-(;_de; o = Z Z Oabed — Z Z Wabcd =1. (3146>

a,b#a c#a a,b#a c#a
d#a,c d#a,c

There is a certain freedom in the definition of ... Analogously to the NLO
case, we design them in such a way as to minimise the number of IR limits that
contribute to a given sector. In addition, at NNLO there is another property to
be required, new with respect to NLO, and related to the fact that the integ-
rated single-unresolved counterterm /™ must be combined with the real-virtual
contribution, to cancel its explicit poles in €, as detailed in Section [3.3.1} Since
RV, as any term with (n + 1)-body kinematics, is split into NLO-type sectors, the
same must be true for 7. This implies that, roughly speaking, sector functions
with four indices must factorise sector functions with two indices in the single-
unresolved limits, in order for the cancellation of poles to take place NLO-sector
by NLO-sector.

A possible expression for o4, with the required properties is

1 1
Tabed = : a > 1. 3.147
bed (ea wab)a (60 + 6bc ea) Wed ( )
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With the sector functions defined in Eq. (3.146|) and Eq. (3.147)), the list of singu-
lar limits acting non-trivially in each NNLO sector includes the single-unresolved
projectors S, and C,;, already considered at NLO, as well as the following double-

unresolved limits:

S :  eq, e — 0, e,/e, — constant
(uniform double-soft configuration of partons (a, b)),
Cabe ©° Wap, Wae, Wpe —> 0, Wap/Wae, Wap/Whe, Wae/Wpe — constant
(uniform double-collinear configuration of partons (a, b, c)),
Cabed ©  Wap, Weg —> 0, wep/weq — constant
(uniform double-collinear configuration of partons (a,b) and (¢, d)),
SCube : €q, wpe — 0,  e4/wp. — constant

(uniform soft-collinear configuration of partons a and (b,c)). (3.148)

Notice that only the first two limits of the list are genuinely double-
unresolvedEL namely they cannot be reduced to compositions of single-unresolved
limits when acting on the double-real matrix elements; the remaining two con-
figurations are compositions of single-unresolved limits when acting on matrix
elements, but not when they are applied to the sector functions in Eq. ,
therefore they have to be introduced as independent limits. In Appendix [B] we
show that, among the single- and double-unresolved limits that we are considering,
only a subset give a non-zero contribution in the various topologies. They are

Wijjk : Si, Cij ) Sij ) Cz‘jk ) SCijk: ;
Wz‘jkj : Si, Cij » Sik s Cz‘jk ) SCijk; ) Sckij ;
Wi+ Si, Cij, Sk, Cijrrs SCiw, SCpij . (3.149)

In Appendix Bl we also show that all the limits reported in Eq. commute
when acting on the sector functions, and that the combinations of these limits ex-
haust all possible single- and double-unresolved configurations in each sector. We
stress that the list in Eq. strictly depends on our choice of sector functions:
definitions other than Eq. imply a different set of contributing limits. As
an example, in a preliminary implementation of the method, sector functions were
defined by weighting differently the energy and the angular variable relative to the
first two indices

1 1
ea)a (wab)ﬁ (ec + 5bc) Wed ’

Oabed = ( a > 5 >1. (3150)

n the literature the configuration Cgp. is sometimes referred to as triple-collinear. We call it
double-collinear, following [135], in order to consistently specify the type of configuration as being double-
unresolved, rather than indicating the number of partons that become collinear.
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This choice naturally induce a different hierarchy between soft and collinear lim-
its, privileging the former with respect to the latter. As a direct consequence, the
soft-collinear projector SC. is substituted by two different soft-collinear limits,
which differs in the order we apply them on sectors and matrix elements.

It is now necessary to study the properties of the sector functions defined in
Eq. and Eq. under the action of single-unresolved limits. As
noted above, in these configurations the NNLO sector functions must factorise
into products of NLO-type sector functions. To this end, let us define

we — 4 (3.151)

so that the NLO sector functions in Eq. (3.79)) are given by W;; = Wi(jl). One
easily verifies that the functions Wi(f‘) satisfy all the requirements that must apply

to NLO sector functions. It is now straightforward to verify that the NNLO sector

functions defined in Eq. (3.146|) and Eq. (3.147)) satisfy

S; Wz'jjk = ij Si WZ,(;") ) Cij Wijjk = W[’iﬂk’ Cij Wi(f) )
S; Wijkj = ij Si WZ‘(;X) ) Cij Wijkj = Wk[iﬂ Cij Wi(f) )
S Wy = WaSiWs!, CyWyu = WuCyWi',  (3.152)

Si Cij Wiz = WinSiCy Wy,
SiCij Wiy = Wi SiCy WY,
S,-CijWijkl = WleZCZ]WZ(ja), (3153)

where Wiy is the NLO sector function defined in the (n + 1)-particle phase space
with respect to the parent parton [ab] of the collinear pair (a,b).

Finally, the NNLO sector functions satisfy sum rules analogous to the NLO ones

in Eq. (3.77), and which stem from their definition in Eq. (3.146)). One may verify
that

Sik (Z Z Wibkd + Z Z chbid) =1, (3.154)

b£i dik btk dtk,i
Cijk (Wabbc + Wabcb) =1 ) (3155)
abe € w(ijk)
Cz‘jkle(Wabcd + Weda) = 1, (3.156)
ab € m(ij)
cd € w(kl)

SCijk {Z (Wibjk + Wibkj) + Z ijid + Z ijz'd:| =1, (3.157)

bti de#i,j dik
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where by 7(ijk) we denote the set {ijk, ikj, jik, jki, kij, kji}. Sum rules for com-
posite double-unresolved limits, that follow from those reported in Egs. —
(3:157)), will be further detailed in Section [3.3.5 where we describe the structure of
the double-unresolved counterterm. We stress that the properties in Egs. —
(3.157)), in full analogy with the NLO case, allow one to perform sums over all
the sectors that share a given set of double-unresolved singular limits, eliminating
the corresponding sector functions prior to countertem integration. This feature,
distinctive of our method at NNLO, is crucial for the feasibility of the analytic

integration of counterterms.

3.3.3 Definition of local counterterms

As reported in Eq. (3.149)), a limited number of products of IR projectors is suf-
ficient to collect all singular configurations of the double-real matrix elements in
each sector. By subtracting these products from the matrix element, one gets, for

the different topologies, the finite expressions

RR;5 =(1-8:)(1—-Cy)(1=8i)(1 = Ci) (1 — SCijr) RR Wiy
(1 . L“)) (1 Lffjk) RR Wik |

RRj; = (1—8i) (1= Cij) (1 = Su) (1 — Cije) x
X (1 — SC”k) (1 — SC]WJ)RR Wijkj
(1 ~L >) (1 - Lw,w) RR Wiy,
RRG = (1=8i) (1= Cyj) (1= Six) (1 = Cijua) %
X (1 —8SCiu) (1 — SChij) RR Wiji
=(1-1) (1-LE) REWyu, (3.158)

%)

where we separated the action of the single-unresolved limits Lw , defined in

Eq. (3 , from that of the double-unresolved ones LT ), defined for the various
topologies T = {ijjk, ijkj, ijkl} by the expressions
= Sij + Cijk(1 = Sy;) +SCyi (1 = Si5) (1 — Ci)
L2 = S+ Cijk(l — zk)
+ [Scijk +SCyy; (1 — SCijk)] (1—Si)(1— Cyi)
Lff,ﬁ, = Su + Cijm (1 — Sir)
+[SCia +8Cyi; (1 = SCa) | (1 = 8) (1 - Cigra) .~ (3.159)
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The order with which the various operators are applied to matrix elements is
irrelevant, as all limits commute. In Appendix |B| we show that this property is
also respected by the sector functions defined in Eq. . Candidate double-
real local counterterms for the various topologies T can thus be defined, in analogy

with Eq. (3.81)), as

K+ K2 — KM = RRWr— RR}
— [ij” +LP LW LT(,Z)] RRWr.  (3.160)

ij
The different contributions are naturally split according to their kinematics. All
terms containing only single-unresolved limits are assigned to K (), the single-
unresolved counterterm; terms containing only double-unresolved limits are as-
signed to K @ which we refer to as pure double-unresolved counterterm; all re-
maining terms, containing overlaps of single- and double-unresolved limits, while

(12)

still featuring double-unresolved kinematics, are assigned to K "</, which we refer

to as mized double-unresolved counterterm. We write therefore, for each topology

T

?

kY = LY RRWr, (3.161)
K® = LPRRW;, (3.162)
K = LYLY RRW. (3.163)

The definitions in Eqgs. (3.161)-(3.163) are very intuitive and compact. First,
notice that the candidate single-unresolved counterterm has the very same struc-

ture as the NLO counterterm, as one can deduce by comparing Eq. with
Eq. . This correspondence is strict: indeed, if one imagines removing from a
given process all n-body contributions, for instance by means of phase-space cuts,
the original NNLO computation reduces to the NLO computation for the process
with n 4 1 particles at Born level, with RR playing the role of single-real correc-
tion, and RV that of virtual contribution; in this scenario, K™ becomes ezactly
the candidate NLO local counterterm. As for the double-unresolved contributions,
K @ is to be integrated in d&)rad,% giving rise to up to four poles in €, multiplied
by Born-like matrix elements, analogously to V'V; the single-unresolved structure
in K on the other hand, makes it suitable for integration in dZI;rad,l; once this
is achieved, its double-unresolved projectors naturally become single-unresolved
projectors for the parent parton which originated the first splitting, thus repro-
ducing the structure of K ®VY), This is necessary, since the integral of K (12 must
compensate the explicit poles in € of K®VY), This cancellation also relies on the
factorisation properties of sector functions, presented in Eq. , as will be
further detailed below.
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The double-unresolved kernels appearing in the counterterm definitions of Eqs. —
(3.163|) can be derived from soft and collinear limits of scattering amplitudes, which

are universal, and for the massless case relevant to this article they were computed

in Refs. |25,27]. General expressions for the kernels can also be derived starting
from the factorisation of soft and collinear poles in virtual corrections to fixed-angle
scattering amplitudes, as we have discussed in detail dealing with the factorisation
approach to the IR subtraction problem. Here we just write symbolically

SyRR({k}) = Z {ZI 7B cdef({k}ij)+I§2”Bcd({k}¢;)},(3-164>
c,d#1,j “e,f#i,j
2
g P B({k} 0, k) + Qi B (R} 0. ) |

ijk

CinRR({k}) =

8 1 Pljk BHV({k},iﬂé?k) ) (3165)

ijk
NQ

SijSkl

CijklRR({k}) Pfjw Pl B ,pro({k}jjkl,kij;kkl) ) (3.166)

2

SCx RR({k}) = —ALP;;: S I8 B (kY ki) - (3.167)

Sk e,dti,j,k
e,d=1..[jK]..n+1

In the equations above, and in the following, the sum over indices ¢ and d is
understood to run over the partons that are present at Born level. For the soft-
collinear limit, for example, the Born-level indices ¢, d cannot be equal to i, j, k, but
they can be equal to the parent parton [jk], deriving from the splitting [jk] — j+k.
In the double-soft limit, B4 is the doubly-colour-connected Born matrix element,
defined for instance in Eq. m the eikonal kernels I() have been defined in
Eq. 1) while the kernels I(dj are defined in Eq.(2 and Eq.(2.118 m I In
the non-factorisable double-collinear limit C,jj, the set of momenta ({k} 4, k)
refers to a set of n partons obtained from {k} by removing k;, k;, and kj, and
inserting their sum k = k; + k; + ki. The expressions for the double-collinear
spin-averaged kernels P;j; and for the azimuthal kernels Qf;;g, all symmetric under
permutationsﬂ of i, j, and k, can be easily extracted from [25,27], and their
expressions are reported Sec We note however that Qﬁﬁ can always be cast

2 According to our conventions, Iéd]) corresponds to Eq. (96) of [27], multiplied times Tr/2 in the qg
case, while it corresponds to Eq. (110) of |27], multiplied times —C4/2 in the gg case. Furthermore, in
order to get Iﬁ;j), one should replace g1 with k;, g2 with k;, p; with k., and p; with kq.

3Symmetry under permutations of 4, j, and k does not mean symmetry under flavour exchange, but
only that kernels and flavour Kronecker delta symbols combine in a symmetric way: this is analogous
to what happens in the case of a ¢ — qg collinear splitting at NLO in Eq. .
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in the form

v ] y Kk
= Qf»ji{— g (=2 = (3.168)
a=t,j,k a
where, in analogy with Eq. (3.91)),
B k-k, E2 L
Kt = ké‘—zak“—(kQ _Za>k-krkﬁ’ K+ kS + k=0,
ka'kr ar
e = - i Gzt =1, (3.169)

k'kr 3ir+8jr+sk7‘ 7

and k¥ is a light-like vector which specifies how the collinear limit is approached.
The Lorentz structure in Eq. (3.168), identical to the NLO one in Eq. (3.94)),
is such that the radiation-phase-space integral of the double-collinear azimuthal
terms vanishes identically. Hence, once more, the analytic integration of the coun-
terterms involves only spin-averaged kernels. The factorisable double-collinear

limit C,jj,; features the doubly-spin-correlated Born matrix element B with a

Qvpo s
kinematics obtained from {k} removing k;, k;, ki, and k;, and inserting the sums

kij = ki + kj, and ki = ki + ki; the corresponding kernel is defined as

Pz‘l;‘y Pl Buype = Pij Py B + QZV Py By + Py Q1] Boo + ij” 7 Biuvpo -
(3.170)

Finally, the soft-collinear limit SC,j; features a colour- and spin-correlated Born
contribution Bﬁ‘i, obtained from the colour-correlated Born matrix element B
by stripping external spin polarisation vectors.

We now note that, while Eqgs. (3.161))-(3.163|) are quite natural, they contain some
redundancy. In fact one can exploit the relations

SCiji SCrij (1 —Sik) = SCiiy SChij (1 —Si) = 0, (3.171)
valid both on matrix elements and on sector functions, to rewrite

L% = Sy 4 Cyr(1 —Su) + (SCyji + SChij) (1 — Six) (1 — Cije)

ijkj

L% = Su+Ciyu(l —Su) + (SCir + SChyj) (1 — Si) (1 — Cyjua) - (3.172)

J
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After the simplifications just discussed, we are finally in a position to write down

the definition of the candidate local counterterms for all contributing topologies:

KV

K@

ijjk

K (12)

K (12)

ijkj

12
K z'g'kz)

-Sz‘k + Cyji(1 — Sir)

Si+Cy(1-8) | RRWE, (3.173)

:Sij + Cijr(1 — Si5) + SCyje(1 — Sy) (1 — Cijk:)] RRWjjjk ,

+(SCijk + SChij) (1 — Sir) (1 — Cijk)} RR Wi,

|:Sz'k + Cijr (1 —Sik)

+ (SCipt +SCiy) (1 - Six) (1 = Cignt) | RRE W

[Si +C; (1- Sz)] [Sij +Cyji (1 =8y;)

+ SCijr (1 —S4) (1 — Cij) ] RR Wijjk »

'S, +Ci; (1-8))
+(SCjjr +SC

'S, +Ci; (1-8))]

Sit + Cijr (1 —Sik)

kij) (1 —Si) (1 — Cijk)]RR Wijki

Sit + Cijr (1 —Six)

-+ ( SCin + SC]WJ) (1 — Szk) (1 — Cijkl) ] RR Wijkl .

The final step for the construction of the NNLO counterterms, analogously to what

happens in the NLO case discussed in Section is to apply kinematic mappings
to Eq. (3.173). There is ample freedom in the choice of these mappings, and
in principle different mappings can be employed for different kernels, or even for

different contributions to the same kernel. The detailed definition of the kinematic
mappings we employ for each counterterm is given in Sections and
where, as usual, all remapped quantities will be denoted with a bar. Finally, the

real-virtual counterterm has formally the same structure as the NLO counterterm
of Eq. (3.123)), with the replacement R — RV, and will be discussed in Section .



Chapter 3. Subtraction 175

3.3.4 Single-unresolved counterterm

We start by separating the hard-collinear and the soft contributions to the can-
didate single-unresolved counterterm:

KM — g@he) K(I’S), (3.174)
he) = Z Cij RR Z < ijik + Wik + Z szkl> (3.175)
i, 7 k#i.j l#i,5,k
=) SiRR ) ( Wijik + Wiki + Y W”m) (3.176)
i, 71 k#i.5 1#£1,5,k

Using the factorisation properties (3.153|) we can proceed as done at NLO. We
define the appropriate counterterms with remapped kinematics, where in this case
barred projectors apply not only to matrix elements, but also to sector functions:

— (1,he) -y ¥ [( W}J@) (Cij RR) Wi

T
C = (sicuW(?) (SiCy RR) Wi

=> > ( ) (SiRR) Wi (3.177)

i, j7#1 k#i

1£i,k
The kinematic mapping of sector functions, once the integrated counterterm is
considered, allows to factorise the structure of NLO sectors out of the radiation

phase space, and integrate analytically only single-unresolved kernels. Explicitly

(§i RR) W = —-M Z IL(IZ) Rap <{];7}(mb ) Wklzab ) (3.178)
b
— J— N 1/ = ijr)
(Cij RR) W = — Pz/; v ({k}(m ) szj ) (3.179)
ij
(S;CyRR) Wy = 2M,C) T ({k}w ) W (3.180)

where R, and R, are the colour- and spin-correlated real matrix elements and

(abc)
(abe) o o ki _(abc) 1
Wkl - Z O_(qbc) ’ Tij e(abc) U_J(qbc) ’ (3181)
ij i ij
_(abe) _(abe)
_(abe) Sqi _(abc) $ 54
e = L, o) = (3.182)
s J <§(abc) g(qbc)

qi qj

In Egs. (3.179) and (3.180) the choice of r # i, j is as follows: if k = j, the same
r should be chosen for all permutations of ijl, and analogously for the case | = j;
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if both k& # j and [ # j, the same r should be chosen for all permutations in

m(m(ij) w(kl)).

3.3.4.1 Integration of the single-unresolved counterterm

As done at NLO, we now integrate the single-unresolved counterterm in its radi-
ation phase space. We first get rid of the NLO sector functions Wl-(ja) using their
NLO sum rule, obtaining

o) Z Z [@ij (1-5,-5)) RR} Wi (3.183)
i,5>1 ki
I#i,k

E" = 3% (SiRR) W, (3.184)
i ki
1#ik

two expressions which are suitable for analytic integration. Indeed, the integral of

K" in the single-unresolved radiation phase space dCDrZZC} dcbfjﬁc’ reads

O - S 8 Zwkl/d@r;ﬂ”lé (1-S;-S;) RR({kK})

Snt1 1,7>1 k#i
I#i,k
— §n+2 Z Z JhC ( 74]7‘ > ({k} le‘)) W 7/.77")
§n+1 1, 7>1 k#i
I#£i,k
i) 1.\ (2gr C’F
= RS X W () 100 G (2 - o)
p k,l#k
Ca+4TrNs 1 8
65, % (_ t5- lnﬁmﬂ +O(e), (3.185)

(1,s)

fully analogous to its NLO counterpart in Eq. (3.134). The integral of K

similarly yields

10— 22 ST S [0, SRR ()

§n+1

i ki
1£i k
- A o D (R
1£ik bt
- 55 ) Zwkl[ch (1#) (3+2 +6-10)
k,l£k

+ Y Rup({k}) (% vo- %mﬁab)] L O®),  (3.186)

a,b#a
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where, in the last step, all identical soft-gluon contributions have been remapped
on the same real kinematics {k}, and the sum >, d;, has absorbed the sym-
metry factor ¢,;2/¢,+1. The combination of hard-collinear and soft contributions
is straightforward, as in the NLO case, yielding

IOk} = 109 ({k}) + 10 (k) = > LY (kD

h, q#h
— g_; (%)6 h%;h Wiy X
AR (F )+ 3 mali)
a a,b#a
) S (o, T (g, - )

7 C
+5fagCA (6 - 5@) + (5fa{q7q}7F(10 —T7( +1In ﬁar)>

+ Z Ry ({k}) Inijay <2 - %hl ﬁab>:| } , (3.187)

a,b#a

where indices h and ¢ run over the NLO multiplicity, barred momenta and invari-
ants refer to NLO kinematics, and r # a. Eq. exhibits the same poles in
€ as the ones shown at NLO in Eq. , due to the single-unresolved nature
of the involved projectors. Such poles are identical (up to a sign) to the ones of
the real-virtual matrix element, thus showing the finiteness in d = 4 of the sum
RV + IM_ Tt is important to note, however, that in Eq. , as well as in
RV, the full structure of NLO sector functions th is factorised in front of the
integrated singularities, which means that the cancellation of 1/e poles between
RV and I' W occurs sector by sector in the (n 4 1)-body phase space.

3.3.5 Double-unresolved counterterm

The double-unresolved counterterm with n-body kinematics consists of two parts:

(2)

the pure double-unresolved counterterm K, which must be integrated in the

double-radiation phase space, and the mixed double-unresolved counterterm 7(12)
which must be integrated in a single-radiation phase space. From Section |3.3.1
we see that, while their integration has to be performed independently, the non-
integrated counterterms K? and € appear only combined in the last line of

Eq. (3.144)). Owing to the simplifications discussed at the end of Section [3.3.3] the
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combination K ® — K (12) reads

K® K0 =3 (1-8)(1-Cy) > { [sl-j +Cir(1—Sy)

i ey
+8Cyi (1= Si) (1 - Cz’jk)} Wik + [Sz‘k + Cii (1 — Sa)
+(SCi +SCiy) (1= Sue) (1 = Cigi) W
+ 3 [Si+ Cigu (1 - Su)
1.,k

Before tackling the computation of the inntegrated double-unresolved counterterms,
we need to get rid of the sector functions, whose kinematics dependence may com-

plicate the integration procedure.

We start by considering the hard-collinear contribution to K 2. Following Eqgs. (3.173)
and Eq.(3.188)) we have

K020 = 3" Cy(1-8) > { [S,-j + Cii (1 = Sy)
i, j#i k#i,j
+8SCi(1—8i5) (1 - Cijk):| Wijik + |:Sik + Cyje (1 — Sir)
+(SCijp + SChyy) (1 — Si) (1 — cijk)}wijkj + Y [Sik
115,k

+ Cz’jkl (1 — Szk) + (SCW + SCkij) (1 — Szk) (1 — C,;jkl)i| Wijkl} RR.
Now we use the fact that

S;SCiss RR = SC;» RR
CijSCijk Cijro = C;;SCyj0
Cz‘j SCW Cijkl o = Cz‘j SCZkl o (3189)

to eliminate the soft-collinear limit SC;j; from the contributing terms selected by
sectors functions. Moreover, we exploit the relations

to eliminate the contributions coming from the combination SCy;; S; of sector

Wijk; and Wiji. Given all the simplifications discuss above, the hard-collinear
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contribution to K 2 reads

e Z Z CU{ |:SZJ + Cz]k( - Sz’j)i| Wijjk (3.192)

i, j7T k#i,J
+ [(1 - S) [Sik +Cii(1— sik)] +SCi; (1 - Su) (1 — cl-jk)] Wijni

+ Z [ Si [ zk+Cz]kl( Szk)i|

l#1,5,k

+SChy; (1 — Si)(1 — cz-jkl)} Wijkl}RR.

