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Abstract

This thesis concerns the development of a new method for the local subtraction of in-

frared singularities, affecting generic infrared-safe observables in massless QCD. The

content of the manuscript is based on two different research directions: the study of

a general method to construct local infrared subtraction counterterms, and the imple-

mentation of an efficient subtraction scheme, designed up to next-to-next-to-leading

order (NNLO) in the strong coupling constant. To address the first target, we start

from the factorised structure of virtual corrections to scattering amplitudes, where soft

and collinear divergences are organised in gauge-invariant matrix elements of fields and

Wilson lines. Then, we define radiative eikonal form factors and jet functions which are

fully differential in the radiation phase space, and can be shown to cancel virtual poles

upon integration by using completeness relations and general theorems on the cancella-

tion of infrared singularities. Our method reproduces known results at NLO and NNLO,

and yields substantial simplifications in the organisation of the subtraction procedure,

which we have verified to generalise at order α3
s. Regarding the second direction, our

method attempts to conjugate the minimal local counterterm structure arising from a

sector partition of the radiation phase space with the simplifications following from ana-

lytic integration of the counterterms. In this first implementation, the method applies

to final-state massless partons. We show how our method compactly organises infrared

subtraction at NLO, we deduce in detail the general structure of the subtraction terms

at NNLO, and we provide a proof of principle with a complete application to a simple

process at NNLO.



Chapter 1

Introduction

1.1 Overview

The increasing precision of experimental measurements at the Large Hadron Col-

lider (LHC), together with the complexity of the final states currently probed in

hadronic collisions, constitute a severe challenge for theoretical calculations. This

challenge has driven the development of a number of novel techniques, for preci-

sion calculations of scattering amplitudes to high orders, for the study of final-state

hadronic jets, and for the accurate determination of parton distribution functions

(see, for example, Refs. [3,4] for a review of recent developments). In particular, a

consequence of the current and expected precision of experimental data is the fact

that the next-to-next-to-leading perturbative order (NNLO) in QCD is rapidly

becoming the required accuracy standard for fixed-order predictions at LHC. A

crucial ingredient for the calculation of differential distributions to this accuracy

is the treatment of infrared singularities, which arise both in virtual corrections

to the relevant scattering amplitudes, and from the phase-space integration of

unresolved real radiation.

In principle, the problem is well understood. Infrared singularities (soft and col-

linear) arise in virtual corrections as poles in dimensional regularisation, and all

such poles are known to factorise from scattering amplitudes in terms of universal

functions, which admit general definitions in terms of gauge-invariant matrix ele-

ments [5–14]. These functions are in turn determined by a small set of anomalous

dimensions which, in the massless case, are fully known up to three loops [15,16],

and partially at four loops [17, 18]. General theorems then ensure that, when

considering infrared-safe cross sections, virtual infrared poles must either can-

cel, when combined with singularities arising from the phase-space integration

of final-state unresolved radiation [19–22], or be factored into the definition of

1
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parton distribution functions, in the case of collinear initial-state radiation [23].

Real-radiation matrix elements have also been shown to factorise in soft and col-

linear limits, and the corresponding splitting kernels are fully known at order

α2
S [24–29], with partial information available at α3

S as well [30–34]. Even with this

detailed knowledge of the relevant theoretical ingredients, the practical problem

of constructing efficient and general algorithms for handling infrared singularities

for generic infrared-safe observables beyond next-to-leading order (NLO) proves

to be highly non-trivial. The concrete implementation of the IR singularities

cancellation in perturbative calculations for massless gauge theories is relatively

straightforward only for low-multiplicity final states and for highly inclusive cross

sections. In these cases the involved phase-space integrals and the structure of

typical observables are sufficiently simple (witness, for example, the four-loop cal-

culation of the total cross section for annihilation of electroweak gauge bosons into

hadrons [35, 36]). The situation is considerably more challenging for higher mul-

tiplicities and for typical collider observables. The origin of the difficulty lies in

the fact that typical hadron-collider observables have a complicated phase-space

structure, nearly always involving jet-reconstruction algorithms as well as complex

kinematic cuts; furthermore, real-radiation matrix elements become increasingly

intricate, and they cannot be analytically integrated in d dimensions. Integration

over unresolved radiation must therefore be performed numerically in d = 4, and

all infrared singularities must be cancelled before this stage of the calculation is

reached.

At NLO, the IR singularities cancellation were first implemented in the so-called

‘slicing’ approaches [37,38]: these involve isolating singular regions of phase space

by means of a small resolution scale (the ‘slicing parameter’), approximating real

radiation matrix elements by the relevant infrared kernels below that scale, and

integrating the latter in d dimensions, so as to explicitly cancel the infrared poles

of virtual origin. This procedure yields a correct result up to powers of the slicing

parameter, which then has to be taken as small as possible, compatibly with

numerical stability. In order to avoid this parameter dependence, ‘subtraction’

algorithms, such as the Frixione-Kunszt-Signer (FKS) [39,40], the Catani-Seymour

(CS) [2,41] and the Nagy-Soper [42,43] schemes, were later developed at NLO: in

these schemes, one introduces local infrared counterterms containing the leading

singular behaviour of the radiative amplitudes in all relevant regions of phase space.

One then subtracts the local counterterms from the radiative amplitude, leaving

behind an integrable remainder, and one adds back to the virtual correction the

exact integral of the local counterterms over the radiation phase space, cancelling

explicitly the virtual infrared singularities. The resulting finite cross section can

safely be integrated numerically, and the whole procedure is exact, not involving

any approximation. These NLO subtraction algorithms are currently implemented
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in efficient generators [44–52], and the handling of infrared singularities is not a

bottleneck for phenomenological predictions at this accuracy.

At NNLO and beyond, the construction of general subtraction algorithms is the

subject of intense current research. The technical difficulties are significant, due

to the proliferation of overlapping singular regions when the number of unresolved

particles is allowed to grow, and due to the increasing complexity of the soft and

collinear splitting kernels at higher orders. Several schemes have been proposed

to address the NNLO problem, belonging either to the slicing [53–60] or to the

subtraction [61–74,74,75] families. Novel ideas are also being introduced [76–78],

and the first studies of simple N3LO processes have recently appeared [79–82].

The variety of NNLO methods developed so far underscores both the phenomen-

ological interest and the technical difficulty of the problem, which so far has not

been solved in full generality. There are several reasons to surmise that existing

methods for NNLO subtraction can be generalised and improved: on the one hand,

current applications have been computationally very demanding, either in terms

of the analytic calculations involved, or because of the large-scale numerical effort

required; on the other hand, it is clear that precise NNLO predictions will soon

be needed for more complicated processes and higher perturbative orders.

1.2 This thesis

In this thesis, we propose a theoretical framework to systematically analyse the

structure of soft and collinear local subtraction counterterms to any order in per-

turbation theory. Our guiding principle is the well-understood structure of infrared

divergences in virtual corrections to scattering amplitudes. We note that the de-

tailed structure of virtual factorisation must be reflected in the organisation of

local counterterms: this implies significant simplifications, in particular for over-

lapping soft and collinear singularities, which are straightforwardly handled in the

virtual case. Furthermore, we note that explicit high-order calculations of soft an-

omalous dimensions have shown that many kinematic and colour structures which

could potentially contribute to infrared divergences are in fact absent or highly

constrained, a feature that must also be reflected in the form of the real-radiation

counterterms. Finally, we note that virtual corrections to infrared singularities ex-

ponentiate non-trivially, providing connections between low-order and high-order

contributions. These interesting and well-understood properties have not so far

been fully exploited for the analysis of real-radiation subtraction counterterms,

and we hope that our studies will lead to progress in this direction. Indeed, one

of our main results is a set of definitions for local soft and collinear counterterms,

written in terms of gauge-invariant matrix elements of fields and Wilson lines,
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and valid to all orders in perturbation theory, which can be shown to cancel all

virtual and mixed real-virtual singularities on the basis of general cancellation the-

orems [20, 21], and of simple completeness relations. These definitions can easily

be shown to reproduce known results at NLO and NNLO, and provide the basis

for a first-principle calculation of higher-order universal infrared kernels. Applying

this technology at NNLO, we find a simple and physically transparent organisation

of soft and collinear subtractions, including in particular the treatment of double

counting of the soft-collinear regions.

Given the knowledge of the counterterm general organisation, we implement a new

subtraction scheme, valid up to NNLO, which attempts to re-examine the funda-

mental building blocks of the subtraction procedure, to feature a minimal struc-

ture and a intuitive interpretation. The ideal subtraction algorithm, in our view,

should aim to achieve the following goals: complete generality across infrared-safe

observables; exact locality of infrared counterterms in the radiative phase space;

independence from ‘slicing’ parameters identifying singular regions of phase space;

maximal usage of analytic information in the construction and integration of the

counterterms; and, of course, computational efficiency of the numerical implement-

ation. These are, clearly, overarching goals, and in this thesis we present the first

basic tools that we hope to use in future more general implementations. In partic-

ular, we focus for the moment on the case of massless final-state coloured particles.

In order to achieve the desired simplicity, we attempt to take maximal advantage

of the available freedom in the definition of the local infrared counterterms, ex-

ploiting and extending ideas that have been successfully implemented at NLO. In

particular, a key element of our approach is the partition of phase space in sec-

tors, each of which is constrained to contain a minimal subset of soft and collinear

singularities, in the spirit of FKS subtraction [39]. A crucial ingredient is then

the choice of ‘sector functions’ used to build the desired partition: these functions

must obey a set of sum rules in order to simplify the analytic integration of coun-

terterms when sectors are appropriately recombined. A second crucial ingredient

is the availability of a flexible family of parametrisations of momenta within each

sector, allowing for simple mappings to Born configurations in different unresolved

regions.

1.3 IR divergences

As already mentioned, a precise control of the singularities affecting QCD is a fun-

damental requirement to obtain precise theoretical predictions to compare with the

available experimental data. In the perturbative regime, the theory suffers from

singularities of different nature: Ultra-Violet (UV) and Infra-Red (IR). While the
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Figure 1.1: Basic example of IR divergent configuration.

UV divergences derive from the high-energy (or, equivalently, short-distance) limit,

the IR singularities are intrinsically related to the low-energy configurations, in

the sense that we will explain shortly. The UV divergences have been studied for

long time and they are under control, thanks to the Renormalisation technique,

which relies on the universality of the UV behaviour of gauge theories. In contrast,

the IR regimes are still an active field of research, and no fully-general methods

are at the moment able to reduce the IR problem to a mere computational issue.

In order to establish effective procedures to treat IR singularities, it is first neces-

sary to deeply understand their origin, and whether it is possible to model their

contributions with a universal approach. In what follows, we will present how IR

singularities arise in QCD, concluding the Section with a brief introduction to the

factorisation formalism.

To roughly introduce the IR problem, it is sufficient to consider a basic QCD

configuration, see Fig.1.1, where an outgoing fermion of mass m and momentum

p emits a gluon, carrying momentum k. Assuming that both partons are physical,

the process can be written in terms of Feynman rules as

− igsū(p) ta /ε(k) i
(���p+ k)−m

(p+ k)2 +m2
M , (1.1)

where gs is the strong coupling constant, u(p) is the fermion spinor, ta is the SU(3)

generator, ε is the gluon polarisation tensor, and M is a generic matrix element,

with appropriate colour and spin indices. In a reference frame where the gluon

is aligned with the z-axis, and the angular distance between the fermion and the

gluon is ϑ,

k =
(
k0, 0, 0, k0

)
, p =

(
p0, p0 β sinϑ, 0, p0 β cosϑ

)
, (1.2)

the denominator in Eq.(1.1) is expressed as

2p · k = 2p0k0(1− β cosϑ) . (1.3)

Given that when computing a physical quantity the momenta k and p have to be



Chapter 1. Introduction Chapter 1 Introduction

integrated over, it is evident that the process in Eq.(1.1) features a logarithmic

divergence when kµ → 0. We refer to such singularity as a soft or low-energy

singularity. Moreover, in the subcase where the fermion is massless, i.e. m = 0 and

β = 1, a new singular regime arises when ϑ→ 0, namely, when the two outgoing

particles are extremely collimated. We refer to this configuration as collinear

divergent, and we notice that this kind of divergencies characterises field theories

involving massless partons interactions. Finally, one could identify a potential

source of divergencies in the pµ → 0 limit, which, however, does not materialise

in any singularity: the zero in the denominator is suppressed in the massless limit

by the numerator |ū(p)| ∼ √p0. We can then extrapolate a general concept: soft

divergences arise in gauge theories only, since they are associated with the emission

or exchange of massless vector bosons. Collinear singularities affects any Quantum

Field Theory with interaction vertices involving massless particles only.

The physical interpretation of such singular regimes becomes transparent if we

analyse the problem from first principles. In covariant perturbation theory (the

approach we have implicitly adopted to write Eq. (1.1)), the four-momentum is

conserved in every vertex, while the resulting intermediate propagators are natur-

ally off-shell, and then related to unphysical particles. In IR regimes, the propag-

ator of the intermediate lines goes on-shell, and therefore the corresponding phys-

ical particles can propagate indefinitely before the emission. As a consequence,

the integral over the possible space-time positions of the interaction vertex runs

over an unbounded spectrum, giving rise to a singularity. The same conclusion

holds also if one adopts the time-ordered perturbation theory. In this approach

all particles are on-shell, while, in general, the energy is not conserved in the ver-

tices. If the emitted particle is soft and/or collinear, the energy is conserved and

the interaction vertex can be anywhere. The origin of divergences can be then

traced back to long-distance interactions, which spoil the definition of the S mat-

rix. Asymptotic states cannot be made by free charged particles, as is necessary,

for instance, to apply the LSZ procedure to relate scattering amplitudes to Green

functions. In this sense, final states with a fixed number of massless particles are

not well-defined in perturbative quantum field theory.

Two main therapies have been investigated to cure the IR problem. The first solu-

tion is based on the idea that scattering amplitudes, as well as Feynman diagrams,

cannot be directly measured, and therefore their IR singularities are not directly

physical objects. The construction of observable transition probabilities reveals

indeed that measurable quantities are finite in the IR, thanks to a delicate can-

cellation occurring among all the contributing degenerate states. This statement

can be generalised to any quantum field theory, order-by-order in perturbation

theory, as stated by the KLN theorem, that we will discuss in details later on in
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the manuscript. To have a concrete idea of the KLN consequences, one can simply

examine the process e+e− → qq̄ in the massless limit. At order g2
s , two different

kind of diagrams contribute: the emission of real radiation, and the one-loop cor-

rections. Both diagram categories are affected by singularities of IR nature, which

cancel when computing the sum of their cross-section-level counterparts. By ex-

plicitly computing the real radiation and the virtual contributions, one can verify

the cancellation of the IR singularities, appearing as 1/ε pole in dimensional reg-

ularisation, i.e. moving from 4 to 4− 2ε dimensions. As an alternative approach,

one could implement an alternative definition of the asymptotic states of the the-

ory, such that the S matrix is finite when computed between appropriate initial

and final states. The core procedure results in setting an energy cut-off Λ and

factorising the field dynamics below the cutoff into asymptotic evolution operat-

ors Ω±(Λ). Here, with ± we identify the initial and the final states respectively.

We can then introduce a modified-S matrix SR, which is regular in the Fock basis

{|F 〉},

〈F |SR(Λ) |F 〉 ≡ 〈F |Ω−(Λ)S Ω†+(Λ) |F 〉 , (1.4)

and then recognise the states set

|α(Λ)〉 = Ω†+(Λ) |F 〉 (1.5)

as a new basis. The S matrix is then finite by construction, when working with

such coherent states. This method has been implemented both for QED [83] and

for QCD [84].

In what follows, we will focus on the first solution, and on the consequences of

the KLN theorem, with particular emphasis on its applications to final state QCD

processes.

The simple example presented in Eq.(1.1) is clearly distant from a significant rep-

resentation of a realistic scattering processes. To achieve a fully-general description

of IR-divergent configurations, it is essential to generalise the kinematics depend-

ence of the process on the external and internal momenta and to include loop

corrections. In the next subsections we will present a general method to identify

the singular IR configurations, affecting an arbitrary E-external particles process.

The discussion is naturally set up in a d-dimensional Minkowski space-time, where

d = 4− 2ε.
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1.4 IR content of a generic process: from the Landau equa-

tion to the Coleman-Norton picture

In the previous Section we have shown how IR singularities may arise from the

zeros of the denominators deriving from the Feynman rules. From the example

depicted in Fig.1.1, we have also understood that not all the denominator zeros

give rise to actual singularities (the limit p0 → 0 corresponds to an integrable

singularity). More in general, in Minkowski space-time one can exploit Cauchy’s

Theorem to deform the integration path away from the singular points, obtain-

ing finite results. Requiring a vanishing denominator is then only a necessary,

non-sufficient condition for a divergent amplitude. The identification of all the

denominator zeros is however a fundamental intermediate step to organise a sys-

tematic procedure to spot the effective IR singularities.

To begin with, we introduce a generic diagram, featuring L loops, enumerated

with the index j, E external legs, counted by the index r, and I internal lines,

labelled by the index i. By naming {p}, {`} and {k} respectively the external, the

internal and the loop momenta, the E-point correlator is given by

G
(
{p}
)

=

( L∑
j=1

∫
ddkj
(2π)d

) N (pr, kj)∏I
i=1(`2

i −m2
i + iη)

, (1.6)

where the numerator N includes coupling constants, symmetry factors, on top of

the spin and colour content of the diagram, and η is a real, positive quantity. As

already mentioned, the formalism of Feynman diagrams in covariant perturbation

theory dictates the momentum conservation in each vertex and the off-shellness

of the intermediated particles. The internal momenta {`} are then completely

determined, once the external and the loop momenta have been fixed. Any mo-

mentum `i can be expressed as a linear combination

`i ≡ `i
(
pr, kj

)
=

L∑
m=1

Aim km +
E∑
n=1

Bin pn , (1.7)

where A and B are incidence matrices, whose elements span the range {−1, 0, 1}.
To simplify the evaluation of the loop integrals, we parametrise the integrand

function by introducing as many Feynman parameters {α} ∈ [0, 1] as the number

of internal lines. The resulting correlator reads

G
(
{p}
)

=

( I∏
i=1

∫ 1

0

dαi

)
δ

(
1−

I∑
k=1

αk

) ( L∏
j=1

∫
ddkj
(2π)d

)
N(pr, kj, αi)

[D(pr, kj, αi)]I
, (1.8)
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Rek

Imk

Figure 1.2: Integration path for a fixed momentum k: an integrable singularity
and a pinch singularity.

where we have traded the product in Eq.(1.6) for a weighted combination of the

initial denominators

D(pr, kj, xi) ≡
I∑
j=1

αi
(
`2
i −m2

i

)
+ iη . (1.9)

The denominator D can be further expanded in the external and loop momenta

D(pr, kj, xi) =
I∑

a,b=1

Mab

(
{α}

)
ka · kb + 2

I∑
a=1

Na

(
{α}, {p}

)
· ka

+F
(
{α}, pn · pm,m2

i

)
+ iη , (1.10)

where in this fashion it is evident that D is quadratic in the loop momenta, and

linear in the Feynman parameters.

The integrals contributing to Eq.(1.8) involve d · L+ I integration variables, each

of them integrated along a path that can be modified according to Cauchy’s The-

orem. However, some specific singular configurations can spoil the freedom in

deforming the integration contour. These configurations are the pinch singularit-

ies and the end points. A pinch singularity occurs when the integration path is

trapped between two coalescing poles (see Fig. 1.2), while an end point singularity

corresponds to pole located at the initial and/or the final point of the integration

contour. Pinch singularities may arise from double solutions of quadratic equa-

tions, which in the case of Eq.(1.10) involve the loop variables only. This statement

can be easily translated in the condition

∂D(pr, kj, αi)

∂kµn
= 0 , (1.11)

which, in the light of Eq.(1.9), can be rewritten as

I∑
i=1

αi
∂l2i (pr, kj)

∂kµn
=

∑
j∈ loopn

αj l
µ
j Ajn = 0 . (1.12)
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Here the incidence matrix Aij ∈ {−1, 0,+1} derives from the decomposition in

Eq.(1.7).

Regarding the possibility to have end points, a distinction is necessary: both Feyn-

man parameters and loop momenta can a priori present an end point. However,

since the integration domain of loop momenta ends to infinity, and the high-energy

limit ki → ±∞ is under control thanks to UV renormalisation, end point singular-

ities may only affect Feynman parameters. In particular, the denominator could

be independent of αi and consequently ∂D/∂αi = 0 ↔ l2i − m2
i = 0, or could

manifest a singularity in αi = 0 (the case αi = 1 is not a denominator zero). The

condition

αi
∂D
∂αi

= 0 , (1.13)

includes both cases. We stress again that end points and pinch singularities have

to occur for every component of the integrated four-momenta, and for every Feyn-

man parameter: in the multi-variable complex space covered by the integration

domains, the presence of a pinch along a single direction does not prevent us from

deforming the integration contour in the plane of one of the remaining variables.

The constraints in Eqs.(1.12)-(1.13) represents then a set of necessary conditions

known as the Landau equations (LE) [85]
∑

j∈loopn αj l
µ
j Ajn = 0 ∀µ, n ,

αi(l
2
i −m2

i ) = 0 ∀i .
(1.14)

Finding a solution for the system of equations given in Eq.(1.14) is highly non-

trivial, since li have, in general, an involved dependence on external legs and

masses. However, the search for solution of the Landau equations is simplified by

the fact that they admit an intuitive physical representation. Such representation

is the core structure of a method to identify the effective IR singularities developed

in the ’60 by S. Coleman and R. E. Norton [86]. The Coleman-Norton (CN) method

relies on the observation that the LE are satisfied only if the Feynman parameters

are all zero, αi = 0, and the corresponding line can be off-shell, or when for each

on-shell line ∂D/∂kµi = 0. If we now define ∀i the quantity

∆sµi ≡ αi `
µ
i , (1.15)

where for µ = 0 we have αi = ∆s0
i /`

0
i , from which

∆sµi = ∆s0
i

(`µi
`0
i

)
≡ ∆s0

i v
µ
i (1.16)

The quantity vµi = (1, li/l
0
i ) represents the four-velocity of the particle carrying

momentum `i, and ∆si = αili the displacement of the particle in a time αil
0
i . The
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LE are then equivalently given by
∑

j∈loop n ∆sµj Ajn = 0 if l2j = m2
j

∆sµj = 0 if l2j 6= m2
j .

(1.17)

The interpretation of Eq.(1.17) is as follows: the propagation of off-shell lines is

suppressed, while on-shell lines must propagate along close classical paths, such

that the total displacement is zero. This intuitive method can be further simplified

by introducing a graphical prescription. One starts with the initial Feynman

diagrams, interpreting each line as a displacement. Then, all the lines that do not

verify the mass-shell condition have to be shrunk to a point, while the on-shell

lines have to correspond to classical trajectories. The solutions of the Landau

Equations can be then mapped to a set of reduced diagram defined according to

the procedure we have just described.

To substantiate the Coleman-Norton method, we consider, for instance, the one-

loop correction to the three-leg vertex of a generic massless scalar theory. Let us

name p1 and p2 the ingoing momenta, and k the momentum circulating in the

loop. If one assume the loop momentum to vanish, kµ → 0, then all the internal

lines, carrying momenta p2 +k, p1−k and k, are on-shell. In this configuration, the

reduced diagram corresponds to the initial one. Moreover, if the virtual momentum

is instead proportional to one of the external momenta, for instance kµ = a pµ1 ,

then the internal lines carrying momentum p1 − k and k are automatically on-

shell, while the remaining line is forced to be off-shell. The corresponding reduced

diagram manifests an effective four point vertex, deriving from shrinking into a

point the off-shell line. The same argument holds also in the case kµ = b pµ2 .

In conclusion, only three reduced diagrams can be identified, so that only three

kinematics configurations may give rise to IR singularities (see Fig.1.3).

To further investigate the correspondence between the Landau Equations and

the Coleman-Norton method, we can implement our example and focus the one-

loop correction to the electromagnetic vertex. By labelling pµ and p̄µ respectively

the momentum of the incoming massless fermion and anti-fermion, the all-order

electromagnetic (e.m.) form factor can be expressed as a single scalar function

multiplying the non-trivial spin structure of the tree amplitude

Γµ(p, p̄) ≡ 〈0| jµ(0) |p, p̄〉 = −iΓ
(
µ2

s
, αs, ε

)
v̄(p̄)γµu(p) . (1.18)

The one-loop approximation of Γµ includes the self-energy correction to each fer-

mion line, the vertex correction, and the corresponding UV counterterms. Now,
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(a) (b) (c) (d)

Figure 1.3: Reduced diagrams for the one loop correction to the vertex in a scalar
theory. (a) original diagram, (b) soft reduced diagram, (d) collinear reduced
diagram. In diagram (c) we highlight with a cross the off-shell propagator
which is shrunk to a point, returning diagram (d). Here, dashed lines mark
on-shell propagators.

the electromagnetic current is conserved, and therefore the form factor is renorm-

alisation group invariant(
µ
∂

∂µ
+ β(ε, αs)

∂

∂αs

)
Γ

(
µ2

s
, αs, ε

)
= 0 , (1.19)

such that QCD does not violate the QED Ward Identity Z1 = Zψ. As a con-

sequence, the sum of the self-energy counterterms, which contribute with a factor

1/2Zψ each, and the vertex counteterm that is proportional to Z1, vanishes. Fi-

nally, in Feynman gauge and in dimensional regularisation, the self-energy correc-

tions vanish, since for massless external lines p2 = p̄2 = 0 they are proportional

to scaleless integrals (this is however not true in general, as for instance in axial

gauge, where the auxiliary gauge vector nµ induces non null energy scales, as n ·p).
All this considered, the only significant contribution to Γµ at one-loop order is the

vertex correction. The aim of the next paragraphs is then to identify the poten-

tial IR singularities arising from such diagram, by explicitly solving the Landau

Equations and by enumerating the reduced diagrams.

The vertex correction can be written in terms of Feynman propagators as

V µ = g2
sµ

2εCF Qe

∫
ddk

(2π)d
v̄(p̄)γα(���p̄+ k)γµ(���p− k)γαu(p)

(k2 + iη)[(p− k)2 + iη][(p̄+ k)2 + iη]
, (1.20)

where CF is the Casimir eigenvalue in the fundamental representation, Q is the

electric fraction of the annihilating quarks, and µ is the renormalisation energy

scale. To better treat the integral, we parametrise the integrand function by
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introducing three Feynman parameters

V µ = 2g2
sµ

2εCF Qe

∫
ddk

(2π)d

∫ 1

0

3∏
i=1

dαi δ

(
1−

3∑
i=1

αi

)
×

× v̄(p̄)γα(���p̄+ k)γµ(���p− k)γαu(p)

[α1k2 + α2(p− k)2 + α3(p̄+ k)2 + iη]
. (1.21)

In this fashion, the Landau equations can be directly read from Eq.(1.14)
α1k

µ − α2(p− k)µ + α3(p̄+ k)µ = 0 , ∀µ = 1 . . . d ,

α1 = 0 ∨ k2 = 0,

α2 = 0 ∨ (p− k)2 = 0,

α3 = 0 ∨ (p̄+ k)2 = 0 .

(1.22)

Following the discussion presented for the scalar theory, we deduce the solutions

of Eq.(1.22)

- soft solution: for kµ = 0, all the intermediated lines are on-shell, and the first

condition in Eq.(1.22) simply returns α2/α1 = α3/α1 = 0. The corresponding

Coleman-Norton diagram is identical to the initial graph (see the left panel in

Fig.1.4).

- collinear solution: the gluon momentum can be proportional to one of the ex-

ternal momenta. In particular, if kµ = a pµ the virtual gluon is on-shell, as well as

the intermediate fermion carrying momentum (p− k). In contrast, the remaining

intermediate fermion is off-shell, and the corresponding Feynman parameter is set

α3 = 0. Finally, the first Landau equation imposes α1 = 1−a
a
α2. A second collin-

ear solution arises in the case kµ = b p̄µ: the gluon and the line carrying (p̄ − k)

are on-shell, while the other virtual particle is off-shell. The collinear reduced

diagrams are easily obtained by shrinking the off-shell line to a point, preserving

the momentum conservation in each vertex (see the central and the right panels

in Fig.1.4).

The correspondence between the Coleman-Norton picture and the Landau Equa-

tions can be also exploited to obtain all-orders results. A possible example is the

two-point Green function G(p2,m2) in a scalar theory, with only one species of

massive particles. We want to prove that the only singularities of the process

are the normal thresholds p2 = (nm)2, where n 6= 1 is an integer number. Let us

start by considering the energy region p2 > 0, and setting an appropriate reference

frame where

p =
(√

p2, 0, 0, 0
)
. (1.23)

The Coleman-Norton process is the creation of n > 1 particles at rest, which do
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k

p

p − k

p̄ + k

p̄

q = p + p̄

(a) Reduced diagram corres-
ponding to the soft solution.

k

p

p − k

p̄

q = p + p̄

(b) Reduced diagram cor-
responding to the collinear
solution, kµ = apµ.

k

p

p̄ + k

p̄

q = p + p̄

(c) Reduced diagram cor-
responding to the collinear
solution, kµ = bp̄µ.

Figure 1.4: Reduced diagrams according to the Coleman-Norton picture, applied
to the one-loop correction to the e.m. form factor.

not move, and interact until they are reabsorbed, after an arbitrary long time (see

Fig.1.5). One can easily realise that no other reduced diagram satisfies the CN

picture: if two particles are emitted with non vanishing momentum, they cannot

meet again in free motion.

Figure 1.5: Reduced diagram of the two point Green function, with p2 = 36m2.
Courtesy of D. Bonocore [1] .

1.5 IR Power counting: a sufficient condition

Up to this point, we have presented a prescription to identify all the potential

sources of long-distance divergencies. The method is based on the request that

the integration path, defining a given Feynman diagram, must be forced to cross a

singularity. This request is only a necessary condition to the actual divergency to

occur: positive powers of the integration momentum can appear in the integrand

function and mitigate the divergence. A sufficient condition to identify the kin-

ematics configurations that result in IR singularities can only derive from power

counting techniques, which are a reminiscence of the UV power counting. The key

idea is to formally parametrise the distance between a potentially singular con-

figuration and the hyper-surface given by the solutions to the Landau Equations.
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It is then possible to identify a value of such distance that dictates whether the

divergency is unavoidable.

To begin with, we consider the hyper-surface in the (d ·L+ I)-dimension space of

the integration variables, defined by the solution of the Landau equation

Sp = Sp(k̄i, ᾱi) . (1.24)

Next, we parametrise the pinch surface Sp by introducing intrinsic coordinates{
ξ
‖
i

}
, that lie on the surface, and normal coordinates

{
ξ⊥i
}

that measure the

distance from Sp. To specify how fast the pinch surface is approached by the

potential singular configuration, we introduce a reference scale λ and a parameter

ai such that

ξ⊥i ≡ λai ξ̃⊥i . (1.25)

The singularity is then reached as soon as λ→ 0. We can then define the superficial

IR degree of divercence n as the collection of the leading power of λ exposed by

every factor of the graph,

n =

N⊥∑
i=1

ai −
Nlines∑
j=1

Aj + nnum . (1.26)

Here, the first term derives from the integration measure, where N⊥ is the num-

ber of normal coordinates we integrate on, the second term is due to propagator

denominators, while the last term incorporates the numerator leading power in λ.

The condition n ≤ 0 can be proven to be a sufficient condition for the specific

scattering process to be IR-divergent, where the case n = 0 indicates a logarith-

mical singularity.

To provide a practical implementation of the IR power counting technique we

consider again the electromagnetic form factor. In the previous Section we have

already solved the LE and exploited the CN picture to identify all the possible

trapped surfaces Sp in the space {kµi , αi}. At this point, for every Sp we have to

choose among the {ki} variables the intrinsic and the normal coordinates. To this

end, it is useful to introduce light-cone coordinates, such that any four-vector can

be expressed as xµ = (x+, x−,x⊥), with

x+ =
x0 + x3√

2
, x− =

x0 − x3√
2

. (1.27)
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The metric tensor becomes

gµν =


0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

 , (1.28)

and consequently the scalar product reads

x · y = x+y− + x−y+ − x⊥ · y⊥ . (1.29)

Then, we analyse one pinch surface at a time: in the soft case the four-momentum

components of kµ have to equivalently vanish to approach a solution of the LE ,

thus they represent normal coordinates that tend to zero at same rate. Assuming

kµ ∼ (λ, λ, λ, λ), we can easily construct the eikonal approximation of Eq.(1.20)

by identifying its leading contributions for λ→ 0. As a first step we examine the

numerator, whose linear dependence on k can be dropped since subleading in the

desired limit

N ∝ v̄(p̄)γα(/̄p+ /k)γµ(/p− /k)γαu(p) ∼ 4p · p̄ v̄(p̄)γµu(p) ∼ λ0 . (1.30)

Next, we turn to the integration measure that contributes to the superficial degree

of divergence as ddk ∼ λd ddk. Finally, the propagator denominators can be simpli-

fied by taking the lowest power in λ: k2 ∼ λ2k2, (p−k)2 ∼ λ2k2−2λ p·k ∼ −2λ p·k
and (p̄+ k)2 ∼ λ2k2 + 2λ p̄ · k ∼ 2λ p̄ · k. The resulting eikonal integral reads

Iµeik = −λd−4CF Qe g2
sµ

2ε

∫
ddk

(2π)d
p · p̄ v̄(p̄)γµu(p)

(k2 + iη)(p · k − iη)(p̄ · k + iη)
. (1.31)

Remarkably, in the soft approximation the denominators have become linear in

the integration variable, and the spin structure appearing in the numerator has

greatly simplified, showing a trivial dependence on the tree-level amplitude. The

superficial degree of divergence is then

n = d− 4 , (1.32)

which vanishes in dimensional regularisation for ε → 0, returning a logarithmic

divergence.

Two other pinch surfaces arise from the collinear configurations, that we choose
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to describe in the photon rest frame, setting

qµ = pµ + p̄µ = Q(1, 0, 0, 0) =
Q√

2
(1, 1,0) , Q2 > 0 , (1.33)

pµ =
Q

2
(1, 0, 0, 1) =

Q√
2

(1, 0,0⊥) ≡ (p+, 0−,0⊥) , (1.34)

p̄µ =
Q

2
(1, 0, 0,−1) =

Q√
2

(0, 1,0⊥) ≡ (0+, p̄−,0⊥) . (1.35)

In the collinear configuration k ‖ p, the internal line with momentum p − k goes

on-shell, and then

(p− k)2 = k2 − 2p · k = 2k+k− − k2
⊥ − 2p+k− = 0 . (1.36)

A natural choice for the normal coordinates is {k−, k2
⊥}, which are assumed to

vanish with the same rate: k− ∼ λ2k− and k2
⊥ ∼ λ2k2

⊥. Since the plus-component

is unconstrained, we have

kµ ∼ (1, λ2, λ) . (1.37)

As done for the soft singularity, it is now necessary to extract the leading behaviour

of Eq.(1.20) for λ going to zero. To compute the collinear approximation we begin

by decomposing the integration measure in its light-cone components

ddk = dk+dk−dd−2k⊥ = dk+dk−|k⊥|d−3d|k⊥|dΩd−2 ∼ λ2+(d−2) . (1.38)

Moreover, we exploit the Dirac equation γ−u(p) = v̄(p̄)γ+ = 0 to approximate the

numerator and get

N µ ∝ v̄(p̄)γα(/̄p+ /k)γµ(/p− /k)γαu(p)

= v̄(p̄)γ−(/̄p+ /k)γµ(/p− /k)γ+u(p)

∝ p̄−(p+ − k+)v̄(p̄)γµu(p) ∼ λ0 .

(1.39)

Finally, the momenta combinations appearing in the denominator read

k2 = 2k−k+ − |k⊥|2 = 2k+k+ ∼ λ2 , (1.40)

(p− k)2 = (p+ + k+)2 ∼ λ2 , (1.41)

(p̄+ k)2 = 2p̄−k+ ∼ λ0 . (1.42)
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This way, the collinear approximation Icoll of the integral contributing to V µ is

given by

Iµcoll = λd−4CF Qe g
2
sµ

2ε

∫
dk+dk−d|k⊥||k⊥|d−3dΩd−2 × (1.43)

× v̄(p̄)γ−(����p̄+ k)γµ(���p− k)γ+u(p)

(2p̄−k+ + iη)(2k+k− − k2
⊥ + iη)(2k+k− − k2

⊥ − 2p+k−)
,

and the consequently superficial degree of divergence is

n = d− 4 = −2ε→ 0 . (1.44)

With this simple computation we have proven that the potential singularities high-

lighted with the CN method are all sources of effective IR singularities, according

to the power counting technique. By solving the integrals in Eqs.(1.31)-(1.43)

one realises that, in dimensional regularisation, IR singularities of virtual origin

show up as explicit poles in the regulator ε, up to ε−2. In particular, single poles

derive from soft wide-angle and hard-collinear configurations, while double poles

are symptoms of a soft-collinear singular regime. As we will emphasise in the

following sections, the pattern of overlapping soft and collinear singularities be-

comes more intricate at higher orders in perturbation theory. Avoiding the double

counting of soft-collinear divergencies is then a non-trivial, crucial task in view of

implementing fully-general IR subtraction methods.

1.6 Generalisation to higher orders

The analysis of the one-loop e.m. form factor has pointed out the need for a

procedure to find and organise the effective IR singularities, valid at all orders in

perturbation theory. This Section aims indeed at presenting a strategy to express

the IR content of the e.m. form factor in terms of universal building blocks, whose

definitions involve simple combinations of fields and gauge operators: the Wilson

lines.

Let us consider the q(p) q̄(p̄) → γ∗ scattering in the centre-of-mass frame, where

the quark and the anti-quark collide head-on. In the massless limit, there are no

threshold singularities, contrarily to the example in Fig.1.5. Furthermore, the col-

linear divergences can be expected to organise into two jets, J1 and J2, i.e. into

two bunches of collimated particles. To justify such prediction one could analyse

the physical emission of a gluon (with non-vanishing momentum) from the quark

line: since the QED interaction requires the colliding particles to be fermions, the

gluon has to be reabsorbed after a certain time. For momentum conservation, this
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occurs only if the gluon travels along a direction parallel to the quark direction of

motion. Any subsequent gluonic splitting does not modify this argument, given

the fact that the secondary emissions must carry (in total) the same momentum

as the parent gluon. Iterative splittings give then rise to a cloud of parallel-moving

partons, a jet. Non-vanishing momentum exchanges cannot occur between jets,

since they move in opposite directions. This general description is not modified

by admitting the presence of a hard subregion H, close to the QED vertex. The

short-distance interactions included in this subdiagram are off-shell and thus they

can be contracted to a point, according to the CN picture. Finally, other physical

emissions can be still exchanged, provided they carry zero momentum. Accord-

ing to CN, both fermions and bosons in the soft limit can propagate from the

hard subregion to the jets, and between the jets themselves. In particular, soft

particles may generate an intricate tangle of loops and radiations, which however

can only involve low-momentum partons. We can then recognise a soft region, S,

linking the jets and interacting with the hard region via soft lines. A pictorial

representation of these comments is reported in the left panel of Fig.1.6, where in

red we have marked an arbitrary subdiagram, including soft lines only (lines that

attach to the red blob are understood to be soft). The blue ellipses represent the

jet subregions, while the green circle stands for the hard subdiagram, that can be

linked to the jets through collinear lines.

The key aspects of the previous analysis are completely general and go beyond the

specific example:

- the number of jets must be smaller or equal to the number of ingoing hard par-

tons, otherwise the condition of collinear motion will be violated;

- for this reason, only one hard vertex, defined as the meeting point of an arbitrary

number of jets, appears in the reduced diagram;

- particles belonging to different jets may interact through soft momentum medi-

ators, that can be merged in one soft subdiagram.

The next crucial step consists in implementing a formal procedure to completely

factorise the subregions, and further simplify the reduced diagram in the left panel

in Fig.1.6. Thus, in what follows we will try to prove that the existence of lines

connecting different regions yields non-singular or IR-subleading configurations.

We first need to find the superficial degree of divergence of a generic process

[87–89], adapting the power counting technique to the subregion decomposition

we have just discussed.

Given the set of normal coordinates
{
{kµs }, {k−J1

, k⊥J1
}, {k+

J2
, k⊥J2
}
}

, chosen in agree-

ment with what already discussed for the one-loop correction to the e.m. form

factor, we recall the scaling of the fundamental kinematic structures contributing
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J

S

H

(a) Reduced diagram ob-
tained with the CN mthod.

J

S

H

(b) Simplified reduced dia-
gram in Feynman gauge:
bold curvy lines are scalar-
polarised gluons.

J

S

H

(c) Simplified reduced dia-
gram in axial gauge.

Figure 1.6: A generic annihilation process in which the subregions soft, jet and
hard are emphasised

to a generic process:

collinear fermion denominator:
1

(p− k)2
∼ λ−1 ,

soft gluon:
1

k2
∼ λ−2 ,

soft fermion:
(���p− k)

(p− k)2
∼ λ−1 ,

soft three gluons vertex: (p− k)µ ∼ λ1 .

The superficial degree of divergence can be then expressed in terms of the number

of loops and lines contributing to the different subregions. Suppose NJi lines and

LJi loops for each jet, with i = 1, 2, and NS lines and LS loop for the soft subdia-

gram. Considering the integration volume, that involves two normal coordinates

for each collinear loop and four normal coordinates for each soft loop, we have

n =
2∑
i=1

(2LJi −Ni +Ni) + nsoft . (1.45)

Here Ni is the damping factor due to the fermion numerators and nsoft is the

superficial degree of divergence for the soft region. To further manipulate Eq.(1.45)

we introduce the following notation:

N in
S,a = number of lines of type a, internal to the soft subregion,

N ext
S,a = number of lines of type a, connected to the soft subregion,

Vi = number of vertices involving i legs ,

g3 = number of three-gluon vertices ,
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where the type a can be fermionic a = f or bosonic a = b. This way, we get

nsoft = 4LS − 2(N in
S,b +N ext

S,b )− (N in
S,f +N ext

S,f ) + g3 . (1.46)

The number of soft loops and lines involved in each loop are related by two simple

identities Euler identity : Nloop = Nint.lines −
∑

i Vi + 1

Graphical identity : 2Nloop +Next.lines + 1 =
∑

i iVi ,

that allow us to rewrite nsoft as

nsoft = N ext
S,b +

3

2
N ext
S,f . (1.47)

Now we can assume that no lines connect S and H directly: if we attach a soft

line to an off-shell propagator, we obtain a subleading contribution. Therefore the

external soft lines only connect the soft subdiagram to the jets, such that Eq.(1.47)

turns out to be

nsoft =
2∑
i=1

N ext
Ji,b

+
3

2
N ext
Ji,f

, (1.48)

where N ext
Ji,a

is the number of soft particles of type a, attached to Ji. This way, we

get

n =
2∑
i=1

(2LJi −Ni +Ni +NJi,b +
3

2
NJi,f ) . (1.49)

The next step is to examine the suppression factor Ni. The momenta appearing

in the jet numerator are due to three-gluon vertices and to fermion propagators.

Accounting for both, the number of factors of numerator momenta in Ji is equal

to the number of three-line vertices in the entire jet subregion v
(3)
i . Each of these

momenta contracts to form an invariant, which is linear in the normal variables,

since g++ = g−− = 0. Actually, a jet momentum can also contract with the

polarisation vector of a soft vector in S, or of a jet vector attached to H. This

configurations pose a lower bound to the suppression factor

Ni ≥ max

{
0,

1

2
(v

(3)
i − φi − ρi)

}
=

1

2

(
v

(3)
i − φi − ρi

)
(1− θ(ρi + φi − v(3)

i )) ,

(1.50)

here φi is the number of scalar-polarised vectors connecting the jet to the hard

vertex, and ρi are the soft vectors linking the jet to the soft part. Again, the Euler

Identity and the graphical relation can be used to relate lines and vertices, in such

a way that

3v
(3)
i + 4v

(4)
i + ti + φi = 2NJi +NJi,b +NJi,f + 1 , (1.51)
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where ti are the transverse-polarised particles that attach to H. In the end, let us

substitute Eq.(1.50) and Eq.(1.51) in Eq. (1.49), and write

n ≥
2∑
i=1

[
1

2
(ti − 1) +NJi,f +

1

2
(NJi,b − vi) +

1

2
(ρi + φi − v(3)

i )θ(ρi + φi − v(3)
i )

]
.

(1.52)

All the factors, apart from the first one, are positive or null, thus the sign of the

superficial degree of divergence is set by the ti value. In particular

n ≥ 0 if ti ≥ 1 (1.53)

The pinch surface is then associated to a logarithmic divergence in Feynman gauge

if [90]:

• a single fermion, or a scalar-polarised or physically polarised vector connects

Ji and H,

• the only additional lines linking Ji and H are scalar-polarised vectors,

• no lines connect S and H,

• for each jet, the number of external soft vectors plus the number of jet vectors

attached to the hard part is not grater than the total number of three-point

vertices.

It is important to notice that some of our assumptions are gauge-dependent. In

particular, in physical gauges, as for instance in axial gauge, the jets are connected

to the hard region by a single fermion line. This can be justified by analysing the

gluon propagator, that in axial gauge (n · A=0) reads

Gµν(k) =
1

k2 + iη

(
−gµν +

nµkν + nνkµ

n · k − n2 kµkν

(n · k)2

)
. (1.54)

If the gluon connects the jet to the hard subreagion, its momentum is collinear to

the jet direction. Thus, when Gµν(k) attaches the jet subdiagram, it results to be

contracted with a momentum that is proportional to the gluon momentum itself,

yielding

kµG
µν(k) =

1

n · k

(
nµ − n2kν

n · k

)
, (1.55)

which has no pole at k2 = 0 (except for k ∼ 0). Consequently, in axial gauge, all

the diagrams displaying gluons connecting Ji to H are IR-subleading. In covariant

gauges, the contraction kµG
µν(k) does not feature the same suppression. For
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k

p

p̄

q = p + p̄

(a) Factorisation of a soft virtual
gluon through eikonal approxima-
tion.

k

p

p̄

q = p + p̄

(b) Factorisation of a collinear
gluon through eikonal approxima-
tion.

Figure 1.7: IR interactions modelled by eikonal Feynman rules. (a) soft gluon
exchange: both the interaction vertices become eikonal, (b) in the case k ‖ p
only the vertex involving the anti-quark leg becomes eikonal.

instance, in Feynman gauge we have

kµG
µν(k) = −k

ν

k2
. (1.56)

This way, multiple longitudinally polarised gluons may connect the jets toH. How-

ever, such configurations are suppressed in gauge invariant quantities by the Ward

Identity, when all the diagrams have been summed. On a diagram-by-diagram

basis this is not guaranteed and we will further manipulate the longitudinal po-

larised gluons to divide H and Ji.

To summarise the results of this Section, we refer to the central and the right panel

in Fig.1.6: in Feynman gauge (which we will use in the following) the reduced

diagram manifests a soft subdiagram connected via soft gluons to jet subdiagrams

only. Moreover, no connections between S and H occur, and one fermion line

plus several longitudinal gluons link H and Ji (see central panel). In axial gauge,

the reduced diagram presents no connections between H and Ji, except for one

fermion line (see right panel).

1.6.1 Eikonal Vertices

To investigate the possibility to push further the factorisation of a generic reduced

diagram, we take a step back and focus on the one-loop correction to the e.m.

form factor. In this specific case, the reduced diagrams are particularly simple

and may provide an efficient guideline for the all-orders generalisation. As already

discussed, the IR singularities are associated to the graphs in Fig.1.4 and to the

corresponding homogeneous integrals in Eqs.(1.31)-(1.43). If we concentrate on

the soft component, we can notice that to compute the eikonal integral we have
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implicitly performed the following approximations

(���p− k) γα u(p)

(p− k)2

kµ→0∼ − pα
p · k u(p) +O(k2) ,

v̄(p̄) γα(���p̄− k)

(p̄+ k)2

kµ→0∼ p̄α
p̄ · k v̄(p̄) +O(k2) , (1.57)

where the Dirac equation has been used. Eq.(1.57) provides an example of eikonal

approximation, which will play a crucial role in the next Section. Soft interactions

can be then expressed in terms of the scalar, eikonal Feynman rule of the form

pµ/p · k. This peculiar behaviour is a symptom of the fact that soft radiations do

not resolve the details of the emitting particle except for its direction and colour,

and, in particular, they are blind to the emitter spin. The eikonal integral can be

identically rewritten as

Iµeik =

∫
ddk

(2π)d
v̄(p̄) gµε ta

p̄α

p̄ · k
(
ieQ γµ

)
gµε tb

pβ

−p · ku(p)

(
−igαβ δab

k2

)
(1.58)

= −
∫

ddk

(2π)d
gµε ta

βα2
β2 · k

gµε tb
ββ1
β2 · k

(
−igαβ δab

k2

)
Γµ(p, p̄) , (1.59)

where in the second step we have assumed p̄µ = Qβµ2 and pµ = Qβµ1 . From

Eq.(1.58) one deduces that the soft divergences encoded in the reduced one-loop

e.m. form factor can be modelled by replacing the standard QCD vertices with

effective vertices, given by the eikonal Feynman rule. Such a procedure induces the

decoupling of the gluon virtual correction from the remaining QED interaction and

finds a pictorially representation in the left panel of Fig.1.7. The eikonal vertices

are represented as the merging of gluon propagator with a double line.

The remaining collinear configurations can be treated with a similar procedure.

For a collinear emission k ‖ p (Fig. 1.4 (b)) in the light-cone frame the amplitude

is given by

Iµcoll = ig2µ2εCF

∫
ddk

(2π)d
v̄(p̄)γ−(/̄p+ /k)(ieQ γµ)(/p− /k)γ+u(p)

k2(p− k)2(p̄+ k)2
, (1.60)

then, by using the approximation

v̄(p̄)γ−(/̄p+ /k) = v̄(p̄)γ−(p̄+ k)−γ+ = (p̄+ k)−v̄ 2g+− = 2(p̄+ k)−v̄(p̄) , (1.61)

we manage to write the core structure of the integrand function in Eq.(1.60) as

v̄(p̄)(ieQγα)(/p− /k)γµu(p)

k2(p− k)2

p̄µ

p̄ · k . (1.62)
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Here only the anti-quark vertex becomes eikonal, and can be associated to an

effective rule of the same kind as before (see right panel of Fig.1.7). Let us stress

that in this case one could set p̄µ = Qnµ, where nµ is an auxiliary vector, analogous

to the vector βµ introduced in the soft case. However, in order to avoid spurious

collinear singularities, the vector nµ has to be slightly moved away from the light-

cone, as we will discuss in more details in what follows.

1.6.2 Wilson line and eikonal approximation

The example provided in the previous Section proves that, at one-loop order, soft

and collinear radiations contribute to the process divergencies via effective vertices.

As a consequence, such singular radiations can be appropriately factorised from the

remaining non-singular component of the scattering. The fact that this property

can be exploited at higher orders to divide the subregions of the reduced diagram

in the central panel of Fig.1.6 is in general non-trivial.

H
=

H
− =

H

Figure 1.8: Factorisation of a gluon attached to the hard subreagion, through
Ward Identity.

To achieve a complete factorisation at an arbitrary perturbative order, we begin

by showing the splitting of the jet subregion from the hard one. Let us assume to

have a longitudinally polarised gluon attached to H, which is connected through

a fermion line to the rest of the diagram. Thanks to the Ward Identity, we are

allowed to move the gluon line from the hard region to the fermion line, obtaining

the amplitude (see Fig.1.8)

H
(/p− /k)

(p− k)2
γα u(p) εα(k) . (1.63)

Given the Dirac equation γ−u(p) = 0, and the trivial factor k−β+/k−β+, where

βµ = (β+, 0−,0⊥), Eq.(1.63) can be rewritten as

H
(/p−��k)

(p− k)2
γ+u(p) ε−(k)

k−β+

k−β+
= H

(/p−��k)

(p− k)2
/k u(p)

ε(k) · β
k · β

= −H u(p)
ε(k) · β
k · β . (1.64)
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In the last step we have again exploited the Ward Identity, considering /k =

/p − (/p − /k). Eq.(1.64) emphasises the eikonal rule for the extra gluon. This

analysis can be generalised to higher orders: in case of multiple radiations the

number of possible insertions due to the Ward Identity increases. However, the

eikonal approximation still holds, and all the emission can be expressed in terms

of effective Feynman rules. We conclude that the gluons connecting Ji and H can

be detached from the hard region, provided we substitute their interactions with

the hard component with eikonal vertices.

The only missing ingredient is the factorisation of the soft gluons connecting S and

Ji. We expect such soft interactions to be described by the eikonal Feynman rules

introduced in the previous Section, and therefore to be allowed to detach them from

Ji. Modelling multiple soft gluon radiations can be tackled by considering a generic

process. From an amplitudeM, we isolate an outgoing on-shell fermion line, which

emits an arbitrary number of low-energy gluons. Such radiations are identified with

the labels
{
{ai} , {ki} , {µi}

}
, with i = 1 . . . n, respectively describing the colour,

the momentum, and the spin of the emitted partons (Fig. 1.9). The process

M p

µn, anµ1, a1

knkn

. . .

Figure 1.9: Multiple soft radiations from a fermion line carrying momentum p.

expressed in terms of Feynman rules reads

Ma1...an
µ1...µn

(
p, {ki}

)
= ū(p) (igsµ

ε tanγµn)
i(/p+ /kn)

(p+ kn)2
. . . (1.65)

. . . (igsµ
ε ta1γµ1)

i(/p+ /kn + · · ·+ /k1)

(p+ kn + · · ·+ k1)2
M
(
p+

∑
i

ki

)
.

Under soft approximation, ki = λk̃i with λ → 0, the leading soft behaviour of

Eq.(1.65) is extracted by approximating each numerator Ni to the zeroth-order in

ki, and each denominator Di to the first non-trivial power in ki, namely

Ni ∼ pi, , Di ∼ 2p ·
i∑

j=1

kj , ∀i = 1 . . . n . (1.66)
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k1 k2 k1 k1 k2k2

+ = +.

Figure 1.10: Eikonal identity: complete factorisation of multiple eikonal vertices.

Following the example of the e.m. form factor, we further manipulate Eq.(1.65)

exploiting iteratively the Clifford algebra and the Dirac equation, obtaining

Ma1...an
µ1...µn

(
p, {ki}

)
∼

n∏
i=1

(igsµ
εtai)

i pµi

p ·
(∑i

j=1 kj

) ū(p)M
(
p+

∑
i

ki

)
. (1.67)

The soft approximation returns then a collection of effective Feynman rules cor-

responding to the eikonal vertex

gsµ
ε ta

pµ
p · k . (1.68)

The expression in Eq.(1.67) undergoes a further simplification if we assume to

restrict our analysis to the abelian case, i.e. considering photons instead of gluons.

In the academic example where only two photons are emitted, we have to take

into account their indistinguishability and sum over all the possible momenta

permutations, as graphically explained in the l.h.s. in Fig. 1.10. Then, the

kinematic structure of the corresponding process obeys the identity

1

p · k1

· 1

p · (k1 + k2)
+

1

p · k1

· 1

p · (k1 + k2)
=

1

p · k1

· 1

p · k2

, (1.69)

where on the r.h.s. the successive emissions are independent and uncorrelated.

Eq.(1.69) represents a simple example of the eikonal identiy, which easily gener-

alises to an arbitrary number of photons according to the relation

∑
P[kj ]

(
n∏
i=1

1

p ·
(∑i

j=1 kj

)) =
n∏
i=1

1

p · ki
, (1.70)

where P [kj] enumerates all the possible permutations of the momenta {kj}. This

property becomes non-trivial when a non-abelian theory is considered: the non

commutative nature of the colour operators requires to introduce the path ordered

prescription, as we will explain in the following. As a concluding remark, we

notice that the Feynman effective rule in Eq.(1.68) is invariant under incoming

momentum scaling. In fact, for pµ → Qpµ the eikonal vertex remains unchanged,

removing the soft function sensitivity from the external energy.

Before proceeding further, it is useful to summarise the results obtained up to this
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J

S
H

(a) Factorisation of the soft sub-
reagion: multiple soft gluon emis-
sions are modelled via eikonal
Feynman rules.

J

S

H

(b) Factorisation of the jet subreagion from
the hard part: Ward Identity allows for ex-
pressing the collinear gluons interaction in
terms of eikonal vertices.

Figure 1.11: Different steps of factorisation procedure

point. Starting from the reduced diagram of the e.m. form factor, we have applied

the power counting technique to organise the singularities in different subregions.

We have deduced that such subregions are connected uniquely through gluons.

Then we have noticed that soft gluons, linking the soft region to the collinear one,

are insensitive to the details of the jet subdiagram, and therefore they factorise (see

left panel in Fig.1.11). The main caveat is the introduction of effective Feynman

rules replacing the standard QCD interactions. Finally, Ward Identities allow for

the factorisation of the hard component from the jet region, given the same caveat

as before (see the right panel in Fig.1.11). All this considered, the initial reduced

diagrams is now organised as a combination of dominant regions, one independent

of the others.

Although this picture is much more simplified than the initial configuration, and

manifests a certain degree of generality, the formalism can be improved to achieve

a fully universal and process-independent description. One could start by noti-

cing that, in the IR limit, the gluons emitted from the hard line carry vanishing

momentum, and therefore they do not alter the direction and energy of the hard

parton, but only its colour charge. At semiclassical level, this means that the

hard particle travels along a straight path in space-time, eventually parametrised

by its proper time. Along the trajectory, the fermion emits a continuum of zero-

momentum gluons, that results in collecting a gauge phase. All this considered,

one could try to mimic the eikonal interactions through an appropriate gauge op-

erator, defined at all-orders in perturbation theory. For this purpose, we introduce

the Wilson line. In non-Abelian field theories a Wilson line is an ordered expo-

nential of a gauge boson field, projected along the direction nµ, and integrated
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over the trajectory parameter λ

Φn(λ2, λ1) = P exp

{
igsµ

εta

∫ λ2

λ1

dλ n · Aa(λn)

}
, (1.71)

where P is the path ordering, needed to preserve the causality structure. Let

us stress that there are no constraints on the nature of the emitting particle, or

equivalently of the Wilson line. In principle, the definition in Eq.(1.71) can be

associated to both gluons and fermions, provided that the colour generator is

expressed in the proper representation. By expanding the definition in Eq.(1.71)

and Fourier transforming the gauge field,

Aµ(λn) =

∫
ddk

(2π)d
e−ik·λnAµ(k) , (1.72)

it is evident that Wilson lines reproduce the eikonal interactions

exp

{
igsµ

εta

∫ ∞
0

dλ n · Aa(λn)

}
= 1+gsµ

ε

∫
ddk

(2π)d
nµ
n · k A

µ(k)+O(g2) . (1.73)

In the integrand function one reads the effective rule for an incoming line of mo-

mentum pµ = Qnµ. As mentioned, particular attention has to be paid to the

path ordering, which is a direct effect of the non commutative nature of the colour

degree of freedom. The action of the path ordering is visible starting from the

second order of the Wilson line expansion

(igsµ
ε)2P

(∫ ∞
0

dλnµA
µ

)2

=

= (igsµ
ε)2

∫ ∞
0

dλ1

∫ λ1

0

dλ2 n · A(λ1n)n · A(λ2n)

= (igsµ
ε)2

∫
ddk1

(2π)d
ddk2

(2π)d

∫ ∞
0

dλ1

∫ λ1

0

dλ2 e
−i(λ1k1+λ2k2)·n n · A(k1)n · A(k2)

= (igsµ
ε)2

∫
ddk1

(2π)d
ddk2

(2π)d

∫ ∞
0

dλ1 e
−iλ1k1·n

(
e−iλ1k2·n − 1

)
×

× i

k2 · n
n · A(k1)n · A(k2)

= g2
sµ

2ε

∫
ddk1

(2π)d
ddk2

(2π)d

[
1

k1 · n k2 · n
− 1

k2 · n (k1 + k2) · n

]
n · A(k1)n · A(k2)

= g2
sµ

2ε

∫
ddk1

(2π)d
ddk2

(2π)d
n · A(k1)

k1 · n
n · A(k2)

(k1 + k2) · n , (1.74)

which is perfectly consistent with the diagrammatic expression of a double emission

(see the first configuration in Fig. 1.10). The pattern in Eq.(1.74) generalises to
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all orders in perturbation theory, yielding

P exp

{
igsµ

εta

∫ ∞
0

dλ n · Aa(λn)

}
= 1 +

∞∑
n=1

n∏
i=1

∫
ddki
(2π)d

gsµ
ε tai n · Aai(ki)∑i
j=1 n · ki + iη

.

(1.75)

Wilson lines benefit from several significant properties, such as

• Hermiticity Φ†n(a, b) = Φ−n(b, a) ,

• Causality Φn(b, c) Φn(a, b) = Φn(a, c) ,

• Unitarity Φ†n(a, b) Φn(a, b) = 1 ,

Furthermore, Wilson lines are subject to gauge transformations, as they are defined

though gauge fields

Φn(λ1, λ2;A) 7−→ Φn(λ1, λ2;UAU−1 + i/gs(∂µU)U−1) , (1.76)

where the r.h.s. reads

P exp

{
igsµ

ε

∫ x2

x1

dxµ
[
U(x)Aµ(x)U−1(x) + i/gs(∂µU(x))U−1

]}
, (1.77)

with λin
µ = xµi . The expression in Eq.(1.77) can be manipulated to return

Φ(x1, x2;A) 7−→ Φ′(x1, x2;A) = U(x2)Φ(x1, x2;A)U−1(x1) . (1.78)

The transformation is particularly simple and enforces the idea that a sequence of

soft emissions from a hard particle, which does not recoil, is analogous to dressing

the particle with a gauge phase.

Given the correspondence between the effective Feynman rules and the perturb-

ative expansion of Φn (the graphical representation of Wilson operator will be

indeed chosen to be a double straight line), we can describe the singular regions

of the e.m. form factor as matrix elements of gauge invariant operators, defined

as combinations of fields and Wilson lines. To this end, for each external leg we

define a jet function,

Ji
(
pi, ni, αs(µ

2), ε
)
u(pi) = 〈0|Φni(∞, 0)ψ(0) |pi〉 , (1.79)

where, according to standard notation, the quark wave function is factored out

from the jet definition. Eq.(1.79) describes the annihilation of an incoming fermion

with momentum pi, in a fixed point in space-time xµ = 0, where a Wilson line is

created. It collects all the collinear singularities associated to the direction of pi,
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since the interactions between the Wilson line and the fermion field returns exactly

the collinear limit of the standard QCD interactions. The direction nµi plays the

double role of factorising the collinear region for particle i and enforcing the gauge

invariance of the collinear factor. One non-trivial aspect related to the auxiliary

vector nµi concerns the mass-shell condition. The requirement that n2
i 6= 0 is

designed in order to avoid the presence of spurious collinear divergences associated

with emissions from the Wilson lines. In practical calculations, however, it is

highly economical to take the n2
i → 0 limit, provided one can precisely control the

contributions of spurious poles [91]. The jet function is a single-particle quantity

and does not carry any colour correlation from the full amplitude: the fact that

collinear poles have this property is a highly-non trivial consequence of gauge

invariance and diagrammatic power counting.

Secondly, we introduce the soft function

S
(
β1 · β2, αs(µ

2), ε
)

= 〈0|Φβ2(∞, 0) Φβ1(0,−∞) |0〉 , (1.80)

where the four-velocities βi are defined as Qβµi = pµi . The soft function is respons-

ible for the singular colour-correlated singularities: soft gluons, at leading order in

their momentum, cannot transfer energy between hard particles, but they induce

long-range colour mixing. S is therefore a colour operator.

At this point it is useful to notice that gluons which are both soft and collinear

to one of the hard coloured particles are present both in the jet function and in

the soft function, and thus they are counted twice. To solve this double counting

problem we introduce the eikonal jet function [9]

Ji,E
(
βi, n, αs(µ

2), ε
)

= 〈0|Φn(∞, 0) Φβi(0,−∞) |0〉 , (1.81)

that coincides with the soft limit of the the jet function in Eq.(1.79). The eikonal

jet can be combined in different ways to avoid the double counting of the soft-

collinear poles. In particular, we can define

• for each external leg, the ratio of jet and eikonal jet function

J i (pi, αs, ε) ≡
J (pi · ni, αs(µ2), ε)

Ji,E(βi, ni, αs(µ2), ε)
, (1.82)

which encodes the hard-collinear singular content of the initial amplitude.

The soft-collinear poles are encapsulated by S.
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• the ratio of soft and eikonal jet functions, named reduced soft function (see

for instance [11])

S
(
ρ12, αs(µ

2), ε
)
≡ S(β1 · β2, αs(µ

2), ε)∏
i Ji,E((βi · ni)2/n2

i , αs(µ
2), ε)

, (1.83)

where

ρij ≡
(βi · βj)2

2(βi·ni)2

n2
i

2(βj ·nj)2

n2
j

. (1.84)

The reduced soft function encodes the soft wide-angle radiations. The soft-

collinear poles are given by the jets.

In the following, we will prefer to normalise the jets by their eikonal counterpart,

and our results will be organised in soft and hard-collinear components.

According to this choice, a generic two-particle annihilation amplitude can be

expressed in a factorised fashion, according to the factorisation formula [5–14,92]

A
(
pi
µ

)
=

2∏
i=1

Ji
(

(pi · ni)2/(n2
iµ

2)
)

Ji,E
(

(βi · ni)2/n2
i

)
S (β1 · β2)H

(
p1 · p2

µ2
,
(pi · ni)2

n2
iµ

2

)
, (1.85)

where, for simplicity, we suppressed the dependence on the renormalised coup-

ling αS(µ
2) and on the regulator ε. In Eq.(1.85) the colour vector H is a finite

remainder, defined by matching the factorised amplitude with the initial process.

The hard function has also the role of compensating the introduction of the aux-

iliary vectors nµi , which have no physical meaning.

To conclude this section, we remark two more important concepts: the functions

introduced above are universal, meaning that they do not depend on kinematic

variables, except for the external momenta. For this reason, such functions do

not suffer from the features of a specific process, absorbed in the hard function.

Secondly, we stress that arbitrary large momenta can flow in each of the operator

matrix elements defined in Eqs.(1.79)-(1.81). The rise of ultraviolet poles can be

justified, for instance, by looking at the soft function in Eq.(1.80). The series

representation of S

S
(
β1 · β2, αS(µ), ε

)
=
∞∑
n=0

(αS

4π

)n
S(n)
c , (1.86)

clearly returns S(0)
c = 1, as all the Wilson lines appearing in Eq.(1.80) are trivially

equal to the identity at the leading order in gs (see the left panel in Fig.1.12).

Starting from n = 1, the soft function involves loop corrections, defined through
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Figure 1.12: Contributions to the soft function at tree level (left) and at one
loop, where the diagram on the right is the UV counterterm

scaleless integrals, which vanish in dimensional regularisation. The result, prior to

UV renormalisation, is then identically zero, order-by-order in perturbation theory

S(n)
c, bare = 0 , ∀ i > 0 . (1.87)

The zero on the r.h.s has to be interpreted as the cancellation of UV poles against

the IR ones

Sc, bare ∝
1

εUV
− 1

εIR
= 0 (1.88)

One can therefore extract the infrared content of S(n)
c , by computing its ultraviolet

poles and exploiting standard renormalisation group techniques. As an alternative

strategy, one could perform the computation with auxiliary regulators for soft and

collinear poles: one may for example tilt the βi Wilson lines off the light cone, and

introduce a suppression for gluon emission at large distances, as done, for example,

in [93,94]. General theorems [95–97] then guarantee that the resulting anomalous

dimensions are independent of the chosen collinear and soft regulators.

Considering i = 1, the soft function receives contribution only from the vertex

correction diagram (see central panel in Fig.1.12), since self-energies on eikonal

light-like lines are zero thanks to the choice β2
i = 0. Given the argument above,

to extract the IR content of S(1) an UV counterterm is required (see right panel

in Fig.1.12). The full one-loop soft function is then equal to [98]

S(1)
(
β1 · β2, ε

)
=
αS

4π
S(1)
p = −αS

4π
CF

2

ε

(
1

ε
− log (−β1 · β2)

)
. (1.89)

As pointed out in Ref. [9], the argument of the logarithm in Eq.(1.89) can be modi-

fied by rescaling the eikonal Feynman rules. In particular, for each soft interaction

one could associate a factor aβµ/aβ · k, obtaining a rescaling of a factor a2 in the

logarithm argument. However, this ambiguity does not affect physical quantities,

since the dependence on a cancels between the soft function and the eikonal jet

function. The diagrammatic representation of the one-loop eikonal jet function

includes two diagrams [9]: the eikonal vertex correction and the self-energy on

the Wilson line oriented along the direction nµi (here we assume n2
i 6= 0). The
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diagrams return respectively

J (1)
i,E, (V )

((βi · ni)2

n2
i

, ε
)

= −αS

4π
CF

[ 1

ε2
+

1

ε
log
( n2

i

2(−βi · ni)2

)]
J (1)

i, (n2
i )

= −αS

2π
CF

1

ε
. (1.90)

The complete one-loop eikonal function reads

J (1)
i,E

((βi · ni)2

n2
i

, ε
)

=
1

2
J (1)

i,E, (n2
i )

+ J (1)
i,E, (V ) , (1.91)

where the factor 1/2 accounts for the square root of the residue of the relevant two-

point function in a normalised S-matrix element. The comparison between the soft

and the eikonal functions reveals, as expected, that the soft-collinear double pole

cancels in the combination S/∏2
i=1 Ji,E. The last ingredient is the jet function,

whose diagrammatic expansion includes, at one-loop order, the vertex correction

and the self-energies on both the quark and the eikonal lines. The full one-loop

jet function is then given by the combination

Ji
((pi · ni)2

n2
iµ

2
, ε
)

=
1

2
J (1)

i, (n2
i )

+
1

2
J (1)
i, (s.e.) + J (1)

i, (V ) , (1.92)

where

J (1)
i, (s.e.) =

αS

4π
CF

1

ε
,

J (1)
i, (V )

((pi · ni)2

n2
iµ

2
, ε
)

= −αS

4π
CF

[ 1

ε2
+

1

ε

(
2 + log

( n2
iµ

2

(−2p · n)2

))
+O(ε0)

]
.(1.93)

Having collected all the necessary ingredients, the one-loop expansion of the fac-

torisation formula in Eq.(1.85) returns

Γ
(1)
poles = S(1)

(
β1 · β2, ε

)
+ J1

((p1 · n1)2

n2
1µ

2
, ε
)
− J (1)

1,E

((β1 · n1)2

n2
1

, ε
)

+J2

((p2 · n2)2

n2
2 µ

2
, ε
)
− J (1)

2,E

((β2 · n2)2

n2
2

, ε
)

= S(1)
(
β1 · β2, ε

)
+ J (1)

1, (V )

((p1 · n1)2

n2
1µ

2
, ε
)
− J (1)

1,E, (V )

((β1 · ni)2

n2
1

, ε
)

+J (1)
2, (V )

((p2 · n2)2

n2
2µ

2
, ε
)
− J (1)

2,E, (V )

((β2 · n2)2

n2
2

, ε
)

+ 2J (1)
1, (s.e.) , (1.94)

that can be easily checked to match the pole structure of the e.m. form factor

Γ(1) = −αs
4π
CF

(
− µ

Q2

)ε(
2

ε2
+

3

ε
+O(ε0)

)
. (1.95)
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Factorisation

2.1 From the Factorisation formula to the dipole formula

The factorisation formula as presented in the previous Section is an extremely

powerful tool to treat the IR singularities of a generic gauge amplitude. Thanks

to the introduction of appropriate universal functions, it is possible to model sep-

arately soft, collinear, and mixed soft-collinear divergences. This sub-structure

turns out to be the key feature that allows for a natural application of the fac-

torisation principles to a subtraction procedure. From a more general point of

view, namely considering the IR divergencies without focusing on their origin, the

infrared content of fixed-angle multi-particle gauge-theory amplitudes obeys the

multiplicative law [11–13]

An
(
pi
µ
, αS(µ

2), ε

)
= Zn

(
pi
µ
, αS(µ

2), ε

)
Fn
(
pi
µ
, αS(µ

2), ε

)
. (2.1)

Here {pi} is a set of n momenta referring to the external massless partons involved

in the process. The non-trivial colour content of amplitude An is hidden in the

definitions of the elements appearing in Eq.(2.1). In full generality, both An and

Fn are vectors in the finite-dimensional space of colour configurations, while Zn

is a color operator acting on Fn. The most remarkable aspect of Eq.(2.1) is its

universal validity: Zn entirely encodes the IR sensitivity of the amplitude, and

depends on external momenta only. The characteristics of the specific process are

completely due to the hard component Fn, which is finite for ε → 0. Given the

importance of the colour structure it could be useful to make it more explicit.