We stress that in the last expression we have kept the SCy;; terms: these cancel
out in the sum K3 — K2 but do contribute to the integrals I® and 112,
which have to be evaluated separately. To treat the hard-collinear component of
the mixed double-unresolved counterterm we need to organise it in the form of
single-unresolved limits in the NLO phase space. Starting from Eq. (3.192)), using
the factorisation properties of the NNLO sector function, together with

C;jSiSix RR = C;;Si, RR
CijSiSik Cijx RR = C;; S, Cijx RR
C;jSChij Sir RR = SCy;; Si RR |
Cij SCrij Sir Cijr RR = SCyi; Siy, Cijx RR
Cij CijuuSix RR = Cjjr S RR
CiiCijuSiRR = CyuS; RR,
CijSi Cijia Si RR = Cyjiy Sir, RR
C,;jSCij Cijm Sij RR = SCy;; Ciji Sir RR | (3.193)

and introducing remapped kinematics for the double-real matrix element and for
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the sector functions W,,, the hard-collinear contribution to the mixed double-

unresolved counterterm can be cast in the form

2 ZZ[ (W Wi )H S (CuWy) CTin

1, 7>1 k#i,j l#1,7,k
+[Cii (Wi + Wis) | ©y Cign + 3 (S W) SCisy
I#i,k

(S C]k W]k) 6 §Z~6ijk - (Sk Cjk; Wk]) %kij 6z‘jk:
+(S; Wi) Ci; Sy Z (Sk Cuu Wit) SChi aijkl}RR

l;ﬁl,j,k

i, j#i k#1,j
(S;Wix) SiCyiSy+ > (CuWni) CijuS
1#£4,5,k
—(S;Cx Wii) S;jCij SiCyy + > (Sk W) SChi; S
i,k
— (Sk Cji ij) Em’j S Eijk
=) (SkCr W) %kijakajkl}}z}z. (3.194)

I#£i,5,k

Using the NLO sector-function sum rules, and appropriate symmetrisations, the
latter becomes

R Z Z { {( Jk Jk + Wk]) ) CZ] aijk (3-195)

1, 7>1 k#1,j
+ Z (CtWhi) Cijin + (S; W) Ci; Sy
[y

—(S; Cix Wir) Cis Sy Cijk} (1 —Si - §j>

+ [ Z (Sk Wkl) SChij — (Sk Cik ij) SChij Ciji

ik

- Z (Sk Cru Wii) SChij 6ijkl:| (1 — S — gjk) } RR.
117k

We now consider the K (*%%) counterterm, which is obtained combining the soft

contributions of the last three equations of (3.173]). We use the relation in Eq.(3.190))
together with
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to eliminate the SCy;; contributions deriving from sectors W;jx; and Wijx. The
result is

K(127S) = Z Z SZ X
i, i ki
X { [ (Su’ + Ciji, (1 - Sij)) +SCyjr (1—Si) (1 — Cijk)] Wijjk
+ [ (Sikz +Cijr (1— Szk)) +8SCjji (1 —Su) (1 — Cijk)] Wik
+ Z [ <Sik +Ciji (1— Szk))
13,k

+SCi (1 — Sik) (1 — Cijkl)} Wijkl}RR. (3.197)

Using Eq. (3.153), together with

SCik Cijw RR = S; Cyju RR
SiSCipi Sir, Cijiw RR = Sy, Gy RR

and introducing, as usual, remapped kinematics for the sector functions and for

the limits of the matrix element, we obtain the expression

(29 _ Z# 3 [Sigwi(j?‘)} {(Sk Wit)Si Sit + (Cru Wit)SCiri (3.199)
i htilAnk G

(St Cu W) SCuu &}m

+>D [Si Cijn <Wi(aq) + W;’?))] { [Cj’“(wjk " ij)]
1, j#1 k#i
k>j

— (S] Cjk W]k)gm - (Sk; Cjk ij)gzk}(

Si — SCZ]].C) Cijk RR.

By means of the sum rule

S Ciji (Wff) +W§,§“’> =1, (3.200)
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and renaming indices, we finally get

g2 ZZ{ )S:S,,

i, j#4 k#1,j

(3.201)

The remaining double unresolved counterterm contributions are collected by K (2,
whose expression follows from Eq. (3.173]) and reads

K® = Z Z { [Sw + Cije(1 — Sij) + SCyji (1 — Sy5) (1 — Cijk)}Wijjk
i, j#i k#1,5

+ [Sik + Cyje(1 = Sir) + (SCiji + SChij) (1 — Si) (1 — Cijk)i| Wijkj
+ Z |:Sz'k + Cijr (1 — Si)

l#£4,7,k
+ (SCM —+ SC]WJ) (1 — Szk) (1 — Cijkl)] RR kal}RR

We work on this expression by symmetrising indices, and exploiting the sum rules

in Eqs. (3.154))-(3.157)), together with

Si; Ciji Z (Wabbk + Wakbk) =1,

ab € 7 (ij)

Sir Cijri (Wijkl + Wklz‘j) =1,

SCiji Sij (Z Wik + Z ijid) =1,

b#i d#i,j
SCijk Ciji (Wijjk + Wijkj + Wik + Wik + Wikik + ijij) =1,

SCin Ciji <Wijkl + Wijie + Whaij + Wlkij> =1,
SCijr Ciji Sij <Wz’jjk + Wikjr + ijik) =1,
SCiki Cijir Sik (Wijkl + Wk:lij) =1.
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Introducing remapped kinematics for the double-real matrix element, the pure
double-unresolved counterterm can be finally cast in the form

@ Z { DS+ ) Gt —Sir, — Sji) (3.202)

>t 7>1 k>jg

+ZZ Z Ciju(1 — Sk — Sjk — Su — Sj)

> k> 1>k

k#j 1#i,5
+ Z Z SCijr(1—S;; — Sir) (1 — Ciji —Z éiljk)} RR
VB I’:Zﬁjz I#i,5,k

which is manifestly free of NNLO sector functions. The counterterm in Eq. (3.202))

is thus suitable for analytic integration over the double-unresolved phase space,
upon definition of the barred limits.

3.4 Double mixed-unresolved counterterm:

example of barred limits and integration

In this section we tackle the definition of the barred limits contributing to the

mixed-double unresolved counterterm K(n). Given the results in Eqgs.(3.195))-

(3.201)), the complete list of barred limits that have to be consistently defined
reads

C;; Cij, S:Si;, i Sij s C;;Sij Ciji ,

SChij , SChi; Sk » SChi; Cij » SChi; Cijk Sik ,
SChij Ciju, SChij CijiSir, SiCiji, SiSi; Ciji »

§i 61] 6z‘jk: ) E’Lj gij Eijk gz ) _i 6ijlcl ) §z 6z‘j gij )
SCijx Sij SCri; Cijrr Sir SCijx Si; Cijx (3.203)

As done at NLO, the definition of the barred limits has to be done in a consistent
way. At NNLO, as a natural consequence of the increased number of contributing
limits, and of their nested composition, the tower of consistency relations is much
more extended. In full generality, a limit composed by n primary limits is con-

strained by n consistency relations. For instance, the barred limit Cij §ij ézjk S,
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has to fulfil four independent constraints

Ci;;Ci;S;; Cijt SiRR = C;S;; Cijx Si RR,

Si;Ci;Si;;Cis S;RR = S;;C;; Ciji S; RR,

Cijt Ci;S;; Cij SiRR = C;;1.Cy;S;; S, RR,
S,Ci;SijCiyr SiRR = S,C;;S;; Cii. RR, (3.204)

whose validation strictly depends on the properties of the chosen mapping. On
top of the consistency relations, the barred limits in Eq.(3.204]) have also to verify
two further requirements: their integral over the single-unresolved phase space has
to match the explicit poles of the real-virtual counterterm and, at the same time,
the phase space singularities of the integrated counterterm I M. As already men-
tioned, this delicate pattern of cancellations is not directly protected by the KLN
) . —(12)
theorem, and needs an appropriate definition of K
—(12)
K
parts contributing to K 2. In other words, to implement the integrability of the

second line in Eq.(3.144)), it is necessary to define the quantities in Eq.(3.204) by
modifying the structures that naturally arise from the leading mixed unresolved

limits of RR.
This procedure is at the moment under construction, therefore here we only

to occur. In full generality,
may not coincide with a straightforward remapping of the off-shell counter-

presents some preliminary results.

We can, for instance, focus on the pure-soft content of ?(12), namely the S; gij RR

contribution. We define such limit to be

SiSyRR = —Ni Y T4 S; Ra({R}00) (3.205)
e diti
2 o e -
_ % Z [ Z Iﬁ;)zg)( d)BCdef<{k}(zcd,]ef)>

C¢i7] 6¢Z7j7c7d
d¢i7]7c f#i7j7c7d

19 Z Ic(z‘l) -Tgi) (icd) Butos <{l_€}(z‘cd,jed)>

e#i,j,¢,d
i) 7(J) (ide 7.1\ (idc,je
2 S T (R )
e#i,j,¢,d

+92 Ic(Zl) Tgl) (icd) Buged <{]%}(ijcd)> + szfi]) s.o.BCd <{]_€}(ijcd)>] |
where

(i) (itm) _ Sa
T " =010 <o~y (3.206)
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and Tg)s'o' is the strongly-ordered limit, (k; < k;) — 0, of the kernel in Eq. (111)
of Ref. [27], after an appropriate remapping, defined by

(if)s0. _ i) =0) i) | () 70) (i) (3 (icd)
s — 90, [ 70 7D 7O 7D _ 70 7 (3.207)

In Eq. different kinds of mapping have been combined: for the eikonal
factors and for the strongly-ordered kernel we have exploited a single mapping,
already introduced at NLO (see Egs.(3.108} m To simplify the notation, in
what follows a generic quantlty F dependmg on a generic single mapping {k} (@)
will be identified with f . Moreover, for the Born-level matrix elements ap-
pearing in the first three contributions we have chosen a double-mapping, defined
trough the equations

{Eacdber) — {{k(acd bapgy RLoboted) k“beef)} (3.208)

—(acd)
L(acdbef) _  7.(acd) 7.(acd) She (acd)
ke - kb + ke (acd) +3 (acd) )
g(acd)
];:;acd,bef) _ ( )bef o }acd)
_(acd —(acd
Sof T Sef

In this case all the partons different from a, b, e, f undergo a single mapping iden-
tified by the triplet (acd), while partons e, f features a double mapping. A generic
function F, depending on the remapped kinematics {k}(@%*f) will be identified

with the symbol F Flacttel)
line, we have preferred to introduced a further mapping,

. Finally, for the Born-level matrix element in the last

{k}abed) = {{k}ﬂ,éd, Jy(abed) ;;;ab@} : (3.209)
]%((:abcd) _ ka + kb + kc B Sabe kd, ]%C(labcd) _ Sabed kd '
Sad 1 Sbd + Scd Sad 1 Sbd + Scd

In Eq.(3.209) all the momenta different from k; with ¢ = a, b, ¢, d are understood
to be left unchanged. In what follows, we will label a quantity F, depending on
the remapped kinematics {k}(@?9) with the shorthand notation .7-" (ade

It can be easily shown that the two remappings in Eq. (3.209) and Eq. (13.208))
satisfy the condition

{%}(acd,bcd) _ {];,}(abcd) : {k} (abe,bed) _ {k} (abed) (3.210)

More details on the construction and the properties of these mapping will be given

in the following.

The mixed double-unresolved counterterm features n-body kinematics but, pecu-

liarly, it needs to be integrated analytically only in the phase space of a single



Chapter 3. Subtraction Chapter 3 Subtraction

radiation. This operation is necessary to show that such an integral features the

same explicit 1/e singularities as the F(RV)

counterterm, and, at the same time, it
features the same phase-space singularities is I ). Now we can provide an example
of the integration procedure we adopt to integrate the mixed-double-unresolved

counterterm.

For brevity, in the following we set R,y = Ry ({l%}(iab)) unless explicitly stated
otherwise. Let us begin by considering the iteration of a soft limit and a double-soft

limit. We find

S n i I—=2
/d(prad,l Sz Szk RR = _Nl 2 Z Sk cd " (ied) /dq)raddl
Snt1 cFi,d#1 d y=
= M2, Y JS(gcffd ,e) Sy R, (3.211)
Sn+1 ctiddti

where the soft integral J*° is defined in Eq. (3.137)).

The explicit computation presented above shows that the phase-space integral
T2 of the soft contribution can be recast as

1029 — 5 Sn2 Z T IA ( (sab) )§kRa <{k} ’“”) Wi (3.212)

i k#i a#i
l#1,k b#i

where the integral J*° is defined in Eq. (3.137)), and the limits in this case are
defined by

gk Ra ({%}(iab)) - —_N\ Z TEZ) (iab) Buped <{]%}(iab,kcd)> ‘ (3.213)

c#k
dk

3.4.0.1 Barred limits contributing to the pure double-unresolved counterterm

In this section we tackle the issue of defining consistent double-unresolved barred
limits that have to be integrated over the two-parton unresolved phase space.
To fully exploit the freedom in adapting the mapping and the consequent phase
space parametrisation to the structures contributing to K 2 , we decide to apply
a different mapping for each term appearing in Eq.. More details on the
NNLO mapping and on the phase space parametrisation will be given in the next
sections. Here we limit ourself in presenting the definitions of the barred limits,

and sketching the mapping choices we have made. The contributions to in the
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first line of Eq. (3.202) are

S;; RR = { > I8 1Y By <{;;}<icd,jef>>
c,d#1,j “ e, f#i,7,c,d
d#c
403 T8 TG Buaea (R 0) 4 2285 T B (R} )
e#i,j,¢,d
@) 1 Gg) _ L ij) 7.1 (ijed)
+<ch 21 ! 2Idd )Bcd<{k} J > 5 (3214)
Cijr RR = 2 1k Pl Buy <{E’}(Ukr)> 7 (3.215)
]

2 ) . )
gij Eijk RR = —21 Cy, [8 Cy, Iﬁ? Igﬂ) —i—Iﬁfnj) QISCJ) —i—Ik ] <{/€} ZJkT)
(3.216)

where the same r # i, 7,k should be chosen for all permutations of ijk. The
definition of the barred limits in the second line of Eq. (3.202)) is

o (ijl) (ijl)
_ P (su,85) Phi (kr » Sty > o
s
Sue Cipnt RR = AN C T30 610 Oy, T3 B ({10140 ab € n(ij),
ac Mij 1 “fe bl feg fd ) d e 7r(kzl),
(3.218)

where the same r # i, k,[ should be chosen for all permutations in w(ijkl). We
further notice that all terms in Eq. (3.202) containing the four-particle double-
collinear barred limits Cgye can be conveniently rearranged in a single contribu-

tions as

£ = Y {Z >3 (1-8u-8,-Si-5,) (3:219)

7 i>i k> 1>k
k#j 16,5

S 3> SCu(1- S - §ﬂ)} Cuu BR.

j#1 k#i,j 1>k
J# k# Jl#,j

Defining the barred limits in terms of soft and collinear kernels, Eq. (3.219]) be-

comes

he po ( =(i51) g(ijl)

nv P, S
5 P, Smsgl) ki (’““ Ol ) 7. (451, klr
CC4 — N Z Z Z / g(ljl) BHVPO' <{k}( ! ))

9, J>1 k>i 1>k kl
k#j 1#i,j
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Finally, the remaining terms in Eq. (3.202)), involving the limits SC, can be expli-
citly defined as

P?ﬂc uv <§(icd) 5]23@'0(1))
iy J gr’ 2 Tk c 7.1 (icd,jkr’
= _N12 Z Ic(d) o Budy <{k}( d,jk )) ’

c,di,,k Sjk

2 Pl;lc - (Sir’ Sjr) _(k): (UT) cd 7 (1]7‘ k;cd)
:_Nl E : Six ch B,u,y<{k} 7 > :

Cc#£1,7, K

d;ilg%i

(3.220)

Note that F@) only involves simple combinations of soft and collinear kernels,
all remapped in an optimal manner so as to make their analytic integration as
straightforward as possible.

We stress again that the double-unresolved barred limits are not uniquely defined,
provided they fulfil the consistency relations mentioned for the NLO case and for
?(12). If one considers, for example, the §Z-j limit and its nested compositions, the
complete set of constraints reads (the double real matrix element is understood

for brevity, as well as all the possible indices combinations)

* S; Eijk = = ’
ngk Sij Cijk — ngk Szg
_ Si; Sij Cujr = Sij Caji
o S;;Ciyji : T s
Ciljk Sij Ciljk = Ciljk Sij
- Sz gzscz :SZ @Z
o Sij SC@'jk J J_ Jk J Jk_ :
SCZ]-k Sz’j SC”k - SC'ij S’Lj

Cuir Sij Cajr SCiji = Cijr Si; SCiji
SCijk Sij Cujt SCiji. = SCiji Sij Cuji

[
gl
<S5
Al
S
ol

UJ‘
Q
S
o
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As an example, we can consider the composite limit §ij Cijk RR, which has to
verify the following set of constraints
Sj Sij Cijt = Sij Ciji (3.221)
Cijk Sij Cijr. = Ciji S (3.222)

To explicitly check the equations above, we begin with noticing that

Sy {k} WY = {k}y,, Ve,d#£i,§, c#d, (3.223)
Ciji {E}(ijkd) = {{k}me, ki + kj + kk} , Vd #1i,5,k , (3.224)
Cijp (YD = Lk} ki +hy + k), Vei gk, (3.225)

We then examine the r.h.s. of Eq.(3.221|), which reads

2 —_ ..
Sij Cijk RR = (Sz‘j = Pl ) B, (Sij {k} k”)

ijk
N v
= (Sijsg—kpgk)Buu({k}k/)
ij
= 0 [8CRINTY + I — 228 + T3] B, ({k} )
Si; Si; Cijr RR . (3.226)

To write the last step we have noticed that the only effect of applying the double
soft limit S;; on the definition of §ij Gijk RR (see Eq. ) consists in computing
the soft limit of the kinematics inside the Born matrix element {k}*"). The result
can be deduced from Eq. and reproduces the correct Born kinematics of
S; Cijx RR.

Similarly, the action of C;;;, onto §Z»j Eijk RR, resulting in the Lh.s. of Eq.,
is simply given by modifying the Born kinematics according to Eq.

Ciji gij Eijk RR =

r

= S0y [8CL I T + T — 2T + T | B({R} k) (3:227)

where for brevity we have defined & = k; +k; + kj.. Finally, the r.h.s. of Eq.
is slightly more delicate. Considering the factorised term appearing in the first
line of Eq., the collinear singularity arise from choosing in all the possible
ways one parton among c,d, e, f to be k (recall that {e, f} # {c,d}). All the
contributions deriving from these choices exhibit a scaling of the type si_kl, si_j1 or
s;kl. The first term in the second line of Eq. manifests a different collinear
scaling depending on whether we choose the index ¢, d, or e to be k. In particular,
by setting ¢ or e equal to k£ we obtain contributions that respectively show a
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scaling of the type szk and s, ~1 The condition d = k selects instead contributions
that scale as (s s]k) . The same collinear-leading scaling characterises also the
second term in the second line of Eq., setting ¢ or d equal to k. All this
considered, in the evaluation of the limit C,j;, §ij Eijk RR we can neglect the first
contribution and the case d # k in the second contribution of §ij. Moreover, under
double collinear limit, eikonal kernels of the type I,S)) are independent of b, which
can be replaced by r. Analogous considerations hold also for kernels of the form
I,g). Regarding the last line of Eq., we can exploit the relations
Cijn Iy = Cip I = Cop Ty = T Cin Ly = Cin Iy = T

Ci rr ? Ci

CunZy =Ty, (3.228)
to finally obtain

_ N2 ;
CinSy RE = —~ {8kaffk o B({k} i k)

9 1 g 7.3 (77
+ ka[ - _Ilgskj) - 5155)]1%( z‘jk{k}“kd)>
d#i,7,k
: 1 i — (i
+ D ka[ I(]) 211&3)]Bck (Cijk{k}(j k)>
c#i, 7,k
+ Z Ciin [I(ij) _ lz(ij) _ lz(ij)}B d<C~'k{l%}(ide)>
- 1] cd 9 Tee 9 dd c %)
c,d#1,5,k
c#£d
N2 0 1
7 7 ]' 7
+ > {zi,s R e
d#i,j,k
1, z 1 1,
+ Z [ (ig) J) QI(J)}B ({k}{j;é, )}
c#i,j,k
2 . ) . ;
A 50T T + T 27+ 1] B k),
(3.229)
where we have exploited Eqgs.(3.224))-(3.225)), together with
Ciji {k}OMIN = {{k}yp, k},  Vee#ijk,cte. (3.230)

We have also used colour conservation to get rid of the colour-links featured by
the Born matrix element. Since Eq. coincides with Eq. this exhaust
the proof of the consistency relations relevant for the S;; C;jj limit.

It is evident that finding a consistent definition for all the unresolved limits con-
tributing to the counterterms is highly non-trivial. However, such definitions are
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process independent and can be set once for all. In the following section, we
will present the integration strategy we have implemented to compute the integ-
rated counterterm I ®. In particular, we will focus on the NNLO pure soft and
pure collinear unresolved kernels. We emphasise that such integrals have been
already computed with independent approaches by different groups. We just want
to mention the results by [71,/145], based on integrations-by-parts identities and
differential equations relations.

3.5 Integration of soft and collinear NNLO kernels

In this section we tackle the integration of the tree-level IR kernels with two real
(2). Such con-

emissions, which contribute to the double-unresolved counterterm K
tributions have to be integrated over the two-body unresolved phase space, which
is factorised from the remaining n-body phase space by means of the appropriate
kinematics remapping. Such mapping, and the consequent phase space paramet-
risation can be chosen to adapt to the invariants appearing in the kernels. As
already mentioned, at NNLO different kind of mapping can be introduced, depend-
ing on the number of partons selected to define the mapping itself. In Eq.,
for instance, the mapping is determined by selecting four partons among the initial
n + 1 momenta, while in Eq. we have introduce a mapping that requires
up to six different initial partons. In the next paragraphs we will present the pos-
sible parametrisation of the double-radiative phase space according to the chosen

mapping.

The content of this section is quite technical: to appreciate the generalities of the
method one can skip this part, and proceed to Sec|3.6]

3.5.1 Four-momentum mapping

With the label four-momentum mapping we refer to the mapping defined in Eq.(3.209))

{kyloed = {{k}(,ﬂw, Ji(abed), Ef;l“d)} , (3.231)
which induces a phase-space factorisation according to
A0y = dOf™) A (3.232)

where a and b are the unresolved partons, while ¢ and d are two massless partons,
other than a and b. Using the momenta in Eq. (3.231)) it is possible to parametrise
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d® "D in terms of Catani-Seymour parameters

Sup s §I()abc) 5l()cczibc)
/ a / ac c
Yy = , 7= Y=g = s, (3.233)
Sabe Sac + Sbe gl(mz ) Sl(ydb ) + s _( be) 7

with ¢ and 2’ being the variables relative to the secondary-radiation phase space,
and 2’ being the variable that parametrises the azimuth between subsequent emis-

sions. The resulting expression for d@rgf{”;’ depends explicitly on the invariant
bed
Sabed = Sgli )

AP,ad.2 ({k:}(“de ) = d(IDrad( (abed) 7y, 2, (b) A, aq (Sl()zbc) v, 2, x') , (3.234)

and is given by

abed
/ dq)r(ad 2) - / d(I)rad,Q (Sabcd; Y, z, ¢7 ylv Z,7 fL’,)

1 1 1 -
= N%(e) (sd,cd)2_2e 22€/dx’/dy’/dz'/ d¢ sin™ ¢ ¢
0 0

/dy/dz TPy y - y) x

x|y -y '<1—z>y2<1—y>2z<1—z>] . (3239)

In the chosen parametrisation, four out of the six involved binary invariants have
simple expressions, while the remaining two involve square roots related to azi-

muthal dependence. The explicit expressions are

Sab = y/ysabcda
Sac = Z/(l_y/>y8ab6d7
Spe = (1 - y/> (1 - Z/) Y Sabed »
sed = (1=9) (L =y)(1—2) Saped
s = (1=9) [y A=) (1 =2)+22
—2(1—22") \/y’z’(l —2) z(1— z)]sabcd,
s = (=) [y (1=2)+(1-2)z

21— 20y 2 (1—2) 2 (1 z)]sabcd. (3.236)

3.5.2 Five-momentum mapping

The five-momentum mapping is a subcase of the mapping introduced in Eq.(3.208)),
and consists in choosing the index f equal to the index d. The construction of such
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a mapping proceeds as follows: starting from the n 4 1-tuple of massless momenta

{]}}(acd)

(RO = { (k) ggar B B0} (3.237)

we choose three momenta l_ﬂéa“l) = ky, K%Y = k. and /_ﬁ((de), to construct the

on-shell, momentum conserving n-tuple of massless momenta {k}(@c®-bed)

{E.}(acél,bed) _ {{k}gi;éda %gacd,bed)’ E;((ja0d7bed E (acd,bed) } 7 (3238)
where
]%(acd,bed l% (acd) l%(acd,bed) % 7.(acd)
c d ac ac
Sl()d d) +3 ( d) f
B ~ _(acd) B
kéacd,bed) kbacd i (acd) ﬁ kc(zaCd) ‘ (3.239)
Sbd T Sed

The corresponding Catani-Seymour parameters are equal to

;s , Sad glacd) 5lacd)
= ac ’ 2= — a , — e ’ y— _ bd 3240
Y Sacd Sad T Sed 4 gl()(éfld) (acd) 13 _( cd) ( )

d,bed
and the relevant Lorenz invariants are parametrised in terms of 5 ZC ) and

7(acd bed)
ed
_(acd,bed acd,bed
we =y (1 =y, sa = 2'(1=¢)(1 = y)sig™"
_(acd,bed acd,bed
Sw—y; ', sea = (1=y/)(1 = 2)(1 = )5y,
s = (1= y)2(1 = y)sig™ P saa=(1—y)(1 = 2)(1 - y)5ig™™?.

The double-radiative phase space can be then factorised from the n-resolved phase
space, and expressed as a product of two single-radiative phase spaces

A, ({k}) = d®, ({E} (acd,bed) ) dCDrZSdzbed) ’
AOLTH D = Ao (3571 y, 2, 0) dPraa (55751, 2, ¢) . (3.241)

such that
/dq)rz(cjd;)ed) _ N2(6)( E(;cdbed)s(acdbed) /d¢ sin 26¢ /dy /dZ

/d¢s1n 2€¢/dy/dz (1—y)(1—y)* x
‘(1

x [y =) (1= 2) (1 =y (1 - 2)] L (3242
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3.5.3 Six-momentum mapping

The siz-momentum mapping is given by Eq.(3.208)), with f # d. Such mapping
can be constructed by selecting two momenta k. and k; among the initial n + 1
momenta, and define the n + 1-tuple of massless momenta

(o = {{hgga Ko, R0} (3.243)

Then, we further reduce the {k}©@?) set of momenta by picking three of them
l;:,()a':d) = ky, K%Y =k, l;:;“d) = ks to combine according to

{]{?} (acd,bef) {{k‘( }¢l§¢d¢/a ]%((:obbc,bef)7 ]%éabc,bef)’ Eéabc,bef)’ ]%J(cabc,bEf)} (3244)

];,l(:acd,bef) _ ];,ﬁacd) _ ka + k’b . Sac k’d,

Sad + Sed

7 (acd,be 7 (ac Sacd
Flocdbef) _ Flacd) _ f

d d Sad + Sed ¢
7 7 Sbe
k(acd,bef) _ k(bef) — k + ke . k ’

e e b Sbf + Sef f
E_(acd,bef) _ ];(bef) _ Sbef ks

f f Sbf + Sef

It is easy to verify that the expression in Eq.(3.244)) coincides with Eq.(3.208)).
Introducing the Catani-Seymour parameters

Sac Sa She S
y = , Y= y =2 p=—0 (3.245)

)
Sacd Sad + Sed Sbef Sbf + Sef

we can express all the fundamental invariants in terms of these parameters as

sae =4 5" saa = (=) s = (=) (1= )5,
acd,be _(acd,be acd be
. =Y3 ( f)’ Sbf:Z(l—y)ng f)’ sef—(l—z)(l—y) ( -

In this case, the factorisation of the two-body phase space results to be particularly
simple, since it coincides with the product of two one-body phase spaces

™ 1 1
/dq)l(rzsd;)ef) - N (6)( i(azlcdbef) (acd,bef))l—s/d¢, Sin_ge gb'/dy'/dz'
0 0

/d¢81n26¢/dy/dz (1—-9y)(1—-y) x

<y —yPra-Dya-ytaa-2)]) L (3216)
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3.5.4 NNLO soft and collinear kernels

Given all the parametrisation listed above, we need to adapt them to the sin-
gular kernel contributing to the double unresolved counterterm. Among all the
contributions appearing in F@), we will focus on the double unresolved soft and
collinear kernels. Such kernels are the only ones that do not feature a NLOXxNLO
complexity, since in the unbarred kinematics, they read

NP2 76
S;RR = —- {Z T3 T Beaey ({k}15) + T3 Baa({k} )| (3.247)
c,d#1,j “e,f#i,j
N12 (
= 7 Z Z I I cdef ({k}lj)
c,ill;éi,j e,f#i,7,¢,d
+4 Z d ed Beded ({k}ij) + QI(E;) Ic(d Bedcd <{k}1j)
e#i,j,¢,d
i | R 1
H(ED - 370 - B Ba i) | e
N pw g
CirRR = Slk Pl B ({E} 10 )
ij
N2
- & [Pk B({R} g k) + QU B (kg %) | (3.249)
w

The soft kernel consists in a factorised component (see the first term in Eq.(3.248))),
and a non-factorised element, given by the double soft current [27]

(17) (i7) i)
I / o 2TR 6{f fJ}{q(I} Iqq ed 2 CA(;fzgéfjg ggj cd (3250)
where
I(ij) _ Sci Sdj + Sdi Scj — Sed Sij
e 53 (8ci + S¢j) (Sai + s47)
W (1 — €)(sic Sja + SidSjc) — 28ij Sca Sic Sjd 1 Sid Sjc — Sij Scd X
el ng(sic + Sjc)(Sia + 5ja) o Sij Sic Sjd Sid Sjc

X[ L SicSja+ Sid Sje ] (3.251)

2 (sie + je) (Sia + 554)

The structure of the double collinear kernel [27] is much more intricate and depends
on the flavour of the involved partons. In the most compact form, the spin-
independent and the spin-dependent components of the double Altarelli-Parisi
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splitting functions read

0
Piji = 015 1,1y fitar@ }Pz]k: + (4 e Haa) O fi{a'a }F)]kz + 5{fkfi}{qq}5fj{q'q'}P;§if)

0g,id
+5{{fzfj}fk}{qq}Pka +5{{f]fk}fz}{qq}ijz Y Sy Han P

1
+ 805,11t O g B o "+ 004, 0o P it " 8 (s i HaayOr,0 P k(if)

2
+ 04,901,901 {aa} Pz]k; + 04,90 190 i {a} P]m + 0590 £:90 1540y D) Ic(z‘jg)

3
+ 6190 1,00 50 Pk (3.252)
(19w
Qz]k 5{flf] {QQ}éfkg Qz]k v + 5{f]fk}{QQ}5fzg Q]kf !
(1g)pv (3g)pv
+ 0p i amOt,0 Qbit ™ + 01,901,001 QU™ (3.253)

Here ¢ and ¢ are quarks of different flavour, and the

O fafo} fXfif2} = OfufiOfufiOfefs + 050 fa0f 120 py - (3.254)

The explicit expressions for the coefficient functions appearing in Eq.(3.252]) can
be deduced from [27]

— 1% 1
= CyT - =
”k e { { Sijk Zij } 2
Szgk
2 — X 1 - Y
o fpa-smra-azl)
i 2 < 1 i ]
pisY = CFQCF—CA{ f’“’“{ +Z’€—e(ﬁ+@)—e(1+e)}
28kSik | ZjkZik Zik 2k
; ik [1+ 22 — €22 ;
+(1 - )(SJ+ 1) Sﬂ’“[ L L TE e
Sik Sik 251, Zik Zjk
Siik 1+ 22 — €22 Zi
- 1 2 J k ik 2 1 .
e(1+2;) —¢ zjk] + 251y { o (1—e)— o

—e(1+2;) — 62,2“4 } : (3.255)
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pllo) _ CFTR{ ijk <1+z,§— Zk+2222]> _(1_6)(S£+S£) L,

ijk SikSjk 1—¢ Sk Sik
_83k<1—|—22k+€_ ij)—s—jk(1+2zk+e— Zk)
Sik I—e Sik 1—¢
J
2 2
+C’ATR{_Si_j2’“<‘9J_'k_Si+Zi—Zj>2_ Siik <1+Z’3_Zk+2212j)
255 \Sijk Sijk Zij SikSjk 1—e¢

2
Sijk__Zi (23 s 2mlze — QZjZk)>
28ij3ik RkZij K 1—e¢

s?jk 2 ( 33 2z (z — 22jzk)>
QSiijk ZkZij “ K 1—e€
Sijk Zik ( 22jzik> Sijk Zjk ( 22’1‘ij>
Zijk =ik (4 i 1 i
23ik Zkzij + ki 1—c¢ 25jk Zkzij + ki 1—¢
| Sigh 1 <1 43 2z — 25)% — 2z (1 + Zk)> 1 Te (3.256)
Sij Zkzij k 1—e€ 2

Stk (14 22 — ez 5;
p9 _ o2 Zik ( k ij 1— ) (1 — )2 Sk 1_
5 = O (T =) (1= 2 e

Siik [ ZkZik + 2R — €zl
+—Jk< A ! +€Zik+62(1+zk)>}

Sik ZiZj
2
ijk k ik )
+OFCA{(1—€) 12( Z - =4 ]>
4Sij Sijk  Sijk Zij

S?jk (2%(1 —€) + 2z N zJQ(l —€)+ 2z,-k>

2Sij3ik Zj Zij
2oz 2% (1 —€) + 22 y 234 22— 2
N ijk~k ( z]( ) k +€(1 N 6)) + Sijk [(1 . 6) ij k 7
45ik3jk ZiZj 23ik ZjZij
Zik(zi—z j 3 2
—2¢ k(zi—2k) o RkZjk + Zik + €z Zik _ 6(1 + Zk) _ EQZik:]
ZjZij ZiZj ZiZj
+Sz_]k (1 B e) Zl(2Z]k + ZZZ) — ZJ<6211.3 + 2]2) _ 2€Zk(zi — 2Zj) —Zj
ZSZ'j Zsz'j ijij
1
#7000~ 26)} + (i e j), (3.257)

2
Sijk: <Sjk Sik Zi — Zj>2 Sijk |: Zikj — 1 Zikj — 2
+ + 2k +

PYY = 03{(1 —¢)

ijk 2
J 4si; \sijk  Sijk Zij Sij Zij 2j 2k
2 2
+(1 — zkzij) n §Zk n §:| n Sijk |:2Zizj2ik(1 — 2Zk) 4
ZiRkZjk 2 2 25ij5ik ZkRij

1+2221+Zl 1—222‘2' 3
+ A+z) L +2zjzk+zi(1+2zi)] —I—Z(l—e)}

Rikzi ZjZk
+(5permutations) , (3.258)
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where

s
Za:+7 Zab = Za + 2, a,b=1,7,k . 3.259
s ¥ 50 F 5 b b J ( )

The spin-dependent component are

2z, 32. 2 .. Dz 52. 2 ..
(1g)pv CnT Zj ijk~ik Sijk\ v Zj ijk~ik Sijk\ v

Qi = CrTRr| 7 e o)t L)
— €\ SikSjk Sik — €\ SikSjk Sik
2

n 2ezy, (Sijkzk Sk Sz‘jk> ww
1—c¢

SikSjk Sik Sjk
zi |4z fjkzjk SijkSjk 2%2 ngkzjk SijkSjk
+ CATR < 5 — 5 > + < - )

1—¢€l| z Sij Sij 217%ij \ 8ijSjk Sij
22;2; S?jkzjk Sijk S?jkzi Sijk Sijk\ |
+< (S (s ),
RkZij SikSjk Sik ij Si j

42Z Ukzm SijkSik 222 Sij%ik  Sijk
5 + —1l—€¢)l— — —
Sij ZkZij

Zi 52. 2 . .
( zyk k _SZJF>+(1_€)< ijk~J _M_&_Jkﬂqéw

Zkzz] SijSik SijSjk Sij Sk

22’LZJ z]k:’zlj . 5ijk>

1—6 Sij

225 S~~k2k Sijk  Sijk
—( & _ ezk) (f— _ Sik _ —J) g\ (3.260)
Zij SikSjk Sik Sjk

2 2
Agur _ o Azj (SiKZik  SijkSjk Zizik 3\ (SiykFi Sk Sijk\ |
Qijk =0Uyy — % - 3 —\NT—— 35\ T/ — |4

2
2k Sij Sij 2k 2/ \8i;Sik Sij Sik

2 2
dz; (SijrZik SijkSik Zizik 3z Zi\(SikFik Sigk\ | v
—zi|— — — — - -2 ) (= ) g

<k S?j 822]- ZkZij 2 2k Zij SijSik Sij J
n 422 <S?jkzm‘ B Sz'jk> L Zk<Zsz‘k 3% n ﬁ) (512]‘1921']' _ Sz_jk) e
Zij S?j Sij ki 2 Zj Zik SijSik Sik k
+(5permutations) , (3.261)
Here
ki kY
wo_ v . aVa
4o = —9 + (d 2) ];2 )
~ kH
Kt =k — 2kt — (k- Ky — zakQ)k Tk ., a=1,75k. (3.262)

At this point we have the explicit form of the singular kernels and a list of map-
pings that we are free to use, in view of simplifying the integration procedure.
The next natural step is then defining the barred counterparts of the limits in
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Eqs.—7 and consequently, choosing the phase space parametrisation
for each of them.

To begin with, we consider the double-soft limit in the form reported in Eq..
It displays different structures, each of them involving a different number of par-
tons: for the first contribution it is natural to adopt a siz-momentum mapping,

setting
ko = ki, ky—kj, ke—ke, ka—ka, ke—ke, kf—ks. (3.263)

The second contribution depends on five different indices, therefore the five-momentum
mapping is the most appropriate mapping for this term. The following assignments

are then exploited
ko = ki, ky—kj, ke—ke, kaq—ka, ke—ke. (3.264)

Finally, the remaining terms in Eq.(3.248|) can be treated by using the four-
momentum mapping and choosing

k, — ki, ky — k; , k. — k., kg — kg. (3.265)

The resulting barred soft limits is then precisely of the form in Eq.(3.214)), and its
integral reads

— N2 (acd,be —(icd,je
fiowaSonn = 55| 5 faoteten fanictrd 797 B
c,d;éi,j e,f;é;é,},c,d

C

4 [anfen [aotese 2 o
e#i,j,¢,d

ijed ijed) Rliged)
+2 /dq)(j )/d(br;d2 ed I(Egl Bcdcd

1 1 i) sise
/ AP / d@r;{fg) 7% 515;”—5153)) B |(3.266)

The actual computation of Eq. features two different level of complexity: in
the first two lines the integrands are perfectly factorised and thus the corresponding
integrals can be categorised as NLO x NLO-like integrals. The computation can
be therefore carried on with standard tools. As an example, we can consider the
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contribution appearing in the first line of Eq.(3.266))

rad

= NZ%(e) (SS;dbEf) (ZCdbef)) czdced}jef /d¢ sin % ¢/ /dy /dz

1—-2"1-
/d¢s1n2€¢/dy/dz (I—9y)(1—y) 2 :
Yy yz

<[y =yP2a -y -y -2
_ (47r)2e4 [F(l —el'(2 — e)]Q
)

(§(a6d’bef)§£ifd’bef) € €2F<2 _ 36)

cd

I(acd,jef) = /d(I)(acdbef):z-C I]) Bizdced}jef

(3.267)

As announced, the integration procedure is trivial, and the result is exact at all
ordersine. In Eq. there are also contributions manifesting a genuine NNLO
complexity, as those in the last two lines. Such terms requires a dedicated tech-
nique that is presented in the next Section.

Turning to the double collinear kernel, the natural mapping is the four-momentum
mapping with

ko — Ky ky — kj, k. — ki, kg — k., (3.268)

such that the integrated double collinear contribution to ®? s given by
[ 02 G R~

= [ [avi 5 [ b (15505 + @i B (19)]

ZJk

Now we can simplify the integration by noticing that the spin-dependent com-

ponent of P .k vanishes when integrated over the double unresolved phase space,

since
/ Py2ay” /dcb / <I>§;Jd’€; ¢ =0, a=1i7jk. (3.269)
Therefore
C (igkr) (igkr) N12 7. (i5kr)
APy 1o Cijk RR = dq)n dq)radQ 32'1@ Pz‘jkB<{k} ) :
1]

Such integral is non-trivial, but can be still computed by exploiting the strategy
presented below.
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3.5.5 Integration strategy for the double-unresolved counterterm

When integrating E? in the two-body radiative phase space, it is possible to
exploit the symmetries in choosing k., ky, k., kq. In particular, according to
Ref. [146], the four-body phase space for momenta k,, ky, k., kq is symmetric under
the permutation of the four momenta, as well as under the following permutations

of invariants:
Sab <7 Sed, Sac <7 Sbvd, Sad <7 Sbe- (3270)

These symmetries reflect in the parametrisation of the phase space, i.e. when
moving from k,, ky, k., kq to the remapped variables. This is crucial to simplify

the analytic integration of soft and collinear kernels over d(IDr(:le;d).

In the integration of the soft and collinear kernels, upon identifying the momenta
ko, ky, ke, kq according to the above discussion, we apply the following transform-

ations:
e in the terms containing 1/(Seq + Sea)/(Sad + Sca), all permutations of the
invariants Sqp <> Scd, Sac <> Sbd, Sad <> Spe are performed,

e in the terms containing 1/(s.q+ Seq) (but not 1/(saq+ Spa)), the permutation
ky, <> k. is performed,

e in the terms containing 1/(spq+ Scq) (but not 1/(s.q+ Spa)), the permutation
k, <> k. is performed.

e in all terms containing 1/(Sqq Spq) the splitting

L <i+i>, (3.271)

Sad Sbd  Sad + Sbd \ Sad  Sbd

is performed, and in the first term the permutation k, <> k; is applied.
e in all terms containing 1/s,y (but not 1/s,4) the permutation k, <> k; is

performed.

This way, the denominators of all integrals feature only the following combinations

of invariants
Sab Sac) She Sed Sbd, Sqe T She Sad + Sbd Sab T She

that can be parametrised as in Eq.(3.236). We now detail the integration pro-
cedure, focusing on one variable at a time. In Subsect. [3.5.5.1] we analyze the
trival integration over y, and the first non-trivial structure that arise from the 2’
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integration. Then, the subsequent integrations over z and z’ are detailed in Sub-
sect. [3.5.5.2] including the method we apply to linearize the argument of appearing
hypergeometric functions. The subsection [3.5.5.3| concerns the e-expansion of in-
termediate results, before the last integration step. A selection of results for the
soft and collinear NNLO kernels is shown in Subsect. [3.5.6]

3.5.5.1 Integration on y and on the azimuthal variable z’

Since all denominators factorise the dependence on y, the integration in the y

variable is always of the form

/Oiiy [y (1- y)} o y'(1=y)",  nmeZ (3.272)

and clearly gives B(n — 2¢,m — 2¢) .

We then switch to the integration over the azimuthal variable ’. According to the
identification of k,, ks, k., kq described in the previous section, the only denom-
inator containing the azimuthal variable 2’ is s,4. The presence in the numerator
of the azimuthal variable can come just from a linear combination of s,q and sp,.

Those terms without the denominator sp; are of the form:

/1dx' [2/(1 - x’)}fé*e(l 22" neN. (3.273)

Writing (1 — 22') = (1 — 2') — 2/, we get

/dx' [2/(1— x’)}fé*e(l — 22" =

0
0 n odd

HmB(’”i‘“""”i*)

Terms with s,q/spq can be simplified according to:

Sa Sad + S
=2 = (Y 42—y 2) (1—y)
Sbd Sbd Sbd

Sabed i

1. (3.275)

Therefore no dependence on 2z’ in the numerator is left in presence of the denom-

inator spy and the only non trivial integration involving the azimuthal variable z’
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1s:

1 1 / N1 "2"¢
—1_¢ Sabed 1 [i’(l—{lf)] :
do' [2/(1 —a')] 27 222 = dx’
/ox[x( I 1—y/ox(A+B)2—4ABx’

= — I, 3.276
" (3.276)

with A = \/y'2/(1 —2), B=+/z(1 — 2).

Note that, as already dlscussed at the beginning of this section (see Eq. ,
the y dependence is trivially factorized. Therefore, from now on, we understand
the y dependence to be already integrated out.

The integral I, is exactly of the type described in appendix with b =1 +e.
Therefore we get:

Ix/ = Il+6(\/y/2/(1 - Z): \/Z(1 - Z/))
_ % X (3.277)

x[ﬁzﬂ(l’l“’l‘ (1(1_;?)@( <1(1—_z§))

+m2FI<1 14el— 11__22) ( 1_2)—1>].