We first notice that the n-parton amplitude An has n open colour indices {ai},
i = 1 . . . n, each of them belonging, in general, to different colour representations

of the gauge group. To correctly take into account the colour degrees of freedom

of An, all the relevant quantities in the factorisation formula have to be projected

35
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onto an appropriate colour basis. Such a basis can be chosen in two different ways.

On the one hand, it is possible to define a set of colour tensors cI{ai} that span the

vector space of colour configurations, and then decompose Eq.(2.1) in terms of the

same basis as[
A
(
pi
µ
, αs(µ), ε

)]
{ai}

= AK
(
pi
µ
, αs(µ), ε

)
cK{ai} . (2.2)

In this fashion, the factorisation formula can be compactly rewritten as

AI = ZIJFJ , (2.3)

where, as already mentioned, Z is a colour matrix acting on the colour vector F .

On the other hand, one could also directly express the operator Z as a function of

colour operators Ti, which are defined in the appropriate colour representation for

the i-th leg and act only on the corresponding colour indices. In particular, consid-

ering the emission from parton i of a gluon with colour index c (c = 1, . . . , N2
c −1)

, the colour operator is

Ti ≡ 〈c|T ci , (2.4)

where the effect of acting with Ti on a colour vector |b1 . . . bm〉 is

〈c1, . . . , ci, . . . , cm, c|Ti |b1, . . . , bi, . . . , bm〉 = δc1b1 . . . T
c
cibi

. . . δcmbm . (2.5)

In this notation, the colour representation of parton i determines the explicit

expression of the matrix elements of Ti, namely T acb ≡ ifcab if i is a gluon, T aαβ ≡ taαβ
if i is a quark in the fundamental representation (α, β = 1, . . . , Nc), and T aαβ ≡
t̄aαβ = −taβα if the emitter is an anti-quark. The colour operators are designed to

obey a simple algebra

T ci T
c
j ≡ Ti ·Tj =

Tj ·Ti if i 6= j

T2
i = Ci if i = j

, (2.6)

where Ci is the Casimir eigenvalue in the appropriate representation, i.e. Ci =

CF = (N2
c − 1)/2Nc for fermions, and Ci = CA = Nc for gluons. Since the colour

vector An is by definition a colour singlet, colour conservation implies

n∑
i=1

Ti An(pi) = 0 . (2.7)

This useful approach has been developed by [99] and later adopted by [2], and

will also be our main strategy to deal with colour structures in what follows.
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The behaviour of Z and its universal properties have been a crucial research topic

for several yeas, giving rise to different and sophisticated approaches to determine

and predict its form in perturbation theory. In 2009, an Ansatz for Z was proposed

in [10,11] and independently in [12,13]. In the former paper, the authors managed

to show that Z obeys a renormalisation group equation that can be solved in an

exponential form in terms of the soft anomalous dimension Γ. This conclusion

was supported by investigating the kinematic properties of the universal functions

(soft, jet and eikonal functions) describing the IR behaviour of gauge amplitudes.

In Refs. [12, 13], similar results were obtained by exploiting the renormalisation

group equations governing the n-jet SCET operators. Following the notation in

Ref. [10] one may write

Zn

(
pi
µ
, αS(µ

2), ε

)
= P exp

[
1

2

∫ µ2

0

dλ2

λ2
Γn

(pi
λ
, αS

(
λ2, ε

))]
, (2.8)

where all infrared singularities are generated by the integration of the d-dimensional

running coupling over the scale λ, extended to λ = 0 [100, 101]. The integral at

λ = 0 converges in dimensional regularisation thanks to the behaviour of the β

function in d = 4 − 2ε, for ε < 0 (d > 4). Indeed, in dimensional regularisation

one has

µ
dαs
dµ
≡ β (ε, αs) , (2.9)

with

β (ε, αs) = −2εαs + β̂ (αs) . (2.10)

In Eq. (2.10), β̂ is the four-dimensional β function, which we can expand in series

of the coupling constant as

β̂ (αs) ≡ −
α2
s

2π

∞∑
n=0

bn

(αs
π

)n
. (2.11)

The multiplicative factors agree with the normalisation b0 =
11CA−4TRNf

3
in QCD.

If one solves Eq.(2.9) for small coupling and fixed, negative ε, it is easy to verify

that the d-dimensional running coupling αs(µ, ε) is power suppressed at small

scales, namely it vanishes at µ = 0 according to

αs
(
λ2, ε

)
=

(
λ2

µ2

)−ε[
αs
(
µ2, ε

)
+O(α2

s)
]
. (2.12)

This way, the corresponding initial condition for Z is Z(µ = 0) = 1.

The infrared anomalous dimension matrix Γn has been studied for a long time,
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and it is still an active research topic. One of the most important aspects is its

dependence on different colour structures, and whether colour patterns are pre-

served by higher orders in perturbation theory. In the pioneering investigations

performed at NNLO [10–13], the expression for Γ was proposed as an Ansatz,

assuming its exclusive dependence on colour dipoles, i.e only two-particles correl-

ations are supposed to be involved. Γ was then written according to the so called

dipole formula

Γ
(pi
λ
, αs(λ), ε

)
=
γ̂K
(
αs(λ, ε)

)
2

n∑
i,j=1
j>i

ln
(sij eiπσij

λ2

)
Ti ·Tj −

n∑
i=1

γJi
(
αs(λ, ε)

)
. (2.13)

In the expression, σij is a phase factor equal to 1 if both i and j are in the initial

or in the final state, while it is zero otherwise (we will always refer to the former

case, setting eiπσij = −1, with the understanding that the logarithm is taken

above the cut). With γJi
(
αs(λ, ε)

)
we refer to the jet anomalous dimension, which

determines the dependence of the jet function in Eq.(1.79) on the renormalisation

scale µ. The γJi
(
αs(λ, ε)

)
functions assume different forms depending on whether

i is a fermion or a gluon, and on the spin of parton i. To compute γJi it is possible

to exploit the calculation of the quark and the gluon form factors: at three-loop

order the computation was performed by Refs. [102,103], and at four-loop order by

Ref. [17]. Finally, γ̂K
(
αs(λ, ε)

)
is related to the cusp anomalous dimension γ

(r)
K (αs).

In the derivation of Eq. (2.13), the (light-like) cusp anomalous dimension, in colour

representation r, has been assumed to obey the “Casimir scaling”, i.e. to depend

on the colour content of parton r only through the relation

γ
(r)
K (αs) = Cr γ̂K(αs) , (2.14)

where Cr is the quadratic Casimir eigenvalue for colour representation r, while

γ̂K(αs) is the universal (representation-independent) function appearing in the

dipole formula. γ̂K(αs) was computed at three-loop order by Ref. [104, 105] and

recently at four-loop order by Refs. [17, 18]. The computation of the four-loop

correction of γ̂K(αs) has proven that the Casimir scaling is violated beyond three-

loop order.

Given the importance of the Eq.(2.13), we believe it is instructive to sketch the

basic arguments that led to its formulation, following the discussion reported in

Ref. [11]. Some preliminary remarks have to be reported before presenting the

actual argument. First, we recall that the interaction of a soft gluon with a

hard parton carrying momentum p is described by the eikonal Feynman rule (see
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Eq.(1.68))

gsµ
ε ta

pµ
p · k = gsµ

ε ta
βµ
β · k , (2.15)

with βµ being the four-velocity corresponding to the hard momentum pµ, pµ =

Q/
√

2βµ. The expression on the the r.h.s. is independent on the energy scale of

the hard parton, and invariant under rescaling β → aβ. Secondly, we remind that

the low-energy interactions of a generic n-point amplitude are reproduced by the

soft function S (that is defined in the simple case of n = 2 in Eq.(1.80)), which

can be decomposed over a colour basis as

∑
L

(cL){αk}SLK
(
βi · βj, αS(µ

2), ε
)

=
∑
{ηk}

〈0|
n∏
i=1

Φαk ηk
βi

(∞, 0) |0〉 (cK){ηk} , (2.16)

where the contributing Wilson lines are strictly on the light-cone. As one can

confirm by explicit computation, (see for instance Eq.(1.89)), the soft function de-

pends on the scalar products βi ·βj, and therefore it breaks the rescaling symmetry

manifested by the eikonal rule in Eq.(2.15). This sensitivity to the normalisation

of the βi vectors is clearly unphysical and cannot survive in the amplitude An. The

necessary cancellation of any rescaling violation has to occur between the soft and

the eikonal function, which suffers from the same rescaling breaking. Moreover,

soft and eikonal functions are identically zero in dimensional regularisation order-

by-order in perturbation theory, thanks to the precise cancellation of UV and IR

singularities. Upon renormalisation, both functions manifest double poles of soft-

collinear nature, which are responsible for the rescaling violation at the single pole

level. As already mentioned, the issue of correctly taking into account the over-

lapping of soft and collinear singularities can be avoided by considering the reduce

soft function, defined as the ratio of the soft function and the eikonal jet functions

S
(
ρij, αs(µ

2), ε
)
≡ S(βi · βj, αs(µ2), ε)∏

i Ji,E((βi · ni)2/n2
i , αs(µ

2), ε)
. (2.17)

This way, S is free of double poles, and, at the same time, of rescaling violations.

Considering the kinematic dependence of the numerator and the denominator, and

the recovery of the symmetry βi → aiβi, the reduced soft function can only depend

on the quantity

ρij ≡
(βi · βj)2

2(βi·ni)2

n2
i

2(βj ·nj)2

n2
j

. (2.18)
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The soft function, as well as the reduced soft function, obey a renormalisations

group equation of the form

µ
d

dµ
SIK

(
βi · βj, αS, ε

)
= −

∑
J

ΓSIJ
(
βi · βj, αS, ε

)
SJK

(
βi · βj, αS, ε

)
, (2.19)

µ
d

dµ
SIK

(
ρij, αS, ε

)
= −

∑
J

ΓSIJ
(
ρij, αS, ε

)
SJK

(
ρij, αS, ε

)
. (2.20)

where ΓSIJ is a priori a complicated function of all the invariants contributing to

the process. Given the fact that S depend on ρij and manifests single poles only,

the corresponding anomalous dimension ΓS is a function of ρij and it is finite for

ε → 0. Starting from the definition in Eq.(2.17), it is possible to relate ΓSIJ and

ΓSIJ

ΓSIJ
(
ρij, αS

)
= ΓSIJ

(
βi · βj, αS, ε

)
− δIJ

n∑
k=1

γJk,E

(2(βk · nk)2

n2
k

, αS, ε
)

= ΓSIJ
(
βi · βj, αS, ε

)
− δIJ

n∑
k=1

[
− 1

2
δJk,E(αS)

+
1

4
γ

(k)
K (αS) log

(2(βk · nk)2

n2
k

)
+

1

4

∫ µ2

0

dξ2

ξ2
γ

(k)
K

(
αS(ξ

2, αS)
)]
,(2.21)

where γJk,E is the anomalous dimension relevant for the eikonal jet renormalisation

group equation. It is evident from the equation above, that some crucial cancel-

lations have to occur in order for the double poles and the rescaling breaking

encoded by ΓSIJ to cancel. In particular: since the entire term in square brackets

is diagonal in the colour space, the off-diagonal elements of ΓSIJ have to be finite,

and depend on the conformal cross ratios

ρijkl =
(βi · βj)(βk · βl)
(βi · βk)(βj · βl)

=
(ρij ρkl
ρik ρjl

)1/2

. (2.22)

Moreover, diagonal terms in ΓSIJ have to contain singularities according to

ΓSIJ
(
βi · βj, αS, ε

)
= δIJ

n∑
k=1

1

4

∫ µ2

0

dξ2

ξ2
γ

(k)
K

(
αS(ξ

2, αS)
)

+O(ε0) . (2.23)

On top of the singularities, ΓSIJ has also to display finite contributions in βi·βj, that

have to combine with the finite contributions stemming from the jet anomalous

dimension, which depend on (βi · ni)2/n2
i , to return a finite function in ρij.
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These arguments are formalised by the following equation∑
j 6=i

∂

∂ log(ρij)
ΓSIJ
(
ρij, αS

)
=

1

4
γ

(i)
K (αS) δIJ , ∀ i, I, J . (2.24)

For each external particle contributing to the process, we have a matrix equation

that holds in any colour basis and to all orders in perturbation theory. Remarkably,

the l.h.s. is a sum of non-diagonal matrices in colour space, while the r.h.s. is

proportional to the identity matrix.

Solving Eq.(2.24) easily becomes highly non-trivial, as soon as the number of

particles increases: n(n−1)/2 kinematic variables are constrained by n equations,

so that, for n = 2, 3, ΓSIJ can be uniquely determined [10], while this is not the

case starting from n = 4. To solve Eq.(2.24) we have to exploit other information,

as the explicit dependence of γ
(i)
K on colour. Assuming Casimir scaling to be valid

at least up to three loops (this assumption has been verified by Refs. [104, 106],

while it is known to break down at four loops due to the presence of fourth-order

Casimir invariants [17,18,107,108]), we get

γ
(i)
K (αS) = Ci γ̂

(i)
K (αS) + γ̃

(i)
K (αS) , (2.25)

where γ̃
(i)
K provides non vanishing contributions that violate the Casimir scaling

starting at four-loops. Given this evidence, Eq.(2.24) can be rewritten as

∑
j 6=i

∂

∂ log(ρij)
ΓSIJ
(
ρij, αS

)
=

1

4

[
Ci γ̂

(i)
K (αS) + γ̃

(i)
K (αS)

]
(2.26)

If we neglect for a moment the corrections to the Casimir scaling, a solution to

Eq.(2.26) reads

ΓS(ρij, αS) = −1

8
γ̂K(αS)

∑
(i,j)

log(ρij) Ti ·Tj +
1

2
δ

(i)

S

n∑
i=1

Ti ·Ti (2.27)

where δ
(i)

S governs single poles beyond γ̂K . The sum runs over the possible colour

dipoles, including both the pair (i, j) and (j, i). The kinematics dependence is en-

tirely encoded by the first term, which also includes all the non-trivial dependence

on colour structures. The second term is indeed independent of kinematics, and

only features a trivial colour content. Given the knowledge of ΓS , it is possible to
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integrate Eq.(2.20), obtaining

S(ρij, αS, ε) = exp

{
− 1

2

∫ µ2

0

dλ2

λ2

[
1

2
δS
(
αS(λ

2, ε)
) n∑

i=1

Ci

−1

8
γ̂K
(
αS(λ

2, ε)
)∑

(i,j)

log(ρij) Ti ·Tj

]
.

}
(2.28)

At this point, we have to add the contributions of the collinear singularities, re-

produced by the jet functions. The renormalisation group equation that can be

introduced for each partonic jet Ji returns

Ji
((2pi · ni)2

n2
i

, αS(µ
2), ε

)
= HJ

(
αS, ε

)
exp

{
− 1

2

∫ µ2

0

dλ2

λ2
γJi
(
αS(λ

2, ε)
)

+
Ci
2

∫ (2pi·ni)
2

n2
i

0

dλ2

λ2

[
− 1

4
γ̂K
(
αS(λ

2, ε)
)

log
((2pi · ni)2

λ2 n2
i

)
+

1

2
δ̂S
(
αS(λ

2, ε)
)]}

, (2.29)

where HJ is a non-singular function. Collinear singularities are produced by γJi ,

while soft singularities are encoded by the cusp anomalous dimension and by δ̂S ,

which features at most single poles.

We are now in the position to introduce a precise description of the IR content of

the Z operator. By comparing the Eqs.(2.28)-(2.29) we see that in the combination∏
i Ji S the contributions of δ̂S cancel, while those stemming from γ̂K combines

non trivially according to

log
((2pi · ni)2

n2
i

)
+ log

((2pi · ni)2

n2
i

)
+ log

(
(βi · βj)2

2(βi·ni)2

n2
i

2(βj ·nj)2

n2
j

)
= 2 log(2pi · pj) .

(2.30)

The resulting organisation of the IR singularities is then compatible with the pre-

diction in Eq.(2.13). We stress that the the result in Eq.(2.30) is also crucial to

ensure the cancellation of the dependence on the auxiliary vector nµ in the Z op-

erator.

In the derivation of the dipole formula provided by Ref. [11], the authors admitted

the possibility to include further corrections to the expression of ΓS . They iden-

tified as a possible source of corrections the higher-order Casimir contributions,

namely the presence of non-vanishing γ̃K . Such corrections are however still of

the form of dipoles for two or three-legs amplitudes, while for higher multiplicity

processes, non-trivial structures that couple more than two partons may arise. A
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Figure 2.1: Two-loop diagrams involving three eikonal lines.

second source of correction, provided the Casimir scaling is valid, is represented

by the homogeneous solutions to Eq.(2.26), where we neglect γ̃K . Any function

verifying the condition ∑
j 6=i

∂

∂ log(ρij)
∆
(
ρij, αS

)
= 0 , (2.31)

can be added to the expression of ΓS without violating any constraints. Thus the

dipole formula has to be improved to account for them

Γn

(
pi
µ
, αS(µ

2)

)
= Γdip

n

(
sij
µ2
, αs(µ

2)

)
+ ∆n

(
ρijkl, αS(µ

2)
)
. (2.32)

It is interesting to notice that, a priori, any generic function of ρijkl is acceptable.

In the four parton case, example for ∆ were proposed by Ref. [10]

j 6=k 6=l∑
j,k,l

i fabc T
a
j T

b
k T

c
l log

(
ρijkl

)
log
(
ρiklj

)
log
(
ρiljk

)
,

j 6=k 6=l∑
j,k,l

dabc T
a
j T

b
k T

c
l log2

(
ρijkl

)
log2

(
ρiklj

)
log2

(
ρiljk

)
. (2.33)

Functions of this kind may only arise beyond the two-loop approximation, since

at two loop order, colour connections may involve at most three partons. Such

conclusion justifies, a posteriori, the results obtained in 2006 by Ref. [109]: the

autors provided the expression for Γ at NNLO, showing that also in the two-loop

approximation it manifests at most two-particle colour correlations. This feature

is anything but trivial, since at this perturbative order also three lines may contrib-

ute to connected diagrams, and they are expected to produce tripole-colour-linked

contributions (see Fig.2.1). However, these graphs are proven to be null as long

as light-like partons are involved, thanks to simple symmetry arguments.

At three-loop order, the presence or the absence of non-vanishing ∆n contributions

remained conjectural for many years [110–114]. In 2016 Ref. [15] explicitly com-

puted at three-loop order the correction ∆n, by evaluating of all relevant Feynman
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diagrams

∆(3) = 16fabefcde

[
− C

n∑
i=1

∑
1≤j<k≤n
j,k 6=i

{
Ta
i , Td

i

}
Tb
j Tc

k

]

+
∑

1≤i<j<k<l≤n

[
Ta
i Tb

j Tc
k Td

l F(ρikjl ρiljk) + Ta
i Tb

k Tc
j Td

l F(ρijkl ρilkj)

+Ta
i Tb

l Tc
j Td

k F(ρijlk ρiklj)
]
, (2.34)

where C = ζ5 + 2ζ2 ζ3, and F is a combination of single-valued harmonic poly-

logarithms. Afterwards, the authors of Ref. [16] obtained the same result using

a bootstrap procedure, based on the analysis of the nature of the mathematical

functions that the result can depend on.

For the present purposes, it is sufficient to consider the NLO and the NNLO

expansion of the soft anomalous dimension, or equivalently the dipole formula

upon setting ∆n = 0.

One important consequence of the dipole formula is that the scale integration in

Eq. (2.8) can be performed without affecting the colour structure (which is scale-

independent): one may therefore omit the path-ordering in Eq. (2.8), considerably

simplifying the necessary calculations.

2.1.1 NLO virtual poles

To provide an example of the dipole formula effectiveness, we derive the poles

content of a generic one-loop amplitude and, then, the singularities residues at the

cross-section level. With this straightforward exercise we will introduce the main

steps of the procedure that will then be applied at NNLO.

By expanding in series Eq.(2.1), the one-loop amplidute reads

A(1)
n (pi, αS, ε) = Z(1)

n (pi, αS, ε)F (0)
n (pi, αS, ε) + Z(0)

n (pi, αS, ε)F (1)
n (pi, αS, ε) , (2.35)

where we have introduced a short-hand notation for the operator arguments and

implicitly defined

An =
∞∑
i=0

A(i)
n

(αs
π

)i
, Zn =

∞∑
i=0

Z(i)
n

(αs
π

)i
, Fn =

∞∑
i=0

F (i)
n

(αs
π

)i
. (2.36)

Given the definitions in Eq.(2.8), it is evident that the IR divergences may arise

only from the first term on the r.h.s. in Eq.(2.35), since Fn is assumed to be finite

for ε→ 0 order-by-order in perturbation theory. The main goal is then to compute

Z
(1)
n by exploiting its relation with the soft anomalous dimension (see Eq.(2.8)).
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As done for the factorisation formula, we start by expressing the relevant quantities

in Eq.(2.13) in powers of αs

Γ(αs) =
∞∑
n=1

Γ(n)
(αs
π

)n
, γ̂K(αs) =

∞∑
n=1

γ̂
(n)
K

(αs
π

)n
, γi(αs) =

∞∑
n=1

γ
(n)
i

(αs
π

)n
,

and then selecting the one-loop coefficient of Γ

Γ(1) =
1

4
γ̂

(1)
K

n∑
i 6=j=1

ln
(−sij + iη

µ2

)
Ti ·Tj −

n∑
i=1

γ
(1)
i +

1

4
γ̂

(1)
K ln

(µ2

λ2

) n∑
i 6=j=1

Ti ·Tj

=
1

4
γ̂

(1)
K

n∑
i 6=j=1

ln
(−sij + iη

µ2

)
Ti ·Tj −

n∑
i=1

γ
(1)
i −

1

4
γ̂

(1)
K ln

(µ2

λ2

) n∑
i=1

Ci ,

(2.37)

where colour conservation (see Eq.(2.7)) has been used. The resulting Z(1) expres-

sion is thus given by

αs
π

Z(1)
n (pi, αS, ε) =

1

2π

∫ µ2

0

dλ2

λ2
Γ(1)(λ2) αs(λ

2) . (2.38)

The coupling constant dependence on λ2 at LO can be deduced from Eq.(2.12),

and, together with the functional dependence in Eq.(2.37), it gives rise to two

fundamental integrals∫ µ2

0

dλ2

λ2
αs
(
λ2
)

= −1

ε
αs
(
µ2
)
,

∫ µ2

0

dλ2

λ2
ln
(λ2

µ2

)
αs
(
λ2
)

= − 1

ε2
αs
(
µ2
)
. (2.39)

Having such integrals at hand, it is easy to deduce the NLO approximation for Zn

Z(1) = − 1

ε2
γ̂

(1)
K

8

n∑
i=1

Ci −
1

ε

[
γ̂

(1)
K

8

n∑
i,j=1

ln
(−sij + iη

µ2

)
Ti ·Tj −

1

2

n∑
i=1

γ
(1)
i

]

= − 1

ε2
γ̂

(1)
K

8

n∑
i=1

Ci −
1

ε

[
γ̂

(1)
K

8

n∑
i 6=j=1

ln
(sij
µ2

)
Ti ·Tj −

1

2

n∑
i=1

γ
(1)
i

]

+iπ
γ

(1)
K

8ε

n∑
i=1

Ci (2.40)

where the anomalous dimensions at the present perturbative order are

γ̂
(1)
K = 2 , γ(1)

q = −3

4
CF , γ(1)

g = −1

4
b0 . (2.41)
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At this point, we can proceed by computing the corresponding singularity struc-

tures at the cross-section level. At NLO, the squared amplitude receives contribu-

tions according to

| A |2 =
∣∣A(0)

∣∣2 +
αs
π

2 Re
[(
A(0)

)†A(1)
]

+O(α2
s)

=
∣∣F (0)

∣∣2 +
αs
π

2 Re
[(
F (0)

)†F (1) +
(
F (0)

)†
Z(1)F (0)

]
+O(α2

s) , (2.42)

where the singularities are entirely encoded in the second term in squared brackets,

as explained above. This way∣∣A ∣∣2
NLO

=
αs
π

2 Re
[(
F (0)

)†F (1) +
(
F (0)

)†
Z(1)F (0)

]
(2.43)

=
αs
π

{
H +

[
− 1

ε2
γ̂

(1)
K

4

n∑
i=1

Ci

−1

ε

(
γ̂

(1)
K

4

n∑
i 6=j=1

ln
(sij
µ2

)
Ti ·Tj −

n∑
i=1

γ
(1)
i

)]
Bn

}

with Bn =
∣∣A(0)

n

∣∣2 =
∣∣F (0)

n

∣∣2 being the Born matrix element, and H = F (0) †F (1) a

finite process-dependent remainder. We now have all the ingredients to push our

investigation a bit further, and consider the NNLO approximation of the amplitude

A.

2.1.2 NNLO virtual poles

The Γ function can be expanded in series as

Γ(αs) = Γ(1)
(αs
π

)
+ Γ(2)

(αs
π

)2

+O(α3
s) (2.44)

= Γ(1) (αs)LO

π
+ Γ(1) (αs)NLO

π
+ Γ(2)

((αs)LO

π

)2

, (2.45)

where we have emphasised with the notation that at this perturbative order the

coupling constant has to be expanded up to one-loop approximation. The full

one-loop solution of Eq.(2.9) can be cast in the following form

αs
(
λ2
)

= αs
(
µ2
)[(λ2

µ2

)
− 1

ε

(
1− λ2

µ2

)ε b0

4π
αs
(
µ2
)]−1

, (2.46)

whose expansion in αs returns

αs (λ2)

π
=
(λ2

µ2

)−ε αs(µ2)

π
+

1

ε

(λ2

µ2

)−ε[(λ2

µ2

)−ε
− 1

]
b0

4

(αs(µ2)

π

)2

+O
(
α3
s

)
. (2.47)
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On the other hand, the Γ coefficient at two-loop is given by the analogous of

Eq.(2.37) upon substituting γ̂
(2)
K and γ

(2)
i to γ̂

(1)
K and γ

(1)
i . Before tackling the

actual computation, it can be useful to single out λ from the variables on which

Γ depends. In analogy with Eq. (2.37), we define

Γ (pi, αs, ε) =
1

4
γ̂K

n∑
i 6=j=1

ln
(−sij + iη

µ2

)
Ti ·Tj −

n∑
i=1

γi −
1

4
γ̂K ln

(µ2

λ2

) n∑
i=1

Ci

≡ Γ1 (pi, αs, ε) + Γ2 (αs, ε) ln
(µ2

λ2

)
, (2.48)

yielding to the two-loop expression

Γ (pi, αs, ε) =

[(λ2

µ2

)−ε
Γ

(1)
1 +

(λ2

µ2

)−ε
ln
(µ2

λ2

)
Γ

(1)
2

]
αs(µ

2)

π
+

[(λ2

µ2

)−2ε

Γ
(2)
1

+
(λ2

µ2

)−2ε

ln
(µ2

λ2

)
Γ

(2)
2 +

1

ε

(λ2

µ2

)−ε((λ2

µ2

)−ε
− 1

)
b0

4
Γ

(1)
1

+
1

ε

(λ2

µ2

)−ε((λ2

µ2

)−ε
− 1

)
b0

4
ln
(µ2

λ2

)
Γ

(1)
2

](αs(µ2)

π

)2

+ . . . (2.49)

To compute Zn only few integrals have to be computed on top of those in Eq.(2.39)∫ µ2

0

dλ2

λ2

(
λ2

µ2

)−pε
= − 1

pε
,

∫ µ2

0

dλ2

λ2

(
λ2

µ2

)−pε
ln

(
µ2

λ2

)
=

1

p2ε2
. (2.50)

The results of these integrals underline one of the non-trivial features of the di-

pole formula: all infrared poles of gauge theory amplitudes arise in dimensional

regularisation from scale integrations. Furthermore, to simplify the computation,

we will consider an intermediated step, and apply the logarithm to both sides of

Eq.(2.8)

ln Z =

[
− 1

2ε
Γ

(1)
1 +

1

2ε2
Γ

(1)
2

]
αs
π

+

[
− 1

4ε
Γ

(2)
1 +

1

8ε2
Γ

(2)
2 +

b0

16ε2
Γ

(1)
1 −

3b0

32ε3
Γ

(1)
2

](αs
π

)2

+O
(
α3
s

)
=

[
− γ̂

(1)
K

8ε2

n∑
i=1

Ci −
γ̂

(1)
K

8ε

n∑
i 6=j=1

ln
(−sij + iη

µ2

)
Ti ·Tj +

1

2ε

n∑
i=1

γ
(1)
i

]
αs
π

+

[
3

128ε3
b0 γ̂

(1)
K

n∑
i=1

Ci +
1

64ε2
b0 γ̂

(1)
K

n∑
i 6=j=1

ln
(−sij + iη

µ2

)
Ti ·Tj

− b0

16ε2

n∑
i=1

γ
(1)
i −

γ̂
(2)
K

32ε2

n∑
i=1

Ci −
γ̂

(2)
K

16ε

n∑
i 6=j=1

ln
(−sij + iη

µ2

)
Ti ·Tj

+
1

4ε

n∑
i=1

γ
(2)
i

](αs
π

)2

+O
(
α3
s

)
. (2.51)
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Eq. (2.51) agrees with Becher and Neubert [13], with the anomalous dimension

coefficients

γ̂
(2)
K =

(67

18
− ζ(2)

)
CA −

5

9
nf , (2.52)

γ(2)
q =

(
− 3

32
+

3

4
ζ(2)− 3

2
ζ(3)

)
C2
F +

(
− 961

864
− 11

16
ζ(2) +

13

8
ζ(3)

)
CACF

+
( 65

432
+

1

8
ζ(2)

)
NfCF ,

γ(2)
g =

(
− 173

108
+

11

48
ζ(2) +

1

8
ζ(3)

)
C2
A +

( 8

27
− 1

24
ζ(2)

)
NfCA +

1

8
NfCF .

We observe that, as expected, ln Z contains 1/ε poles up to ε−3. From the structure

of the calculation, it is also clear that ln Z at order αns will contain poles up to

ε−n−1. At this point, the two-loop approximation of Z can be simply computed

by exponentiating Eq. (2.51). Explicitly, we may write

Z(2) =
1

ε4

(
γ̂

(1)
K

)2

128

( n∑
i=1

Ci

)2

+
1

ε3
γ̂

(1)
K

16

( n∑
i=1

Ci

)[3

8
b0 −

n∑
i=1

γ
(1)
i +

γ̂
(1)
K

4

n∑
i,j=1

ln
(−sij + iη

µ2

)
Ti ·Tj

]
+

1

ε2

[b0 γ̂
(1)
K

64

n∑
i,j=1

ln
(−sij + iη

µ2

)
Ti ·Tj −

b0

16

n∑
i=1

γ
(1)
i −

γ̂
(2)
K

32

n∑
i=1

Ci

+
1

8

( n∑
i=1

γ
(1)
i

)2

− γ̂
(1)
K

16

( n∑
i=1

γ
(1)
i

) n∑
i,j=1

ln
(−sij + iη

µ2

)
Ti ·Tj

+

(
γ̂

(1)
K

)2

128

n∑
i,j=1

n∑
k,l=1

ln
(−sij + iη

µ2

)
ln
(−skl + iη

µ2

)
Ti ·Tj Tk ·Tl

]
+

1

ε

[
− γ̂

(2)
K

16

n∑
i,j=1

ln
(−sij + iη

µ2

)
Ti ·Tj +

1

4

n∑
i=1

γ
(2)
i

]
. (2.53)

We stress again that the soft anomalous dimension exposes only dipole colour

correlations, so that Z exhibits at most colour structure of the form (Ti ·Tj) (Tk ·
Tl). No tripole-colour-connected terms may in any case arise at this perturbative

order, as already mentioned in the previous sections.

2.1.3 NNLO virtual poles at squared-amplitude level

In order to obtain the full singular structure of the amplitude, we have to take a

step back and consider the factorisation formula in Eq.(2.1). It has to be expanded
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up to NNLO and then squared, taking care of the interference terms

An (pi, αS, ε) = F (0)
n (pi, αS, ε)

+
αS

π

[
F (1)
n (pi, αS, ε) + Z(1)

n (pi, αS, ε)F (0)
n (pi, αS, ε)

]
+

(αS

π

)2[
F (2)
n (pi, αS, ε) + Z(1)

n (pi, αS, ε)F (1)
n (pi, αS, ε)

+Z(2)
n (pi, αS, ε)F (0)

n (pi, αS, ε)
]

+O
(
α3

S

)
, (2.54)

where we recall that Z
(0)
n = 1. The equation above implicitly defines the series

coefficients for An, whose first non-trivial term is reported in Eq.(2.35). At α2
S

order we also need to introduce

A(2)
n = F (2)

n + Z(1)
n F (1)

n + Z(2)
n F (0)

n , (2.55)

so that the squared amplitude reads

|A|2 =
∣∣A(0)

∣∣2 +
αs
π

2 Re
[(
A(0)

)†A(1)
]

+
(αs
π

)2 [
2 Re

((
A(0)

)†A(2)
)

+
∣∣A(1)

∣∣2]+ . . .

=
∣∣F (0)

∣∣2 +
αs
π

2 Re
[(
F (0)

)†F (1) +
(
F (0)

)†
Z(1)F (0)

]
+
(αs
π

)2[
2 Re

((
F (0)

)†F (2) +
(
F (0)

)†
Z(1)F (1) +

(
F (0)

)†
Z(2)F (0)

+
(
F (1)

)†
Z(1)F (0)

)
+
∣∣F (1)

∣∣2 +
(
F (0)

)†(
Z(1)

)†
Z(1)F (0)

]
+ . . . (2.56)

In the second step, on top of the Born matrix element, it is easy to recognise the

squared-amplitude NLO contribution as defined in Eq.(2.43). It has been verified

to return either colour-summed or colour-connected Born matrix elements. At

two-loop order colour and pole structures are more involved. First of all, we stress

that terms proportional to Z
(0)
n only, i.e. F (0)†F (2) and

∣∣F (1)
∣∣2, are finite by con-

struction. Secondly, contributions proportional to a single Z
(1)
n operator manifest

the same structure discussed al NLO upon substituting the Born matrix element

with a virtual hard correction. Thus, the term Re
(
F (0)†Z(1)F (1) + F (0)†Z(1)F (0)

)
contributes at most to the double pole coefficient with colour-summed or colour-

connected matrix elements. The contribution of Z
(2)
n , already discussed below

Eq.(2.53), is responsible for quadruple and triple poles, which also arise from the

interference term Z
(1)
n

†
Z

(1)
n .

For our purposes, it is useful to further manipulate the relation in Eq.(2.56) in

order to obtain a final expression where explicit poles multiply only Born-level

matrix elements. For this purpose, we restrict our analysis to the singular O(α2
S)
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terms, neglecting the finite remainders

|A|2N2LO, ε ≡
(αs
π

)2[
2 Re

(
F (0)†Z(1)F (1) + F (0)†Z(2)F (0) + F (1)†Z(1)F (0)

)
+F (0)†Z(1)†Z(1)F (0)

]
. (2.57)

To simplify the analysis, we introduce a shorthand notation to define colour-linked

and double-colour-linked Born matrix elements

Bij ≡ 〈A(0)|Ti ·Tj |A(0)〉 , Bijkl ≡ 〈A(0)| {Ti ·Tj ,Tk ·Tl} |A(0)〉 . (2.58)

and we examine one term at a time. The contributions proportional to Z(2) and

Z(1) †Z(1) can be trivially manipulated and give

1

8ε4

(∑
i

Cfi

)2

B +
1

4ε3

(∑
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∑
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+
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∑
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γ̂
(2)
K

4

∑
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4
− 2

∑
i

γ
(1)
i

)∑
i,j 6=i

ln
(sij
µ2

)
Bij +

1

4

∑
i,j 6=i
k,l 6=k

ln
(sij
µ2

)
ln
(skl
µ2

)
Bijkl

]

+
1

8ε

[
4
∑
i

γ
(2)
i B − γ̂(2)

K

∑
i,j 6=i

ln
(sij
µ2

)
Bij

]
, (2.59)

where B can be obtained starting from the first equation in Eq.(2.58) and summing

over i, and then exploiting color conservation. In particular∑
i

Bij =
∑
i

〈A(0)|Ti ·Tj |A(0)〉 = −〈A(0)|Ti ·Ti |A(0)〉 = −Cfi B . (2.60)

We stress that the sum over i can be carried out as in Eq.(2.60) only if there is no

kinematic dependence on parton i. Moreover, we have also used the relation∑
i,j 6=i
k,l 6=k

ln
(sij
µ2

)
ln
(skl
µ2

)
Ti ·Tj Tk ·Tl =

=
1

2

∑
i,j 6=i
k,l 6=k

ln
(sij
µ2

)
ln
(skl
µ2

){
Ti ·Tj,Tk ·Tl

}
. (2.61)

To treat the last contribution in Eq.(2.57), proportional to

2 Re
(
F (0)†Z(1)F (1) + F (1)†Z(1)F (0)

)
= 2 Re

[
F (0)†

(
Z(1) + Z(1)†

)
F (1)

]
, (2.62)
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it is useful to express the hard content of the formula above in terms of the full

amplitude A(1) as

F (1) = A(1) − Z(1)F (0) . (2.63)

This way, the contribution in Eq.(2.62) is equal to

2 Re
[
F (0)†

(
Z(1) + Z(1)†

)
A(1)

]
−F (0)†

(
Z(1) + Z(1)†

)2

F (0) =

=
( π
αs

)[
− 1

2ε2

(∑
i

Cfi

)
V +

1

ε

(∑
i

γ
(1)
i

)
V − 1

2ε

∑
i,j 6=i

ln
(sij
µ2

)
Vij

]
− 1

4ε4

(∑
i

Cfi

)2

B − 1

ε3

(∑
i

Cfi

)[1

2

∑
i,j 6=i

ln
(sij
µ2

)
Bij −

(∑
i

γ
(1)
i

)
B

]
− 1

ε2

[(∑
i

γ
(1)
i

)2

B −
(∑

i

γ
(1)
i

)∑
i,j 6=i

ln
(sij
µ2

)
Bij

+
1

8

∑
i,j 6=i
k,l 6=k

ln
(sij
µ2

)
ln
(skl
µ2

)
Bijkl

]
. (2.64)

In the first line of the r.h.s. we have introduced the colour-summed and the

colour-connected virtual matrix element, which are respectively defined as

V =
αs
π

2Re
[
A(0)
n

†A(1)
n

]
, Vij =

αs
π

2Re
[
A(0)†Ti ·Tj A(1)

]
. (2.65)

The explicit forms in terms of ε poles and Born matrix elements of the two objects

introduced in Eq.(2.65) are

V =
αs
π

[
H +

(
− 1

2ε2

∑
k

Cfk +
1

ε

∑
k

γ
(1)
k

)
B − 1

4ε

∑
k,l 6=k

ln
(skl
µ2

)
Bij

]
(2.66)

Vij =
αs
π

[
Hij +

(
− 1

2ε2

∑
k

Cfk +
1

ε

∑
k

γ
(1)
k

)
Bij −

1

4ε

∑
k,l 6=k

ln
(skl
µ2

)
Bijkl

]
.
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Collecting all the contributions computed above, it is easy to obtain the full ε

structure of a generic double-virtual amplitude

V V
∣∣∣
ε

=
(αs
π

)2
{
− 1

8ε4

(∑
i

Cfi

)2

B +
1

4ε3

(∑
i

Cfi

)(3

8
b0 + 2

∑
i

γ
(1)
i

)
B

+
1

4ε2

[(
− b0

2

∑
i

γ
(1)
i −

γ̂
(2)
K

4

∑
i

Cfi − 2
(∑

i

γ
(1)
i

)2)
B

+
b0

4

∑
i,j 6=i

ln
(sij
µ2

)
Bij +

1

4

∑
i,j 6=i
k,l 6=k

ln
(sij
µ2

)
ln
(skl
µ2

)
Bijkl

]

+
1

2ε

[∑
i

γ
(2)
i B − γ̂

(2)
K

4

∑
i,j 6=i

ln
(sij
µ2

)
Bij −

∑
i,j 6=i

ln
(sij
µ2

)
Hij

]}
+
(αs
π

){
− 1

ε2
1

2

(∑
i

Cfi

)
+

1

ε

(∑
i

γ
(1)
i

)}
V (2.67)

Some remarks: the pole content of the double virtual can be written in an ex-

tremely simple and compact form. While the quadruple and the triple pole mani-

fest a residue that is completely determined by a universal factor and a Born mat-

rix element, the double and the single pole depend on a finite-process-dependent

quantity H. In particular, in the last line of Eq.(2.67) the finite contribution

to the virtual matrix element multiplies a double and a single pole. The colour

structure is also quite trivial, since it involves at most double colour-connected

matrices, without any tripole-colour connection. This is indeed in agreement with

the colour content of Z, as anticipated.

2.2 Cancellation of infrared singularities: the KLN the-

orem

In the previous chapters we have discussed how infrared singularities arise from

virtual corrections, as a direct consequence of low-energy and collinear configura-

tions, stemming from virtual radiations. To treat such divergences in dimensional

regularisation a sophisticated machinery has been introduced, based on the factor-

isation properties of gauge amplitudes. As a remarkable achievement, the infrared

virtual singularities have been modelled in terms of universal functions. In this

section we review how such divergences arise also from real radiation, and in which

way they combine with the analogous virtual pole structure.

It is a well-known fact that also real partons may induce singular regimes that are

not due to the real-radiative matrix element itself, but to unresolved corners of

the real-radiation phase spaces. In particular, the radiative phase space includes
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(as for the virtual singularities) the configurations where the emitted parton is

soft and/or collinear to an other particle. Under specific assumptions, the di-

vergences coming from the virtual correction cancel against those stemming from

the real-radiation at the cross-section level, order-by-order in perturbation the-

ory. This claim coincides precisely with the main statement of the KLN theorem

[19–22], which was proven back in the ’60, by exploiting simple quantum mechan-

ics arguments and, independently, with an elegant diagrammatic approach. Before

discussing the definition of IR safety and providing an example of the IR singular-

ities cancellation for a simple observable, we find useful to review the main steps

of the theorem, according to the proof presented in [21].

Given a Hilbert space H with N particles endowed with an orthonormal and com-

plete basis of states |n〉, a generic state belonging to H, and a generic operator

can be respectively expressed as

|a〉 =
∑
n

an |n〉 , Amn = 〈m|A |n〉 , A∗mn =
(
〈m|A |n〉

)∗
= 〈m|A† |n〉 .(2.68)

In the Schrödinger picture, the time dependence of a generic state is determined

by the time-evolution unitary operator U(t2, t1)

|a(t)〉 = e−iHt |a〉 ≡ U(t, 0) |a〉 , (2.69)

where the Hamiltonian H is split into a free component H0 and an interaction

term H1 as H = H0 + gH1. At the boundaries of the time range, the system is

assumed to be asymptotically free and the corresponding state are given by

lim
t→∓∞

|a(t)〉 = |ain/out
as (t)〉 ≡ U0(t, 0) |ain/out

as 〉 . (2.70)

We can then define the incoming/outgoing time-operator

U± ≡ lim
t→∓∞

U0(t, 0)U †(t, 0) , (2.71)

such that the asymptotic states can be related to the ones living far away from

the time boundaries according to

|a〉 = U+ |ain
as〉 , |b〉 = U− |bout

as 〉 . (2.72)

The probability density for the system to pass from the state |b〉 to the state |a〉
is encoded by the S matrix∣∣〈b|a〉∣∣2 =

∣∣ 〈bout
as |S |ain

as〉
∣∣2 =

∑
i,j

[(
U−
)∗
ib

(
U−
)
jb

] [(
U+

)
ia

(
U+

)∗
ja

]
. (2.73)
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Assuming the theory to depend on a parameter µ that regulates the degeneracy of

the energy spectrum, we define D(Ea) to be the set of states that share the same

energy level. In a generic gauge theory, µ may represent the fermion mass: as µ

tends to zero, the process exposes singular regimes corresponding to the emission

of soft and/or collinear partons. Such configurations are indeed degenerate states.

The Hamiltonian of the system can be diagonalised by means of the U ≡ U±

operator, in terms of the diagonal matrices H0 and E

U †
(
H0 + gH1

)
U = E ⇐⇒

[
U,E

]
=
(
gH1 + ∆

)
U , (2.74)

where we have exploited the unitary nature of U , and introduced ∆ that represents

the negative energy shift induced by the interaction component. By expressing ∆

and U in powers of the coupling, it is straightforward to derive the lowest orders

contributions to U . In particular, setting

∆ =
∞∑
n=1

gn ∆(n) , U =
∞∑
n=0

gn U (n) , (2.75)

the expression in Eq.(2.74) can be solved with respect to U at the first and second

order in g, giving

(
U±
)
ij

= δij + g
1− δij

Ej − Ei ± iα
(
H1

)
ij

+O(g2) , (2.76)

with α being an infinitesimal positive quantity, and Ei the i-th element of the

diagonal of the matrix E. In this form, it is evident that the expression in Eq.(2.73)

exposes divergences if i, j, a (or b) belong to the same degenerate set. The KLN

theorem then states that such singularities cancel upon summing over all the

degenerate configurations. In other words, the quantity

∑
a∈D(Ea)

(
U±
)
ia

(
U±
)∗
ja
≡
[
T
(
Ea
)]
ij

=
∞∑
n=0

gn
[
T (n)

(
Ea
)]
ij

(2.77)

exists order-by-order in perturbation theory. The proof of this statement is trivial

for the lowest perturbative orders, and generalisable to higher orders by exploiting

an elegant induction procedure. For n = 1 the T operator reads

[
T (1)

(
Ea
)]
ij

=
∑

a∈D(Ea)

[
δia
(
1− δja

)
Ea − Ej ∓ iα

(
H1

)∗
ja

+
δja
(
1− δia

)
Ea − Ei ± iα

(
H1

)
ia

]
. (2.78)

At this point, three relevant cases arise naturally:

• i /∈ D
(
Ea) : the second contribution in Eq.(2.78) is finite independently of

whether j belongs to D
(
Ea) or not. The first term, that would be divergent
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if j ∈ D
(
Ea), is suppressed by δia.

• j /∈ D
(
Ea) : this case is analogous to the previous one, upon changing i↔ j.

• i, j ∈ D
(
Ea) : for i = j both terms are divergent, but also suppressed by the

δ functions in the numerators. In case i 6= j, the first contribution surviving

with a = i and the second one with a = j cancel exactly given the relation(
H1

)∗
ji

=
(
H1

)
ij

.

These considerations lead to the conclusion that T
(1)
ij exists ∀i, j. We then have

to prove that the theorem holds for n ≥ 2. For this purpose, one can proceed by

induction showing that

∃ lim
µ→0

∆(n) ∀n ≤ N =⇒ ∃ lim
µ→0

[
T (n)

(
Ea
)]
ij
∀n ≤ N + 1 , ∀ i, j .(2.79)

The claim above can be rephrased by assuming as hypothesis the convergence of

∆(n) up to n = N , the convergence of T
(n)
ij up to n ≤ M < N + 1, and then

showing that T
(n)
ij converges for n = M + 1. The idea is then to write the explicit

expression for T
(M+1)
ij in terms of T

(M)
ij , which is finite by hypothesis in the three

relevant cases considered below Eq.(2.78).

As an intermediated step, we rewrite the definition for T as

[
T (n)

(
Ea
)]
ij

=
n∑

m=0

∑
a∈D(Ea)

(
U (m)

)
ia

(
U (n−m)

)∗
ja
. (2.80)

If the state i lies outside the degenerate set of states D(Ea), the series expansion

for Uia in Eq.(2.76) can be easily generalised to an arbitrary perturbative order m

as

(
U (m)

)
ia

=
1

Ea − Ei

[∑
k

(
H1

)
ik

(
U (m−1)

)
ka

+
m∑
l=1

(
∆(l)

)
ii

(
U (m−l))

ia

]
, (2.81)

that, if plugged in Eq.(2.80), returns

[
T (M+1)

]
ij

=
1

Ea − Ei

[∑
k

(
H1

)
ik

[
T (M)

]
kj

+
M∑
l=1

(
∆(l)

)
ii

[
T (M+1−l)]

ij

]
. (2.82)

Since T
(M)
ij exists, as well as T

(M+1−l)
ij , for all i, j thanks to the working hypothesis,

then T
(M+1)
ij exists. If j /∈ D(Ea), but i may or may not belong to D(Ea), the

expression in Eq.(2.82) may be ill defined, and it turns out to be more convenient

to exchange i ↔ j in Eq. (2.80), considering the complex conjugate of the T
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operator. In particular

[
T (M+1)

(
Ea
)]∗
ji

=
M+1∑
m=0

∑
a∈D(Ea)

(
U (m)

)∗
ja

(
U (n−m)

)
ia

=
M+1∑
m′=0

∑
a∈D(Ea)

(
U (m′)

)
ia

(
U (n−m′))∗

ja

=
[
T (M+1)

(
Ea
)]
ij
, (2.83)

where, after the substitution i↔ j, we are considering the case i /∈ D(Ea). Such a

case has already been analysed, therefore we conclude that
[
T (M+1)

(
Ea
)]
ij

exists

for j /∈ D(Ea). The only remaining case stems i, j ∈ D(Ea) and it can be tackled

by recasting T (M+1) in the following form

[
T (M+1)

(
Ea
)]
ij

=
M+1∑
m=0

∑
a∈D(Ea)

(
U (m)

)
ia

(
U (M+1−m)

)∗
ja

=
M+1∑
m=0

[∑
c

(. . . )−
∑

b/∈D(Ea)

(. . . )

]
. (2.84)

In the equation above, the first term in the square bracket gives a vanishing con-

tribution, since it is equal to
(
UU †

)(M+1)

ij
and the unitarity condition for U implies(

UU †
)(n)

= 0 for n ≥ 1. This way

[
T (M+1)

(
Ea
)]
ij

= −
M+1∑
m=0

∑
b/∈D(Ea)

(
U (m)

)
ib

(
U (M+1−m)

)∗
jb
, (2.85)

given that i, j ∈ D(Ea) therefore i, j 6= b and T
(M+1)
ij converges. This concludes

the proof of the KLN theorem. From the computation above, the cure of the

IR problem seems then to be summing over degenerate configurations. From an

experimental point of view, this means to sum over indistinguishable states: since

detectors have a finite resolution in energy and angle, there is no chance to detect

an arbitrary low energy particle, or to distinguish between a particle carrying mo-

mentum q and two collinear partons with momenta z q and (1 − z) q, z ∈ [0, 1].

We emphasise that this implies to sum both on initial states, as well as final states

with the same total energy. Only few exceptions lead to a simplified application

of such a rule: in abelian theories with mf 6= 0, as massive QED, a sum over

degenerate final states only suffices [19]. In PQCD the KLN theorem holds, but

it is not implemented in practice when summing over initial state is unavoidable.

Hadrons are indeed complex objects that we know to be ill-approximated by a per-

turbative expansion. A non-perturbative implementation of the theorem would be
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Figure 2.2: NLO contributions to e+e− → qq̄. IR singularities arise from the
collinear and the soft configurations of the red gluon.

then necessary to effectively exploit it and provide relevant theoretical predictions.

Before discussing one of the main strategies to overcome such bottleneck (infrared

safety), we focus on final state QCD processes, as for example e+e− → hadrons. In

this case, final state singularities have to cancel by their own, since the initial state

does not participate in QCD interactions. At NLO, for example, such cancellation

has to occur between the contributions deriving from the diagrams in Fig.(2.2).

To explicitly verify this statement, we consider the decay width of a photon of

momentum q into a q(p)q̄(p′) pair, the contribution of the radiative corrections

(the emission of an extra gluon of momentum k from each of the fermionic line)

at amplitude level reads

Mµ
rad = ū(p)(−igsta) ε/(k) i

p/+ k/

(p+ k)2
(−ieγµ) v(p′)

+ū(p)(−ieγµ) i
p′/− k/

(p′ − k)2
(−igsta) ε/(k) v(p′) . (2.86)

In the soft approximation, i.e. assuming k � p, p′, it is possible to neglect power

corrections in k in the denominators and keep only the external momenta in the

numerators. This way a natural factorised structure arises from Eq.(2.86)

Mµ
rad

∣∣∣
soft

= ū(p) (−ieγµ) v(p′) εν(k) gs t
a

[
pν
p · k −

p′ν
p′ · k

]
, (2.87)

where the multiplicative factor in front of the square brackets is equal to the Born-

level matrix element, M0 = ū(p) (−ieγµ) v(p′) εν(k). The squared amplitude, upon

summing over polarisation and colour, gives(
Mµ

rad

∣∣∣
soft

)2

=
∣∣M0

∣∣2 g2
s CF

2p · p′
p · k p′ · k . (2.88)
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The evaluation of the total cross section requires to integrate over the 3-body

phase space

σsoft
rad = σ0 g

2
s CF

∫
d3k

2k0 (2π)3

2p · p′
p · k p′ · k

= σ0CF
2αs
π

∫ 1

−1

d cos θ

∫ Emax

0

dk0

k0

1

(1− cos θ)(1 + cos θ)
, (2.89)

where σ0 is the soft squared Born-matrix element, integrated over the qq̄ phase

space, and p, p′ are assumed to be back-to-back. As expected, the radiative cross

section exposes singularities in the limits k0 → 0 and θ → 0, π, corresponding to

the soft and the collinear configuration respectively. By exploiting dimensional

regularisation and moving from four to d = 4 − 2ε dimensions, the integral in

Eq.(2.89) becomes

σsoft
rad = σ0

CF αs

2d−5 πd/2−1 Γ(d−2
2

)

∫ Emax

0

dk0

(k0)5−d

∫ π

0

dθ
(sin θ)d−3

(1− cos θ)(1 + cos θ)
, (2.90)

so that the IR singularities of the radiative cross section show up as poles in the

regulator ε, yielding

σrad = σ0CF
αS

2π

[
2

ε2
+

3

ε
+

19

2
− π2

]
. (2.91)

Such IR sensitivity is however compensated by the virtual corrections. As already

discussed, virtual diagrams are affected by singular soft and collinear configura-

tions, which can be regulated by performing the loop integral in d dimensions.

The corresponding result reads

σvirt = σ0CF
αS

2π

[
− 2

ε2
− 3

ε
− 8 + π2

]
. (2.92)

As announced, the complete result up to NLO is then finite and equals

σ(e+e− → qq̄) = σrad + σvirt = 3σ0

[
1 + CF

3

4

αs
π

+ . . .
]
. (2.93)

In agreement with the KLN theorem, the IR divergences have been eliminated

once all the singular configurations have been correctly taken into account.

An other way to present the IR-safety of inclusive observables, as the one just

described, is based on unitarity. The natural notation to introduced such concepts

is by means of cut diagrams (see for instance the discussion in Ref. [6]). The

statement we are interested in is the following: the imaginary part of a scattering

diagram G, describing the transition probability between two different sets of fixed

momenta {pi} and {kj}, is related to the sum of all the corresponding cut diagrams.
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Figure 2.3: Graphical representation of the optical theorem.

Figure 2.4: Unitarity for the process e+e− → qq̄. The symbol ⊗ understands
the integration over the phase space of all the particles crossing the cut.

With cut diagram GC we mean the amplitude of the process (p1 . . . pn)→ (l1 . . . lm)

times the amplitude for the scattering (l1 . . . lm)→ (k1 . . . kn′), integrated over the

phase space of the intermediate states crossing the cut C. In formulas, we can

then write ∑
allC

GC

(
pi; kj

)
= 2 Im

(
− i G

(
pi; kj

))
, (2.94)

whose graphical representation is depicted in Fig.2.3. As a consequence of Eq.(2.94),

the total cross section for e+e− annihilation is proportional to the imaginary part

of the correction to the photon propagator. In Fig.2.4 this claim is graphically

presented for the NLO correction to the annihilation process. It is then possible

to write

σ
(tot)

e+e−(q2) =
e2

q2
Im Π(q2) , (2.95)

where the function Π(q2) can be defined as the vacuum expectation value of the

time-ordered product of two electroweak currents Jµ according to

Π(q2)
(
qµqν − q2 gµν

)
= i

∫
d4x eiq·x 〈0|T Jµ(x)Jν(0) |0〉 . (2.96)
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Figure 2.5: Schematic representation of the process e+e− → 2jets.

To conclude that the total cross is IR finite, it is sufficient to consider that Π(q2) is

related to a forward scattering originating from an off-shell photon. Such a photon

cannot decay into on-shell particles that propagate freely and then annihilate to

return a new photon with the same invariant mass. As a matter of fact, the set

of particles originating from a point will spread in different directions and they

cannot merge again by physical propagation.

The explicit calculations has shown that for the IR cancellation to occur it is

sufficient to consider quantities that are inclusive enough. As an example, we

compute the total cross section for the process e+e− → γ∗ → jets. The first

necessary step is the definition of jet: many different proposals have been developed

in the past years, and various numerical algorithms have also been implemented.

The simplest one is due to Sterman and Weinberg [115] and it is schematically

presented for a two-jet configuration in Fig.2.5. The main idea is to consider

as contributing configurations only events that manifest two opposite cones of

angular opening δ, capable of containing all the energy of the event, except for an

ε fraction. In the specific case of two-jet cross section, the cones are back-to-back

along a fixed axis, as presented in Fig.2.5. If one defines with ei the energy flowing

into the i-th cone, and with E the total energy, the definition of a two-jet event

can be summarised in the relation

e1 + e2

E
≥ 1− ε . (2.97)

At order αs the only events that contribute to the 2-jet production are those

featuring an extra soft gluon, emitted at any direction, or a collinear one, with

arbitrary high energy. All the other configurations would give rise to a 3-jet

production contributions. The different contributions are presented in Fig.2.6 and
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Figure 2.6: (a) Born-level contribution, (b) virtual correction, (c) soft emission,
(d) hard-collinear emission.

they return

(a) σborn = σ0 ,

(b) σvirt = σ0CF
2αs
π

∫ E

0

dk0

k0

∫ π

0

sin θ dθ

cos2 θ − 1
,

(c) σreal, soft = σ0CF
2αs
π

∫ εE

0

dk0

k0

∫ π

0

sin θ dθ

cos2 θ − 1
,

(d) σreal, hc = σ0CF
2αs
π

∫ E

εE

dk0

k0

[ ∫ δ

0

+

∫ π

π−δ

]
sin θ dθ

cos2 θ − 1
. (2.98)

The sum of all the terms above gives

σ2jet = σ0

[
1− CF

2αs
π

∫ E

εE

dk0

k0

∫ π−δ

δ

sin θ dθ

cos2 θ − 1
+O(α2

s)

]
= σ0

[
1− CF

4αs
π

log ε log δ +O(α2
s)

]
, (2.99)

which is clearly finite. A further generalisation includes the possibility to design

IR-safe observables starting from weighted cross sections. The final states of the

processes in exam are indeed weighted by an event-shape functions Sn(p1 . . . pn),

which may or may not enhance the jet-like configurations. In full generality, a

weighted cross section looks like

σS =
∑
n

∫
dτn

dσ

dτn
Sn(p1 . . . pn) , (2.100)

where dτn denotes the n-particle final state phase space. The condition for Eq.(2.100)

to be infrared-safe is the insensitivity of the weight function to the long-distance

physics. In particular, Sn cannot distinguish between a parton propagating freely
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and a parton emitting radiation at low energy or along the same direction. In

formulas this can be rephrased as

lim
pµj→0

Sn+1(p1, . . . , pj, . . . ) = Sn(p1, . . . , pj−1, pj+1, . . . ) ,

lim
pµk→αp

µ
j

Sn+1(p1, . . . , pj, . . . , pk, . . . ) = Sn(p1, . . . , pj + pk, . . . ) . (2.101)

Several examples of event-shapes are exploited for their phenomenological relev-

ance. Among them the trust [116] and the jet mass, defined respectively as

Tm = maxn̂

∑m
i=1 |pi · n̂|∑m
i=1 |pi|

, ρ(H)
m =

1

q2

(∑
pi∈H

pi

)2

, (2.102)

where H is one of two hemisphere identified by the thrust axis.

As anticipated, a large variety of observables are protected by the KLN theorem

and insensitive to the long-distance physics effects. It is also clear from the discus-

sion above that not all the relevant observables are IR-safe and, more importantly,

that also IR-safe quantities may be quite complicated to treat. Before introducing

the main techniques implemented to automate the treatment of IR-safe quant-

ities, we summarise the crucial steps to obtain reliable predictions for hadronic

observables:

• we require a hard scale Q2 to rule the partonic process, such that a per-

turbative approach is allowed, i.e. αs(Q
2) � 1. We compute partonic cross

sections σ̂, regulating their IR behaviour through the preferred regularisation

technique (we will always make use of dimensional regularisation setting the

regulator ε to be ε = 2− d/2 < 0). This way

σ̂ = σ̂

(
Q2

µ2
, pi · pj, αs(µ2);

m2
i (µ

2)

µ2
, ε

)
. (2.103)

• We select quantities that are finite as long as ε,mi → 0

σ̂ = σ̂

(
Q2

µ2
, pi · pj, αs(µ2); 0, 0

)
+O

((m2
i

µ2

)p
, ε

)
. (2.104)

• We interpret these IR/C safe σ̂ as perturbative estimates of the corresponding

hadronic cross sections, valid up to O
((

Λ2
QCD/µ

2
)p)

.
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2.3 Slicing and Subtracting

As discussed in the previous sections, infrared singularities arise from specific kin-

ematic configurations, as the exchange of soft or collinear massless partons. A huge

effort has been invested in understanding the IR problem in perturbation theory,

and numerous results are now available [5–14,92]. The long-distance sensitivity of

a generic massless gauge amplitude is ruled by a small set of universal quantities,

that are functions of soft and collinear anomalous dimensions [15, 16]. Several

important studies have also been focused on the real-radiation matrix elements:

under singular limits such elements quasi-completely factorise (in the sense that we

will explain) into universal kernels and lower-point amplitudes [25,27,28]. All the

relevant kernels needed for NNLO calculations are known [24,26,27,29], with par-

tial information available at N3LO as well [30–34]. For a subset of observables, the

IR-safe observables, infrared singularities cancel when combining virtual and real

corrections, as a consequence of the KLN theorem [19–22]. In contrast with the

apparent simplicity of this cancellation mechanism, the concrete implementation

of accurate predictions for an arbitrary n-parton scattering is significantly more

involved. In particular, a straightforward application of the theorem is only feas-

ible for low-multiplicity final states and for highly inclusive cross sections, where

the structure of typical observables are sufficiently simple. For higher multiplicit-

ies and for typical collider observables, the real radiation is subject to intricate

phase-space constraints, possibly involving non-trivial recursive jet algorithms. In

these cases the phase-space integration must be performed numerically, and the

cancellation of soft and collinear divergences has to occur before such integration.

Two main strategies have been developed to face the problem of cancelling the

IR divergences: the slicing schemes and the subtraction schemes. The differences

between the two approaches can be explained by a simple example [117]. Suppose

we have to compute the integral

I = lim
ε→0

[ ∫ 1

0

dx

x
xε F (x)− 1

ε
F (0)

]
, (2.105)

where F (x) is a complicated function that prevents any analytic evaluation of

the first integral. To have an idea of how this example can be translated into a

physically relevant computation, the variable x can be thought of as the angle

between two partons, or the energy of a gluon. The integral in Eq.(2.105) is

singular in x = 0 and results in a 1/ε pole that cancels against the second term

in square brackets, which represents the virtual correction. The problem is to

numerically evaluate I, without relaying on the analytic estimation of the integral

over x.

The slicing approach prescribes to slice the integration domain into two regions,



Chapter 2. Factorisation Chapter 2 Factorisation

delimited by the small parameter δ � 1. This way, Eq.(2.105) is recast as

I ∼ lim
ε→0

[
F (0)

∫ δ

0

dx

x
xε +

∫ 1

δ

dx

x
xε F (x)− 1

ε
F (0)

]
= F (0) log δ +

∫ 1

δ

dx

x
xε F (x) . (2.106)

The second line of the equation above is thus free of singularities, and therefore

suitable for numerical evaluation. Computing IR-safe observables with a slicing

method proceeds as follows: i) singular regions of phase space are isolated with

a small resolution scale, ii) the real radiation matrix elements are approximated

by the relevant infrared kernels below the resolution scale, iii) singular kernels are

integrated in d dimensions, to explicitly cancel the infrared poles of virtual origin.

This procedure yields to a correct result up to powers of the slicing parameter,

which then has to be taken as small as possible, compatibly with numerical sta-

bility. This method was first exploited by Baer, Ohnemus and Owens [118] in the

context of photoproduction of jets, by Aversa et al. [119] for hadroproduction of

jets, and then applied by Giele et al. [37, 38, 120] to obtain the first fully differ-

ential results for jet cross sections.

In order to avoid this parameter dependence, subtraction algorithms were later

developed. Starting from Eq.(2.105), the method suggests to add and subtract a

term capable to reproduce the singularities of the integral, such that

I = lim
ε→0

[ ∫ 1

0

dx

x
xε
(
F (x)− F (0)

)
+ F (0)

∫ 1

0

dx

x
xε − 1

ε
F (0)

]
(2.107)

depends only on integrals that can be evaluated numerically. In practical imple-

mentations, one introduces local infrared counterterms containing the leading sin-

gular behaviour of the radiative amplitudes in all relevant regions of phase space.

One then subtracts the local counterterms from the radiative amplitude, leaving

behind an integrable remainder. The counterterm has to be added back and com-

bined with the virtual correction, after computing its integral over the radiation

phase space. The resulting finite cross section can safely be integrated numeric-

ally, and the whole procedure is exact, and does not involve any approximation.

A method of this kind was exploited by Ellis [121], applied to electron-positron

annihilation by Kunstz and Nason [122], and then to heavy quark production in

hadron collisions by Mangano, Nason and Ridolfi [123]. Currently, subtractions

methods are implemented in efficient generators [44–52], and NLO is a standard

level of accuracy. The general strategy sketched in Eq.(2.107) can be implemented

in different ways, according to the strategy adopted to define the counterterm and

to its characteristics. Among the various subtraction methods developed at NLO,
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we just want to mention the Catani-Seymour scheme [2] and the Frixione-Kunszt-

Signer method [39].

Beyond NLO, the IR subtraction problem is not solve in full generality, and several

different subtraction and slicing methods are currently under construction [53–77].

It is clear that in the near future it will become phenomenologically relevant, and

theoretically interesting, to extend the application of NNLO methods to more com-

plicated processes, and to devise subtraction algorithms at higher orders. Such

extensions will require a high degree of optimisation of existing procedures, and

possibly the implementation of new methods and theoretical ideas.

2.4 The real-radiation factorisation

The implementation of any subtraction scheme relies on the factorisation proper-

ties of the real-matrix elements [99,124,125]. To recall the main features we refer

to Ref. [27] and the references therein. We start by introducing a generic scattering

process involving massless final-state QCD partons p1, p2, . . . . Non-QCD partons

carrying a total momentum Q are always understood. To respectively express

colour, spin and flavour degrees of freedom we introduce different sets of indices

{c1, c2, . . . }, {s1, s2, . . . } and {a1, a2, . . . }. Given a basis in the colour+spin space

{|c1, c2, . . .〉 ⊗ |s1, s2, . . .〉}, the tree-level matrix element and its corresponding

squared amplitude with spin and colour indices summed read

A c1,c2,...;s1,s2,...
a1,a2,...

(p1, p2, . . . ) ≡
(
〈c1, c2, . . .| ⊗ 〈c1, c2, . . .|

)
|A a1,a2,...(p1, p2, . . . )〉 ,∣∣A a1,a2,...(p1, p2, . . . )

∣∣2 = 〈A a1,a2,...(p1, p2, . . . )|A a1,a2,...(p1, p2, . . . )〉 . (2.108)

The colour content of the amplitude is treated by introducing the colour operators

in Eqs.(2.4)-(2.6), in agreement with colour conservation in Eq.(2.7).

Let us then consider a tree-level matrix element A g,a1,...,an(ki, p1, . . . , pn), where

the outgoing gluon g, carrying momentum ki, colour c and spin µ, becomes soft.