3.5.5.2 Integration of the variables z and 2’

After integrating over y and 2’ we are left with three integrations to perform (over
variables z, 2 and y’). We now analyse the z, 2’ integration.
While the numerators depend on z,z’ in a polynomial way, the denominators

display a more various set of structures. In particular

e the denominators Sup, Sae, Sbes Sab, Sed, Sac + Spe feature a trivial dependence

on 2" and z, being just products of 2/, (1 — 2), z, (1 — 2).

e The structure s,y + spq does no depend on z’, while depends on z like ¢ +
z —1y'z. Analogously, s + sy depends only on 2" as 1 — 2/ + 2'y/.

e In denominators s,4, the z, 2’ dependence is confined in the arguments and
prefactors of the hypergeometric functions of eq.(3.277)), as well as in the ©
functions, which understand a modification of the integration path for either

zor z.

The actual form of the soft and collinear kernels features products of the structures
described above. The less trivial dependence on z and 2’ arises from the following
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building blocks

1 1 L L

z’

. (3.278)

y’+z—y’z’ 1—Z/+Z'y/7 y/+2_y/27 1—2’+Z’y/

In terms proportional to the first structure in Eq.(3.278]), the 2z’ integration gives

Beta functions, while the z integration returns:

1 - -

n—e(l — m—e

/dzzl< ) = Bn+1l—em+1—¢) x
0 y+z—yz

XoFi(Im+1—en+m+2—2¢1—1y),

where we have used oFi(a,b,c,x) = (1 — x2)"%F; (a,¢ — b,c,—z/(1 — x)). Note
that m,n stand for generic power of z, arising from the numerators.

Similarly in terms that embed the second structure, the z integration is trivial,
yielding Beta functions, while the 2’ integration gives:

1 N\n— N —

n—e(] — m—e

/dz’(z)l (,+Z/>/ = Bn+1l—em+1—¢) X
0 —ZTzY

XoFy(ILn+1l—€en+m+2—2¢1—1).

For the remaining terms of Eq.(3.278]) it is possible to perform at least one of the
two integrations exactly. In details: for the third structure we can perform both
the z and 2’ integrations, while in last two terms we can only integrate over one

variable, z and z’ respectively.

For terms that feature the third and fifth structure of Eq. [3.278 we first per-
form the integration over z. Accounting for general numerators (that are always
monomials in z), we can cast these integrals in one of the following forms:

1 —€
= /dz [z(l—z)} (1—2)" I,
0
1 —€
JW = / dz [z(l—z)} Ean (3.279)
0

where n is an integer such that n > —1.

These integrals are again of the type described in Eq. of appendix with
b=1+e

1
]i?z) = /dz
0
1
d

(2)
g = / 2(2)" (1 = 2) " (A, B) = o1 — 2/, 9/2") . (3.280)
0

_6(1 - Z>n_€ ]1+6<A’ B) = Il+e,—e,n—e<1 - 2/7 ylzl) )
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In particular the integral I; ¢ —c,—(1—2',y'2") is of the special type Iy 1-4~(C, D)
described in Eq. while the integral [14cpn—c—(1 — 2',y'2’) is of the special
type I 51-4(C, D) described in Eq. [D.33] Using the results derived there we have:

9 B _ . ! !
o~ L DAR2=g MEglntlog g o Y2

'z 1 — o F(I—QG) F(n—l—l—QG) 1—=2

1 T*(1/2—¢€) T(—e)I'(n+1—¢) —7 (3.281)
y2 T(1—2¢) T(n+1-2¢ AN

JQETLZ) == 2F1<1,n—|—1—e,1—e,—

We now show the result for specific values of n, and in particular we distinguish
between n = —1 and n > 0. For n = —1, Eq. [3.281] reads,

_ 1 T%1/2—¢) I'?*(— '
R (1/2—¢) I*( 6)2F1 Lel—e Y7
vE 1—2 T(1-2¢) TI'(—2e) 1—z

-y 1 [2(1/2 —€) T?(—¢) e e _1—z’
Tes = U7 T(-20 T(-29) ZFl(l’ e )
B [%(1/2 —¢€) T(—=€e)(1 —¢)
(1 — 2e) ['(—2¢)
1 1 y (1 _ zl)e
[1+61_ F(l 1+62+61 Z/)—F(1+€)F(—E)W:|.
(3.282)

where in the second integral of Eq. [3.282] we have inverted the hypergeometric
function argument using Eq.

For n > 0 the hypergeometric functions are of the class o Fi(1,¢ + n,c, x), with
¢ =1 — ¢, for which we can use the following series representation:

oFi(le+n,ex)=(c—1) ; - (nrfnkili)rr(?;;"n)_ (I; — ;13))“1 , n>0, (3.283)

such that the integrals of Eq. [3.281] can be written as:

(n) F2(1/2 — 6) (1—e)F(n+1) - F(n—k—e) (1 . Z/)k

I;t/z N F(]_ — 26) F(n +1-— 2€> % F(n_k+1> (1 M Z’y/)k‘H ) (3284)
(n) _ F2(1/2 — 6) (l—E)F(n—i-l) " F(TL—,I{}—€> (y')k(z/)k

Ts = T 20 Tmrl-20 T(n—k+1) (1— 2 + 2y )kt (3.285)

where Eqgs.(3.284))-(3.285)) hold for n > 0. Let us notice that the two integrals
coincide for n = 0:

0 _ o _ PA2-g (=) 1

D = . 3.286
@'z v: T (- 2) D(—2) 1— 2+ 2y (3.286)
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For terms that feature the fourth structure of Eq. |3.278] the integration over 2z’
has to be performed first:

1 —€
%, = / dz’ [z’u—z')] ()" Iy,
0
1 —€
J0, = / dz’ [z'u—z')] (1— 2" I, (3.287)
0

where n is an integer such that n > —1. These integrals can be tackled with
the same strategy discussed above (see Eq. . Furthermore, thanks to the
symmetry properties of the z, 2’ integration measure, the results of Eq. can
be expressed in an analogous form as Eq. upon the substitution z <> 1 — 2’

The next steps of our procedure aim at the linearization of the argument of hy-
pergeometric functions which appear in intermediate results.

After the first z integration has been performed (see Egs. , all non
trivial dependence in the remaining z’ variable gives one of the following struc-

tures:

1(1,1’p51’m) _ /d ,(1 Z)p 6(;;/)!1—6 I(tl)
/22 1 Z+Zy) 'z

(1 e )ae —e
_ /dz/d’ 1Z +(Z)) [z(1—z)] (1—2)" Iy,
2+ 2y
Jom / Y i Gy )

_ /dz /dz (1==)Pe(=) F0-o)] L. (@2s9)

(1—2'42"y")m

Using the symmetry of these integrals under the exchange z <> 1 — 2/, they can
equivalently be written in terms of I S,Q, and ngz), (see Eq. |3.287)):

1 —e —€
I(nquvm) — /dz Zp (1_Z)q I(n)
0

x'zz! - y —I—Z yZ)m x! 2!
p—e 1 q € —c
_ /dz /dz V4 Z [/(1—2/)] (Z/)n[x/7
(W +z—yz)"

Jipam = / P i Sy )
T zZZ 0 y —I'_Z y 2) Tz

! Zpel qu / N nn
_ /dz I e L o [(1—2)] (1—2)" L, (3.289)
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where n, p, ¢, m are integers such that n,p,q > —1, m =0, 1.
For later convenience, we recursively use the following partial fractioning

Zp—e(l . Z)q—e — Zp-i-l—é(l . Z)q—e + Zp—e(l _ Z)q+1_6’

(VP (1= 2)17 = (Z)PTI(1 = 2)9 + ()P (1 — 2717 (3.290)

until the condition p + ¢ > m is satisfied.

To proceed Wlth the computatlon we choose the representation of Ix" PLm) anzﬁq m)

in terms of ]x and JU according to Eq. [3.288]

'z :pz7

Thanks to the results of the previous subsections, the case n > 0 is trivial:

I'%(1/2 —¢) T(1—€¢)I'(n+1)
vzl F(1—2e) L(n+1-—2€)
I'(n—k—e¢) I'(p+k+1—¢)'(g+1—¢)
“ D(n—k+1)  T(p+q+k+2-2¢)
X 2F1 (m+k+1,q+1—¢,p+q+k+2—2¢,1—7) , n>0,

[opam)

J(npq ;m) F2(1/2 - 6) F(l—e)F(n—i—l)
22! ['(1—-2¢) T'(n+1-—2e)

Z F(n—k—e) D(p+1—e)'(g+k+1—¢)
2 T(n—k+1)  T(prqth+2—2¢)

X (Yo Fy (m+k+1, g+ k+1—€, p+q+k+2—26,1—%) , n >0

(3.291)
For n = —1, the exploit the integral representation of hypergeometric functions:
TG bpam) [?(1/2 —¢) (=)L (1 —¢) /1dz’ X
o2z I'(1—2¢) I'(—2¢) .
1 1 _ I\p—e€ 1\q—e t—l—e
X /dt ( ) ’
o (L= +2y)m 12 +ty
g _ (/2= ¢ D=l — ¢) / 0 x
x'zz F(]_ — 26) P(—Qe) 0
1 _ S\p—€( \q—¢€ €
- /dt (1 =2 () t
o (I=2'+2y)m 1-2+ty
D+ (=) (1 - ()
) (1—2'+zy)™ | (3.292)

The second expression makes sense only if p > 0, but this is always the case in
NNLO kernels.
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For m = 0, the 2’ integration gives

7-1p00) [2(1)2—e) T(=e)F(1—€¢) T(p+1—e)T(g+1—¢)

vz [(1 — 2¢) I'(—2¢) L(p+q+2— 2e)
1
x [dtt™ 7R (1,g+1—ept+q+2—2e1—1ty),
0
JE1pe0) [%2(1/2 —¢) (=)L (1 —¢€) [T(1 4 €)T'(—¢€) T'(p+ 1)(q — 2¢)
F(1—2) (=2 W) Tp+g+l-2)

IF'p+1—¢Tl(g+1—¢)
I'(p+q+2—2e)

1
x/ﬁwaFMLq+1—@p+q+2—2g1—@qy »>0
0

(3.293)

For m = 1, before performing the remaining 2’ integration, we make the following
partial fractioning:

1 1 11 1 1
— — (3.294)
1—2 42y 1= +ty 11—ty |1-2 4ty 1—-242Yy
Then we get:
Sty _ 1T21/2- 0 TPl —¢) D(p+1—el(g— o) / P
@'z Y (1 —2¢) I'(—2¢) Tlp+q+1—2¢) J, 1-t
x[oFi (Lg—e prg+1-26,1 — ty)
_2F1 (17 q_€7p+Q+1_2€7 1- y,)] )
JLpal) C1TPA/2-¢ T(=eT(1—¢) [T(p+1-el(g—¢)
o'z y D(1— 2e) ['(—2e¢) L(p+q+1—2e)

1
t6
x‘/ﬁtl t{ﬂﬁ(Lq—@p+q+1—2c1—ty)
0

_2F1 (176]_5710"‘(]"‘1_267 1- y/):|

F(1+e)l'(—e) I'(p+ 1)I'(g — 2¢)
() I'(p+q+1—2¢)

X2F1 (17q_2€ap+Q+1_2671_y,)}7 pzo (3295)

For n > 0, we still have to perform one last integration over 3’ variable. For the
specific case n = —1, we are left with two more integrations, a “physical” one
over ¥, and a second one (over t) which comes from the integral representation

of hypergeometric functions of Eq. |3.292) and doesn’t have any direct physical
meaning.
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3.5.5.3 Expansion in ¢ and integration of the variables 3/ and ¢

After the 2/, z and 2’ integrations have been performed following the steps of the
previous sections, the integrations over 3’ and t only involve monomials /', (1—1/),

t, (1 —t) and hypergeometric functions of the type:
2F1(n17n2 — € N3 — 2671 - w)7 n Z 17 U Z 07 ns Z ny + 17”27 w = tyl7yl'

The constraint n3 > nqy + 1 is always achieved, thanks to the condition p+¢q > m,
which comes from the partial fractioning described in Eq. (3.290). Hypergemetric
functions of this type are first put in the standard form,

)n3—n2—n1—e

o Fi(n1,na—e,n3—2¢,1—w) = (w X

X o (ng—ng—e, ng—ny—2¢,n3—2¢, 1—w), (3.296)
using the identity

oFi(abe,x) = (1—2) "% F(c—a,c—b,c x)

= (1—2)"F(c—bc—a,cz).

Then, since ng > ny + 1, the expression of Eq. [3.296|is treated recursively using
the relation

1
oFi(a,b,b+mn,z) = 1 [(b+n—1)2F1(a,b,b—|—n—1,x)

“boFi(a,b+1,b+n, x)] , (3.207)

until we get hypergeometric functions of the type o F(a, b, b+1, z), with a = m; —e,
b =mg — 2¢ (M, my > 0).

We then use recursively the relations

b1

2F1<(l,b,b+1,l’) = a_]_;|:(1—.I‘)1_a—2F1<CL—1,b—]_,b,l’)i|,
1

Fifab b+ 1) = — [b(l—x)l"w—(a—b—1)2F1(a—1,b,b+ 1,@},
a_
b1

oFi(a,bb+1,2) = a_b;[(1—x)1—a—2F1(a,b—1,b,x)}, (3.208)

until all hypergeometric functions are of the form o F} (—e, —2¢,1—2¢, 1 —w), whose

expansion in € is known at all orders:

+oo 400

oFi(—€6,—26,1—2c,1—w) = 14> Y (26)"(—€)" Spp(1 — w) . (3.299)

n=1 p=1



Chapter 3. Subtraction Chapter 3 Subtraction

The S,p(x) symbols are understood as Spence functions, which are related to
polylogarithms and defined as:

Spp(x) = ﬂ/oldv " v Inf(1—zv). (3.300)

n!p! v

At this point all poles in € can be extracted using partial fractioning and the plus
prescriptions:

/}ﬂ””““—w>”&fm%=/?%t”“u—@&f@>
0 0

+/01dxxae(1 — )P f(x),

[ avee gy = g+ [ e L0,
13: _ ) lHBe x—i 11, _x,aef(x)_f(w
[ara=o s = g+ [ar—ap LD g0

where x can be either ¢/ or . The remaining € dependence does not generate any
pole and can be safely expanded using Taylor series. Therefore, at this point the
remaining integrals (in ¢ or y') can be easily performed using standard techniques.
Discarding vanishing terms in the € expansion, we obtain the final expressions for
the integrated NNLO kernels.

In the following section, we collect the explicit results for a number of relevant
terms that give contribution to the double soft and triple collinear kernels.

3.5.6 Selected results

We start with the double soft behaviour related to the emission of a qg pair, which
is described by kernel is Ic(gb), defined in Eq. (95) of Ref. [27]. According to the
definition of our barred counteterms and the notation introduced at the beginning
of the Section, this soft contribution features the following structures, for which

we show the explicit representation as truncated e expansion:

291 9281 /416 7 1 5260 104 76
g labed) plab) _ 4| 22 20 1 (___ 2>_ 00U VR e D g
/ rad,2 ~ed st oat\or 9™ )t T T 9B

21 161 212
dp ed) glab) _ 4| _ 22 22 228 o 3.302
/‘r&QCC R Tt Tal (3.302)

where here and in the following we have defined the multiplicative factor

A — 1 Sabed e'e %
T Ut U 4r '
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When considering the double-soft gluonic contribution (see Eq. (101) of Ref. [27]),

in addition to the kernel Ic(gb), also a factorized structure appears, as a product if

two NLO cikonal kernels (Z'% IS)):

(abed) +(ab) 2 351 481 8 o\ 1
farin = a2+ 35+ (- 57z
6218 269 , 154 1
(w3 o)
. 76912 3775 , 2050 23 }

_ = 4
81 54 " g B =G

21 101 164
dpabed) gab) _ 4| 22 _ 202 0% 2|
/ rad,2 cc 3 €2 9 ¢ 27 tr

1 4 3 )\ 1 74 1
(abed) 7(a) 7(b) _ 2 5
/dfbrad,Q T/ Ty = AL4 5 (18— 57 )62 + (76—67r -3 g(s))z
308 49
12—27n% - == — .
+3 Tt - = ((3)+1207r] (3.303)

The collinear contributions to the NNLO double-unresolved conterterm (Eqs. (57-
70) of Ref. [27]) give the following results, depending on the flavor of the unresolved
partons:

11 311 <7r2 889)1 23941 31
2 108

(abed) o [ 2 80
/dq)radQ qu'q'—A_—ge—g—l—Ege—ﬁ ey T i +§C(3)]a

e 648 127
bed) T,13 1 1 297 17 11
Joct (3o oo Fen-iae]

8 4 e 16 120
Jaolmpom —a -2 5254 (- T -+ e )|
oo e —al 22— DL (<22 2
—%—i—%ﬂz—klgﬂé(&].

(abed) ~(ab) _ 2 7 201 o o\ 1 2125 21 , 154 1
fanizh e —Ab*e—s*(? et e T T W)l
17607 753 248 13

2 4
+T_1_67T —?§(3)—|——7T:|, (3.304)
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(abed) Ay (] 11 81 /905 2 ,\1
e o[t (222

3 el 72 €2
11773 89 , 65 1
< 216 24" _C(?’))_
205789 _ 845 , 2191 C() 19
1296 48 20" |’

(abed) 51 211 /83 11 ,\1
/d‘braw Cm”hﬁ?@*(ﬁ‘?”)?

(P02 0 188 1

27 18
180739 1868 1555 4,
AT B+ 5T ] (3.305)

3.6 Real-virtual counterterm

The real-virtual matrix element RV, ., features a structure of explicit € poles
dictated by its one-loop, namely

RV:_% (M_Q) RZ( Vk) + Z Rklelnnkl+H() ., (3.306)

k, Ik
where the indices k and [ run over real-radiation multiplicities, and H (¢) denotes

the collection of terms that are non-singular in the e — 0 limit, encoding process-

specific information.

The corresponding real-virtual counterterm K&

NLO in Eq. (3.123), can symbolically written as

, in analogy to what done at

™ Y™ -y (gi +C; _§ZEZ-J-> RV Wj;, (3.307)
i, ji i, j#i

where W;; are NLO sector functions, and the sum runs over the n + 1 final state
particles.

The combination of counterterms of Eq. must feature the same phase-space
singularities as the real-virtual matrix element, in the IR one-unresolved regimes.
However, we have some degree of freedom in defining separately each term of
Eq. [3.307. This concerns the choice of momentum mappings from n + 1- to n-
body phase-space, as well as the functional structure of the terms themselves.

In particular, the definition of the barred counterterms proceeds by considering
the unbarred (off-shell) counterparts, known from the literature [264|73], and then
choosing an appropriate mapping for the Born and virtual matrix elements. As

a first step, we then collect the unbarred soft, collinear and mixed limits of the
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real-virtual matrix element [26}73|, to highlight the basic structures that have to

be integrated over the one-unresolved phase-space.

We start with the unbarred collinear contribution:
M v

CyRV = = |PiV, - %@PWB N P B, (3.308)

ij
Sig am Sij

cr cos(me)

where the relevant constants are

. 110A—4TRNf o 1 F(1+6)F2(1—6)
bo = 3 T T Umre T(1-20) (8:309)

and the spin-correlated virtual matrix element is

oo @ g Wme( £ )n

1#1,j l#1,j
1=1...[ij]..n+1 1=1...[ij]..n+1
Ll S 1og (™) B +H (3.310)
S 0 v,lm v .
€2 l,m##i,j ° 'u ! '

ly;m=1...[ij]..n+1

Note that the term H,, is a hard function, free of any singularity. We recall that
the symbol [ab] stands for the parent parton of the splitting [ab] — a + b.

We have also introduced the following decomposition for the two-loop collinear
kernels,

P By = (Mij Py + Ny ) B+ (M QU + Ol ) By (3.311)

ij

where for each X;; = M;; P;, Ny, M;; QLY O‘“’ one has

1]7 z] Y
Xij = 5fi95fj9 ng + 5f¢95fj{qc7} ng + 5fi{q<i}5fj9 qu + 6{fifj}{‘1‘7} qu ) (3-312)

with 07,199y = 0pig 05,0 and (1, 1340g) = 95iq Op;07+05ig Of;q- The functions Fyj, Qs
and PZ’; , fj are respectively the spin-averaged and spin-dependent Altarelli-

Parisi splitting functions at tree-level, written as in Eqs.(3.93))-(3.94)). The one-

loop component functions, written in terms of hypergeometric functions [26] and
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respecting the decomposition of Eq. |3.311], are

C
Myy(z,1—2) = A{l—QFl(L—?l_G,— ° )

€2 1—2

1_
B (L—e;l—e,— Z”
ya

My (z,1—2) = —é[(C’A—2C’F) (1—2F1 <1,—6;1—6,— & ))

1—2=2
)]:ng(l—z,z),
1 z
My (2,1 —2) = = 304 —2Cr —CyuoFy |1, —€;1 — € —

1—=z
1—
—CxoFy (1,—6;1—6;— z)}
z

1
+1_26L(ﬁ0—3CF)+CA 2Ck +

1—2

z

+Cy ol <1,—€;1—€,—

CA+4TRNf
3(3 — 2¢)

} (3.313)

OA<1—€)—2TRNf
(1 —2€)(2 — 2€)?(3 — 2¢)
W —2) = OFM (1—ez) = Ny(1—2,2),

2¢
Ny(z,1—2) = 0,

gz, 1—2) = 40y (1—2ez(1—2)),

CA(I —6) —QTRNf

pv _ - _ B B
Oby(z,1—z) 4CA(1—26)<2—26)2<3—26)(1 2¢z(1—2)) x
K kY
A Nt
(- =255,
O (z,1—2) = OM(z,1—2) = O0%(2,1—z) =0. (3.314)

Turning to the soft component, the low-energy limit of the real-virtual matrix

element is given by

Ca mecr 7\ ¢ BoSe
S;RV = — 7 V) + 2 _\B
AN {V NK e (4) + 3cCamge ) P

27 D)€
- Y (I;p)) Bklp} } (3.315)

p#k,l

where the colour-correlated virtual matrix element is defined as

G (%)[‘6—25(2%)%* (") B
o Zl <qu) qul+Hkl]. (3.316)

D,qF#p
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Hy, is again a hard function, free of € poles, and the indices p,q run over the
Born-level partons, i.e. p,g=1...[ij]...n+1, and p,q # i, j. The tripole-colour-
correlated Born appearing in the second line of Eq.(3.316) is defined as

Bklp - Z fabc <AB|TlgileT;|AB> ) (3317)

a,b,c

and it turns out to be completely antisymmetric under any index permutation.
Finally the normalisation constant S, is equal to (4me "E)".