The leading singular contribution to such matrix element fulfils the factorisation

formula

〈c;µ |A g,a1,...,an(ki, p1, . . . , pn)〉 ' gs µ
εJ c;µ(ki) |A a1,...,an(p1, . . . , pn)〉 , (2.109)

where the factor J represents the eikonal current we have already introduced in

the context of Wilson lines and soft function. Its explicit expression including the

colour factors is

Jµ(ki) =
n∑
c=1

Tc
pµc

pc · ki
→ kµi Jµ(ki) =

n∑
c=1

Tc = 0 . (2.110)
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To simplify the calculation, it is useful to choose a physical gauge (for instance

the axial gauge n · A = 0, where A is a gauge field and n is a light-like auxiliary

vector, already introduced to parametrise the Wilson line direction). At squared-

amplitude level, two eikonal currents have to be contracted with the real gluon

polarisation sum tensor dµν(ki) = (−gµν+n(µk
ν)
i /n·ki). By exploiting current con-

servation, expressed by Eq.(2.110), together with colour conservation in Eq.(2.7),

one can easily show that

|A g,a1,...,an(ki, p1, . . . , pn)|2 '
kµi→0

−8παs µ
2ε

n∑
c,d=1

c,d 6=i, c 6=d

I(i)
cd |Acda1,...,an

(p1, . . . , pn)|2 .(2.111)

Here the eikonal function is equal to

I(i)
cd ≡ δfig

scd
sic sid

, (2.112)

and the squared amplitude matrix on the r.h.s. in Eq.(2.111) is the colour-

connected tree amplitude we have defined in a shorthand notation in Eq.(2.58).

The delta function in Eq.(2.112) forces parton i to be a gluon, while the flavour of

all the other partons is unconstrained. If one wants to keep all the indices explicit,

such amplitude reads

|Acda1,...,an
|2 ≡ 〈A a1,...,an|Tc ·Td |A a1,...,an〉 (2.113)

=
[
Ac1,..., bc,..., bd,..., cna1,...,an

]∗
TAbcdcT

A
bddd
Ac1,..., dc,... dd,..., cna1,...,an

,

where the sum over the spin indices is understood.

Similar factorisation formulas are also valid for multiple soft particle emissions

according to the flavour of the emitted partons. For convenience, we report here

the main eikonal currents, and we refer the reader to Sec.(3.1)-(3.3) of Ref. [27] for

further details. The simplest configuration is the emission of a soft qq̄-pair. From

a diagrammatic point of view, such configuration arise from a single graph, where

one gluon splits into a fermion-anti fermion pair. The corresponding factorised

expression of the amplitude is

|A q,q̄,a1,...,an(ki, kj, p1, . . . , pn)|2
kµj→0

'
kµi→0

2 (4παSµ
2ε)2 TR ×

×
n∑

c,d=1
c,d6=i, c 6=d

I(ij)
cd |Acda1,...,an

(p1, . . . , pn)|2 , (2.114)

with

I(ij)
cd = (δfiq δfj q̄ + δfiq̄ δfjq)

sci sdj + sdi scj − scd sij
(sij)2 (sci + scj) (sdi + sdj)

. (2.115)
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The combination of delta functions in round brackets sets parton i to be a quark

and parton j to be an anti-quark, and viceversa. The singular configuration we

have just described represents an example of democratic IR limit, since the mo-

menta ki and kj vanish at the same rate, without any scaling hierarchy. For a

double gluon emission, two different structures arise: a factorised double copy

of a single eikonal current, and a pure double-unresolved current. The squared

amplitude fulfils the relation

|A g,g,a1,...,an(ki, kj, p1, . . . , pn)|2
kµj→0

'
kµi→0

2 (4παSµ
2ε)2 × (2.116)

×
[

n∑
c,d,e,f=1
c,d,e,f 6=i,j
c 6=d;e6=f

I(i)
cd I

(j)
ef |Acdefa1,...,an

(p1, . . . , pn)|2

+
n∑

c,d=1
c,d6=i,j; c 6=d

I(ij)
cd |Acda1,...,an

(p1, . . . , pn)|2
]
,

where the first term in square brackets is the factorised piece, while the second

one is proportional to the double-colour-connected matrix element

|Acdefa1,...,an
|2 ≡ 〈A a1,...,an| {Ti ·Tj,Te ·Tf} |A a1,...,an〉 , (2.117)

and to the double eikonal current, which equals

I
(ij)
cd = −2CA δfig δfjg

{
1− ε
(sij)2

sci sdj + scj sdi
(sci + scj) (sdi + sdj)

− (scd)
2

sci sdj scj sdi

[
1− sci sdj + scj sdi

(sci + scj) (2sdi + sdj)

]
+
scd
sij

[
1

sci sdj
+

1

sdi scj

− 2

(sci + scj) (sdi + sdj)

(
1 +

(sci sdj + scj sdi)
2

4 sci sdj scj sdi

)]}
. (2.118)

Let us stress that the soft current in the case of a q(ki) q̄(kj) pair cannot give rise

to any strong-ordered configuration: the limit ki � kj (or kj � ki) returns indeed

a subleading contribution. In contrast, the gluon double current has a hierarchical

limit, which manifests the same singular scaling as the full current. The strong-

ordered current can be easily deduced by taking the leading therm in the ki (kj)

expansion of I
(ij)
cd

I(ij) s.o.
cd = −2CA δfig δfjg I(j)

cd

[
I(i)
cj + I(i)

dj − I
(i)
cd

]
. (2.119)

It is then easy to notice that the soft factorisation is quasi complete in the sense

that eikonal kernels and Born-like matrix elements are not entirely independent
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of each other and colour correlations remain.

2.4.1 Collinear limit

At NLO, singular configurations include also collinear limits, which obey a fac-

torisation formula analogous to the one introduced for the soft limit, with colour

connections replaced by spin correlations. For consistency, we adopt dimensional

regularisation and consider two helicity state for massless quarks (s = ±1), and

d − 2 helicity states for gluons (µ = 1, . . . , d). Given the consequent non-trivial

spin structure, we define a cross-section-level matrix element that is summed over

all the spin indices, except for parton a1

T s1s′1a1,...,an
=

∑
spins6=s1,s′1

A c1,...,cn; s1,...,sn
a1,...,an

(p1, . . . , pn)
[
A c1,...,cn; s′1,...,sn
a1,...,an

(p1, . . . , pn)
]†
. (2.120)

To formally define the collinear limit for two partons of flavour ai and aj, and

momenta pi and pj, we identify a light-like parton carrying momentum pµ, which

denotes the collinear direction, and an auxiliary light-like vector nµ. How the

collinear direction is approached is specified by the transverse vector kµ⊥, that is by

definition orthogonal to both the auxiliary vector and the collinear direction. Each

of the two collinear partons carry a collinear energy fraction za = sar/(sir + sjr)

of the parent particle, with a = i, j, such that zi + zj = 1, hence zi ≡ z and

zj = 1 − z. The resulting parametrisation of the two collinear momenta, named

Sudakov parametrisation, reads

pi = z pµ + kµ⊥ −
k2
⊥
z

nµ

2 p · n , pj = (1− z) pµ − k⊥ −
k2
⊥

1− z
nµ

2 p · n ,

sij ≡ 2pi · pj = − k2
⊥

z(1− z)
. (2.121)

The collinear limit is approached as long as k⊥ → 0, and the leading behaviour of

the matrix element is encoded by the formula

|A a1,...,an(p1, . . . , pn)|2 '
kµ⊥→0

8παSµ
2ε

sij
T ss′a,a1,...,an

(p, p1, . . . , pn) P̂ ss′

aiaj
(z, k⊥; ε) ,(2.122)

where we have introduced a shorthand notation for the spin-polarisation tensor

T ss
′
, that is actually given by Eq.(2.120), where flavours and the momenta corres-

ponding to pi and pj have been eliminated, and a single parton of flavour a and

momentum p is inserted. To determine colour and flavour of the mother parton it

is sufficient to apply the following prescription: anything+gluon = anything, and

quark+antiquark = gluon. The kernel P̂ ss′
aiaj

is the d-dimensional Altarelli-Parisi
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(AP) splitting function [125], which represents a spin operator acting on the spin

indices s, s′ of the spin-polarisation tensor. Analogously to the soft case, collin-

ear factorisation is not properly complete, meaning that the lower multiplicity

tree matrix element keeps track of the (spin) degrees of freedom of the splitting

particles, and cannot be simply factorised on the right-hand side of Eq.(2.122).

The explicit expression of the NLO collinear kernels is

P̂ ss′

qg (z, k⊥; ε) = δss′ CF

[
1 + z2

1− z − ε(1− z)

]
, (2.123)

P̂ ss′

gq (z, k⊥; ε) = δss′ CF

[
1 + (1− z)2

z
− εz

]
P̂ µν
qq̄ (z, k⊥; ε) = TR

[
− gµν + 4z(1− z)

kµ⊥k
µ
⊥

k2
⊥

]
,

P̂ µν
gg (z, k⊥; ε) = 2CA

[
− gµν

( z

1− z +
1− z
z

)
− 2(1− ε)z(1− z)

kµ⊥k
µ
⊥

k2
⊥

]
.

Notice that all the kernels are symmetric under the exchange of a quark with

and anti-quark, i.e. PXq = PXq̄. From Eq.(2.123) it is evident that the spin

sensitivity of the kernels, and, consequently, the one of the spin-polarisation tensor,

is trivial in the case of a parent fermion, while gluon splittings preserve a non-

trivial azimuthal dependence.

To obtain the spin-averaged (over the polarisations of the parent parton a) splitting

functions, one only needs to contract the spin-dependent AP kernels with the

factors 1/2 δss′ or dµν(p)/(d − 2) for a parent quark or gluon respectively. The

averaged splittings are

〈P̂gq(z; ε)〉 = CF

[
1 + z2

1− z − ε(1− z)

]
, 〈P̂qg(z; ε)〉 = CF

[
1 + (1− z)2

z
− εz

]
,

〈P̂qq̄(z; ε)〉 = TR

[
1− 2z(1− z)

1− ε

]
,

〈P̂gg(z; ε)〉 = 2CA

[
z

1− z +
1− z
z

+ z(1− z)

]
. (2.124)

The investigation of higher orders in perturbation theory is a challenging task and

requires the evaluation of multiple collinear limits, and the extraction of the corres-

ponding kernels. At O(α2
S) this procedure has been completed in the ’90 [24, 25]

and triple unresolved kernels are now a well known tool. Details on derivation

and explicit expressions of triple splitting kernels can be found for instance in

Sec.(2.2),(2.4) in Ref. [27]. On top of the triple collinear limits, two other con-

figurations contribute at NNLO: the double-independent collinear limit, namely

when two independent pairs of partons become collinear, and the strongly-ordered

limit, including the cases where three partons are collinear and two of them are
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more collimated than the others. These extra configurations are fundamental in

the context of local subtraction methods, since they are necessary ingredient to

define a local counterterm, able to ensure the finiteness of the double-real matrix

element. In particular, we have to take special care in handling strong ordered

limits, which represents the overlapping between double and single unresolved

configurations, as we will explain in the next sections.

2.4.2 Soft-collinear limit

The soft and the collinear unresolved configurations have a non-null intersection.

In the context of virtual factorisation, such overlapping has been treated by taking

the ratio of the jet function (encoding the collinear and the soft-collinear singular-

ities) and the eikonal function, which corresponds to the soft limit of the former.

In an equivalent fashion, one can also decide to subtract from the soft function

(featuring soft and soft-collinear singularities) its collinear limit, obtaining the

pure soft-wide angle contributions. The double counting of the soft-collinear di-

vergences may affect also real-radiation, therefore we find useful to briefly discuss

the universal structure of the mixed soft-collinear singularities at NLO and NNLO.

At NLO, the soft limit of the spin-dependent AP functions can be performed eas-

ily by recalling the definition of the energy fraction zi = z in terms of Lorentz

invariants, and then selecting the dominant terms for kµi → 0,

lim
kµi→0

P̂ ss′

qg (z, k⊥; ε) = 0 = lim
kµi→0

P̂ µν
qq̄ (z, k⊥; ε) ,

lim
kµi→0

P̂ ss′

gq (z, k⊥; ε) = δss′ 2CF
sjr
sir

,

lim
kµi→0

P̂ µν
gg (z, k⊥; ε) = (−gµν) 2CA

sjr
sir

, (2.125)

where the zero on the r.h.s. has to be interpreted as a regular function that does

not contribute to the singular behaviour of the matrix element under soft-collinear

limit. The resulting factorisation formula reads

lim
kµi→0

[
lim
k⊥→0

|A a1,...,an(p1, . . . , pn)|2
]
' 16παSµ

2ε

sij

(
δfigδfjg CA + δfigδfj{qq̄}CF

)
×

× sjr
sir
|Aa1,...,ai−1,ai+1an(p1, . . . , pi−1, pi+1 . . . , pn)|2 , (2.126)

with δfa{qq̄} = δfaq+δfaq̄. Equivalently, one could start from the soft limit and select

the leading contributions for ki ‖ kj or sij → 0. In particular, given the sum over

the emitting partons in Eq.(2.111), the only terms that actually contribute under

collinear limit are those corresponding to c = j or d = j. The invariants ratio

in Eq.(2.112) reduces to sjc/(sic sij) + sjd/(sid sij), where sjl/sil is independent of
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parton l, ∀l 6= i, j. Therefore we can substitute c and d with the same auxiliary

parton r, obtaining

lim
kµ⊥→0

[
lim
kµi→0

|A a1,...,an(p1, . . . , pn)|2
]
' −16παsµ

2ε sjr
sir sij

δfig ×

×
n∑
c=1
c 6=i,j

|A cj
a1,...,ai−1,ai+1an

(p1, . . . , pi−1, pi+1 . . . , pn)|2 . (2.127)

Thanks to colour conservation, the sum in Eq.(2.127) is equivalent to a colour

summed matrix element multiplied by minus the Casimir eigenvalue relative to

parton j

lim
kµ⊥→0

[
lim
kµi→0

|A a1,...,an(p1, . . . , pn)|2
]
' 16παsµ

2ε sjr
sir sij

δfig Cfj ×

× |Aa1,...,ai−1,ai+1an(p1, . . . , pi−1, pi+1 . . . , pn)|2 .(2.128)

In this form it is straightforward to recognise that Eq.(2.128) precisely equals

Eq.(2.126), proving that soft and the collinear limits commute at NLO. Although

this property may look trivial, it plays a relevant role in the construction of a sub-

traction algorithm: as already mentioned, the definition of a proper counterterm

has to include all the singular regimes of the real matrix element. Since the soft

limit of a collinear configuration and the collinear limit of a soft configuration

coincide, we only need to add a single contribution in the counterterm, instead of

two. This features allows for a minimal structure of the counterterm, and simpli-

fies any possible numerical implementation.

At NNLO the number of overlapping configurations involving soft and collinear

limits is obviously much richer and requires special care to avoid any possible

double counting. Here we just want to mention the soft-collinear limit featuring

one soft parton i and an external collinear pair j, k [24]. Two different scales

compete in this configuration: the soft momentum kµi → 0, and the transverse

direction kµ⊥ → 0, such that the leading behaviour of the matrix element is cap-

tured by neglecting O(ki) and O(k⊥) terms, and keeping ki/k
2
⊥ fixed. The overall

scaling of the squared amplitude is then proportional to (sjk sij sik)
−1, and the

factorisation formula is

|A a1,...,ai,aj ,ak,...,an(. . . , pi, pj, pk, . . . )|2 ' −
8(4παSµ

2ε)2

sjk
× (2.129)

× 〈A...,a[jk],...(. . . , p[jk], . . . )| P̂ajak J†[jk]µ(ki) Jµ[jk](ki) |A...,a[jk],...(. . . , p[jk], . . . )〉 .
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The P̂ab spin-operator is the usual AP kernel (see Eq.(2.123)), while the soft

current can be checked to be

J†[jk]µ(ki) Jµ[jk](ki) '
n∑

c,d=1
c,d 6=i,j,k

Tc ·Td I(i)
cd + 2

n∑
c=1

c 6=i,j,k

Tc ·T[jk] I(i)
c[jk] , (2.130)

with the prescriptions

T[jk] ≡ Tj + Tk , I(i)
c[jk] ≡ δfig

scj + sck
sci (sij + sik)

. (2.131)

A more extended discussion can be found for instance in Sec.(3.4) of Ref. [27].

In order to summarise the results obtained up to this point, we recall that in Sec.1.6

we have discussed in details how infrared singularities arise in virtual corrections,

and the sophisticated technology implemented to model them in a fully general

way, by means of virtual factorisation formula. With an alternative version of the

factorisation formula, we have derived in Sec.2.1 the pole structure of a generic

virtual scattering amplitude at NLO and NNLO. Particular attention has been

devoted to the colour content of the amplitude and of the consequent singularit-

ies, in order to emphasise that the infrared divergences at cross-section level can

only be proportional to a small set of colour structures (up to two-loop accuracy).

In Sec.2.2 we have explained that IR singularities cancel for sufficiently inclus-

ive observables upon summing virtual and real contributions, thanks to the KLN

theorem. We have also mentioned that to compute numerically relevant observ-

ables, a straightforward application of the KLN theorem is in practice unfeasible,

especially at non-trivial perturbative orders. In Sec.2.3 we have presented the two

main strategies, slicing and subtraction, developed to face such difficulties, point-

ing out the crucial importance of the factorised behaviour of singular real matrix

elements under unresolved limits. In Sec.2.4 these factorisation properties have

been briefly discussed in order to present the notation and the conventions we will

use throughout the rest of the manuscript.

In the next Section we will combine all the ingredients already introduced to invest-

igate the structure of new local subtraction procedure, based on the factorisation

formalism and on the properties of the universal soft, jet and eikonal jet functions.

2.5 Factorisation tools for local subtraction

In what follows we provide a general method to construct local infrared subtraction

counterterms for unresolved radiative contributions to differential cross sections,
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to any order in perturbation theory. We start from the factorised structure of

virtual corrections to scattering amplitudes, where soft and collinear divergences

are organised in gauge-invariant matrix elements of fields and Wilson lines, and

we define radiative eikonal form factors and jet functions which are fully differen-

tial in the radiation phase space, and can be shown to cancel virtual poles upon

integration by using completeness relations and general theorems on the cancel-

lation of infrared singularities [20, 21]. Our method reproduces known results at

NLO and NNLO, and yields substantial simplifications in the organisation of the

subtraction procedure, which will help in the construction of efficient subtraction

algorithms.

2.6 Infrared factorisation for virtual corrections

In order to proceed, we note that the compact expression in Eq. (2.8) is not suffi-

ciently detailed to extract information relevant to the subtraction problem, where

it is important to distinguish the contributions of soft and collinear configura-

tions, and to understand the issue of double counting of soft-collinear poles. It is

therefore necessary to take a step back to the full factorisation formula underlying

Eq. (2.8), which we have already presented in the following form [5–14,92]

An
(
pi
µ

)
=

n∏
i=1

Ji
(

(pi · ni)2/(n2
iµ

2)
)

Ji,E
(

(βi · ni)2/n2
i

)
Sn (βi · βj)Hn

(
pi · pj
µ2

,
(pi · ni)2

n2
iµ

2

)
.(2.132)

For each hard massless particle with momentum pi, we introduced a four-velocity

vector βi, β
2
i = 0, obtained by rescaling pi by an arbitrary hard scale, say βi = pi/µ,

and a ‘factorisation vector’ ni, n
2
i 6= 0. In Eq. (2.132), the colour vector Hn

is a process-dependent finite remainder, the jet function Ji collects all collinear

singularities associated with the direction defined by pi, the soft divergences are

reproduced by the soft function Sn, while the eikonal jet function Ji,E represents

the overlap between Ji and Sn. The definition of the soft, the jet and the eikonal

functions have already been explained in the previous sections, thus we only list

them here for completeness.

For outgoing quarks with momentum p and spin polarisation s the jet function

equals

us(p)Jq
(

(p · n)2

n2µ2

)
= 〈p, s |ψ(0) Φn(0,∞) |0〉 , (2.133)
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where the Wilson line operator is

Φv(λ2, λ1) ≡ P exp

[
igs

∫ λ2

λ1

dλ v · A(λv)

]
. (2.134)

The soft factor Sn is defined in terms of semi-infinite light-like Wilson lines radiat-

ing out of the hard collision, each along the classical trajectory of one of the hard

particles

Sn (βi · βj) = 〈0|
n∏
k=1

Φβk(∞, 0) |0〉 , (2.135)

where βi is the dimensionless four-velocity of the i-th hard particle, and where, for

simplicity, we do not display the colour indices of the Wilson lines. Finally, the

soft approximation of the jet function, i.e. the eikonal jet [9], reads

JE

(
(β · n)2

n2

)
= 〈0|Φβ(∞, 0) Φn(0,∞) |0〉 , (2.136)

and soft poles cancel in the ratio of the full jet to the eikonal jet, separately for

each hard particle. This simple pattern of cancellation for soft-collinear regions

(which in particular does not contain any colour correlations) will be reflected in

the structure of local counterterms for real radiation.

Some remarks are in order: the definition in Eq.(2.133) is designed for quark-

induced processes. For (outgoing) gluons with momentum k and polarisation

λ, the definition is more delicate, due to the requirement of gauge invariance: a

straightforward substitution of a gluon field for the quark field in Eq. (2.133) is not

satisfactory, due to the non-homogeneous term in the gluon gauge transformation.

The issue has been well understood for a long time, initially in the context of

giving operator definitions of parton distribution functions for gluons [23]. In that

case, the requirement is to find a gauge invariant quantity reducing to a gluon

number operator in a physical gauge; a possible solution is to use a particular

projection of a field strength operator in place of the gluon field in the equivalent

of Eq. (2.133): the homogeneous gauge transformation of the field strength can

then be compensated by the Wilson line insertion. At amplitude level, an elegant

proposal was put forward in the context of SCET in [126,127], and we will use it

in what follows. We define

gs ε
∗ (λ)
µ (k)J µν

g

(
(k · n)2

n2µ2

)
≡ 〈k, λ|

[
Φn(∞, 0) iDν Φn(0,∞)

]
|0〉 , (2.137)
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where we have not displayed colour indices, the covariant derivative Dµ = ∂µ −
igsAµ is evaluated at x = 0, and the extra power of gs on the left-hand side

compensates for the effect of differentiating the Wilson line.

2.7 Subtraction procedure at NLO

We now provide a brief description of a subtraction procedure at NLO, pointing

out the relevant features that can be exported at NNLO, for the case of massless

coloured particles in the final state, identifying the local counterterms required

in this case. Our goal here is to present the general structure of the procedure,

which is sufficient for the purposes of the present discussion. However, we stress

that this approach cannot directly provide an efficient subtraction algorithm: in

the process of defining the necessary counterterms, a precise mapping procedure is

needed to exactly factorise the radiative phase space, from the remaining resolved

phase space. The mapping is then also crucial to analytically integrate the local

counterterms over the radiative phase space. An efficient subtraction algorithm

will be implemented in Chapter 3.

Let us begin by establishing some notation. Given a scattering amplitude with n

massless particles in the final state, we write

An(pi) = A(0)
n (pi) + A(1)

n (pi) + A(2)
n (pi) + A(3)

n (pi) + . . . , , (2.138)

where A(0)
n (pi) is the Born amplitude for the process at hand, while A(k)

n (pi) is

the k-loop correction (with respect to Eq.(2.36) we have included all the coupling

constants in the coefficients A(k)
n in order to simplify the equations below). Given

an infrared-safe observable X, one can then construct the perturbative expansion

for the differential distribution of X, as

dσ

dX
=

dσLO

dX
+
dσNLO

dX
+
dσNNLO

dX
+
dσN3LO

dX
+ . . . . (2.139)

At each non-trivial order in perturbation theory, the differential distribution con-

tains contributions with different numbers of final state particles, and the cancel-

lation of infrared singularities takes place upon integration over the phase spaces

of unresolved radiation. Denoting with dΦm the Lorentz-invariant phase space

measure for m massless final state particles, and assuming that the observable
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involves n particles at Born level, one can write in more detail

dσLO

dX
=

∫
dΦnBn δn(X) , (2.140)

dσNLO

dX
= lim

d→4

{∫
dΦn Vn δn(X) +

∫
dΦn+1Rn+1 δn+1(X)

}
, (2.141)

where δm(X) ≡ δ(X−Xm) fixes Xm, the expression for the observable appropriate

for an m-particle configuration, to the prescribed value X. The integrands of the

various terms can be expressed in terms of the squared scattering amplitudes

involving n and n+ 1 particles as

Bn =
∣∣A(0)

n

∣∣2 , Rn+1 =
∣∣∣A(0)

n+1

∣∣∣2 , Vn = 2Re
[
A(0)†
n A(1)

n

]
, (2.142)

where unobserved quantum numbers (such as colour) not affecting the observable

X have been implicitly summed over. As briefly discussed in the Sec.2.3, the

problem of subtraction arises because the expressions Xm for typical observables

in the m-particle phase space, as well as the corresponding matrix elements, are

very intricate, requiring numerical integrations of the real emission contributions.

It is then often necessary to perform the cancellation of infrared poles analytically,

before turning to numerical tools. The subtraction approach proceeds by mimick-

ing the singularities of virtual and real origin though appropriate function, which

have to be added and subtracted to the initial distribution. To be more precise,

let us first consider the NLO distribution. The NLO subtraction procedure may

be set up in two equivalent ways. The first method, that we dub the real-radiation

approach, consists in finding a local counterterm in the (n+1)-particle phase space,

denoted here by K
(1)
n+1, which is required to reproduce the singularities of the real-

radiation squared matrix element Rn+1 everywhere in Φn+1. In our approach,

K
(1)
n+1 should be simple enough to be analytically integrated in the single-particle

radiation phase space, yielding an integrated counterterm defined in Φn,

In =

∫
dΦrad,1K

(1)
n+1 , (2.143)

where we introduced the single-particle phase space measure dΦrad,1 = dΦn+1/dΦn.

We can now subtract the local countertermK
(1)
n+1 from the real-emission probability

Rn+1, obtaining an integrable function in the (n+ 1)-particle phase space, and

then add back to the distribution the integrated counterterm In, which must cancel
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the explicit poles of the NLO virtual correction Vn. The result is

dσNLO

dX
=

∫
dΦn

(
Vn + In

)
δn(X)

+

∫
dΦn+1

[
Rn+1 δn+1(X)−K (1)

n+1 δn(X)

]
. (2.144)

A straightforward comparison can be made between Eq.(2.144) and the toy-example

in Eq.(2.107): the difference F (x)− F (0) represents the factor in square brackets

in Eq.(2.144), while the explicit poles are due to the virtual correction. Note that

no approximation has been introduced in passing from Eq. (2.141) to Eq. (2.144):

the subtraction pattern would be the same also if we substitute the exact radiat-

ive phase-space in Eq. (2.143) with an approximate phase space dΦ̂rad that has to

coincide with dΦrad in all the IR limits.

Thanks to the infrared safety of the observable X (X fulfils the properties in

Eq.(2.101)), the differential distribution in this form is therefore amenable to a

direct numerical evaluation. In particular

lim
d→4

dΦrad,1

(
Rn+1 −K (1)

n+1

)
= integrable = dΦ

(4)
rad,1

(
R

(4)
n+1 − (K

(1)
n+1)(4)

)
, (2.145)

where the real matrix element, as well as the counterterm K, is a well-defined

object in d = 4, since it has no pole in ε and can be written in the symbolic form

R = r0 + ε r1 + ε2 r2 +O(ε3) . (2.146)

The coefficients ri feature singularities in dΦrad, which are regulated by defining

dΦrad in d 6= 4, and by consistency R has also to be computed in d 6= 4. Moreover,

upon integrating the real contribution in dΦrad, the real phase-space singularities

become 1/ε poles, that are equal to the virtual explicit poles

V =
v−2

ε2
+
v1

ε
+ v0 +O(ε) . (2.147)

This way,

lim
d→4

(
V +

∫
dΦrad,1Rn+1

)
= lim

d→4

(
V +

∫
dΦrad,1K

(1)
n+1

)
= finite , (2.148)

where the first equality holds in all the infrared limits, which are the only rel-

evant corners of the phase space that are needed to verify the IR singularities



Chapter 2. Factorisation Chapter 2 Factorisation

cancellation. All this considered, Eq.(2.144) can be recast in the following form

dσNLO

dX
=

∫
dΦn

(
Vn + In

)(4)

δn(X) +

+

∫
dΦn dΦ

(4)
rad,1

[
R

(4)
n+1 δn+1(X) − (K

(1)
n+1)(4) δn(X)

]
, (2.149)

and then implemented numerically. In the real-radiation approach, the local coun-

tertermK
(1)
n+1 can be formally written as a limit of the real radiation squared matrix

element Rn+1. In particular, we can extracts from Rn+1 the leading power in the

appropriate normal variable in each one of the singular regions of Rn+1. The res-

ulting expression for K
(1)
n+1 is a sum of terms, each representing a limit in which

a physical quantity λi, an energy or an angle, becomes small: the real radiation

matrix element is then Laurent-expanded in that variable, and only the leading

(singular) power is retained.

Following this approach, K
(1)
n+1 takes the form of a singular universal kernel multi-

plied by a Born-level matrix element (see for instance Ref. [27]).

A second, independent strategy relays on the factorisation properties of the virtual

matrix element, and we refer to this method as the virtual-correction approach. As

explained in the previous Section, the infrared content of Vn can be expressed in

terms of universal soft, jet and eikonal jet functions, whose poles can be shown to

cancel against the phase space integral of the corresponding radiative functions (see

Eqs.(2.153)-(2.171) below). Such cancellation is prescribed by the completeness

relations that we will describe in detail in what follows. As a consequence, we

are able to identify an object, I
(1)
n , whose sum with Vn is free of ε poles. I

(1)
n

provides then a natural candidate integrated counterterm, that assumes the form

of a phase space integral. The corresponding integrand function plays the role of

the counterterm K
(1)
n+1. If one pursues the virtual-correction approach, K

(1)
n+1 turns

out to be a combination of radiative soft, jet and eikonal jet functions, whose

explicit expression can be derived by exploiting standard quantum field theory

techniques. Such explicit computations are presented in the next section and

prove that the two approaches coincide: the combination of universal functions

defining K
(1)
n+1 is precisely equivalent to the leading singular behaviour of the real

matrix element under IR limits. However, we stress that the two methods are

designed according to different philosophies: with the real-radiation approach the

focus is on subtracting the phase-space singularities of the real matrix element by

means of K
(1)
n+1, with I

(1)
n deduced as the phase-space integral of the latter. In

contrast, in the virtual-correction approach, the fundamental object is I
(1)
n , which

is introduced exploiting completeness relations, to cancel the explicit poles of the

virtual matrix element, and K
(1)
n+1 is identified with its integrand.
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2.8 Local counterterms for soft real radiation

Our general strategy to define local counterterms is to construct eikonal form

factors and radiative jet functions including real radiation: these functions, when

integrated over the final-state phase space and combined with their virtual coun-

terparts using completeness relations, build up eikonal and collinear total cross

sections, which are finite by the general theorems of Refs. [19–22]. Let us begin

with the case of purely soft final state radiation (which of course includes soft-

collinear particles as well). Considering n hard particles, represented by Wilson

lines in the soft approximation, radiating m soft gluons, we define the eikonal form

factor

Sn,m (k1, . . . , km; βi) ≡ 〈k1, λ1; . . . ; km, λm|
n∏
i=1

Φβi(∞, 0) |0〉

≡ ε∗ (λ1)
µ1

(k1) . . . ε∗ (λm)
µm (km) Jµ1...µm

S (k1, . . . , km; βi)

≡
∞∑
p=0

S(p)
n,m (k1, . . . , km; βi) , (2.150)

where in the second line we have defined multiple soft gluon currents Jµ1...µm
S , in

the third line we have introduced the perturbative expansion of the form factors,

and we are not displaying colour indices to simplify the notation. A well known

property of the soft approximation at leading power in the soft momenta is spin-

independence: thus the multiple soft gluon currents are independent of the gluon

polarisations λi, and the definition easily generalises to the emission of final state

soft fermions. Note that at this stage the form factor contains loop corrections to

all orders in perturbation theory.

Our underlying assumption is that the exact amplitude for the emission of m

soft gluons (which may in turn radiate soft quark-antiquark pairs) from n hard

coloured particles obeys, to all orders, the factorisation

An,m (k1, . . . , km; pi) = Sn,m (k1, . . . , km; βi) Hn(pi) + Rn,m , (2.151)

where the remainder Rn,m is finite in four dimensions, and integrable in the soft

particle phase space. After renormalisation, the amplitude An,m is ultraviolet fi-

nite, and all virtual soft poles, as well as all contributions that are non-integrable in

the soft particle phase space, are contained in the soft form factor Sn,m. Eq. (2.151)

is proven to all orders for m = 0, and it is consistent with all known perturbative

results, in particular with the arguments of [24, 27, 29]; a formal all-order proof

has however not yet been provided: we treat it as a working assumption, which is

known to be correct at NNLO.
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Squaring Eq. (2.151), and performing the trivial helicity sum, one finds, at leading-

power in the soft momenta∑
{λi}

|An,m (k1, . . . , km; pi)|2 ' H†n(pi)Sn,m (k1, . . . , km; βi) Hn(pi) , (2.152)

where we introduced the eikonal transition probability

Sn,m (k1, . . . , km; βi) ≡
∞∑
p=0

S(p)
n,m (k1, . . . , km; βi) (2.153)

≡
∑
{λi}

〈0|
n∏
i=1

Φβi(0,∞) |k1, λ1; . . . ; km, λm〉 〈k1, λ1; . . . ; km, λm|
n∏
i=1

Φβi(∞, 0) |0〉 ,

for fixed final-state soft momenta ki. Eq. (2.153) provides a natural definition of

local soft counterterms, order by order in perturbation theory: indeed, integrating

over the soft particle phase space for fixed m, and then summing over m, one can

use completeness to get

∞∑
m=0

∫
dΦm Sn,m (k1, . . . , km; βi) = 〈0|

n∏
i=1

Φβi(0,∞)
n∏
i=1

Φβi(∞, 0) |0〉 . (2.154)

Eq. (2.154), up to simple modifications1, can be interpreted as an eikonal total

cross section. When all coloured particles are in the final state, such a cross

section is finite to all orders by the standard cancellation theorems (which can

be verified by explicit power counting); with initial state colour, the eikonal cross

section is affected by collinear divergences which can be treated by conventional

collinear factorisation [128]: indeed, in our framework, these collinear divergences

are included in eikonal jet factors to be discussed in Section 2.9. As far as soft

divergences are concerned, we conclude that the kernels Sn,m provide completely

local soft approximations to the relevant squared matrix element, valid at leading

power in the soft momenta, and they cancel the virtual soft poles order by order in

perturbation theory: this identifies them as candidate counterterms for subtraction

in the soft sector.

Let us now illustrate this general framework with simple examples, recovering

known results at low orders. A classic case in point is single-gluon emission from

a multi-particle configuration at tree level. Eq. (2.151) for m = 1 and at lowest

1For example, if the m-particle phase space includes a momentum-conservation δ-function setting the
total final state energy to a fixed value µ, which is irrelevant in the present context, the constraint can
be implemented by shifting the origin of one of the two sets of Wilson lines on the r.h.s. of Eq. (2.154)
in a timelike direction by an amount λ, and introducing a Fourier transform with a weight λµ. Notice
that operator products in all our matrix elements are understood to be time ordered when needed.
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order reads

A(0)
n, 1(k, pi) = ε∗ (λ)(k) · J (0)

S (k, βi)H(0)
n (pi) +O(k0) , (2.155)

with the definition

ε∗ (λ)(k) · J (0)
S (k, βi) = S(0)

n, 1 (k; βi) = 〈k, λ|
n∏
i=1

Φβi(∞, 0) |0〉
∣∣∣∣∣
tree

. (2.156)

Explicit calculation expanding the Wilson-line operators in powers of the coupling,

or directly with eikonal Feynman rules, easily yields the well-known result for the

tree-level soft-gluon emission current [27,99] that we have recalled in Eq.(2.110)

J
µ (0)
S (k; βi) = gs

n∑
i=1

βµi
βi · k

Ti . (2.157)

Squaring the tree-level amplitude one finds the leading-power transition probabil-

ity∑
λ

∣∣∣A(0)
n, 1(k, pi)

∣∣∣2 ' H(0) †
n (pi)S

(0)
n, 1 (k; βi) H(0)

n (pi)

= − 4παs

n∑
i,j=1

βi · βj
βi · k βj · k

A(0)†
n (pi) Ti ·Tj A(0)

n (pi) , (2.158)

where we used the fact that at tree level there is no need to distinguish betweenH(0)
n

and A(0)
n ; we recognise the colour-correlated Born probability, multiplied times the

standard eikonal prefactor. It is then straightforward to recognise in Eq.(2.158)

the analogue of Eq.(2.111).

One of the main advantages of exploiting the factorisation properties of gauge

amplitudes and the universal functions in Eq.(2.132) relays on the natural capab-

ility of this approach to be extended at higher orders in the coupling constant. As

an example, we consider multiple soft-particle radiation at tree level. We start by

computing the double real emission from a single Wilson line, (the result can be

trivially generalised to any number of hard legs)

S1, 2 (k1, k2; β) = 〈k1, λ1; k2, λ2|Φβ(∞, 0) |0〉
∣∣∣
tree

≡ 〈k1, λ1; k2, λ2|1 + igs Ta β
µ

∫ ∞
0

dv Aaµ(vβ)

−g
2
s

2
Ta Tb β

µβν
∫ ∞

0

dv1 dv2

[
θ(v1 − v2)Aaµ(v1β)Abν(v2β)

+θ(v2 − v1)Aaµ(v2β)Abν(v1β)
]

+ . . . |0〉 . (2.159)
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The first term of the Wilson line expansion gives null contribution, the O(gs)

term (S(A)
1, 2 ) provides a non-vanishing contribution only upon inserting a lagrangian

interaction, while the O(g2
s) term (S(B)

1, 2 ) returns directly a non-zero term. We can

then obtain

S(A)
1, 2 = −g2

s f
cd
b Ta β

µ

∫
d4z

∫ ∞
0

dv 〈k1, λ1; k2, λ2|Aaµ(vβ)
(
∂ρA

b
σ(z)

)
Aρc(z)Aσd(z) |0〉

= −g2
s f

cd
b Ta β

µ

∫
d4z

∫ ∞
0

dv 〈0| aλ1(k1) aλ2(k2)Aaµ(vβ) ×

×
(
∂ρA

b
σ(z)

)
Aρc(z)Aσd(z) |0〉 , (2.160)

where aλ(p) is a bosonic creation operator that returns ε∗λ1
(p) eip·z when contrac-

ted with a gluon field Aaµ(x). If one excludes the Wick contractions that give

disconnected diagrams, only three combinations of fields and creation operators

are allowed, and they are related by symmetry relations. All this considered, we

obtain

S(A)
1, 2 =

−ig2 Ta f
abc

(k1 + k2)2 (k1 + k2) · β
(
k2 · ε∗(k1) β · ε∗(k2) + k1 · ε∗(k2) β · ε∗(k1) + perm

)
.

The sum over the permutation reconstructs, as expected, the diagram where the

Wilson line emits a gluon that splits into two real gluons. With a similar procedure

one can include the emission of a qq̄ pair: the final state particles in Eq.(2.159),

(k1, λ1), (k2, λ2), have to be substituted with fermionic states (p1, s1), (p2, s2),

and the lagrangian interaction has to be chosen abelian-like, i.e. proportional

to ψ(z)Aaµ(z)ψ(z). Turning to S(B)
1, 2 , the two O(g2

s) contributions in Eq.(2.159)

reduce to the same term upon relabelling λ1 ↔ λ2, yielding

S(B)
1, 2 = −g2

s Ta Tb β
µβν

∫ ∞
0

dv1

∫ ∞
v1

dv2 〈k1, λ1; k2, λ2|Aaµ(v1β)Abν(v2β) |0〉

= −g2
s Ta Tb β

µβν
∫ ∞

0

dv1

∫ ∞
v1

dv2 〈0| aλ1(k1)aλ2(k2)Aaµ(v1β)Abν(v2β) |0〉

= g2
s β · ε∗(k2) β · ε∗(k1)

[
Ta2 Ta1

k2 · β (k1 + k2) · β +
Ta1 Ta2

k1 · β (k1 + k2) · β

]
.(2.161)

The only missing ingredient to obtain the full double-radiative soft current derives

from the factorised double radiation, namely the configuration where two gluons

are independently radiated by two different Wilson lines. By including a sum

over all the initial hard partons, and stripping the gluon polarisations vectors, one
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directly recovers the result of [27]

[
J

(0)
S

]a1a2

µ1µ2

(k1, k2; βi) = 4παS

{
n∑
i=1

[
βi, µ1βi, µ2

(
T a2
i T

a1
i

βi · k2 βi · (k1 + k2)
+ (1↔ 2)

)
− if a1a2

a T ai
βi · (k2 − k1) gµ1µ2 + 2βi, µ1k1, µ2 − 2βi, µ2k1, µ1

2k1 · k2 βi · (k1 + k2)

]
+

n∑
i=1

∑
j 6=i

T a1
i T a2

j

βi, µ1

βi · k1

βj, µ2

βj · k2

}
, (2.162)

with the last line representing uncorrelated emission from two different hard par-

tons, and the first two lines collecting terms arising from double emission from a

single hard particle. As already mentioned, currents corresponding to the radi-

ation of soft quark-antiquark pairs, or for emissions with higher multiplicity, can

similarly be computed directly in Feynman gauge in a straightforward manner.

At loop level, the organisation of counterterms becomes more interesting. Let us

for example consider single-gluon emission at one loop: expanding Eq. (2.151) for

m = 1 to first non-trivial order we find

A(1)
n, 1 (k; pi) = S(0)

n, 1 (k; βi) H(1)
n (pi) + S(1)

n, 1 (k; βi) H(0)
n (pi) . (2.163)

The first term corresponds to a tree-level soft-gluon emission multiplying the finite

part of the one-loop correction to the Born process; in the second term the soft

function is evaluated at one-loop, and therefore has both explicit soft poles and

singular factors from single soft real radiation: it multiplies the Born amplitude.

In this case, the proposed factorisation appears to differ from the one proposed

in [29], which reads

An, 1 (k; pi) ' ε∗ (λ)(k) · JCG (k, βi) An(pi) . (2.164)

Here the Catani-Grazzini soft current JCG(k, βi) multiplies the full n-particle amp-

litude, including loop corrections containing infrared poles, whereas in Eq. (2.151)

for m = 1 the hard function Hn(pi) is finite. It is, however, easy to map the two

calculations, using Eq. (2.151) for m = 0, and solving for the one-loop hard part

H(1)
n (pi). One finds

H(1)
n (pi) = A(1)

n (pi)− S(1)
n (βi) A(0)

n (pi) , (2.165)

where we normalised S(0)
n to the identity operator in colour space. This leads to an

expression for the Catani-Grazzini one-loop soft-gluon current in terms of eikonal
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form factors, as

ε∗ (λ)(k) · J (1)
CG (k, βi) = S(1)

n, 1 (k; βi) − S(0)
n, 1 (k; βi) S(1)

n (βi) . (2.166)

Comparing Eq. (2.254) with the calculation in [29], one easily recognises that the

same combination of Feynman diagrams is involved, and one recovers the known

result [
J

(1)
CG

]µ
a

(k, βi) = −αS

4π

1

ε2
Γ3(1− ε)Γ2(1 + ε)

Γ(1− 2ε)

× if bc
a

n∑
i=1

∑
j 6=i

T bi T
c
j

(
βµi
βi · k

−
βµj
βj · k

)[
2πµ2 (−βi · βj)
βi · k βj · k

]ε
. (2.167)

Phrasing the calculation in terms of eikonal form factors allows for a straight-

forward and systematic generalisation to higher orders. For example, expanding

Eq. (2.151), for m = 1, to two loops, one finds

A(2)
n, 1 (k; pi) ' S(0)

n, 1 (k; βi) H(2)
n (pi) + S(1)

n, 1 (k; βi) H(1)
n (pi)

+S(2)
n, 1 (k; βi) H(0)

n (pi) . (2.168)

The expression for H(1)
n is given in Eq. (2.165); furthermore, one can similarly

derive an expression forH(2)
n from the two-loop expansion of Eq. (2.151) for m = 0,

obtaining

H(2)
n (pi) = A(2)

n (pi)− S(1)
n (βi) A(1)

n (pi) +
[
S(1)
n (βi)

]2 A(0)
n (pi)

− S(2)
n (βi) A(0)

n (pi) . (2.169)

Substituting the expressions for the hard parts into Eq. (2.168), and comparing

with Eq. (2.164), one finds the two-loop soft-gluon current

ε∗ (λ)(k) · J (2)
CG (k, βi) = S(2)

n, 1 (k; βi)− S(1)
n, 1 (k; βi)S(1)

n (βi)

− S(0)
n, 1 (k; βi)

[
S(2)
n (βi)−

(
S(1)
n (βi)

)2
]
. (2.170)

Note that in expressions such as Eq. (2.170) the ordering of factors is import-

ant, since the form factors S are colour operators. Note also that all terms in

Eq. (2.170), except the first one, are already known for general massless n-point

Born processes. The two-loop soft-gluon current was computed for n = 2 by ex-

tracting it from known two-loop matrix elements in Refs. [31,32,129]. Eq. (2.170)

provides a precise framework for the calculation for generic processes with n col-

oured particles at Born level. Clearly, it is not difficult to derive expression similar

to Eq. (2.170) for the case of multiple soft-gluon radiation at the desired loop level.
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2.9 Local counterterms for collinear real radiation

The strategy to define local collinear counterterms is very similar to the one adop-

ted in the soft case. We begin by allowing for further final-state radiation in the

operator matrix elements defining the jet functions in Eq. (2.133) and Eq. (2.137).

This leads to the definition of radiative jet functions, which are universal, but

distinguish whether the emitting hard parton is a quark or a gluon. In particular,

let us consider first a final state with a hard quark carrying momentum p and spin

s, and radiating m gluons. In this case we define

us(p)J {λi}q,m (k1, . . . , km; p, n) ≡ 〈p, s; k1, λ1; . . . ; km, λm|ψ(0) Φn(0,∞) |0〉

≡ us(p)
∞∑
p=0

J (p)
q,m (k1, . . . , km; p, n) , (2.171)

where we extracted the quark wave function, so that Jq, 0 coincides with the virtual

quark jet defined in Eq. (2.133), and is normalised to unity at tree level. Gluon

polarisation vectors, on the other hand, are still included in the function Jq,m, and

could be extracted to define collinear currents in a manner analogous to what was

done in Eq. (2.150) for soft currents. The radiative quark jet function is gauge

invariant in the same way as the non-radiative one discussed in Section 2.6: it is

a matrix element involving only physical states, where the gauge transformation

properties of the field operator are compensated by the Wilson line; furthermore,

like its non-radiative counterpart, it does not involve colour correlations with the

other hard partons in the process. The definition is valid to all orders in perturb-

ation theory, and the second line of Eq. (2.171) gives the perturbative expansion,

with J (p)
q,m proportional to g 2p+m

s . Notice however that the gluon momenta in

Eq. (2.171) are unconstrained, and collinear limits must be explicitly taken at a

later stage in the calculation.

Let us stress that the guiding principle for defining a radiative jet function as in

Eq.(2.171) is looking for a minimal implementation of the virtual jet definition (see

Eq.(2.133)). Other possible definitions have been implemented in the past years

in the context of next-to-leading power factorisation. In particular in Ref. [91] the

jet function at amplitude level is defined as

Jµa(p, n, k, αs, ε)u(p) =

∫
ddye−i(p−k)·y 〈0|Φn(y,∞)ψ(y) jµ,a(0) |p〉 , (2.172)

where jµ is the abelian current

jµa (x) = ψ(x) γµTa ψ(x) . (2.173)
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Such a definition produces diagram where the real radiation can be exclusively

emitted by the hard fermion inducing the process. This way, the Wilson line plays

the role of a source of virtual collinear radiations only. Further developments of the

definition involving the current manage to include also non-abelian interactions,

thought improvements terms Ref. [130]

jµa (x) = ψ(x) γµTa ψ(x)− f bc
a

(
F µν
c (x)Aν a(x) + ∂ν(A

µ
b (x)Aνc (x))

)
. (2.174)

Also in this fashion, the jet function does not include radiation from the Wilson

line, except for the diagram featuring a self energy correction on the line, that

generate a real radiation though a three-gluon vertex. In constrast, by exploiting

the definition in Eq.(2.171) we are free to generate real radiation directly from the

Wilson line, increasing the number of Feynman diagrams contributing to a given

perturbative order in an unphysical gauge. A precise comparison between the two

definitions has not been investigate in details yet, although it could represents

an interesting task. Here we just mention that the definition in Ref. [130] is a

crucial ingredient to prove the factorisation of the radiative amplitude, thanks

to the Ward identity fulfilled by Jµ that reduces the radiative function to its

virtual counterpart. The same cannot be obtained with the definition involving

|p, s; kj, λj〉 〈p, s; kj, λj|, since the corresponding Ward identity return zero.

At cross-section level, the definition of radiative jet functions is slightly more

elaborate than was the case for soft functions, since one must allow for non-trivial

momentum flow. This can be done in a standard way by shifting the position of

the quark field in the complex conjugate amplitude, and then taking a Fourier

transform in order to fix the total momentum flowing into the final state, setting

lµ = pµi +
∑m

i=1 k
µ
i . In the unpolarised case, one may sum over polarisations and

define the cross-section-level radiative quark jet function as

Jq,m (k1, . . . , km; l, p, n) ≡
∞∑
p=0

J (p)
q,m (k1, . . . , km; l, p, n) (2.175)

≡
∫
ddx eil·x

∑
{λj}

〈0|Φn(∞, x)ψ(x) |p, s; kj, λj〉 〈p, s; kj, λj|ψ(0) Φn(0,∞) |0〉 .

The perturbative coefficients J
(p)
q,m of the radiative jet function Jq,m, computed in

the collinear limit, provide natural candidates for collinear counterterms, to any

order in perturbation theory, as will be illustrated below, in Section 2.10 at NLO

and in Section 2.11 at NNLO.

For gluon-induced processes, we can apply the same philosophy as for the quark-

induced processes, starting with Eq. (2.137), and introducing the (amplitude-level)
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radiative gluon jet functions as

gs ε
∗ (λ)
µ (k)J µν

g,m (k1, . . . , km; k, n) ≡ gs ε
∗ (λ)
µ (k)

∞∑
p=0

J (p), µν
g,m (k1, . . . , km; k, n)

≡ 〈k, λ; k1, λ1; . . . ; km, λm|Φn(∞, 0) iDν Φn(x,∞) |0〉
∣∣∣
x=0

, (2.176)

where again we are not displaying colour indices, and polarisation vectors for the

radiated gluons are included in the definition of J µν
g,m. The definition (2.176) can

be used to construct a cross-section-level radiative gluon jet function, as was done

for the quark. It reads

g2
s J

µν
g,m (k1, . . . , km; l; k, n) ≡ g2

s

∞∑
p=0

J (p), µν
g,m (k1, . . . km; l, k, n)

≡
∫
ddx eil·x

∑
{λj}

〈0|
[
Φn(∞, x) iDµ Φn(x,∞)

]† |k, λ; kj, λj〉

× 〈k, λ; kj, λj|Φn(∞, x) iDν Φn(x,∞) |0〉
∣∣∣
x=0

. (2.177)

To illustrate the usefulness of radiative jet functions as collinear counterterms, let

us focus, as an example, on the quark-induced jet function. In analogy to what

was done in the soft sector, we note that summing over the number of radiated

particles, and integrating over their phase space, by completeness one finds

∞∑
m=0

∫
dΦm+1 Jq,m (k1, . . . , km; l, p, n)

= Disc

[∫
ddx eil·x 〈0|Φn(∞, x)ψ(x)ψ(0)Φn(0,∞) |0〉

]
. (2.178)

The r.h.s. of Eq. (2.178) gives the imaginary part of a generalised two-point

function, which is a finite quantity, since it is fully inclusive in the final state.

The m = 0 contribution contains the virtual collinear poles associated with an

outgoing quark of momentum p, and therefore the real radiation contributions for

m 6= 0, given by Eq. (2.175), must cancel those poles order by order in perturbation

theory, as desired. Inclusive cross-section-level jet functions such as the integrated

quantity in Eq. (2.178) have been used in the context of threshold resummations for

many years, starting with the seminal papers in Ref. [131, 132]. We can perform

a simple test of the correctness of our method by computing the single-gluon

radiative jet for an outgoing quark with momentum pµ. In Feynman gauge, the

lowest perturbative order in the coupling constant receives contributions from

three different diagrams, shown in Fig. 2.7. The contribution (c) is a pure abelian

term, whose explicit result can be derived from the r.h.s. Eq.(2.175) setting m = 1
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(a) (b) (c)

Figure 2.7: One-loop contributions to cross-section-level radiative quark jet
function

and inserting two lagrangian interactions (one in each bra-ket)∑
λ, s

∫
ddx eil·x 〈0|ψ(x) |p, s; k, λ〉 〈p, s; k, λ| ψ̄(0) |0〉 =

=
∑
λ, s

∫
ddx eil·x 〈0|ψ(x) b†s(p) a

†
λ(k) |0〉 〈0| bs(p) aλ(k) ψ̄(0) |0〉

= −g2
s

∑
λ, s

∫
ddx eil·x 〈0|ψ(x)T [ψ̄(y)A/(y)ψ(y)]b†s(p) a

†
λ(k) |0〉 ×

× 〈0| bs(p) aλ(k)T [ψ̄(y)A/(y)ψ(y)] ψ̄(0) |0〉

= −g2
s(2π)dδd(l − p− k)

l/

l2
γµ p/ γ

µ l/

l2
. (2.179)

The diagram (a) is a mixture of abelian and Wilson interactions, therefore the

Wilson line as to be expanded at the first non trivial order and an extra lagrangian

interaction has to be added

igs

∫
ddx eil·x

∫ ∞
0

dλnµ 〈0|ψ(x) |p, s ; k, λ〉 〈p, s ; k, λ| ψ̄(0)Aµ(λn) |0〉

= g2
s

∑
λ, s

n · ελ(k)

n · k (2π)dδd(l − p− k)
l/

l2
ε/λ(k)us(p)ūs(p)

= g2
s(2π)dδd(l − p− k)

l/

l2
n/ p/

1

n · k . (2.180)

Finally, diagram (b) manifests only Wilson vertices, each of them proportional to

nµ

g2
s n

µnν
∑
λ, s

∫
ddx eil·x

∫ ∞
0

dλ1

∫ ∞
0

dλ2 〈0|ψ(x)Aν(x+ λ2n) |p, s ; k, λ〉 ×

× 〈p, s ; k, λ| ψ̄(0)Aµ(λ1n) |0〉

= −g2
s (2π)dδd(l − p− k) p/

n2

(k · n)2
. (2.181)

The term corresponding to diagram (b) vanishes in the massless limit n2 = 0, thus

it does not contribute to the collinear limit. However, such term plays a crucial

role in guaranteeing the gauge invariance of the procedure. As an example, we



Chapter 2. Factorisation 89

(a) (b) (c)

Figure 2.8: One loop contributions to cross-section-level radiative gluon jet
function

mention that in axial gauge (with n2 6= 0) the gluon polarisation sum features

also a contribution proportional to n2/(k · n)2, which is precisely reproduced by

diagram (b). The sum of all the terms returns the full single radiative jet function∑
s

Jq, 1 (k; l, p, n) =
4παsCF

(l2)2
(2π)dδd (l − p− k)

×
[
−l/γµp/γµl/+

l2

k · n (l/n/p/+ p/n/l/)

]
, (2.182)

where p2 = k2 = 0, and up to corrections proportional to n2. It is easy to trace

the contributions of the three diagrams in Fig. 2.7 in the axial gauge calculation of

Ref. [27]. Notice however that in Eq. (2.182) the collinear limit for k, corresponding

to l2 → 0, has not been taken yet. This is easily achieved by introducing a Sudakov

parametrisation for momenta pµ and kµ, and taking the k⊥ → 0 limit, setting

pµ = zlµ +O (l⊥) , kµ = (1− z)lµ +O (l⊥) , n2 = 0 . (2.183)

Due to the prefactor of order O [(l2⊥)
−1

], the leading behaviour in the l⊥ → 0 limit

is recovered by setting l⊥ = 0 in the square bracket. This yields

∑
s

Jq, 1 (k; l, p, n) =
8παsCF

l2
(2π)d δd (l − p− k)

[
1 + z2

1− z − ε (1− z)

]
, (2.184)

up to corrections of order l⊥. In the square bracket, as expected, we recognise the

leading order unpolarised DGLAP splitting function Pq→qg.

It is interesting to perform the same check for the cross-section-level radiative

gluon jet definition, which must reproduce the splitting kernel P µν
g→gg when m = 1.

The diagrammatic contributions, in Feynman gauge, are similar to those in Fig.

2.7, and are displayed in Fig. 2.8; in an axial gauge, n · A = 0, only the third

graph, Fig. (2.8c), survives. Computing the single-radiative gluon jet function at

cross-section level, we can use the Sudakov parametrisation

kµ = zlµ + lµ⊥ −
l2⊥
z

nµ

2l · n , kµ1 = (1− z)lµ − lµ⊥ −
l2⊥

(1− z)

nµ

2l · n , (2.185)
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To leading power in l⊥, and setting n2 = 0, we end up with the expression∑
λi

Jµνg, 1 (k; l, k1, n) =
16παsCA

l2
(2π)d δd (l − k1 − k) (2.186)

×
[
− gµν

(
z

1− z +
1− z
z

)
− 2 (1− ε) z(1− z)

lµ⊥l
ν
⊥

l2⊥

+

(
z

1− z +
1− z
z

)
l{µnν}

l · n

]
.

The first two terms in the square bracket reproduce the expected splitting function;

the third term, where the braces denote index symmetrisation, is proportional to

either lµ or lν : in the collinear limit, these corrections vanish when contracted

with the factorised hard amplitude, which depends on the on-shell parent gluon

momentum l. It is easy to check, by considering a final-state qq̄ pair in Eq. (2.176),

that one may similarly recover the appropriate splitting function P µν
g→qq̄; kernels

for double collinear emission can be reproduced with similar manipulations.

To complete our discussion, we note that the cross-section-level jet functions

presented in Eq. (2.175) generate all collinear singularities, including soft-collinear

ones. These are therefore double counted, since they were already included in the

soft region. In order to avoid this issue, following the logic suggested by the fac-

torisation of virtual corrections in Eq. (2.132), we may introduce radiative eikonal

jet functions, defined by replacing the field ψ(0) in Eq. (2.171) with a Wilson

line (in the same colour representation), oriented along the hard parton direction

βν = pν/µ. At cross-section level, this leads to the definition

JE,m (k1, . . . , km; l, β, n) ≡
∞∑
p=0

J
(p)
E,m (k1, . . . , km; l, β, n) (2.187)

≡
∫
ddx eil·x 〈0|Φn(∞, x)Φβ(x,∞) |kj, λj〉 〈kj, λj|Φβ(∞, 0)Φn(0,∞) |0〉 .

Notice that the radiative eikonal jet does not depend on the spin of the hard

parton, so that Eq. (2.187) applies to gluons as well; the Fourier transform fixes

lµ to be the total momentum of the final state.

To test this definition, we compute the soft-collinear local counterterm for single

radiation, and we easily find∑
λ

JE, 1 (k; l, β, n) = g2
s Cr (2π)dδd(l − p) 2p · n

p · k n · k . (2.188)

In the limit of pµ collinear to kµ, we can employ the relations

l2 = (p+ k)2 = 2 p · k , p · n = z l · n , k · n = (1− z) l · n , (2.189)
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to obtain the explicit soft-collinear counterterm∑
λ

JE, 1 (k; l, β, n) =
8παsCr

l2
(2π)dδd(l − p) 2z

1− z . (2.190)

We note that the factor 2z in the numerator is necessary to enforce the commut-

ation relation between soft and collinear limit at NLO: a basic feature that allows

significant simplifications in the subtraction procedure.

2.10 Constructing counterterms at NLO

In this section we present a simple procedure to define real-radiation matrix ele-

ment counterterms by modelling the virtual matrix element singularities thought

universal function, and reduce them to finite objects by means of the completeness

relation in Eqs.(2.154)(2.178). We expect such counterterms to match with the

kernels that regulate the real matrix element factorisation, as we have discussed

in Sec.2.4.

We now proceed to illustrate how this works with the simple case of NLO massless

final-states. Expanding Eq. (2.132) to NLO, and using the fact that virtual jet

functions are normalised to equal unity at tree level, we easily find

A(0)
n (pi) = S(0)

n (βi)H(0)
n (pi) ,

A(1)
n (pi) = S(1)

n (βi)H(0)
n (pi) + S(0)

n (βi)H(1)
n (pi)

+
n∑
i=1

(
J (1)
i (pi)− J (1)

i,E (βi)
)
S(0)
n (βi)H(0)

n (pi) , (2.191)

Using Eq. (2.269), it is straigthforward to construct the NLO virtual correction

Vn, entering NLO distributions as in Eq. (2.141), and to express it in terms of the

cross-section-level soft and jet virtual functions. One finds

Vn ≡ 2 Re
[
A(0)∗
n A(1)

n

]
(2.192)

= H(0) †
n (pi)S

(1)
n, 0(βi)H(0)

n (pi) +
n∑
i=1

H(0) †
n (pi)

(
J

(1)
i, 0 (pi)− J (1)

i,E, 0(βi)
)
H(0)
n (pi) .

The contributions above encodes the singular content of the virtual matrix element

in the soft, collinear and soft-collinear regimes respectively. Such singularities are

compensated by equivalent (up to a sign) poles stemming from radiative func-

tions, as a direct consequence of the completeness relations mentioned above. In

particular, in the soft regime, the relation in Eq. (2.154), at NLO, implies the
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cancellation

S
(1)
n,0 (βi) +

∫
dΦ1 S

(0)
n, 1(k, βi) = finite , (2.193)

whose diagrammatic representation is schematically presented in Fig. 2.9. Sim-
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Figure 2.9: Pictorial representation of the soft completeness relation at NLO

+
pi

k

pi

k

pi pi
= finite

Figure 2.10: Pictorial representation of the collinear completeness relation at
NLO, for a quark-induced process

ilarly, the collinear completeness relation in Eq. (2.178), at NLO, implies the can-

cellation

J
(1)
i, 0 (l, p, n) +

∫
dΦ1 J

(0)
i, 1 (k; l, p, n) = finite , (2.194)

with a similar relation holding for the cross-section-level eikonal jets defined in

Eq. (2.187) (in Fig.2.10 we show the completeness relation fulfilled by the quark jet

function for a sample of the contributing diagrams). The relations in Eqs.(2.193)-

(2.194) lead naturally to define the integrated counterterms

I (1)
n ≡ I(1), s

n + I(1), c
n − I(1), sc

n (2.195)

=

∫
dΦrad, 1H(0) †

n S
(0)
n, 1H(0)

n +

∫
dΦrad, 1

n∑
i=1

H(0) †
n

(
J

(0)
i, 1 − J (0)

i,E, 1

)
H(0)
n .

The integrand functions appearing in the equation above are by definition the

local counterterms contributing to the last line in Eq.(2.144). In particular NLO
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soft poles are cancelled by integrating the combination

K s
n+1 = H(0) †

n (pi)S
(0)
n, 1(k, βi)H(0)

n (pi) , (2.196)

over the single-particle soft phase space. The explicit expression for S
(0)
n, 1(k, βi) has

been provided in Eq.(2.158), which agrees with the eikonal kernel in Eq.(2.111).

Similarly, NLO collinear poles are cancelled by integrating the combination

K c
n+1 =

n∑
i=1

H(0) †
n (p1, . . . , pi−1, l, pi+1, . . . , pn) J

(0)
i, 1 (ki; l, pi, ni) ×

× H(0)
n (p1, . . . , pi−1, l, pi+1, . . . , pn) ; (2.197)

note that, for gluons, the function Ji, 1 is a spin matrix acting on the spin-correlated

Born. The double subtraction of soft and collinear singularities overcounts the soft-

collinear regions: one must therefore add back a local soft-collinear counterterm,

given by

K sc
n+1 =

n∑
i=1

H(0) †
n (p1, . . . , pi−1, l, pi+1, . . . , pn) J

(0)
i,E, 1(ki; l, pi, ni) ×

× H(0)
n (p1, . . . , pi−1, l, pi+1, . . . , pn) , (2.198)

which returns precisely the singular structure in Eq.(2.128). Note that, in the

collinear sector the definition of the candidate counterterm in (2.197)-(2.198) is

not minimal, since jet functions in general contain non-singular contributions: in

order to work with a simpler counterterm, one may take the leading power of

the jet function as the branching momentum goes on-shell, l2 → 0. The explicit

computation of the collinear and the soft-collinear counterterms, implemented

under the l2 → 0, reveals that the counterterms defined via virtual-correction

approach precisely coincides with the collection of the leading behaviour of the

real matrix element under IR limits (see for instance the expression of the jet

function J
(0)
i, 1 in Eq.(2.184), corresponding to the q → gq splitting, which matches

Eq.(2.122)).

Let us emphasise that the present approach provides a simple proof that the list

of singular regions for real radiation considered here is exhaustive, and collinear

regions for radiation from different outgoing hard particles do not interfere. While

these facts are well-understood at NLO, their generalisations at higher orders are

much less obvious. On the other hand, we note that these result do not yet con-

stitute a subtraction algorithm at NLO: indeed, one can see that the tree-level

matrix elements appearing in Eq. (2.197) involve particles that are not on the

mass-shell, except in the strict collinear limit, while momentum conservation is
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not properly implemented in Eq. (2.196), except in the strict soft limit. A prac-

tical algorithm must provide a resolution of these issues, with the construction of

suitable momentum mappings between the Born and the radiative configurations,

either with global treatment of phase space, as done for example in [2, 133], or

with a decomposition into different singular regions, as done for example in [39].

2.11 Subtraction pattern at NNLO

The compact subtraction pattern implemented at NLO in Eq.(2.144) may suggest

that a natural generalisation can be also presented at NNLO. Although this simple

statement is actually true in principle, the intrinsic complexity of the problem

leads to highly non-trivial consequences. In particular, on top of the difficulties

of evaluating and integrating complete radiative matrix elements in d dimension,

at this perturbative order we also need to compute two-loop matrix elements, and

mixed real-virtual corrections. As a matter of fact, a generic distribution at order

O(α2
s) can be symbolically written as

dσNNLO

dX
= lim

d→4

{∫
dΦn V Vn δn(X) +

∫
dΦn+1 RVn+1 δn+1(X)

+

∫
dΦn+2RRn+2 δn+2(X)

}
, (2.199)

where the relevant integrands are the UV-renormalised double virtual matrix ele-

ment V V , the double real correction RR and the UV-renormalised real-virtual

correction RV . Such contributions are defined in terms of amplitude-level matrix

elements as

RRn+2 =
∣∣∣A(0)

n+2

∣∣∣2 , V Vn =
∣∣A(1)

n

∣∣2 + 2Re
[
A(0)†
n A(2)

n

]
,

RVn+1 = 2Re
[
A(0)†
n+1A(1)

n+1

]
. (2.200)

The infrared content of Eq.(2.200) is much richer with respect of the analogous at

NLO, and requires special care. In dimensional regularisation, the double virtual

displays up to a quadruple pole in ε, while the double real, which is finite in d = 4,

is characterised by up to four singularities in the double unresolved phase space.

These singularities are due to the fact that up to two emissions may become soft

and/or collinear simultaneously. Finally, RV manifests up to a double pole in

ε, originating from its one-loop nature, on top of two phase-space singularities.

To achieve a complete subtraction, following the virtual-correction approach men-

tioned above, we modify Eq. (2.199) by adding local integrated counterterms, and

subtracting back the corresponding unintegrated counterterms, in order to build
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an expression which is free of poles. We start by examining the double virtual

correction. As we will discuss in more details in Sec.2.14, the completeness re-

lations relevant for the double virtual matrix element involve single- and double-

unresolved phase space integrals. Therefore, two different integrated counterterms

are necessary to cancel all the explicit poles of V Vn. We label I
(2)
n the integrated

counterterm defined through a double phase space integral,

I (2)
n =

∫
dΦrad, 2K

(2)
n+2 , (2.201)

and I
(RV)
n the integrated counterterm corresponding to a single-unresolved integral

I(RV)
n =

∫
dΦrad, 1K

(RV)
n+1 . (2.202)

In analogy with the NLO case, we define radiation phase spaces by dΦrad, 2 ≡
dΦn+2/dΦn and dΦrad, 1 ≡ dΦn+2/dΦn+1. Given the properties of the integrated

counterterms, the combination[
V Vn + I (2)

n + I(RV)
n

]
, (2.203)

is finite in d = 4 by construction. According to the definitions in Eqs.(2.201)-

(2.202), the counterterms K
(2)
n+2 and K

(RV)
n+1 are naturally combined respectively

with the double-real and the real-virtual matrix elements. Eq.(2.199) can be then

rewritten as

dσNNLO

dX
=

∫
dΦn

[
V Vn + I (2)

n + I(RV)
n

]
δn(X)

+

∫
dΦn+1

[
RVn+1δn+1(X)−K(RV)

n+1 δn(X)
]

+

∫
dΦn+2

[
RRn+2 δn+2(X)−K (2)

n+2 δn(X)
]
. (2.204)

In this form it is evident that the first and the third lines in Eq. (2.204) are finite

in the limit ε → 0. The second line in Eq.(2.204) still contains poles stemming

both from RVn+1 and from K
(RV)
n+1 . The explicit divergences of RVn+1 can be cured

by applying the same procedure adopted at NLO, and introducing one integrated

counterterm I
(1)
n+1

I
(1)
n+1 =

∫
dΦrad, 1K

(1)
n+2 , (2.205)

where K
(1)
n+2 has to be combined with RRn. Finally, as we will explain in more

details in Sec.2.12, it is possible to define a peculiar completeness relation that

states the cancellation of the K
(RV)
n+1 poles though a further integrated counterterm
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I
(12)
n+1 , defined as

I
(12)
n+1 =

∫
dΦrad,1K

(12)
n+2 . (2.206)

We finally get

dσNNLO

dX
=

∫
dΦn

[
V Vn + I (2)

n + I(RV)
n

]
δn(X) (2.207)

+

∫
dΦn+1

[(
RVn+1 + I

(1)
n+1

)
δn+1(X)−

(
K

(RV)
n+1 + I

(12)
n+1

)
δn(X)

]
+

∫
dΦn+2

[
RRn+2 δn+2(X)−K (1)

n+2 δn+1(X)−
(
K

(2)
n+2 −K (12)

n+2

)
δn(X)

]
.