The remaining contribution is the soft-collinear limit of RV. We notice that N;;
and O;; kernels are soft-finite, while M;; have at most logarithmic soft-singularities.
Therefore, only the soft limit of M;; and P,; kernels involving i = g and/or j =
g contribute to the soft-collinear counterterm. This ensures that the soft and
collinear limits commute, i.e. S;C;; RV = C;; S; RV. Then, the soft-collinear

unbarred limit is

CA TECr (i) € 6055
€2 tan( ) (IjT> + 26(47T)2/,L26>B:| . (3318)

We stress that when defining the (barred) counterparts of Egs. [3.308] [3.315 and
3.318|that enter Eq. the following consistency relations need to be respected:

S,Ci; RV = N, 20, /{V Nl(

S;RV = S,;S;RV,

C,; RV = C;C;RV,
C;;SiRV = Cy;S;C;RV. (3.319)

This ensures that the complete counterterm (Eq. [3.307)) features the same phase-
space divergences as RV in all one-unresolved singular regimes. One possible
realisation of the constraints in Eq.(3.319)) is given by

_ ijk) Cy mecr )\ € BoSe —(ikl)
S; RV = -\ Z Ikl {Vkl] - M (——(I;S;z)> + m) By

oy €2 tan(me) e(4m)?pu
o 2m 0\ 0
+N1?Cr (Ilp> B, ] )
pFik,l
@ij RV = Nl |:lew V(l]r) Zs Bo PZ/W B z]r) + Nier 8 COS(WE)P(I)“V BSZT)} ’
Slj 7T

- N | =—(igr CA TECr A\ € /BOSE — (i)
S,Ci; RV = 2N,C, IO |77z (22 (I@) _ BoSe \gn]

MO L [ M €2 tan(me) \ 7" * 2e(4m)2 2

(3.320)

To enable analytic integration of the counterterms, a natural strategy has been
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choosing momenta mappings in such a way that the radiation phase-space is para-
metrised according to the invariants appearing in the kernels. To begin with, we
examine the soft component, whose integral reads

n+1

) = el Z / d®,.4S; RV

_ g"“Z[ lev”“l /dcbr;’fj 7l (3.321)

Sn P
l;ézk
i Ca mecer N\ € BoSe (4)
NES'B ’“”/dcp i) (A _Teer (z@) _ Pove ) 7l
* %ﬁ; rad \ "e2 tan(me) \ M * 2¢(4m)2p2e ) K
ik
27 (zk:l (ikl) DA
_N12CF_ klp / d(I)rad l(p)) ]
k;é'L l#1,k
pFi,k,l
= J + ISV + B (3.322)

where ¢,11/¢, is the symmetry factor coming from the n + 1-body phase-space
factorization.

The contributions proportional to the (colour-correlated) virtual matrix-element
feature NLO complexity, thus they can be easily integrated over the single-radiation
phase-space with standard methods. The same holds for terms proportional to the
colour-correlated Born. As an example, we sketch the computation of the the first
contribution appearing in Eq., namely the term proportional to the virtual
matrix element

Js(?w — Sn+1 Z Vkl({%}(ikl))/dq)(lkl Z

rad
Sn i, ki
i,k
g?’l 1 (2
= N g 3 V(RN (507 o
i k#i
1.k
Qg 1 1 Skl
= — (= — 2—1lo
(27‘(’)2|:€2+6( g,u)
k, £k

7 2 Ski
6 — —7n°—2log — —1 Vi 3.323

< " Ogu+ u)] o (3329)
where the soft factor J* is defined in Eq.(3.137)), s = EI(QM), the kinematics of Vy,;
is {k}*D and in the last step we have used (as we will do in the following terms
of soft origin)

Sn+1
0pg = 1. 3.324
S, ; fig ( )
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The soft contribution proportional to the triple-colour-correlated Born requires
more refined techniques to be analytically integrated. This is due to the peculiar
structure involving two eikonal kernels linking four particles, that is

RV 2T Gt (ikt) ikl) (i i)\ €
Js(,3 = _NQCF_ Z Z Bklp dq)fad)zlil) (Il(p)>
Sn i k#i 1k
pFik,l
= —NZer2n TRV () (3.325)

where we have extracted the core structure of the integrand function by introducing

1 Sn i 7 AN
j(RV)(f, _ +1 Z Z Bklp {]{?} k;l / cI)Eal::il I( (l'l(p)> ) (3326)
€ Sn i kA £k
pFi,k,l

We parametrize the invariants appearing in the integral according to the NLO
mapping in Eq. and Eq., where we choose s;;, as the one depending
on the azimuthal variable:

Sik = yEZ’“’),

si = 2(1-y)s"

su = (L=2)(1-y)5;"

Sip = EZ(;M) [y(l —2)+2&—2(1 —22)\/yz(1— z)f] , (3.327)

’(Zkl /5 lel The integral of Eq. |3.326| can be then

where we have defined ¢ =

rewritten as,

1 ﬂ.e—B /2

Sntl (ikl) [ (k1) €
5 B ( )
616F(1/2—5 Z fig Z klp X

Sn i, k#i l#i,k
pFi,k,l

1 1 — —e—1/2 ,,—e—1 1 — )1—2€ (1 — p)l—€ 5,21
x / drdydy EAZ Ty A2y TR ) T g g0
0

(y(l—z)+§’z—2(1—2x)\/yz(1—z)£)6

At this point, we observe that this expression takes the form of the master integral
defined in Eq.|D.34] namely . 14c _1-2¢1—¢—1-c.1-2¢(€, 1), thus it can be solved and
expanded in € powers following the procedure shown in Appendix [D.3] The final

TV (€ e) =
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result for js(gv) (&;€) reads,

(RV) - T3 G 5 )
jS <§7 ) - 64F(1/2_6 < Z fig Z klp
G ki i,k
pi kL
3 1 S
{ﬁ + = (6(1 +log2) — 3log% —log f)
—I—;(logQS—f— 2logflog% — 4log£(1 + log2) + 310g2;l
1
—(1+1log?2) logﬂ - % + 28 + 12(2 + log 2) log 2)
2
+(’)(60)] : (3.329)

We can now simplify the expression using symmetry arguments, for instance ex-
ploiting the complete antisymmetry of By, under label exchange, leading to a
formula free of € poles. We stress again that, after integration, the result doesn’t
depend on the specific choice of mapping, since all invariants are integrated over
the remaining n-body Born-level phase-space.

The constant terms contributing to poles residues vanish, due to the sum over
colors and the Born matrix element property By; + Bry = 0. The double and

single poles feature residues that also contain the following structures:

> Bup({k}) log 24 2, > Bup({k}) log, (3.330)

k, 1k ph,l k, Ik ph,l
Z Z Bup({k}) log> ¢, Z Z Bup({k}) log ¢ log—
k, Ik p#h,l k, 1k ph,l

The first contribution vanishes upon summation over index p (or equivalently for

the symmetric character of sy;). The second one can be written as

S Bu({F}) logt = [mgﬂ— log ]Bklpak}) (3.331)

k, Ik k, Ik

p#k,l p#k,l

> Bup({k}) log” & = > Buy({k}) (—log¢)* =

k, Ik k, 14k

p#k,l p#k,l

Z By log & logs—k’; = Z [log Skp log — log —2 Sy > log — il By, =0.
k, £k Ay p p p

p#k,l p#k,l

where all terms terms vanish thanks to the same symmetry argument discussed
above.

We point out again that the choice of the mapping for the radiative phase-space



Chapter 3. Subtraction 219

parametrisation is not unique. The mapping (ikl) leads to a quite cumbersome
integration, but has the advantage of giving a result free of infrared singularities.
This is crucial since the divergences of I®VY) must cancel against the explicit poles
coming from the double-virtual matrix-element and the I ® counterterm, both of
which cannot contain any colour-tripole contribution [109] [12] [27].

If, for instance, the mapping (ipl) was used, the integration would be much simpler,
but the result would countain a non-vanishing single pole. Such a spurious singu-
larity can only be compensated by adding similar structure in the hard-collinear
contribution to F(RV), according to the consistency relations of Eq.

We now analyze the integration of collinear contributions to Eq.[3.307 which read:

RV Sn+1
Y = > . <5fz-g5fjg + 0590s4aat T OfifaatOf;g + 5{fifj}{qq}> X

i,j>i "

X / d®,.qa Cij RV . (3.332)

In this case, we parametrize the one-unresolved radiative phase-space with (ijr)
mapping, that is the most natural choice in collinear configurations. The index r
refers to any final state parton, different from ¢ and j.

As for the soft counterterm, all terms entering Eq. that are proportional
to virtual matrix-elements and those coming from UV renormalization procedure,
can be integrated easily. A similar conclusion holds for N;; terms, since they are at
most polynomials in the integration variables. The terms featuring spin-dependent
kernels ij” and Ol‘-‘jl’ vanish when integrated over the azimuth, as happens at NLO.
The less trivial integrals arise from the F;;M;; term, and in particular from struc-
tures of the type,

1
/dz(1—z)m—€z”—62F1 (1,—6;1—6;— : ) , (3.333)

where n, m take only the integer values —1,0,1. For these values, the integral
gives

I'm—e+2)'(n—e+1)
I'(m+n—2e+ 3)

sEh(1,I,n—e+1;m+n—2e+3,1—¢1),(3.334)

that can be expanded in e powers, using for example HypExp code [147,148]. The
integration over the remaining radiation phase-space variables is straightforward.

To provide an example of the just mentioned procedure, we consider the gg con-

tribution to Eq.(3.332))
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The integration over the radiative phase space of the gg contribution is

Sn
[y S / d®,,4Cy; RV

Sn 9, J>1

= §n+1 T 1 w7 (i7) as Bo (zgr)
= ; Zgz 5fzg 5fjg/dq)rad SZ] |:-P7,] V - E?PZ] B

cr cos(me)

(Szj)
Sn
1 Z 859010 {JC e I gg2 + JE o 3] . (3.335)

Sn B, J>1

N [M;; Py + Ni;] B ]

The first contribution in square brackets is trivially reducible to a NLO-complexity

computation
—iir iy (P
K = v [ty Lk
ij

(47)<2 (g(ijr)) —€

Jgr

[(1—e¢)
x/oldydz [1iz 1;Z (1_2)} [y(l—y)2z(1—z)]_e<1;y)

N

Sjr

= QCA ./\/1 V(ijr) X

where the expansion in € is then straightforward. The second contribution in
Eq., namely Jg{g\gfy)z, is analogous to Jgg’)l upon substituting the virtual
matrix element with the Born matrix element and modifying the constant factor
in front of the kernel. The most involved part derives from the one-loop AP
splitting function contribution, and, in particular, from the contribution of M;;,



Chapter 3. Subtraction 221

which reads

2 2¢ .
Jéiz,éa = (8mas)® cp cos(me /d ) (_) “_“Mij HJE(UT) (3.336)
ij
- 4m)2 C
— (87rozS cr cos(me (M ) 12(1—)_6)6_;4
/dydz (1—y) [1—y)’y(1—2)z] "y ' x
0

z 1—2
><< + +zl—z>><
z

1—=z
1—
)—2F1<1 ]_—E,— Z>:|
z z

= (8mas)? ep cos(me) (fl_) B({k}) <A(lf)_6 €) CEJ’;

Sjr

{1—2171(1 (il—e -

x/oldy dz (1 —y)' 72y~ ! [(1—2)z] Y
><< : —I—1_2+Z(1—2)>|:1—22F1<1,—6;1—6,— : >]

1—=2 z 1—2

In the second step we have exploited the symmetry of the integration measure and
of the NLO collinear kernel under the exchange z <+ 1 — 2z to sum the two hyper-
geometric functions. The most advantageous aspect of the chosen parametrisation
relies on the functional dependence of the integrand function on the integration
variables. Such dependence on z and y is indeed completely factorised, so that the
integration can be carried out independently over the two variables. In particular,

the integration over y returns a simple combination of I' functions

Jant ot S HEE ST (3.337)

while the z component can be simplified by exploiting the hypergeometric function
property

z

gFl(l,—e;l—e,—l > =(1—2)F1(1,1;1—¢,2) . (3.338)

—Z

This way, two different structures have to be integrated over z: one proportional
to (P;;)4 times the multiplicative factors deriving from the integration measure,

CA (1 B y)l—Qe —€ z 1—=2
Ih = = Od yde i [(1-2)4 (—=+—

Oy 271237 2(4 = 3e) T(—€) I(—2€) (3 — 2¢)
e (=34 26) (2 — 46) T(5/2 — €) ’ (3:339)

+2(1 — z))
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and a second structure featuring the NLO AP splitting, the hypergeometric func-
tion in Eq.(3.338)), and the integration measure factors

Ip = Ca ldydz(l_—y)l_zg[(l—z)z}_e< : +1_Z+z(1—z)) (3.340)

€2 y26+1 1— 2 z

X (1—2) 2F1(1,1;1—e,z)

_ Ca (2 —2¢)I(—2¢) [F(S —e)l(—€)5F(1,1,—€63 — 26,1 — ¢ 1)
€2 ['(2 — 4e) I'(3 — 2¢)
_ﬁ46_1 (1-2¢(1—¢))(2—¢) n VT 472262 — 4e + 3)T(3 — E):|
e(l—e)(1—2e)T (2 —¢) (1—e2(B—=2¢) (2 —¢)

The last contribution derives from the N;; function and reads

2\ €+1
v ijr H —(ijr)
Jévgg,)?»b = (8mas)? er cos(me) /d(DE;d) (;) (Ni')gg B"

4C4(Ca(1 =€) —2Tr Ny) (4m)<? <u2 )EHX
(1—26)(2—2€6)2(3—2¢) T'(1—¢)
(1-y) 2 —€
i [(1—y)*y(1 - 2)2] {1 —2e2(1— z)]
CA(l—E)—QTRNf (u_2)6+1 %
(1 —2¢)(2 —2¢)2(3 — 2¢)
o (Am)2 T(2—-2)T(1 —€)T(4 — €) T(—2¢)
<BUR) p [(2 — 4¢) D(4 — 2¢)

= (8mas)? er cos(me) —
Sir

xB({l{:})/O dy dz

= (8mas)? cr cos(me) 4 Oy —
Sjr

(3.341)

Summing all the contributions listed above, taking care of the relative multi-

plicative factors, and working out the multiplicity factor, 92:1 ZZ i 05ig0f;g =
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% Zp d7,9, the collinear contribution for the gg configuration is given by

(RV) 1 Qg 2 1,23 gpr
T = 520 () CA[TE(E—”%)
p
104 7x2 23 -
R —— | log? “& k
ST 6%”%]({})
1 s\ 2 1 1, 67
N (—)c Cul — = —(—— 2log )
* 221): 9 \ o A{ A{ €4+63 6 * 2
1 /1172 199
—< T 15lg —210g >
e\ 6 6 2 2
1( 3421+92§(3)+3857r +<941 11 )1 S
o U — — =T
e\ o7 3 36 18 3" ) %2
34, 58 4 S
— T o2 2P L 2 3ﬂ)
3 og’ 12 +3 ©8 12
5698 154 , 184 Spr
(G~ @) e
11, 181\, 58 19 45, 2. .5,
77891 | 8539 , 179 , 481
62 T 216" 0" T3 o0 )}
8 1,46 8. 3
T Nj | — —<———1 p’“)
e f[3e3+62 9 3 ;ﬂ
1(@_EW2_4_61 gl”“ élog2@>
27 9 9 w3 w2

14 434 S 2 S 4 S
(—7r2 _ i) log o 23 log? 228 _ Zog3 20r
9 27 29 > 9 2
3973 161 2 200 -
S e e . 34
100 20 >]}B<{k}> (3342

The expression above is made of two different objects: a virtual correction, com-
posed by a combination of explicit poles and finite contributions multiplied times
the virtual matrix element, and a Born-level contribution, deriving from the one-
loop Altarelli-Parisi splitting. As expected, both terms contribute to the residue
of the 1/¢* pole. The result in Eq. is not interesting per se, but provides the
idea of the complexity of the integrals we have to handle for computing the real-
virtual counterterm. Remarkably, the entire integration procedure can be com-
pleted at all orders in € without exploiting numerical approximations, or involved
integrations tools. As already mentioned, this simplicity is a direct consequence
of the freedom in choosing the phase space parametrisation.

The last contribution to the integrated real-virtual counterterm is the soft-collinear
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one
&) = 9;“ > b / d®,.q S;Ci; RV
i, i
Y [2/\/1%?(”” / dol7) ) (3.343)

i

—(ir) (ij7) Ca mecr ( (i))E BoSe (4)

—2C, NP B [ 4%, | = 7, ——— |1/ |
5N / rad <62 tan(me) \ 7" * 2¢(4m)2p2e ) M

The integration of the soft-collinear is similar to what done for the soft component.

We stress that, as discussed before, the choice of mapping in the tripole-colour

soft contribution has an impact on the soft-collinear term. As result of the (ikl)
C (RV)

parametrisation in Eq. [3.326} the couterterm I’ embeds only structures that

can be integrated easily with NLO methods.

This completes the discussion on the real-virtual counterterm integration.

3.7 Proof-of-concept calculation

q1

9[34]

G2
(a) Double real contribution (b) Real virtual contribu- (c) Double virtual contribu-

tion tion

Figure 3.2: Feynman diagrams contributing to the TrCr colour structure of the
process eTe” — jj .

In order to demonstrate the validity of our local subtraction method, in this Section
we apply it to di-jet production in electron-positron annihilation, as a test case.
We consider radiative corrections up to NNLO, restricting our analysis to the
contributions proportional to TrCr. The production channels available in this

case are
B, V,VV: ete” — qq,
R, RV : ete” — qqg,

RR : ete” = qqdq . (3.344)
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3.7.1 DMatrix elements

The relevant O(a?) matrix elements are known analytically, and up to O(e°) they
vield [121,[149,[150]

2
vsz(%) Ty Cr (3.345)
y (;ﬁ)?e 1 +14+1<_11 2+353)
S 3¢ 9e¢2 € 187T 54
% T, T
9% 27 324
2
“_>6 42 17, 16 8. .72 32
+<s {363 et o™ 3 \oe s T3
12
/ d®q RV = 5 - 21y / d®q R (3.346)
21 € 3
2
:B(%> TrCr
2
ﬂ_)fi 2, 10 7, 19y 100, 7, 109
X(s [363+€2+€ 0" T3 5% 6" T 6
2
/ A 0. RR:B<%> TrCr (3.347)
2

X(,ﬂ)% LM 1/, 407
I _—— — —_— J— _7T _ —
s 3e3 9e¢2 ¢ \ 18 54
134 77, 11753
+TC3 + ;

27" T 3
where, in this case, d®,,q = dP3/dPy, dPraq1 = dPy/dPs, and dP,ag o = dPy/dPs.
The TrCF contribution to the O(a?) coefficient of the total cross section is thus

2

2 1
) TrCr (—7 146G —In %) . (3.348)

Qg

2

ONNLO = ULO(

We now proceed to compute and integrate the local counterterms relevant for this
particular process.

3.7.2 Local subtraction

The double real matrix element presents single phase space singularities corres-
ponding to the single collinear limit Csz4. Moreover, the double-unresolved sin-
gularities arise from the configurations where both the emitted quarks are soft,
caught by Ss4, or they are collinear to one of the hard Born-level fermions, extrac-
ted by Cy34, Co34, where labels 1 and 2 refer to ¢ and ¢, while labels 3 and 4 refer
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to ¢ and ¢, according to the process definitions in Eq. (3.344)), and the graphical
representation in Fig3.2]

The relevant limits in barred kinematics have been introduced and discussed in
Eqgs.(3.214)-(3.215)-(3.216)). We report here such limit for convenience

Surr =205 [ 50 2039 by ({11)

c,d#i,j - e, f#1,7,¢,d
d#c
43" T T8 Bgea ((RY7) + 278 T8 By ({5
e#1,7,¢,d
O ) 71 (ijed)
+(ch - QIcc QIdd )BCd <{k} > ) (3349>
Cyx RR = 81 PLy By, ({107 (3.350)
ijk
NY 70 76) | 76) _ o 70) (igkr)
SZJ CUk’ RR = _ka [8 ka rk Irk _I_Irr] QIrk +Ik ] <{k} ! >

(3.351)

where {i,j} = {3,4}, and {ijk} = {134,234}, and r = {1,2,3,4},r # i, j, k. The
resulting double-real counterterms are then given by

=0 _ C.RE (3.352)
7@ _ <§34 + Cros(1 — Sga) + Coma(1 — §34)) RR (3.353)
®® - Csy (§34 + Cia3(1 — S34) + Coza(1 — §34)> RR . (3.354)

In this specific (sub)process not all the terms appearing in Eq. contrib-
ute. In the soft configuration, for instance, only the last term in square bracket
contributes, since the soft parton are quarks. In the evaluation of the correspond-
ing integral we apply the integration strategy presented in details in the previous
sections. In particular, the integrated double unresolved counterterm is

@ _ / P12 [§34 +Cisa (1—Ss4) + Cosa (1 — Saa) } RR. (3.355)

In the case we are considering, thanks to the simple singularity structure of the pro-
cess, only the parametrisation (|3.209)), involving four parton indices, is required.
For the case of double-soft radiation the relevant integral is [27]

2
/d(brad,Q §1] RR = N12 TR Z Blm ({E}(Z]lm)) /dq)r;]dlrg |: 82il8jm + SimSjl — SijSim

Lm=1 Sij (Sil + Sjl) <3im + Sjm)
_1 SilSji + Si1Sj1 1 Szmsjm + SzmS]m:|
252 (s + sp)° 242 ' (Sim + Sjm)” 1

(3.356)
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where {ij} = {34}, according to Eq. (3.355)). Different terms in the eikonal sum
can be remapped to the same Born kinematics, and, performing the relevant colour
algebra, the result is

_ 8
/dq)rad,Q Sij RR - N12 B TR OF _2 /d(I)rad,Q (Sa Y, =, ¢7 y,7 Zlu (L’/> X
S

Z(1—2)y (1-2)
y2y? [y (1 —2) + 2]

s\ 2 % 117 1/(7 232
- () e () [ (-3
27 ROF(3> [ 3e3 962+6(187T 27
131 , 2948
54 81

B o] @

The double-collinear contribution (before the subtraction of the soft-collinear re-

gion) can be similarly computed, and it yields

P g 1 [ 13,
[t G = wzmracy [astly o [Sh sy
ijkSi ik9ij
_42]‘ + (Zz - Zk)2 B (1 B 26) (Z b — Sik ) :|
Zi + 2k ’ Sijk

s\ 2 12\ > 1 31
- B <_S) T, Cr [ = -
or) T ( s ) [ 3e3  18¢?
1 /1, 889 80, 31, 23941
e (5” m) * (343 TR s ) * O@] =

where, following 2527, we have set

Ziskj — stij Zi — 2k
wod zZ; + 2k Zi + 2 F ( )

Note that the result in Eq. applies to the configurations {ijk} = {134} and
{ijk} = {234}, as seen from Eq. (3.355). Let us recall that the spin-dependent
component of the double-collinear Altarelli-Parisi splitting function returns a zero
contribution, when integrated. Finally, the composite limit S;;C;;;, RR coincides
with the double soft contribution S;;RR,

/ dq)rad’g gij éijk RR - / dq)rad,Q §ij RR 5 (3360)

given the fact that £ and r have to be different from ¢, j, and in this specific process

they can only coincide with 1 and 2. Summing all the contributions, as prescribed
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by Eq.(3.353)), we easily obtain the double-unresolved integrated counterterm

9 2\ 2€
1@ _ B(;‘_D T C (%) (3.361)

1 14 1/11, 425\ 122 T4, 12149
18" 54

3¢ 9¢? + €

— O(e) .
0 ¥ T 3; 1 +00
Next, we consider the integration of the single-unresolved counterterm, applying
the general formula, Eq. (3.187)), and restricting our analysis to the case in which
only the single-collinear limit is non-zero. We find

2\ €
o= - g‘—; (“?) gTR <% — In 7, + 2) RWi, + O(), (3.362)
where the real-radiation matrix element R involves n 4+ 1 = 3 particles, the indices
h and g take values in the set {1,2,3 = [34]}, and we can choose r =1 or r = 2
when h = 1, ¢ = 2, while r = 3 — h in the other cases. The result in Eq.
must be combined with the RV contribution, and we can explicitly check that
their sum is finite in d = 4, sector by sector in the NLO phase space. Indeed

— Qg 2 1 —
RVWy, + IV = 5 3 T B W,
2\ €
as [ 2 1 _ 8 —
SO ) 2 (2 W o) R @
2%(5) 3 R(e s +3> Wiy + 0(e)
as 2 ur 8 —
= ——-Tx|l - | R Ofe). 3.363
o2 R(n834r+3 Wia + O(e) (3.363)

The next ingredient is the mixed double-unresolved contribution, which in sector

hq it reads

2

as (112\° 2 1 _ 8\ = — _ _
[h(;z) — —2—; (;) g TR (E - 1n77[34]r + §) |:Sh + Chq (1 — Sh) i|Rth . (3364)

The combination of Eq. (3.364]) with the real-virtual local counterterm in the same
NLO sector must be finite in d = 4. Indeed we find that

—(RV 2 1= _ _ o o 2\ €9
ngq )—l—fh(sz) — gTRE[Sh“‘Chq<1—sh):|Rth—§<'u?) gTRX

1 S\ = — _ _
X (E — In g, + §> [Sh + Cyy (1 — Sh) ]Rth

2
_ a2 (m o +§) [§h + G (1 —§h)}Rth,(3-365)

S34r

where in the equations above, O(€) terms have been neglected. The final ingredient
for subtraction is the integral of the real-virtual counterterm. In the present case,
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it is given by

ag 21 — — — — _
](RV) = ﬁ g E TR/dq)rad |:S[34] + 01[34] (]_ - S[34]> + C2[34] (1 - S[34])] R
ag 21
= 53 T < ey s
o\ 2 pA\ [ 4 2 1/(7 5 20
= B(2) mer(5) |ss+5 -2 (57 -5
or) T F(s) [363+62 e \9" 3
100 7
- (7@3 + Enz - 20) ] + O(e), (3.366)

where [ Crne2 denotes the NLO counterterm given in Eq. (3.139), considered in

the particular case of two non-gluon final-state partons at Born level. All required
ingredients for NNLO subtraction for the process at hand are now assembled, and

we can proceed to a numerical consistency check.