The interpretation of Eq. (2.207) is as follows: the first line is finite in ε, since

the combination I
(2)
n + I

(RV)
n exposes precisely the same poles as the V Vn. Such

poles have however a different origin: the integrated counterterm I
(2)
n returns ex-

plicit 1/ε singularities stemming from unresolved double real configurations, once

they are integrated over the double radiative phase space dΦrad, 2. The integrated

counterterm I
(RV)
n is instead responsible for the divergences produced by the unre-

solved single-radiative configurations, computed at one-loop order. In the second

line, the combinations(
RVn+1 + I

(1)
n+1

)
,

(
K

(RV)
n+1 + I

(12)
n+1

)
, (2.208)

are separately free of 1/ε poles. The difference between the two parenthesis may,

in principle, feature unsubtracted phase space singularities that are invisible to

the completeness relations we have exploited to cure the explicit poles of RVn+1

and K
(RV)
n+1 . However, such spurious singular phase space contributions may only

return finite terms to be added in the first line.

We can interpret Eq.(2.207), from a complementary point of view, analysing the

counterterms in view of the real-radiation approach. In the last line of Eq.(2.207),

the local counterterm K
(1)
n+2 features the subset of phase space singularities of RR,

stemming from the configurations where one parton becomes unresolved. K
(2)
n+2 is

responsible for subtractions in regions where two partons become simultaneously

unresolved. Factorisation dictates that K
(1)
n+2 must be given by an appropriate

soft or collinear splitting kernel, multiplied times the full squared matrix element

for single radiation in Φn+1. This matrix element, in particular, contains singular

configurations when the single radiated parton becomes unresolved: these config-

urations, however, are also included in the local counterterm K
(2)
n+2, which leads

to a double counting. To remove this double counting, we introduce the local
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counterterm K
(12)
n+2 , which is obtained by taking the single unresolved limits of

K
(2)
n+2. The configurations encoded by K

(2)
n+2 are those where two partons become

unresolved, but one of them becomes unresolved at a faster rate: in words, K
(2)
n+2

is the strongly-ordered limit of K
(12)
n+2 . To give an example, one can consider a

configuration containing three collinear partons, where two of them are more col-

limated than the others. Such kind of configurations are collectively referred as

strongly-ordered or hierarchic limits. Finally, the real-virtual counterterm is ex-

pected to match the phase-space singularities of RVn+1. From this perspective,

the counterterms K
(1)
n+2 , K

(2)
n+2 and K

(RV)
n+1 are naturally defined as the collection

of the leading power in the appropriate normal variables of the double-real and

the real-virtual matrix element, respectively. Moreover, the counterterm K
(12)
n+2

corresponds to the leading terms of K
(2)
n+2 under single IR limits. With these defin-

itions, the KLN theorem guarantees that the first line in Eq. (2.207) will be free

of infrared poles in dimensional regularisation; the third line is integrable in Φn+2,

since all phase space singularities have been subtracted without double countings;

in the second line, the two combinations in parentheses are free of poles. The

absence of poles in ε in the first parentheses in the second line of Eq. (2.207) is a

straightforward application of the KLN theorem. The cancellation of poles in the

second parentheses, on the other hand, is slightly more subtle, while still related

to the KLN theorem: we obtain K
(12)
n+2 by focusing on strongly-ordered configura-

tions where two partons become unresolved in a hierarchical sequence: if we now

integrate over the degrees of freedom of the ‘softer’ parton, we must recover the

poles of the real-virtual squared matrix element, in the limit when the emitted

parton is also becoming unresolved. However, the two parenthesis are individually

not integrable in Φn+1. As already mentioned, the cancellation of the phase space

singularities in the second line is highly non trivial, and in general it is not pro-

tected by the KLN theorem. To make the second line integrable, the integrated

counterterm I (12) has then to play a double role: it has to cancel the poles of

K(RV), and match I (1) under IR limits. The first requirement is automatically

verified by defining I (12) via completeness relations, while the second constraint

is not controlled by the virtual-correction approach nor by the real-radiation ap-

proach. We emphasise that a full subtraction of the phase space singularities can

always be achieved by modifying the natural definition of K (12) (or alternatively

of K(RV)), by adding appropriate contributions which integrate to finite quantities

when all phase space integrals have been performed.

In the remainder of this section, we discuss a systematic construction of the local

counterterms, which we will carry out explicitly at NNLO, but which is applicable

in principle at any perturbative order. We stress that the main goal of this section

is not the calculation of NNLO kernels, which have been known for a long time [24,
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26,27,29]: rather, we plan to show how information from the factorisation of virtual

corrections allows to organise and simplify the NNLO subtraction procedure.

We adopt an extremely simple strategy that, as mentioned, is trivial to automate.

Let us start from the top line in Eq.(2.207), which features the combination

V Vn + I (2)
n + I(RV)

n ≡ V Vn +

∫
dΦradK

(RV)
n+1 +

∫
dΦrad, 2K

(2)
n+2 , (2.209)

that is free of explicit poles by construction. To identify the counterterms, the first

step is to express the double virtual matrix element in terms of the universal soft,

jet and eikonal functions, by expanding and the squaring the factorised amplitude

in Eq.(2.132). We then apply the completeness relations in Eq.(2.154)-(2.178) to

cancel the virtual poles by means of appropriate single and double phase space

integrals of radiative functions. Such integrals can be associate to the two integ-

rated counterterms I (2) and I(RV), thus a definition for the corresponding K(RV)

and K (2) (middle and bottom line Eq.(2.207)) can be straightforwardly extracted.

With the same procedure we also identify K (1) by examining the singularities of

RV . The only missing ingredient is the definition of the strong-ordered coun-

terterm K (12), that requires a dedicated discussion.

Let us begin by computing the N2LO expansion of the virtual amplitude

An(pi) = A(0)
n (pi) + A(1)

n (pi) + A(2)
n (pi) + . . . (2.210)

=

[
S(0)
n (βi) + S(1)

n (βi) + S(2)
n (βi) + . . .

]
×

×
[
H(0)
n (pi) +H(1)

n (pi) +H(2)
n (pi) + . . .

]
×

n∏
i=1

Ji(pi)
JE, i(βi)

,

where the hard-collinear component is the most interesting part. The quotient

between the collinear and the eikonal function manifests indeed a non-trivial struc-

ture, which represents a significant example of how the factorisation approach

provides a simple strategy to avoid the double counting of the soft-collinear sin-

gularities. The series expansion of the jet functions ratio returns∏n
i Ji(pi)∏n
i JE, i(βi)

= 1 +
∑
i

(
J (1)
i (pi)− J (1)

E, i (βi)
)

(2.211)

+
∑
i,j=1
j>i

(
J (1)
i (pi)− J (1)

E, i (βi)
)(
J (1)
j (pj)− J (1)

E, j (βj)
)

+
n∑
i=1

[
J (2)
i (pi)− J (2)

E, i (βi)− J (1)
E, i (βi)

(
J (1)
i (pi)− J (1)

E, i (βi)
)]

,

In the first line we recognise the hard-collinear contribution at NLO, that we have
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Figure 2.11: Cancellation of soft poles illustrated with sample representative
diagrams.

already discussed in Sec.2.10. The second and the third lines represent the actual

N2LO contributions, featuring the singularities stemming from one and two hard-

leg respectively. The former term presents a NLO×NLO structure, and thus it

automatically encodes only hard-collinear poles. Also the third line can be shown

to not generate any soft divergence: indeed, while the function J (2)
i (pi) contains

up to two soft poles, generated by gluons that are both soft and collinear to the

i-th hard particle, the contributions in which both gluons are soft (on top of being

collinear) are cancelled by the second term in square bracket, J (2)
i,E (βi). Finally the

contributions in which only one of the two collinear gluons is soft are cancelled by

the last term in the square bracket. Notice the factorised form of that last term:

when one gluon is hard and the other one is soft, the soft gluon factorises from

the matrix element in the usual way. This cancellation mechanism is illustrated,

for a sample diagram, in Fig. 2.11. All this considered, we write the second order

amplitude

A(2)
n (pi) = S(0)

n (βi)H(2)
n (pi) + S(2)

n (βi)H(0)
n (pi) + S(1)

n (βi)H(1)
n (pi)

+
n∑
i=1

[
J (2)
i (pi)− J (2)

E, i (βi)− J (1)
E, i (βi)

(
J (1)
i (pi)− J (1)

E, i (βi)
)]
H(0)
n (pi)

+
n∑

i<j=1

(
J (1)
i (pi)− J (1)

E, i (βi)
)(
J (1)
j (pj)− J (1)

E, j (βj)
)
H(0)
n (pi)

+
n∑
i=1

(
J (1)
i (pi)− J (1)

E, i (βi)
)[
S(1)
n (βi)H(0)

n (pi) + S(0)
n (βi)H(1)

n (pi)
]
.

(2.212)

Several comments are in order. We begin by noting that the first term on the

first line is finite, being given by the action of the finite tree-level soft operator on

the two-loop finite hard remainder. The second term contains two-loop soft and

soft-collinear poles from the soft operator, giving singularities up to the maximum

allowed degree, 1/ε4. In the third term the one-loop soft operator acts on the

one-loop finite hard remainder, giving a single soft pole and a double soft-collinear

pole. The second line contains all double hard-collinear poles arising from two-loop

virtual corrections associated with a single hard external leg, yielding singularities

up to 1/ε2. The last two lines in Eq. (2.270) have a simpler interpretation: the third

line contains single hard collinear poles arising simultaneously on two different
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hard legs, i and j; the fourth line contains single hard collinear poles on the i-th

hard leg, accompanied by a soft single pole, or a soft-collinear double pole, or just

multiplied times a finite correction.

The next step is to construct the virtual contributions to the squared amplitude at

NNLO, namely the double virtual, and the real virtual corrections. In order for our

procedure to work, these must in turn be expressed in terms of the cross-section-

level virtual jet and soft functions, which is less than trivial since, at NNLO, all

functions involved receive contributions both from the interference between the

Born amplitude and the two-loop correction, and from the square of the one-loop

amplitudes. For example, the two-loop cross-section-level virtual soft function is

given by

S(2)
n = S(0) †

n S(2)
n + S(2) †

n S(0)
n + S(1) †

n S(1)
n . (2.213)

The two-loop unpolarised cross-section-level radiative jet function for a quark emit-

ting m gluons reads

J (2)
q,m =

∫
ddx eil·x

∑
{λj}

[
J (1) †
q,m (x) p/J (1)

q,m(0) + J (0) †
q,m (x) p/J (2)

q,m(0)

+J (0)
q,m(x) p/J (2) †

q,m (0)

]
, (2.214)

where p/ arises from the sum over the quark spin states. It is relatively simple to

organise the virtual poles in the real-virtual contribution to the squared matrix

element: this amounts essentially to a repetition of the NLO calculation, with

n+ 1 hard particles in the final state. One easily finds

RVn+1 ≡ 2 Re
[
A(0)†
n+1A(1)

n+1

]
= H(0) †

n+1 S
(1)
n+1, 0H(0)

n+1 +
n+1∑
i=1

H(0)
n+1

(
J

(1)
i, 0 − J (1)

i,E, 0

)
H(0)
n+1 + finite

= (RV )
(1s)
n+1 +

n+1∑
i=1

(RV )
(1hc)
n+1, i , (2.215)

where in the last equality we have divided the real-virtual singularities according

to their nature, specifying in the superscription the number of unresolved partons

and the regime in which the singularities are produced (soft or hard-collinear). To

compensate the explicit poles appearing in Eq.(2.215) we exploit the completeness

relations computed at NLO both for the soft and jet and eikonal jet functions, as

presented in Eq.(2.193)-(2.194). The integrand functions introduced in these equa-

tions represent indeed the single-unresolved local counterterms, that we organised
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as follows

K
(1)
n+2 = K

(1, 1s)
n+2 +K

(1, 1hc)
n+2

= H(0) †
n+1 S

(0)
n+1, 1H(0)

n+1 +
n∑
i=1

H(0) †
n+1

(
J

(0)
i, 1 − J (0)

i,E, 1

)
H(0)
n+1 . (2.216)

Double virtual poles, on the other hand, receive several non-trivial contributions,

that we classify as

V Vn ≡ (V V )(2s)
n + (V V )(1s)

n +
n∑
i=1

(V V )(2hc)
n, i +

n∑
i,j=1
j>i

(V V )(2hc)
n, ij

+
n∑
i=1

(V V )(1hc, 1s)
n, i +

n∑
i=1

(V V )(1hc)
n, i , (2.217)

where the superscriptions have to be read according to the conventions introduced

for the real-virtual. We will now go through the various contributions to the r.h.s.

of Eq. (2.217), identifying in each case the real radiation counterterms that are

needed to cancel the corresponding virtual poles. We start by considering the

pure soft sector, which includes the double-soft virtual contribution (V V )
(2s)
n , as

well as the single-soft virtual contribution (V V )
(1s)
n , that we reorganise in terms

of cross-section level functions as

(V V )(2s)
n = H(0) †

n S
(2)
n, 0H(0)

n , (2.218)

(V V )(1s)
n = H(0) †

n S
(1)
n, 0H(1)

n + H(1) †
n S

(1)
n, 0H(0)

n , (2.219)

where S
(2)
n, 0 was given in Eq. (2.213). The second line undergoes the same procedure

adopted for the soft component of the real-virtual matrix element, up to modifying

the number of the hard legs involved, and expanding the hard function to one-loop

order. The resulting counterterms, since they derive from an integral over a single-

unresolved phase space, contributes to K(RV). In particular, from Eq.(2.219) we

obtain

K
(RV, 1s)
n+1 = H(0) †

n S
(0)
n, 1H(1)

n + H(1) †
n S

(0)
n, 1H(0)

n . (2.220)

To cancel the poles of Eq.(2.218) the procedure is slightly more involved: we need

the completeness relation for the soft sector to NNLO, which reads

S
(2)
n,0(βi) +

∫
dΦ1 S

(1)
n, 1(k, βi) +

∫
dΦ2 S

(0)
n, 2(k1, k2, βi) = finite . (2.221)

It is natural at this point to identify two separate soft counterterms, character-

ised by their kinematic structure. In Eq.(2.221), the second term features an

integral over a single radiative phase space, thus contributes to the real-virtual
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counterterm, while the last term is defined in the double radiative phase space,

then its integrand provides a contribution to K (2). This way we introduce the

terms

K
(2, s)
n+2 = H(0) †

n S
(0)
n, 2H(0)

n , (2.222)

K
(RV, 2s)
n+1 = H(0) †

n S
(1)
n, 1H(0)

n , (2.223)

where the second line together with Eq.(2.220) realise the full subtraction of the

real-virtual soft poles. We then have

K
(RV, s)
n+1 = K

(RV, 1s)
n+1 +K

(RV, 2s)
n+1

= H(0) †
n S

(0)
n, 1H(1)

n + H(1) †
n S

(0)
n, 1H(0)

n + H(0) †
n S

(1)
n, 1H(0)

n . (2.224)

Turning to hard collinear poles, we first tackle the contribution with two hard

collinear virtual gluons attached to the same hard outgoing leg. It is given by

(V V )(2hc)
n, i = H(0) †

n

[
J

(2)
i, 0 − J (2)

i,E, 0 − J
(1)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

)]
H(0)
n . (2.225)

In order to cancel the poles of the first two terms in Eq. (2.225), we can use the

NNLO expansion of Eq. (2.178), which gives the finiteness condition

J
(2)
i,0 +

∫
dΦ1 J

(1)
i, 1 +

∫
dΦ2 J

(0)
i, 2 = finite , (2.226)

and the analogous expression for eikonal jets. The third term of Eq. (2.225) has

a different structure, since it is a product of two one-loop functions. One can

however cancel its poles with the same general approach, by using the fact that[
J

(1)
i,E,0 +

∫
dΦ1 J

(0)
i,E, 1

][
J

(1)
i,0 − J (1)

i,E,0 +

∫
dΦ′1

(
J

(0)
i, 1 − J (0)

i,E,1

)]
= finite . (2.227)

Once again, the contributions to different local counterterm functions can be iden-

tified by their phase space structure. We define

K
(2, 2hc)
n+2, i = H(0) †

n

[
J

(0)
i, 2 − J (0)

i,E, 2 − J (0)
i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

) ]
H(0)
n , (2.228)

K
(1, hc)
n+2, i = H(0) †

n

(
J

(0)
i, 1 − J (0)

i,E, 1

)
H(0)
n ,

K
(RV, 2hc)
n+1, i = H(0) †

n

[
J

(1)
i, 1 − J (1)

i,E, 1 −
(
J

(1)
i, 0 − J (1)

i,E, 0

)
J

(0)
i,E, 1

−J (1)
i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

)]
S

(0)
n, 0H(0)

n .

The remaining singular virtual contibutions do not present new difficulties. Hard

collinear virtual poles associated with two different hard legs can be organised in
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the form

(V V )(2, 2hc)
n, ij = H(0) †

n

(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(1)
j, 0 − J (1)

j,E, 0

)
H(0)
n . (2.229)

By using again the finiteness conditions stemming from Eq. (2.178) (and its eikonal

counterpart), we can cancel these poles by integrating the local counterterms

K
(2, 2hc)
n+2, ij = H(0) †

n

(
J

(0)
i, 1 − J (0)

i,E, 1

)(
J

(0)
j, 1 − J (0)

j,E, 1

)
H(0)
n

K
(RV, 2hc)
n+1, ij = H(0) †

n

[(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(0)
j, 1 − J (0)

j,E, 1

)
+ (i↔ j)

]
H(0)
n , (2.230)

while no single-unresolved counterterm in the (n+ 1)-particle phase space is re-

quired in this case. We are left with single hard collinear virtual poles, accompan-

ied by a single soft pole, or by a finite factor. They are given by

(V V )(1hc, 1s)
n, i = H(0) †

n

(
J

(1)
i, 0 − J (1)

i,E, 0

)
S

(1)
n, 0H(0)

n , (2.231)

(V V )(1hc)
n, i = H(0) †

n

(
J

(1)
i, 0 − J (1)

i,E, 0

)
S

(0)
n, 0H(1)

n +H(1) †
n

(
J

(1)
i, 0 − J (1)

i,E, 0

)
S

(0)
n, 0H(0)

n .

Proceeding as above, we find that these poles can be cancelled by integrating the

local counterterms

K
(2, 1hc, 1s)
n+2, i = H(0) †

n

(
J

(0)
i, 1 − J (0)

i,E, 1

)
S

(0)
n, 1H(0)

n , (2.232)

K
(RV, 1hc, 1s)
n+1, i = H(0) †

n

(
J

(1)
i, 0 − J (1)

i,E, 0

)
S

(0)
n, 1H(0)

n +H(0) †
n

(
J

(0)
i, 1 − J (0)

i,E, 1

)
S

(1)
n, 0H(0)

n ,

K
(RV, 1hc)
n+1, i = H(0) †

n

(
J

(0)
i, 1 − J (0)

i,E, 1

)
S

(0)
n, 0H(1)

n +H(1) †
n

(
J

(0)
i, 1 − J (0)

i,E, 1

)
S

(0)
n, 0H(0)

n .

which completes the list of local counterterms needed to cancel the double-virtual

and the real-virtual explicit poles (see the Table below for a summary of the

counterterms defined up to this point). The only missing ingredient is the local

counterterm K
(12)
n+2 , which is designed to be integrated over the single unresolved

phase space, yielding the integrated counterterm I
(12)
n+1 , which must cancel the ex-

plicit poles of the real-virtual counterterm K
(RV)
n+1 . K

(12)
n+2 can be obtained by taking

strongly ordered soft and collinear limits of the double real matrix element, or equi-

valently the single-unresolved limits of the double unresolved counterterm K
(2)
n+2.

If we focus on the soft component of K
(2)
n+2, namely the contribution in Eq.(2.223),

an explicit calculation of S
(0)
n, 2 from its definition in (2.153) yields naturally to a

double democratic soft current. We dub democratic the configurations featuring

partons that become unresolved at the same rate. In the case of S
(0)
n, 2(k1, k2; βi),

this means that the rateo k1/k2 is of order one.

The strongly-ordered current can be then extracted from (2.162) by taking the

limit in which k2 is much softer than k1, or viceversa. The hierarchical limit ofK
(2s)
n+2
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is constructed essentially by treating one of the two soft radiated particles tempor-

arily as a hard one: it gives therefore precisely the desired function K
(12, 2s)
n+2 , which,

upon integration, will cancel the explicit double-soft poles of the real-virtual local

counterterm. A similar pattern can be replicated for the other double-unresolved

local counterterms, in all cases in which a hierarchy between the two unresolved

particles can be identified. Although the procedure above is clearly correct, it is

also interesting to study the possibility of giving operator expressions directly for

strongly ordered kernels, which can be achieved in principle by re-factorising soft

and jet matrix elements in the appropriate limits. Aside from the intrinsic interest

of these limits, such a description can be useful to provide a formal proof of the

cancellations taking place in our all-order subtraction formula, Eq. (3.397), which

here have only been argued on physical grounds. A preliminary analysis of possible

operator expressions for strongly ordered limits is present below, in Section 2.12.
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2.12 Strongly-ordered limits in the light of factorisation

In order to complete our discussion about operator definitions for IR counterterms,

we now tackle the issue of reproducing hierarchical limits starting from the uni-

versal functions appearing in the factorisation formula. The jet and the soft func-

tions in Eq.(2.153)-(2.175) reproduce the relevant multiple singular configurations

without imposing any hierarchy on the unresolved partons. At NNLO the coun-

terterms derived from these functions are thus naturally identified as contributions

to K
(2)
n+2, hence a procedure is necessary to extract the strongly-ordered configur-

ations entering K
(12)
n+2 , and similarly for higher-order subtractions.

We start by analysing the double-soft case at tree level. In the limit in which one

of the two radiated gluons is much softer than the other, k2 � k1, the strongly-

ordered double-soft current is [27][
J

(0), s.o.
CG

]a1a2

µ1µ2

(k1, k2; βi) =

(
J (0) a2
µ2

(k2)δa1a + igs f
a1a2a

k1, µ2

k1 · k2

)
J (0) a
µ1

(k1) ,(2.233)

where

J (0) a
µ (k) = gs

n∑
i=1

βi, µ
βi · k

T ai . (2.234)

The same expression could be obtained from factorisation by considering the tree-

level double-radiative soft function S(0)
n, 2 (k1, ξ2 k2; βi), stripping off the two gluon

polarisastion tensors and retaining the leading power of its limit ξ2 → 0. However,

it is desirable to give a definition to strongly-ordered soft operators without re-

sorting to an a posteriori limit operation on unordered configurations, which can

in fact be achieved by applying soft factorisation in an iterative fashion.

The key idea is that in the limit k2 � k1 � µ, with µ a typical hard scale of

the process, gluon 1 (corresponding to momentum k1) is soft with respect to the n

hard Born legs, but is seen as a hard parton if probed by gluon 2 (with momentum

k2). This implies that the soft emission of gluon 1 is described by a soft current

featuring n Wilson lines, corresponding to the Born partons, while the emission

of gluon 2 is ruled by a soft current featuring n + 1 Wilson lines, of which one

(in the adjoint representation) corresponds to gluon 1. We dub wilsonisation such

a description of gluon 1 in terms of a Wilson line, and represent it pictorially in

Fig.2.12 in the simplified case with n = 2. The concept of wilsonisation clearly

encodes the fact that the emissions of gluons 1 and 2 take place at well separated

time scales, whence gluon 1, although soft, becomes a classical source for the softer

emission of gluon 2, as well as the n Born partons.
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+ + +

Figure 2.12: The wilsonisation mechanism illustrated for two hard lines.

A natural definition for a strongly-ordered tree-level double-soft radiative function

is thus[
S(0) s.o.
n; 1, 1

]a1a2

{(diei)}
(k1, k2; βi) ≡ 〈k2, a2, λ2|

n∏
i=1

Φdici
βi

(0,∞) Φa1b
βk1

(0,∞) |0〉 ×

× 〈k1, b, λ1|
n∏
i=1

Φciei
βi

(0,∞) |0〉
∣∣∣∣
tree

≡
[
S(0)
n+1,1

]a2

{(dici)}(a1b)
(k2; βi, βk1)

[
S(0)
n,1

]b
{(ciei)}

(k1; βi) ,

(2.235)

where one can recognise the factorised emission amplitude of gluon 2 off n + 1

Wilson lines (first line) times the radiation of gluon k1 off n Born Wilson lines

(second line). It is straightforward to verify that Eq. (2.235) yields precisely[
S(0) s.o.
n; 1, 1

]a1a2

{(diei)}
(k1, k2; βi) = ε∗µ1

(λ1)(k1) ε∗µ2

(λ2)(k2)
[
J

(0), s.o.
CG

]a1a2

µ1µ2

(k1, k2; βi) , (2.236)

and the strongly-ordered double-soft counterterm K
(12), s
n+2 is obtained by squaring

Eq. (2.235).

By iterating the wilsonisation procedure, the triple-soft current in the strongly-

ordered kinematics k3 � k2 � k1 is defined as[
S(0) s.o.
n,1,1,1

]a1a2a3

{(fiei)}
(k1, k2, k3; βi) =

=
[
S(0)
n+2,1

]a3

{(fidi)}(a1b1)(a2b2)

[
S(0)
n+1,1

]b2
{(dici)}(b1g1)

[
S(0)
n,1

]g1

{(ciei)}

= 〈k3, a3, λ3|
n∏
i=1

Φfidi
βi

(0,∞)Φa1b1
βk1

(0,∞)Φa2b2
βk2

(0,∞)|0〉 ×

× 〈k2, b2, λ2|
n∏
i=1

Φdici
βi

(0,∞)Φb1g1

βk1
(0,∞)|0〉 ×

×〈k1, g1, λ1|
n∏
i=1

Φciei
βi

(0,∞)|0〉
∣∣∣∣
tree

, (2.237)

where, on top of the double radiation already detailed in Eq. (2.235), we recognise

the emission of the softest gluon 3 (with momentum k3) from a set of n + 2
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Wilson lines (second to last line), of which two correspond to gluons 1 and 2

through a double wilsonisation. The above expression coincides with the intuitive

generalisation of the two-gluon case:

[
S(0) s.o.
n,1,1,1

]a1a2a3 = ε∗ (λ3)
µ3

(k3) ε∗ (λ2)
µ2

(k2) ε∗ (λ1)
µ1

(k1)

[
Jµ3
a3

(k3)δa1b1δa2b2

+igs f
a1a3b1δa2b2

kµ3

1

k1 · k3

+ igs f
a2a3b2δa1b1

kµ3

2

k2 · k3

]

×
[
Jµ2

b2
(k2)δb1c1 + igs f

b1b2c1
kµ2

1

k1 · k2

]
Jµ1
c1

(k1) , (2.238)

in agreement with the strongly-ordered limit of the triple-soft current presented

in Ref. [134].

Based on the above physical discussion, and on the explicit form of the strongly-

ordered currents for up to three soft radiations at tree-level, it is natural to expect

the current for m strongly-ordered soft radiations km � km−1 � · · · � k1 to be

given by[
S(0) s.o.
n,1,...,1

]a11...a1m

{(b1` bm+1`)}
=

=
m∏
i=1

〈km−i+1, aim−i+1|
n∏
`=1

Φ
bi` bi+1`

β`
(0,∞)

m−i∏
p=1

Φ
aip ai+1p

βkp
(0,∞) |0〉

∣∣∣∣
tree

=
m∏
i=1

[
S(0)
n+m−i,1

]aim−i+1

{(bi` bi+1`)}(ai1 ai+1 1)...(aim−i ai+1m−i)

=
m∏
i=1

ε∗(λm−i+1)
µm−i+1

(km−i+1)

[
Jµm−i+1
aim−i+1

(km−i+1)
m−i∏
p=1

δaipai+1p

+
m−i∑
k=1

k
µm−i+1

k

kk · km−i+1

igsf
aikaim−i+1ai+1k

m−i∏
j=1
j 6=k

δaijai+1j

]
. (2.239)

We point out that, although our analysis has focused on tree-level soft amplitudes,

the process of wilsonisation described above is expected to be the key for the defin-

ition of the strongly-ordered soft limits at loop level as well.

The last strongly-ordered configuration to be considered is the multiple collinear

limit. For instance, at NNLO, this corresponds to a kinematics in which three

partons i, j, k are collinear, with relative angles θij, θik, θjk � 1, with two of

them featuring a dominant collinearity, θij � θik, θjk. It is very well known that

the strongly-ordered collinear limit of scattering amplitudes squared factorises in
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products of Altarelli-Parisi kernels, which, in general, are matrices in spin space.

For instance, the NNLO strongly-ordered collinear limit for the q → q′1q̄
′
2q3 is (see

for example [135])

K
(12), c
n+2

∣∣∣∣
q′1q̄
′
2q3

=
N 2

s12s[12]3

Pαβ
gq (z[12], q⊥) dαµ(k[12], n)P µν

qq̄

(
z1

z[12]

, k⊥

)
dνβ(k[12], n) ,

(2.240)

where we have defined the normalisation factor as N = 8παS

(
µ2eγE

4π

)ε
, the inter-

mediate particle momentum is k[12] = k1 +k2, its collinear energy fraction is z[12] =

z1 +z2 = 1−z3, and s[12]3 = 2 k[12] ·k3, while dρσ(k, n) = −gρσ +(kρnσ +kσnρ)/k ·n
is the gluon polarisation tensor. The momenta q⊥ and k⊥ specify the transverse

direction for the branchings q → q3g[12] and g[12] → q′1q̄
′
2, respectively, and their

definitions follow from the Sudakov parametrisation of momenta ki (i = 1, 2, 3):

kµi = zi p
µ + k⊥i −

k2
⊥i
zi

nµ

2p · n , q⊥ = k⊥3 , k⊥ = z2k⊥1 − z1k⊥2 . (2.241)

The kernel Pαβ
gq describes the splitting of an ancestor quark into a quark-gluon pair,

keeping the spin indices of the gluon un-contracted. As such, it represents the spin

matrix acting on the subsequent splitting of the gluon in a quark-antiquark pair,

described by P µν
qq̄ . The explicit form of the relevant kernels is

P µν
qq̄ (z, k) = TR

(
−gµν + 4z(1− z)

kµkν

k2

)
,

Pαβ
gq (z, k) =

CF
2TR

zP µν
qq̄ (1/z, k) . (2.242)

To obtain the strongly-ordered expression by means of factorisation we first notice

that the jet functions introduced in Eq. (2.175)-(2.177) are not yet optimised to

keep track of the spin indices of the radiated gluons, as is necessary to reproduce

Pαβ
gq . However, full spin information can simply be recovered by omitting the sum

over helicities {λj} and dropping gluon polarisation vectors in Eq. (2.175)-(2.177),

namely considering jets with uncontracted indices defined as

Jq,m (k1, . . . , km; l, p, n) ≡ Jα1β1···αmβm
q,m (k1, . . . , km; l, p, n)

m∏
i=1

ε∗ (λi)
αi

(ki) ε
(λi)
βi

(ki) ,

Jµνg,m (k1, . . . , km; l, k, n) ≡ Jµν, α1β1···αmβm
g,m (k1, . . . , km; l, k, n)

m∏
i=1

ε∗ (λi)
αi

(ki) ε
(λi)
βi

(ki) .

(2.243)
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The tree-level strongly-ordered quark jet radiating a q′q̄′ pair is

J
(0) s.o.

q3,q′1q̄
′
2
(k1, k2, k3; l, p, n) = J

(0)αβ
q,1 (Q; l, k3, n) dαµ(Q, n) ×
×J (0)µν

g,1 (k1;Q, k2, n) dνβ(Q, n) ,

(2.244)

where

Qµ = z[12]p
µ − qµ⊥ −

q2
⊥

z[12]

nµ

2p · n , (2.245)

and we have implicitly summed over the ancestor quark polarisations. The cor-

responding counterterm is

K
(12), c
n+2

∣∣∣∣
q′1q̄
′
2q3

= lim
k⊥→ 0
q⊥→ 0

∫
ddl

(2π)d
ddQ

(2π)d
J

(0) s.o.

q3,q′1q̄
′
2
(k1, k2, k3; l, p, n) , (2.246)

where the double integration gets rid of the momentum conserving Dirac delta

functions implicit in J (0) s.o.. The case of a strongly-ordered splitting involving an

intermediate quark is fully analogous, with the quark polarisation tensor replacing

dαµ(Q, n), resulting a simple product between jet functions. For instance, the

abelian contribution to a strongly-ordered q → q1g2g3 splitting is

J (0) s.o.
g3,q1g2

(k1, k2, k3, n) = J
(0)
q,1 (k3; l, Q, n) J

(0)
q,1 (k2;Q, k1, n) . (2.247)

In analogy with what happens in the soft case, the iterative structure of jet oper-

ators at tree level generalises to all orders, which for instance be checked against

the explicit computation of [136] in the case of four collinear partons.

2.12.1 Strongly-ordered limits and the poles of the real-virtual coun-

terterm

The explicit definition of strongly-ordered kernels opens the possibility of a further

important test for our method. As discussed in Sec.2.11, in order to achieve a fully

local subtraction at NNLO, the three lines on the r.h.s. of Eq. (2.207) have to

be separately finite in four dimensions and integrable over the whole phase space.

In this section we will focus on the pole content of the second line. Since the

combination RVn+1 + I
(1)
n+1 is finite in four dimensions, owing to the KLN theorem,

in our minimal subtraction scheme I
(12)
n+1 has to cancel the explicit poles of the real-

virtual counterterm K
(RV)
n+1 . This way, the second line of in Eq.(2.207) is globally

free of 1/εk contributions.
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To verify soft pole cancellation between I
(12)
n+1 and the real-virtual counterterm, we

first introduce the strongly-ordered soft function at cross-section level as[
S

(0) s.o.
n; 1, 1

]
{(gidi)}

≡
[
S

(0) s.o.
n; 1, 1

]
{(gidi)}

(k1, k2; βi)

= 〈0|
n∏
i=1

Φeifi
βi

(∞, 0) |k1,m〉 ×

× 〈0|
n∏
i=1

Φfigi
βi

(∞, 0) Φma1
βk1

(∞, 0) |k2, a2〉 ×

× 〈k2, a2|
n∏
i=1

Φdici
βi

(0,∞) Φa1b
βk1

(0,∞) |0〉 〈k1, b|
n∏
i=1

Φciei
βi

(0,∞) |0〉
∣∣∣∣
tree

≡
[
S(0)†
n,1

]m
{(eifi)}

(k1; βi)
[
S(0)†
n+1,1

]a2

{(figi)}(ma1)
(k2; βi, βk1) ×

×
[
S(0)
n+1,1

]a2

{(dici)}(a1b)
(k2; βi, βk1)

[
S(0)
n,1

]b
{(ciei)}

(k1; βi) , (2.248)

which coincides with K
(12)
n+2 in the pure soft regime. Under the same soft limit, we

consider the singular structures arising from the real-virtual matrix element and

encoded by the corresponding counterterm, see Eq.(2.224)

K
(RV, s)
n+1 = H(0) †

n S
(0)
n, 1H(1)

n + H(1) †
n S

(0)
n, 1H(0)

n + H(0) †
n S

(1)
n, 1H(0)

n . (2.249)

In this form it is evident that the 1/ε contributions to K
(RV, s)
n+1 are entirely re-

produced by S
(1)
n,1, since H(1)

n is finite in the limit ε → 0 and S
(0)
n, 1 features only

phase-space singularities. Hence, to verify the pole cancellation we have to prove

that ∫
dΦrad, k1 S

(0) s.o.
n; 1, 1 (k1, k2; βi) + S

(1)
n,1 (k2; βi) = finite (2.250)

in d = 4. At this point, by observing the definition in Eq.(2.248) one can easily

notice that the integral over the phase space of k1 only affects the soft functions

with n+ 1 hard legs, i.e. S(0)
n+1,1 and S(0)†

n+1,1. They organise themselves in a cross-

section-level matrix element

S
(0)
n+1,1 (k2; βi, βk1) = S(0)†

n+1,1 (k2; βi, βk1)S(0)
n+1,1 (k2; βi, βk1) , (2.251)

which corresponds to the eikonal transition probability defined in Eq.(2.153) in

the case n → n + 1, m → 1. As already mentioned for Eq.(2.193), at one loop

such transition probability satisfies the following completeness relation

S
(1)
n+1,0 (βi, βk1) +

∫
dΦrad, k1 S

(0)
n+1,1 (k2; βi, βk1) = finite . (2.252)
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Therefore, using Eq.(2.248), the first term in Eq.(2.250) fulfils (up to finite terms)

the equivalence∫
dΦn+2

r1, k1
S

(0) s.o.
n; 1, 1 (k1, k2; βi) = −S(0)†

n, 1 (k1; βi)S
(1)
n+1, 0 (βi, βk1)S(0)

n, 1 (k1; βi)(2.253)

where the color indices are understood. Furthermore, the one-loop radiative soft

function appearing in the second term of Eq.(2.250) is known at amplitude level

(see Eq.(2.254)) in terms of the Catani-Grazzini one-loop soft current and reads

S(1)
n, 1 (k; βi) = ε∗ (λ)(k) · J (1)

CG (k, βi) + S(0)
n, 1 (k; βi) S(1)

n (βi) , (2.254)

with J
(1)
CG (k, βi) defined in Ref. [29].

We have explicitly verified in Appendix A that the 1/εk poles produced by the

right-hand side of Eq.(2.253) match exactly, with opposite sign, the ones appear-

ing in the modulus squared of Eq.(2.254), which are computed starting from the

operator definitions in Eq.(2.150) and Eq.(2.153). This yields a finite sum in the

left-hand side of Eq.(2.250), which proves our finiteness claim for the soft com-

ponent.

We expect such cancellation to occur also in the collinear sector, which however

involves a much more cumbersome validation. Although the strong-ordered kernel

has a simple operator definition, that can be easily integrated in the single unre-

solved phase-space, the cancellation with the real-virtual counterterm requires the

evaluation of one-loop jet (and eikonal) functions (see for instance the last line in

Eq.(2.229)). One of the reasons why the collinear sector is less straightforward

than the soft componen is the lack of an explicit relation between the the radiat-

ive jet function (both for quark and gluon induced processes) and the real-virtual

collinear kernel. In particular, the evaluation of a one-loop jet function requires to

make a choice for the auxiliary vector nµ: an on-shell massless vector is a necessary

choice to simplify the computation, allowing for a fully analytic result. However,

as already mentioned, the same choice implies the introduction of spurious diver-

gences, which have to be identified and eliminated before tackling the cancellation

with the strongly-ordered operator.

To conclude this part we emphasise that the formalism presented above attempts

to bridge the gap between the well-understood factorisation of infrared poles in

virtual corrections to fixed-angle scattering amplitudes, and the construction and

organisation of local real-radiation counterterms, suited to cancel those poles upon

integration over the unresolved degrees of freedom. This organisation provides
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useful and independent informations for all those subtraction procedure based on

a core pattern analogous to the one in Eq.(2.207).

2.13 Generalisation to N3LO

The pattern of cancellations described at NNLO can be naturally generalised to

N3LO. In this case, we need to combine three-loop, triple-virtual corrections with

triple-real emission, and we must include the double-real correction decorated with

one loop, and the single-radiative matrix element at two-loop order. The relevant

contributions are given by

V V Vn = 2Re
[
A(0) †
n A(3)

n +A(1) †
n A(2)

n

]
, RRRn+3 =

∣∣∣A(0)
n+3

∣∣∣2 , (2.255)

RV Vn+1 =
∣∣∣A(1)

n+1

∣∣∣2 + 2Re
[
A(0)†
n+1A(2)

n+1

]
, RRVn+2 = 2Re

[
A(0)†
n+2A(1)

n+2

]
.

The three-loop contribution to the differential distribution of an infrared-safe ob-

servable X can then be written as

dσN3LO

dX
= lim

d→4

{∫
dΦn V V Vn δn(X) +

∫
dΦn+1RV Vn+1 δn+1(X) (2.256)

+

∫
dΦn+2RRVn+2 δn+2(X) +

∫
dΦn+3RRRn+3 δn+3(X)

}
.

We now need to add a set of counterterms, and subtract back their integrals,

in order to make each contribution to Eq. (2.256) separately free of poles. This

requires the introduction of a total of eleven local functions, that we define in

agreement with the virtual-correction approach, already applied at NNLO. The

triple virtual matrix element exposes up to 1/ε6 poles, which can be eliminated

by introducing integrated counterterms, I
(RVV)
n , I

(RRV,2)
n , I

(3)
n , defined as single-,

double- and triple-unresolved phase space integrals

I(RVV)
n =

∫
dΦrad, 1K

(RVV)
n+1 , I(RRV,2)

n =

∫
dΦrad, 2K

(RRV,2)
n+2 , (2.257)

I (3)
n =

∫
dΦrad, 3K

(3)
n+3, (2.258)

where, in general, dΦrad,m ≡ dΦn+p/dΦn+p−m. With similar arguments, the double

virtual radiative matrix element requires two integrated counterterms, I
(2)
n+1 and

I
(RRV,1)
n+1 , to return a finite quantity (the subtraction of the RRVn+2 poles proceeds

analogously to what done for the double-virtual matrix element at NLO). Such
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integrated counterterms are given by

I
(2)
n+1 =

∫
dΦrad, 2K

(2)
n+3 , I

(RRV,1)
n+1 =

∫
dΦrad, 1K

(RRV,1)
n+2 . (2.259)

Next we turn to the double-real virtual matrix element, whose poles derive from

its one-loop nature and need a single one-unresolved counterterm to be subtracted

I
(1)
n+2 =

∫
dΦrad, 1K

(1)
n+3 . (2.260)

Given all the counterterms and their integrated counterparts introduced in Eqs.(2.258)-

(2.260), the distribution in Eq.(2.256) can be identically rewritten as

dσN3LO

dX
=

∫
dΦn

[
V V Vn + I (3)

n + I(RVV)
n + I(RRV,2)

n

]
δn(X)

+

∫
dΦn+1

[(
RV Vn+1 + I

(2)
n+1 + I

(RRV,1)
n+1

)
δn+1(X)−K(RVV)

n+1 δn(X)

]

+

∫
dΦn+2

[(
RRVn+2 + I

(1)
n+2

)
δn+2(X)−K(RRV,1)

n+2 δn+1(X)

−K(RRV,2)
n+2 δn(X)

]
+

∫
dΦn+3

[
RRRn+3 δn+3(X)−K (1)

n+3 δn+2(X)

−K (2)
n+3 δn+1(X)−K(3)

n+3 δn(X)

]
, (2.261)

where the first line is now finite by construction, as well as the last line. The re-

maining lines are however still divergent in ε (and also non-integrable), since all the

counterterms we have introduced expose explicit poles. For instance, K
(RVV)
n+1 is

affected by up to quadruple poles in ε, since it encodes double-virtual corrections.

To cancel those divergencies one can introduce specific completeness relations in-

volving double and single phase space integrals

I
(23)
n+1 =

∫
dΦrad, 2K

(23)
n+3 , I

(RRV,12)
n+1 =

∫
dΦrad, 1K

(RRV,12)
n+2 , (2.262)

such that the combination

K
(RVV)
n+1 + I

(23)
n+1 + I

(RRV,12)
n+1 , (2.263)

can be computed in d = 4. Similarly, the counterterms K
(RRV,1)
n+2 , K

(RRV,2)
n+2 and

K
(RRV,12)
n+2 , embody a single-loop correction, and therefore (as done at NLO) they
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require only one additional integrated counterterm each,

I
(12)
n+2 =

∫
dΦrad, 1K

(12)
n+3 , I

(13)
n+2 =

∫
dΦrad, 1K

(13)
n+3 , (2.264)

I
(123)
n+2 =

∫
dΦrad, 1K

(123)
n+3 .

The combinations(
K

(RRV,1)
n+2 + I

(12)
n+2

)
,
(
K

(RRV,2)
n+2 + I

(13)
n+2

)
,
(
K

(RRV,12)
n+2 + I

(123)
n+2

)
. (2.265)

are then separately finite for ε→ 0. The resulting subtraction pattern reads

dσN3LO

dX
=

∫
dΦn

[
V V Vn + I (3)

n + I(RVV)
n + I(RRV,2)

n

]
δn(X) (2.266)

+

∫
dΦn+1

[(
RV Vn+1 + I

(2)
n+1 + I

(RRV,1)
n+1

)
δn+1(X)

−
(
K

(RVV)
n+1 + I

(23)
n+1 + I

(RRV,12)
n+1

)
δn(X)

]

+

∫
dΦn+2

{(
RRVn+2 + I

(1)
n+2

)
δn+2(X)−

(
K

(RRV,1)
n+2 + I

(12)
n+2

)
δn+1(X)

−
[(

K
(RRV,2)
n+2 + I

(13)
n+2

)
−
(
K

(RRV,12)
n+2 + I

(123)
n+2

)]
δn(X)

}

+

∫
dΦn+3

[
RRRn+3 δn+3(X)−K (1)

n+3 δn+2(X)

−
(
K

(2)
n+3 −K (12)

n+3

)
δn+1(X)

−
(
K

(3)
n+3 −K(13)

n+3 −K(23)
n+3 +K

(123)
n+3

)
δn(X)

]
.

To present the physical interpretation of the K
(m)
` functions it is useful to exam-

ine one line at a time, exploiting the perspective of the real-radiation approach.

One can begin with the last integral in the triple-radiation phase space Φn+3.

All terms in the integrand are finite, since they arise from tree-level diagrams,

but they display an intricate pattern of phase-space singularities: we proceed by

subtracting single-unresolved configurations, described at leading power by K
(1)
n+3,

double-unresolved configurations, described by K
(2)
n+3, and triple unresolved con-

figurations, described by K
(3)
n+3. In doing so, we have however over-subtracted all

strongly-ordered unresolved configurations, which must be added back: in partic-

ular, the double-unresolved counterterm contains a single strongly-ordered sub-

region, described by K
(12)
n+3 ; the triple-unresolved configuration, on the other hand,

contains a hierarchy of strong orderings: one parton can become unresolved at a
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higher rate than the other two, a sub-region described by K
(13)
n+3 , or two partons

can become unresolved at a higher rate than the third one, which is captured by

K
(23)
n+3 ; once these are subtracted from K

(3)
n+3, one must note that the fully hier-

archical configuration, in which each parton becomes unresolved faster than the

next one, has been counted once with a positive sign and twice with a negative

sign, so that it must be added back: this is described by K
(123)
n+3 . Moving upwards

in Eq. (2.266), we now consider the integral in the (n+ 2)-particle phase space.

Explicit poles in the RRVn+2 matrix element are subtracted by I
(1)
n+2, which is

obtained by integrating single-unresolved radiation in Φn+3, represented by the

local counterterm K
(1)
n+3. The finite quantity thus constructed is still affected

by phase space singularities involving up to two partons: one must therefore

replicate the construction performed at NNLO for double-unresolved radiation,

introducing three local counterterms in Φn+2, mimicking respectively the single-

unresolved, double-unresolved, and strongly-ordered singular limits of RRVn+2,

namely K
(RRV,1)
n+2 , K

(RRV,2)
n+2 , K

(RRV,12)
n+2 . Each one of these three counterterms,

furthermore, is affected by explicit poles in ε, since they are defined at one loop.

These poles must, and can, be subtracted: they are given, with the opposite sign,

by the integrals of the strongly-ordered counterterms in Φn+3. To understand this,

consider for example the counterterm for double-unresolved real radiation at one

loop, K
(RRV,2)
n+2 : by the KLN theorem, its poles must be cancelled by configur-

ations with three radiated partons, all becoming unresolved, where however one

parton becomes unresolved at a higher rate with respect to the other two. This

is precisely the object defined by I
(13)
n+2 . A similar reasoning leads to the identi-

fication of the other two subtractions cancelling the poles of the remaining RRV

local counterterms.

Double-virtual contributions, to be integrated in Φn+1, follow a somewhat sim-

pler pattern, since they involve only a single real radiation. The squared matrix

element RV Vn+1 has two-loop virtual poles, which are cancelled in part by the in-

tegral in dΦrad, 2 of the double-unresolved component of the triple-radiation matrix

element, and in part by the integral in dΦrad, 1 of the single-unresolved component

of the real-real-virtual matrix element. This leaves the phase-space singularities

of RV Vn+1, which requires one last local counterterm K
(RVV)
n+1 . Once again, this

local counterterm is affected by (two-loop) virtual poles: they are cancelled in

part by the integral in Φn+2 of the strongly-ordered triple-radiation counterterm

with two partons becoming unresolved faster than the third one, and in part by

the integral in Φn+1 of the strongly-ordered double-radiation counterterm with

one loop. Finally, triple-virtual poles in V V Vn are cancelled, as might be expec-

ted, by integrating the triple-unresolved triple-radiation counterterm in Φn+3, the

double-unresolved double-radiation one-loop counterterm in Φn+2, and the single-

unresolved single-radiation two-loop counterterm in Φn+1.
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We stress that the construction just described ensures the cancellation of all the 1/ε

poles, line-by-line in Eq.(2.266). The same does not necessarily hold for the phase

space singularities, which may survive in the second and in the third lines. We

expect such divergences to be cured by modifying the definitions of the strongly-

ordered counterterms, as at NNLO.

2.14 Soft and collinear counterterms at N3LO

The discussion in Section 2.11 provides a general picture of the subtraction of

infrared-singular momentum configurations in the distributions of infrared-safe

observables, up to NNLO. This discussion constitutes, however, only the starting

point for the construction of a practical subtraction algorithm. In particular, the

concrete definitions of the counterterms must provide a proper organisation of soft,

collinear, and soft-collinear singular regions, in such a way as to prevent double-

countings and over-subtractions. In this section, we explore the consequences

of the factorisation of infrared singularities in virtual corrections to scattering

amplitudes, as given in Eq. (2.132), for the structure of local counterterms for

real radiation, continuing the investigation initiated in Ref. [137], and extending it

to N3LO . We begin by constructing the perturbative expansion of the factorised

scattering amplitude up to three loops, and commenting on the consequences of

factorisation; then we go on to give detailed prescriptions on the calculation and

organisation of soft, collinear, and mixed local counterterms, up to N3LO .

2.14.1 The factorised amplitude up to N3LO

Before turning to our main focus, which is the structure of singular contributions

to real radiation, it is useful to consider briefly the consequences of factorisation

for virtual corrections. The following discussion is the natural generalisation of

the arguments presents in Sec.2.11. To begin with, let consider the ‘jet factor’ in

Eq. (2.132), i.e. the ratio of the products of jet functions and eikonal jet functions

for each hard parton. This factor is supposed to account for all hard collinear

singularities, with no soft poles (as those will be generated by the soft function in

Eq. (2.132)), thus providing a single infrared pole per loop. To understand how

this happens, let us expand the jet factor up to three loops: carefully organising
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the results, one obtains∏
i

Ji
Ji,E

= 1 +
∑
i

[
J (1)
i − J (1)

i,E

]
+

∑
i

[
J (2)
i − J (2)

i,E − J (1)
i,E

(
J (1)
i − J (1)

i,E

)]
+

∑
i, j>i

(
J (1)
i − J (1)

i,E

)(
J (1)
j − J (1)

j,E

)
+

∑
i

{
J (3)
i − J (3)

i,E − J (2)
i,E

(
J (1)
i − J (1)

i,E

)
−J (1)

i,E

[
J (2)
i − J (2)

i,E − J (1)
i,E

(
J (1)
i − J (1)

i,E

)]}

+
∑
i, j 6=i

[
J (2)
i − J (2)

i,E − J (1)
i,E

(
J (1)
i − J (1)

i,E

)](
J (1)
j − J (1)

j,E

)
+

∑
i, j>i

∑
k>j

(
J (1)
i − J (1)

i,E

)(
J (1)
j − J (1)

j,E

)(
J (1)
k − J

(1)
k,E

)
, (2.267)

where we have chosen the standard normalisation J (0)
i = J (0)

i,E = 1. The first three

lines in Eq.(2.267) coincide with the NNLO result presented in Eq.(2.212), which

has already been discussed. In short, at one loop order the cancellation of the

double-counted soft-collinear poles is apparent, since J (1)
i,E is constructed precisely

as the soft approximation to J (1)
i [9]. At two loops, the cancellation pattern is

less trivial: the third line in Eq. (2.267) contains pairs of hard-collinear one-loop

contributions from two different hard partons i and j, while on the second line

one finds double hard-collinear two-loop contributions arising from a single hard

parton, i. In the second line J (2)
i,E subtracts from J (2)

i the contributions where

both gluon loops are soft, while the last term in square brackets takes care of

contributions where only one of the two gluon loops is soft.

At three loops, this non-trivial pattern of cancellations generalises naturally: the

last line in Eq. (2.267) contains one-loop hard-collinear singularities on three differ-

ent hard legs; the second to last line contains all combinations involving two-loop

hard-collinear contributions associated with parton i, multiplied times one-loop

hard-collinear contributions involving parton j; finally, the first two lines are re-

sponsible for triple hard-collinear contributions from a single hard leg i. One ob-

serves again the factorised structure of these contributions, which is illustrated dia-

grammatically in Fig. 2.13. We emphasise that this organisation of soft-collinear

contributions, which generalises to higher orders, is ultimately a consequence of

gauge invariance, embodied by Ward identities: a diagram-by-diagram analysis,

say by the method of regions, would generate a much larger proliferation of terms,



Chapter 2. Factorisation Chapter 2 Factorisation

− − −

− − − −

Figure 2.13: Cancelling soft poles at three loops in a quark jet function, illus-
trated with sample representative diagrams.

which could be collected in the form of Eq. (2.267) only after non-trivial cancella-

tions.

Once the jet factor, given by Eq. (2.267), is folded in with the soft and hard

factors of the amplitude, as given by Eq. (2.132), one easily gets expressions for

the various orders in the perturbative expansion defined in Eq. (2.211). The first

three perturbative orders of An have already been investigated in the previous

Sections, so we just report here the corresponding expressions for completeness

A(0)
n = S(0)

n H(0)
n . (2.268)

A(1)
n = S(0)

n H(1)
n + S(1)

n H(0)
n +

∑
i

(
J (1)
i − J (1)

i,E

)
S(0)
n H(0)

n , (2.269)

A(2)
n = S(0)

n H(2)
n + S(2)

n H(0)
n + S(1)

n H(1)
n (2.270)

+
∑
i

[
J (2)
i −J (2)

i,E−J (1)
i,E

(
J (1)
i −J (1)

i,E

)]
S(0)
n H(0)

n

+
∑
i,j>i

(
J (1)
i −J (1)

i,E

)(
J (1)
j −J (1)

j,E

)
S(0)
n H(0)

n

+
∑
i

(
J (1)
i −J (1)

i,E

) [
S(1)
n H(0)

n + S(0)
n H(1)

n

]
.

In Eq. (2.270), we recognise that the first term is infrared finite; the second term

contains two-loop soft and soft-collinear singularities, and is the source of all

quartic and cubic 1/ε poles in the amplitude; the third term contains one-loop

soft and soft-collinear singularities, interfering with the one-loop hard matrix ele-

ment; the jet factor in the first line, as discussed below Eq. (2.267), is responsible

for all two-loop hard-collinear singularities associated with a single hard parton i;

the first term on the second line contains products of hard collinear poles on two

different legs of the amplitude; finally, the last term generates products of hard-

collinear and soft singularities, as well as single hard-collinear poles interfering

with the one-loop hard part.
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It is straightforward to continue the perturbative expansion of the amplitude to

three loops. After some reorganisation of the terms, one finds

A(3)
n = S(0)

n H(3)
n + S(1)

n H(2)
n + S(2)

n H(1)
n + S(3)

n H(0)
n (2.271)

+
∑
i

[
J (2)
i − J (2)

i,E − J (1)
i,E

(
J (1)
i − J (1)

i,E

) ] (
S(1)
n H(0)

n + S(0)
n H(1)

n

)
+

∑
i,j>i

(
J (1)
i − J (1)

i,E

)(
J (1)
j − J (1)

j,E

) (
S(1)
n H(0)

n + S(0)
n H(1)

n

)
+

∑
i

(
J (1)
i − J (1)

i,E

) [
S(1)
n H(1)

n + S(2)
n H(0)

n + S(0)
n H(2)

n

]
+

∑
i

{
J (3)
i − J (3)

i,E − J (2)
i,E

(
J (1)
i − J (1)

i,E

)
−J (1)

i,E

[
J (2)
i − J (2)

i,E − J (1)
i,E

(
J (1)
i − J (1)

i,E

)]
+
∑
j 6=i

[
J (2)
i − J (2)

i,E − J (1)
i,E

(
J (1)
i − J (1)

i,E

)](
J (1)
j − J (1)

j,E

)
+
∑
j>i

∑
k>j

(
J (1)
i − J (1)

i,E

)(
J (1)
j − J (1)

j,E

)(
J (1)
k − J

(1)
k,E

)}
S(0)
n H(0)

n .

The physical meaning of the various terms in Eq. (2.271) is easily reconstructed

following the discussion above. It is perhaps useful to focus on the degree of

singularity of the contributions to Eq. (2.271): to do this we note that in our

approach all soft-collinear regions are organised by the soft function; therefore,

S(p)
n contains poles up to order 2p. On the other hand, in all combinations of jet

and eikonal jet functions in Eq. (2.271) soft collinear singularities have been fully

subtracted, so that one is left with only one pole per loop; thus, for example, the

last three lines in Eq. (2.271) contain poles only up to order 1/ε3.

Armed with expressions for the poles of virtual amplitudes up to three loops, we

can now proceed to construct virtual corrections to the squared matrix elements

contributing to the physical distributions, and deduce from them the structure of

the real radiation counterterms, generalising the reasoning presented at NNLO.

2.14.2 Constructing candidate counterterms at N3LO

Following the procedure outlined at NNLO in the previous section, at N3LO we

start by identifying all singular contributions to the triple-virtual matrix element
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V V Vn. Singularities can be organised according to their physical content as

V V Vn ≡ (V V V )(3s)
n + (V V V )(2s)

n + (V V V )(1s)
n

+
n∑
i=1

(V V V )(1hc)
n, i +

n∑
i=1

(V V V )(2hc)
n, i +

n∑
i,j=1
j>i

(V V V )(2hc)
n, ij

+
n∑
i=1

(V V V )(3hc)
n, i +

n∑
i,j=1
j 6=i

(V V V )(3hc)
n, ij +

n∑
i,j,k=1
k>j>i

(V V V )
(3hc)
n, ijk

+
n∑
i=1

(V V V )(1s, 1hc)
n, i +

n∑
i=1

(V V V )(2s, 1hc)
n, i +

n∑
i=1

(V V V )(1s, 2hc)
n, i

+
n∑

i,j=1
j>i

(V V V )(1s, 2hc)
n, ij , (2.272)

where we refer to the first line as soft component, to the second and third lines

as hard-collinear component, and to the last two lines as soft-collinear component.

We now construct candidate counterterms for each component separately.

2.14.2.1 Soft component

The purely soft component features configurations with up to three unresolved

partons, manifesting up to 1/ε6 poles. In terms of cross-section-level functions,

the different configurations can be cast as

(V V V )(3s)
n = H(0) †

n S
(3)
n, 0H(0)

n , (2.273)

(V V V )(2s)
n = H(0) †

n S
(2)
n, 0H(1)

n +H(1) †
n S

(2)
n, 0H(0)

n ,

(V V V )(1s)
n = H(0) †

n S
(1)
n, 0H(2)

n +H(2) †
n S

(1)
n, 0H(0)

n +H(1) †
n S

(1)
n, 0H(1)

n ,

where the three-loop soft function S
(3)
n is defined as

S(3)
n = S(1) †

n S(2)
n + S(2) †

n S(1)
n + S(3) †

n S(0)
n + S(0) †

n S(3)
n . (2.274)

By expanding the completeness relation in Eq. (2.153) to the appropriate per-

turbative order, the soft component is made finite through the introduction of the

following set of counterterms:

K
(3, 3s)
n+3 = H(0) †

n S
(0)
n, 3H(0)

n , (2.275)

K
(RRV,2, s)
n+2 = H(0) †

n S
(1)
n, 2H(0)

n +H(0) †
n S

(0)
n, 2H(1)

n +H(1) †
n S

(0)
n, 2H(0)

n ,

K
(RVV, s)
n+1 = H(0) †

n S
(2)
n, 1H(0)

n +H(0) †
n S

(1)
n, 1H(1)

n +H(1) †
n S

(1)
n, 1H(0)

n ,

+H(0) †
n S

(0)
n, 1H(2)

n +H(2) †
n S

(0)
n, 1H(0)

n +H(1) †
n S

(0)
n, 1H(1)

n ,
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where the notation adopted closely follows that of Eq. (2.266). This way no

singularities survive in the combination

(V V V )(s)
n +

∫
dΦrad, 3K

(3, 3s)
n+3 +

∫
dΦrad, 2K

(RRV,2, s)
n+2 +

∫
dΦrad, 1K

(RVV, s)
n+1 ,

with (V V V )(s)
n the full contribution of the soft component.

2.14.2.2 Hard-collinear component

The hard-collinear component is the richest one, as far as counterterm construction

is concerned: the variety of the involved singular structures, and chiefly the pos-

sibility to rearrange all counterterms into cross-section-level quantities, provides a

non-trivial test of the generality of the method. Moreover, it emphasises the phys-

ical transparency of an approach based on factorisation, since each contribution

has an intuitive physical interpretation. For convenience, we analyse separately

terms involving a different number of hard legs.

Starting with the singular configurations induced by a single hard leg, we first

isolate (V V V )(3hc)
n, i discarding terms that feature H(k)

n , with k > 0. After some

manipulations, this sub-component can be cast as

(V V V )
(3hc)
n, i = H(0) †

n

[
J

(3)
i, 0 − J (3)

i,E, 0 − J (2)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

)
(2.276)

−J (1)
i,E, 0

(
J

(2)
i, 0 − J (2)

i,E, 0 − J (1)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

))]
S

(0)
n, 0H(0)

n .

(V V V )
(3hc)
n, i is the natural generalisation of (V V )(2hc)

n, i , and the combination of jet

functions is such to properly remove all three-loop soft-collinear singularities. The

definition of hard-collinear counterterms requires a delicate sequence of pole can-

cellations, as the completeness relation in Eq. (2.175) involves up to two-loop

radiative functions according to

J
(3)
i, 0 +

∫
dΦrad, 1 J

(2)
i, 1 +

∫
dΦrad, 2 J

(1)
i, 2 +

∫
dΦrad, 3 J

(0)
i, 3 = finite , (2.277)
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with an analogous relation holding for the eikonal-jet counterpart. The three

ensuing counterterms read

K
(3, 3hc)
n+3, i = H(0) †

n

[
J

(0)
i, 3 − J (0)

i,E, 3 − J (0)
i,E, 2

(
J

(0)
i, 1 − J (0)

i,E, 1

)
−J (0)

i,E, 1

(
J

(0)
i, 2 − J (0)

i,E, 2 − J (0)
i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

))]
S

(0)
n, 0H(0)

n ,

K
(RRV,2, 3hc)
n+2, i = H(0) †

n

[
J

(1)
i, 2 − J (1)

i,E, 2 − J (0)
i,E, 2

(
J

(1)
i, 0 − J (1)

i,E, 0

)
− J (1)

i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

)
−J (0)

i,E, 1

(
J

(1)
i, 1 − J (1)

i,E, 1 − J (1)
i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

)
− J (0)

i,E, 1

(
J

(1)
i, 0 − J (1)

i,E, 0

))
−J (1)

i,E, 0

(
J

(0)
i, 2 − J (0)

i,E, 2 − J (0)
i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

))]
S

(0)
n, 0H(0)

n ,

K
(RVV, 3hc)
n+1, i = H(0) †

n

[
J

(2)
i, 1 − J (2)

i,E, 1 − J (2)
i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

)
− J (1)

i,E, 1

(
J

(1)
i, 0 − J (1)

i,E, 0

)
−J (1)

i,E, 0

(
J

(1)
i, 1 − J (1)

i,E, 1 − J (1)
i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

)
− J (0)

i,E, 1

(
J

(1)
i, 0 − J (1)

i,E, 0

))
−J (0)

i,E, 1

(
J

(2)
i, 0 − J (2)

i,E, 0 − J (1)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

))]
S

(0)
n, 0H(0)

n . (2.278)

Although the form of the counterterms may seem complicated, their interpretation

is remarkably intuitive. As an example, we focus on K
(RRV,2, 3hc)
n+1, i , which features

one loop and two hard-collinear real radiations. For a double radiative diagram

computed at one-loop order, soft poles stem from five different configurations:

both virtual and real radiations are soft, only the two real radiations are soft, one

radiation and the loop are soft, only one radiation is soft, only the loop is soft.

These are indeed the configurations subtracted from J
(1)
i, 2 . The following relation

is then verified by construction

(V V V )(3hc)
n, i +

∫
dΦrad, 3K

(3, 3hc)
n+3, i +

∫
dΦrad, 2K

(RRV,2, 3hc)
n+2, i

+

∫
dΦrad, 1K

(RVV, 3hc)
n+1, i = finite . (2.279)

Furthering the analysis of single-leg contributions, we collect in (V V V )(2hc)
n, i all

terms that feature H(1)
n :

(V V V )
(2hc)
n, i =

[
J

(2)
i, 0 − J (2)

i,E, 0 − J (1)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

)]
×

×
(
H(0) †
n S

(0)
n, 0H(1)

n +H(1) †
n S

(0)
n, 0H(0)

n

)
. (2.280)

From Eq.(2.280) to the end of this section we write the jet contributions as factors

outside the colour- and spin-correlated hard matrix elements, to avoid cluttering

the notation. The correct corresponding expressions feature H† factoris at the left
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and H factors at the right of the jet operators.

The resulting set of N3LO counterterms can be deduced from K
(RV, hc)
n+1, i and K

(2, 2hc)
n+2, i

by replacing
∣∣A(0)

n

∣∣2 withH(0) †
n S

(0)
n H(1)

n +H(1) †
n S

(0)
n H(0)

n , since the collinear structure

is the same as at NNLO. We get

K
(RRV,2, 2hc)
n+2, i =

[
J

(0)
i, 2 − J (0)

i,E, 2 − J
(0)
i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

)]
×

×
(
H(0) †
n S

(0)
n, 0H(1)

n +H(1) †
n S

(0)
n, 0H(0)

n

)
K

(RVV, 2hc)
n+1, i =

[
J

(1)
i, 1 − J (1)

i,E, 1 − J (0)
i,E, 1

(
J

(1)
i, 0 − J (1)

i,E, 0

)
− J (1)

i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

)]
×

×
(
H(0) †
n S

(0)
n, 0H(1)

n +H(1) †
n S

(0)
n, 0H(0)

n

)
.

The last single-leg hard-collinear contribution comes from the single-unresolved

component,

(V V V )
(1hc)
n, i =

(
J

(1)
i, 0 − J (1)

i,E, 0

)(
H(0) †
n S

(0)
n, 0H(2)

n +H(2) †
n S

(0)
n, 0H(0)

n +H(1) †
n S

(0)
n, 0H(1)

n

)
,

generating

K
(RVV, 1hc)
n+1, i =

(
J

(0)
i, 1 − J (0)

i,E, 1

)(
H(0) †
n S

(0)
n, 0H(2)

n +H(2) †
n S

(0)
n, 0H(0)

n +H(1) †
n S

(0)
n, 0H(1)

n

)
.

For both the single and the double unresolved configurations the finiteness relations

are slightly different with respect to Eq.(2.279) and read respectively

(V V V )
(2hc)
n, i +

∫
dΦrad, 2K

(RRV,2, 2hc)
n+2, i +

∫
dΦrad, 1K

(RVV, 2hc)
n+1, i = finite , (2.281)

(V V V )
(1hc)
n, i +

∫
dΦrad, 1K

(RVV, 1hc)
n+1, i = finite . (2.282)

The hard-collinear component also features a two-hard-leg topology, which gives

rise to

(V V V )
(2hc)
n, ij =

(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(1)
j, 0 − J (1)

j,E, 0

)(
H(0) †
n S

(0)
n, 0H(1)

n +H(1) †
n S

(0)
n, 0H(0)

n

)
,

(V V V )
(3hc)
n, ij =

[
J

(2)
i, 0 − J (2)

i,E, 0 − J (1)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

)](
J

(1)
j, 0 − J (1)

j,E, 0

)
H(0) †
n S

(0)
n, 0H(0)

n .

For the first term, one can take advantage of the results obtained at NNLO. In

particular, it is sufficient to substitute the squared Born amplitude in the definition

of K
(2, 2hc)
n+2, ij and K

(RV,hc)
n+1, ij with the combination H(0) †

n S
(0)
n, 0H(1)

n + H(1) †
n S

(0)
n, 0H(0)

n to
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get

K
(RRV,2, 2hc)
n+2, ij =

(
J

(0)
i, 1 − J (0)

i,E, 1

)(
J

(0)
j, 1 − J (0)

j,E, 1

)(
H(0) †
n S

(0)
n, 0H(1)

n +H(1) †
n S

(0)
n, 0H(0)

n

)
,

K
(RVV, 2hc)
n+1, ij =

[(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(0)
j, 1 − J (0)

j,E, 1

)
+ (i↔ j)

]
×

×
(
H(0) †
n S

(0)
n, 0H(1)

n +H(1) †
n S

(0)
n, 0H(0)

n

)
.

The natural counterterms for (V V V )
(3hc)
n, ij are

K
(3, 3hc)
n+3, ij =

[
J

(0)
i, 2 − J (0)

i,E, 2 − J (0)
i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

)](
J

(0)
j, 1 − J (0)

j,E, 1

)
H(0) †
n S

(0)
n, 0H(0)

n ,

K
(RRV,2, 3hc)
n+2, ij =

{[
J

(0)
i, 2 − J (0)

i,E, 2 − J (0)
i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

)](
J

(1)
j, 0 − J (1)

j,E, 0

)
+
[
J

(1)
i, 1 − J (1)

i,E, 1 − J (1)
i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

)
−J (0)

i,E, 1

(
J

(1)
i, 0 − J (1)

i,E, 0

) ](
J

(0)
j, 1 − J (0)

j,E, 1

)}
H(0) †
n S

(0)
n, 0H(0)

n ,

K
(RVV, 3hc)
n+1, ij =

{[
J

(2)
i, 0 − J (2)

i,E, 0 − J (1)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

)](
J

(0)
j, 1 − J (0)

j,E, 1

)
+
[
J

(1)
i, 1 − J (1)

i,E, 1 − J (1)
i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

)
,

−J (0)
i,E, 1

(
J

(1)
i, 0 − J (1)

i,E, 0

) ](
J

(1)
j, 0 − J (1)

j,E, 0

)}
H(0) †
n S

(0)
n, 0H(0)

n . (2.283)

For the (2hc) configuration a relation analogous to Eq.(2.281) holds, provided the

relabel i → ij in the subscripts, while for (3hc) the same replacement applies to

Eq.(2.279).

At N3LO , the hard-collinear component of the squared amplitude receives also

contribution from the three-hard-leg topology. Owing to the independence of jet

functions of the details of the processes, ultimately stemming from their being

colour-singlet quantities, the contribution of each legs is completely factorised

from the others as emphasised by the pattern

(V V V )
(3hc)
n, ijk =

(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(1)
j, 0 − J (1)

j,E, 0

)(
J

(1)
k, 0 − J

(1)
k,E, 0

)
H(0) †
n S

(0)
n, 0H(0)

n ,
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whose inspection allows us to define

K
(3, 3hc)
n+3, ijk =

(
J

(0)
i, 1 − J (0)

i,E, 1

)(
J

(0)
j, 1 − J (0)

j,E, 1

)(
J

(0)
k, 1 − J

(0)
k,E, 1

)
H(0) †
n S

(0)
n, 0H(0)

n ,

K
(RRV,2, 3hc)
n+2, ijk =

[(
J

(0)
i, 1 − J (0)

i,E, 1

)(
J

(0)
j, 1 − J (0)

j,E, 1

)(
J

(1)
k, 0 − J

(1)
k,E, 0

)
+ perm

]
×

×H(0) †
n S

(0)
n, 0H(0)

n ,

K
(RVV, 3hc)
n+1, ijk =

[(
J

(1)
i, 1 − J (1)

i,E, 1

)(
J

(1)
j, 0 − J (1)

j,E, 0

)(
J

(0)
k, 0 − J

(0)
k,E, 0

)
+ perm

]
×

×H(0) †
n S

(0)
n, 0H(0)

n .

Here ‘perm’ indicates the sum of the exchanges i↔ k and j ↔ k. This way

(V V V )
(3hc)
n, ijk +

∫
dΦrad, 3K

(3hc)
n+3, ijk +

∫
dΦrad, 2K

(RRV,2, 3hc)
n+2, ijk

+

∫
dΦrad, 1K

(RVV, 3hc)
n+1, ijk = finite . (2.284)

2.14.2.3 Soft-collinear component

The soft-collinear component exhausts the singular topologies of the virtual matrix

element. The topologies included in this section are

(V V V )(1s, 2hc)
n, i , (V V V )(1s, 2hc)

n, ij , (V V V )(2s, 1hc)
n, i , (V V V )(1s, 1hc)

n, i . (2.285)

Starting with the terms that feature a double-collinear radiation from a single hard

leg we have

(V V V )
(1s, 2hc)
n, i =

[
J

(2)
i, 0 − J (2)

i,E, 0 − J (1)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

)]
H(0) †
n S

(1)
n, 0H(0)

n , (2.286)

whose hard-collinear structure is the same as for V V V
(2hc)
n, i . The construction of

the appropriate counterterms is then straightforward and yields

K
(3, 1s, 2hc)
n+3, i =

[
J

(0)
i, 2 − J (0)

i,E, 2 − J (0)
i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

)]
H(0) †
n S

(0)
n, 1H(0)

n

K
(RRV,2, 1s,2hc)
n+2, i =

[
J

(0)
i, 2 − J (0)

i,E, 2 − J (0)
i,E, 1

(
J

(0)
i, 1 − J (0)

i,E, 1

)]
H(0) †
n S

(1)
n, 0H(0)

n

+
[
J

(1)
i, 1 − J (1)

i,E, 1 − J (0)
i,E, 1

(
J

(1)
i, 0 − J (1)

i,E, 0

)
−J (1)

i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

) ]
H(0) †
n S

(0)
n, 1H(0)

n ,

K
(RVV,1s,2hc)
n+1, i =

[
J

(2)
i, 0 − J (2)

i,E, 0 − J (1)
i,E, 0

(
J

(1)
i, 0 − J (1)

i,E, 0

)]
H(0) †
n S

(0)
n, 1H(0)

n

+
[
J

(1)
i, 1 − J (1)

i,E, 1 − J (0)
i,E, 1

(
J

(1)
i, 0 − J (1)

i,E, 0

)
−J (1)

i,E, 0

(
J

(0)
i, 1 − J (0)

i,E, 1

) ]
H(0) †
n S

(1)
n, 0H(0)

n .
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By relabelling (3hc)→ (1s, 2hc) in Eq.(2.279) we get the finiteness relation fulfilled

by this subcomponent. In particular, the combination

(V V V )(1s, 2hc)
n, i +

∫
dΦrad, 3K

(3, 1s, 2hc)
n+3, i +

∫
dΦrad, 2K

(RRV,2, 1s, 2hc)
n+2, i

+

∫
dΦrad, 1K

(RVV, 1s, 2hc)
n+1, i = finite . (2.287)

The configuration in which one loop is soft and two are hard-collinear also features

terms with two different hard legs. Similarly to V V V
(2hc)
n, ij , which has a the same

hard-collinear dependence as V V V
(1s, 2hc)
n, ij , we obtain

(V V V )
(1s, 2hc)
n, ij =

(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(1)
j, 0 − J (1)

j,E, 0

)
H(0) †
n S

(1)
n, 0H(0)

n . (2.288)

The resulting counterterms are

K
(3, 1s, 2hc)
n+3, ij =

(
J

(0)
i, 1 − J (0)

i,E, 1

)(
J

(0)
j, 1 − J (0)

j,E, 1

)
H(0) †
n S

(0)
n, 1H(0)

n ,

K
(RRV,2, 1s, 2hc)
n+2, ij =

[(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(0)
j, 1 − J (0)

j,E, 1

)
+ (i↔ j)

]
H(0) †
n S

(0)
n, 1H(0)

n

+
(
J

(0)
i, 1 − J (0)

i,E, 1

)(
J

(0)
j, 1 − J (0)

j,E, 1

)
H(0) †
n S

(1)
n, 0H(0)

n ,

K
(RVV, 1s, 2hc)
n+1, ij =

[(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(0)
j, 1 − J (0)

j,E, 1

)
+ (i↔ j)

]
H(0) †
n S

(1)
n, 0H(0)

n

+
(
J

(1)
i, 0 − J (1)

i,E, 0

)(
J

(1)
j, 1 − J (1)

j,E, 0

)
H(0) †
n S

(0)
n, 1H(0)

n .

Here it is sufficient to modify (2.287) adding a second particle j in the subscriptions

to get the finiteness relation valid for (V V V )
(1s, 2hc)
n, ij .

In case we add a soft radiation, the collinear part is forced do belong to a single

leg. This configuration is similar to (V V )(1hc, 1s)
n, i barring an extra loop in the soft

function, and reads

(V V V )
(2s, 1hc)
n, i =

(
J

(1)
i, 0 − J (1)

i,E, 0

)
H(0) †
n S

(2)
n, 0H(0)

n . (2.289)

The identification of the counterterms is then immediate and returns

K
(3, 2s, 1hc)
n+3, i =

(
J

(0)
i, 1 − J (0)

i,E, 1

)
H(0) †
n S

(0)
n, 2H(0)

n ,

K
(RRV,2, 2s, 1hc)
n+2, i =

(
J

(1)
i, 0 − J (1)

i,E, 0

)
H(0) †
n S

(0)
n, 2H(0)

n +
(
J

(0)
i, 1 − J (0)

i,E, 1

)
H(0) †
n S

(1)
n, 1H(0)

n ,

K
(RVV, 2s, 1hc)
n+1, i =

(
J

(1)
i, 0 − J (1)

i,E, 0

)
H(0) †
n S

(1)
n, 1H(0)

n +
(
J

(0)
i, 1 − J (0)

i,E, 1

)
H(0) †
n S

(2)
n, 0H(0)

n .
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This way we have

(V V V )(2s, 1hc)
n, i +

∫
dΦrad, 3K

(3, 2s, 1hc)
n+3, i +

∫
dΦrad, 2K

(RRV,2, 2s, 1hc)
n+2, i

+

∫
dΦrad, 1K

(RVV, 2s, 1hc)
n+1, i = finite . (2.290)

The remaining term is the configuration one soft loop and one hard-collinear loop

(V V V )
(1s, 1hc)
n, i =

(
J

(1)
i, 0 − J (1)

i,E, 0

)(
H(0) †
n S

(1)
n, 0H(1)

n +H(1) †
n S

(1)
n, 0H(0)

n

)
, (2.291)

which leads to the final set of couterterm functions:

K
(RRV,2, 1s, 1hc)
n+2, i =

(
J

(0)
i, 1 − J (0)

i,E, 1

)(
H(0) †
n S

(0)
n, 1H(1)

n +H(1) †
n S

(0)
n, 1H(0)

n

)
,

K
(RVV, 1s, 1hc)
n+1, i =

(
J

(1)
i, 0 − J (1)

i,E, 0

)(
H(0) †
n S

(0)
n, 1H(1)

n +H(1) †
n S

(0)
n, 1H(0)

n

)
+
(
J

(0)
i, 1 − J (0)

i,E, 1

)(
H(0) †
n S

(1)
n, 0H(1)

n +H(1) †
n S

(1)
n, 0H(0)

n

)
,

and to the last finiteness relation

(V V V )
(1s, 1hc)
n, i +

∫
dΦrad, 2K

(RRV,2, 1s, 1hc)
n+2, i +

∫
dΦrad, 1K

(RVV, 1s, 1hc)
n+1, i = finite .(2.292)

The collection of all the counterterms introduced up to this point ensures that the

combination [
V V Vn + I (3)

n + I(RVV)
n + I(RRV,2)

n

]
(2.293)

is finite in four dimensions, and then suitable for numerical implementation. To

complete the set of democratic counterterms we still need to analyse the structures

that arise from RV Vn+1 and RRVn+2. Their factorised expressions are deducible

from those of (V V )n by including one further partons in the final state, and from

Vn with n+2 hard partons instead of n, respectively. To reduce RRVn+2 to a finite

object we only have to define a single unresolved counterterm, K
(1)
n+3, given by the

NNLO K
(1)
n+2 promoted to a phase space with n+ 2 detected particles. Finally, the

remaining counterterms K
(2)
n+3 and K

(RRV,1)
n+2 can be derived from K

(2)
n+2 and K

(RV)
n+1

once we have replaced n+ i with n+ i+ 1 in the corresponding definitions. This

completes the set of N3LO candidate counterterms, necessary to cancel the poles

of virtual origin stemming from V V Vn, RV Vn+1, RRVn+2.





Chapter 3

Subtraction

3.1 The Subtraction problem

In the previous Chapter we have presented a fully general procedure to formally

define the necessary counterterms to subtract the IR singularities stemming from

an arbitrary IR-safe observable. The resulting subtraction pattern has been dis-

cussed in details for the NLO and for the NNLO approximations of the observable,

and a preliminary analysis has also been provided at N3LO. In several occasions we

have highlighted the capability of the factorisation approach to provide a physical

transparent method to organise the counterterms, and to explore higher orders in

perturbation theory. At the same time, we have also stressed that this method

does not provide a subtraction procedure that can be directly implemented as a

fully working algorithm. Such implementation requires the introduction of further

technical ingredients, such as a phase-space mapping procedure. This key element

is fundamental for factorising the unresolved radiative phase space from the re-

solved phase space obtaining an on-shell, momentum-conserving kinematics inside

the Born matrix elements. More in general, the practical problem of construct-

ing efficient and general algorithms for handling infrared singularities for generic

infrared-safe observables beyond NLO proves to be highly non-trivial. In the past

years, several slicing and subtraction schemes have been proposed at NLO and

numerous attempts to generalise them with different techniques at NNLO are still

ongoing. As already anticipated in the Introduction, among the NLO subtraction

methods, we take inspiration from the FKS [39] and the CS [2] schemes, based on

the idea of introducing local counterterms and then integrating them exactly, in

order to achieve the cancellation of poles without the need for slicing parameters.

These algorithms are currently implemented in efficient NLO generators [44–52],

so that the ‘subtraction problem’ can be considered solved to this accuracy.

131
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At NNLO, numerical and conceptual challenges related to the proliferation of

overlapping singular regions become much more significant. This has led to the

development of several different methods, which have been successfully applied to

a number of simple collider processes. NNLO differential distributions for had-

ronic final states in electron-positron annihilation were first computed in [61, 62].

Among the first hadronic processes involving coloured final-state particles to be

studied differentially at NNLO, we mention the production of top-antitop quark

pairs, achieved in [67, 68] within the Stripper framework [66], and the associated

production of a Higgs boson and a jet, achieved with the N-Jettiness slicing tech-

nique [55–58]. A number of hadronic processes with up to two final-state col-

oured particles at Born level have since been studied at the differential level with

various approaches, including qT slicing [53, 54, 138, 139], and Antenna subtrac-

tion [63–65]. Other methods include the CoLoRFulNNLO framework [74,140,141],

currently applied to processes with electroweak initial states, the Projection to

Born method [75], and the technique of Nested Soft-Collinear subtractions [69,70].

Novel methods have been presented by [76, 77], and the first limited applications

to differential N3LO processes have appeared [79,80,82].

Despite this remarkable variety of sophisticated methods, the issue of IR singu-

larities subtraction beyond NLO is not completely solved. Most of the schemes

already developed rely on involved analytic integrations or demanding numerical

computations. These two main disadvantages encourage further investigation and

drive us to present a new approach to the subtraction problem beyond NLO. The

main idea is to exploit the advantages of the existing NLO methods, and combine

them to obtain a new minimal, local, analytic subtraction scheme at NLO. The

key features of the NLO implementation are then generalised at NNLO, defining

an efficient and physically transparent subtraction procedure.

Our method benefits from an optimised partition of the phase space in sectors,

in the spirit of FKS subtraction [39], and from a remarkable flexibility in choos-

ing the appropriate momentum parametrisations within each sector, allowing for

simple mappings to Born configurations in different unresolved regions. Finally,

we also take maximal advantage of the simple structure of factorised kernels in

multiple singular limits, which follows in general from the factorised structure of

scattering amplitudes. We define sector functions satisfying our requirements, we

introduce local counterterms and appropriate parametrisations, and we integrate

the counterterms on the unresolved phase space.

With this general strategy in mind, we begin in Section 3.1.1 by revisiting the NLO

subtraction problem and the main ingredients exploited to solve it according to the

FKS and CS subtraction schemes. This preliminary section aims at highlighting
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the main advantages and disadvantages of the two schemes, that are respectively

exploited and avoided in our method.

3.1.1 FKS and CS schemes at NLO: pros and cons

To begin with, we briefly review the general structure of a subtraction scheme

at NLO, setting some convention and notation that will be useful later on in the

manuscript. We define n to be the number of coloured particles contributing

to the final state (colourless parton can be always included without spoiling the

procedure) at Born level. We name ki, i = 1, . . . , n the n final-state parton

momenta, with k2
i = 0. In agreement with what already discussed, we write the

NLO prediction for an m→ n scattering observable as

dσNLO

dX
=

∫
dΦn

(
V + I

)
δn(X)

+

∫ (
dΦn+1Rδn+1(X)− dΦ̂n+1K δn(X)

)
, (3.1)

where we allow for the possibility of simplifying the phase-space measure dΦn+1

to dΦ̂n+1 in the counterterm, under the assumption that the two coincide in all

singular limits. Defining the (single) radiation phase space as dΦ̂rad = dΦ̂n+1/dΦn,

we have implicitly introduced the quantities

dσNLO

dX

∣∣∣∣
ct

=

∫
dΦ̂n+1 K δn(X) , I =

∫
dΦ̂radK . (3.2)

In full generality, the combination dΦ̂n+1K must reproduce all singular limits

of the real-radiation contribution dΦn+1R, such that the integrated counterterm

gives the same poles, up to a sign, as the ultraviolet-renormalised virtual matrix

element. In the following we will use interchangeably the alternative notation

dσNLO + dσLO

dX
=

∫
n

dσBorn δn(X) +

∫
n

dσvirt.δn(X) +

∫
n+1

dσreal δn+1(X) (3.3)

and its subtracted counterpart as

dσNLO + dσLO

dX
=

∫
n

[
dσBorn + dσvirt. +

∫
1

dσsubtr.
]
δn(X)

+

∫
n+1

[
dσrealδn+1(X)− dσsubtr.δn(X)

]
, (3.4)
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where, for instance, the real radiation contribution is given by the integral over

the n+ 1 phase space of the squared radiative matrix element

dσreal ≡ |An+1|2 dΦn+1 ≡ Rn+1 dΦn+1 . (3.5)

3.1.1.1 The FKS method

To present the FKS method, hereby also referred to as the plus distributions

method, we assume for simplicity that only one singular region may occur in our

academic example. In the c.m. frame the unresolved parton, carrying momentum

k, can be described by the variables

ξ =
2k0

√
s
, y = cos θ , φ , (3.6)

where s is the squared-centre-of-mass energy, θ is the angle of the emitted parton

k relative to a reference direction (usually another parton), and φ is the azimuthal

variable, defined with respect to the same reference direction. In these variables,

the phase space of the unresolved radiation is parametrised as

dd−1k

2k0(2π)d−1
=

s1−ε

(4π)d−1
ξ1−2ε (1− y2)−ε dξ dy (sinφ)−2ε dφ dΩd−3 . (3.7)

The integration boundaries for the ξ and the y variables include the possibility for

ξ to approach zero, which corresponds to the singular soft regime, and for y to be

equal to one, relevant for the collinear region. Given our knowledge of the leading

behaviour of the real matrix element under IR limits, we introduce the identity

R =
1

ξ2

1

1− y
[
ξ2 (1− y)R

]
, (3.8)

where in the square brackets R has been regularised both in the soft (ξ → 0) and

in the collinear (y → 1) limits. The function in Eq.(3.8) has to be integrated in

the k-phase space, resulting in explicit ε-poles due to the integration over ξ and y

according to the following core structure∫ 1

−1

dy (1− y)−1−ε
∫ 1

0

dξ ξ−1−2ε F (ξ, y) , F (ξ, y) ≡
[
ξ2 (1− y)R

]
. (3.9)

The integral in Eq.(3.9) can be split into an explicit divergent contribution, show-

ing 1/εn poles (with n ≤ 2), and a finite remainder. This decomposition is easily
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achieved by expanding both integration variables as

ξ−1−2ε = − 1

2ε
δ(ξ) +

(1

ξ

)
+
− 2ε

( log ξ

ξ

)
+

+O(ε2) ,

(1− y)−1−ε = −2−ε

ε
δ(1− y) +

( 1

1− y
)

+
+O(ε2) , (3.10)

where the subscript + indicates a plus distribution, defined so that its integral

with any sufficiently smooth function g is finite. Its contribution is then regular

in the sense of distributions and can be formally expressed as∫ 1

0

dξ
(1

ξ

)
+
g(ξ) =

∫ 1

0

dξ
g(ξ)− g(0)

ξ
,∫ 1

0

dξ
( log ξ

ξ

)
+
g(ξ) =

∫ 1

0

dξ
g(ξ)− g(0)

ξ
log ξ ,∫ 1

−1

dy
( 1

1− y
)

+
g(y) =

∫ 1

−1

dy
g(y)− g(1)

1− y . (3.11)

If we plug the expansions in Eq.(3.10) into the integral in Eq.(3.9), neglecting the

O(ε) contributions, we obtain∫ 1

−1

dy (1− y)−1−ε
∫ 1

0

dξ ξ−1−2ε F (ξ, y) = −
∫ 1

−1

dy
1

2ε
(1− y)−1−εF (0, y)

−
∫ 1

0

[
2−ε

ε

(1

ξ

)
+

+ 2
( log ξ

ξ

)
+

]
F (ξ, 1)

+

∫ 1

−1

dy

∫ 1

0

dξ
( 1

1− y
)

+

(1

ξ

)
+
F (ξ, y) +O(ε) . (3.12)

The first two terms in Eq.(3.12) derive from a δ-function with argument ξ and/or

1−y. Such terms feature the same singular structure as the virtual matrix element,

with which they have to be combined, and involve real-matrix elements that are

approximated in the soft and/or collinear regime. In particular,

δ(ξ)R = δ(ξ) lim
pµi→0

R({p}) = −δ(ξ)N scd
sic sid

Bcd({p}/i) , (3.13)

δ(1− y)R = δ(1− y) lim
pi‖pj

R({p}) = δ(1− y)N
P µν
ij

sij
Bµν({p}/i/j , pi + pj) ,

with N = 8παSµ
2ε. This way, the terms containing δ-functions are candidate

integrated counterterms, while the last term in Eq.(3.12) is actually integrable in

the whole phase space and can be rewritten as∫ 1

−1

dy

∫ 1

0

dξ
( 1

1− y
)

+

(1

ξ

)
+
F (ξ, y) =

∫ 1

−1

dy

∫ 1

0

dξ ξR̂ , (3.14)
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where

R̂ =
1

ξ

((1

ξ

)
+

( 1

1− y
)

+

[
ξ2 (1− y)R

])
. (3.15)

In Eq.(3.14) we have extracted a factor ξ, in order to reconstruct the pi-phase

space integral in d = 4. The finite quantity R̂ can be thought of as the differ-

ence between the divergent real-matrix element and the appropriate counterterm.

Referring to Eq.(3.4), the term defined in Eqs.(3.14)-(3.15) represents the combin-

ation dσreal − dσsubtr., while the first two terms of Eq.(3.12) are the equivalent of∫
1
dσsubtr..

In this simple example, the decomposition of the real-matrix element into singu-

lar regions proceeds through an intuitive procedure, based on the fact that only

one singular parton is involved. For more realistic processes, namely scattering

involving n final state partons at the Born-level, such sector decomposition may

become highly non trivial. In particular, due to the complexity of n+ 1-body kin-

ematics, and to the existence of overlapping singular configurations (soft-collinear

limits), the real matrix cannot be integrated over the whole phase space. It is then

necessary to decompose R into a sum of terms, each of them having singularities in

no more than one singular region. Each term of the sum can then be parametrised

by appropriate ξ and y variables, in order to simplify the integration procedure.

To implement the requirement of having only one singular region at the time, the

pioneering subtraction method by Kunszt and Soper [117] proposed to decompose

the real matrix element into single-singular terms, each of them to be integrated

in the relevant infrared region only. Although this strategy is in principle ap-

plicable to any value of n, the actual implementation is very intricate, especially

for high multiplicity processes. In the subsequent paper by Frixione, Kunszt and

Signer [39] the same problem was overcome by partitioning the phase space by

means of functions Sij. For a given value of i, j, the corresponding sector features

at most one collinear and one soft configuration. The resulting real contribution

is then the sum over all the parton pairs, or equivalently, over all the phase-space

regions. In formula

dσreal = Rn+1 dΦn+1 =
n+1∑
i,j=1
j 6=i

Sij Rn+1 dΦn+1 , (3.16)

where we can introduce the following notation

Rn+1 =
∑
i,j 6=i

(Rn+1)ij , (Rn+1)ij = Sij Rn+1 . (3.17)
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The explicit expression for Sij is a priori arbitrary, provided it satisfies three re-

quirements: the S-functions vanish in all the singular limits except for the case

where i becomes soft or partons i, j become collinear, the sum over all the parton

pairs returns one, and the sum over regions sharing the same singular configura-

tions is one (see Sec.3.1.1.2 for more details). This way, for given values of i and

j, (Rn+1)ij is divergent only in the phase space regions that are not damped by

Sij, and it is parametrised in the (n+ 1)-body phase space through the energy of

the i-th parton (ξi) and the angle between i and j (yij)

ξi =
2Ei√
s
, yij = cos θij . (3.18)

As a consequence, each term of the sum appearing in Eq.(3.17) is parametrised

differently, according to the chosen sector Sij. The relevant phase-space for the

contribution (Rn+1)ij can be then expressed in the c.m. frame in d = 4− 2ε as

dΦn+1 = (2π)d δd
(
q −

n+1∑
i=1

ki

)[∏
l 6=i

dd−1k

2k0
l (2π)d−1

]
×

× s1−ε

(4π)d−1
ξ1−2ε
i (1− y2

ij)
−ε dξi dyij (sinφ)−2ε dφ dΩd−3

ij , (3.19)

where q is the centre-of-mass four momentum q = (
√
s,0 ). The singularities

induced by integrating the radiative matrix element (whose leading behaviour in

the IR limits is of the type 1/[ξi(1 − yij)]) in Eq.(3.19) are due to the limits

ξi → 0 and yij → 1, and are treated in analogy to what discussed in the previous

paragraphs. The real matrix element can be then easily regularised by adopting

the plus prescription with respect to both ξi and yij variables, returning( 1

ξi

)
ξcut

( 1

1− yij

)
δ0
ξi (1− yij)Sij Rn+1 dΦn+1 . (3.20)

The structure above implicitly defines the subtracted radiative matrix element in

the sector i, j

(R̂n+1)ij =
1

ξ i

((1

ξ i

)
ξcut

( 1

1− yij

)
δ0

[
ξ2
i (1− yij) (Rn+1)ij

])
, (3.21)

where the total subtracted real matrix element is the sum over all the contributing

sectors

R̂n+1 =
∑
i,j 6=i

(R̂n+1)ij ≡
∑
i,j 6=i

Sij R̂n+1 . (3.22)
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The terms above are defined by the prescription∫
dx
( 1

x

)
xcut

f(x) =

∫
dx

f(x)− f(0) Θ(xcut − x)

x
, (3.23)

with ξcut and δ0 being parameters such that 0 < ξcut ≤ 1 and 0 < δ0 ≤ 2.

A necessary condition for the method to work is its independence of the non-

physical parameters ξcut and δ0. The last necessary ingredient is a momentum

mapping, which allows for the factorisation of the single radiative phase space,

from the remaining n-body resolved phase space. Moreover, the introduction of a

momentum mapping is also fundamental for obtaining a factorised radiative phase

space involving only on-shell momenta. The goal of this procedure is indeed to

decompose

dΦn+1(q; k1, . . . , kn+1) = dΦn(q; k̄1, . . . , k̄n) dΦ1(k̄1, . . . , k̄n;u1, u2, u3) , (3.24)

and to properly define the set of momenta {k̄} and the variables {u} to obtain such

factorisation. The notation adopted in Eq.(3.24) is the following: the integration is

only performed with respect to the variables appearing after the semicolon, while

the remaining variables specify a pure functional dependence. Thus, the one-

unresolved phase space proceeds by integrating over the {u} variables, which are

independent of the remaining {k̄} degrees of freedom. For simplicity, we assume

the singular region to involve only the n-th and the (n + 1)-th partons: we refer

to the former parton as the FKS sister, and to the latter as the FKS parton.

We also introduce the FKS parent parton, whose three-momentum is defined as

k = kn + kn+1. Our aim is then to express dΦn+1 as

dΦn+1 = J dξdφ d cos θ dΦn . (3.25)

Here ξ = 2k0
n+1/
√
s is the rescaled energy of the (n + 1)-th parton, θ and φ are

respectively the polar and the azimuthal angle between kn+1 and the FKS parent,

y = cos θ =
kn+1 · kn
kn+1 kn

, φ = φ
(
η × k, kn+1 × k

)
, (3.26)

where η is an arbitrary direction that serves as the origin of the azimuthal angle

of kn+1 around k. The notation φ(v1, v2) indicates the angle between v2 and v1,

so that φ is the azimuth of the vector kn+1 around the direction of the mother

parton k. Finally, J is the Jacobian factor stemming from the change of variables

introduced to disentangle dΦn from dΦn+1, where the former is a n-body Born-level

phase space, involving only on-shell momenta, that we name {k̄i}, i = 1, . . . , n.
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We start by introducing the recoil four-momentum

krec =
n−1∑
i=1

ki = q − k → krec = −k . (3.27)

Then, we construct a Lorentz boost B along the direction krec

βB =
s− (k0

rec + |krec|)2

s+ (k0
rec + |krec|)2

, (3.28)

such that the four momentum (q−B krec) is light-like, (q−B krec)
2 = 0. The barred

momenta, {k̄i}, are then related to the initial n+ 1 momenta thought the boost B

k̄i = B ki , i = 1, . . . , n− 1 , k̄n = q − B krec , (3.29)

in a way that automatically guarantees momentum conservation

n∑
i=1

k̄i =
n−1∑
i=1

B ki + q − B krec = q . (3.30)

At this point we can make Eq.(3.25) more explicit and write

dΦn+1 =
n+1∏
i=1

dd−1ki
2k0

i (2π)d−1
(2π)d δd

(
q −

n+1∑
i=1

ki

)
=

dd−1kn+1

2k0
n+1(2π)d−1

dd−1k

2k0(2π)d−1

n−1∏
i=1

dd−1ki
2k0

i (2π)d−1
(2π)d δd

(
q − k −

n−1∑
i=1

ki

)
= J dξ d cos θ dφ

n∏
i=1

dd−1k̄i
2k̄0

i (2π)d−1
(2π)d δd

(
q −

n∑
i=1

k̄i

)
≡ dΦrad dΦ̄n . (3.31)

Some remarks are in order: in the second equality we have traded kn for k, where

k0 = k0
n+1 + k0

n. In the second relation the barred variables allow to factorise an

n-body phase space and a single radiative component, expressed in terms of the

variables {ui} = {ξ, y, φ} times a Jacobian factor. The next step is manipulating

the relation between the second and the third line in Eq. (3.31) to identify J .

Since k and k̄n have the same direction,

dd−1k = dΩd−2|k|d−2d|k| , dd−1k̄n = dΩd−2|kn|d−2d|kn| , (3.32)
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the solid angle can be simplified. The phase space for the recoiling system, includ-

ing the momentum-conservation δ-functions, is invariant under the boost trans-

formation, thus

dd−1ki
2k0

i (2π)d−1
(2π)d δd

(
q − k −

n−1∑
i=1

ki

)
=

dd−1k̄i
2k̄0

i (2π)d−1
(2π)d δd

(
q − k̄n −

n−1∑
i=1

k̄i

)
,(3.33)

where on both sides a product over i = 1, . . . , n− 1 is understood, and B(q− k) =

B
(∑n−1

i=1 ki

)
=
∑n−1

i=1 k̄i = q − k̄n. Next we compute the infinitesimal phase space

relevant for the n+ 1 parton

dd−1kn+1

2k0
n+1(2π)d−1

=
4ε(4π)ε−5/2 s1−ε

Γ(1/2− ε) ξ1−2ε(sinψ sinφ)−2ε dξ dφ d cosψ

≡ K dξ dφ d cosψ , (3.34)

with ψ being the angle between kn+1 and k. By substituting Eqs.(3.32)-(3.33)-

(3.34) into Eq.(3.31) we get

K d cosψ
|k|d−2d|k|

k0
= J d cos θ

|k̄n|d−2d|k̄n|
k̄0
n

=⇒ K d cosψ
|k|d−2d|k|

k0
n

= J d cos θ |k̄n|d−3d|k̄n| (3.35)

We just need to express y and k̄n in terms of cosψ and k, at fixed ξ. This can be

done by exploiting the following relations

kn =
√
|k|2 + |kn+1|2 − 2|k||kn+1| cosψ ,

M2
rec = k2

rec = (q0 − k0)2 − k2 = (q0 − |kn+1| − |kn|)2 − k2 ,

|k̄n| =
s−M2

rec

2
√
s
≡
√
s

2
ζ , y =

k2 − k2
n − k2

n+1

2|kn| |kn+1|
, (3.36)

which yield

d cos θ d|k̄n| =

∣∣∣∣∣∣∣
∂|k̄n|
∂|k|

∂y

∂|k|
∂|k̄n|
∂ cosψ

∂y
∂ cosψ

∣∣∣∣∣∣∣ d cosψ d|k| = k2

|kn|3
[
|kn| −

k2

2
√
s

]
d cosψ d|k| ,

where k2 = 2|kn| |kn+1|(1− y). As a consequence

J = K
|k|d−4 |kn|2
|k̄n|d−3

[
|kn| −

k2

2
√
s

]−1

, (3.37)
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and the relevant radiative phase space, according to the definition in Eq.(3.31),

reads ∫
dΦrad(k̄1, . . . , k̄n; ξ, y, φ) = J dξ d cos θ dφ (3.38)

= Gs1−ε
∫ π

0

dφ sin−2εφ

∫ ζ

0

dξ

∫ 1

−1

dy

[
ξ2(ζ − ξ)2(1− y2)

ζ2
(
2− ξ(1− y)

)2

]−ε
2ξ(ζ − ξ)

ζ
(
2− ξ(1− y)

)2

where G = (4π)ε−2/(π1/2Γ(1/2 − ε)). In each sector the radiative phase space is

parametrised according to the partons involved in the singular region, so that the

contribution selected by the sector Sij has to be integrated over∫
dΦrad(s, ζ; ξi, yij, φ) =

= Gs1−ε
∫ π

0

dφ sin−2εφ

∫ ζ

0

dξi

∫ 1

−1

dyij

[
ξ2(ζ − ξi)2(1− y2

ij)

ζ2
(
2− ξi(1− yij)

)2

]−ε
2ξi(ζ − ξi)

ζ
(
2− ξi(1− yij)

)2 .

Crucially, the counterterm integration is not affected by sector functions, as they

cancel under singular limits when appropriately combined∑
i,j 6=i

δ(ξi)Sij =
∑
i

δ(ξi)
∑
j 6=i

lim
ξi→0

Sij =
∑
i

δ(ξi) , (3.39)∑
i,j 6=i

δ(yij)Sij =
∑
i,j>i

δ(yij)(Sij + Sji) =
∑
i,j>i

δ(yij) lim
yij→0

(Sij + Sji) =
∑
i,j>i

δ(yij)

A disadvantage of such approach is represented by the difficulty in integrating the

singular kernels. In particular, by looking at the soft kernel, expressed in the terms

of the appropriate angular variable

I(i)
nm ∝

1− cos θnm
(1− cos θin)(1− cos θim)

, (3.40)

it is evident that the integration procedure may become non trivial, since the

phase-space parametrisation does not adapt to the quantities appearing in the

kernel. On the other hand, a positive feature of the FKS method, concerning the

integration procedure, is its independence of sector functions. As a matter of fact,

they sum to one when combined with other sectors sharing the same singular limit,

and therefore they do not enter the integrand function.

3.1.1.2 On the FKS sector functions

As already mentioned, one of the most remarkable aspects of the FKS subtraction

scheme is the introduction of a phase space partition achieved by sector functions
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Sij. Although the final result has to be independent of the chosen form of Sij,

different definitions may reflect on the numerical performances. In particular, in

the original papers by [39, 40] the sectors were constructing using Heaviside Θ’s:

this choice allows for an exact phase space partition, namely without overlapping

regions, but at the same time it is not optimised in view of algorithmic implement-

ation (in Monte Carlo codes, for instance, step functions have indeed to be avoided

as much as possible). In subsequent studies [142], the S functions were modified

to feature a smoother definition, resulting in an improved numerical behaviour.

The proposal of [142] involved Lorentz invariants of the kind kk · kl. A further

generalisation was provided by [143], who exploited energy and angle variables (in

agreement with the original FKS approach) to define Sij. The ample freedom in

defining S is only constrained by three fundamental requirements:

1)
∑

i,j 6=i Sij = 1 : in order to recover the entire phase space when all the regions

have been summed,

2) Sij has to go to zero in all regions of the phase-space where the real matrix

element is singular, except for the configurations where parton i is soft, or

partons i, j are collinear. In formulæ

lim
ki‖kj

Sij = h

(
Ei

Ei + Ej

)
, with

{
lim
z→0

h(z) = 1 ∧ lim
z→1

h(z) = 0

∧ h(z) + h(1− z) = 1
}

lim
k0
i→0

Sij = cij , with 0 < cij ≤ 1 ∧
∑
j

cij = 1

lim
kk‖kl

Sij = 0 , ∀{k, l} 6= {i, j} ,

lim
k0
i→0

Sij = 0 , ∀k 6= i , (3.41)

3) sectors sharing the same singular configurations have to sum to one

lim
k0
m→0

∑
j

Sij = δim , lim
km‖kl

(
Sij + Sji

)
= δim δjl + δil δjm . (3.42)

Following [143], and the algorithmic implementation in [48], one defines

Sij =
1

D
h(zij)

dij
, (3.43)
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where zij = Ei/(Ei + Ej) and

D =
∑
k,l 6=k

h(zkl)

dkl
, (3.44)

dkl =
(2Ek√

ŝ

)aS(2El√
ŝ

)aS
(1− cos θkl)

bS = ξaSk ξaSl (1− ykl)bS . (3.45)

Here aS and bS are real, positive, arbitrary numbers that can be tuned to im-

prove the numerical stability. Given the relation in Eq.(3.44), it is straightforward

to verify that the definition provided for Sij fulfils constraint 1). Moreover, h

functions are set equal to

h(z) =
(1− z)2ah

z2ah + (1− z)2ah
, (3.46)

where ah is a positive free parameter in the method, that for simplicity is chosen

equal to one. The reason for the Sij functions in Eq.(3.43) to be suitable for

numerical implementation relays on their good behaviour in the whole n+1 phase

space. In particular, the denominator appearing in Eq.(3.43) can be manipulated

as follows

D dij = 1 +
∑

i,l 6=i , l 6=j

dij
dil

+
∑
k,l 6=k

k/∈{i,j} or l /∈{i,j}

dij
dkl

h(zkl) . (3.47)

The second term does not depend on Ei and therefore D dij can be computed

numerically both in the soft and in the collinear limits.

3.1.2 The CS method

The CS scheme is significantly different from the FKS method, from several per-

spectives. First of all, the counterterm K is designed to mimic the IR behaviour

of the real matrix element in the entire phase space, thus no sector functions are

implemented. This choice automatically implies a more involved structure of the

counterterm, which is defined as a sum over all the possible pairs of partons (di-

poles) that may become unresolved. Each term of the sum is then a combination

of Lorentz invariants involving three partons, two belonging to the dipole, and one

playing the role of spectator. The consequent mapping is designed precisely to ad-

apt to the invariants appearing in the countertems, and the radiative phase space

is then parametrised according to the chosen mapping. This way, each contribu-

tion to the conterterm is mapped and integrated in a different way. However, this

is not sufficient to guarantee a trivial integration, since the counterterm structure

is quite involved. It is useful to analyse the scheme in more detail.
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Referring to Eq.(3.4), the CS scheme is designed to find an expression for σsubtr.

that satisfies four key properties: 1) for any given process, it has to be independent

of the particular observable, 2) it has to match exactly the singular behaviour of

the real contribution in d dimensions, 3) it has to be suitable for numerical imple-

mentations, 4) it has to be exactly integrable analytically in d dimension in the

single-unresolved phase-space. In order to achieve the desired definition, one can

propose a formal expression for dσsubtr., named dipole subtraction formulae, that

features a factorised structure composed by a finite, Born-level matrix element,

and a singular piece

dσsubtr. =
∑
dipoles

dσBorn ⊗ dVdipole . (3.48)

Eq.(3.48) is a reminiscence of the factorisation formulae presented in the previous

chapter, given the underling assumption that dVdipole is able to reproduce both

the soft and the collinear kernels arising from the unresolved radiation. In the

formula above, the Born-level cross section is the only process-dependent element

and features appropriate colour and spin indices that have been understood. Such

indices are contracted with the analogous indices stemming from universal factor

dVdipole, as denoted by the ⊗ product. Finally, the sum runs over all the dipoles

contributing to the process. To identify a dipole one has to consider a process in-

volving n partons, and then let one of them decay into two particles (see left panel

in Fig.3.1). This procedure provides the dσreal configurations that are kinematic-

ally degenerate with a given m-parton state. As a consequence, the counterterm

approximates the real correction in all singular regimes with the same probability,

guaranteeing that the difference dσreal− dσsubtr. is finite in the whole (n+ 1)-body

phase space. The last ingredient is the momentum mapping, which is designed

to divide the n phase space from the unresolved single radiative subspace, and

make dVdipole fully integrable analytically. The integration procedure can be then

outlined as follows∫
n+1

dσsubtr. =
∑
dipoles

∫
n

dσBorn ⊗
∫

1

dVdipole =

∫
n

dσBorn ⊗ I , (3.49)

where the universal integrated counterterm I is symbolically defined as

I =
∑
dipoles

∫
1

dVdipole . (3.50)

Thanks to the KLN theorem, dσBorn ⊗ I shows the same explicit singularit-

ies (up to a sign) as the virtual correction dσvirt., such that the combination

dσvirt. + dσBorn ⊗ I is free from 1/ε poles. We stress that a necessary condi-

tion for the subtraction to work is the ability of the factor dVdipole to mimic the
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(a) (b)

Figure 3.1: Pictorial representation of the dipole subtraction formula: (a) the
IR singularities of a generic (m+ 1)-parton scattering factorise into a sum over
all the possibile dipole ij, and a third parton k called spectator. In (b) a zoom
on the dipole system is presented: the pair ij is generated by the parent particle
[ij], named emitter, whose momentum k̃[ij] is given in Eq.(3.57). Courtesy of [2].

singular behaviour of the real matrix element, which is known to factorise into a

universal singular kernel and a finite n-parton matrix element. We then have to

verify that

|An+1|2 → |An|2 ⊗Vij,k , (3.51)

where the singularities correspond to i becoming soft, and/or collinear to parton

j, have to be reproduced by the dipole factor Vij,k. The third parton k appearing

in Eq.(3.51) is the so-called spectator, and encodes the non-trivial color and spin

correlations arising in the singular limits between the unresolved parton and the

remaining Born-level scattering. In order to find an explicit definition for Vij,k,

we start by introducing the dipole factorisation formula in the limit ki · kj → 0,

under the assumption that no initial parton enter the process

|An+1(k1, . . . , kn+1)|2 =
n+1∑
k=1
k 6=i,j

Dij,k(k1, . . . , kn+1) + . . . , (3.52)

where the ellipsis stands for subleading terms, and the dipole function is given by

Dij,k(k1, . . . , kn+1) = − 1

sij
〈Ãn|

Tk ·T[ij]

T2
[ij]

Vij,k |Ãn〉 . (3.53)

Here the matrix element on the r.h.s. of Eq.(3.53) is obtained starting from the

initial n + 1 matrix element and modifying the momentum and the quantum

number of the unresolved partons and the spectator. In particular

Ãn ≡ An(k1, . . . , k̃[ij], . . . , k̃k, . . . , kn+1) , (3.54)

with k[ij] representing the parent parton of the splitting [ij] → i + j, carrying

quantum numbers compatible with the colour and spin conservation, and k̃k being
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the modified spectator. For convenience, we define the dimensionless variables

yij,k =
ki · kj

ki · kj + kj · kk + kk · ki
=

sij
sijk

,

z̃i =
ki · kk

kj · kk + ki · kk
=

sik
sjk + sik

,

z̃j =
kj · kk

kj · kk + ki · kk
=

sjk
sjk + sik

= 1− z̃i , (3.55)

with sabc = sab + sac + sbc. In terms of the quantities introduced in Eq.(3.55), the

momenta of emitter and spectator inside the n-parton scattering amplitude can

be conveniently expressed as

k̃µk =
1

1− yij,k
kµk =

sijk
sik + sjk

kµk , (3.56)

k̃µ[ij] = kµi + kµj −
yij,k

1− yij,k
kµk = kµi + kµj −

sij
sik + sjk

kµk . (3.57)

In this fashion, the on-shell condition k̃2
k = k̃2

[ij] = 0 is automatically implemented,

as well as momentum conservation

k̃µk + k̃µ[ij] = kµi + kµj + kµk . (3.58)

Moreover, the spin matrices Vij,k have the following form, depending on the flavour

of the splitting partons,

Vqigj ,k(z̃i; yij,k) = N CF

[ 2

1− z̃i(1− yij,k)
− (1 + z̃i)− ε(1− z̃i)

]
δss′

Vqiqj ,k(z̃i; yij,k) = N TR

[
− gµν − 4

sij
(z̃ik

µ
i − z̃jkµj )(z̃ik

ν
i − z̃jkνj )

]
≡ V µν

qiqj ,k

Vgigj ,k(z̃i; yij,k) = 2N CA

[
− gµν

( 1

1− z̃i(1− yij,k)
+

1

1− z̃j(1− yij,k)
− 2
)

+
2(1− ε)
sij

(z̃ik
µ
i − z̃jkµj )(z̃ik

ν
i − z̃jkνj )

]
≡ V µν

gigj ,k
. (3.59)

It is now important to verify that the dipole factor Vij,k is capable of reproducing

the singular structure of the real matrix element under soft and collinear limit.

This check proceeds via two steps: firstly, the n-parton amplitude Ãn in Eq.(3.53)

has to tend to the initial n + 1 amplitude, where parton i is removed, or partons

i, j are replaced by their sum (with appropriate colour and spin indices). Secondly,

the dipole factor has to mimic the relevant eikonal and splitting kernels. Recalling
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the Sudakov parametrisation already presented in Sec. 2.4.1,

kµi = zpµ + kµ⊥ −
k2
⊥
z

nµ

2p · n , kµj = (1− z)pµ − kµ⊥ −
k2
⊥

1− z
nµ

2p · n ,

sij = − k2
⊥

z(1− z)
, k⊥ → 0 , (3.60)

the limit ki ‖ kj, or equivalently k⊥ → 0, returns the following relations

k̃µ[ij] = kµi + kµj −
sij

sik + sjk
kµk → pµ , k̃k =

sijk
sik + sjk

kµk → kµk . (3.61)

Moreover, the quantities in Vij,k transform as

yij,k =
sij
sijk

→ − k2
⊥

2z(1− z) kk · p
, z̃i = 1− z̃j → z ,

z̃ik
µ
i − z̃jkµj → (2z − 1)pµ + kµ⊥ , (3.62)

where, in the last limit, the pµ contribution vanishes when contracted with the

n-parton amplitude due to gauge invariance. This way, Vij,k can be easily checked

to give the AP functions

Vij,k → N P̂ij(z, k⊥; ε) . (3.63)

Since in this limit the dipole factor loses its dependence on kµk , the colour structure

in Eq.(3.53) can be simplified by applying the colour conservation at Born level,

i.e.
∑n+1

l=1,l 6=i,j Tl + T[ij] = 0, and recalling that Tl · Tl = T2
l = Cf[ij]

. Now, plug-

ging Eqs.(3.61)-(3.63) into Eq.(3.53) one can verify that the dipole factorisation

formula, under the collinear limit ki ‖ kj, gives precisely

|An+1(k1, . . . , kn+1)|2 '
kµ⊥→0

8παSµ
2ε

sij
× (3.64)

× 〈An(k1, . . . , p, . . . , kn+1)| P̂ij(z, k⊥; ε) |An(k1, . . . , p, . . . , kn+1)〉 ,

which coincides with the known factorisation formula (see Eq. 2.122). The last

limit to check is the soft one, ki → 0. In this case the CS variables behave as

yij,k → 0 , z̃i → 0 , z̃j → 1 , k̃µk → kµk , k̃µ[ij] → kµj , (3.65)

and the dipole term tends to

Vij,k → 2N T2
[ij]

sjk
sij + sik

, (3.66)
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where the kinematic factor can be manipulated knowing the identity

sjk
sij sik

=
sjk

sik (sij + sik)
+

sjk
sij (sij + sik)

. (3.67)

Again, by substituting Eqs.(3.65)-(3.66) into Eq.(3.53), one obtains the usual fac-

torisation formula

|An+1(k1, . . . , kn+1)|2 = −8παSµ
2ε

n+1∑
j,k=1

j,k 6=i, k 6=j

sjk
sij sik

× (3.68)

× 〈An(k1, . . . , ki−1, ki+1, . . . , kn+1)|Tk ·Tj |An(k1, . . . , ki−1, ki+1, . . . , kn+1)〉 ,

where in the second line we have emphasised that the amplitude depends on all

the n + 1 momenta except for ki. To summarise the results obtained up to this

point, we can say that the CS counterterm is defined as a sum over all the possible

pair of partons, each of them involving a third spectator particle

K =
∑

pair ij

∑
k 6=i,j

Kij,k . (3.69)

The contributions on the r.h.s. involve a non trivial colour and helicity structure,

which becomes more transparent if one isolates the spin-dependent and the spin-

averaged components of the dipole factor

Kij,k

(
{k} ≡ k1, . . . , kn+1

)
=

1

sij

[
Vij,k B[ij]k

(
{k}/i/j/k, k̃[ij], k̃k

)
+V µν

ij,k B[ij]k, µν

(
{k}/i/j/k, k̃[ij], k̃k

)]
, (3.70)

where Vij,k mimic both the soft and the collinear limits of the radiative matrix

element, according to the following relations

Vij,k
pµi→0−→ N

sjk
sij sik

, V µν
ij,k

pµi→0−→ 0 (3.71)

Vij,k B[ij]k
pi‖pj−→ −N P̂ij B , V µν

ij,k B[ij]k, µν
pi‖pj−→ −N Qµν

ij Bµν ,

given Qµν
ij the spin component of the AP splitting kernels. The phase space is

parametrised differently for each term of the sum in Eq.(3.69) through the variables

sijk = (ki + kj + kk)
2 = (k̃k + k̃[ij])

2, yij,k = sij/sijk and z̃i = sik/(sik + sjk) as

dΦn+1

(
{k}
)

= dΦn

(
{k}/i/j/k, k̃k, k̃[ij]

)
dΦrad

(
sijk; yij,k, z̃i, φ

)
, (3.72)
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with ∫
dΦrad

(
sijk; yij,k, z̃i, φ

)
= G (sijk)

1−ε
∫ π

0

dφ sin−2εφ ×

×
∫ 1

0

dyij,k

∫ 1

0

dz̃i
[
yij,k z̃i (1− z̃i)

]−ε
(1− yij,k)1−2ε . (3.73)

The integration of Kij,k over dΦrad can be then performed analytically, noticing

that the spin dependent component of V µν
ij,k, namely the term Qµν

ij in Eq.(3.70),

vanishes after integration. Nonetheless, the spin correlations are fundamental con-

tributions for achieving a local subtraction of the real matrix element singularities,

and thus cannot be neglected. Although the integration procedure is doable with

standard techniques, it suffers from the non-trivial structure of the counterterm.

One may easily expect that this issue appears to be more severe if a generalisation

at NNLO is attempted by following the same philosophy.

3.1.3 Summary: FKS vs CS scheme

A summary of the main features of FKS and CS method is given in Table 3.1.

Feature FKS CS

Counterterm definition though plus distributions 3 7

Partition of the radiative PS (*) 3 7

Different parametrisation for each sector 3 7

Analytic integration after getting rid of sector functions (*) 3 7

Counterterm defined in the whole PS 7 3

Counterterm are sum of terms, involving three parton each (*) 7 3

Each term of the sum has different remapping (*) 7 3

Different PS parametrisation for each term of the sum (*) 7 3

Easy analytic integration (*) 7 7

Table 3.1: Comparison between the main features of the FKS and CS schemes.

The phase space partition implemented by FKS allows for the treatment of a phase

space region at a time, featuring at most one soft and one collinear singularity.

The corresponding counterterms are then defined region by region, by regulating

the real matrix element via the introduction of plus distributions. This way, the

explicit expression for the subtracted real matrix element, as well as the struc-

ture of the counterterms, is quite simple. In each sector a specific counterterm is
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defined and has to be integrated in the proper radiative phase space. Such single-

unresolved phase space is parametrised in terms of energy and angular variables

designed to be consistent with the given sector. Moreover, the sector functions

can be combined in order to disappear before performing the phase space integ-

ration. With different characteristics, also the CS scheme results to be a very

efficient subtraction procedure at NLO. The phase space singularities of the real

matrix element are cancelled by a counterterm defined on the entire phase space,

and capable of reproducing both soft and collinear limits at once. This can be

achieved by identifying all the possible pairs of unresolved partons, and, for each

pair, a third particle playing the role of spectator. The radiative phase space is

then parametrised differently for each pair contributing to the singularities of the

real correction. Both methods have been efficiently implemented numerically: the

FKS scheme is the subtraction method exploited in the code MadFKS by Frederix,

Frixione, Maltoni and Stelzer [48], while the CS subtraction has been implemented

by [45–47,49,144]. Despite both procedures relying on efficient strategies to solve

the intrinsic difficulties in subtracting IR divergences, they both imply non-trivial

counterterm integration. In the FKS approach, the parametrisation of the coun-

terterms is chosen according to the specific sector and does not take into account

the expression of the counterterms. Following a complementary strategy, the CS

counterterm is parametrised by looking at the counterterm structure, which how-

ever can be highly non-trivial, resulting in an involved integration procedure. We

can then design an efficient and optimised subtraction method by conjugating

the main advantages of both schemes (that we have identified with a (∗) in the

table above), implementing a phase space partition as in the FKS scheme, and a

parametrisation strategy inherited by CS. This allows for a minimal structure of

the counterterms, which are subsequently parametrised according to the Lorentz

invariants appearing in the singular kernel. The phase-space integration is then

feasible with standard tools and the integrated counterterms at NLO are known

to all orders in the regulator ε.

3.2 Local analytic sector subtraction at NLO

Having identified the main strengths of the FKS and CS schemes, we can build a

new subtraction procedure that benefits from a minimal local counterterm struc-

ture arising from a sector partition of the radiation phase space, and from the

simplifications following from an adaptive mapping procedure and phase space

parametrisation.
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3.2.1 Sector functions

Our first step in setting up the subtraction formalism at NLO is to introduce

a partition of the real-radiation phase space by means of sector functions Wij,

inspired by the FKS method [39]. The Wij functions are designed to satisfy the

same properties as the one discussed in Sec.3.1.1.2∑
i, j 6=i

Wij = 1 , (3.74)

SiWab = 0 , ∀ i 6= a , (3.75)

CijWab = 0 , ∀ ab /∈ π(ij) , (3.76)

Si
∑
k 6=i

Wik = 1 , Cij

∑
ab∈π(ij)

Wab = 1 , (3.77)

where π(ij) = {ij, ji}. Si and Cij are projection operators on the limits in which

parton i becomes soft (i.e. all components of its four-momentum approach zero),

and partons i and j become collinear (i.e. their relative transverse momentum

approaches zero), respectively: the action of these operators on matrix elements

and sector functions will be described in detail below. Eq. (3.74) is a normalisation

condition that recognises the Wij functions as a unitary partition of phase space.

Eq. (3.75) and Eq. (3.76) express the fact that a given sector function Wij selects

only one soft and one collinear singular configurations, Si and Cij, respectively,

among all those present in the real-radiation matrix element. The sum rules in

Eq. (3.77) imply that, upon summing over all combinations of indices associated

to sectors that survive in a given soft or collinear limit, the corresponding sector

functions reduce to unity. This fact proves crucial for the analytic integration of

the subtraction counterterms, as is well known in the FKS method, and as we will

further discuss in the following; analytic counterterm integration in turn makes it

possible to show in closed form the correctness of the singularity structure of the

subtraction terms.

There is ample freedom in the choice of sector functions, the only requirement

being that they satisfy the relations (3.74) to (3.77). In order to provide an

explicit definition of Wij, let us introduce some notation: let s be the squared

centre-of-mass energy, qµ = (
√
s,0 ) the centre-of-mass four-momentum, and kµi

(i = 1, . . . , n + 1) the n + 1 final-state momenta of the radiative amplitude. We

set

sqi = 2 q · ki , sij = 2 ki · kj ,
ei =

sqi
s
, wij =

s sij
sqi sqj

. (3.78)
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We now define NLO sector functions as (see Sec.3.1.1.2)

Wij =
σij∑

k, l 6=k
σkl

, with σij =
1

eiwij
. (3.79)

The double sum in Eq. (3.79) runs over all massless final-state partons, including

those that are not associated with singular limits. This choice is made in order

to ease NNLO extensions, as detailed below. With the definition in Eq. (3.79), it

is easy to verify that all properties in Eqs. (3.74) to (3.77) are satisfied, and in

particular one finds that

SiWab = δia
1/wab∑

l 6=a
1/wal

, CijWab = (δiaδjb + δibδja)
eb

ea + eb
, (3.80)

from which the desired properties follow.

3.2.2 Definition of local counterterms

As discussed above, properties (3.75) and (3.76) ensure that, in a given sector

ij, only the Si and the Cij limits (as well as their product) act non-trivially. A

candidate local counterterm Kij for the real matrix element R in this sector can

thus be built collecting all terms in the product RWij that are singular in such

soft and collinear limits, and taking care of correcting for the double counting of

the soft-collinear region. We define therefore

Kij = (Si + Cij − Si Cij) RWij ≡ L
(1)
ij RWij , (3.81)

K =
∑
i, j 6=i

Kij =
∑
i, j 6=i

(Si + Cij − Si Cij) RWij

=
∑
i

[∑
j 6=i

SiWij

]
SiR +

∑
i, j>i

[
Cij

(
Wij +Wji

)]
Cij R

−
∑
i,j 6=i

[
Si CijWij

]
Si Cij R . (3.82)

Here and in the following, projection operators are understood to act on all quant-

ities to their right, unless explicitly separated by parentheses: for instance in

the expression (SiA)B the soft limit is meant to act only on A, and not on

B. In Eq. (3.81), the term featuring the composite operator Si Cij removes the

soft-collinear singularity, which is double-counted in the sum Si + Cij; the or-

der in which the projectors act is arbitrary, since they commute, as mentioned in

Sec.2.4.2. As will be detailed in Section 3.2.3, and can be deduced from the sum
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rules in Eqs. (3.77), the content of each square bracket in Eq. (3.82) is equal to 1

upon summation over sectors, a crucial property for counterterm integration.

Our candidate counterterm Kij is structurally similar to, and as simple as, the

FKS counterterm for sector ij, however it has the advantage of being defined

without any explicit parametrisation of the soft and collinear limits. Its constituent

building blocks are the universal soft and collinear NLO kernels which factorise

from the radiative amplitude in the singular limits. We have already discussed

in detail the formulae that describe the singular behaviour of real radiations (see

Sec.2.4), so here we just report the main results to set our notation. We write

SiR ({k}) = −N1

∑
l 6=i
m 6=i

I(i)
lm Blm

(
{k}/i

)
, (3.83)

Cij R ({k}) =
N1

sij

[
Pij B

(
{k}/i/j , k

)
+ Qµν

ij Bµν

(
{k}/i/j , k

) ]
≡ N1

sij
P µν
ij Bµν

(
{k}/i/j , k

)
, (3.84)

Si Cij R ({k}) =
N1

sij
Si Pij B

(
{k}/i/j , k

)
= 2N1Cfj I(i)

jr B
(
{k}/i

)
, (3.85)

where we introduced several notations. Specifically, the prefactor N1 is defined as

N1 = 8παS

(
µ2eγE

4π

)ε
; (3.86)

{k} is the set of the n+ 1 final-state momenta in the radiative amplitude, while

{k}/i is the set of n momenta obtained from {k} by removing ki; when a function

takes the argument ({k}/i/j , k), it depends on the set of n momenta obtained from

{k} by removing ki and kj, and inserting their sum k = ki + kj; finally, B is the

Born-level squared matrix element, while

Blm = A(0)†
n (Tl ·Tm)A(0)

n , (3.87)

and Bµν is the spin-connected Born-level squared matrix element, obtained by

stripping the spin polarisation vectors of the particle with momentum k from the

Born matrix element and from its complex conjugate.

The NLO soft and collinear kernels are of course well known. In our notation, the

eikonal kernel I(i)
lm, relevant for soft-gluon emissions, is given by

I(i)
lm = δfig

slm
sil sim

, (3.88)
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where fi indicates the flavour of parton i, so that δfig = 1 if parton i is a gluon, and

δfig = 0 otherwise. In order to write the collinear kernels, we begin by introducing

a Sudakov parametrisation for the momenta kµi and kµj , as they become collinear.

We introduce a massless vector k̄µ, defining the collinear direction, using

kµ ≡ kµi + kµj , k̄µ ≡ kµ − sij
sir + sjr

kµr , (3.89)

where k2 = 2 ki · kj = sij, and kr is a massless reference vector (for example one of

the on-shell momenta of the set {k}, with r 6= i, j), so that k̄2 = 0. We now write

a Sudakov parametrisation of ka (a = i, j), as

kµa = xa k̄
µ + k̃µa −

1

xa

k̃2
a

2 k ·kr
kµr , (3.90)

where we defined the transverse momenta k̃µa with respect to the collinear direction

k̄, and the longitudinal momentum fractions xa along k̄, as

k̃µa = kµa − xa kµ −
(k ·ka
k2
− xa

) k2

k ·kr
kµr , k̃µi + k̃µj = 0 ,

xa =
ka ·kr
k ·kr

=
sar

sir + sjr
, xi + xj = 1 . (3.91)

The transverse momenta k̃a, for a = i, j, satisfy

k̃a · k̄ = k̃a · kr = 0 . (3.92)

We can now write the spin-averaged Altarelli-Parisi kernels Pij, in a flavour-

symmetric notation, as

Pij = Pij (xi, xj)

= δfigδfjg 2CA

(xi
xj

+
xj
xi

+ xixj

)
+ δ{fifj}{qq̄} TR

(
1− 2xixj

1− ε
)

+ δfi{q,q̄}δfjg CF

(1 + x2
i

xj
− εxj

)
+ δfigδfj{q,q̄}CF

(1 + x2
j

xi
− εxi

)
, (3.93)

where we defined the flavour delta functions δf{q,q̄} = δfq + δfq̄, and δ{fifj}{qq̄} =

δfiqδfj q̄ + δfiq̄δfiq. In the following we will use interchangeably the notations Pij,

Pij(xi, xj), or Pij(sir, sjr) to denote the collinear kernels of Eq. (3.93), and similarly

for the azimuthal kernels Qµν
ij and for P µν

ij . The Casimir eigenvalues relevant for

the SU(Nc) gauge group are CF = (N2
c − 1)/(2Nc) and CA = Nc, consistent with
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the normalisation TR = 1/2. The azimuthal kernels Qµν
ij can be written as

Qµν
ij = Qµν

ij (xi, xj) = Qij

[
− gµν + (d− 2)

k̃µi k̃
ν
i

k̃2
i

]
,

Qij = Qij(xi, xj) = − δfig δfjg 2CA xixj + δ{fifj}{qq̄} TR
2xixj
1− ε . (3.94)

As we have already mentioned, the presence of the azimuthal kernels Qµν
ij is neces-

sary in order to achieve a local subtraction of phase-space singularities, although

it does not survive the integration over the unresolved phase-space. The collinear

kernels satisfy the symmetry properties Pij = Pji, Qij = Qji.

The final ingredient is the soft-collinear kernel for sector ij, which can be obtained

by acting with the soft projector Si on the collinear kernel Pij (indeed, Qµν
ij is soft-

finite). One gets

Si Pij = δfig 2Cfj
xj
xi

= δfig 2Cfj
sjr
sir

, =⇒ Si Pij
sij

= 2Cfj I(i)
jr , (3.95)

where Cfj = CA δfjg + CF δfj{qq̄}. Importantly, the same soft-collinear kernel is

obtained also by taking the collinear limit of Eq. (3.88). Subtracting from the

collinear kernels their soft limits, one gets the hard-collinear kernels

P hc
ij = P hc

ij (xi, xj) ≡ Pij − δfigCfj
2xj
xi
− δfjgCfi

2xi
xj

= δfigδfjg 2CA xixj + δ{fifj}{qq̄} TR

(
1− 2xixj

1− ε
)

(3.96)

+ δfi{q,q̄}δfjg CF (1− ε)xj + δfigδfj{q,q̄}CF (1− ε)xi .

Although the candidate counterterm Kij defined above contains all phase-space

singularities of the product RWij, with no double counting, the kinematic depend-

ences on the right-hand sides of Eqs. (3.83), (3.84) and (3.85) are not yet suited

for a proper subtraction algorithm. Indeed, {k}/i is a set of n momenta that do not

satisfy n-body momentum conservation away from the exact Si limit, and, simil-

arly, in the set ({k}/i/j , k) momentum k = ki+kj is off-shell away from the exact Cij

limit. The Born-level squared amplitudes B appearing in the counterterm must

instead feature valid (i.e. on-shell and momentum conserving) n-body kinemat-

ics for all choices of the n+ 1 momenta in the radiative amplitude. A kinematic

mapping is thus necessary, in order to factorise the (n+ 1)-body phase space into

the product of Born (n-body) and radiation phase spaces, thereby allowing one to

integrate the counterterms only in the latter.
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As already mentioned, an important property of the projectors Si,Cij is that they

commute when acting on both sector functions and matrix elements, so that the

order with they appear is not relevant. The explicit proof of such commutation

can be carried on by considering the action of operators Si and Cij on ratios of

elementary massless invariants sij is given by

Si
sia
sib

6= 0 , Si
sia
sbc

= 0 , ∀ a, b, c 6= i , (3.97)

Cij
sij
sab

= 0 , Cij
sia
sja

= independent of a , ∀ ab /∈ π(ij) . (3.98)

We start by verifying that the sequential action of the singular projectors on sector

functions does not depend on their ordering. To this end note that

SiWij =
1/wij∑

l 6=i
1/wil

=⇒ Cij SiWij = 1 , (3.99)

CijWij =
ej

ei + ej
=⇒ Si CijWij = 1 , (3.100)

where in Eq. (3.99) we used the fact that only l = j gives rise to a singular

contribution 1/wil in the collinear limit, while in Eq. (3.100) we have noted that

ei → 0 in the soft limit.

Next, we consider the action of the composite projector Si Cij on the physical

real-radiation amplitude squared, where, without loss of generality, we drop all

kinematic dependences in the real and Born-like matrix elements. Starting from

Eq. (3.84) we find

Si Cij R =
N1

sij

[
Si Pij B + SiQ

µν
ij Bµν

]
. (3.101)

We now note that Qµν
ij , defined in Eq. (3.94), is not singular in the soft limit for

parton i, hence SiQ
µν
ij = 0. The same happens for all terms in Pij which do not

contain a denominator 1/xi. We now rewrite the remaining contributions in terms

of Mandelstam invariants, using the definition of xi and xj in Eq. (3.91), with the

result

Pij = δfig δfjg 2CA
xj
xi

+ δfig δfj{q,q̄}CF
1 + x2

j

xi
+ . . . ,

= δfig δfjg 2CA
sjr
sir

+ δfig δfj{q,q̄}CF
1 +

[
sjr/ (sir + sjr)

]2
sir/ (sir + sjr)

+ . . . , (3.102)
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where the ellipses denote terms that remain regular as parton i becomes soft.

Taking now the Si limit according to Eq. (3.97), we get

Si Pij = δfig δfjg 2CA
sjr
sir

+ δfig δfj{q,q̄}CF
2sjr
sir

= δfig δfjg 2CA
xj
xi

+ δfig δfj{q,q̄}CF
2xj
xi

. (3.103)

In particular, we note that the soft limit Si does not correspond to taking xi → 0,

rather to taking sir → 0 (the two definitions differ by subleading soft terms). The

soft-collinear limit is thus

Si Cij R = B
N1

sij

(
δfig δfjg 2CA

sjr
sir

+ δfig δfj{q,q̄}CF
2sjr
sir

)
. (3.104)

We can now verify commutation by considering the two singular limits in reversed

order. We find

Cij SiR = −N1 Cij

∑
k 6=i ,l 6=i

I(i)
kl Bkl . (3.105)

Among all the terms in the double sum, only those with k = j or l = j are singular

in the collinear limit, hence

Cij SiR = −N1
2

sij
Cij

∑
l 6=i

sjl
sil
Bjl . (3.106)

According to property (3.98), in the collinear limit Cij the ratio sjl/sil is inde-

pendent of l: we can therefore set l = r and get

Cij SiR = −N1 δfig
2

sij

sjr
sir

∑
l 6=i

Bjl = N1
2

sij

sjr
sir

CfjB

= B
N1

sij

(
δfig δfjg 2CA

sjr
sir

+ δfig δfj{q,q̄}CF
2sjr
sir

)
, (3.107)

where in the last two steps we have used colour algebra, and the definition of

the Casimir operator Cfj = CAδfjg + CF δfj{qq̄}. The equality of Eq. (3.107) and

Eq. (3.104), together with relations (3.99) and (3.100), shows the desired commut-

ation of limits in each sector ij.

Since the kernels in Eqs. (3.83)-(3.85) are built in terms of Mandelstam invariants,

and have not yet been parametrised at this stage, there is still full freedom to

choose the most appropriate kinematic mapping in order to maximally simplify

the analytic integrations to follow. In particular, at variance with what done in

the FKS algorithm, in any given sector one can employ different mappings for
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different singular limits, or even for different contributions to the same singular

limit. In order to take advantage of this freedom, we introduce now a generic

Catani-Seymour final-state mapping and parametrisation [2], as follows. Let ka

and kb be two final-state on-shell momenta, and let kc be the on-shell momentum

of another (massless) parton, with c 6= a, b. Now one can construct an on-shell,

momentum conserving n-tuple of massless momenta {k̄}(abc) as

{k̄}(abc) =
{
k̄(abc)
m

}
m6=a , k̄

(abc)
i = ki, if i 6= a, b, c,

k̄
(abc)
b = ka + kb −

sab
sac + sbc

kc , k̄(abc)
c =

sabc
sac + sbc

kc , (3.108)

where sabc = sab + sac + sbc, and in particular the condition

k̄
(abc)
b + k̄(abc)

c = ka + kb + kc (3.109)

ensures momentum conservation. Note that the collection of the n light-like mo-

menta {k̄}(abc) can also be expressed as

{k̄}(abc) =
{
{k}/a/b/c, k̄(abc)

b , k̄(abc)
c

}
. (3.110)

Next, we select different values of a, b, c in different sectors and limits. Consistently

with the general structure of factorised virtual amplitudes [137], we treat separ-

ately the soft and the hard-collinear limits. For the hard-collinear kernel in sector

ij, (Cij − Si Cij)RWij, we choose to assign the labels a, b, and c of Eq. (3.108)

as a = i, b = j, and c = r: partons i and j specify the collinear sector, while

parton r, introduced in Eq. (3.89), is the ‘spectator’. For the soft kernel, SiRWij,

we choose to map differently each term in the sum over l,m in Eq. (3.83), with

assignments a = i, b = l, and c = m. We then define the local counterterm as

K =
∑
i

[∑
j 6=i

SiWij

]
SiR +

∑
i, j>i

[
Cij

(
Wij +Wji

)]
Cij R

−
∑
i,j 6=i

[
Si CijWij

]
Si Cij R , (3.111)

where the barred projectors select soft and collinear limits, and assign the appro-

priate set of on-shell momenta to the kernels. Explicitly

SiR ({k}) = −N1

∑
l 6=i
m 6=i

I(i)
lm Blm

(
{k̄}(ilm)

)
, (3.112)

Cij R ({k}) =
N1

sij
P µν
ij Bµν

(
{k̄}(ijr)

)
, (3.113)

Si Cij R ({k}) = 2N1Cfj I(i)
jr B

(
{k̄}(ijr)

)
, (3.114)
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where we stress that r 6= i, j can be chosen differently for different ij pairs, with

the constraint that the same r should be chosen for all permutations of ij. We

stress that when defining the barred counterterms in Eq.(3.114), the following

consistency relations need to be respected:

SiR ({k}) = Si SiR ({k}) , (3.115)

Cij R ({k}) = Cij Cij R ({k}) , (3.116)

Si Cij R ({k}) = Si Si Cij R ({k}) , (3.117)

Cij SiR ({k}) = Cij Si Cij R ({k}) . (3.118)

This ensures that the complete counterterm (Eq.(3.111)) features the same phase-

space divergences as R in all one-unresolved singular regimes, sector-by-sector.