3.7.3 Collection of results

The heart of the subtraction procedure is the combination of analytic results with
numerical integration of the finite remainder of the real-radiation squared matrix
element, to get physical distributions and cross sections. For this proof of concept,
we will simply reconstruct numerically the total cross section for the production of
two quark pairs of different flavours. We emphasise however that the formalism we
constructed is completely general and local: a detailed numerical implementation
for all processes involving only final state massless partons is being developed and

will be presented in forthcoming work.

The cross section is constructed in general, as shown in Eq. (3.144]), as a sum of
three finite and integrable contributions, given by

Vvsub — VV + 1(2) + I(RV) )

RR* = RR-KY-K"
The subtracted double-virtual contribution is computed analytically, and is finite
in d = 4. In this case, it is given by

QN 2 8 1 44 4 P
Vvsub — B ( S> T O _ — = 2 _ _ — —1 — 3368
on) 1RO 39 g™ T T3l (8.368)

2
- B (;‘—S> T Cp % 0.01949914
s
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where, for definiteness, in the second line we have randomly chosen p?/s = 0.35.
For real radiation, we have written a Monte Carlo code to integrate numerically
the remaining two terms in Eq. (3.367)), obtaining

/dq>1 RV™ = B (;‘—;)QTR Cip x (= 0.90635 + 0.00011),
/d<1>1 RR™ = B (;‘—;YTR Cr x (+ 220491 % 0.00038) . (3.369)

The rescaled NNLO correction, evaluated numerically by means of the subtraction
method, is then

Ko = - fNNLO = 1.40806 + 0.00040, (3.370)
(ﬁ) TrCrpowo

to be compared with the analytical result
an. 11 2
Ko = Y + 43 — ln — | = 1.40787186. (3.371)

For completeness, we also show in Fig.[3.3|that also the logarithmic renormalisation-

scale dependence is correctly reproduced with the same accuracy.

3.8 Local subtraction to all orders

In the previous Sections we have implemented a minimal, analytic subtraction
scheme up to NNLO. Starting at NLO, we have introduced the simple subtraction
pattern

dUNLo

dX

_ / dd, (vn + In) 5 (X) + / AP, (Rn+1 buin(X) = K\ 0,(X )) :
(3.372)

In view of a generalisation to higher orders, we formally write the local counterterm
K K +)1 as a limit of the real radiation squared matrix element R, ., appropriately
remapped. To do so, we introduce the operator L( which collects the single-

unresolved barred limits of the real matrix element. More in detail, one may
define T by

g, = ngs + Ty — 8:Cy) B Wy zzg K, (3.373)
roJ7F S E=

in agreement with Eq.(3.123)). The barred limits appearing in Eq.(3.373)), and
given in Kqs.(3.112))-(3.114)), have been defined in two steps: first, we extract
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Figure 3.3: Rescaled NNLO correction as a function of the renormalisation scale.

from R,.; the leading power in the appropriate normal variable \;, an energy
or an angle. Secondly, we assign the appropriate set of on-shell momenta to the
kernels. In the language of the L operators, the candidate local counterterm and

its integrated counterpart can be rewritten as

F(l)l = i(l) Rn+1 ) [n = /dq)rad,l E(l) Rn+1 . (3374)

n-+

Introducing the further assumption ™ Oni1(X) = 0,(X), we can rephrase the

second term in Eq.(3.372)) as
/ dd,, ., (1 - E(”) Ryt Onin (X) | (3.375)

and consequently

do NLO

_ / o, (vn + In> 5(X) + / AP, (1 - E“’) Roir i1 (X) . (3.376)

We stress that, at NLO, the explicit expression of L traces the leading singular
behaviour of R, 1, under single IR limits. Such choice is sufficient to guarantee
the finiteness of the two contributions in Eq.(3.376)). At NNLO, to realise the
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corresponding intricate subtraction pattern, we must allow the L operators to
include terms that cannot be directly obtained by computing the IR limits of
the real matrix element. As already discussed, the main problem is the complete
cancellation of the singularities contributing to the second line in the subtraction

formula

do NNLO

dX

= / d®, (VV +1® + 185, (3.377)
+ / [(d@nHRV + d¢n+1](1)>5n+1 D, (F(RV’ + 1“2))6”}

+/ [d®n+2 RRpq0 — dq)n+2F(1)6n+1
_dq)n—i-Q (K(z) - F(lz))én} )

where we have omitted the argument of the ¢ function for simplicity. Such cancel-
(12)

lation requires to define K~ not as a mere remapping of the leading contributions

of K@ under single-unresolved limits, but rather as a novel object. K™ indeed
has to incorporate appropriate extra factors that enable the mathching of its in-
tegrated counterpart 1 2 with the explicit pole of F(RV), and, at the same time,

with the phase space singularities of 7). In analogy with Eq. (3.374)), we write

7=(1) +@) - (2) 7(2)

Kn+2 = L RRn+2 3 Kn+2 = L RRn+2 R

- (12 (1) +7(2) —(RV —(1

KT(L+2) = L ( L( RRH+2 ) K£L+1) = L ) Rvn+1 R (3378)

where E(l) and E(z) are commuting operators, whose nested action on RR, .o
underlies the formal procedure that allows the cancellations mentioned above.

Moreover, in Eq. (3.378)), L® acts on R, 12 by extracting all singular limits where

two particles become unresolved, either becoming soft, or becoming collinear, with
no assumption on the relative rate, and applying the appropriate mapping. Then,
we note that the last line in Eq. (3.377) can be rewritten as

/ d®,, 5 (1 - E(”) (1 - E”’) RRy00nia(X) (3.379)

provided one defines f(z)én“(X) = f(l)f(z)émg()() = 0, (X).

The analysis performed at NNLO opens up the possibility to apply a similar pro-
cedure at higher orders in perturbation theory. In particular, given the subtraction
pattern at N®LO in the remapped kinematics, i.e. the analogous of Eq.
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where all the K J(i) functions depend on the mapped momenta,

d@:;“—)f”(“’ = / d®, [V\/Vn +1I® 4 [RVYV) IgRRVv2>] On (3.380)

+ / d,, ., { (van+1 +1®) 1,‘}}?"’”) Soin

—(RVV) 23 RRV, 12
- (Kn+1 + [7(L+1) + I¢S+1 )) 54

+ / A, { (RRVisa + 155) bz — (K25 + 10) 00
—(RRV, 2) 13 —(RRV,12) 123
)]
—(1 —(2 — (12
+ / AP, 43 |:RRRn+3 Ongs — K T(L+)3 Ont2 — (K 7§+)3 - K 7§+3)) Ont1
7=(8)  5=(13) 5=(23)  =(123)
- (Kn+3 - Kn+3 B Kn+3 + Kn+3 ) 6”1 ’

the rather intricate nesting of singular regions is neatly captured in the language of
the subtraction operators . They are defined to extract the singular limit of a
real-radiation squared matrix element when exactly i partons become unresolved
at the same rate, and then to apply the appropriate remapping procedure. In

terms of these operators, one defines

KV, = TYRRR,,s, i=123,
K = TO9TYRRR,.,,  ij = 12,1323,

7(12‘3) _ _(I)E(2)E(3)RRRn+3 , (3381)

&

where the action of a string of LY on a matrix element follows the same philosophy
presented at NNLO, while on the observables it is given by

E(ll) c e E(lm) 5n+h(X) = 6n+h—imax (X) ’ imax = ma’X(/Ll tee Zm> . (3382)

We see that, in analogy with Eq. (3.379)), the last term in Eq. (3.380) can be
compactly written as

/dcbn+3 (1 —E“)) (1 —E@)) (1 —E("’)) RRRuis0ps(X).  (3.383)



Chapter 3. Subtraction Chapter 3 Subtraction

The remaining counterterms are naturally defined by

—(RRV,1) — —(RRV,2)  —(2)
KD TORRY,.,, K2 T RRY, .,
RRV,12 2 —(RVV =(1
R — WL ®RRy,,,. K5V =TYRVV,,,.  (33%4)

The structure of local subtraction that we have discussed at NLO, NNLO and
N3LO lends itself to a relatively simple and transparent generalisation to all or-
ders in perturbation theory. To begin with, we slightly simplify our notations by
defining

Rle_l = Rvan+l, (3385)

where k is the perturbative order and 0 <[ < k, with, in particular,

RV =V...V,, RVo = R...R k. (3.386)
k k

In this language, we can define a generic ordered local counterterm at N*LO by
K(ll im) _ E(u) E(im) RV
oneh = . WVien (3.387)

where 1 <1i; <iy < ... <iyp < h < k. One can verify that these restrictions on
the indices in Eq. yield a total of p = 281 — 2 — k local counterterms at
N*LO, matching our earlier results for k = 1,2,3. With these definitions, we can
propose a first version of our all-order formula for local infrared subtraction: we
write the N¥LO distribution as

. L k—h
do’ k 7 ()
dNXLO = E /d@mh [H <1 — L > RyVien 0nn(X) + [k nin | +(3:388)
h=0 =1

7j=1

where we defined combinations of integrated counterterms given by

h
9, = / e | (1 - E“*”) Rive Vi Onenss(X) . (3.389)
=1

Notice that we have included the -function defining the observable in this defin-
ition, but this does not affect the universality of the integrated counterterms.
Indeed, using Eq. , one may verify that the J-functions always appear out-
side the integration over the radiation phase space. One may easily match the
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definition in Eq. (3.389)) to our earlier results, obtaining

I = 6,(X) IV, 12 = 6,(X) 112,

Iy = 601 (X) L) = 60 (X) 1012, (3.390)
at NNLO, and
BN = 6,(X) VY 12 = 5,(X) IRRV:2 ) — 5 (X) 1P
Lh, = n+1(X) Y 5, (x) 1BV
B2 = Gun(X) I = 0,(X) I3Y,
Lh., = n+z(X)L§1+2 O (X) I — 6, (X) I3 + 0,(X) 103, (3.391)

at N®LO. One recognises the combinations of integrated counterterms appearing

in Eq. (2.207) and in Eq. (2.266)), respectively. The proof that, in Eq. (3.388)),
we have added and subtracted the same quantity from the unsubtracted N¥LO

distribution follows from the identity

h —J

ﬁ (1 - E“’) zh: ( Lo ) (3.392)

i=1 j=1 i=1

.

which, in turn, can easily be proved by recursion, starting with the observation that
it is obviously satisfied for A = 1. Substituting Eq. (3.392)) into Eq. , and
rearranging the double sum of the integrated counterterms [fflh, one may indeed
verify that all terms involving the operators L in Eq. cancel identically,

and one is left with the original expression for the N¥LO distribution.

In Eq. (3.388)), each term of the sum on h can be integrated in the phase space

with multiplicity n + h: indeed, both the first term in the square bracket and each

I(JJ)riw

since all singular regions have been subtracted, and all double countings have been

integrated counterterm have no phase space singularities by construction,
compensated for. For a given h, we count exactly k — h + 1 of these integrable
expressions and each of them contains exactly 2" terms. Note that the organisation
of Eq. makes the cancellation of phase space singularities transparent,
but somehow blurs the cancellation of explicit poles in €, which is instead the
main organising principle of Eqs. (2.266|) and . Indeed, poles in ¢ must
cancel separately in every coefficient of 6,,,(X), for any [. In order to make this
cancellation explicit, one can organise Eq. in greater detail, collecting terms
corresponding to each phase space multiplicity, and to each number of unresolved
particles, as was done in Eq. and in Eq. . In other words, for fixed
h, we need to collect contributions proportional to d,;(X), for 0 <[ < h. This
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can be done by using an identity analogous to Eq. (13.392)):

h

h m—1
I1 (1 - E(”‘)) 1= T (1 - E‘”") , (3.393)
m=1 i=1

=1

which can also be proved by recursion. When applied to the first term in the
square bracket in Eq. (3.388]), for each fixed value of h, this gives

h
I1 (1 - E(‘)> RV 0nin(X) = RuVion 0nsn(X) (3.394)

i=1

m—1

h
~ 3 Gusnm(X) T (1 - E(i)) RaVin,
m=1

=1

where we made use of Eq. (3.382)) to move the d-function to the left of the subtrac-
tion operators. Similarly, applying Eq. (3.393]) to the combinations of integrated
counterterms defined in Eq. (3.389) yields

[Igzwrh = Onn(X kn+h Z On-th—m( k"+’)“ (3.395)
where we defined
180, = [wr T R,
[Igjnlj:’)l _ /dq)ﬁh T W g Utm) nﬁ (1 _ E(j+i)>Rh+ij7h7j- (3.396)

Reorganising the terms, we finally obtain our second expression for a generic fully
subtracted distribution at N*LO. We find

daN kL0 Z / d®n+h{ nth(X
m—1 . k—h

_ Z Srnim(X) [E(“‘) (1 - E‘”) RiVion+ fﬁn‘fi] }
m=1 Jj=1

=1

k—h
RV, + Z IkJ7?+h] (3397)

In Eq. , as before, for every value of h the curly bracket is integrable in
the phase space ®,,,,. Furthermore, each square bracket is finite in ¢, as was the
case for our explicit examples for £k = 1,2,3, which are easily reproduced. For
fixed h, we count exactly h + 1 finite combinations, one for each &, (X), for
0 < m < h; the number of terms contained in the finite combination proportional
to 8p4n(X) is k — h + 1, while the finite combinations proportional to ., (X)
contain exactly 2™~ 1(k — h + 1) terms, again reproducing our earlier results for
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k=1,23.

We stress that Eq. is a purely symbolic expression, presented to prove the
naturalness of the subtraction pattern at an arbitrary perturbative order. To prac-
tically implement Eq. for an arbitrary k, several crucial steps are required:
first of all, the matrix elements R,Vj;_p, with h = 0...k, have to be known up to
finite terms in the regulator. Moreover, we need to identify all the contributing
IR limits, included the composite ones, of the RV _; matrices, for each possible
value of h. Then, we have to find a consistent, explicit expression for all the L
operators contributing to the k-th order subtracted observable. This specific step
implicitly requires to introduce appropriate sector functions, and multiple-particle
mappings. Furthermore, the definitions of the L operators have also to be checked
against the consistency relations valid at N*LO. Finally, we have to compute the
integrated counterpart of each counterterm, given by the proper string of L op-
erators. To this aim, an efficient phase-space parametrisation, and an analytic
integration method have to be implemented. All the ingredients mentioned above
are non-trivial already for £ = 2, as it emerges from the previous Sections.
However, we may expect that (at least for & = 3) some of the needed elements can
be introduced following the same philosophy that has guided us from the NLO to
the NNLO implementation. In particular, by looking at sector functions and map-
pings, we can notice that in moving from NLO to NNLO, such elements undergo
a natural generalisation, that we believe can be further implemented at N3LO.






Chapter 4

Conclusions and future

perspectives

In the first part of this thesis, we have presented the outline of a general formalism
to construct local counterterms for the subtraction of soft and collinear singular
configurations from real-radiation squared matrix elements, using as an input the
well-known factorised structure of infrared poles in virtual corrections to scatter-
ing amplitudes. Virtual factorisation embodies the highly non-trivial structural
features of infrared singularities: the colour-singlet nature of collinear poles, the
simple organisation of soft-collinear enhancements, the exponentiation of singu-
larities following from renormalisation group invariance.

The main result of this approach, presented in Chapter [2, consists in providing
general expressions for local counterterms for soft, collinear and soft-collinear con-
figurations, valid to all orders in perturbation theory, and constructed in terms of
gauge-invariant matrix elements of field operators and Wilson lines. In Section [2.10]
and in Section [2.1T]we apply the general definitions to construct explicitly all coun-
terterms required at NLO and at NNLO, respectively, for the case of massless final
state radiation.

The discussion in Section leads naturally to the construction of ‘demo-
cratic’ counterterms, where all relevant momentum components of the radiated
partons (‘normal variables’) are taken to vanish at the same rate. On the other
hand, the analysis of Section [2.11] emphasises the essential role played by ‘hier-
archical’, or strongly-ordered counterterms. While such local counterterms can
always be obtained from the ‘democratic’ ones by a suitable limiting procedure,
we believe that it is both theoretically interesting and practically useful to seek
a direct characterisation of strongly-ordered counterterms by means of factorised
operator matrix elements, as done previously for ‘democratic’ counterterms. In
Section [2.12] we lay the foundation for this analysis by studying the factorisation

239
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properties of tree-level soft and jet functions in strongly-ordered limits. We show
how, in these limits, soft and jet functions can be re-factorised, once again in
terms of matrix elements of fields and Wilson lines, with a transparent physical
interpretation. As an example, we then show how this re-factorisation, in the soft
limit, leads to a simple proof of the cancellation of infrared poles between the
real-virtual counterterm and the strongly-ordered double-radiative counterterm,
integrated over the softest radiation. While this study is preliminary, we believe
that this re-factorisation procedure and the ensuing proofs of finiteness can be
generalised both to higher orders and to the collinear sector. Moreover, we have
tackled the issue of extending our approach to N3LO, providing a complete charac-
terisation of all required local counterterms for final state radiation of up to three
massless partons, in terms of gauge-invariant jet and soft functions. We have no-
ticed how the factorisation analysis provides a highly non-trivial organisation of
soft-collinear subtractions, collecting contributions from gauge-invariant subsets of
diagrams, which survive intricate cancellations. The approach we have presented
here is likely to have a significant impact in the organisation of future N3LO sub-
traction algorithms. Indeed, at N3LO, the combinatorics of overlapping singular
regions becomes considerably worse, and the impact of infrared exponentiation
on subtraction is bound to become stronger. More generally, we hope that the
present work will contribute to develop our knowledge of the infrared behaviour of
real radiation at the differential level, to all orders in perturbation theory, bring-
ing it to the same detailed level of understanding and control currently enjoyed
by virtual corrections to fixed-angle scattering amplitudes and by inclusive cross

sections.

The approach we have presented can be naturally generalised in several directions:
first of all, a detailed treatment of initial-state singularities can be developed,
which in principle does not present new theoretical difficulties. In this context, we
note that we are not paying special attention to the issue of Glauber gluons [151-
154] and possible factorisation violations: essentially, we are assuming that the
formalism applies for sufficiently inclusive observables, such that Glauber gluons

do not result in uncancelled infrared singularities.

At the level of definitions of local counterterms, the extension to massive partons
(which is of obvious phenomenological interest, in view of top-quark-related ob-
servables, and possibly b-quark mass effects) is not problematic: indeed, massive
partons are not affected by collinear divergences (although it may be of interest
to resum collinear logarithms of the quark mass), so that the structure of coun-

terterms is in fact simpler when masses are present.

We emphasise that the expressions given in Chapter [2| are not yet directly suit-

able for implementation in a fully operational subtraction algorithm: appropriate
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phase-space mappings must still be implemented in order to express all ingredients
in terms of on-shell momentum-conserving matrix elements; we note however that
the list of counterterms presented is exhaustive, and the treatment of soft-collinear
double counting is highly streamlined.

To overcome such bottlenecks, in the second part of the thesis, with an inde-
pendent approach, we have also presented a new scheme to perform local analytic
subtraction of infrared divergences up to NNLO in QCD. The method has so far
been developed and applied to processes featuring only massless partons, and not
involving coloured partons in the initial state, as a first significant step towards
a general formulation. Our subtraction procedure is conceived with the aim of
minimising complexity in the definition of the local IR counterterms, aiming at
their complete analytic integration in the unresolved phase space, and working
towards an optimal organisation of the numerical integration of the observable
cross section.

Our local IR counterterms are defined through a unitary partition of the phase
space into sectors, in such a way as to isolate in each sector a minimal number of
phase-space singularities, associated with soft and collinear configurations of an
identified set of partons (up to two at NLO, and up to four at NNLO). In each
sector, the counterterms can be obtained as limits of radiative matrix elements in
the dominant soft and collinear configurations. Overlapping singularities are fully
taken into account by suitable compositions of such singular limits, with no need
to resort to sector-decomposition techniques.

The sector functions that realise the phase-space partition are engineered in such a
way as to satisfy fundamental relations that allow to achieve the main goals of the
method. A number of sum rules, stemming from the definition of the sector func-
tions, make it possible to recombine various subsets of sectors, prior to performing
counterterm integration, eventually yielding integrands that in all cases are solely
made up by sums of elementary infrared and collinear kernels. Moreover, through
factorisation relations, NNLO sector functions reproduce the complete structure
of NLO sectors in all relevant single-unresolved limits, allowing to subtract, sector
by sector in the NLO phase space, the singularities of the NNLO contributions
featuring NLO kinematics.