The validation of the consistency relations in Eqs.(3.115)-(3.116) reduces to simply

check whether the barred kinematics inside the Born matrix element appearing

therein returns the Born kinematics in Eqs.(3.83)-(3.84). This is indeed the case,

since

Si {k̄}(icd) ≡ Si

{
{k}/i/c/d, k̄(icd)

c , k̄
(icd)
d

}
=
{
{k}/i/c/d, kc, kd

}
= {k}/i , (3.119)

Cij {k̄}(ijr) ≡ Cij

{
{k}/i/j/r, k̄(ijr)

j , k̄(ijr)
r

}
=
{
{k}/i/j/r, ki + kj, kr

}
=
{
{k}/i/j , k

}
,

where k = ki + kj. To prove the remaining relations a slightly more care should

be taken. Let us start from Eq.(3.117)

Si Cij R =
(
Si
N1

sij
P µν
ij

)
Bµν

(
Si {k̄}(ijr)

)
= 2N1Cfj I(i)

jr B
(
Si {k̄}(ijr)

)
,

Si Si Cij R =
(
Si 2N1Cfj I(i)

jr

)
B
(
Si {k̄}(ijr)

)
= 2N1Cfj I(i)

jr B
(
Si {k̄}(ijr)

)
,

where in the first line we have exploited Eq.(3.95). It is evident that the two

limits coincide no matter Si {k̄}(ijr) is equal to. Finally, Eq.(3.118) can be proven

by considering

Cij SiR = −Cij

(
N1

∑
l,m6=i

I(i)
lm Blm

(
{k̄}(ilm)

) )
(3.120)

= −N1 I(i)
jr Cij

(∑
l 6=i,j

Blj

(
{k̄}(ilj)

)
+
∑
m6=i,j

Bmj

(
{k̄}(ijm)

) )
,

where in the second line we have exploited the fact that the collinear limit selects

on those contributions where l or m is equal to j. The corresponding eikonal factor

is then independent of l or m, and is thus pushed out of the sum, replacing l or

m with the auxiliary particle r. At this point the collinear limit acts to the Born
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kinematics, returning

Cij

{
{k}/i/l/j , k̄(ilj)

l , k̄
(ilj)
j

}
=
{
{k}/i/l/j , kl, ki + kj

}
=
{
{k}/i/j , k

}
,

Cij

{
{k}/i/j /m, k̄(ijm)

j , k̄(ijm)
m

}
=
{
{k}/i/j /m, ki + kj, km

}
=
{
{k}/i/j , k

}
.

The two momentum sets reduce to the same n-parton momenta, and they lose

their dependence on l and m. Therefore, colour conservation can be applied to get

rid of the colour correlations featured by the Born matrix element. This way

Cij SiR = 2N1Cfj I(i)
jr B

(
{k}/i/j , k

)
. (3.121)

On the other hand, the r.h.s. of Eq.(3.118) gives

Cij Si Cij R ({k}) =
(
Cij 2N1Cfj I(i)

jr

)
B
(
Cij{k̄}(ijr)

)
= 2N1Cfj I(i)

jr B
(
{k}/i/j , k

)
, (3.122)

which coincides with Eq.(3.121), completing the consistency checks.

The expression in Eq. (3.111) can be rewritten in terms of a sum over sectors of

local counterterms Kij, each containing all the singularities of the product RWij:

K =
∑
i,j 6=i

Kij , Kij =
(
Si + Cij − Si Cij

)
RWij , (3.123)

where it is understood that the action of barred projectors on sector functions is the

same as that of un-barred ones, namely SiWab = SiWab, and CijWab = CijWab.

To obtain Eq. (3.123) we have used the symmetry under exchange i ↔ j in our

definition of Cij R.

3.2.3 Counterterm integration

The counterterm defined in Eq. (3.123) is a sum of terms, each factorised into

a matrix element with Born-level kinematics, multiplying a kernel with real-

radiation kinematics. The analytic integration of the latter in the radiation phase

space proceeds by first summing over all sectors, as done in FKS. This opera-

tion matches the fact that the integrated counterterm must eventually cancel the

singularities of the virtual contribution, which obviously is not split into sectors.
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Upon summation over sectors, the integrand becomes independent of sector func-

tions. In fact

K =
∑
i

SiR +
∑
i, j>i

Cij

(
1− Si − Sj

)
R . (3.124)

In the soft term we have considered that the kinematic mapping is j-independent,

and performed the sum over j, exploiting the soft sum rule in Eq. (3.77); in the

hard-collinear contribution we have used the symmetry of the kinematic mapping

and of the collinear operator Cij under the interchange i ↔ j, exploited the

collinear sum rule in Eq. (3.77), and the fact that Si CijWij = Sj CijWji = 1 (see

Eq. (3.99) and Eq. (3.100)). The form of the counterterm in Eq. (3.124) is now

suitable for analytic phase-space integration.

We start by introducing the Catani-Seymour parameters

y =
sab
sabc

, z =
sac

sac + sbc
, (3.125)

which satisfy

sab = y sabc , sac = z(1− y) sabc , sbc = (1− z)(1− y) sabc , (3.126)

so that 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1. We use these variables to parametrise the

(n+ 1)-body phase space, consistently with the mappings in Eq. (3.108), as

dΦn+1 = dΦ(abc)
n dΦ

(abc)
rad , dΦ

(abc)
rad ≡ dΦrad

(
s̄

(abc)
bc ; y, z, φ

)
, (3.127)

leading to the explicit expression∫
dΦrad (s; y, z, φ) ≡ N(ε) s1−ε

∫ π

0

dφ sin−2εφ ×

×
∫ 1

0

dy

∫ 1

0

dz
[
y(1− y)2 z(1− z)

]−ε
(1− y) , (3.128)

where dΦ
(abc)
n is the n-body phase space for partons with momenta {k̄}(abc), φ is

the azimuthal angle between ka and an arbitrary three-momentum (other than

kb,kc), taken as reference direction, and we have set

N(ε) ≡ (4π)ε−2

√
π Γ(1/2− ε) , s̄

(abc)
bc ≡ 2 k̄

(abc)
b · k̄(abc)

c = sabc . (3.129)

We first consider the integral I hc of the hard-collinear counterterm

K
hc

=
∑
i, j>i

Cij

(
1 − Si − Sj

)
R =

∑
i, j>i

N1

sij
P hcµν
ij Bµν

(
{k̄}(ijr)

)
, (3.130)
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where

P hcµν
ij Bµν

(
{k̄}(ijr)

)
= P hc

ij B
(
{k̄}(ijr)

)
+Qµν

ij Bµν

(
{k̄}(ijr)

)
. (3.131)

Each term in the double sum in K
hc

is parametrised assigning labels a = i, b = j,

and c = r, as detailed below Eq. (3.109). We have

I hc =
ςn+1

ςn

∑
i, j>i

∫
dΦ

(ijr)
rad Cij

(
1− Si − Sj

)
R ({k}) , (3.132)

where ςk indicates the symmetry factor associated to the k-body final state. We

note that the integral does not receive any contribution from the azimuthal kernels

Qµν
ij , as the latter integrate to zero in the radiation phase space. In our chosen

parametrisation, the variable z coincides with the collinear fraction xi defined in

Eq. (3.91), while sij = y s̄
(ijr)
jr . The analytic integration of the counterterm is

therefore straightforward, and can be carried out exactly to all orders in ε. By

defining

J hc
ij (s, ε) ≡ 1

s

∫
dΦrad(s; y, z, φ)

P hc
ij (z, 1− z)

y

= − (4π)ε−2

sε
Γ(1− ε)Γ(2− ε)
εΓ(2− 3ε)

[
CA

3− 2ε
δfigδfjg (3.133)

+
CF
2

(
δfi{q,q̄}δfjg + δfj{q,q̄}δfig

)
+

2TR
3− 2ε

δ{fifj}{qq̄}

]
,

one finds

I hc = N1
ςn+1

ςn

∑
i, j>i

J hc
ij

(
s̄

(ijr)
jr , ε

)
B
(
{k̄}(ijr)

)
(3.134)

= − αS

2π

(µ2

s

)ε∑
p

B
(
{k̄}(ijr)

) [
δfpg

CA + 4TRNf

6

(1

ε
+

8

3
− ln η̄pr

)
+ δfp{q,q̄}

CF
2

(1

ε
+ 2− ln η̄pr

)]
+O(ε) ,

where in the last step we replaced the sum over i, j with a sum over ‘parent’

partons p (which has absorbed the ςn+1/ςn symmetry factor), carrying momentum

k̄
(ijr)
j (see Eq. (3.108)), we included a 1/2 Bose-symmetry factor in the CA term,

accounting for gluon indistinguishability, and we considered Nf light qq̄ pairs. The

invariant η̄pr is defined as η̄pr = s̄
(ijr)
jr /s = sijr/s, with r 6= p. Notice that the result

contains only a single 1/ε pole, consistently with the fact that soft singularities

are excluded.
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Next we turn to the integral I s of the soft counterterm

K
s

=
∑
i

SiR . (3.135)

We parametrise it by assigning different labels to each term in the eikonal sum,

with a = i, b = l and c = m, as detailed below Eq. (3.109), obtaining

I s =
ςn+1

ςn

∑
i

∫
dΦrad SiR ({k})

= −N1
ςn+1

ςn

∑
i

∑
l 6=i
m6=i

Blm

(
{k̄}(ilm)

) ∫
dΦ

(ilm)
rad I

(i)
lm . (3.136)

In our chosen parametrisation slm/sim = (1 − z)/z, and sil = y s̄
(ilm)
lm : the soft

counterterm can then be analytically integrated, once again to all orders in ε. By

defining, for each term of the eikonal sum,

J s(s, ε) ≡ 1

s

∫
dΦrad (s; y, z, φ)

1− z
yz

=
(4π)ε−2

sε
Γ(1− ε)Γ(2− ε)
ε2 Γ(2− 3ε)

, (3.137)

we get the simple result

I s = −N1
ςn+1

ςn

∑
i

δfig
∑
l 6=i
m6=i

J s
(
s̄

(ilm)
lm , ε

)
Blm

(
{k̄}(ilm)

)

=
αS

2π

(
µ2

s

)ε [∑
l

Cfl B
(
{k̄}
) ( 1

ε2
+

2

ε
+ 6− 7

2
ζ2

)
+
∑
l,m 6=l

Blm

(
{k̄}
)

ln η̄lm

(
1

ε
+ 2− 1

2
ln η̄lm

)]
+O(ε) , (3.138)

where in the second step we have remapped all identical soft-gluon contributions

on the same Born-level kinematic configuration {k̄}, and the sum
∑

i δfig has

absorbed the symmetry factor ςn+1/ςn. Note that Eq. (3.138) correctly features a

double 1/ε pole, coming from soft-collinear configurations.
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We can finally combine soft and hard-collinear integrated counterterms, obtaining,

up to O(ε) corrections,

I
(
{k̄}
)

= I s
(
{k̄}
)

+ I hc
(
{k̄}
)

=
αS

2π

(µ2

s

)ε{[
B
(
{k̄}
)∑

k

(Cfk
ε2

+
γk
ε

)
+
∑
k, l 6=k

Bkl

(
{k̄}
) 1

ε
ln η̄kl

]
+

[
B
(
{k̄}
)∑

k

(
δfkg

CA + 4TRNf

6

(
ln η̄kr −

8

3

)
+ δfkg CA

(
6− 7

2
ζ2

)
+ δfk{q,q̄}

CF
2

(
10− 7ζ2 + ln η̄kr

))
+
∑
k, l 6=k

Bkl

(
{k̄}
)

ln η̄kl

(
2− 1

2
ln η̄kl

)]}
, (3.139)

where we introduced the spin-dependent one-loop collinear anomalous dimension

γk = δfkg
11CA − 4TRNf

6
+ δfk{q,q̄}

3

2
CF . (3.140)

The integrated counterterm in Eq. (3.139) successfully reproduces the pole struc-

ture of the virtual NLO contribution (see for example [7]), which provides a check

of validity of the subtraction method. Moreover, we note the simplicity of the

integrated counterterms to all orders in ε, which is a direct consequence of having

optimally adapted term by term the kinematic mapping and parametrisation.

We conclude this Section with three considerations on the structure of the coun-

terterm. First, the strong coupling αS has been treated as a constant throughout

the computation. A dynamical scale for the coupling can simply be reinstated in

the counterterm by evaluating it with the Born-level kinematics {k̄}. Second, in

the counterterm definition in Eq. (3.111) we have chosen to apply projectors Si

and Cij only on the product RWij, while treating exactly the phase-space measure

dΦrad. In other words, the counterterm phase space is exact, and coincides with

that of the real-radiation matrix element. We stress that this feature is not cru-

cial to our method: one could as well consider approximate phase-space measures

dΦ̂rad, provided they correctly reproduce the exact dΦrad in the singular limits.

In the massless final-state case, as evident from the above calculation, no compu-

tational advantage would result from such an approximation, however the latter

may become relevant in more complicated cases. Analogously, restrictions on the

counterterm phase space could be applied in order to improve the convergence of

a numerical implementation. We leave these possibilities open for future studies.

Third, Eq. (3.123) and Eq. (3.124) are analytically equivalent, but they under-

pin different philosophies in the implementation of the subtraction scheme. In

Eq. (3.123), which is our preferred choice, subtraction is seen as the incoherent
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sum of terms, each of which features a minimal singularity structure and is separ-

ately optimisable, in the same spirit of the FKS method but, we believe, featuring

enhanced flexibility. Eq. (3.124), which in what we have presented is employed

only for analytic integration, represents a single local subtraction term containing

all singularities of the real matrix element, hence it has the same essence as CS

subtraction, but with much simpler counterterms. Our method at NLO repres-

ents thus a bridge between these two long-known subtraction methods, aiming at

retaining the virtues of both, and not being limited by the mutual suboptimal

features.

3.3 Local analytic sector subtraction at NNLO

3.3.1 Generalities

The generalisation to NNLO of the subtraction pattern presented in Eq.(3.1) has

already been discussed in detail in Chapter 2. Here for completeness we just

summarise the main aspects of the subtraction procedure at NNLO, according

to the real-radiation approach. The NNLO contribution to the differential cross

section with respect to a generic IR-safe observable X can be schematically written

as

dσNNLO

dX
=

∫
dΦn V V δn(X) +

∫
dΦn+1RV δn+1(X)

+

∫
dΦn+2RRδn+2(X) , (3.141)

where RR, V V , and RV are the double-real, the UV-renormalised double-virtual,

and the UV-renormalised real-virtual corrections. The sum of these three con-

tributions is finite due to the IR safety of X and to the KLN theorem. It is

however clear that the difficulty of evaluating and integrating complete radiative

matrix elements in arbitrary dimension at NNLO is significantly more severe than

at the NLO, hence the necessity of a subtraction procedure. Subtraction at NNLO

amounts to modifying Eq. (3.141) by adding and subtracting three sets of coun-

terterms: single-unresolved, double-unresolved, and real-virtual, which we write

as ∫
dΦ̂n+2 K

(1)
δn+1(X) ,

∫
dΦ̂n+2

(
K

(2) −K (12)
)
δn(X) ,∫

dΦ̂n+1 K
(RV)

δn(X) . (3.142)
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The single-unresolved counterterm dΦ̂n+2 K
(1)

features the subset of single-unresolved

phase-space singularities of dΦn+2RR.

The combination dΦ̂n+2

(
K

(2) − K (12))
contains all singularities stemming from

kinematic configurations where exactly two partons become unresolved. Notice

that the term K
(12)

represents the overlapping between the double-unresolved

counterterm K
(2)

and the single-unresolved K
(1)

, and therefore it will appears

with a minus sign, in order to avoid double-subtractions. The distinction between

K
(2)

and K
(12)

will be described in detail in Section 3.3.3. The third subtraction

term, dΦ̂n+1 K
(RV)

cancels the phase-space singularities of dΦn+1RV . Denoting

the corresponding phase-space-integrated counterterms with

I (1) =

∫
dΦ̂rad,1K

(1)
, I (2) =

∫
dΦ̂rad,2K

(2)
,

I (12) =

∫
dΦ̂rad,1K

(12)
, I(RV) =

∫
dΦ̂radK

(RV)
, (3.143)

where we have introduced the quantities dΦ̂rad,1 = dΦ̂n+2/dΦ̂n+1, dΦ̂rad,2 = dΦ̂n+2/dΦn,

and dΦ̂rad = dΦ̂n+1/dΦn, the subtracted NNLO cross section can be identically

rewritten as

dσNNLO

dX
=

∫
dΦn

(
V V + I (2) + I(RV)

)
δn(X) (3.144)

+

∫ [(
dΦn+1RV + dΦ̂n+1I

(1)
)
δn+1(X)

−dΦ̂n+1

(
K

(RV)
+ I (12)

)
δn(X)

]
+

∫ [
dΦn+2 RRδn+2(X)− dΦ̂n+2K

(1)
δn+1(X)

−dΦ̂n+2

(
K

(2) −K (12)
)
δn(X)

]
,

where, with respect to Eq.(2.207), we have slightly simplified the notation, omit-

ting the subscripts for the counterterms and the matrix elements. In the third and

fourth lines of Eq. (3.144), all terms are separately finite in d = 4, and their sum

is finite in the double-radiation phase space. In the second line, I (1) features the

same poles in ε as RV , up to a sign, so that their sum is finite in d = 4. The coun-

terterm K
(RV)

locally subtracts the phase-space singularities of RV ; it contains

however explicit poles in ε, and the local counterterm K
(12)

is such that the integ-

ral I (12) cancels those poles; furthermore, the finite sum RV + I (1) features phase

space singularities, and these must be cancelled by the finite sum K
(RV)

+ I (12).

In total, the sum of the four terms in the second line of Eq. (3.144) is both finite in

d = 4 and integrable in the single-radiation phase space, making this contribution

numerically tractable. Finally, in the first line of Eq. (3.144), the sum I (2) + I(RV)
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features the same poles in ε as V V , up to a sign, making the Born-like contribution

finite and integrable.

3.3.2 Sector functions

As in the NLO case, we start by partitioning the phase space in sectors, each

of which selects the singularities stemming from an identified subset of partons.

We thus introduce sector functions Wabcd, with as many indices as the maximum

number of partons that can simultaneously be involved in an NNLO-singular con-

figuration. We reserve the first two indices for singularities of single-unresolved

type, implying that b, c, and d differ from a. As far as double-unresolved config-

urations are concerned, in particular those of collinear nature, they can involve

three or four different partons, hence either indices b, c, and d are all different,

or two of them are equal. Without loss of generality we choose the third and the

fourth indices to be always different, so that the allowed combinations of indices,

that we refer to as topologies, are

Wijjk , Wijkj , Wijkl , i, j, k, l all different . (3.145)

Since the sector functions must add up to 1, in order to represent a unitary par-

tition of phase space, they can be defined as ratios of the type

Wabcd =
σabcd
σ

, σ =
∑
a, b 6=a

∑
c6=a
d6=a,c

σabcd =⇒
∑
a, b 6=a

∑
c6=a
d6=a,c

Wabcd = 1 . (3.146)

There is a certain freedom in the definition of σabcd. Analogously to the NLO

case, we design them in such a way as to minimise the number of IR limits that

contribute to a given sector. In addition, at NNLO there is another property to

be required, new with respect to NLO, and related to the fact that the integ-

rated single-unresolved counterterm I (1) must be combined with the real-virtual

contribution, to cancel its explicit poles in ε, as detailed in Section 3.3.1. Since

RV , as any term with (n+ 1)-body kinematics, is split into NLO-type sectors, the

same must be true for I (1). This implies that, roughly speaking, sector functions

with four indices must factorise sector functions with two indices in the single-

unresolved limits, in order for the cancellation of poles to take place NLO-sector

by NLO-sector.

A possible expression for σabcd with the required properties is

σabcd =
1

(eawab)α
1

(ec + δbc ea)wcd
, α > 1 . (3.147)



Chapter 3. Subtraction Chapter 3 Subtraction

With the sector functions defined in Eq. (3.146) and Eq. (3.147), the list of singu-

lar limits acting non-trivially in each NNLO sector includes the single-unresolved

projectors Sa and Cab, already considered at NLO, as well as the following double-

unresolved limits:

Sab : ea, eb → 0 , ea/eb → constant

(uniform double-soft configuration of partons (a, b)) ,

Cabc : wab, wac, wbc → 0 , wab/wac, wab/wbc, wac/wbc → constant

(uniform double-collinear configuration of partons (a, b, c)) ,

Cabcd : wab, wcd → 0 , wab/wcd → constant

(uniform double-collinear configuration of partons (a, b) and (c, d)) ,

SCabc : ea, wbc → 0 , ea/wbc → constant

(uniform soft-collinear configuration of partons a and (b, c)) . (3.148)

Notice that only the first two limits of the list (3.148) are genuinely double-

unresolved1, namely they cannot be reduced to compositions of single-unresolved

limits when acting on the double-real matrix elements; the remaining two con-

figurations are compositions of single-unresolved limits when acting on matrix

elements, but not when they are applied to the sector functions in Eq. (3.146),

therefore they have to be introduced as independent limits. In Appendix B we

show that, among the single- and double-unresolved limits that we are considering,

only a subset give a non-zero contribution in the various topologies. They are

Wijjk : Si , Cij , Sij , Cijk , SCijk ;

Wijkj : Si , Cij , Sik , Cijk , SCijk , SCkij ;

Wijkl : Si , Cij , Sik , Cijkl , SCikl , SCkij . (3.149)

In Appendix B we also show that all the limits reported in Eq. (3.149) commute

when acting on the sector functions, and that the combinations of these limits ex-

haust all possible single- and double-unresolved configurations in each sector. We

stress that the list in Eq.(3.149) strictly depends on our choice of sector functions:

definitions other than Eq.(3.147) imply a different set of contributing limits. As

an example, in a preliminary implementation of the method, sector functions were

defined by weighting differently the energy and the angular variable relative to the

first two indices

σabcd =
1

(ea)α (wab)β
1

(ec + δbc)wcd
, α > β > 1 . (3.150)

1In the literature the configuration Cabc is sometimes referred to as triple-collinear. We call it
double-collinear, following [135], in order to consistently specify the type of configuration as being double-
unresolved, rather than indicating the number of partons that become collinear.
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This choice naturally induce a different hierarchy between soft and collinear lim-

its, privileging the former with respect to the latter. As a direct consequence, the

soft-collinear projector SCabc is substituted by two different soft-collinear limits,

which differs in the order we apply them on sectors and matrix elements.

It is now necessary to study the properties of the sector functions defined in

Eq. (3.146) and Eq. (3.147) under the action of single-unresolved limits. As

noted above, in these configurations the NNLO sector functions must factorise

into products of NLO-type sector functions. To this end, let us define

W(α)
ij =

σαij∑
a, b 6=a

σαab
, (3.151)

so that the NLO sector functions in Eq. (3.79) are given by Wij = W(1)
ij . One

easily verifies that the functionsW(α)
ij satisfy all the requirements that must apply

to NLO sector functions. It is now straightforward to verify that the NNLO sector

functions defined in Eq. (3.146) and Eq. (3.147) satisfy

SiWijjk = Wjk SiW(α)
ij , CijWijjk = W[ij]k CijW(α)

ij ,

SiWijkj = Wkj SiW(α)
ij , CijWijkj = Wk[ij] CijW(α)

ij ,

SiWijkl = Wkl SiW(α)
ij , CijWijkl = Wkl CijW(α)

ij , (3.152)

Si CijWijjk = Wjk Si CijW(α)
ij ,

Si CijWijkj = Wkj Si CijW(α)
ij ,

Si CijWijkl = Wkl Si CijW(α)
ij , (3.153)

whereW[ab]c is the NLO sector function defined in the (n+ 1)-particle phase space

with respect to the parent parton [ab] of the collinear pair (a, b).

Finally, the NNLO sector functions satisfy sum rules analogous to the NLO ones

in Eq. (3.77), and which stem from their definition in Eq. (3.146). One may verify

that

Sik

(∑
b 6=i

∑
d6=i,k

Wibkd +
∑
b6=k

∑
d6=k,i

Wkbid

)
= 1 , (3.154)

Cijk

∑
abc∈π(ijk)

(
Wabbc +Wabcb

)
= 1 , (3.155)

Cijkl

∑
ab∈π(ij)
cd∈π(kl)

(
Wabcd +Wcdab

)
= 1 , (3.156)

SCijk

[∑
b 6=i

(Wibjk +Wibkj) +
∑
d 6=i,j

Wjkid +
∑
d 6=i,k

Wkjid

]
= 1 , (3.157)
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where by π(ijk) we denote the set {ijk, ikj, jik, jki, kij, kji}. Sum rules for com-

posite double-unresolved limits, that follow from those reported in Eqs. (3.154)-

(3.157), will be further detailed in Section 3.3.5, where we describe the structure of

the double-unresolved counterterm. We stress that the properties in Eqs. (3.154)-

(3.157), in full analogy with the NLO case, allow one to perform sums over all

the sectors that share a given set of double-unresolved singular limits, eliminating

the corresponding sector functions prior to countertem integration. This feature,

distinctive of our method at NNLO, is crucial for the feasibility of the analytic

integration of counterterms.

3.3.3 Definition of local counterterms

As reported in Eq. (3.149), a limited number of products of IR projectors is suf-

ficient to collect all singular configurations of the double-real matrix elements in

each sector. By subtracting these products from the matrix element, one gets, for

the different topologies, the finite expressions

RR sub

ijjk =
(
1− Si

)(
1−Cij

)(
1− Sij

)(
1−Cijk

)(
1− SCijk

)
RRWijjk

≡
(

1− L
(1)
ij

)(
1− L

(2)
ijjk

)
RRWijjk ,

RR sub

ijkj =
(
1− Si

)(
1−Cij

)(
1− Sik

)(
1−Cijk

)
×

×
(
1− SCijk

)(
1− SCkij

)
RRWijkj

≡
(

1− L
(1)
ij

)(
1− L

(2)
ijkj

)
RRWijkj ,

RR sub

ijkl =
(
1− Si

)(
1−Cij

)(
1− Sik

)(
1−Cijkl

)
×

×
(
1− SCikl

)(
1− SCkij

)
RRWijkl

≡
(

1− L
(1)
ij

)(
1− L

(2)
ijkl

)
RRWijkl , (3.158)

where we separated the action of the single-unresolved limits L
(1)
ij , defined in

Eq. (3.81), from that of the double-unresolved ones L
(2)
T , defined for the various

topologies T = {ijjk, ijkj, ijkl} by the expressions

L
(2)
ijjk = Sij + Cijk

(
1− Sij

)
+ SCijk

(
1− Sij

)(
1−Cijk

)
,

L
(2)
ijkj = Sik + Cijk

(
1− Sik

)
+
[
SCijk + SCkij

(
1− SCijk

)](
1− Sik

)(
1−Cijk

)
,

L
(2)
ijkl = Sik + Cijkl

(
1− Sik

)
+
[
SCikl + SCkij

(
1− SCikl

)](
1− Sik

)(
1−Cijkl

)
. (3.159)
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The order with which the various operators are applied to matrix elements is

irrelevant, as all limits commute. In Appendix B we show that this property is

also respected by the sector functions defined in Eq. (3.146). Candidate double-

real local counterterms for the various topologies T can thus be defined, in analogy

with Eq. (3.81), as

K
(1)
T +K

(2)
T −K (12)

T = RRWT −RRsub

T

=
[
L

(1)
ij + L

(2)
T − L

(1)
ij L

(2)
T

]
RRWT . (3.160)

The different contributions are naturally split according to their kinematics. All

terms containing only single-unresolved limits are assigned to K (1), the single-

unresolved counterterm; terms containing only double-unresolved limits are as-

signed to K (2), which we refer to as pure double-unresolved counterterm; all re-

maining terms, containing overlaps of single- and double-unresolved limits, while

still featuring double-unresolved kinematics, are assigned to K (12), which we refer

to as mixed double-unresolved counterterm. We write therefore, for each topology

T ,

K
(1)
T = L

(1)
ij RRWT , (3.161)

K
(2)
T = L

(2)
T RRWT , (3.162)

K
(12)
T = L

(1)
ij L

(2)
T RRWT . (3.163)

The definitions in Eqs. (3.161)-(3.163) are very intuitive and compact. First,

notice that the candidate single-unresolved counterterm has the very same struc-

ture as the NLO counterterm, as one can deduce by comparing Eq. (3.161) with

Eq. (3.81). This correspondence is strict: indeed, if one imagines removing from a

given process all n-body contributions, for instance by means of phase-space cuts,

the original NNLO computation reduces to the NLO computation for the process

with n + 1 particles at Born level, with RR playing the role of single-real correc-

tion, and RV that of virtual contribution; in this scenario, K (1) becomes exactly

the candidate NLO local counterterm. As for the double-unresolved contributions,

K (2) is to be integrated in dΦ̂rad,2, giving rise to up to four poles in ε, multiplied

by Born-like matrix elements, analogously to V V ; the single-unresolved structure

in K (12), on the other hand, makes it suitable for integration in dΦ̂rad,1; once this

is achieved, its double-unresolved projectors naturally become single-unresolved

projectors for the parent parton which originated the first splitting, thus repro-

ducing the structure of K(RV). This is necessary, since the integral of K (12) must

compensate the explicit poles in ε of K(RV). This cancellation also relies on the

factorisation properties of sector functions, presented in Eq. (3.153), as will be

further detailed below.
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The double-unresolved kernels appearing in the counterterm definitions of Eqs. (3.161)-

(3.163) can be derived from soft and collinear limits of scattering amplitudes, which

are universal, and for the massless case relevant to this article they were computed

in Refs. [25, 27]. General expressions for the kernels can also be derived starting

from the factorisation of soft and collinear poles in virtual corrections to fixed-angle

scattering amplitudes, as we have discussed in detail dealing with the factorisation

approach to the IR subtraction problem. Here we just write symbolically

SijRR
(
{k}
)

=
N 2

1

2

∑
c,d6=i,j

[ ∑
e,f 6=i,j

I(i)
cd I

(j)
ef Bcdef

(
{k}/i/j

)
+ I(ij)

cd Bcd

(
{k}/i/j

)]
, (3.164)

CijkRR
(
{k}
)

=
N 2

1

s2
ijk

[
Pijk B

(
{k}/i/j/k, k

)
+ Qµν

ijk Bµν

(
{k}/i/j/k, k

) ]
≡ N

2
1

s2
ijk

P µν
ijk Bµν

(
{k}/i/j/k, k

)
, (3.165)

CijklRR
(
{k}
)

=
N 2

1

sijskl
P µν
ij P ρσ

kl Bµνρσ

(
{k}/i/j/k/l , kij, kkl

)
, (3.166)

SCijkRR
(
{k}
)

= − N
2

1

sjk
P µν
jk

∑
c,d6=i,j,k

c,d=1...[jk]...n+1

I(i)
cd B

cd
µν

(
{k}/i/j/k, kjk

)
. (3.167)

In the equations above, and in the following, the sum over indices c and d is

understood to run over the partons that are present at Born level. For the soft-

collinear limit, for example, the Born-level indices c, d cannot be equal to i, j, k, but

they can be equal to the parent parton [jk], deriving from the splitting [jk]→ j+k.

In the double-soft limit, Bcdef is the doubly-colour-connected Born matrix element,

defined for instance in Eq.(2.117); the eikonal kernels I(i)
ab have been defined in

Eq. (3.88), while the kernels I(ij)
cd are defined in Eq.(2.115) and Eq.(2.118) 2. In

the non-factorisable double-collinear limit Cijk, the set of momenta ({k}/i/j/k, k)

refers to a set of n partons obtained from {k} by removing ki, kj, and kk, and

inserting their sum k = ki + kj + kk. The expressions for the double-collinear

spin-averaged kernels Pijk and for the azimuthal kernels Qµν
ijk, all symmetric under

permutations3 of i, j, and k, can be easily extracted from [25, 27], and their

expressions are reported Sec.3.5.4. We note however that Qµν
ijk can always be cast

2According to our conventions, I(ij)
cd corresponds to Eq. (96) of [27], multiplied times TR/2 in the qq̄

case, while it corresponds to Eq. (110) of [27], multiplied times −CA/2 in the gg case. Furthermore, in

order to get I(ij)
cd , one should replace q1 with ki, q2 with kj , pi with kc, and pj with kd.

3Symmetry under permutations of i, j, and k does not mean symmetry under flavour exchange, but
only that kernels and flavour Kronecker delta symbols combine in a symmetric way: this is analogous
to what happens in the case of a q → qg collinear splitting at NLO in Eq. (3.93).
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in the form

Qµν
ijk =

∑
a=i,j,k

Q
(a)
ijk

[
− gµν + (d− 2)

k̃µa k̃
ν
a

k̃2
a

]
, (3.168)

where, in analogy with Eq. (3.91),

k̃µa = kµa − za kµ −
(
k ·ka
k2
− za

)
k2

k ·kr
kµr , k̃µi + k̃µj + k̃µk = 0 ,

za =
ka ·kr
k ·kr

=
sar

sir + sjr + skr
, zi + zj + zk = 1 , (3.169)

and kµr is a light-like vector which specifies how the collinear limit is approached.

The Lorentz structure in Eq. (3.168), identical to the NLO one in Eq. (3.94),

is such that the radiation-phase-space integral of the double-collinear azimuthal

terms vanishes identically. Hence, once more, the analytic integration of the coun-

terterms involves only spin-averaged kernels. The factorisable double-collinear

limit Cijkl features the doubly-spin-correlated Born matrix element Bµνρσ, with a

kinematics obtained from {k} removing ki, kj, kk, and kl, and inserting the sums

kij = ki + kj, and kkl = kk + kl; the corresponding kernel is defined as

P µν
ij P ρσ

kl Bµνρσ = Pij PklB +Qµν
ij PklBµν + Pij Q

ρσ
kl Bρσ +Qµν

ij Q
ρσ
kl Bµνρσ .

(3.170)

Finally, the soft-collinear limit SCijk features a colour- and spin-correlated Born

contribution Bcd
µν , obtained from the colour-correlated Born matrix element Bcd

by stripping external spin polarisation vectors.

We now note that, while Eqs. (3.161)-(3.163) are quite natural, they contain some

redundancy. In fact one can exploit the relations

SCijk SCkij (1− Sik) = SCikl SCkij (1− Sik) = 0 , (3.171)

valid both on matrix elements and on sector functions, to rewrite

L
(2)
ijkj = Sik + Cijk

(
1− Sik

)
+
(
SCijk + SCkij

)(
1− Sik

)(
1−Cijk

)
,

L
(2)
ijkl = Sik + Cijkl

(
1− Sik

)
+
(
SCikl + SCkij

)(
1− Sik

)(
1−Cijkl

)
. (3.172)
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After the simplifications just discussed, we are finally in a position to write down

the definition of the candidate local counterterms for all contributing topologies:

K
(1)
T =

[
Si + Cij

(
1− Si

)]
RRWT , (3.173)

K
(2)
ijjk =

[
Sij + Cijk

(
1− Sij

)
+ SCijk

(
1− Sij

)(
1−Cijk

)]
RRWijjk ,

K
(2)
ijkj =

[
Sik + Cijk

(
1− Sik

)
+
(
SCijk + SCkij

)(
1− Sik

)(
1−Cijk

)]
RRWijkj ,

K
(2)
ijkl =

[
Sik + Cijkl (1− Sik)

+ ( SCikl + SCkij) (1− Sik) (1−Cijkl)
]
RRWijkl ,

K
(12)
ijjk =

[
Si + Cij (1− Si)

][
Sij + Cijk (1− Sij)

+ SCijk (1− Sij) (1−Cijk)
]
RRWijjk ,

K
(12)
ijkj =

[
Si + Cij (1− Si)

][
Sik + Cijk (1− Sik)

+ ( SCijk + SCkij) (1− Sik) (1−Cijk)
]
RRWijkj ,

K
(12)
ijkl =

[
Si + Cij (1− Si)

][
Sik + Cijkl (1− Sik)

+ ( SCikl + SCkij) (1− Sik) (1−Cijkl)
]
RRWijkl .

The final step for the construction of the NNLO counterterms, analogously to what

happens in the NLO case discussed in Section 3.2.2, is to apply kinematic mappings

to Eq. (3.173). There is ample freedom in the choice of these mappings, and

in principle different mappings can be employed for different kernels, or even for

different contributions to the same kernel. The detailed definition of the kinematic

mappings we employ for each counterterm is given in Sections 3.3.4 and 3.3.5

where, as usual, all remapped quantities will be denoted with a bar. Finally, the

real-virtual counterterm has formally the same structure as the NLO counterterm

of Eq. (3.123), with the replacementR → RV , and will be discussed in Section 3.6.
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3.3.4 Single-unresolved counterterm

We start by separating the hard-collinear and the soft contributions to the can-

didate single-unresolved counterterm:

K (1) = K (1,hc) +K (1, s) , (3.174)

K (1, hc) =
∑
i, j 6=i

Cij (1− Si) RR
∑
k 6=i,j

(
Wijjk +Wijkj +

∑
l 6=i,j,k

Wijkl

)
, (3.175)

K (1, s) =
∑
i, j 6=i

SiRR
∑
k 6=i,j

(
Wijjk +Wijkj +

∑
l 6=i,j,k

Wijkl

)
. (3.176)

Using the factorisation properties (3.153) we can proceed as done at NLO. We

define the appropriate counterterms with remapped kinematics, where in this case

barred projectors apply not only to matrix elements, but also to sector functions:

K
(1, hc)

=
∑
i, j 6=i

∑
k 6=i
l 6=i,k

[(
CijW(α)

ij

) (
Cij RR

)
Wkl

−
(
Si CijW(α)

ij

) (
Si Cij RR

)
Wkl

]
,

K
(1, s)

=
∑
i, j 6=i

∑
k 6=i
l 6=i,k

(
SiW(α)

ij

) (
SiRR

)
Wkl . (3.177)

The kinematic mapping of sector functions, once the integrated counterterm is

considered, allows to factorise the structure of NLO sectors out of the radiation

phase space, and integrate analytically only single-unresolved kernels. Explicitly(
SiRR

)
Wkl ≡ −N1

∑
a6=i
b6=i

I(i)
ab Rab

(
{k̄}(iab)

)
W(iab)

kl , (3.178)

(
Cij RR

)
Wkl ≡

N1

sij
P µν
ij Rµν

(
{k̄}(ijr)

)
W(ijr)

kl , (3.179)(
Si Cij RR

)
Wkl ≡ 2N1Cfj I(i)

jr R
(
{k̄}(ijr)

)
W(ijr)

kl , (3.180)

where Rab and Rµν are the colour- and spin-correlated real matrix elements and

W(abc)

kl =
σ̄

(abc)
kl∑

i, j 6=i
σ̄

(abc)
ij

, σ̄
(abc)
ij =

1

ē
(abc)
i w̄

(abc)
ij

, (3.181)

ē
(abc)
i =

s̄
(abc)
qi

s
, w̄

(abc)
ij =

s s̄
(abc)
ij

s̄
(abc)
qi s̄

(abc)
qj

. (3.182)

In Eqs. (3.179) and (3.180) the choice of r 6= i, j is as follows: if k = j, the same

r should be chosen for all permutations of ijl, and analogously for the case l = j;
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if both k 6= j and l 6= j, the same r should be chosen for all permutations in

π(π(ij) π(kl)).

3.3.4.1 Integration of the single-unresolved counterterm

As done at NLO, we now integrate the single-unresolved counterterm in its radi-

ation phase space. We first get rid of the NLO sector functions W(α)
ij using their

NLO sum rule, obtaining

K
(1, hc)

=
∑
i, j>i

∑
k 6=i
l 6=i,k

[
Cij

(
1− Si − Sj

)
RR
]
Wkl , (3.183)

K
(1, s)

=
∑
i

∑
k 6=i
l 6=i,k

(
SiRR

)
Wkl , (3.184)

two expressions which are suitable for analytic integration. Indeed, the integral of

K
(1, hc)

in the single-unresolved radiation phase space dΦ
(abc)
rad,1 = dΦ

(abc)
rad reads

I (1,hc) =
ςn+2

ςn+1

∑
i, j>i

∑
k 6=i
l 6=i,k

Wkl

∫
dΦ

(ijr)
rad,1 Cij

(
1− Si − Sj

)
RR ({k})

= N1
ςn+2

ςn+1

∑
i, j>i

∑
k 6=i
l 6=i,k

J hc
ij

(
s̄

(ijr)
jr , ε

)
R
(
{k̄}(ijr)

)
W(ijr)

kl

= −αS

2π

(µ2

s

)ε∑
p

∑
k, l 6=k

W(ijr)

kl R
(
{k̄}(ijr)

)[
δfp{q,q̄}

CF
2

(1

ε
+ 2− ln η̄pr

)
+ δfpg

CA + 4TRNf

6

(1

ε
+

8

3
− ln η̄pr

)]
+O(ε) , (3.185)

fully analogous to its NLO counterpart in Eq. (3.134). The integral of K
(1, s)

similarly yields

I (1, s) =
ςn+2

ςn+1

∑
i

∑
k 6=i
l 6=i,k

Wkl

∫
dΦrad,1 SiRR ({k})

= −N1
ςn+2

ςn+1

∑
i

δfig
∑
k 6=i
l 6=i,k

∑
a6=i
b6=i

J s
(
s̄

(iab)
ab , ε

)
Rab

(
{k̄}(iab)

)
W(iab)

kl

=
αS

2π

(µ2

s

)ε ∑
k, l 6=k

Wkl

[∑
a

Cfa R
(
{k̄}
) ( 1

ε2
+

2

ε
+ 6− 7

2
ζ2

)
+
∑
a, b 6=a

Rab

(
{k̄}
)

ln η̄ab

(1

ε
+ 2− 1

2
ln η̄ab

)]
+O(ε) , (3.186)
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where, in the last step, all identical soft-gluon contributions have been remapped

on the same real kinematics {k̄}, and the sum
∑

i δfig has absorbed the sym-

metry factor ςn+2/ςn+1. The combination of hard-collinear and soft contributions

is straightforward, as in the NLO case, yielding

I (1)({k̄}) = I (1, s)
(
{k̄}
)

+ I (1, hc)
(
{k̄}
)

=
∑
h, q 6=h

I
(1)
hq ({k̄})

=
αS

2π

(µ2

s

)ε ∑
h, q 6=h

Whq ×

×
{[

R
(
{k̄}
)∑

a

(Cfa
ε2

+
γa
ε

)
+
∑
a, b 6=a

Rab

(
{k̄}
) 1

ε
ln η̄ab

]
+

[
R
(
{k̄}
)∑

a

(
δfag

CA + 4TRNf

6

(
ln η̄ar −

8

3

)
+δfagCA

(
6− 7

2
ζ2

)
+ δfa{q,q̄}

CF
2

(
10− 7ζ2 + ln η̄ar

))
+
∑
a, b 6=a

Rab

(
{k̄}
)

ln η̄ab

(
2− 1

2
ln η̄ab

)]}
, (3.187)

where indices h and q run over the NLO multiplicity, barred momenta and invari-

ants refer to NLO kinematics, and r 6= a. Eq. (3.187) exhibits the same poles in

ε as the ones shown at NLO in Eq. (3.139), due to the single-unresolved nature

of the involved projectors. Such poles are identical (up to a sign) to the ones of

the real-virtual matrix element, thus showing the finiteness in d = 4 of the sum

RV + I (1). It is important to note, however, that in Eq. (3.187), as well as in

RV , the full structure of NLO sector functions Whq is factorised in front of the

integrated singularities, which means that the cancellation of 1/ε poles between

RV and I (1) occurs sector by sector in the (n+ 1)-body phase space.

3.3.5 Double-unresolved counterterm

The double-unresolved counterterm with n-body kinematics consists of two parts:

the pure double-unresolved counterterm K
(2)

, which must be integrated in the

double-radiation phase space, and the mixed double-unresolved counterterm K
(12)

which must be integrated in a single-radiation phase space. From Section 3.3.1

we see that, while their integration has to be performed independently, the non-

integrated counterterms K
(2)

and K
(12)

appear only combined in the last line of

Eq. (3.144). Owing to the simplifications discussed at the end of Section 3.3.3, the
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combination K (2) −K (12) reads

K (2) −K (12) =
∑
i, j 6=i

(1− Si) (1−Cij)
∑
k 6=i,j

{[
Sij + Cijk

(
1− Sij

)
+SCijk

(
1− Sij

)(
1−Cijk

)]
Wijjk +

[
Sik + Cijk

(
1− Sik

)
+
(
SCijk + SCkij

)(
1− Sik

)(
1−Cijk

)]
Wijkj

+
∑
l 6=i,j,k

[
Sik + Cijkl (1− Sik)

+ ( SCikl + SCkij) (1− Sik) (1−Cijkl)
]
Wijkl

}
RR . (3.188)

Before tackling the computation of the inntegrated double-unresolved counterterms,

we need to get rid of the sector functions, whose kinematics dependence may com-

plicate the integration procedure.

We start by considering the hard-collinear contribution toK (12). Following Eqs. (3.173)

and Eq.(3.188) we have

K(12, hc) =
∑
i, j 6=i

Cij (1− Si)
∑
k 6=i,j

{[
Sij + Cijk

(
1− Sij

)
+ SCijk

(
1− Sij

)(
1−Cijk

)]
Wijjk +

[
Sik + Cijk

(
1− Sik

)
+
(
SCijk + SCkij

)(
1− Sik

)(
1−Cijk

)]
Wijkj +

∑
l 6=i,j,k

[
Sik

+ Cijkl (1− Sik) + ( SCikl + SCkij) (1− Sik) (1−Cijkl)
]
Wijkl

}
RR.

Now we use the fact that

Si SCiabRR = SCiabRR

Cij SCijk Cijk σ = Cij SCijk σ

Cij SCikl Cijkl σ = Cij SCikl σ (3.189)

to eliminate the soft-collinear limit SCijk from the contributing terms selected by

sectors functions. Moreover, we exploit the relations

Si SCkij Sik RR = SCkij Sik RR (3.190)

SCkij Cij Si Sik σ = SCkij Cij Si σ (3.191)

to eliminate the contributions coming from the combination SCkij Si of sector

Wijkj and Wijkl. Given all the simplifications discuss above, the hard-collinear
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contribution to K (12) reads

K (12, hc) =
∑
i, j 6=i

∑
k 6=i,j

Cij

{(
1− Si

)[
Sij + Cijk

(
1− Sij

)]
Wijjk (3.192)

+

[(
1− Si

)[
Sik + Cijk

(
1− Sik

)]
+ SCkij

(
1− Sik

)(
1−Cijk

)]
Wijkj

+
∑
l 6=i,j,k

[(
1− Si

)[
Sik + Cijkl

(
1− Sik

)]
+SCkij

(
1− Sik

)(
1−Cijkl

)]
Wijkl

}
RR .

We stress that in the last expression we have kept the SCkij terms: these cancel

out in the sum K (2) − K (12), but do contribute to the integrals I (2) and I (12),

which have to be evaluated separately. To treat the hard-collinear component of

the mixed double-unresolved counterterm we need to organise it in the form of

single-unresolved limits in the NLO phase space. Starting from Eq. (3.192), using

the factorisation properties of the NNLO sector function, together with

Cij Si Sik RR = Cij Sik RR ,

Cij Si Sik Cijk RR = Cij Sik Cijk RR ,

Cij SCkij Sik RR = SCkij Sik RR ,

Cij SCkij Sik Cijk RR = SCkij Sik Cijk RR ,

Cij Cijkl Sik RR = Cijkl Sik RR ,

Cij Cijkl SiRR = Cijkl SiRR ,

Cij Si Cijkl Sik RR = Cijkl Sik RR ,

Cij SCkij Cijkl Sij RR = SCkij Cijkl Sik RR , (3.193)

and introducing remapped kinematics for the double-real matrix element and for
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the sector functions Wab, the hard-collinear contribution to the mixed double-

unresolved counterterm can be cast in the form

K
(12, hc)

=
∑
i, j>i

∑
k 6=i,j

[
Cij

(
W(α)

ij +W(α)
ji

)]{ ∑
l 6=i,j,k

(
CklWkl

)
Cijkl

+
[
Cjk

(
Wjk +Wkj

) ]
Cij Cijk +

∑
l 6=i,k

(
SkWkl

)
SCkij

−
(
Sj CjkWjk

)
Cij Sij Cijk −

(
Sk CjkWkj

)
SCkij Cijk

+
(
SjWjk

)
Cij Sij −

∑
l 6=i,j,k

(
Sk CklWkl

)
SCkij Cijkl

}
RR

−
∑
i, j 6=i

∑
k 6=i,j

[
Si CijW(α)

ij

]{[
Cjk

(
Wjk +Wkj

) ]
Si Cij Cijk

+
(
SjWjk

)
Si Cij Sij +

∑
l 6=i,j,k

(
CklWkl

)
Cijkl Si

−
(
Sj CjkWjk

)
Sij Cijk Si Cij +

∑
l 6=i,k

(
SkWkl

)
SCkij Sik

−
(
Sk CjkWkj

)
SCkij Sik Cijk

−
∑
l 6=i,j,k

(
Sk CklWkl

)
SCkij Sik Cijkl

}
RR . (3.194)

Using the NLO sector-function sum rules, and appropriate symmetrisations, the

latter becomes

K
(12, hc)

=
∑
i, j>i

∑
k 6=i,j

{[(
Cjk

(
Wjk +Wkj

) )
Cij Cijk (3.195)

+
∑
l 6=i,j,k

(
CklWkl

)
Cijkl +

(
SjWjk

)
Cij Sij

−
(
Sj CjkWjk

)
Cij Sij Cijk

](
1− Si − Sj

)
+

[∑
l 6=i,k

(
SkWkl

)
SCkij −

(
Sk CjkWkj

)
SCkij Cijk

−
∑
l 6=i,j,k

(
Sk CklWkl

)
SCkij Cijkl

](
1− Sik − Sjk

)}
RR .

We now consider the K (12, s) counterterm, which is obtained combining the soft

contributions of the last three equations of (3.173). We use the relation in Eq.(3.190)

together with

Sik Si SCkij σ = Si SCkij σ (3.196)
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to eliminate the SCkij contributions deriving from sectors Wijkj and Wijkl. The

result is

K (12, s) =
∑
i, j 6=i

∑
k 6=i,j

Si ×

×
{[(

Sij + Cijk (1− Sij)
)

+ SCijk (1− Sij) (1−Cijk)

]
Wijjk

+

[(
Sik + Cijk (1− Sik)

)
+ SCijk (1− Sik) (1−Cijk)

]
Wijkj

+
∑
l 6=i,j,k

[(
Sik + Cijkl (1− Sik)

)
+SCikl (1− Sik) (1−Cijkl)

]
Wijkl

}
RR . (3.197)

Using Eq. (3.153), together with

SCikl CijklRR = Si CijklRR

Si SCikl Sik CijklRR = Sik CijklRR

Si SCikl Sik RR = Sik CijklRR , (3.198)

and introducing, as usual, remapped kinematics for the sector functions and for

the limits of the matrix element, we obtain the expression

K
(12, s)

=
∑
i, k 6=i

∑
l 6=i,k

[
Si
∑
j 6=i

W(α)
ij

]{(
SkWkl

)
Si Sik +

(
CklWkl

)
SCikl (3.199)

−
(
Sk CklWkl

)
SCikl Sik

}
RR

+
∑
i, j 6=i

∑
k 6=i
k>j

[
Si Cijk

(
W(α)

ij +W(α)
ik

)]{[
Cjk

(
Wjk +Wkj

)]
−
(
Sj CjkWjk

)
Sij −

(
Sk CjkWkj

)
Sik

}(
Si − SCijk

)
Cijk RR .

By means of the sum rule

Si Cijk

(
W(α)

ij +W(α)
ik

)
= 1 , (3.200)
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and renaming indices, we finally get

K
(12, s)

=
∑
i, j 6=i

∑
k 6=i,j

{(
SjWjk

)
Si Sij

+
(
CjkWjk

)[
Si Cijk + SCijk

(
1−Cijk

)]
−
(
Sj CjkWjk

)
Sij

[
Si Cijk + SCijk

(
1−Cijk

)]}
RR .

(3.201)

The remaining double unresolved counterterm contributions are collected by K (2),

whose expression follows from Eq. (3.173) and reads

K (2) =
∑
i, j 6=i

∑
k 6=i,j

{[
Sij + Cijk

(
1− Sij

)
+ SCijk

(
1− Sij

)(
1−Cijk

)]
Wijjk

+
[
Sik + Cijk

(
1− Sik

)
+
(
SCijk + SCkij

)(
1− Sik

)(
1−Cijk

)]
Wijkj

+
∑
l 6=i,j,k

[
Sik + Cijkl (1− Sik)

+ (SCikl + SCkij) (1− Sik) (1−Cijkl)
]
RRWijkl

}
RR .

We work on this expression by symmetrising indices, and exploiting the sum rules

in Eqs. (3.154)-(3.157), together with

Sij Cijk

∑
ab∈π(ij)

(
Wabbk +Wakbk

)
= 1 ,

Sik Cijkl

(
Wijkl +Wklij

)
= 1 ,

SCijk Sij

(∑
b 6=i

Wibjk +
∑
d6=i,j

Wjkid

)
= 1 ,

SCijk Cijk

(
Wijjk +Wijkj +Wikkj +Wikjk +Wjkik +Wkjij

)
= 1 ,

SCikl Cijkl

(
Wijkl +Wijlk +Wklij +Wlkij

)
= 1 ,

SCijk Cijk Sij

(
Wijjk +Wikjk +Wjkik

)
= 1 ,

SCikl Cijkl Sik

(
Wijkl +Wklij

)
= 1 .
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Introducing remapped kinematics for the double-real matrix element, the pure

double-unresolved counterterm can be finally cast in the form

K
(2)

=
∑
i

{∑
j>i

Sij +
∑
j>i

∑
k>j

Cijk

(
1− Sij − Sik − Sjk

)
(3.202)

+
∑
j>i

∑
k>i
k 6=j

∑
l>k
l 6=i,j

Cijkl

(
1− Sik − Sjk − Sil − Sjl

)
+
∑
j 6=i

∑
k 6=i
k>j

SCijk

(
1− Sij − Sik

)(
1−Cijk −

∑
l 6=i,j,k

Ciljk

)}
RR ,

which is manifestly free of NNLO sector functions. The counterterm in Eq. (3.202)

is thus suitable for analytic integration over the double-unresolved phase space,

upon definition of the barred limits.

3.4 Double mixed-unresolved counterterm:

example of barred limits and integration

In this section we tackle the definition of the barred limits contributing to the

mixed-double unresolved counterterm K
(12)

. Given the results in Eqs.(3.195)-

(3.201), the complete list of barred limits that have to be consistently defined

reads

Cij Cijk , Si Sij , Cij Sij , Cij Sij Cijk ,

SCkij , SCkij Sik , SCkij Cijk , SCkij Cijk Sik ,

SCkij Cijkl , SCkij Cijk Sik , Si Cijk , Si Sij Cijk ,

Si Cij Cijk , Cij Sij Cijk Si , Si Cijkl , Si Cij Sij ,

SCijk Sij , SCkij Cijkl Sik , SCijk Sij Cijk . (3.203)

As done at NLO, the definition of the barred limits has to be done in a consistent

way. At NNLO, as a natural consequence of the increased number of contributing

limits, and of their nested composition, the tower of consistency relations is much

more extended. In full generality, a limit composed by n primary limits is con-

strained by n consistency relations. For instance, the barred limit Cij Sij Cijk Si
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has to fulfil four independent constraints

Cij Cij Sij Cijk SiRR = Cij Sij Cijk SiRR ,

Sij Cij Sij Cijk SiRR = Sij Cij Cijk SiRR ,

Cijk Cij Sij Cijk SiRR = Cijk Cij Sij SiRR ,

Si Cij Sij Cijk SiRR = Si Cij Sij Cijk RR , (3.204)

whose validation strictly depends on the properties of the chosen mapping. On

top of the consistency relations, the barred limits in Eq.(3.204) have also to verify

two further requirements: their integral over the single-unresolved phase space has

to match the explicit poles of the real-virtual counterterm and, at the same time,

the phase space singularities of the integrated counterterm I (1). As already men-

tioned, this delicate pattern of cancellations is not directly protected by the KLN

theorem, and needs an appropriate definition of K
(12)

to occur. In full generality,

K
(12)

may not coincide with a straightforward remapping of the off-shell counter-

parts contributing to K (12). In other words, to implement the integrability of the

second line in Eq.(3.144), it is necessary to define the quantities in Eq.(3.204) by

modifying the structures that naturally arise from the leading mixed unresolved

limits of RR.

This procedure is at the moment under construction, therefore here we only

presents some preliminary results.

We can, for instance, focus on the pure-soft content of K
(12)

, namely the Si Sij RR

contribution. We define such limit to be

Si SijRR = −N1

∑
c 6=i d 6=i

I(i)
cd Sj Rcd

(
{k̄}(icd)

)
(3.205)

=
N 2

1

2

∑
c6=i,j
d6=i,j,c

[ ∑
e 6=i,j,c,d
f 6=i,j,c,d

I(i)
cd I

(j) (icd)

ef Bcdef

(
{k̄}(icd,jef)

)

+ 2
∑

e 6=i,j,c,d

I(i)
cd I

(j) (icd)

ed Bcded

(
{k̄}(icd,jed)

)
+ 2

∑
e 6=i,j,c,d

I(i)
cd I

(j) (idc)

ed Bcded

(
{k̄}(idc,jed)

)
+ 2 I(i)

cd I
(j) (icd)

cd Bcdcd

(
{k̄}(ijcd)

)
+ I(ij) s.o.

cd Bcd

(
{k̄}(ijcd)

)]
,

where

I(i) (jlm)

ab ≡ δfig
s̄

(jlm)
ab

s̄
(jlm)
ia s̄

(jlm)
ib

, (3.206)
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and I(ij) s.o.

cd is the strongly-ordered limit, (ki � kj)→ 0, of the kernel in Eq. (111)

of Ref. [27], after an appropriate remapping, defined by

I(ij) s.o.

cd ≡ − 2CA

[
I(i)
cj I

(j) (icj)

cd + I(i)
jd I

(j) (ijd)

cd − I(i)
cd I

(j) (icd)

cd

]
. (3.207)

In Eq.(3.205) different kinds of mapping have been combined: for the eikonal

factors and for the strongly-ordered kernel we have exploited a single mapping,

already introduced at NLO (see Eqs.(3.108)-(3.110)). To simplify the notation, in

what follows a generic quantity F depending on a generic single mapping {k̄}(abc)

will be identified with F (abc)
. Moreover, for the Born-level matrix elements ap-

pearing in the first three contributions we have chosen a double-mapping, defined

trough the equations

{k̄}(acd,bef) =
{
{k̄(acd)}/a/b/e6f , k̄(abc,bef)

e , k̄
(abc,bef)
f

}
(3.208)

k̄(acd,bef)
e = k̄

(acd)
b + k̄(acd)

e − s̄
(acd)
be

s̄
(acd)
bf + s̄

(acd)
ef

k̄
(acd)
f ,

k̄
(acd,bef)
f =

s̄
(acd)
bef

s̄
(acd)
bf + s̄

(acd)
ef

k̄
(acd)
f .

In this case all the partons different from a, b, e, f undergo a single mapping iden-

tified by the triplet (acd), while partons e, f features a double mapping. A generic

function F , depending on the remapped kinematics {k̄}(acd,bef), will be identified

with the symbol F (acd,bef)
. Finally, for the Born-level matrix element in the last

line, we have preferred to introduced a further mapping,

{k̄}(abcd) =
{
{k}/a/b/c/d, k̄(abcd)

c , k̄
(abcd)
d

}
, (3.209)

k̄(abcd)
c = ka + kb + kc −

sabc
sad + sbd + scd

kd , k̄
(abcd)
d =

sabcd
sad + sbd + scd

kd .

In Eq.(3.209) all the momenta different from ki with i = a, b, c, d are understood

to be left unchanged. In what follows, we will label a quantity F , depending on

the remapped kinematics {k̄}(abcd), with the shorthand notation F (abcd)
.

It can be easily shown that the two remappings in Eq. (3.209) and Eq. (3.208)

satisfy the condition

{k̄}(acd,bcd) = {k̄}(abcd) , {k̄}(abc,bcd) = {k̄}(abcd) . (3.210)

More details on the construction and the properties of these mapping will be given

in the following.

The mixed double-unresolved counterterm features n-body kinematics but, pecu-

liarly, it needs to be integrated analytically only in the phase space of a single
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radiation. This operation is necessary to show that such an integral features the

same explicit 1/ε singularities as the K
(RV)

counterterm, and, at the same time, it

features the same phase-space singularities is I (1). Now we can provide an example

of the integration procedure we adopt to integrate the mixed-double-unresolved

counterterm.

For brevity, in the following we set Rab ≡ Rab

(
{k̄}(iab)

)
unless explicitly stated

otherwise. Let us begin by considering the iteration of a soft limit and a double-soft

limit. We find∫
dΦrad,1 Si Sik RR = −N1

ςn+2

ςn+1

∑
c 6=i,d 6=i

Sk Rcd
1

s̄
(icd)
cd

∫
dΦ

(icd)
rad,1

1− z
yz

= −N1
ςn+2

ςn+1

δfig
∑

c 6=i,d6=i

J s
(
s̄

(icd)
cd , ε

)
Sk Rcd , (3.211)

where the soft integral J s is defined in Eq. (3.137).

The explicit computation presented above shows that the phase-space integral

I (12, s) of the soft contribution can be recast as

I (12, s) = N1
ςn+2

ςn+1

∑
i

δfig
∑
k 6=i
l 6=i,k

∑
a6=i
b 6=i

J s
(
s̄

(iab)
ab , ε

)
SkRab

(
{k̄}(iab)

)
W(iab)

kl , (3.212)

where the integral J s is defined in Eq. (3.137), and the limits in this case are

defined by

Sk Rab

(
{k̄}(iab)

)
= −N1

∑
c 6=k
d 6=k

I(k) (iab)

cd Babcd

(
{k̄}(iab,kcd)

)
. (3.213)

3.4.0.1 Barred limits contributing to the pure double-unresolved counterterm

In this section we tackle the issue of defining consistent double-unresolved barred

limits that have to be integrated over the two-parton unresolved phase space.

To fully exploit the freedom in adapting the mapping and the consequent phase

space parametrisation to the structures contributing to K
(2)

, we decide to apply

a different mapping for each term appearing in Eq.(3.202). More details on the

NNLO mapping and on the phase space parametrisation will be given in the next

sections. Here we limit ourself in presenting the definitions of the barred limits,

and sketching the mapping choices we have made. The contributions to in the
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first line of Eq. (3.202) are

Sij RR =
N 2

1

2

∑
c,d 6=i,j
d6=c

[ ∑
e,f 6=i,j,c,d

I(i)
cd I

(j)
ef Bcdef

(
{k̄}(icd,jef)

)

+ 4
∑

e6=i,j,c,d

I(i)
cd I

(j)
ed Bcded

(
{k̄}(icd,jed)

)
+ 2 I(i)

cd I
(j)
cd Bcdcd

(
{k̄}(ijcd)

)
+
(
I(ij)
cd −

1

2
I(ij)
cc −

1

2
I(ij)
dd

)
Bcd

(
{k̄}(ijcd)

)]
, (3.214)

Cijk RR =
N 2

1

s2
ijk

P µν
ijk Bµν

(
{k̄}(ijkr)

)
, (3.215)

Sij Cijk RR =
N 2

1

2
Cfk

[
8Cfk I

(i)
rk I

(j)
rk + I(ij)

rr − 2 I(ij)
rk + I(ij)

kk

]
B
(
{k̄}(ijkr)

)
,

(3.216)

where the same r 6= i, j, k should be chosen for all permutations of ijk. The

definition of the barred limits in the second line of Eq. (3.202) is

CijklRR = N 2
1

P µν
ij (sil, sjl)

sij

P ρσ
kl

(
s̄

(ijl)
kr , s̄

(ijl)
lr

)
s̄

(ijl)
kl

Bµνρσ

(
{k̄}(ijl,klr)

)
, (3.217)

Sac CijklRR = 4N 2
1 CfbI

(a)
bl δfcg Cfd I

(c),(ijl)

dr B
(
{k̄}(ijl,klr)

)
,

ab ∈ π(ij) ,

cd ∈ π(kl) ,

(3.218)

where the same r 6= i, k, l should be chosen for all permutations in π(ijkl). We

further notice that all terms in Eq. (3.202) containing the four-particle double-

collinear barred limits Cabcd can be conveniently rearranged in a single contribu-

tions as

K
(2)

cc4 ≡
∑
i

[∑
j>i

∑
k>i
k 6=j

∑
l>k
l 6=i,j

(
1− Sik − Sjk − Sil − Sjl

)
(3.219)

−
∑
j 6=i

∑
k 6=i,j

∑
l>k
l 6=i,j

SCikl

(
1− Sik − Sil

)]
CijklRR .

Defining the barred limits in terms of soft and collinear kernels, Eq. (3.219) be-

comes

K
(2)

cc4 = N 2
1

∑
i, j>i

∑
k>i
k 6=j

∑
l>k
l 6=i,j

P hcµν
ij (sil, sjl)

sij

P hc ρσ
kl

(
s̄

(ijl)
kr , s̄

(ijl)
lr

)
s̄

(ijl)
kl

Bµνρσ

(
{k̄}(ijl,klr)

)
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Finally, the remaining terms in Eq. (3.202), involving the limits SC, can be expli-

citly defined as

SCijk

(
1− Sij − Sik

)(
1−Cijk

)
RR =

= −N 2
1

∑
c,d 6=i,j,k

I(i)
cd

P hcµν
jk

(
s̄

(icd)
jr′ , s̄

(icd)
kr′

)
s̄

(icd)
jk

Bcd
µν

(
{k̄}(icd,jkr′)

)
,

SCkij

(
1− Sik − Sjk

)(
1−Cijk

)
RR =

= −N 2
1

∑
c 6=i,j,k
d 6=i,j,k

P hcµν
ij (sir, sjr)

sij
I(k), (ijr)

cd Bcd
µν

(
{k̄}(ijr,kcd)

)
.

(3.220)

Note that K
(2)

only involves simple combinations of soft and collinear kernels,

all remapped in an optimal manner so as to make their analytic integration as

straightforward as possible.

We stress again that the double-unresolved barred limits are not uniquely defined,

provided they fulfil the consistency relations mentioned for the NLO case and for

K
(12)

. If one considers, for example, the Sij limit and its nested compositions, the

complete set of constraints reads (the double real matrix element is understood

for brevity, as well as all the possible indices combinations)

• Sij : Sij Sij = Sij ,

• Sij Cijk :

Sij Sij Cijk = Sij Cijk

Cijk Sij Cijk = Cijk Sij
,

• Sij Ciljk :

Sij Sij Ciljk = Sij Ciljk

Ciljk Sij Ciljk = Ciljk Sij
,

• Sij SCijk :

Sij Sij SCijk = Sij SCijk

SCijk Sij SCijk = SCijk Sij
,

• Sij Cijk SCijk :


Sij Sij Cijk SCijk = Sij Cijk SCijk

Cijk Sij Cijk SCijk = Cijk Sij SCijk

SCijk Sij Cijk SCijk = SCijk Sij Cijk

,

• Sij Ciljk SCijk :


Sij Sij Ciljk SCijk = Sij Ciljk SCijk

Ciljk Sij Ciljk SCijk = Ciljk Sij SCijk

SCijk Sij Ciljk SCijk = SCijk Sij Ciljk

.
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As an example, we can consider the composite limit Sij Cijk RR, which has to

verify the following set of constraints

Sij Sij Cijk = Sij Cijk , (3.221)

Cijk Sij Cijk = Cijk Sij (3.222)

To explicitly check the equations above, we begin with noticing that

Sij {k̄}(ijcd) = {k}/i/j , ∀c, d 6= i, j , c 6= d , (3.223)

Cijk {k̄}(ijkd) =
{
{k}/i/j/k, ki + kj + kk

}
, ∀d 6= i, j, k , (3.224)

Cijk {k̄}(ijck) =
{
{k}/i/j/k, ki + kj + kk

}
, ∀c 6= i, j, k . (3.225)

We then examine the r.h.s. of Eq.(3.221), which reads

Sij Cijk RR =

(
Sij
N 2

1

s2
ijk

P µν
ijk

)
Bµν

(
Sij {k̄}(ijkr)

)
=

(
Sij
N 2

1

s2
ijk

P µν
ijk

)
Bµν

(
{k}/i/j

)
=
N 2

1

2
Cfk

[
8Cfk I

(i)
rk I

(j)
rk + I(ij)

rr − 2 I(ij)
rk + I(ij)

kk

]
Bµν

(
{k}/i/j

)
= Sij Sij Cijk RR . (3.226)

To write the last step we have noticed that the only effect of applying the double

soft limit Sij on the definition of Sij Cijk RR (see Eq.(3.216)) consists in computing

the soft limit of the kinematics inside the Born matrix element {k̄}(ijkr). The result

can be deduced from Eq.(3.223) and reproduces the correct Born kinematics of

Sij Cijk RR.

Similarly, the action of Cijk onto Sij Cijk RR, resulting in the l.h.s. of Eq.(3.222),

is simply given by modifying the Born kinematics according to Eq.(3.224)

Cijk Sij Cijk RR =

=
N 2

1

2
Cfk

[
8Cfk I

(i)
rk I

(j)
rk + I(ij)

rr − 2 I(ij)
rk + I(ij)

kk

]
B
(
{k}/i/j/k, k

)
, (3.227)

where for brevity we have defined k = ki+kj +kk. Finally, the r.h.s. of Eq.(3.222)

is slightly more delicate. Considering the factorised term appearing in the first

line of Eq.(3.214), the collinear singularity arise from choosing in all the possible

ways one parton among c, d, e, f to be k (recall that {e, f} 6= {c, d}). All the

contributions deriving from these choices exhibit a scaling of the type s−1
ik , s−1

ij or

s−1
jk . The first term in the second line of Eq.(3.214) manifests a different collinear

scaling depending on whether we choose the index c, d, or e to be k. In particular,

by setting c or e equal to k we obtain contributions that respectively show a



Chapter 3. Subtraction Chapter 3 Subtraction

scaling of the type s−1
ik and s−1

kj . The condition d = k selects instead contributions

that scale as (sik sjk)
−1. The same collinear-leading scaling characterises also the

second term in the second line of Eq.(3.214), setting c or d equal to k. All this

considered, in the evaluation of the limit Cijk Sij Cijk RR we can neglect the first

contribution and the case d 6= k in the second contribution of Sij. Moreover, under

double collinear limit, eikonal kernels of the type I(i)
kb are independent of b, which

can be replaced by r. Analogous considerations hold also for kernels of the form

I(j)
kb . Regarding the last line of Eq.(3.214), we can exploit the relations

Cijk I(ij)
cd = Cijk I(ij)

cc = Cijk I(ij)
dd = I(ij)

rr , Cijk I(ij)
kd = Cijk I(ij)

ck = I(ij)
rk ,

Cijk I(ij)
kk = I(ij)

kk , (3.228)

to finally obtain

Cijk Sij RR =
N 2

1

2

{
8C2

fk
I(i)
rk I

(j)
rk B

(
{k}/i/j/k, k

)
+
∑
d6=i,j,k

Cijk

[
I(ij)
kd −

1

2
I(ij)
kk −

1

2
I(ij)
dd

]
Bkd

(
Cijk{k̄}(ijkd)

)
+
∑
c 6=i,j,k

Cijk

[
I(ij)
ck −

1

2
I(ij)
cc −

1

2
I(ij)
kk

]
Bck

(
Cijk{k̄}(ijck)

)
+
∑

c,d6=i,j,k
c 6=d

Cijk

[
I(ij)
cd −

1

2
I(ij)
cc −

1

2
I(ij)
dd

]
Bcd

(
Cijk{k̄}(ijcd)

)}

=
N 2

1

2

{
8C2

fk
I(i)
rk I

(j)
rk B

(
{k}/i/j/k, k

)
+
∑
d6=i,j,k

[
I(ij)
rk −

1

2
I(ij)
kk −

1

2
I(ij)
rr

]
Bkd

(
{k}/i/j/k, k

)
+
∑
c 6=i,j,k

[
I(ij)
rk −

1

2
I(ij)
rr −

1

2
I(ij)
kk

]
Bck

(
{k}/i/j/k, k

)}
=
N 2

1

2
Cfk

[
8Cfk I

(i)
rk I

(j)
rk + I(ij)

rr − 2 I(ij)
rk + I(ij)

kk

]
B
(
{k}/i/j/k, k

)
,

(3.229)

where we have exploited Eqs.(3.224)-(3.225), together with

Cijk {k̄}(ick,jek) =
{
{k}/i/j/k, k

}
, ∀c, e 6= i, j, k , c 6= e . (3.230)

We have also used colour conservation to get rid of the colour-links featured by

the Born matrix element. Since Eq.(3.229) coincides with Eq.(3.227) this exhaust

the proof of the consistency relations relevant for the Sij Cijk limit.

It is evident that finding a consistent definition for all the unresolved limits con-

tributing to the counterterms is highly non-trivial. However, such definitions are
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process independent and can be set once for all. In the following section, we

will present the integration strategy we have implemented to compute the integ-

rated counterterm I (2). In particular, we will focus on the NNLO pure soft and

pure collinear unresolved kernels. We emphasise that such integrals have been

already computed with independent approaches by different groups. We just want

to mention the results by [71, 145], based on integrations-by-parts identities and

differential equations relations.

3.5 Integration of soft and collinear NNLO kernels

In this section we tackle the integration of the tree-level IR kernels with two real

emissions, which contribute to the double-unresolved counterterm K
(2)

. Such con-

tributions have to be integrated over the two-body unresolved phase space, which

is factorised from the remaining n-body phase space by means of the appropriate

kinematics remapping. Such mapping, and the consequent phase space paramet-

risation can be chosen to adapt to the invariants appearing in the kernels. As

already mentioned, at NNLO different kind of mapping can be introduced, depend-

ing on the number of partons selected to define the mapping itself. In Eq.(3.209),

for instance, the mapping is determined by selecting four partons among the initial

n + 1 momenta, while in Eq.(3.208) we have introduce a mapping that requires

up to six different initial partons. In the next paragraphs we will present the pos-

sible parametrisation of the double-radiative phase space according to the chosen

mapping.

The content of this section is quite technical: to appreciate the generalities of the

method one can skip this part, and proceed to Sec.3.6.

3.5.1 Four-momentum mapping

With the label four-momentum mapping we refer to the mapping defined in Eq.(3.209)

{k̄}(abcd) =
{
{k}/a/b/c/d, k̄(abcd)

c , k̄
(abcd)
d

}
, (3.231)

which induces a phase-space factorisation according to

dΦn+2 = dΦ (abcd)
n dΦ

(abcd)
rad,2 , (3.232)

where a and b are the unresolved partons, while c and d are two massless partons,

other than a and b. Using the momenta in Eq. (3.231) it is possible to parametrise
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dΦ
(abcd)
rad,2 in terms of Catani-Seymour parameters

y′ =
sab
sabc

, z′ =
sac

sac + sbc
, y =

s̄
(abc)
bc

s̄
(abc)
bcd

, z =
s̄

(abc)
bd

s̄
(abc)
bd + s̄

(abc)
cd

, (3.233)

with y′ and z′ being the variables relative to the secondary-radiation phase space,

and x′ being the variable that parametrises the azimuth between subsequent emis-

sions. The resulting expression for dΦ
(abcd)
rad,2 depends explicitly on the invariant

sabcd = s̄
(abcd)
cd

dΦrad,2

(
{k̄}(abcd)

)
= dΦrad

(
s̄

(abcd)
cd ; y, z, φ

)
dΦrad

(
s̄

(abc)
bc ; y′, z′, x′

)
, (3.234)

and is given by∫
dΦ

(abcd)
rad,2 =

∫
dΦrad,2 (sabcd; y, z, φ, y

′, z′, x′)

= N2(ε) (sabcd)
2−2ε 2−2ε

∫ 1

0

dx′
∫ 1

0

dy′
∫ 1

0

dz′
∫ π

0

dφ sin−2ε φ∫ 1

0

dy

∫ 1

0

dz
[
x′(1− x′)

]−1/2−ε
(1− y′) y (1− y) ×

×
[
y′(1− y′)2 z′(1− z′) y2(1− y)2 z(1− z)

]−ε
. (3.235)

In the chosen parametrisation, four out of the six involved binary invariants have

simple expressions, while the remaining two involve square roots related to azi-

muthal dependence. The explicit expressions are

sab = y′ y sabcd ,

sac = z′ (1− y′) y sabcd ,
sbc = (1− y′) (1− z′) y sabcd ,
scd = (1− y′) (1− y) (1− z) sabcd ,

sad = (1− y)
[
y′ (1− z′) (1− z) + z′z

−2 (1− 2x′)
√
y′z′ (1− z′) z (1− z)

]
sabcd ,

sbd = (1− y)
[
y′z′ (1− z) + (1− z′) z

+2 (1− 2x′)
√
y′z′ (1− z′) z (1− z)

]
sabcd . (3.236)

3.5.2 Five-momentum mapping

The five-momentum mapping is a subcase of the mapping introduced in Eq.(3.208),

and consists in choosing the index f equal to the index d. The construction of such
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a mapping proceeds as follows: starting from the n+ 1-tuple of massless momenta

{k̄}(acd)

{k̄}(acd) =
{
{k}/a/c/d, k̄(acd)

c , k̄
(acd)
d

}
, (3.237)

we choose three momenta k̄
(acd)
b = kb, k̄

(acd)
e = ke and k̄

(acd)
d , to construct the

on-shell, momentum conserving n-tuple of massless momenta {k̄}(acd,bed)

{k̄}(acd,bed) =
{
{k}/a/c/d, k̄(acd,bed)

c , k̄
(acd,bed)
d , k̄(acd,bed)

e

}
, (3.238)

where

k̄(acd,bed)
c = k̄(acd)

c , k̄
(acd,bed)
d =

s̄
(acd)
bed

s̄
(acd)
bd + s̄

(acd)
ed

k̄
(acd)
f

k̄(acd,bed)
e = k̄

(acd)
b + k̄(acd)

e − s̄
(acd)
be

s̄
(acd)
bd + s̄

(acd)
ed

k̄
(acd)
d . (3.239)

The corresponding Catani-Seymour parameters are equal to

y′ =
sac
sacd

, z′ =
sad

sad + scd
, y =

s̄
(acd)
be

s̄
(acd)
bed

, z =
s̄

(acd)
bd

s̄
(acd)
bd + s̄

(acd)
ed

, (3.240)

and the relevant Lorenz invariants are parametrised in terms of s̄
(acd,bed)
cd and

s̄
(acd,bed)
ed as

sac = y′(1− y)s̄
(acd,bed)
cd , sad = z′(1− y′)(1− y)s̄

(acd,bed)
cd ,

sbe = ys̄
(acd,bed)
ed , scd = (1− y′)(1− z′)(1− y)s̄

(acd,bed)
cd ,

sbd = (1− y′)z(1− y)s̄
(acd,bed)
ed , sed = (1− y′)(1− z)(1− y)s̄

(acd,bed)
ed .

The double-radiative phase space can be then factorised from the n-resolved phase

space, and expressed as a product of two single-radiative phase spaces

dΦn+2

(
{k}
)

= dΦn

(
{k̄}(acd,bed)

)
dΦ

(acd,bed)
rad,2 ,

dΦ
(acd,bed)
rad,2 = dΦrad

(
s̄

(acd,bed)
ed ; y, z, φ

)
dΦrad

(
s̄

(acd)
cd ; y′, z′, φ′

)
, (3.241)

such that∫
dΦ

(acd,bed)
rad,2 = N2(ε)

(
s̄

(acd,bed)
cd s̄

(acd,bed)
ed

)1−ε
∫ π

0

dφ′ sin−2ε φ′
∫ 1

0

dy′
∫ 1

0

dz′∫ π

0

dφ sin−2ε φ

∫ 1

0

dy

∫ 1

0

dz (1− y′) (1− y)2 ×

×
[
y′(1− y′)2 z′(1− z′) y(1− y)3 z(1− z)

]−ε
. (3.242)
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3.5.3 Six-momentum mapping

The six-momentum mapping is given by Eq.(3.208), with f 6= d. Such mapping

can be constructed by selecting two momenta kc and kd among the initial n + 1

momenta, and define the n+ 1-tuple of massless momenta

{k̄}(acd) =
{
{k̄}/a/c/d, k̄(acd)

c , k̄
(acd)
d

}
. (3.243)

Then, we further reduce the {k̄}(acd) set of momenta by picking three of them

k̄
(acd)
b = kb, k̄

(acd)
e = ke, k̄

(acd)
f = kf to combine according to

{k̄}(acd,bef) =
{
{k̄(acd)}/a/b/c/d/e6f , k̄(abc,bef)

c , k̄
(abc,bef)
d , k̄(abc,bef)

e , k̄
(abc,bef)
f

}
(3.244)

k̄(acd,bef)
c = k̄(acd)

c = ka + kb −
sac

sad + scd
kd ,

k̄
(acd,bef)
d = k̄

(acd)
d =

sacd
sad + scd

kd ,

k̄(acd,bef)
e = k̄(bef)

e = kb + ke −
sbe

sbf + sef
kf ,

k̄
(acd,bef)
f = k̄

(bef)
f =

sbef
sbf + sef

kf .

It is easy to verify that the expression in Eq.(3.244) coincides with Eq.(3.208).

Introducing the Catani-Seymour parameters

y′ =
sac
sacd

, z′ =
sad

sad + scd
, y =

sbe
sbef

z =
sbf

sbf + sef
, (3.245)

we can express all the fundamental invariants in terms of these parameters as

sac = y′ s̄
(acd,bef)
cd , sad = z′(1− y′)s̄(acd,bef)

cd , scd = (1− y′)(1− z′)s̄(acd,bef)
cd ,

sbe = y s̄
(acd,bef)
ef , sbf = z(1− y)s̄

(acd,bef)
ef , sef = (1− z)(1− y)s̄

(acd,bef)
ef .

In this case, the factorisation of the two-body phase space results to be particularly

simple, since it coincides with the product of two one-body phase spaces∫
dΦ

(acd,bef)
rad,2 = N2(ε)

(
s̄

(acd,bef)
cd s̄

(acd,bef)
ed

)1−ε
∫ π

0

dφ′ sin−2ε φ′
∫ 1

0

dy′
∫ 1

0

dz′∫ π

0

dφ sin−2ε φ

∫ 1

0

dy

∫ 1

0

dz (1− y′) (1− y) ×

×
[
y′(1− y′)2 z′(1− z′) y(1− y)2 z(1− z)

]−ε
. (3.246)
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3.5.4 NNLO soft and collinear kernels

Given all the parametrisation listed above, we need to adapt them to the sin-

gular kernel contributing to the double unresolved counterterm. Among all the

contributions appearing in K
(2)

, we will focus on the double unresolved soft and

collinear kernels. Such kernels are the only ones that do not feature a NLO×NLO

complexity, since in the unbarred kinematics, they read

SijRR =
N 2

1

2

∑
c,d6=i,j

[ ∑
e,f 6=i,j

I(i)
cd I

(j)
ef Bcdef

(
{k}/i/j

)
+ I(ij)

cd Bcd

(
{k}/i/j

)]
(3.247)

=
N 2

1

2

∑
c,d6=i,j
d6=c

[ ∑
e,f 6=i,j,c,d

I(i)
cd I

(j)
ef Bcdef

(
{k}/i/j

)
+ 4

∑
e6=i,j,c,d

I(i)
cd I

(j)
ed Bcded

(
{k}/i/j

)
+ 2 I(i)

cd I
(j)
cd Bcdcd

(
{k}/i/j

)
+
(
I(ij)
cd −

1

2
I(ij)
cc −

1

2
I(ij)
dd

)
Bcd

(
{k}/i/j

) ]
, (3.248)

CijkRR =
N 2

1

s2
ijk

P µν
ijk Bµν

(
{k}/i/j/k, k

)
=
N 2

1

s2
ijk

[
Pijk B

(
{k}/i/j/k, k

)
+ Qµν

ijk Bµν

(
{k}/i/j/k, k

) ]
. (3.249)

The soft kernel consists in a factorised component (see the first term in Eq.(3.248)),

and a non-factorised element, given by the double soft current [27]

I(ij)
cd = 2TR δ{fifj}{qq̄} I(ij)

qq̄, cd − 2CAδfigδfjg I(ij)
gg, cd , (3.250)

where

I(ij)
qq̄, cd =

sci sdj + sdi scj − scd sij
s2
ij (sci + scj) (sdi + sdj)

I(ij)
gg, cd =

(1− ε)(sic sjd + sidsjc)− 2sij scd
s2
ij(sic + sjc)(sid + sjd)

+ scd
sic sjd + sid sjc − sij scd

sij sic sjd sid sjc
×

×
[
1− 1

2

sic sjd + sid sjc
(sic + sjc) (sid + sjd)

]
. (3.251)

The structure of the double collinear kernel [27] is much more intricate and depends

on the flavour of the involved partons. In the most compact form, the spin-

independent and the spin-dependent components of the double Altarelli-Parisi
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splitting functions read

Pijk = δ{fifj}{qq̄}δfk{q′q̄′}P
(0g)
ijk + δ{fjfk}{qq̄}δfi{q′q̄′}P

(0g)
jki + δ{fkfi}{qq̄}δfj{q′q̄′}P

(0g)
kij

+ δ{{fifj}fk}{qq̄} P
(0g,id)
ijk + δ{{fjfk}fi}{qq̄} P

(0g,id)
jki + δ{{fkfi}fj}{qq̄} P

(0g,id)
kij

+ δ{fifj}{qq̄}δfkg P
(1g)
ijk + δ{fjfk}{qq̄}δfig P

(1g)
jki + δ{fkfi}{qq̄}δfjg P

(1g)
kij

+ δfigδfjgδfk{qq̄} P
(2g)
ijk + δfjgδfkgδfi{qq̄} P

(2g)
jki + δfkgδfigδfj{qq̄} P

(2g)
kij

+ δfigδfjgδfkg P
(3g)
ijk , (3.252)

Qµν
ijk = δ{fifj}{qq̄}δfkgQ

(1g)µν
ijk + δ{fjfk}{qq̄}δfigQ

(1g)µν
jki

+ δ{fkfi}{qq̄}δfjgQ
(1g)µν
kij + δfigδfjgδfkgQ

(3g)µν
ijk . (3.253)

Here q′ and q are quarks of different flavour, and the

δ{{fafb}fc}{f1f2} = δfaf1δfbf1δfcf2 + δfaf2δfbf2δfcf1 . (3.254)

The explicit expressions for the coefficient functions appearing in Eq.(3.252) can

be deduced from [27]

P
(0g)
ijk = CFTR

{
−
s2
ijk

2s2
ij

[
sjk − sik
sijk

+
zi − zj
zij

]2

− 1

2
+ ε

+
sijk
sij zij

[
2 (zk − zizj) + (1− ε)z2

ij

]}
,

P
(0g,id)
ijk = CF (2CF − CA)

{
−

s2
ijkzk

2sjksik

[
1 + z2

k

zjkzik
− ε
( zik
zjk

+
zjk
zik

)
− ε(1 + ε)

]
+(1− ε)

( sij
sjk

+
sij
sik
− 1
)

+
sijk
2sjk

[
1 + z2

k − εz2
jk

zik
− 2(1− ε) zj

zjk

−ε(1 + zk)− ε2zjk
]

+
sijk
2sik

[
1 + z2

k − εz2
ik

zjk
− 2(1− ε) zi

zik

−ε(1 + zk)− ε2zik
]}

, (3.255)
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P
(1g)
ijk = CFTR

{
2s2

ijk

siksjk

(
1 + z2

k −
zk + 2zizj

1− ε
)
− (1− ε)

( sij
sjk

+
sij
sik

)
− 2

−sijk
sjk

(
1 + 2zk + ε− 2zjk

1− ε
)
− sijk
sik

(
1 + 2zk + ε− 2zik

1− ε
)}

+ CATR

{
−
s2
ijk

2s2
ij

( sjk
sijk
− sik
sijk

+
zi − zj
zij

)2

−
s2
ijk

siksjk

(
1 + z2

k −
zk + 2zizj

1− ε
)

+
s2
ijk

2sijsik

zi
zkzij

(
z3
ij − z3

k −
2zi(zjk − 2zjzk)

1− ε
)

+
s2
ijk

2sijsjk

zj
zkzij

(
z3
ij − z3

k −
2zi(zjk − 2zjzk)

1− ε
)

+
sijk
2sik

zik
zkzij

(
1 + zkzij −

2zjzik
1− ε

)
+
sijk
2sjk

zjk
zkzij

(
1 + zkzij −

2zizjk
1− ε

)
+
sijk
sij

1

zkzij

(
1 + z3

k +
zk(zi − zj)2 − zizj(1 + zk)

1− ε
)
− 1

2
+ ε

}
(3.256)

P
(2g)
ijk = C2

F

{
s2
ijkzk

2siksjk

(1 + z2
k − εzij
zizj

+ ε(1− ε)
)
− (1− ε)2 sjk

sik
+ ε(1− ε)

+
sijk
sik

(zkzjk + z2
ik − εzikz2

ij

zizj
+ εzik + ε2(1 + zk)

)}
+ CFCA

{
(1− ε)

s2
ijk

4s2
ij

( sjk
sijk
− sik
sijk

+
zi − zj
zij

)2

+
s2
ijk

2sijsik

(z2
ij(1− ε) + 2zk

zj
+
z2
j (1− ε) + 2zik

zij

)
−
s2
ijkzk

4siksjk

(z2
ij(1− ε) + 2zk

zizj
+ ε(1− ε)

)
+
sijk
2sik

[
(1− ε)z

3
ij + z2

k − zj
zjzij

−2ε
zik(zj−zk)

zjzij
− zkzjk + z3

ik

zizj
+ εzik

z2
ik

zizj
− ε(1 + zk)− ε2zik

]
+
sijk
2sij

[
(1− ε)zi(2zjk + z2

i )− zj(6zik + z2
j )

zjzij
− 2ε

zk(zi − 2zj)− zj
zjzij

]
+

1

4
(1− ε)(1− 2ε)

}
+ (i↔ j) , (3.257)

P
(3g)
ijk = C2

A

{
(1− ε)

s2
ijk

4s2
ij

( sjk
sijk
− sik
sijk

+
zi − zj
zij

)2

+
sijk
sij

[
4
zizj − 1

zij
+
zizj − 2

zjzk

+
(1− zkzij)2

zizkzjk
+

5

2
zk +

3

2

]
+

s2
ijk

2sijsik

[
2zizjzik(1− 2zk)

zkzij
− 4

+
1 + 2zi(1 + zi)

zikzij
+

1− 2zizjk
zjzk

+ 2zjzk + zi(1 + 2zi)

]
+

3

4
(1− ε)

}
+(5permutations) , (3.258)
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where

za =
sar

sir + sjr + skr
, zab = za + zb , a, b = i, j, k . (3.259)

The spin-dependent component are

Q
(1g)µν
ijk = CFTR

{
2zi

1− ε
(s2

ijkzjk

siksjk
− sijk
sik

)
qµνi +

2zj
1− ε

(s2
ijkzik

siksjk
− sijk
sjk

)
qµνj

+
2εzk
1− ε

(s2
ijkzk

siksjk
− sijk
sik
− sijk
sjk

)
qµνk

}
+ CATR

{
zi

1− ε

[
4zj
zk

(s2
ijkzjk

s2
ij

− sijksjk
s2
ij

)
+

2z2
j

zkzij

(s2
ijkzjk

sijsjk
− sijksjk

sij

)
+
(2zizj
zkzij

− 1− ε
)(s2

ijkzjk

siksjk
− sijk
sik

)
+ (1− ε)

(s2
ijkzi

sijsik
− sijk

sij
− sijk
sik

)]
qµνi

+
zj

1− ε

[
4zi
zk

(s2
ijkzik

s2
ij

− sijksik
s2
ij

)
+
(2zizj
zkzij

− 1− ε
)(s2

ijkzik

siksjk
− sijk
sjk

)
+

2z2
i

zkzij

(s2
ijkzik

sijsik
− sijk

sij

)
+ (1− ε)

(s2
ijkzj

sijsjk
− sijk

sij
− sijk
sjk

)]
qµνj

− 2

1− ε

[
2zizj
zij

(s2
ijkzij

s2
ij

− sijk
sij

)
−
(zizj
zij
− εzk

)(s2
ijkzk

siksjk
− sijk
sik
− sijk
sjk

)]
qµνk

}
, (3.260)

Q
(1g)µν
ijk = C2

A

{
− zi

[
4zj
zk

(s2
ijkzjk

s2
ij

− sijksjk
s2
ij

)
−
(zjzik
zkzij

− 3

2

)(s2
ijkzi

sijsik
− sijk

sij
− sijk
sik

)]
qµνi

−zj
[

4zi
zk

(s2
ijkzik

s2
ij

− sijksik
s2
ij

)
−
(zjzik
zkzij

− 3

2
− zi
zk

+
zi
zij

)(s2
ijkzik

sijsik
− sijk

sij

)]
qµνj

+

[
4zizj
zij

(s2
ijkzij

s2
ij

− sijk
sij

)
+ zk

(zjzik
zkzij

− 3

2
− zi
zj

+
zi
zik

)(s2
ijkzij

sijsik
− sijk
sik

)]
qµνk

}
+(5permutations) , (3.261)

Here

qµνa = −gµν + (d− 2)
k̃µa k̃

ν
a

k̃2
a

,

k̃µa = kµa − zakµ − (k · ka − zak2)
kµr
k · kr

, a = i, j, k . (3.262)

At this point we have the explicit form of the singular kernels and a list of map-

pings that we are free to use, in view of simplifying the integration procedure.

The next natural step is then defining the barred counterparts of the limits in
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Eqs.(3.248)-(3.249), and consequently, choosing the phase space parametrisation

for each of them.

To begin with, we consider the double-soft limit in the form reported in Eq.(3.248).

It displays different structures, each of them involving a different number of par-

tons: for the first contribution it is natural to adopt a six-momentum mapping,

setting

ka → ki , kb → kj , kc → kc , kd → kd , ke → ke , kf → kf . (3.263)

The second contribution depends on five different indices, therefore the five-momentum

mapping is the most appropriate mapping for this term. The following assignments

are then exploited

ka → ki , kb → kj , kc → kc , kd → kd , ke → ke . (3.264)

Finally, the remaining terms in Eq.(3.248) can be treated by using the four-

momentum mapping and choosing

ka → ki , kb → kj , kc → kc , kd → kd . (3.265)

The resulting barred soft limits is then precisely of the form in Eq.(3.214), and its

integral reads∫
dΦn+2 Sij RR =

N 2
1

2

∑
c,d 6=i,j
d6=c

[ ∑
e,f 6=i,j,c,d

e 6=f

∫
dΦ(acd,bef)

n

∫
dΦ

(acd,bef)
rad,2 I(i)

cd I
(j)
ef B

(icd,jef)

cdef

+ 4
∑

e6=i,j,c,d

∫
dΦ(icd,jed)

n

∫
dΦ

(icd,jed)
rad,2 I(i)

cd I
(j)
ed B

(icd,jed)

cded

+ 2

∫
dΦ(ijcd)

n

∫
dΦ

(ijcd)
rad,2 I

(i)
cd I

(j)
cd B

(ijcd)

cdcd

+

∫
dΦ(ijcd)

n

∫
dΦ

(ijcd)
rad,2

(
I(ij)
cd −

1

2
I(ij)
cc −

1

2
I(ij)
dd

)
B

(ijcd)

cdcd

]
.(3.266)

The actual computation of Eq.(3.266) features two different level of complexity: in

the first two lines the integrands are perfectly factorised and thus the corresponding

integrals can be categorised as NLO × NLO-like integrals. The computation can

be therefore carried on with standard tools. As an example, we can consider the
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contribution appearing in the first line of Eq.(3.266)

I(acd,jef) ≡
∫
dΦ

(acd,bef)
rad I(i)

cd I
(j)
ef B

(icd,jef)

cdef

= N2(ε)
(
s̄

(acd,bef)
cd s̄

(acd,bef)
ed

)−ε
B

(icd,jef)

cdef

∫ π

0

dφ′ sin−2ε φ′
∫ 1

0

dy′
∫ 1

0

dz′∫ π

0

dφ sin−2ε φ

∫ 1

0

dy

∫ 1

0

dz (1− y′) (1− y)
1− z′
y′z′

1− z
yz

×

×
[
y′(1− y′)2 z′(1− z′) y(1− y)2 z(1− z)

]−ε
=

(4π)2ε−4(
s̄

(acd,bef)
cd s̄

(acd,bef)
ed

)ε [Γ(1− ε)Γ(2− ε)
ε2Γ(2− 3ε)

]2

. (3.267)

As announced, the integration procedure is trivial, and the result is exact at all

orders in ε. In Eq.(3.266) there are also contributions manifesting a genuine NNLO

complexity, as those in the last two lines. Such terms requires a dedicated tech-

nique that is presented in the next Section.

Turning to the double collinear kernel, the natural mapping is the four-momentum

mapping with

ka → ki , kb → kj , kc → kk , kd → kr , (3.268)

such that the integrated double collinear contribution to K
(2)

is given by∫
dΦn+2 Cijk RR =

=

∫
dΦ(ijkr)

n

∫
dΦ

(ijkr)
rad,2

N 2
1

s2
ijk

[
Pijk B

(
{k̄}(ijkr)

)
+ Qµν

ijk Bµν

(
{k̄}(ijkr)

)]
.

Now we can simplify the integration by noticing that the spin-dependent com-

ponent of P µν
ijk vanishes when integrated over the double unresolved phase space,

since ∫
dΦn+2q

µν
a =

∫
dΦn

∫
dΦ

(ijkr)
rad,2 q

µν
a = 0 , a = i, j, k . (3.269)

Therefore∫
dΦn+2 Cijk RR =

∫
dΦ(ijkr)

n

∫
dΦ

(ijkr)
rad,2

N 2
1

s2
ijk

Pijk B
(
{k̄}(ijkr)

)
.

Such integral is non-trivial, but can be still computed by exploiting the strategy

presented below.
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3.5.5 Integration strategy for the double-unresolved counterterm

When integrating K
(2)

in the two-body radiative phase space, it is possible to

exploit the symmetries in choosing ka, kb, kc, kd. In particular, according to

Ref. [146], the four-body phase space for momenta ka, kb, kc, kd is symmetric under

the permutation of the four momenta, as well as under the following permutations

of invariants:

sab ↔ scd, sac ↔ sbd, sad ↔ sbc. (3.270)

These symmetries reflect in the parametrisation of the phase space, i.e. when

moving from ka, kb, kc, kd to the remapped variables. This is crucial to simplify

the analytic integration of soft and collinear kernels over dΦ
(abcd)
rad,2 .

In the integration of the soft and collinear kernels, upon identifying the momenta

ka, kb, kc, kd according to the above discussion, we apply the following transform-

ations:

• in the terms containing 1/(sad + sbd)/(sad + scd), all permutations of the

invariants sab ↔ scd, sac ↔ sbd, sad ↔ sbc are performed,

• in the terms containing 1/(sad+scd) (but not 1/(sad+sbd)), the permutation

kb ↔ kc is performed,

• in the terms containing 1/(sbd + scd) (but not 1/(sad + sbd)), the permutation

ka ↔ kc is performed.

• in all terms containing 1/(sad sbd) the splitting

1

sad sbd
=

1

sad + sbd

(
1

sad
+

1

sbd

)
, (3.271)

is performed, and in the first term the permutation ka ↔ kb is applied.

• in all terms containing 1/sad (but not 1/sbd) the permutation ka ↔ kb is

performed.

This way, the denominators of all integrals feature only the following combinations

of invariants

sab, sac, sbc, scd, sbd, sac + sbc, sad + sbd, sab + sbc,

that can be parametrised as in Eq.(3.236). We now detail the integration pro-

cedure, focusing on one variable at a time. In Subsect. 3.5.5.1 we analyze the

trival integration over y, and the first non-trivial structure that arise from the x′
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integration. Then, the subsequent integrations over z and z′ are detailed in Sub-

sect. 3.5.5.2, including the method we apply to linearize the argument of appearing

hypergeometric functions. The subsection 3.5.5.3 concerns the ε-expansion of in-

termediate results, before the last integration step. A selection of results for the

soft and collinear NNLO kernels is shown in Subsect. 3.5.6.

3.5.5.1 Integration on y and on the azimuthal variable x′

Since all denominators factorise the dependence on y, the integration in the y

variable is always of the form∫ 1

0

dy
[
y (1− y)

]1−2ε

yn (1− y)m, n,m ∈ Z, (3.272)

and clearly gives B(n− 2ε,m− 2ε) .

We then switch to the integration over the azimuthal variable x′. According to the

identification of ka, kb, kc, kd described in the previous section, the only denom-

inator containing the azimuthal variable x′ is sbd. The presence in the numerator

of the azimuthal variable can come just from a linear combination of sad and sbd.

Those terms without the denominator sbd are of the form:∫ 1

0

dx′
[
x′(1− x′)

]− 1
2
−ε

(1− 2x′)n n ∈ N. (3.273)

Writing (1− 2x′) = (1− x′)− x′, we get∫ 1

0

dx′
[
x′(1− x′)

]− 1
2
−ε

(1− 2x′)n =

=


0 n odd
n∑
k=0

n!(−1)k

k!(n−k)!
B

(
k +

1

2
− ε, n− k +

1

2
− ε
)

n even
(3.274)

Terms with sad/sbd can be simplified according to:

sad
sbd

=
sad + sbd
sbd

− 1 = (y′ + z − y′ z) (1− y)
sabcd
sbd
− 1. (3.275)

Therefore no dependence on x′ in the numerator is left in presence of the denom-

inator sbd and the only non trivial integration involving the azimuthal variable x′
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is: ∫ 1

0

dx′
[
x′(1− x′)

]− 1
2
−ε sabcd

sbd
=

1

1− y

∫ 1

0

dx′
[
x′(1− x′)

]− 1
2
−ε

(A+B)2 − 4ABx′

≡ 1

1− y Ix′ , (3.276)

with A =
√
y′z′(1− z), B =

√
z(1− z′).

Note that, as already discussed at the beginning of this section (see Eq. 3.272),

the y dependence is trivially factorized. Therefore, from now on, we understand

the y dependence to be already integrated out.

The integral Ix′ is exactly of the type described in appendix D.1 with b = 1 + ε.

Therefore we get:

Ix′ = I1+ε(
√
y′z′(1− z),

√
z(1− z′))

=
Γ2(1/2− ε)
Γ(1− 2ε)

× (3.277)

×
[

1

z(1− z′) 2F1

(
1, 1 + ε, 1− ε, y

′z′(1− z)

z(1− z′)

)
Θ

(
1− y′z′(1− z)

z(1− z′)

)
+

1

y′z′(1− z)
2F1

(
1, 1 + ε, 1− ε, z(1− z′)

y′z′(1− z)

)
Θ

(
y′z′(1− z)

z(1− z′) − 1

)]
.

3.5.5.2 Integration of the variables z and z′

After integrating over y and x′ we are left with three integrations to perform (over

variables z, z′ and y′). We now analyse the z, z′ integration.

While the numerators depend on z, z′ in a polynomial way, the denominators

display a more various set of structures. In particular

• the denominators sab, sac, sbc, sab, scd, sac + sbc feature a trivial dependence

on z′ and z, being just products of z′, (1− z′), z, (1− z).

• The structure sad + sbd does no depend on z′, while depends on z like y′ +

z − y′z. Analogously, sab + sbc depends only on z′ as 1− z′ + z′y′.

• In denominators sbd, the z, z′ dependence is confined in the arguments and

prefactors of the hypergeometric functions of eq.(3.277), as well as in the Θ

functions, which understand a modification of the integration path for either

z or z′.

The actual form of the soft and collinear kernels features products of the structures

described above. The less trivial dependence on z and z′ arises from the following
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building blocks

1

y′ + z − y′ z ,
1

1− z′ + z′y′
, Ix′ ,

Ix′

y′ + z − y′ z ,
Ix′

1− z′ + z′y′
. (3.278)

In terms proportional to the first structure in Eq.(3.278), the z′ integration gives

Beta functions, while the z integration returns:∫ 1

0

dz
zn−ε(1− z)m−ε

y′ + z − y′ z = B(n+ 1− ε,m+ 1− ε) ×

× 2F1 (1,m+ 1− ε, n+m+ 2− 2ε, 1− y′) ,

where we have used 2F1(a, b, c, x) = (1 − x)−a2F1 (a, c− b, c,−x/(1− x)). Note

that m,n stand for generic power of z, arising from the numerators.

Similarly in terms that embed the second structure, the z integration is trivial,

yielding Beta functions, while the z′ integration gives:∫ 1

0

dz′
(z′)n−ε(1− z′)m−ε

1− z′ + z′y′
= B(n+ 1− ε,m+ 1− ε) ×

× 2F1 (1, n+ 1− ε, n+m+ 2− 2ε, 1− y′) .

For the remaining terms of Eq.(3.278) it is possible to perform at least one of the

two integrations exactly. In details: for the third structure we can perform both

the z and z′ integrations, while in last two terms we can only integrate over one

variable, z and z′ respectively.

For terms that feature the third and fifth structure of Eq. 3.278, we first per-

form the integration over z. Accounting for general numerators (that are always

monomials in z), we can cast these integrals in one of the following forms:

I
(n)
x′z =

∫ 1

0

dz
[
z(1− z)

]−ε
(1− z)n Ix′ ,

J
(n)
x′z =

∫ 1

0

dz
[
z(1− z)

]−ε
zn Ix′ , (3.279)

where n is an integer such that n ≥ −1.

These integrals are again of the type described in Eq. D.18 of appendix D.2 with

b = 1 + ε:

I
(n)
x′z =

∫ 1

0

dz (z)−ε(1− z)n−ε I1+ε(A,B) = I1+ε,−ε,n−ε(1− z′, y′z′) ,

J
(n)
x′z =

∫ 1

0

dz (z)n−ε(1− z)−ε I1+ε(A,B) = I1+ε,n−ε,−ε(1− z′, y′z′) . (3.280)
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In particular the integral I1+ε,−ε,n−ε(1− z′, y′z′) is of the special type Ib,1−b,γ(C,D)

described in Eq. D.31 while the integral I1+ε,n−ε,−ε(1 − z′, y′z′) is of the special

type Ib,β,1−b(C,D) described in Eq. D.33. Using the results derived there we have:

I
(n)
x′z =

1

1− z′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(n+1−ε)
Γ(n+ 1− 2ε)

2F1

(
1, n+1−ε, 1−ε,− y′z′

1−z′
)
,

J
(n)
x′z =

1

y′z′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(n+1−ε)
Γ(n+ 1− 2ε)

2F1

(
1, n+1−ε, 1−ε,−1−z′

y′z′

)
. (3.281)

We now show the result for specific values of n, and in particular we distinguish

between n = −1 and n ≥ 0. For n = −1, Eq. 3.281 reads,

I
(−1)
x′z =

1

1− z′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ2(−ε)
Γ(−2ε)

2F1

(
1,−ε, 1− ε,− y′z′

1− z′
)
,

J
(−1)
x′z =

1

y′z′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ2(−ε)
Γ(−2ε)

2F1

(
1,−ε, 1− ε,−1− z′

y′z′

)
= − Γ2(1/2− ε)

Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

×

×
[

1

1 + ε

1

1−z′ 2F1

(
1, 1 + ε, 2 + ε,

−y′z′
1−z′

)
− Γ(1 + ε)Γ(−ε)(1− z′)ε

(y′z′)1+ε

]
.

(3.282)

where in the second integral of Eq. 3.282, we have inverted the hypergeometric

function argument using Eq. D.20.

For n ≥ 0 the hypergeometric functions are of the class 2F1(1, c + n, c, x), with

c = 1− ε, for which we can use the following series representation:

2F1(1, c+ n, c, x) = (c− 1)
n∑
k=0

Γ(n+ 1)Γ(c+ n− k − 1)

Γ(n− k + 1)Γ(c+ n) (1− x)k+1
, n ≥ 0 , (3.283)

such that the integrals of Eq. 3.281 can be written as:

I
(n)
x′z =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(1−ε)Γ(n+1)

Γ(n+ 1− 2ε)

n∑
k=0

Γ(n−k−ε)
Γ(n−k+1)

(1− z′)k
(1− z′ + z′y′)k+1

, (3.284)

J
(n)
x′z =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(1−ε)Γ(n+1)

Γ(n+ 1− 2ε)

n∑
k=0

Γ(n−k−ε)
Γ(n−k+1)

(y′)k(z′)k

(1− z′ + z′y′)k+1
, (3.285)

where Eqs.(3.284)-(3.285) hold for n ≥ 0. Let us notice that the two integrals

coincide for n = 0:

I
(0)
x′z = J

(0)
x′z =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ2(−ε)
Γ(−2ε)

1

1− z′ + z′y′
. (3.286)
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For terms that feature the fourth structure of Eq. 3.278, the integration over z′

has to be performed first:

I
(n)
x′z′ =

∫ 1

0

dz′
[
z′(1− z′)

]−ε
(z′)n Ix′ ,

J
(n)
x′z′ =

∫ 1

0

dz′
[
z′(1− z′)

]−ε
(1− z′)n Ix′ , (3.287)

where n is an integer such that n ≥ −1. These integrals can be tackled with

the same strategy discussed above (see Eq. 3.279). Furthermore, thanks to the

symmetry properties of the z, z′ integration measure, the results of Eq. 3.287 can

be expressed in an analogous form as Eq. 3.281, upon the substitution z ↔ 1− z′.

The next steps of our procedure aim at the linearization of the argument of hy-

pergeometric functions which appear in intermediate results.

After the first z integration has been performed (see Eqs. 3.279-3.281), all non

trivial dependence in the remaining z′ variable gives one of the following struc-

tures:

I
(n,pq,m)
x′zz′ =

∫ 1

0

dz′
(1−z′)p−ε(z′)q−ε
(1−z′+z′y′)m I

(n)
x′z

=

∫ 1

0

dz

∫ 1

0

dz′
(1−z′)p−ε(z′)q−ε
(1−z′+z′y′)m

[
z(1−z)

]−ε
(1−z)n Ix′ ,

J
(n,pq,m)
x′zz′ =

∫ 1

0

dz′
(1−z′)p−ε(z′)q−ε
(1−z′+z′y′)m J

(n)
x′z

=

∫ 1

0

dz

∫ 1

0

dz′
(1−z′)p−ε(z′)q−ε
(1−z′+z′y′)m

[
z(1−z)

]−ε
zn Ix′ . (3.288)

Using the symmetry of these integrals under the exchange z ↔ 1 − z′, they can

equivalently be written in terms of I
(n)
x′z′ and J

(n)
x′z′ (see Eq. 3.287):

I
(n,pq,m)
x′zz′ ≡

∫ 1

0

dz
zp−ε(1−z)q−ε

(y′+z−y′z)m
I

(n)
x′z′

=

∫ 1

0

dz

∫ 1

0

dz′
zp−ε(1−z)q−ε

(y′+z−y′z)m

[
z′(1−z′)

]−ε
(z′)n Ix′ ,

J
(n,pq,m)
x′zz′ ≡

∫ 1

0

dz
zp−ε(1−z)q−ε

(y′+z−y′z)m
J

(n)
x′z′

=

∫ 1

0

dz

∫ 1

0

dz′
zp−ε(1−z)q−ε

(y′+z−y′z)m

[
z′(1−z′)

]−ε
(1−z′)n Ix′ , (3.289)
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where n, p, q,m are integers such that n, p, q ≥ −1, m = 0, 1.

For later convenience, we recursively use the following partial fractioning

zp−ε(1− z)q−ε = zp+1−ε(1− z)q−ε + zp−ε(1− z)q+1−ε ,

(z′)p−ε(1− z′)q−ε = (z′)p+1−ε(1− z′)q−ε + (z′)p−ε(1− z′)q+1−ε , (3.290)

until the condition p+ q ≥ m is satisfied.

To proceed with the computation, we choose the representation of I
(n,pq,m)
x′zz′ , J

(n,pq,m)
x′zz′

in terms of I
(n)
x′z and J

(n)
x′z , according to Eq. 3.288.

Thanks to the results of the previous subsections, the case n ≥ 0 is trivial:

I
(n,pq,m)
x′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(1−ε)Γ(n+1)

Γ(n+ 1− 2ε)
×

×
n∑
k=0

Γ(n−k−ε)
Γ(n−k+1)

Γ(p+k+1−ε)Γ(q+1−ε)
Γ(p+q+k+2−2ε)

×

× 2F1 (m+k+1, q+1−ε, p+q+k+2−2ε, 1−y′) , n ≥ 0 ,

J
(n,pq,m)
x′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(1−ε)Γ(n+1)

Γ(n+ 1− 2ε)
×

×
n∑
k=0

Γ(n−k−ε)
Γ(n−k+1)

Γ(p+1−ε)Γ(q+k+1−ε)
Γ(p+q+k+2−2ε)

×

× (y′)k 2F1 (m+k+1, q+k+1−ε, p+q+k+2−2ε, 1−y′) , n ≥ 0

. (3.291)

For n = −1, the exploit the integral representation of hypergeometric functions:

I
(−1,pq,m)
x′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

∫ 1

0

dz′ ×

×
∫ 1

0

dt
(1− z′)p−ε(z′)q−ε
(1− z′ + z′y′)m

t−1−ε

1− z′ + tz′y′
,

J
(−1,pq,m)
x′zz′ = − Γ2(1/2− ε)

Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

∫ 1

0

dz′ ×

×
[ ∫ 1

0

dt
(1− z′)p−ε(z′)q−ε

(1−z′+z′y′)m
tε

1−z′+tz′y′

−Γ(1 + ε)Γ(−ε)
(y′)1+ε

(1− z′)p(z′)q−1−2ε

(1−z′+z′y′)m
]
. (3.292)

The second expression makes sense only if p ≥ 0, but this is always the case in

NNLO kernels.
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For m = 0, the z′ integration gives

I
(−1,pq,0)
x′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

Γ(p+ 1− ε)Γ(q + 1− ε)
Γ(p+ q + 2− 2ε)

×

×
∫ 1

0

dt t−1−ε
2F1 (1, q + 1− ε, p+ q + 2− 2ε, 1− ty′) ,

J
(−1,pq,0)
x′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

[
Γ(1 + ε)Γ(−ε)

(y′)1+ε

Γ(p+ 1)Γ(q − 2ε)

Γ(p+ q + 1− 2ε)

−Γ(p+ 1− ε)Γ(q + 1− ε)
Γ(p+ q + 2− 2ε)

×

×
∫ 1

0

dt tε 2F1 (1, q + 1− ε, p+ q + 2− 2ε, 1− ty′)
]
, p ≥ 0

. (3.293)

For m = 1, before performing the remaining z′ integration, we make the following

partial fractioning:

1

1− z′ + z′y′
1

1− z′ + tz′y′
=

1

1− t
1

y′z′

[
1

1− z′ + tz′y′
− 1

1− z′ + z′y′

]
.(3.294)

Then we get:

I
(−1,pq,1)
x′zz′ =

1

y′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

Γ(p+ 1− ε)Γ(q − ε)
Γ(p+ q + 1− 2ε)

∫ 1

0

dt
t−1−ε

1− t
×
[

2F1 (1, q−ε, p+q+1−2ε, 1− ty′)

−2F1 (1, q−ε, p+q+1−2ε, 1− y′)
]
,

J
(−1,pq,1)
x′zz′ = − 1

y′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

{
Γ(p+ 1− ε)Γ(q − ε)

Γ(p+ q + 1− 2ε)
×

×
∫ 1

0

dt
tε

1− t

[
2F1 (1, q−ε, p+q+1−2ε, 1− ty′)

−2F1 (1, q−ε, p+q+1−2ε, 1− y′)
]

− Γ(1 + ε)Γ(−ε)
(y′)ε

Γ(p+ 1)Γ(q − 2ε)

Γ(p+q+1−2ε)
×

× 2F1 (1, q−2ε, p+q+1−2ε, 1− y′)
}
, p ≥ 0 . (3.295)

For n ≥ 0, we still have to perform one last integration over y′ variable. For the

specific case n = −1, we are left with two more integrations, a “physical” one

over y′, and a second one (over t) which comes from the integral representation

of hypergeometric functions of Eq. 3.292 and doesn’t have any direct physical

meaning.
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3.5.5.3 Expansion in ε and integration of the variables y′ and t

After the x′, z and z′ integrations have been performed following the steps of the

previous sections, the integrations over y′ and t only involve monomials y′, (1−y′),
t, (1− t) and hypergeometric functions of the type:

2F1(n1, n2 − ε, n3 − 2ε, 1− w), n1 ≥ 1, n2 ≥ 0, n3 ≥ n1 + 1, n2, w = ty′, y′ .

The constraint n3 ≥ n1 + 1 is always achieved, thanks to the condition p+ q ≥ m,

which comes from the partial fractioning described in Eq. (3.290). Hypergemetric

functions of this type are first put in the standard form,

2F1(n1, n2−ε, n3−2ε, 1−w) = (w)n3−n2−n1−ε ×
× 2F1(n3−n2−ε, n3−n1−2ε, n3−2ε, 1−w) , (3.296)

using the identity

2F1(a, b, c, x) = (1− x)c−b−a 2F1(c− a, c− b, c, x)

= (1− x)c−b−a 2F1(c− b, c− a, c, x) .

Then, since n3 ≥ n1 + 1, the expression of Eq. 3.296 is treated recursively using

the relation

2F1(a, b, b+ n, x) =
1

n− 1

[
(b+ n− 1) 2F1(a, b, b+ n− 1, x)

−b 2F1(a, b+ 1, b+ n, x)
]
, (3.297)

until we get hypergeometric functions of the type 2F1(a, b, b+1, x), with a = m1−ε,
b = m2 − 2ε (m1,m2 ≥ 0).

We then use recursively the relations

2F1(a, b, b+ 1, x) =
b

a− 1

1

x

[
(1− x)1−a − 2F1(a− 1, b− 1, b, x)

]
,

2F1(a, b, b+ 1, x) =
1

a− 1

[
b (1− x)1−a + (a− b− 1) 2F1(a− 1, b, b+ 1, x)

]
,

2F1(a, b, b+ 1, x) =
b

a− b
1

x

[
(1− x)1−a − 2F1(a, b− 1, b, x)

]
, (3.298)

until all hypergeometric functions are of the form 2F1(−ε,−2ε, 1−2ε, 1−w), whose

expansion in ε is known at all orders:

2F1(−ε,−2ε, 1− 2ε, 1− w) = 1 +
+∞∑
n=1

+∞∑
p=1

(2ε)n(−ε)p Snp(1− w) . (3.299)



Chapter 3. Subtraction Chapter 3 Subtraction

The Snp(x) symbols are understood as Spence functions, which are related to

polylogarithms and defined as:

Snp(x) =
(−1)n+p

n! p!

∫ 1

0

dv
lnn v

v
lnp(1− x v) . (3.300)

At this point all poles in ε can be extracted using partial fractioning and the plus

prescriptions:∫ 1

0

dx x−1+αε(1− x)−1+βε f(x) =

∫ 1

0

dx x−1+αε(1− x)βε f(x)

+

∫ 1

0

dx xαε(1− x)−1+βε f(x) ,∫ 1

0

dx x−1+αε f(x) =
1

αε
f(0) +

∫ 1

0

dx xαε
f(x)− f(0)

x
,∫ 1

0

dx (1− x)−1+βε f(x) =
1

βε
f(1) +

∫ 1

0

dx (1− x)βε
f(x)− f(1)

1− x , (3.301)

where x can be either y′ or t. The remaining ε dependence does not generate any

pole and can be safely expanded using Taylor series. Therefore, at this point the

remaining integrals (in t or y′) can be easily performed using standard techniques.

Discarding vanishing terms in the ε expansion, we obtain the final expressions for

the integrated NNLO kernels.

In the following section, we collect the explicit results for a number of relevant

terms that give contribution to the double soft and triple collinear kernels.

3.5.6 Selected results

We start with the double soft behaviour related to the emission of a qq̄ pair, which

is described by kernel is I(ab)
cd , defined in Eq. (95) of Ref. [27]. According to the

definition of our barred counteterms and the notation introduced at the beginning

of the Section, this soft contribution features the following structures, for which

we show the explicit representation as truncated ε expansion:∫
dΦ

(abcd)
rad,2 I

(ab)
cd = A

[
2

3

1

ε3
+

28

9

1

ε2
+
(416

27
− 7

9
π2
)1

ε
+

5260

81
− 104

27
π2 − 76

9
ζ(3)

]
,∫

dΦ
(abcd)
rad,2 I(ab)

cc = A

[
− 2

3

1

ε2
− 16

9

1

ε
− 212

27
+ π2

]
, (3.302)

where here and in the following we have defined the multiplicative factor

A =
1

(4π)4

(
sabcd e

γ
E

4π

)−2ε

.
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When considering the double-soft gluonic contribution (see Eq. (101) of Ref. [27]),

in addition to the kernel I(ab)
cd , also a factorized structure appears, as a product if

two NLO eikonal kernels (I(a)
cd I

(b)
ef ):∫

dΦ
(abcd)
rad,2 I

(ab)
cd = A

[
2

ε4
+

35

3

1

ε3
+
(481

9
− 8

3
π2
) 1

ε2

+
(6218

27
− 269

18
π2 − 154

3
ζ(3)

)1

ε

+
76912

81
− 3775

54
π2 − 2050

9
ζ(3)− 23

60
π4

]
,∫

dΦ
(abcd)
rad,2 I(ab)

cc = A

[
− 2

3

1

ε2
− 10

9

1

ε
− 164

27
+ π2

]
.∫

dΦ
(abcd)
rad,2 I

(a)
cd I

(b)
cd = A

[
1

ε4
+

4

ε3
+
(

18− 3

2
π2
) 1

ε2
+
(

76− 6π2 − 74

3
ζ(3)

)1

ε

+ 312− 27 π2 − 308

3
ζ(3) +

49

120
π4

]
. (3.303)

The collinear contributions to the NNLO double-unresolved conterterm (Eqs. (57-

70) of Ref. [27]) give the following results, depending on the flavor of the unresolved

partons:∫
dΦ

(abcd)
rad,2 Cqq′q̄′ = A

[
− 1

3

1

ε3
− 31

18

1

ε2
+
(π2

2
− 889

108

)1

ε
− 23941

648
+

31

12
π2 +

80

9
ζ(3)

]
,∫

dΦ
(abcd)
rad,2 C

(id)
qqq̄ = A

[ (
− 13

8
+

1

4
π2 − ζ(3)

)1

ε
− 227

16
+ π2 +

17

2
ζ(3)− 11

120
π4

]
,∫

dΦ
(abcd)
rad,2 C

(ab)
gqq̄ = A

[
− 2

3

1

ε3
− 31

9

1

ε2
+
(
π2 − 889

54

)1

ε
− 23833

324
+

31

6
π2 +

160

9
ζ(3)

]
,∫

dΦ
(abcd)
rad,2 C

(nab)
gqq̄ = A

[
− 2

3

1

ε3
− 41

12

1

ε2
+
(
− 1675

108
+

17

18
π2
)1

ε

− 5404

81
+

1063

216
π2 +

139

9
ζ(3)

]
.∫

dΦ
(abcd)
rad,2 C(ab)

ggq = A

[
2

ε4
+

7

ε3
+
(251

8
− 3π2

) 1

ε2
+
(2125

16
− 21

2
π2 − 154

3
ζ(3)

)1

ε

+
17607

32
− 753

16
π2 − 548

3
ζ(3) +

13

20
π4

]
, (3.304)
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∫
dΦ

(abcd)
rad,2 C(nab)

ggq = A

[
1

2

1

ε4
+

8

3

1

ε3
+
(905

72
− 2

3
π2
) 1

ε2

+
(11773

216
− 89

24
π2 − 65

6
ζ(3)

)1

ε

+
295789

1296
− 845

48
π2 − 2191

36
ζ(3) +

19

240
π4

]
,∫

dΦ
(abcd)
rad,2 Cggg = A

[
5

2

1

ε4
+

21

2

1

ε3
+
(853

18
− 11

3
π2
) 1

ε2

+
(5450

27
− 275

18
π2 − 188

3
ζ(3)

)1

ε

+
180739

216
− 1868

27
π2 − 1555

6
ζ(3) +

41

60
π4

]
. (3.305)

3.6 Real-virtual counterterm

The real-virtual matrix element RVn+1 features a structure of explicit ε poles

dictated by its one-loop, namely

RV = −αS

2π

(
µ2

s

)ε [
R
∑
k

(
Ck
ε2

+
γk
ε

)
+
∑
k, l 6=k

Rkl
1

ε
ln ηkl +H(ε)

]
, (3.306)

where the indices k and l run over real-radiation multiplicities, and H(ε) denotes

the collection of terms that are non-singular in the ε→ 0 limit, encoding process-

specific information.

The corresponding real-virtual counterterm K
(RV)

, in analogy to what done at

NLO in Eq. (3.123), can symbolically written as

K
(RV)

=
∑
i, j 6=i

K
(RV)

ij =
∑
i, j 6=i

(
Si + Cij − Si Cij

)
RV Wij , (3.307)

where Wij are NLO sector functions, and the sum runs over the n + 1 final state

particles.

The combination of counterterms of Eq. 3.307 must feature the same phase-space

singularities as the real-virtual matrix element, in the IR one-unresolved regimes.

However, we have some degree of freedom in defining separately each term of

Eq. 3.307. This concerns the choice of momentum mappings from n + 1- to n-

body phase-space, as well as the functional structure of the terms themselves.

In particular, the definition of the barred counterterms proceeds by considering

the unbarred (off-shell) counterparts, known from the literature [26,73], and then

choosing an appropriate mapping for the Born and virtual matrix elements. As

a first step, we then collect the unbarred soft, collinear and mixed limits of the
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real-virtual matrix element [26, 73], to highlight the basic structures that have to

be integrated over the one-unresolved phase-space.

We start with the unbarred collinear contribution:

Cij RV =
N1

sij

[
P µν
ij Vµν −

αS

4π

β0

ε
P µν
ij Bµν +N1

cΓ cos(πε)

sεij
P

(1)µν
ij Bµν

]
, (3.308)

where the relevant constants are

β0 =
11CA − 4TRNf

3
, cΓ =

1

(4π)2−ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
, (3.309)

and the spin-correlated virtual matrix element is

Vµν =

(
αs
π

)[
− 1

ε2
1

2

( ∑
l 6=i,j

l=1...[ij]...n+1

Cfl

)
Bµν +

1

ε

( ∑
l 6=i,j

l=1...[ij]...n+1

γ
(1)
l

)
Bµν

−1

ε

1

2

∑
l,m6=i,j

l,m=1...[ij]...n+1

log

(
slm
µ2

)
Bµν, lm +Hµν

]
. (3.310)

Note that the term Hµν is a hard function, free of any singularity. We recall that

the symbol [ab] stands for the parent parton of the splitting [ab]→ a+ b.

We have also introduced the following decomposition for the two-loop collinear

kernels,

P
(1)µν
ij Bµν =

(
Mij Pij +Nij

)
B +

(
Mij Q

µν
ij +Oµν

ij

)
Bµν , (3.311)

where for each Xij = Mij Pij, Nij, Mij Q
µν
ij , O

µν
ij one has

Xij = δfigδfjgXgg + δfigδfj{qq̄}Xgq + δfi{qq̄}δfjgXqg + δ{fifj}{qq̄}Xqq , (3.312)

with δfi{qq̄} = δfiq+δfiq̄ and δ{fifj}{qq̄} = δfiq δfj q̄+δfiq̄ δfjq. The functions Pij, Qij

and P µν
ij , Q

µν
ij are respectively the spin-averaged and spin-dependent Altarelli-

Parisi splitting functions at tree-level, written as in Eqs.(3.93)-(3.94). The one-

loop component functions, written in terms of hypergeometric functions [26] and
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respecting the decomposition of Eq. 3.311, are

Mgg(z, 1− z) =
CA
ε2

[
1− 2F1

(
1,−ε; 1− ε,− z

1− z

)
−2F1

(
1,−ε; 1− ε,−1− z

z

)]
,

Mgq(z, 1− z) = − 1

ε2

[
(CA − 2CF )

(
1− 2F1

(
1,−ε; 1− ε,− z

1− z

))
+CA 2F1

(
1,−ε; 1− ε,−1− z

z

)]
= Mqg(1− z, z) ,

Mqq(z, 1− z) =
1

ε2

[
3CA − 2CF − CA 2F1

(
1,−ε; 1− ε;− z

1− z

)
−CA 2F1

(
1,−ε; 1− ε;−1− z

z

)]
+

1

1− 2ε

[
1

ε

(
β0 − 3CF

)
+ CA − 2CF +

CA + 4TRNf

3(3− 2ε)

]
,(3.313)

Ngg(z, 1− z) = 4CA
CA(1− ε)− 2TRNf

(1− 2ε)(2− 2ε)2(3− 2ε)
(1− 2ε z (1− z)) ,

Ngq(z, 1− z) = CF
CA − CF

1− 2ε
(1− εz) = Nqg(1− z, z) ,

Nqq(z, 1− z) = 0 ,

Oµν
gg (z, 1− z) = − 4CA

CA(1− ε)− 2TRNf

(1− 2ε)(2− 2ε)2(3− 2ε)
(1− 2ε z (1− z))×

×
(
− gµν + (d− 2)

kµ⊥k
ν
⊥

k2
⊥

)
,

Oµν
gq (z, 1− z) = Oµν

qg (z, 1− z) = Oµν
qq (z, 1− z) = 0 . (3.314)

Turning to the soft component, the low-energy limit of the real-virtual matrix

element is given by

SiRV = −N1

∑
k, l 6=k

I(i)
kl

{
Vkl −N1

[(
CA
ε2

πε cΓ

tan(πε)

(
I(i)
kl

)ε
+

β0Sε
2ε(4π)2µ2ε

)
Bkl

−2π

ε
cΓ

∑
p 6=k,l

(
I(i)
lp

)ε
Bklp

]}
, (3.315)

where the colour-correlated virtual matrix element is defined as

Vkl =

(
αs
π

)[
− 1

ε2
1

2

(∑
p

Cfp

)
Bkl +

1

ε

(∑
p

γ(1)
p

)
Bkl

−1

ε

1

4

∑
p,q 6=p

ln

(
spq
µ2

)
Bpqkl +Hkl

]
. (3.316)
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Hkl is again a hard function, free of ε poles, and the indices p, q run over the

Born-level partons, i.e. p, q = 1 . . . [ij] . . . n+1, and p, q 6= i, j. The tripole-colour-

correlated Born appearing in the second line of Eq.(3.316) is defined as

Bklp =
∑
a, b, c

fabc 〈AB|T ak T bl T cp |AB〉 , (3.317)

and it turns out to be completely antisymmetric under any index permutation.

Finally the normalisation constant Sε is equal to (4πe−γE)ε.

The remaining contribution is the soft-collinear limit of RV . We notice that Nij

and Oij kernels are soft-finite, whileMij have at most logarithmic soft-singularities.

Therefore, only the soft limit of Mij and Pij kernels involving i = g and/or j =

g contribute to the soft-collinear counterterm. This ensures that the soft and

collinear limits commute, i.e. Si Cij RV = Cij SiRV . Then, the soft-collinear

unbarred limit is

Si Cij RV = N1 2CfjI(i)
jr

[
V −N1

(
CA
ε2

πε cΓ

tan(πε)

(
I(i)
jr

)ε
+

β0Sε
2ε(4π)2µ2ε

)
B

]
. (3.318)

We stress that when defining the (barred) counterparts of Eqs. 3.308, 3.315 and

3.318 that enter Eq. 3.307, the following consistency relations need to be respected:

SiRV = Si SiRV ,

Cij RV = Cij Cij RV ,

Si Cij RV = Si Si Cij RV ,

Cij SiRV = Cij Si Cij RV . (3.319)

This ensures that the complete counterterm (Eq. 3.307) features the same phase-

space divergences as RV in all one-unresolved singular regimes. One possible

realisation of the constraints in Eq.(3.319) is given by

SiRV = −N1

∑
k 6=i
l 6=i,k

I(i)
kl

[
V

(ijk)

kl −N1

(
CA
ε2

πε cΓ

tan(πε)

(
I(i)
kl

)ε
+

β0Sε
2ε(4π)2µ2ε

)
B

(ikl)

kl

+N1
2π

ε
cΓ

∑
p 6=i,k,l

(
I(i)
lp

)ε
B

(ikl)

klp

]
.

Cij RV =
N1

sij

[
P µν
ij V

(ijr)

µν −
αS

4π

β0

ε
P µν
ij B

(ijr)

µν +N1 cΓ s
−ε
ij cos(πε)P

(1)µν
ij B

(ijr)

µν

]
,

SiCij RV = 2N1CfjI(i)
jr

[
V

(ijr)−N1

(
CA
ε2

πε cΓ

tan(πε)

(
I(i)
jr

)ε
+

β0Sε
2ε(4π)2µ2ε

)
B

(ijr)
]
.

(3.320)

To enable analytic integration of the counterterms, a natural strategy has been
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choosing momenta mappings in such a way that the radiation phase-space is para-

metrised according to the invariants appearing in the kernels. To begin with, we

examine the soft component, whose integral reads

I
(RV)
S =

ςn+1

ςn

n+1∑
i=1

∫
dΦrad SiRV

=
ςn+1

ςn

∑
i

[
−N1

∑
k 6=i
l 6=i,k

V
(ikl)

kl

∫
dΦ

(ikl)
rad I

(i)
kl (3.321)

+N 2
1

∑
k 6=i
l 6=i,k

B
(ikl)

kl

∫
dΦ

(ikl)
rad

(
CA
ε2

πε cΓ

tan(πε)

(
I(i)
kl

)ε
+

β0Sε
2ε(4π)2µ2ε

)
I(i)
kl

−N 2
1 cΓ

2π

ε

∑
k 6=i, l 6=i,k
p 6=i,k,l

B
(ikl)

klp

∫
dΦ

(ikl)
rad I

(i)
kl

(
I(i)
lp

)ε ]

≡ J
(RV)
S,1 + J

(RV)
S,2 + J

(RV)
S,3 . (3.322)

where ςn+1/ςn is the symmetry factor coming from the n + 1-body phase-space

factorization.

The contributions proportional to the (colour-correlated) virtual matrix-element

feature NLO complexity, thus they can be easily integrated over the single-radiation

phase-space with standard methods. The same holds for terms proportional to the

colour-correlated Born. As an example, we sketch the computation of the the first

contribution appearing in Eq.(3.322), namely the term proportional to the virtual

matrix element

J
(RV)
S,1 = −N1

ςn+1

ςn

∑
i, k 6=i
l 6=i,k

Vkl({k̄}(ikl))

∫
dΦ

(ikl)
rad I

(i)
kl

= −N1
ςn+1

ςn

∑
i

δfig
∑
k 6=i
l 6=i,k

Vkl({k̄}(ikl)) J s(s̄
(ikl)
kl , ε)

= −
(αS

2π

) ∑
k, l 6=k

[
1

ε2
+

1

ε

(
2− log

s̄kl
µ2

)
+

(
6− 7

12
π2 − 2 log

s̄kl
µ2

+
1

2
log2 s̄kl

µ2

)]
Vkl , (3.323)

where the soft factor J s is defined in Eq.(3.137), s̄kl ≡ s̄
(ikl)
kl , the kinematics of Vkl

is {k̄}(ikl), and in the last step we have used (as we will do in the following terms

of soft origin)

ςn+1

ςn

∑
i

δfig = 1 . (3.324)
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The soft contribution proportional to the triple-colour-correlated Born requires

more refined techniques to be analytically integrated. This is due to the peculiar

structure involving two eikonal kernels linking four particles, that is

J
(RV)
S,3 = −N 2

1 cΓ
2π

ε

ςn+1

ςn

∑
i, k 6=i

∑
l 6=i,k
p 6=i,k,l

B
(ikl)

klp

∫
dΦ

(ikl)
rad I

(i)
kl

(
I(i)
lp

)ε
= −N 2

1 cΓ 2πJ (RV)
S,3 (ξ; ε) (3.325)

where we have extracted the core structure of the integrand function by introducing

J (RV)
S,3 (ξ; ε) =

1

ε

ςn+1

ςn

∑
i, k 6=i

∑
l 6=i,k
p6=i,k,l

Bklp({k̄}(ikl))

∫
dΦ

(ikl)
rad I

(i)
kl

(
I(i)
lp

)ε
. (3.326)

We parametrize the invariants appearing in the integral according to the NLO

mapping in Eq.(3.126) and Eq.(C.7), where we choose sip as the one depending

on the azimuthal variable:

sik = y s̄
(ikl)
kl ,

sil = z(1− y) s̄
(ikl)
kl

skl = (1− z)(1− y) s̄
(ikl)
kl

sip = s̄
(ikl)
lp

[
y(1− z) + z ξ − 2(1− 2x)

√
y z(1− z)ξ

]
, (3.327)

where we have defined ξ ≡ s̄
(ikl)
kp /s̄

(ikl)
lp . The integral of Eq. 3.326 can be then

rewritten as,

J (RV)
S,3 (ξ; ε) =

1

ε

πε−5/2

16 Γ (1/2− ε)
ςn+1

ςn

∑
i, k 6=i

δfig
∑
l 6=i,k
p 6=i,k,l

B
(ikl)

klp

(
s̄

(ikl)
kl

)−2ε

×

×
∫ 1

0

dx dy dz
[x(1− x)]−ε−1/2 y−ε−1 (1− y)1−2ε (1− z)1−ε z−2ε−1(

y (1− z) + ξ z − 2 (1− 2x)
√
y z (1− z) ξ

)ε . (3.328)

At this point, we observe that this expression takes the form of the master integral

defined in Eq. D.34, namely Iε,1+ε,−1−2ε,1−ε,−1−ε,1−2ε(ξ, 1), thus it can be solved and

expanded in ε powers following the procedure shown in Appendix D.3. The final
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result for J (RV)
S,3 (ξ; ε) reads,

J (RV)
S,3 (ξ; ε) =

πε−3/2

64 Γ (1/2− ε)
ςn+1

ςn

∑
i, k 6=i

δfig
∑
l 6=i,k
p6=i,k,l

B
(ikl)

klp ×

×
[

3

2 ε3
+

1

ε2

(
6(1 + log 2)− 3 log

s̄kl
µ2
− log ξ

)
+

1

ε

(
log2 ξ + 2 log ξ log

s̄kl
µ2
− 4 log ξ(1 + log 2) + 3 log2 s̄kl

µ2

−(1 + log 2) log
s̄kl
µ2
− 13 π2

12
+ 28 + 12(2 + log 2) log 2

)
+O(ε0)

]
. (3.329)

We can now simplify the expression using symmetry arguments, for instance ex-

ploiting the complete antisymmetry of Bklp under label exchange, leading to a

formula free of ε poles. We stress again that, after integration, the result doesn’t

depend on the specific choice of mapping, since all invariants are integrated over

the remaining n-body Born-level phase-space.

The constant terms contributing to poles residues vanish, due to the sum over

colors and the Born matrix element property Bkll + Bklk = 0. The double and

single poles feature residues that also contain the following structures:∑
k, l 6=k

∑
p 6=k,l

Bklp({k̄}) log
s̄kl
µ2

,
∑
k, l 6=k

∑
p 6=k,l

Bklp({k̄}) log ξ , (3.330)

∑
k, l 6=k

∑
p6=k,l

Bklp({k̄}) log2 ξ ,
∑
k, l 6=k

∑
p 6=k,l

Bklp({k̄}) log ξ log
s̄kl
µ2

.