The kinematic mappings necessary for phase-space factorisation, as well as the
parametrisations of the radiation phase space over which the counterterms are
integrated, are devised by maximally exploiting the freedom one has in their
definition. They are not only chosen differently for different sectors, but also,
importantly, for different counterterm contributions in the same sector. This al-
lows us to employ parametrisations that are naturally adapted to the kinematic
invariants that appear in each singular contribution, yielding simple integrands to
be evaluated analytically.
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In this thesis we have integrated the counterterms over the exact phase-space meas-
ures, without exploring the possibility of approximating the latter in the relevant
soft and collinear limits. While this possibility would not have resulted in any
analytic simplification in the cases considered here, this might instead be the case
for general hadronic reactions (for example when including initial-state partons,
or for a generalisation to the massive case). This possibility will be investigated in
dedicated future studies, which are beyond the scope of the present manuscript.
At NLO, we have shown that the proposed subtraction method works in the general
case of massless QCD final states, with the integrated counterterms reproducing
analytically the full structure of virtual one-loop singularities. Moreover, as a test
of the power of the method, we have shown that the NLO counterterm integration
can be performed exactly to all orders in the dimensional regulator €, which proves
the extreme simplicity of the integrands involved.

At NNLO, we have deduced the structure of the subtraction scheme in full gener-
ality for massless QCD final states. All single-unresolved counterterms have been
integrated analytically to all orders in €, as simply as in the NLO case, and the
properties of sector functions have allowed us to show that these integrals correctly
reproduce, sector by sector, the explicit € poles of real-virtual contributions. We
stress that this is a highly non-trivial test of the consistency of the scheme, and of
the delicate organisation of different contributions to the cross section. Moreover,
in this thesis, we have presented the analytic techniques that enabled us to in-
tegrate the real-virtual and pure double-unresolved counterterms. This represents
a necessary ingredient to fully validate the cancellation of virtual infrared poles.
We stress that the procedures here presented allow to analitically integrate all
the structures appearing in the counterterms, avoiding any direct numerical eval-
uation. The results have been validated against two independent codes based on
sector decomposition [155H157].

Beyond the importance of expanding the list of results for the integrated coun-
terterms that enter the subtraction scheme, this work provides a novel approach to
calculation of integrals of IR kernels at NNLO, which are known in the literature
(see for example [146,158|).

In this first implementation we have concentrated on the general structure of our
method, with particular emphasis on sector functions and phase-space mappings.
For this reason, we have provided only a simple example of application, analysing
as a proof-of-concept case the TrCr contribution to ete™ — ¢q at NNLO, which
has been detailed explicitly.

To achieve a fully general validation of our subtraction scheme, a crucial ingredient
is still under construction: the definition and integration of a consistent strongly-
ordered barred counterterm. In particular, the most non trivial aspect of this task

(12)

consists in finding a definition of K able to return an integrated countertem



Chapter 4. Conclusions 243

I2) that simultaneously cancels the explicit poles of the real-virtual counterterm,
and the phase space singularities of the integrated single-unresolved counterterm.
Such definition is also constrained by the appropriate set of consistency relations,
whose solution is, in general, quite demanding. On the other hand, we expect the
integration of the ordered counterterm not to pose any new difficulties, given the
sophisticated technique we have already implemented to treat the integration of
the real-virtual and the double-unresolved counterterms.

However, such technical issues do not overshadow the general subtraction pattern
we have so far investigated, which we conjecture to generalise at higher perturb-
ative orders. In Section we have indeed studied the general structure of
subtraction formulas for infrared-safe distributions, to all orders in perturbation
theory. We have found that the problem of double-counting of singular regions
can be analysed in terms of subtraction operators f(i) , acting on squared matrix
elements involving real radiation, and singling out the contribution of the soft
and collinear radiation of ¢ partons. These operators can act iteratively, and a
formal solution of the iteration can be written to all orders: at N*LO, the result-
ing subtraction formula, Eq. , can be organised into k + 1 contributions,
each involving the real radiation of h soft and collinear partons, with h = 0,..., k,
with each contribution being free of infrared poles, and integrable in the h-particle
phase space. At this stage, the definition of the subtraction operators L® is still
formal, and a concrete realisation of their action is fundamental to practically ex-
ploit Eq. (3.397)). Notice that the structure of the LY is still intricate, since they
contain both soft and collinear enhancements, and therefore they must internally

provide for the cancellation of double-counted soft-collinear regions. Ultimately, a
general and detailed description of these subtraction operators might be provided,
on a graph-by-graph basis, by the techniques pioneered in Refs. [159.|160].

To summarise, this thesis represents a first step towards the formulation of a gen-
eral, local, analytic, and minimal subtraction scheme, relevant for generic multi-
particle hadronic processes at NNLO in QCD. To reach this goal, a number of
important steps still need to be taken, including the generalisation to include
initial-state massless partons and the extension to the massive case, as well as the
completion of an efficient computer code implementing the subtraction method in
a fully differential framework. We believe however that the present work lays a
solid foundation for these future developments.






Appendix A

Soft completeness and real-virtual

poles

Given the crucial importance of the cancellation occurring between I,E_lfl) and

K,SP:Y), we find useful to explicitly verify that the combination Iéizl) + Kffﬁ’) is
free of € poles, focusing on the pure soft sector. Before tackling the computation,
we introduce some relevant constants that will turn in hand in the following. We

define the normalisation factor

2 v\ € 8 2e
N, — 8mas (M ¢ ) _ 8oy S, = (dmee)

47 S.
and a constant factor entering the real-virtual kernels

1 T(+40T%(1—¢)
T Umr e T(1-20 (A1)

Let us begin by examining the real-virtual counterterm poles. To extract such
poles, we start from the expression of the full real-virtual counterterm

K®VS) = g0t g0 (0 (01 g0, 30) /0t g1 40 (4 9)

n n,
and recognise that the explicit poles only come from the last term

RV, s
K

= HOT S HO = HOF [3@?{* S+ c.c.] HO (A.3)

1/e

The formal definition of the soft kernel in square brackets is given by

. (A4)

S = | (k. bl T] @5(0,00) 0)

=1

9s
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but in this specific case we can simplify the computation by expressing the one-loop
radiative soft function in terms of Catani and Grazzini soft currents, as explained
in Eq.(2.254). Then, provided that S 1= gsex(k) - JC(,%), we rewrite the singular

content of Eq.(A.3) as

SO ki B) = —gs [ IRk, ) - TSk, )
+9s Jé(c);)(ka Bi) - Jé%)(k, Bi) 57(10) (Bi) 87(11) (Bi) + C-C-] (A.5)
The result of computing explicitly all the contributions above can be deduced

directly from Eq. (24) and Eq. (26) of Ref. [29]. Finally, we need to extract the 1/e
coefficients, which leads to

o' i 1 1 Seq 1
KrﬁYS) - Nl Q_S Z IIE:Z) [ By Z C o) + 3 Z Byicq In —; -
poles ™ o ] € 2 ki He o€
11,k d#i,c
1 1 2s
‘|—CA (—2 + - In a kl) Bkl:| . (AG)
€ € SkiSli

Let us stress that the first two contribution in the equation above derive from the
soft, and soft-collinear poles of the colour-connected virtual matrix element

Seq 1
|:Bklzcl + = Z Byica ln—d —] , (A7)

c;éz
d#i,c

s+sc

[sz(k‘)}

poles

where the index [ runs over all the partons contributing to the Born-level scat-
terin. To cancel the K®Y) poles we imagine to treat S 1, defined in Eq.(A.4 -
as part of a completeness relation where the integrand of the phase-space integral

coincides in turn with the strongly-ordered kernel. In formulas we want to prove

that
/ dd,,

k;Z,aQ\H@dM (0, 00) ®5(0,00) [0) kl,b|H<I>Czez (0, 00) yo>

=1

gs

+| /ﬁ,byH@% (0,00)[0)|” = finite (A8)

i=1 9

!This procedure is the analogous of considering the soft limit of the real matrix element according to
Eq.(3.20) in Ref. [73] (with By = 0)

. o | Vi Ca (me) cos(me) % 2m I\ €
lim RV = leéfig Zl—lgl) {7761“7,7 (Ilgl)) Bklfcr? Z (Il<p)) Bklp 5

7 2
ki —0 ki M € sin(re) pFik,l
171,k

substituting the virtual matrix element with its soft and soft collinear poles (see Eq.(A.7)) and selecting
only the 1/e poles.
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where d®y, identifies the phase space of the gluon carrying momentum k,. Here
the prescription to expand both contributions at g? order implies to integrate in
d®y, a tree level diagram (to obtain non vanishing contribution for the integrand
function, both the Wilson lines have to be expanded to the first non-trivial order,
bringing a coupling constant each), and to sum a one-loop order term. In practice,
we need to identify the explicit poles stemming from the phase-space integral, and
check whenever they cancel against those appearing in Eq.. Let us notice
that the phase-space integral only affects the transition probability between the
vacuum and ko, therefore the first line in Eq. can be rewritten as

(0] @57 (00, 0) | k1, m) [/d@k2(<0| 019 (00,0) 5 (00,0) [kz, az) x (A.9)

X (ka, as| @gzﬁci(O, 00) (IJ‘;Z (0, 00) |O>> } (k1,b] ®5(0,00) [0) ,

tree

where the product over the n hard legs has been omitted to simplify the nota-
tion. In square brackets we recognise the radiative soft function that satisfies the
following completeness relation

/ 4Dy, (0] B (00,0) 1 (00, 0) [z, az) {kz. az] (0, 00) @ (0, 50) [0)

tree

= finite .
1loop

+ (0] %% (00,0) 7 (00,0) |0) (0] @5 (0, 00) 51" (0, 00) [0)

Thanks to this relation, the pole content of Eq.(A.9) remains unchanged if we
substitute the term in square bracket, featuring the phase space integral of a tree-
level diagram, with (minus) the one loop approximation of the same diagram. The

relation we want to verify can be then cast in the following form

2

—‘ (0] @5(0, 00) @57 (0, 00) [0} 1100y, (K1, b] (0, 00) [0) |
2

| (k1. bl @5 (0,00) [0) || = finite, (A.10)

s

or equivalently

=[St feurin [St10] rgiaeapman (S ey + St = fimite . (A11)
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We begin the computation with the one loop approximation of the radiative soft

function

L o= (0] [T 4% (00.0) @ (c0,0) 0) (0] T] @4 (0.00) ®4(0, o) [0)

o =1 1loop
1 o P o n .
W k=1
i L
+ Z <0‘ (bgzgl(ooa 0) ®Z7I;(111 (OO’ O) ’O> H (5fjgj:| H 5dtCt 5a1b
=1 ey .
i
n ma ]_ n . dJC] n . .
- pory k=1
i#] g
+ Z <0| @gzcz (07 OO) @aﬁi? (O’ OO) |0> H 5djc]-:| : (A12)
=1 e
i

where we have separated the contribution of the Wilson line oriented along the
classical trajectory of kg, from the remaining n hard legs enhancements. Let us

focus on the first contribution
(0] @5 (00,0) @ (00,0) |0) =

—_ <0‘/0 d\; ﬁfAﬁ()\iﬁi)(TA)fwi / ), 5;A5()\j/8j)(TB)fjgj 10)

0

(3

= g2 pi* (T 795 (TP )59 5#5}'/ i dX; (0] A% (M) AT (A;8;) 10)
0

= g2 (TiA)figi (T],B)fjgj ﬁ{‘ﬂ;’/ dX; dX; X
0

d . AB
« / d*k _Zguu(s eik-()\iﬂi—)\jﬁj)
(27r)d k2 +in

o dik 1
=94 T“T”ﬂi'ﬁj/(zw)d (k2 +in)(k - B; + in)(k - B; —in) ’

(A.13)




Appendix A. Soft completeness 249

where the loop integral can be performed by introducing appropriate Feynman

parameters

B ddk 1 —
F= /(27r)d (k> +-in)(k - i + i) (k - B; = im)

ddl{? 1 1 1 2
:_4/(27r)d (k2+m)/0 da {Zxk'ﬁi—Z(l—x)k-ﬁj—i—in}

== [ s [ dvdyafutaen pi-20 -0 k-5 + (- i)

o P v
B 8/(27r)d/o Ty (k2 — m2)*’ (A-14)

having performed the shift

-3

o= (B — (1—2)pY)

l—y
’ R (A.15)
M* = —2x(1 —x2)——=0;-5;. .
(1—yp2 "
The momentum integration is carried on by exploiting the formula
d 1\ —
/ d*l 1 :( )™ T'(n—d/2)) INGES (A.16)
(2m) (2 = A (4m)¥> T(n)

which returns

426 B;) e ! e e (1 —1-2¢ 1426
F = (4} 772 F(l—i—e)/o deax™ (1 —x) /0 dyy (1—1y)

N 42.(_2(5;.)52)_1_6 [(1+ €)B(—€,—¢) B(—2¢,2¢) = 0. (A.17)

This result is not surprising, since the soft function corresponds to a scaleless
integral, thus is identically zero order-by-order in perturbation theory, due to the
cancellation between IR and UV poles. To disentangle the UV contribution we

notice that it derives from y = 1 and multiply the integral over y by a factor
y+(1-y)

1 1
/ dyy "1 —y)T = / dyy (1 —y) " [y + (1 —y)]
0 0
= B(1—2¢26)+ B(—2¢,1+2), (A.18)



Appendix A. Soft completeness  Appendix A Soft completeness and real-virtual poles

The UV pole is the one deriving from the term multiplied by y, therefore B(1 —
2¢,2¢). The IR reminder is then B(—2¢, 1 + 2¢), or equivalently —B(1 — 2¢, 2¢)

Fir = _M:%(_Qﬁi Bi) 7V T(1 + €)B(—€, —€) B(—2¢ +1,2¢),  (A.19)

from which

. 95 IR
(0] 5% (00,0) @5 (00,0) 0) =

292 B
S (472 T, T, (—26;-B;) “T'(1+€)B(—e, —¢) B(—2¢ + 1, 2¢)
__os( pPe L T4 gl (ol (=2¢ + DI (2¢)
5 (Gg) = [(-26)
T 1 1
:_042/; Ti-Tj[—6—2—|—Eln(—2@..5],)_1_(9(60)}7 (A.20)

with ji?> = 4mpe7%. This way, the one-loop squared amplitude contributing to
i 1 y

Eq.(A.10) can be easily rewritten as

_9¢ n
o asp 1 b 1 1

s
ij=1
7]

. 1 1
A A\mb
+;T¢ (%) (‘ =2t Eln(—Qﬂi : Bkl))]
The remaning contribution in Eq.([2.248)) is the tree-level single-radiative soft func-
tion, that we have already exploited to show the soft factorisation of radiative

amplitudes (see Eq.(2.158])). It gives

(O TT @57 (00, 0) [k, m) (ky, 0| T] @57 (0,00) |0)

T =
i=1 i=1
- L Bi- e (k) — o, 35 - €(ky)
— 3 jwzm elfzﬁl € ( 1 T~b cie; 7]
% LI, ;< R
Zﬁ% —47rozs,u2€zn:T»mT-bﬂi.—ﬁj (A.21)
2 B B hy
i#£]

As a consequence, Eq.(A.10)) reads
2
—| (0] @5%(0,00) @ (0, 00) [0) 110y, (K1, b @5 (0, 00) [0) |

s
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so that

€ —2¢ - 5 m 1 - m 1 1

k
k=1 ki B+ Ky ij—1
Al i
g . 1 1
+§:E%n9b(—§+;m@m%ﬁm)kf+sg:ﬁn (A.23)

=1

To simplify the computation, we analyse one contribution at a time:

e ¢ 2 contribution proportional to T; - T;: recalling that the indices i, j, k, [
are always different from k;, we exploit the colour conservation to write

T; = —T; — T},, and then the colour algebra to obtain

zn: zn: Ty Ty T - Ty 6P T = — zn: ifgﬁ) Cy, By + zn: 7" Ca By

ki=11,j=1 k=1 i=1 k=1
k£l i#j k£l k£l

e ¢! contribution proportional to T; - T

T, = > > Iy n(—sy) BT T/ T}
kl=11i,j=1
k£ ]

considering only the color structure we have

iim#ﬁﬁ=§iiGn%n%}

kl=11i,j=1 k,l=14,j=1
kAL i kAl ij

A (8 TP T TF + 60 T 7 T
~Oa TE T TP = 6y TATETY))

where the combination in round brackets contribute to 75 as

STIEY In(=sp) if it T TE = > G In(—sp) Ca Ty T
k=1 k=1
2% o
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This way, the single pole results to be proportional to

1 n n
TQ = 52 ZZ,S“) 11’1(—82‘]') {Tle,TzTJ}

kl=11ij=1
kAL ]

‘|‘ E Ilgllﬁ) 111 (_Skl) OA Tl . Tk
k,l=1
k#l

e ¢ 2 contribution proportional to f™4%: we exploit the symmetry properties

of the structure constants to get

NS T T T (T T == > Ty Ca Ty Ty
k=1 i=1 k=1
k£l o

e ¢! contribution proportional to f™4°

kl - LN m
2 Z Zziil ) In (—=sif, ) if™ Ty Tz'A le

k=1 =1
k;ﬁl
(k
= ZIkll) ( ln Skkl Slkl)OA Tk Tl)
k=1
k;él

Finally, by adding the hard function at tree level, Eq.(A.10]) reads

— —da p* 2{ ZZI,;“ C, B — Zz,gf” C4 By

k=1 i=1 ki=1
k£l k£l
1 n n 1 n
—= Z Z I,gfl) In (—s;;) Briij + — Z I,Efl) In (—sp) Ca By
ki=14,j=1 € k=1
FAL i kAl
2 o 1 ¢
t5 > Ty Ca Bu - - > T n((—sek,) (—su) Ca Bkl]
k=1 ki=1
kil k£l
RV, s
poles
2 2 —2¢ - (k)| L - 115
i Y TRl Tl Y A 2 > CBu+ P > In(=si;) B
k=1 i=1 ij=1
k#l 7]

= fin. .

poles

1 1 —
e[l () ] e

62 € Sk k1 Slkl
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If one substitutes the expression for the K,(LIJ);Y’S) given in Eq.(A.6)) it is evident
poles

that the poles cancel, as announced.






Appendix B

IR limits of sector functions

In this Appendix we explore the properties of the NNLO sector functions defined
in Egs. and (3.147). We begin by establishing which limits, among S,,
Caub, Sabs Capes Capeq and SCy., are non-vanishing in the three sector topologies
Wijik, Wijk; and Wijp. To this end, we start by analysing the behaviour of the
sector-function denominator o (see Eq. (3.146)), in these limits. We find

Sioc = > D> Sivea= Y 05> O,

b#i c#i d#i,c b#£i c#i d#i,c
I 5 SLIES ) yp
c#i d#i,c c#j d#j,c
= 0 —i—o {Zac[w]—l— Zawd—F Z Z Ucd:| )
c#i,g d#i,j c#i,j d#i,j,c
Syo = D D owat) D o,
bti d+#i,j b#j d#£j.i
Cijko = 0ijjk + Oijkj + Cikkj + Cikjk + Tjiik + Ojiki

+ Ojkki + Ojkik + Okiij + Okiji + Okjji + Okjij

Ciji0 = 0Oijrl + Oijik + Ojiki + Ojik + Okiij + Okiji + Otkij + Oukji
SCijro = E Si (Cibjk + Oivks) + E Ojkid + E Okjid
bt d#i,j dik
« o «
= E O3 (Ujk—i-ka)—F(fjk E Uid+0kj E Oid , (Bl)
bt d#i,j d#ik

where [ij] denotes the parent parton of i and j. Now we note that a singular limit
L gives a non-zero result, when applied to the sector functions W,p.q, only if the
numerator of the latter, o..q, appears as one of the addends of L . Inspection of
Eq. then proves that the limits reported in Eq. exhaust the surviving
ones in each sector.

255
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Next, we show that all of the limits in Eq. commute when acting on o.
This is a crucial step for our method, since commutation of limits drastically
reduces the number of independent configurations one needs to explore. Further-
more, one must note that, while commutation can be understood from physical
considerations when limits are taken on squared matrix elements, sector functions
are a crucial but artificial ingredient of our method, and commutation of limits
is non-trivial in this case. We list below all relevant ordered limits, acting on the
denominator function o, beginning with those involving the single-soft limit S;.

SiCijUZCijSiU = Zzsiaijcd:giajzzacda

c#i d#i,c c#i d#i,c
SiSijo = S;Sioc = Z Z Si Oivja = ZU% Z Ojd »
bi dti,j bA i
SiCijro = CijpSioc = Si(0ijjr + Tijkj + Tikkj + Tinj)
= |of+ il (o3 +0n)
SiCijrio = CijuSio = 0Oiju + oijie = 0% (ok + o)

S;SCijro = SCy;pSioc = Z Si (Cibjk + Oivkj) = Z oy (o + o%j)
bi b

S;SCito = SCiuSioc = > _Si(own + k) = > _ 05 (om+0ow) ,
b bi

S,’ Scki]’(f = SC]%] SiO‘ = Z Oijkd = U% |:Uk[ij] + Z de:| . (BQ)
d#i,k d#i,j.k

Next, we list ordered limits involving the single-collinear limit C;;, and not con-

sidered above.

CijSijo = 8;Ci0 = E (0350 + 0jia) = [0f; + 5] E : Olij)d 5
d#i,j d#i,j
(e}
Cz‘j S0 = Sik CijO' = g Oijkd = Oy |:O-k[ij] + E O-kd:| )
di k d+i,jk
CijCijro = Cyj, Cijo = 0ujji + Tijij + Ojiik + Ojiki
J— a a . .o
= [Uz'j + Uji] (U[w]k’ + Uk[lﬂ)?
CijCijro = CijuCijo = 0y + Oijik + Ojikg + ik

= [of + o5 (ow +ou).,
CijSCijro = SCy, Cijjo = Si(0ijjn + oijr;) = 0 (Uyk+0kﬂ)
Ci;jSCio = SCiCyjo = oy +oyu = o (ow + o),
C;;SCyijo0 = SCy,;; Cjjo = ZUijkd+ZUjikd
d#i,k d#j.k

= (of; +5:) [Uk[ij] + D de] : (B.3)
di,j.k
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Moving on to ordered limits involving the double-soft limit S,;, and not considered
above, we find

Sij Cijro = CijkSijo = 0ijjk + ik + Tikjk + Tjkik (B.4)
o o
Sit Cijrio = CijuSiko = Oijr + Oriij = 05,0k + 0045,
« o
SijSCijro = SCyj Sijo = E Si Tivjk + E Ojkid = E O Ojk + 0y, E Oid
b£i d#i,j b#i d#i,j
« (e}
SikSCijro = SCyjp Siko = g S; Tiprj + g Okjid = g O3 Okj + O g Tid ,
bAi dZik bAi dti g
(e} (0%
Sit SCiryo = SCyy S0 = E Si okt + g Oklid = g Oi Okl + Opy g Tid ,
bAi dtik b il
o (07
SikSChrijo = SCy;j Siko = E Sk Orbij + E Oijkd = E Ok Oij + 05 E Okd -
btk dtik btk A2 e

Coming to double-collinear limits of type C;j, and Cjji;, we get

Cijt SCijk 0 = SCiji Cijr o = Si(0ijjk + Tijkj + Oikj + Oiknj) + Tjnik + Orjij
(0% (0% (6% (0%
= [Uij + Uz’k:] (Ujk + Ukj) T O5k0ik + Ok
Cijt SChijo = SChij Cij o = Sy (0kiij + Oriji + Okjis + Orjji) + Tijrj + it

= [O’]?Z- + Ugj] (Uij + Uji) + O%ij + O'%O'ji s

CijuSCiyo = SCi Ciju o = 0Oiju + Oijik + Okiij + Otkij
= og(on+ou) + [of + oi] 0ij
Ciju SCrijo = SChi; Cijr 0 = Owiij + Opiji + Oijia + ik
= oy (aij + ajl-) + [aiaj + U;ﬂ Okl - (B.5)

Finally, the mixed soft-collinear limits satisfy

o a
SC,»jk SCkU g = SCkw SCZ]k o = Uijkj + Uka’j = Uij O'kj + Ukj Uij s

SCW S(jkZJ g = SC;%] SClkl 0 = Okl + Oklij = O'iaj Okl + O-IC;Z 0ij - (B6)

The relations in Egs. —, where the limits are applied to the sector-
function denominator o, are sufficient to prove that all non-vanishing limits in
the different topologies commute when acting on the sector functions. The same
commutation relations hold when applied to the physical double-real matrix ele-

ments.

The next step in our analysis is to prove that the compositions of the limits given
in Eq. exhaust all single- and double-unresolved configurations in each
sector. In other words, there are no leftover singular phase-space regions after all
combinations of limits in Eq. have been applied. We start by denoting with
L; a generic set of soft and collinear limits, corresponding to configurations where
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some physical quantities \;, which could be collections of energies, or angles, or
similar, approach zero. Compositions of two (or more) such limits can be either
‘uniform’ or ‘ordered’, with the two cases being defined as

)\i7)\j — 0

<= uniform composition of L; and L; ;
Ai/A; — const.

[L;Li] = [LiL,] - {

Ny Aj 0 .
L;L; : 777 ordered composition of L; (first) and L; .

(B.7)

All single- and double-unresolved configurations in each sector can then be sys-
tematically generated by combining in all possible ways the single-soft and single-
collinear limits selected by the sector functions, namely S,, S., C,;, and CCUE] in

sector Waped-

Let us first identify the uniform compositions of two soft and/or collinear limits

with the limits given in Eq. (3.149)):

[SiS;] = Sy, [Ci; Cjk] = Ciji,
[Cij Ckl] = Cijklu [Sz Cgk] = SCW (B8)

Then for each sector topology we list all such compositions:

® Sij, Cij, SCij, SCyk, SCjy, SCye for topology Wijjk ;
o Sir, Ciyr, SCij, SCij, SCpij, SCyjp for topology Wijk; ;

® Sit, Cim, SCiyj, SCit, SCiiy, SCpy for topology Wijn -

We note that some of these limits coincide with the corresponding ordered com-

positions when applied on both matrix element and sector function:

Wijjk : SCu] = SZ Cij = Cij Si, SCjij = Sj Cij = Cij Sj,
Sijk = Sj Cjk - Cjk Sj7
Wijrj + SCyy = S;Cyy = G Sy, SCpjr = S Cjr = Cji S,
Wijw © SCyuj = S;Ci; = Cy;S;, SCpiy = S Cu = CiSi.. (B.9)

! Note that compositions of limits involving both C;; and Cj; automatically also involve the limit
C;r. Indeed

[Cjk Ci;] = [Cir Cjr Cyj], Cjk Cij = [Cir Cji] Cyj, Cij Cjr = [Cir Cyij| Cji -
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We can therefore conclude that all possible single- and double-unresolved singular
configurations can be obtained as ordered compositions without repetitionﬂ

o Topology Wz‘jjk

According to Egs. (B.2)-(B.6), the S; limit commutes with all other limits
in the list except S;. Therefore, when appearing in a generic composition of

limits, it can be moved to the right until it encounters S;. At this point one

can use
L'S;S; LW = L'S;; SiLWijji (B.10)

valid for generic limits L and L, to remove S;. If S; is not present at the right

of S;, the latter can be moved to the rightmost position, where it vanishes:
LS; Wi = 0. (B.11)

Since the action of S; either gives zero or can be replaced by that of S;;, S;
can be simply removed from the list.

Considering now Cj;, we note that it commutes with S;;, C;;r, SCjj, and
it satisfies

L/ Cjk Sl L Wijjk - L/ Ska Sz L Wijjk ;
L'Cj Cy LWy = L/ Ciy Gy LWy,
L/ CixWiji = 0, (B.12)
so that Cj; can either be moved to the rightmost position, where it gives

zero, or replaced by C;j, or SC;j,. Consequently, one can remove Cjj, from
the list of limits.

The list of singular limits is thus reduced to the first line of Eq. (3.149)),
Wijjk = Sis Cij 5 Sij s Ciji, SCiji - (B.13)

e Topology Wiji;

2 Repeated limits can in all cases be readily simplified. Given a generic limit L, one has for example
L;LL;] = [LL;], L;LL; =LL;.
of the limits
° Si, Sj, Cij, Cjk, Sij, Ci]'k, SCijk for topology Wijjk ;

e S;, Sk, Cij, Cjr, Sik, Cir, SCijr, SCri for topology Wijk; ;
e Si, Sk, Cij, Curi, Sik, Cijri, SCiri, SCgij for topology Wijki -

To conclude, we reduce this list of limits, topology by topology, to that given in Eq. (3.149).
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Besides commuting with Cji, Siz, Cijr, SCiji, and SCy;j, the single-soft
limit S;, satisfies

L'S,S;LWjr;, = L'Sy,SiLW,j;,
L/ Sk Cij L Wijkj - L/ SCkzg Cij L Wijkj )
L'Si Wijr; = 0. (B.14)

Since S can be either moved to the rightmost position, where it gives zero,
or replaced by S;; or SCy;;, one can remove it from the list of contributing
limits. A similar statement holds for Cj;, which commutes with S;;, Cjjy,

SCiji, SCpij, and satisfies

L/ Cjk SZ L Wijkj - L/ SCz]k Sz L Wijkj )
L/ Cjk Cij L Wijkj - L/ Cijk Cij L Wijkj )
L'Cj Wik, = 0. (B.15)
As a consequence, Cj;, can either be moved to the rightmost position, where

it gives zero, or replaced by C;ji, or SC;ji. The list of singular limits in sector
Wijk; can thus be reduced to the second line of Eq. (3.149)),

Wiii + Si, Cij, Sir, Cijr, SCiji, SChj - (B.16)

e Topology Wiju

The discussion of the S; and Cy; limits holds unchanged with respect to the
one relevant for S, and Cy; in topology Wijk;. These limits can either be
moved to the rightmost position, where they yield zero, or be replaced by
limits that are already present in the list, (S;; or SCy;; in the case of Sy,
Cijii or SCyiy in the case of Cy;). The final list of contributing limits thus
coincides with the third line of Eq. (3.149),

Wijkl : Si, Cij7 Sika Cijkla Scikla Sckij- (B-17)



Appendix C

Parametrisation of the azimuthal

angle

While in computations with one unresolved parton the integration on the azi-
muthal angle is always trivial, to handle the phase-space with two unresolved
partons, the integration of at least one azimuthal variable has to be treated with
care. First of all, one needs an auxliary four-momentum k4, to fix the plane with
respect to which the azimuthal angle is defined. We take as reference frame the
one where p = k, + k, + k. is at rest and the direction of k;, as the axis with
respect to which the polar angle ¢ is defined. The azimuthal plane is then the one
containing k, and ky. Using the formulae derived in the second section of [161], in
this reference frame we have:

];(abc)

7.(abc 7 (abc _ 3 , k
COSgb = [A?)(pa klg ’ )7 kd)AS(pv klE ’ )7 ka)] 12 G ( ]}j ];f()abc) kd ) (C]')
9 b ) a

where

An(p1,...,pn):G<p1, ce pn>’

P, -5 Dn
bPiq1 ... P1Gn

G| o Py (C2)
qi, ---5 dn ' : :
Pnq1r ... PnQn

Using the expression of the Lorenz invariants in term of CS parameters

Sab = Y Sabe 5 Sac = Z(]- - y) Sabe 5 Sbe = (1 - 2)(1 - y) Sabe 5 (03)

261



Appendix C. Azimuthal angle Appendix C Parametrisation of the azimuthal angle

we get:

Uia k) g k) 4 2 K kg KD — S 2kiq K

2 [2ha By 2k B (2K g 26 by — sanck)]
y(1— 2) 5 (abc) 123 ,(abc) _ Sad

o1 — 2 s 5 ST

cosp =

From this formula, we get, in the case k% = 0:

A(y(1 = )R ka), 22K ko), (2ha+ ko))
Ayz(1 — 2) (2K k) (2K ky)

sin?¢=1—cos?¢p = —

(C.4)

where A(a,b,c) = a® + b* + ¢* — 2ab — 2bc — 2ca is the Kallén A function. Having

written cos ¢ in terms of invariants, we introduce a new integration variable:

1—
r = ﬂ, cosp =1— 2z,

2
. dx
Sln2¢ = 41‘(1—{[), de: W

The integration over the azimuthal angle becomes:

(C.5)

T 1
/ do sin~*¢p = 27 / defz(l — z)] Y2,

0 0

giving for the total phase space

rad abc

1 1 1
/ A\ = 272 N (e do [ dy [ dz[z(1—2)]7% x
0 0 O

[( y=(1-2)| (1-y). (C.6)

(abe)

Among the new dot products 2k Ky 2k, kg and 2k, kg, just the last one

refers to the unresolved parton. Its relation with the other invariants are then:

%aka = y(1—2) (2K kg) + 2(26" k)

~2(1 - 20) [yl - 2) K™ k@R k)] ()



Appendix D

Master Integrals

D.1 The master integral I,,(A, B)

The master integral I, (A, B) is defined as

_ [w(1 —w))*’
[a,b(Aa B) = /Odw [AQ + B2+ 2(1 — Zw)AB]a ’

(D.1)

with A, B € R and A, B > 0. It is evident that I,,(A, B) is symmetric for the
exchange A <> B. Defining

4AB
n = m7 (D.2)
we have
1 3-b
) w(1 —w)?
Loy(4,B) = /Odw [42 + B>+ 2(1 — 2w) ABJ"

o e w)
= (Aipm /od L w)®
1 T2(3/2-b)

- AT B TG ) oFi(a,3/2 —b,3—2b,n). (D.3)

Using the following property of the hypergeometric function

T\ 2« / 2
2F1(Oé,ﬁ,2ﬁ,x>:(#> 2F1(Oé,04—ﬁ+%,6+%,('1; /—1:z)>7

(D.4)
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we get
(L+ VB)*]" T2(3/2 - b)
I,,(A B) = F b—1,2—-0 D.
a,b( ; ) [(A+B)2 F(3—2b) 2 1(a7a+ ; 7p)7 ( 5)
where we have defined
A2
— if A?2< B?
1-vi—g\° J B " =
-5 - » | .
= if A2> B2
L if A2 < B?
(1 + \/5)2 B2 =
(A+B2 ] 1 ’ (D7)
ye if A2> B?

and used
2 14 1—y1—n
1++/1—1n N 1++/1—n
The final result reads:

T2(3/2 — b)
(3 — 20)

—1+p. (D.8)

AQ

I.,(A B) = [(32)—‘1 oI <a, a+b—1,2—0, ﬁ) O(B*—A?)

B2

+ (A%, F (a,a +b—1,2—b, ﬁ>@(A2—B2)} . (D.9)

For the specific case where a = 1 we have:

1 3=
i (1 — )}
I,(A,B) = LA B) = /Odw A2+ B2 +2(1 - 2w)AB
r2(3/2—b) [ 1 N o(B2
= W m (16,2 b, | O(B2— A
F(g—zb) |:B22 1( 7b, baBQ)G( )

2

1 B
+EQF1 (1,b,2 —b, ﬁ>@(A2—BQ)] , (D.10)

D.2 The master integral I,;3~(C, D)

The master integral I, 5~ (C, D) is defined as

_ ([ 0(1— o) feo(1 —w)s
Topp,(C,D) = /Odv /Odw [Cv+ D(1—v)+2(1—2w)y/CDuv(l —v)]®

, (D.11)
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with C, D € R and C, D > 0. From the definition it is evident that I, 5.(C, D)
is symmetric for the exchange C' <> D, <> ~:

Loprp(D,C) = Iopp+(C, D) (D.12)

The w integration can be performed following the recipe of appendix [D.I} with
A%? = Cv,B? = D(1 —v):

Lps-(C,D) = / 1dv VP (1—v) Ja,b(\/ﬁ, m)

—FFE:;/E ;b;)) /Odv VP (1—v)? (D.13)

Do) ar(aat b= 120 55 Y6 (1- )

+(Cv) ™o Fy (a,a th—1,2—b, D%;U)>@(D(?iv) - 1) } .

The content of the © functions modify the v integration domain in the following

way:
Cv D Cv

1-— -1 . (D.14

D(l—v)>0<:>v<C+D or Di—0) >0<:>U>C+D ( )
Since C, D > 0, then 0 < Cﬁ% < 1 and we get:

I%(3/2—b)
1, D) = —————= D.1
,b,ﬂ,'y(C ) F(S . 2b) X ( 5)

D
e} Cv
[D_/(; dvvﬁ(l—v)W_agFl(a,a+b—1,2—b,m>

! D(1—
+C’_“/ dvvﬁ_“(l—v)WQFl(a,a+b—1,2—b, ( v))]

D CU

CH+D

Now we restore the [0, 1] integration region with the following two changes of

variables:
D
cv .
Vo= 5 for the first integral ,
]_ + C v
1
vo— for the second one. (D.16)
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The integral then becomes:

I%(3/2—b
Lopp(C, D) = ﬁ (D.17)

D1+,6’ a D a—B—y—2

OH‘B /d’UU (1"‘6'11) 2F1(CL,CL+b—1,2—b,U)

0
14+~v—a 1 a—p—v—2
+C"Dl—+7/dvv’y (1+%U) gFl(a,a—l—b—l,Q—b,v) .
0

This master integral deserves a separate analysis for a = 1. We then define the

following integral:

Ib,/ﬂ’m/<C7D) = Ilbﬁv CD)

/dv VA (1 = o) [w(l — w)]z (D.18)
CU+D (1 —=v)+2(1 —2w)\/CDv(1 —v)

with C;D € R and C,D > 0. The w integration can be performed using ap-
pendix [D.1] with A% = Cv, B> = D(1 —v) and a = 1 (see Eq. [D.10):

Iy5.,(C, D) ::(Abvﬂ%b—@”h(Vf@,VTﬁf:zﬁ> (D.19)

Exploiting the following property of hypergeometric functions,

c—11 1
QFl(l,b,C,ilf) = b—1_2F1 (1,2—6,2—6,5)
T(el(1—b) [ 1) 1\

we obtain

1 T%(3/2—0b) [! 51 y 1—v
Ibngﬁ(C,D) = Em /Odv {?} (1—1)) 2F1(1,b,2—b, av)

~(—a) F(2IT<2(?)_I‘(21[)) b) IO (] gyt
x[1—vﬂ+aﬂl% ( ) (D.21)
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where we have defined o = C'//D. Making the substitution v — v/(14«) in the
second term, it can be integrated giving another hypergeometric function:

1 T2(3/2 — b ! 1
Iy, (C, D) = aﬁ[ /dvvﬁl(l—v)vzﬂ (1,b,2—b, v)

 (~a)* T-bI(1-bI(5+b)
(1+a)Br T(B—0b+2)
x2F1<1—7—b,5+b,5—b+2,1+La)} (D.22)

Though the integral I, 5.,(C, D) is well defined for real positive C' and D, in order
to properly keep track of the imaginary parts we give a small imaginary part to

a, according to
a— at1id, (—a)* = (—aFi)’ = a® ™, §—0". (D.23)

Then we can write the first hypergeometric function using its integral representa-

tion, as
1—v T'(2—b) L _— t+a ]
Fil1,0,2—b,— | =—av = [dtt" (1t 1-—
2 1(” ’av) aUF(b)F(Q—Qb)/O (1-1) T
and integrate in v, with the result
1 T%(3/2 —b) al'(2-b) T(B+1)[(y+1)
To34(C, D) C TB-20) | TOIrE—2b) [(Bry+2) (D-24)

1
t
></d151#’—2’(1—15)1—2521?1 (1,ﬁ+1,ﬁ+7+2, %)
0

ab eFim T(2—b)['(1—b)[(5+D)
(14«)B+b I'(5f—b+2)

1
Fi{1—~y—0b b,B—b+2, ——
X9 1( Y 7ﬂ+ aﬁ + a1+a>
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Using simple hypergeometric identities (similar to Eq. (D.20))), we obtain then the

expression

T2(3/2—b) r2-b TE+1)0(y+1)
Lpy(C, D) = 5 T(3—20) { “TOrE—2v) TBE+v+2)

¢ 1 t
/dtt*’ 22| LOFTHL 2F1(177+1,1—B,—_>
« 15} «

L(B+y +20(=B) (_ayo-1(,  t\ "7
a T(y+1) <_?> <1 N E) ]
(2 — b)T(1 — HT(B +b)

T(B—b+2)

1
X2F1(6+7+175+b75_b+2a_5) }

(D.25)

. a—6€¥1b71'

The second term in ¢ of the second line in Eq. can be now integrated giving
the same hypergeometric function that appears in the third line. Recalling that

T mcos(mz)

—im, (D.26)

Fz)I(1—-2) = e iRom Fz)r(1-2) =

sin(rz)’ sin(7z)

using straightforward trigonometric identities, and inserting back a = C/D, we

obtain:

LsA(C,D) =

1 T2(3/2 — b)T'(2 — b) T(B)(y+1)
C  T(3-2b)T(b) {m —2)0(B+ v +1)

1 D
X /dttb_l(l—t)l_%gFl (1,7 +1,1 -8, - t)
0

- (Q)B T(B+b) msin(r(8+b+1))
D I'(B—b+2) sin(n(8 + 1)) sin(nd)

(

Because of the symmetry I, 5,(C, D) = I, 3(D, C), an alternative result for this

integral is:

Ib,ﬁﬁ(ca D)

1 T2(3/2 — b)T'(2 —b) T8+ 1)I(v)
D T(3—2b)T(b) { T(2—20)0(3+~+1)

! C
dtt" N (1—=t)"" R (1L, 8+ 1,1 — v, ——
< farea-n 21(ﬁ+, w,DQ
B <2)_7 I(y+b) wsin(rm(y+b+1)) y
C L(y —b+2) sin(n(y+ 1)) sin(wb)
C
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In the special case where 3 = 1 — b, the second hypergeometric of Eq.
disappears, since sin(m(5 + b+ 1)) = sin(27) = 0. We then obtain:

1 T2(3/2=bT(2—0b) D(1—bI(y+1)
C T@B-200(B) T(2-20I(y—b+2)

! D
X /dttb—1(1—t)1—2b2F1 (1,7+1,b,—5t) (D.29)

0

[b,lfb,’}/(C? D)

In this case we can also make use of the following property of the hypergeometric

functions,

L(e)T(d)

mgFl(a, b,C+d, O'), (D30)

1
/ dex (1 — )", Fi(a, b, c,x0) =
0

to get to a more compact result:

1 T2(3/2—b) T(1 — BT (7 + 1)

fo1-05(C, D) = C T(3-20) T(y—b+2)

D

In the special case where v = 1 — b, we have sin(n(y+b+ 1)) = sin(27) = 0.
Thus, the second hypergeometric function in eq.(D.28)) vanishes. We obtain

1 I23/2—bT(2—-b) TA-bI(B+1)
D T@B-20)() TL[2-20)I(B—-b+2)

1
X /dttb‘l(l—t)l‘2b2F1(1,5+1,b,—%t> (D.32)

0

Iy 31-5(C, D)

that becomes, using again the property in Eq. (D.30]

1 I%(3/2-b) M1 =B +1)

C
Iy31-5(C, D) = D T'(3—20) TG—b+2) F1(1,5+1,2—b,—5) (D.33)

D.3 The master integral 1,3+, (P, Q)

The master integral I, 5.50(P, Q) is defined as the integration of Eq. over
an additional variable u

w(1—u)vP(1 — ) w(l — w)]z?
Puo+Qu(l—v)+2(1 —2w)y/PQuv(l —v)]°

1
Lopprso(PQ) = /du dv dw [
0

_ /O du(1 W) Tup s (P, Qu> . (D.34)
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According to the result of Eq. we can write:

I2(3/2—b) Q1+6— )
labpirsolP Q) = F((3/_ 2b) PP /d“/dv uP Tt %

X(1—u)?9F(a,a+b—1,2—bv) x

a—pf—y—2 a—p—y—2
vﬁ<1+%uv> + @B 2(1—1—% Z)

The integration over u gives another hypergeometric function:

(D.35)

[2(3/2-b) (B +6 —a+2)l(0 + 1) Q1+~
re—-2 TI(B+06+0c—a+3) PP

Ia,b,ﬁ,'y,é,cr(Py Q) =
1

X /dngl(a,a—i—b— 1,2 —b,v)
0

X {uﬁzﬂ (ﬁ+v—a+2,ﬁ+5—a+2,ﬁ+5+a—a+3,—% )

+ v PR, <ﬁ+7—a+25+5—a+25+5+0—a+3 _P)}
v
The expansion of these hypergeometric functions is simpler if the integer part of
the first index is 0. Since this quantity is usually > 0, we use the following relations
to lower the first index (taking care that in the generated hypergeometric functions
b>0,c—b>0):

—-11
oFi(a,b,c,x) = _° 1—[QFl(a—1,b—1,c—1,:6)—2F1(a—1,b,c—1,x) ,
a—1zx
b a—b—1
oFi(a,b,c,x) = oFi(a—1,b+1,¢c,2) + —————— o Fi(a—1,b,¢, 1),
a—1 a—1
1 c—b
2F1((l,b,C7ZL') = 1_x|:a_12F1(a_17b_1707x)
a—c+b—1

1 2F1(a'_ 1,b,C,flf):|-
a_

When the integer part of the first index is 0, we can then expand in e:

Fi(ae, b,c,x) =1+ L(o) in (zae) /ldttb_l(l — )" " (1 — tx)
TS TOT(c—b) = nl Jy ’
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and then perform the remaining integrations. To this end it is useful first to make
explicit the € poles, by using “+”-distributions:

[t = g [aee e o) - 50
- L0+ [aere [1]

X

0

f(1) +/01d3:(1 — x)ke {&L . (D.36)

1—=x

he

[azt=ay s = fp+ [ de—a @) - )
1
he
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