The first contribution vanishes upon summation over index p (or equivalently for

the symmetric character of s̄kl). The second one can be written as

∑
k, l 6=k
p 6=k,l

Bklp({k̄}) log ξ =
∑
k, l 6=k
p6=k,l

[
log

s̄kp
µ2
− log

s̄lp
µ2

]
Bklp({k̄}) = 0 , (3.331)

∑
k, l 6=k
p 6=k,l

Bklp({k̄}) log2 ξ =
∑
k, l 6=k
p 6=k,l

Blkp({k̄}) (− log ξ)2 = 0 ,

∑
k, l 6=k
p 6=k,l

Bklp log ξ log
s̄kl
µ2

=
∑
k, l 6=k
p 6=k,l

[
log

s̄kp
µ2

log
s̄kl
µ2
− log

s̄lp
µ2

log
s̄kl
µ2

]
Bklp = 0 .

where all terms terms vanish thanks to the same symmetry argument discussed

above.

We point out again that the choice of the mapping for the radiative phase-space
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parametrisation is not unique. The mapping (ikl) leads to a quite cumbersome

integration, but has the advantage of giving a result free of infrared singularities.

This is crucial since the divergences of I(RV) must cancel against the explicit poles

coming from the double-virtual matrix-element and the I (2) counterterm, both of

which cannot contain any colour-tripole contribution [109] [12] [27].

If, for instance, the mapping (ipl) was used, the integration would be much simpler,

but the result would countain a non-vanishing single pole. Such a spurious singu-

larity can only be compensated by adding similar structure in the hard-collinear

contribution to K
(RV)

, according to the consistency relations of Eq. 3.319.

We now analyze the integration of collinear contributions to Eq. 3.307, which read:

I
(RV)
C =

∑
i, j>i

ςn+1

ςn

(
δfigδfjg + δfigδfj{qq̄} + δfi{qq̄}δfjg + δ{fifj}{qq̄}

)
×

×
∫
dΦrad Cij RV . (3.332)

In this case, we parametrize the one-unresolved radiative phase-space with (ijr)

mapping, that is the most natural choice in collinear configurations. The index r

refers to any final state parton, different from i and j.

As for the soft counterterm, all terms entering Eq. 3.332 that are proportional

to virtual matrix-elements and those coming from UV renormalization procedure,

can be integrated easily. A similar conclusion holds for Nij terms, since they are at

most polynomials in the integration variables. The terms featuring spin-dependent

kernels Qµν
ij and Oµν

ij vanish when integrated over the azimuth, as happens at NLO.

The less trivial integrals arise from the PijMij term, and in particular from struc-

tures of the type,∫ 1

0

dz (1− z)m−εzn−ε 2F1

(
1,−ε; 1− ε;− z

1− z

)
, (3.333)

where n,m take only the integer values −1, 0, 1. For these values, the integral

gives

Γ(m− ε+ 2)Γ(n− ε+ 1)

Γ(m+ n− 2ε+ 3)
3F2(1, 1, n− ε+ 1;m+ n− 2ε+ 3, 1− ε; 1) , (3.334)

that can be expanded in ε powers, using for example HypExp code [147,148]. The

integration over the remaining radiation phase-space variables is straightforward.

To provide an example of the just mentioned procedure, we consider the gg con-

tribution to Eq.(3.332)
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The integration over the radiative phase space of the gg contribution is

I
(RV)
C,gg =

ςn+1

ςn

∑
i, j>i

δfigδfjg

∫
dΦrad Cij RV

= N1
ςn+1

ςn

∑
i, j>i

δfig δfjg

∫
dΦ

(ijr)
rad

1

sij

[
Pij V

(ijr) − αS

4π

β0

ε
Pij B

(ijr)

+N1
cΓ cos(πε)

(sij)ε
[
Mij Pij +Nij

]
B

(ijr)
]

≡ ςn+1

ςn

∑
i, j>i

δfigδfjg

[
J

(RV)
C,gg,1 + J

(RV)
C,gg,2 + J

(RV)
C,gg,3

]
. (3.335)

The first contribution in square brackets is trivially reducible to a NLO-complexity

computation

J
(RV)
C,gg,1 = N1 V

(ijr)
∫
dΦ

(ijr)
rad

(Pij)gg
sij

= 2CAN1 V
(ijr) (4π)ε−2

(
s̄

(ijr)
jr

)−ε
Γ(1− ε) ×

×
∫ 1

0

dy dz
[ z

1− z +
1− z
z

+ z(1− z)
][
y(1− y)2 z(1− z)

]−ε (1− y)

y

=
(αS

π

)
CA

(
µ2eγE

s̄jr

)ε
3(1− ε)(−4 + 3ε)Γ2(−ε)

2(−3 + 2ε)Γ(2− 3ε)
V ({k̄}) ,

where the expansion in ε is then straightforward. The second contribution in

Eq.(3.335), namely J
(RV)
C,gg,2, is analogous to J

(RV)
C,gg,1 upon substituting the virtual

matrix element with the Born matrix element and modifying the constant factor

in front of the kernel. The most involved part derives from the one-loop AP

splitting function contribution, and, in particular, from the contribution of Mij,
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which reads

J
(RV)
C,gg,3a = (8παS)

2 cΓ cos(πε)

∫
dΦ

(ijr)
rad

(
µ2

sij

)ε
µ2ε

sij
Mij Pij B

(ijr)
(3.336)

= (8παS)
2 cΓ cos(πε)

(
µ2

s̄jr

)2ε

B({k̄}) (4π)ε−2

Γ(1− ε)
CA
ε2
×

×
∫ 1

0

dy dz (1− y)
[
(1− y)2y(1− z)z

]−ε
y−1−ε ×

×
( z

1− z +
1− z
z

+ z(1− z)
)
×

×
[
1− 2F1

(
1,−ε; 1− ε,− z

1− z
)
− 2F1

(
1,−ε; 1− ε,−1− z

z

)]
= (8παS)

2 cΓ cos(πε)

(
µ2

s̄jr

)2ε

B({k̄}) (4π)ε−2

Γ(1− ε)
CA
ε2
×

×
∫ 1

0

dy dz (1− y)1−2ε y−2ε−1
[
(1− z)z

]−ε ×
×
( z

1− z +
1− z
z

+ z(1− z)
)[

1− 2 2F1

(
1,−ε; 1− ε,− z

1− z
)]
.

In the second step we have exploited the symmetry of the integration measure and

of the NLO collinear kernel under the exchange z ↔ 1− z to sum the two hyper-

geometric functions. The most advantageous aspect of the chosen parametrisation

relies on the functional dependence of the integrand function on the integration

variables. Such dependence on z and y is indeed completely factorised, so that the

integration can be carried out independently over the two variables. In particular,

the integration over y returns a simple combination of Γ functions∫ 1

0

dy
(1− y)1−2ε

y2ε+1
=

Γ(2− 2ε) Γ(−2ε)

Γ(2− 4ε)
, (3.337)

while the z component can be simplified by exploiting the hypergeometric function

property

2F1

(
1,−ε; 1− ε,− z

1− z
)

= (1− z) 2F1 (1, 1; 1− ε, z) . (3.338)

This way, two different structures have to be integrated over z: one proportional

to (Pij)gg times the multiplicative factors deriving from the integration measure,

IA =
CA
ε2

∫ 1

0

dy dz
(1− y)1−2ε

y2ε+1

[
(1− z)z

]−ε( z

1− z +
1− z
z

+ z(1− z)
)

=
CA
ε2

2−4+2ε 3π1/2(4− 3ε) Γ(−ε) Γ(−2ε) Γ(3− 2ε)

(−3 + 2ε) Γ(2− 4ε) Γ(5/2− ε) , (3.339)
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and a second structure featuring the NLO AP splitting, the hypergeometric func-

tion in Eq.(3.338), and the integration measure factors

IB =
CA
ε2

∫ 1

0

dy dz
(1− y)1−2ε

y2ε+1

[
(1− z)z

]−ε( z

1− z +
1− z
z

+ z(1− z)
)

(3.340)

× (1− z) 2F1

(
1, 1; 1− ε, z

)
=

CA
ε2

Γ(2− 2ε) Γ(−2ε)

Γ(2− 4ε)

[
Γ(3− ε)Γ(−ε) 3F2

(
1, 1,−ε; 3− 2ε, 1− ε; 1

)
Γ(3− 2ε)

−
√
π 4ε−1 (1− 2ε(1− ε)) Γ(2− ε)
ε(1− ε)(1− 2ε) Γ

(
3
2
− ε
) +

√
π 4ε−2(2ε2 − 4ε+ 3)Γ(3− ε)
(1− ε)2(3− 2ε)Γ

(
5
2
− ε
) ]

.

The last contribution derives from the Nij function and reads

J
(RV)
C,gg,3b = (8παS)

2 cΓ cos(πε)

∫
dΦ

(ijr)
rad

(
µ2

sij

)ε+1 (
Nij

)
gg
B

(ijr)

= (8παS)
2 cΓ cos(πε)

4CA
(
CA(1− ε)− 2TRNf

)
(1− 2ε)(2− 2ε)2(3− 2ε)

(4π)ε−2

Γ(1− ε)

(
µ2

s̄jr

)ε+1

×

×B({k̄})
∫ 1

0

dy dz
(1− y)

y1+ε

[
(1− y)2y(1− z)z

]−ε [
1− 2ε z(1− z)

]
= (8παS)

2 cΓ cos(πε) 4CA
CA(1− ε)− 2TRNf

(1− 2ε)(2− 2ε)2(3− 2ε)

(
µ2

s̄jr

)ε+1

×

×B({k̄}) (4π)ε−2

Γ(1− ε)
Γ(2− 2ε) Γ(1− ε) Γ(4− ε) Γ(−2ε)

Γ(2− 4ε) Γ(4− 2ε)
. (3.341)

Summing all the contributions listed above, taking care of the relative multi-

plicative factors, and working out the multiplicity factor, ςn+1

ςn

∑
i, j>i δfigδfjg =
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1
2

∑
p δfpg, the collinear contribution for the gg configuration is given by

J
(RV)
C,gg =

1

2

∑
p

δfpg

(αS

π

)
CA

[
2

ε2
+

1

ε

(23

6
− 2 log

s̄pr
µ2

)
+

104

9
− 7π2

6
− 23

6
log

s̄pr
µ2

+ log2 s̄pr
µ2

]
V ({k̄})

+
1

2

∑
p

δfpg

(αS

2π

)2

CA

{
CA

[
− 1

ε4
+

1

ε3

(
− 67

6
+ 2 log

s̄pr
µ2

)
+

1

ε2

(11π2

6
− 199

6
+ 15 log

s̄pr
µ2
− 2 log2 s̄pr

µ2

)
+

1

ε

(
− 3421

27
+

92ζ(3)

3
+

385π2

36
+
(941

18
− 11

3
π2
)

log
s̄pr
µ2

−34

3
log2 s̄pr

µ2
+

4

3
log3 s̄pr

µ2

)
+
(5698

27
− 154

9
π2 − 184

3
ζ(3)

)
log

s̄pr
µ2

+
(11

3
π2 − 181

4

)
log2 s̄pr

µ2
+

19

3
log3 s̄pr

µ2
− 2

3
log4 s̄pr

µ2

−77891

162
+

8539

216
π2 − 179

360
π4 +

481

3
ζ(3)

]
+TRNf

[
8

3ε3
+

1

ε2

(46

9
− 8

3
log

s̄pr
µ2

)
+

1

ε

(425

27
− 14

9
π2 − 46

9
log

s̄pr
µ2

+
4

3
log2 s̄pr

µ2

)
+
(14

9
π2 − 434

27

)
log

s̄pr
µ2

+
23

9
log2 s̄pr

µ2
− 4

9
log3 s̄pr

µ2

+
3973

81
− 161

54
π2 − 200

9
ζ(3)

]}
B({k̄}) . (3.342)

The expression above is made of two different objects: a virtual correction, com-

posed by a combination of explicit poles and finite contributions multiplied times

the virtual matrix element, and a Born-level contribution, deriving from the one-

loop Altarelli-Parisi splitting. As expected, both terms contribute to the residue

of the 1/ε4 pole. The result in Eq.(3.342) is not interesting per se, but provides the

idea of the complexity of the integrals we have to handle for computing the real-

virtual counterterm. Remarkably, the entire integration procedure can be com-

pleted at all orders in ε without exploiting numerical approximations, or involved

integrations tools. As already mentioned, this simplicity is a direct consequence

of the freedom in choosing the phase space parametrisation.

The last contribution to the integrated real-virtual counterterm is the soft-collinear
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one

I
(RV)
SC =

ςn+1

ςn

∑
i, j 6=i

δfig

∫
dΦrad SiCij RV

=
ςn+1

ςn

∑
i, j 6=i

[
2N1CfjV

(ijr)
∫
dΦ

(ijr)
rad I

(i)
jr (3.343)

− 2Cfj N 2
1 B

(ijr)
∫
dΦ

(ijr)
rad

(
CA
ε2

πε cΓ

tan(πε)

(
I(i)
jr

)ε
+

β0Sε
2ε(4π)2µ2ε

)
I(i)
kl

]
.

The integration of the soft-collinear is similar to what done for the soft component.

We stress that, as discussed before, the choice of mapping in the tripole-colour

soft contribution has an impact on the soft-collinear term. As result of the (ikl)

parametrisation in Eq. 3.326, the couterterm I
(RV)
SC embeds only structures that

can be integrated easily with NLO methods.

This completes the discussion on the real-virtual counterterm integration.

3.7 Proof-of-concept calculation
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g
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3

q̄′
4
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(a) Double real contribution
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(b) Real virtual contribu-
tion
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(c) Double virtual contribu-
tion

Figure 3.2: Feynman diagrams contributing to the TRCF colour structure of the
process e+e− → jj .

In order to demonstrate the validity of our local subtraction method, in this Section

we apply it to di-jet production in electron-positron annihilation, as a test case.

We consider radiative corrections up to NNLO, restricting our analysis to the

contributions proportional to TRCF . The production channels available in this

case are

B, V, V V : e+ e− → q q̄ ,

R, RV : e+ e− → q q̄ g ,

RR : e+ e− → q q̄ q′q̄′ . (3.344)
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3.7.1 Matrix elements

The relevant O(α2
S) matrix elements are known analytically, and up to O(ε0) they

yield [121,149,150]

V V = B
(αS

2π

)2

TR CF (3.345)

×
{(µ2

s

)2ε
[

1

3ε3
+

14

9ε2
+

1

ε

(
− 11

18
π2 +

353

54

)
−26

9
ζ3 −

77

27
π2 +

7541

324

]
+
(µ2

s

)ε [
− 4

3ε3
− 2

ε2
+

1

ε

(
7

9
π2 − 16

3

)
+

(
28

9
ζ3 +

7

6
π2 − 32

3

)]}
,∫

dΦradRV =
αS

2π

1

ε

2

3
TR

∫
dΦradR (3.346)

= B
(αS

2π

)2

TR CF

×
(µ2

s

)ε [ 4

3ε3
+

2

ε2
+

1

ε

(
−7

9
π2 +

19

3

)
− 100

9
ζ3 −

7

6
π2 +

109

6

]
,∫

dΦrad,2RR = B
(αS

2π

)2

TR CF (3.347)

×
(µ2

s

)2ε
[
− 1

3ε3
− 14

9ε2
+

1

ε

(
11

18
π2 − 407

54

)
+

134

9
ζ3 +

77

27
π2 − 11753

324

]
,

where, in this case, dΦrad = dΦ3/dΦ2, dΦrad,1 = dΦ4/dΦ3, and dΦrad,2 = dΦ4/dΦ2.

The TRCF contribution to the O(α2
S) coefficient of the total cross section is thus

σNNLO = σLO

(αS

2π

)2

TR CF

(
−11

2
+ 4 ζ3 − ln

µ2

s

)
. (3.348)

We now proceed to compute and integrate the local counterterms relevant for this

particular process.

3.7.2 Local subtraction

The double real matrix element presents single phase space singularities corres-

ponding to the single collinear limit C34. Moreover, the double-unresolved sin-

gularities arise from the configurations where both the emitted quarks are soft,

caught by S34, or they are collinear to one of the hard Born-level fermions, extrac-

ted by C134, C234, where labels 1 and 2 refer to q and q̄, while labels 3 and 4 refer
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to q′ and q̄′, according to the process definitions in Eq. (3.344), and the graphical

representation in Fig.3.2.

The relevant limits in barred kinematics have been introduced and discussed in

Eqs.(3.214)-(3.215)-(3.216). We report here such limit for convenience

Sij RR =
N 2

1

2

∑
c,d 6=i,j
d6=c

[ ∑
e,f 6=i,j,c,d

I(i)
cd I

(j)
ef Bcdef

(
{k̄}(icd,jef)

)

+ 4
∑

e6=i,j,c,d

I(i)
cd I

(j)
ed Bcded

(
{k̄}(icd,jed)

)
+ 2 I(i)

cd I
(j)
cd Bcdcd

(
{k̄}(ijcd)

)
+
(
I(ij)
cd −

1

2
I(ij)
cc −

1

2
I(ij)
dd

)
Bcd

(
{k̄}(ijcd)

)]
, (3.349)

Cijk RR =
N 2

1

s2
ijk

P µν
ijk Bµν

(
{k̄}(ijkr)

)
, (3.350)

Sij Cijk RR =
N 2

1

2
Cfk

[
8Cfk I

(i)
rk I

(j)
rk + I(ij)

rr − 2 I(ij)
rk + I(ij)

kk

]
B
(
{k̄}(ijkr)

)
,

(3.351)

where {i, j} = {3, 4}, and {ijk} = {134, 234}, and r = {1, 2, 3, 4}, r 6= i, j, k. The

resulting double-real counterterms are then given by

K
(1)

= C34RR , (3.352)

K
(2)

=
(
S34 + C123(1− S34) + C234(1− S34)

)
RR , (3.353)

K
(12)

= C34

(
S34 + C123(1− S34) + C234(1− S34)

)
RR . (3.354)

In this specific (sub)process not all the terms appearing in Eq.(3.351) contrib-

ute. In the soft configuration, for instance, only the last term in square bracket

contributes, since the soft parton are quarks. In the evaluation of the correspond-

ing integral we apply the integration strategy presented in details in the previous

sections. In particular, the integrated double unresolved counterterm is

I (2) =

∫
dΦrad,2

[
S34 + C134

(
1− S34

)
+ C234

(
1− S34

) ]
RR . (3.355)

In the case we are considering, thanks to the simple singularity structure of the pro-

cess, only the parametrisation (3.209), involving four parton indices, is required.

For the case of double-soft radiation the relevant integral is [27]∫
dΦrad,2 Sij RR = N 2

1 TR

2∑
l,m=1

Blm

(
{k̄}(ijlm)

)∫
dΦ

(ijlm)
rad,2

[
silsjm + simsjl − sijslm
s2
ij (sil + sjl) (sim + sjm)

−1

2

silsjl + silsjl

s2
ij (sil + sjl)

2 −
1

2

simsjm + simsjm

s2
ij (sim + sjm)2

]
, (3.356)
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where {ij} = {34}, according to Eq. (3.355). Different terms in the eikonal sum

can be remapped to the same Born kinematics, and, performing the relevant colour

algebra, the result is∫
dΦrad,2 Sij RR = N 2

1 B TR CF
8

s2

∫
dΦrad,2 (s; y, z, φ, y′, z′, x′) ×

× z′ (1− z′) y′ (1− z)

y2y′2 [y (1− z) + z]

= B
(αS

2π

)2

TR CF

(
µ2

s

)2ε
[
− 1

3ε3
− 17

9ε2
+

1

ε

(
7

18
π2 − 232

27

)

+
38

9
ζ3 +

131

54
π2 − 2948

81
+O(ε)

]
. (3.357)

The double-collinear contribution (before the subtraction of the soft-collinear re-

gion) can be similarly computed, and it yields∫
dΦ

(ijkr)
rad,2 Cijk RR = −N 2

1 B TR CF

∫
dΦ

(ijkr)
rad,2

1

2sijksik

[
t 2
ik,j

siksijk
(3.358)

−4zj + (zi − zk)2

zi + zk
− (1− 2ε)

(
zi + zk −

sik
sijk

)]
= B

(αS

2π

)2

TR CF

(
µ2

s

)2ε
[
− 1

3ε3
− 31

18ε2

+
1

ε

(
1

2
π2 − 889

108

)
+

(
80

9
ζ3 +

31

12
π2 − 23941

648

)
+O(ε)

]
,

where, following [25,27], we have set

tik,j = 2
ziskj − zksij
zi + zk

+
zi − zk
zi + zk

sik . (3.359)

Note that the result in Eq. (3.358) applies to the configurations {ijk} = {134} and

{ijk} = {234}, as seen from Eq. (3.355). Let us recall that the spin-dependent

component of the double-collinear Altarelli-Parisi splitting function returns a zero

contribution, when integrated. Finally, the composite limit SijCijkRR coincides

with the double soft contribution SijRR,∫
dΦrad,2 Sij Cijk RR =

∫
dΦrad,2 Sij RR , (3.360)

given the fact that k and r have to be different from i, j, and in this specific process

they can only coincide with 1 and 2. Summing all the contributions, as prescribed
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by Eq.(3.353), we easily obtain the double-unresolved integrated counterterm

I (2) = B
(αS

2π

)2

TR CF

(
µ2

s

)2ε

(3.361)

×
[
− 1

3ε3
− 14

9ε2
+

1

ε

(
11

18
π2 − 425

54

)
+

122

9
ζ3 +

74

27
π2 − 12149

324

]
+O(ε) .

Next, we consider the integration of the single-unresolved counterterm, applying

the general formula, Eq. (3.187), and restricting our analysis to the case in which

only the single-collinear limit is non-zero. We find

I
(1)
hq = − αS

2π

(
µ2

s

)ε
2

3
TR

(
1

ε
− ln η̄ [34]r +

8

3

)
RWhq + O(ε) , (3.362)

where the real-radiation matrix element R involves n+ 1 = 3 particles, the indices

h and q take values in the set {1, 2, 3 ≡ [34]}, and we can choose r = 1 or r = 2

when h = 1, q = 2, while r = 3 − h in the other cases. The result in Eq. (3.362)

must be combined with the RV contribution, and we can explicitly check that

their sum is finite in d = 4, sector by sector in the NLO phase space. Indeed

RV Whq + I
(1)
hq =

αS

2π

2

3
TR

1

ε
RWhq

−αS

2π

(
µ2

s

)ε
2

3
TR

(
1

ε
− ln η̄ [34]r +

8

3

)
RWhq + O(ε)

= − αS

2π

2

3
TR

(
ln

µ2

s34r

+
8

3

)
RWhq + O(ε) . (3.363)

The next ingredient is the mixed double-unresolved contribution, which in sector

hq it reads

I
(12)
hq = −αS

2π

(
µ2

s

)ε
2

3
TR

(
1

ε
− ln η̄ [34]r +

8

3

)[
Sh + Chq

(
1− Sh

) ]
RWhq . (3.364)

The combination of Eq. (3.364) with the real-virtual local counterterm in the same

NLO sector must be finite in d = 4. Indeed we find that

K
(RV)

hq + I
(12)
hq =

2

3
TR

1

ε

[
S̄h + Chq

(
1− S̄h

) ]
RWhq −

αS

2π

(
µ2

s

)ε
2

3
TR ×

×
(

1

ε
− ln η̄ [34]r +

8

3

)[
Sh + Chq

(
1− Sh

) ]
RWhq

= −αS

2π

2

3
TR

(
ln

µ2

s34r

+
8

3

)[
Sh + Chq

(
1− Sh

) ]
RWhq ,(3.365)

where in the equations above, O(ε) terms have been neglected. The final ingredient

for subtraction is the integral of the real-virtual counterterm. In the present case,
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it is given by

I(RV) =
αS

2π

2

3

1

ε
TR

∫
dΦrad

[
S[34] + C1[34]

(
1− S[34]

)
+ C2[34]

(
1− S[34]

) ]
R

=
αS

2π

2

3

1

ε
TR × I

∣∣
CF , n=2

= B
(αS

2π

)2

TR CF

(
µ2

s

)ε [
4

3ε3
+

2

ε2
− 1

ε

(
7

9
π2 − 20

3

)
−
(

100

9
ζ3 +

7

6
π2 − 20

)]
+O(ε) , (3.366)

where I
∣∣
CF , n=2

denotes the NLO counterterm given in Eq. (3.139), considered in

the particular case of two non-gluon final-state partons at Born level. All required

ingredients for NNLO subtraction for the process at hand are now assembled, and

we can proceed to a numerical consistency check.

3.7.3 Collection of results

The heart of the subtraction procedure is the combination of analytic results with

numerical integration of the finite remainder of the real-radiation squared matrix

element, to get physical distributions and cross sections. For this proof of concept,

we will simply reconstruct numerically the total cross section for the production of

two quark pairs of different flavours. We emphasise however that the formalism we

constructed is completely general and local: a detailed numerical implementation

for all processes involving only final state massless partons is being developed and

will be presented in forthcoming work.

The cross section is constructed in general, as shown in Eq. (3.144), as a sum of

three finite and integrable contributions, given by

V V sub = V V + I (2) + I(RV) ,

RV sub =
(
RV + I (1)

)
−
(
K

(RV)
+ I (12)

)
, (3.367)

RRsub = RR−K (1) −K (2)
+K

(12)
.

The subtracted double-virtual contribution is computed analytically, and is finite

in d = 4. In this case, it is given by

V V sub = B
(αS

2π

)2

TR CF

(
8

3
ζ3 −

1

9
π2 − 44

9
− 4

3
ln
µ2

s

)
(3.368)

= B
(αS

2π

)2

TR CF × 0.01949914 .
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where, for definiteness, in the second line we have randomly chosen µ2/s = 0.35.

For real radiation, we have written a Monte Carlo code to integrate numerically

the remaining two terms in Eq. (3.367), obtaining∫
dΦ1RV

sub = B
(αS

2π

)2

TR CF ×
(
− 0.90635 ± 0.00011

)
,∫

dΦ1RR
sub = B

(αS

2π

)2

TR CF ×
(

+ 2.29491 ± 0.00038
)
. (3.369)

The rescaled NNLO correction, evaluated numerically by means of the subtraction

method, is then

Knum.
NNLO ≡

σNNLO(
αS

2π

)2
TR CF σLO

= 1.40806 ± 0.00040 , (3.370)

to be compared with the analytical result

Kan.
NNLO =

(
−11

2
+ 4ζ3 − ln

µ2

s

)
= 1.40787186 . (3.371)

For completeness, we also show in Fig. 3.3 that also the logarithmic renormalisation-

scale dependence is correctly reproduced with the same accuracy.

3.8 Local subtraction to all orders

In the previous Sections we have implemented a minimal, analytic subtraction

scheme up to NNLO. Starting at NLO, we have introduced the simple subtraction

pattern

dσNLO

dX
=

∫
dΦn

(
Vn + In

)
δn(X) +

∫
dΦn+1

(
Rn+1 δn+1(X)−K (1)

n+1 δn(X)
)
.

(3.372)

In view of a generalisation to higher orders, we formally write the local counterterm

K
(1)

n+1 as a limit of the real radiation squared matrix element Rn+1, appropriately

remapped. To do so, we introduce the operator L
(1)

which collects the single-

unresolved barred limits of the real matrix element. More in detail, one may

define L
(1)

by

L
(1)
Rn+1 =

∑
i

∑
j 6=i

(
Si + Cij − Si Cij

)
Rn+1Wij ≡

∑
i

∑
j 6=i

Kij , (3.373)

in agreement with Eq.(3.123). The barred limits appearing in Eq.(3.373), and

given in Eqs.(3.112)-(3.114), have been defined in two steps: first, we extract
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Figure 3.3: Rescaled NNLO correction as a function of the renormalisation scale.

from Rn+1 the leading power in the appropriate normal variable λi, an energy

or an angle. Secondly, we assign the appropriate set of on-shell momenta to the

kernels. In the language of the L operators, the candidate local counterterm and

its integrated counterpart can be rewritten as

K
(1)

n+1 = L
(1)
Rn+1 , In =

∫
dΦrad,1 L

(1)
Rn+1 . (3.374)

Introducing the further assumption L
(1)
δn+1(X) = δn(X), we can rephrase the

second term in Eq.(3.372) as∫
dΦn+1

(
1− L

(1)
)
Rn+1 δn+1(X) , (3.375)

and consequently

dσNLO

dX
=

∫
dΦn

(
Vn + In

)
δn(X) +

∫
dΦn+1

(
1− L

(1)
)
Rn+1 δn+1(X) . (3.376)

We stress that, at NLO, the explicit expression of L traces the leading singular

behaviour of Rn+1, under single IR limits. Such choice is sufficient to guarantee

the finiteness of the two contributions in Eq.(3.376). At NNLO, to realise the



Chapter 3. Subtraction Chapter 3 Subtraction

corresponding intricate subtraction pattern, we must allow the L operators to

include terms that cannot be directly obtained by computing the IR limits of

the real matrix element. As already discussed, the main problem is the complete

cancellation of the singularities contributing to the second line in the subtraction

formula

dσNNLO

dX
=

∫
dΦn

(
V V + I (2) + I(RV)

)
δn (3.377)

+

∫ [(
dΦn+1RV + dΦn+1I

(1)
)
δn+1 − dΦn+1

(
K

(RV)
+ I (12)

)
δn

]
+

∫ [
dΦn+2RRδn+2 − dΦn+2K

(1)
δn+1

−dΦn+2

(
K

(2) −K (12)
)
δn

]
,

where we have omitted the argument of the δ function for simplicity. Such cancel-

lation requires to define K
(12)

not as a mere remapping of the leading contributions

of K (2), under single-unresolved limits, but rather as a novel object. K
(12)

indeed

has to incorporate appropriate extra factors that enable the mathching of its in-

tegrated counterpart I (12) with the explicit pole of K
(RV)

, and, at the same time,

with the phase space singularities of I (1). In analogy with Eq. (3.374), we write

K
(1)

n+2 = L
(1)
RRn+2 , K

(2)

n+2 = L
(2)
RRn+2 ,

K
(12)

n+2 = L
(1)

L
(2)
RRn+2 , K

(RV)

n+1 = L
(1)
RVn+1 , (3.378)

where L
(1)

and L
(2)

are commuting operators, whose nested action on RRn+2

underlies the formal procedure that allows the cancellations mentioned above.

Moreover, in Eq. (3.378), L
(2)

acts on Rn+2 by extracting all singular limits where

two particles become unresolved, either becoming soft, or becoming collinear, with

no assumption on the relative rate, and applying the appropriate mapping. Then,

we note that the last line in Eq. (3.377) can be rewritten as∫
dΦn+2

(
1− L

(1)
)(

1− L
(2)
)
RRn+2 δn+2(X) , (3.379)

provided one defines L
(2)
δn+2(X) = L

(1)
L

(2)
δn+2(X) = δn(X).

The analysis performed at NNLO opens up the possibility to apply a similar pro-

cedure at higher orders in perturbation theory. In particular, given the subtraction

pattern at N3LO in the remapped kinematics, i.e. the analogous of Eq.(2.266)
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where all the K
(i)
j functions depend on the mapped momenta,

dσN3LO

dX
=

∫
dΦn

[
V V Vn + I (3)

n + I(RVV)
n + I(RRV,2)

n

]
δn (3.380)

+

∫
dΦn+1

[(
RV Vn+1 + I

(2)
n+1 + I

(RRV,1)
n+1

)
δn+1

−
(
K

(RVV)

n+1 + I
(23)
n+1 + I

(RRV,12)
n+1

)
δn

]

+

∫
dΦn+2

{(
RRVn+2 + I

(1)
n+2

)
δn+2 −

(
K

(RRV,1)

n+2 + I
(12)
n+2

)
δn+1

−
[(

K
(RRV,2)

n+2 + I
(13)
n+2

)
−
(
K

(RRV,12)

n+2 + I
(123)
n+2

)]
δn

}

+

∫
dΦn+3

[
RRRn+3 δn+3 −K (1)

n+3 δn+2 −
(
K

(2)

n+3 −K
(12)

n+3

)
δn+1

−
(
K

(3)

n+3 −K
(13)

n+3 −K
(23)

n+3 +K
(123)

n+3

)
δn

]
,

the rather intricate nesting of singular regions is neatly captured in the language of

the subtraction operators L
(i)

. They are defined to extract the singular limit of a

real-radiation squared matrix element when exactly i partons become unresolved

at the same rate, and then to apply the appropriate remapping procedure. In

terms of these operators, one defines

K
(i)

n+3 = L
(i)
RRRn+3 , i = 1, 2, 3 ,

K
(ij)

n+3 = L
(i)

L
(j)
RRRn+3 , ij = 12, 13, 23 ,

K
(123)

n+3 = L
(1)

L
(2)

L
(3)
RRRn+3 , (3.381)

where the action of a string of L
(i)

on a matrix element follows the same philosophy

presented at NNLO, while on the observables it is given by

L
(i1) · · ·L (im)

δn+h(X) = δn+h−imax(X) , imax = max(i1 . . . im) . (3.382)

We see that, in analogy with Eq. (3.379), the last term in Eq. (3.380) can be

compactly written as∫
dΦn+3

(
1− L

(1)
)(

1− L
(2)
)(

1− L
(3)
)
RRRn+3 δn+3(X) . (3.383)
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The remaining counterterms are naturally defined by

K
(RRV,1)

n+2 = L
(1)
RRVn+2 , K

(RRV,2)

n+2 = L
(2)
RRVn+2 ,

K
(RRV,12)

n+2 = L
(1)

L
(2)
RRVn+2 . K

(RVV)

n+1 = L
(1)
RV Vn+1 . (3.384)

The structure of local subtraction that we have discussed at NLO, NNLO and

N3LO lends itself to a relatively simple and transparent generalisation to all or-

ders in perturbation theory. To begin with, we slightly simplify our notations by

defining

RlVk−l ≡ R . . . R︸ ︷︷ ︸
l

V . . . V︸ ︷︷ ︸
k−l

n+l , (3.385)

where k is the perturbative order and 0 ≤ l ≤ k, with, in particular,

R0Vk ≡ V . . . V︸ ︷︷ ︸
k

n , RkV0 ≡ R . . . R︸ ︷︷ ︸
k

n+k . (3.386)

In this language, we can define a generic ordered local counterterm at NkLO by

K
(i1...im)

k, n+h ≡ L
(i1) · · ·L (im)

RhVk−h , (3.387)

where 1 ≤ i1 < i2 < . . . < im ≤ h ≤ k. One can verify that these restrictions on

the indices in Eq. (3.387) yield a total of p = 2k+1 − 2 − k local counterterms at

NkLO, matching our earlier results for k = 1, 2, 3. With these definitions, we can

propose a first version of our all-order formula for local infrared subtraction: we

write the NkLO distribution as

dσNkLO

dX
=

k∑
h=0

∫
dΦn+h

[
h∏
i=1

(
1− L

(i)
)
RhVk−h δn+h(X) +

k−h∑
j=1

I
(j)
k, n+h

]
,(3.388)

where we defined combinations of integrated counterterms given by

I
(j)
k, n+h =

∫
dΦn+h

r, j L
(j)

h∏
i=1

(
1− L

(j+i)
)
Rh+jVk−h−j δn+h+j(X) . (3.389)

Notice that we have included the δ-function defining the observable in this defin-

ition, but this does not affect the universality of the integrated counterterms.

Indeed, using Eq. (3.382), one may verify that the δ-functions always appear out-

side the integration over the radiation phase space. One may easily match the
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definition in Eq. (3.389) to our earlier results, obtaining

I
(1)
2, n = δn(X) I(RV)

n , I
(2)
2, n = δn(X) I(2)

n ,

I
(1)
2, n+1 = δn+1(X) I

(1)
n+1 − δn(X) I(12)

n , (3.390)

at NNLO, and

I
(1)
3, n = δn(X) IRVV

n , I
(2)
3, n = δn(X) I(RRV,2)

n , I
(3)
3, n = δn(X) I(3)

n ,

I
(1)
3, n+1 = δn+1(X) I

(RRV,1)
n+1 − δn(X) I

(RRV,12)
n+1 ,

I
(2)
3, n+1 = δn+1(X) I

(2)
n+1 − δn(X) I

(23)
n+1 ,

I
(1)
3, n+2 = δn+2(X) I

(1)
n+2 − δn+1(X) I

(12)
n+2 − δn(X) I

(13)
n+2 + δn(X) I

(123)
n+2 , (3.391)

at N3LO. One recognises the combinations of integrated counterterms appearing

in Eq. (2.207) and in Eq. (2.266), respectively. The proof that, in Eq. (3.388),

we have added and subtracted the same quantity from the unsubtracted NkLO

distribution follows from the identity

h∏
i=1

(
1− L

(i)
)

= 1−
h∑
j=1

L
(j)

h−j∏
i=1

(
1− L

(j+i)
)
, (3.392)

which, in turn, can easily be proved by recursion, starting with the observation that

it is obviously satisfied for h = 1. Substituting Eq. (3.392) into Eq. (3.388), and

rearranging the double sum of the integrated counterterms I
(j)
n+h, one may indeed

verify that all terms involving the operators L in Eq. (3.388) cancel identically,

and one is left with the original expression for the NkLO distribution.

In Eq. (3.388), each term of the sum on h can be integrated in the phase space

with multiplicity n+h: indeed, both the first term in the square bracket and each

integrated counterterm I
(j)
n+h, have no phase space singularities by construction,

since all singular regions have been subtracted, and all double countings have been

compensated for. For a given h, we count exactly k − h + 1 of these integrable

expressions and each of them contains exactly 2h terms. Note that the organisation

of Eq. (3.388) makes the cancellation of phase space singularities transparent,

but somehow blurs the cancellation of explicit poles in ε, which is instead the

main organising principle of Eqs. (2.266) and (2.207). Indeed, poles in ε must

cancel separately in every coefficient of δn+l(X), for any l. In order to make this

cancellation explicit, one can organise Eq. (3.388) in greater detail, collecting terms

corresponding to each phase space multiplicity, and to each number of unresolved

particles, as was done in Eq. (2.207) and in Eq. (2.266). In other words, for fixed

h, we need to collect contributions proportional to δn+l(X), for 0 ≤ l ≤ h. This
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can be done by using an identity analogous to Eq. (3.392):

h∏
i=1

(
1− L

(j+i)
)

= 1−
h∑

m=1

L
(j+m)

m−1∏
i=1

(
1− L

(j+i)
)
, (3.393)

which can also be proved by recursion. When applied to the first term in the

square bracket in Eq. (3.388), for each fixed value of h, this gives

h∏
i=1

(
1− L

(i)
)
RhVk−h δn+h(X) = RhVk−h δn+h(X) (3.394)

−
h∑

m=1

δn+h−m(X) L
(m)

m−1∏
i=1

(
1− L

(i)
)
RhVk−h ,

where we made use of Eq. (3.382) to move the δ-function to the left of the subtrac-

tion operators. Similarly, applying Eq. (3.393) to the combinations of integrated

counterterms defined in Eq. (3.389) yields

I
(j)
k,n+h = δn+h(X) I

(j,0)
k,n+h −

h∑
m=1

δn+h−m(X) I
(j,m)
k,n+h , (3.395)

where we defined

I
(j,0)
k,n+h =

∫
dΦn+h

r, j L
(j)
Rh+jVk−h−j ,

I
(j,m)
k,n+h =

∫
dΦn+h

r, j L
(j)

L
(j+m)

m−1∏
i=1

(
1− L

(j+i)
)
Rh+jVk−h−j . (3.396)

Reorganising the terms, we finally obtain our second expression for a generic fully

subtracted distribution at NkLO. We find

dσNkLO

dX
=

k∑
h=0

∫
dΦn+h

{
δn+h(X)

[
RhVk−h +

k−h∑
j=1

I
(j,0)
k,n+h

]
(3.397)

−
h∑

m=1

δn+h−m(X)

[
L

(m)
m−1∏
i=1

(
1− L

(i)
)
RhVk−h +

k−h∑
j=1

I
(j,m)
k,n+h

]}
.

In Eq. (3.397), as before, for every value of h the curly bracket is integrable in

the phase space Φn+h. Furthermore, each square bracket is finite in ε, as was the

case for our explicit examples for k = 1, 2, 3, which are easily reproduced. For

fixed h, we count exactly h + 1 finite combinations, one for each δn+h−m(X), for

0 ≤ m ≤ h; the number of terms contained in the finite combination proportional

to δn+h(X) is k − h+ 1, while the finite combinations proportional to δn+h−m(X)

contain exactly 2m−1(k − h + 1) terms, again reproducing our earlier results for
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k = 1, 2, 3.

We stress that Eq.(3.397) is a purely symbolic expression, presented to prove the

naturalness of the subtraction pattern at an arbitrary perturbative order. To prac-

tically implement Eq.(3.397) for an arbitrary k, several crucial steps are required:

first of all, the matrix elements RhVk−h, with h = 0 . . . k, have to be known up to

finite terms in the regulator. Moreover, we need to identify all the contributing

IR limits, included the composite ones, of the RhVk−h matrices, for each possible

value of h. Then, we have to find a consistent, explicit expression for all the L

operators contributing to the k-th order subtracted observable. This specific step

implicitly requires to introduce appropriate sector functions, and multiple-particle

mappings. Furthermore, the definitions of the L operators have also to be checked

against the consistency relations valid at NkLO. Finally, we have to compute the

integrated counterpart of each counterterm, given by the proper string of L op-

erators. To this aim, an efficient phase-space parametrisation, and an analytic

integration method have to be implemented. All the ingredients mentioned above

are non-trivial already for k = 2, as it emerges from the previous Sections.

However, we may expect that (at least for k = 3) some of the needed elements can

be introduced following the same philosophy that has guided us from the NLO to

the NNLO implementation. In particular, by looking at sector functions and map-

pings, we can notice that in moving from NLO to NNLO, such elements undergo

a natural generalisation, that we believe can be further implemented at N3LO.





Chapter 4

Conclusions and future

perspectives

In the first part of this thesis, we have presented the outline of a general formalism

to construct local counterterms for the subtraction of soft and collinear singular

configurations from real-radiation squared matrix elements, using as an input the

well-known factorised structure of infrared poles in virtual corrections to scatter-

ing amplitudes. Virtual factorisation embodies the highly non-trivial structural

features of infrared singularities: the colour-singlet nature of collinear poles, the

simple organisation of soft-collinear enhancements, the exponentiation of singu-

larities following from renormalisation group invariance.

The main result of this approach, presented in Chapter 2, consists in providing

general expressions for local counterterms for soft, collinear and soft-collinear con-

figurations, valid to all orders in perturbation theory, and constructed in terms of

gauge-invariant matrix elements of field operators and Wilson lines. In Section 2.10

and in Section 2.11 we apply the general definitions to construct explicitly all coun-

terterms required at NLO and at NNLO, respectively, for the case of massless final

state radiation.

The discussion in Section 2.8-2.9 leads naturally to the construction of ‘demo-

cratic’ counterterms, where all relevant momentum components of the radiated

partons (‘normal variables’) are taken to vanish at the same rate. On the other

hand, the analysis of Section 2.11 emphasises the essential role played by ‘hier-

archical’, or strongly-ordered counterterms. While such local counterterms can

always be obtained from the ‘democratic’ ones by a suitable limiting procedure,

we believe that it is both theoretically interesting and practically useful to seek

a direct characterisation of strongly-ordered counterterms by means of factorised

operator matrix elements, as done previously for ‘democratic’ counterterms. In

Section 2.12, we lay the foundation for this analysis by studying the factorisation

239
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properties of tree-level soft and jet functions in strongly-ordered limits. We show

how, in these limits, soft and jet functions can be re-factorised, once again in

terms of matrix elements of fields and Wilson lines, with a transparent physical

interpretation. As an example, we then show how this re-factorisation, in the soft

limit, leads to a simple proof of the cancellation of infrared poles between the

real-virtual counterterm and the strongly-ordered double-radiative counterterm,

integrated over the softest radiation. While this study is preliminary, we believe

that this re-factorisation procedure and the ensuing proofs of finiteness can be

generalised both to higher orders and to the collinear sector. Moreover, we have

tackled the issue of extending our approach to N3LO, providing a complete charac-

terisation of all required local counterterms for final state radiation of up to three

massless partons, in terms of gauge-invariant jet and soft functions. We have no-

ticed how the factorisation analysis provides a highly non-trivial organisation of

soft-collinear subtractions, collecting contributions from gauge-invariant subsets of

diagrams, which survive intricate cancellations. The approach we have presented

here is likely to have a significant impact in the organisation of future N3LO sub-

traction algorithms. Indeed, at N3LO, the combinatorics of overlapping singular

regions becomes considerably worse, and the impact of infrared exponentiation

on subtraction is bound to become stronger. More generally, we hope that the

present work will contribute to develop our knowledge of the infrared behaviour of

real radiation at the differential level, to all orders in perturbation theory, bring-

ing it to the same detailed level of understanding and control currently enjoyed

by virtual corrections to fixed-angle scattering amplitudes and by inclusive cross

sections.

The approach we have presented can be naturally generalised in several directions:

first of all, a detailed treatment of initial-state singularities can be developed,

which in principle does not present new theoretical difficulties. In this context, we

note that we are not paying special attention to the issue of Glauber gluons [151–

154] and possible factorisation violations: essentially, we are assuming that the

formalism applies for sufficiently inclusive observables, such that Glauber gluons

do not result in uncancelled infrared singularities.

At the level of definitions of local counterterms, the extension to massive partons

(which is of obvious phenomenological interest, in view of top-quark-related ob-

servables, and possibly b-quark mass effects) is not problematic: indeed, massive

partons are not affected by collinear divergences (although it may be of interest

to resum collinear logarithms of the quark mass), so that the structure of coun-

terterms is in fact simpler when masses are present.

We emphasise that the expressions given in Chapter 2 are not yet directly suit-

able for implementation in a fully operational subtraction algorithm: appropriate
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phase-space mappings must still be implemented in order to express all ingredients

in terms of on-shell momentum-conserving matrix elements; we note however that

the list of counterterms presented is exhaustive, and the treatment of soft-collinear

double counting is highly streamlined.

To overcome such bottlenecks, in the second part of the thesis, with an inde-

pendent approach, we have also presented a new scheme to perform local analytic

subtraction of infrared divergences up to NNLO in QCD. The method has so far

been developed and applied to processes featuring only massless partons, and not

involving coloured partons in the initial state, as a first significant step towards

a general formulation. Our subtraction procedure is conceived with the aim of

minimising complexity in the definition of the local IR counterterms, aiming at

their complete analytic integration in the unresolved phase space, and working

towards an optimal organisation of the numerical integration of the observable

cross section.

Our local IR counterterms are defined through a unitary partition of the phase

space into sectors, in such a way as to isolate in each sector a minimal number of

phase-space singularities, associated with soft and collinear configurations of an

identified set of partons (up to two at NLO, and up to four at NNLO). In each

sector, the counterterms can be obtained as limits of radiative matrix elements in

the dominant soft and collinear configurations. Overlapping singularities are fully

taken into account by suitable compositions of such singular limits, with no need

to resort to sector-decomposition techniques.

The sector functions that realise the phase-space partition are engineered in such a

way as to satisfy fundamental relations that allow to achieve the main goals of the

method. A number of sum rules, stemming from the definition of the sector func-

tions, make it possible to recombine various subsets of sectors, prior to performing

counterterm integration, eventually yielding integrands that in all cases are solely

made up by sums of elementary infrared and collinear kernels. Moreover, through

factorisation relations, NNLO sector functions reproduce the complete structure

of NLO sectors in all relevant single-unresolved limits, allowing to subtract, sector

by sector in the NLO phase space, the singularities of the NNLO contributions

featuring NLO kinematics.

The kinematic mappings necessary for phase-space factorisation, as well as the

parametrisations of the radiation phase space over which the counterterms are

integrated, are devised by maximally exploiting the freedom one has in their

definition. They are not only chosen differently for different sectors, but also,

importantly, for different counterterm contributions in the same sector. This al-

lows us to employ parametrisations that are naturally adapted to the kinematic

invariants that appear in each singular contribution, yielding simple integrands to

be evaluated analytically.
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In this thesis we have integrated the counterterms over the exact phase-space meas-

ures, without exploring the possibility of approximating the latter in the relevant

soft and collinear limits. While this possibility would not have resulted in any

analytic simplification in the cases considered here, this might instead be the case

for general hadronic reactions (for example when including initial-state partons,

or for a generalisation to the massive case). This possibility will be investigated in

dedicated future studies, which are beyond the scope of the present manuscript.

At NLO, we have shown that the proposed subtraction method works in the general

case of massless QCD final states, with the integrated counterterms reproducing

analytically the full structure of virtual one-loop singularities. Moreover, as a test

of the power of the method, we have shown that the NLO counterterm integration

can be performed exactly to all orders in the dimensional regulator ε, which proves

the extreme simplicity of the integrands involved.

At NNLO, we have deduced the structure of the subtraction scheme in full gener-

ality for massless QCD final states. All single-unresolved counterterms have been

integrated analytically to all orders in ε, as simply as in the NLO case, and the

properties of sector functions have allowed us to show that these integrals correctly

reproduce, sector by sector, the explicit ε poles of real-virtual contributions. We

stress that this is a highly non-trivial test of the consistency of the scheme, and of

the delicate organisation of different contributions to the cross section. Moreover,

in this thesis, we have presented the analytic techniques that enabled us to in-

tegrate the real-virtual and pure double-unresolved counterterms. This represents

a necessary ingredient to fully validate the cancellation of virtual infrared poles.

We stress that the procedures here presented allow to analitically integrate all

the structures appearing in the counterterms, avoiding any direct numerical eval-

uation. The results have been validated against two independent codes based on

sector decomposition [155–157].

Beyond the importance of expanding the list of results for the integrated coun-

terterms that enter the subtraction scheme, this work provides a novel approach to

calculation of integrals of IR kernels at NNLO, which are known in the literature

(see for example [146,158]).

In this first implementation we have concentrated on the general structure of our

method, with particular emphasis on sector functions and phase-space mappings.

For this reason, we have provided only a simple example of application, analysing

as a proof-of-concept case the TRCF contribution to e+e− → qq̄ at NNLO, which

has been detailed explicitly.

To achieve a fully general validation of our subtraction scheme, a crucial ingredient

is still under construction: the definition and integration of a consistent strongly-

ordered barred counterterm. In particular, the most non trivial aspect of this task

consists in finding a definition of K
(12)

able to return an integrated countertem
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I (12) that simultaneously cancels the explicit poles of the real-virtual counterterm,

and the phase space singularities of the integrated single-unresolved counterterm.

Such definition is also constrained by the appropriate set of consistency relations,

whose solution is, in general, quite demanding. On the other hand, we expect the

integration of the ordered counterterm not to pose any new difficulties, given the

sophisticated technique we have already implemented to treat the integration of

the real-virtual and the double-unresolved counterterms.

However, such technical issues do not overshadow the general subtraction pattern

we have so far investigated, which we conjecture to generalise at higher perturb-

ative orders. In Section 2.7, we have indeed studied the general structure of

subtraction formulas for infrared-safe distributions, to all orders in perturbation

theory. We have found that the problem of double-counting of singular regions

can be analysed in terms of subtraction operators L
(i)

, acting on squared matrix

elements involving real radiation, and singling out the contribution of the soft

and collinear radiation of i partons. These operators can act iteratively, and a

formal solution of the iteration can be written to all orders: at NkLO, the result-

ing subtraction formula, Eq. (3.397), can be organised into k + 1 contributions,

each involving the real radiation of h soft and collinear partons, with h = 0, . . . , k,

with each contribution being free of infrared poles, and integrable in the h-particle

phase space. At this stage, the definition of the subtraction operators L
(i)

is still

formal, and a concrete realisation of their action is fundamental to practically ex-

ploit Eq. (3.397). Notice that the structure of the L
(i)

is still intricate, since they

contain both soft and collinear enhancements, and therefore they must internally

provide for the cancellation of double-counted soft-collinear regions. Ultimately, a

general and detailed description of these subtraction operators might be provided,

on a graph-by-graph basis, by the techniques pioneered in Refs. [159,160].

To summarise, this thesis represents a first step towards the formulation of a gen-

eral, local, analytic, and minimal subtraction scheme, relevant for generic multi-

particle hadronic processes at NNLO in QCD. To reach this goal, a number of

important steps still need to be taken, including the generalisation to include

initial-state massless partons and the extension to the massive case, as well as the

completion of an efficient computer code implementing the subtraction method in

a fully differential framework. We believe however that the present work lays a

solid foundation for these future developments.





Appendix A

Soft completeness and real-virtual

poles

Given the crucial importance of the cancellation occurring between I
(12)
n+1 and

K
(RV)
n+1 , we find useful to explicitly verify that the combination I

(12)
n+1 + K

(RV)
n+1 is

free of ε poles, focusing on the pure soft sector. Before tackling the computation,

we introduce some relevant constants that will turn in hand in the following. We

define the normalisation factor

N1 = 8παS

(
µ2eγE

4π

)ε
=

8παSµ
2ε

Sε
, Sε = (4πe−γE)ε ,

and a constant factor entering the real-virtual kernels

cΓ =
1

(4π)2−ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (A.1)

Let us begin by examining the real-virtual counterterm poles. To extract such

poles, we start from the expression of the full real-virtual counterterm

K
(RV, s)
n+1 = H(0) †

n S
(0)
n, 1H(1)

n +H(1) †
n S

(0)
n, 1H(0)

n +H(0) †
n S

(1)
n, 1H(0)

n . (A.2)

and recognise that the explicit poles only come from the last term

K
(RV, s)
n+1

∣∣∣
1/ε

= H(0) †
n S

(1)
n, 1H(0)

n ≡ H(0) †
n

[
S(0) †
n, 1 S(1)

n, 1 + c.c.
]
H(0)
n . (A.3)

The formal definition of the soft kernel in square brackets is given by

S
(1)
n, 1 =

∣∣∣ 〈k1, b|
n∏
i=1

Φciei
βi

(0,∞) |0〉
∣∣∣2
g4
s

, (A.4)
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but in this specific case we can simplify the computation by expressing the one-loop

radiative soft function in terms of Catani and Grazzini soft currents, as explained

in Eq.(2.254). Then, provided that S(0)
n, 1 = gs ε

∗
λ(k) · J (0)

CG , we rewrite the singular

content of Eq.(A.3) as

S
(1)
n, 1 (k; βi) = −gs

[
J

(0)
CG (k, βi) · J (1)

CG (k, βi)

+gs J
(0)
CG (k, βi) · J (0)

CG (k, βi) S(0)
n (βi) S(1)

n (βi) + c.c.
]
.(A.5)

The result of computing explicitly all the contributions above can be deduced

directly from Eq. (24) and Eq. (26) of Ref. [29]. Finally, we need to extract the 1/ε

coefficients, which leads to

K
(RV, s)
n+1

∣∣∣
poles

= N1
αS

2π

∑
k 6=i
l 6=i,k

I(i)
kl

[
Bkl

∑
l

Cl
1

ε2
+

1

2

∑
c 6=i
d6=i,c

Bklcd ln
scd
µ2

1

ε

+CA

(
1

ε2
+

1

ε
ln
µ2 skl
skisli

)
Bkl

]
. (A.6)

Let us stress that the first two contribution in the equation above derive from the

soft and soft-collinear poles of the colour-connected virtual matrix element[
Vkl(k)

]s+sc
poles

= − αS

2π

[
Bkl

∑
l

Cl
1

ε2
+

1

2

∑
c 6=i
d6=i,c

Bklcd ln
scd
µ2

1

ε

]
, (A.7)

where the index l runs over all the partons contributing to the Born-level scat-

tering1. To cancel the K(RV) poles we imagine to treat S
(1)
n, 1, defined in Eq.(A.4),

as part of a completeness relation where the integrand of the phase-space integral

coincides in turn with the strongly-ordered kernel. In formulas we want to prove

that ∫
dΦk2

∣∣∣ 〈k2, a2|
n∏
i=1

Φdici
βi

(0,∞) Φb a1
βk1

(0,∞) |0〉 〈k1, b|
n∏
i=1

Φciei
βi

(0,∞) |0〉
∣∣∣2
g4
s

+
∣∣∣ 〈k1, b|

n∏
i=1

Φciei
βi

(0,∞) |0〉
∣∣∣2
g4
s

= finite (A.8)

1This procedure is the analogous of considering the soft limit of the real matrix element according to
Eq.(3.20) in Ref. [73] (with β0 = 0)

lim
k
µ
i →0

RV = −N1 δfig
∑
k 6=i
l6=i,k

I(i)
kl

[
Vkl
N1
− cΓ

CA
ε2

(πε) cos(πε)

sin(πε)

(
I(i)
kl

)ε
Bkl − cΓ

2π

ε

∑
p6=i,k,l

(
I(i)
lp

)ε
Bklp

]
,

substituting the virtual matrix element with its soft and soft collinear poles (see Eq.(A.7)) and selecting
only the 1/ε poles.
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where dΦk2 identifies the phase space of the gluon carrying momentum k2. Here

the prescription to expand both contributions at g4
s order implies to integrate in

dΦk2 a tree level diagram (to obtain non vanishing contribution for the integrand

function, both the Wilson lines have to be expanded to the first non-trivial order,

bringing a coupling constant each), and to sum a one-loop order term. In practice,

we need to identify the explicit poles stemming from the phase-space integral, and

check whenever they cancel against those appearing in Eq.(A.6). Let us notice

that the phase-space integral only affects the transition probability between the

vacuum and k2, therefore the first line in Eq.(A.8) can be rewritten as

〈0|Φeifi
βi

(∞, 0) |k1,m〉
[ ∫

dΦk2

(
〈0| Φfigi

βi
(∞, 0) Φma1

βk1
(∞, 0) |k2, a2〉 × (A.9)

×〈k2, a2|Φdici
βi

(0,∞) Φa1b
βk1

(0,∞) |0〉
)

tree

]
〈k1, b| Φciei

βi
(0,∞) |0〉 ,

where the product over the n hard legs has been omitted to simplify the nota-

tion. In square brackets we recognise the radiative soft function that satisfies the

following completeness relation∫
dΦk2 〈0| Φfigi

βi
(∞, 0) Φma1

βk1
(∞, 0) |k2, a2〉 〈k2, a2| Φdici

βi
(0,∞) Φa1b

βk1
(0,∞) |0〉

∣∣∣∣
tree

+ 〈0| Φfigi
βi

(∞, 0) Φma1
βk1

(∞, 0) |0〉 〈0| Φdici
βi

(0,∞) Φa1b
βk1

(0,∞) |0〉
∣∣∣∣
1loop

= finite .

Thanks to this relation, the pole content of Eq.(A.9) remains unchanged if we

substitute the term in square bracket, featuring the phase space integral of a tree-

level diagram, with (minus) the one loop approximation of the same diagram. The

relation we want to verify can be then cast in the following form

−
∣∣∣ 〈0|Φdici

βi
(0,∞) Φa1b

βk1
(0,∞) |0〉1loop 〈k1, b|Φciei

βi
(0,∞) |0〉

∣∣∣2
g4
s

+
∣∣∣ 〈k1, b|Φciei

βi
(0,∞) |0〉

∣∣∣2
g4
s

= finite , (A.10)

or equivalently

−
[
S(0)†
n,1

]m
{(eifi)}

[
S

(1)
n+1,0

]
{(figi)(dici)}(ma1)

[
S(0)
n,1

]a1

{(ciei)}
+ S

(1)
n,1 = finite . (A.11)
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We begin the computation with the one loop approximation of the radiative soft

function

L ≡ 〈0|
n∏
i=1

Φfigi
βi

(∞, 0) Φma1
βk1

(∞, 0) |0〉 〈0|
n∏
i=1

Φdici
βi

(0,∞) Φa1b
βk1

(0,∞) |0〉
∣∣∣∣
1loop

=

=

[
1

2

n∑
i,j=1
i 6=j

〈0|Φfigi
βi

(∞, 0) Φ
fjgj
βj

(∞, 0) |0〉
n∏
k=1
k 6=i,j

δfkgk δma1

+
n∑
i=1

〈0|Φfigi
βi

(∞, 0) Φma1
βk1

(∞, 0) |0〉
n∏
j=1
i 6=j

δfjgj
] n∏
t=1

δdtct δa1b

+
n∏
t=1

δftgt δma1

[
1

2

n∑
i,j=1
i 6=j

〈0|Φdici
βi

(0,∞) Φ
djcj
βj

(0,∞) |0〉
n∏
k=1
k 6=i,j

δdkck δa1b

+
n∑
i=1

〈0|Φdici
βi

(0,∞) Φa1b
βk1

(0,∞) |0〉
n∏
j=1
i 6=j

δdjcj
]
, (A.12)

where we have separated the contribution of the Wilson line oriented along the

classical trajectory of k2, from the remaining n hard legs enhancements. Let us

focus on the first contribution

〈0|Φfigi
βi

(∞, 0) Φ
fjgj
βj

(∞, 0) |0〉 =

= −g2
s µ

2ε 〈0|
∫ ∞

0

dλi β
µ
i A

A
µ (λiβi)(TA)figi

∫ ∞
0

dλj β
ν
jA

B
ν (λjβj)(TB)fjgj |0〉

= g2
s µ

2ε (TAi )figi (TBj )fjgj βµi β
ν
j

∫ ∞
0

dλi dλj 〈0|AAµ (λiβi)A
B
ν (λjβj) |0〉

= −g2
s µ

2ε (TAi )figi (TBj )fjgj βµi β
ν
j

∫ ∞
0

dλi dλj ×

×
∫

ddk

(2π)d

(−igµν δAB
k2 + iη

)
eik·(λiβi−λjβj)

= ig2
s µ

2ε Ti ·Tj βi · βj
∫

ddk

(2π)d
1

(k2 + iη)(k · βi + iη)(k · βj − iη)
, (A.13)
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where the loop integral can be performed by introducing appropriate Feynman

parameters

F ≡
∫

ddk

(2π)d
1

(k2 + iη)(k · βi + iη)(k · βj − iη)
=

= −4

∫
ddk

(2π)d
1

(k2 + iη)

∫ 1

0

dx

[
1

2x k · βi − 2(1− x) k · βj + iη

]2

= −8

∫
ddk

(2π)d

∫ 1

0

dx dy y

[
y(2x k · βi − 2(1− x) k · βj) + (1− y)k2 + iη

]−3

= −8

∫
ddk

(2π)d

∫ 1

0

dx dy
y

(1− y)3

1(
k̃2 −M2

)3 , (A.14)

having performed the shift

k̃µ = kµ +
y

1− y
(
x βµi − (1− x)βµj

)
M2 = −2x(1− x)

y2

(1− y)2
βi · βj . (A.15)

The momentum integration is carried on by exploiting the formula∫
dd`

(2π)d
1

(`2 −∆)n
=

(−1)n i

(4π)d/2
Γ (n− d/2))

Γ(n)
∆d/2−n , (A.16)

which returns

F =
4i(−2βi · βj)−1−ε

(4π)d/2
Γ(1 + ε)

∫ 1

0

dx x−1−ε(1− x)−1−ε
∫ 1

0

dy y−1−2ε(1− y)−1+2ε

=
4i(−2βi · βj)−1−ε

(4π)d/2
Γ(1 + ε)B(−ε,−ε)B(−2ε, 2ε) = 0 . (A.17)

This result is not surprising, since the soft function corresponds to a scaleless

integral, thus is identically zero order-by-order in perturbation theory, due to the

cancellation between IR and UV poles. To disentangle the UV contribution we

notice that it derives from y = 1 and multiply the integral over y by a factor

y + (1− y)∫ 1

0

dy y−1−2ε(1− y)−1+2ε =

∫ 1

0

dy y−1−2ε(1− y)−1+2ε [y + (1− y)]

= B(1− 2ε, 2ε) +B(−2ε, 1 + 2ε) , (A.18)
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The UV pole is the one deriving from the term multiplied by y, therefore B(1 −
2ε, 2ε). The IR reminder is then B(−2ε, 1 + 2ε), or equivalently −B(1− 2ε, 2ε)

FIR = − 4i

(4π)d/2
(−2βi · βj)−1−ε Γ(1 + ε)B(−ε,−ε)B(−2ε+ 1, 2ε) , (A.19)

from which

〈0|Φfigi
βi

(∞, 0) Φ
fjgj
βj

(∞, 0) |0〉 IR=

= −2 g2
s µ

2ε

(4π)d/2
Ti ·Tj (−2βi · βj)−ε Γ(1 + ε)B(−ε,−ε)B(−2ε+ 1, 2ε)

= −αS

2π

(
µ̄2 eγE

−2βi · βj

)ε
Ti ·Tj

Γ(1 + ε)Γ2(−ε)Γ(−2ε+ 1)Γ(2ε)

Γ(−2ε)

= −αSµ̄
2ε

2π
Ti ·Tj

[
− 1

ε2
+

1

ε
ln (−2βi · βj) +O(ε0)

]
, (A.20)

with µ̄2 = 4πµ2e−γE . This way, the one-loop squared amplitude contributing to

Eq.(A.10) can be easily rewritten as

L = −αs µ̄
2ε

π

[
1

2

n∑
i,j=1
i 6=j

Ti ·Tj δ
mb

(
− 1

ε2
+

1

ε
ln (−2βi · βj)

)

+
n∑
i=1

TAi (TAk1
)mb

(
− 1

ε2
+

1

ε
ln (−2βi · βk1)

)]
The remaning contribution in Eq.(2.248) is the tree-level single-radiative soft func-

tion, that we have already exploited to show the soft factorisation of radiative

amplitudes (see Eq.(2.158)). It gives

T ≡ 〈0|
n∏
i=1

Φeifi
βi

(∞, 0) |k1,m〉 〈k1, b|
n∏
i=1

Φciei
βi

(0,∞) |0〉

= g2
s

n∑
i=1

(T m
i )eifi

βi · ε∗(k1)

βi · k1

n∑
j=1

(T b
j )ciei

βj · ε(k1)

βj · k1∑
λk1−→ −4παSµ

2ε

n∑
i,j=1
i 6=j

T m
i T b

j

βi · βj
βi · k1 βj · k1

(A.21)

As a consequence, Eq.(A.10) reads

−
∣∣∣ 〈0|Φdici

βi
(0,∞) Φa1b

βk1
(0,∞) |0〉1loop 〈k1, b|Φciei

βi
(0,∞) |0〉

∣∣∣2
g4
s

+ S
(1)
n,1 = fin. (A.22)
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so that

− 4α2
S µ

2ε µ̄2ε

n∑
k,l=1
k 6=l

βk · βl
βk · k1 βl · k1

T m
k

[
1

2

n∑
i,j=1
i 6=j

Ti ·Tj δ
mb

[
− 1

ε2
+

1

ε
ln (−2βi · βj)

]

+
n∑
i=1

TAi (TAk1
)mb

(
− 1

ε2
+

1

ε
ln (−2βi · βk1)

)]
T b
l + S

(1)
n,1 = fin. (A.23)

To simplify the computation, we analyse one contribution at a time:

• ε−2 contribution proportional to Ti · Tj : recalling that the indices i, j, k, l

are always different from k1, we exploit the colour conservation to write

Tj = −Ti −Tk1 , and then the colour algebra to obtain

n∑
k,l=1
k 6=l

n∑
i,j=1
i 6=j

I(k1)
kl Tmk Ti ·Tj δ

mb T bl = −
n∑

k,l=1
k 6=l

n∑
i=1

I(k1)
kl Cfi Bkl +

n∑
k,l=1
k 6=l

I(k1)
kl CABkl

• ε−1 contribution proportional to Ti ·Tj

T2 =
n∑

k,l=1
k 6=l

n∑
i,j=1
i 6=j

I(k1)
kl ln (−sij) T bk TAi TAj T bl

considering only the color structure we have

n∑
k,l=1
k 6=l

n∑
i,j=1
i 6=j

T bk T
A
i TAj T bl =

1

2

n∑
k,l=1
k 6=l

n∑
i,j=1
i 6=j

({
Tk ·Tl,Ti ·Tj

}
+ifAbc

(
δjl T

b
k T

A
i T cl + δil T

b
k T

c
l T

A
j

−δik T ck TAj T bl − δkj TAi T ck T
b
l

))
,

where the combination in round brackets contribute to T2 as

n∑
k,l=1
k 6=l

I(k1)
kl ln (−skl) ifAbc if bAc T cl T ck =

n∑
k,l=1
k 6=l

I(k1)
kl ln (−skl) CA Tl ·Tk .
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This way, the single pole results to be proportional to

T2 =
1

2

n∑
k,l=1
k 6=l

n∑
i,j=1
i 6=j

I(k1)
kl ln (−sij)

{
Tk ·Tl,Ti ·Tj

}

+
n∑

k,l=1
k 6=l

I(k1)
kl ln (−skl) CA Tl ·Tk

• ε−2 contribution proportional to fmAb: we exploit the symmetry properties

of the structure constants to get

T3 =
n∑

k,l=1
k 6=l

n∑
i=1

I(k1)
kl Tmk TAi (TAk1

)mb T b
l = −

n∑
k,l=1
k 6=l

I(k1)
kl CA Tk ·Tl

• ε−1 contribution proportional to fmAb

2
n∑

k,l=1
k 6=l

n∑
i=1

I(k1)
kl ln (−sik1) ifmAb Tmk TAi T b

l =

=
n∑

k,l=1
k 6=l

I(k1)
kl

(
− ln (sk k1 slk1)CA Tk ·Tl

)

Finally, by adding the hard function at tree level, Eq.(A.10) reads

→ −4α2
S µ

2ε µ̄2ε

[
1

ε2

n∑
k,l=1
k 6=l

n∑
i=1

I(k1)
kl Cfi Bkl −

1

ε2

n∑
k,l=1
k 6=l

I(k1)
kl CABkl

+
1

2

1

ε

n∑
k,l=1
k 6=l

n∑
i,j=1
i 6=j

I(k1)
kl ln (−sij)Bklij +

1

ε

n∑
k,l=1
k 6=l

I(k1)
kl ln (−skl) CA Bkl

+
2

ε2

n∑
k,l=1
k 6=l

I(k1)
kl CA Bkl −

1

ε

n∑
k,l=1
k 6=l

I(k1)
kl ln ((−sk k1) (−slk1)) CA Bkl

]

+K
(RV, s)
n+1

∣∣∣
poles

= fin.

→ −4α2
S µ

2ε µ̄2ε

n∑
k,l=1
k 6=l

I(k1)
kl

[
1

ε2

n∑
i=1

Cfi Bkl +
1

2

1

ε

n∑
i,j=1
i 6=j

ln (−sij)Bklij

+CA

[
1

ε2
+

1

ε
ln

( −skl
sk k1 slk1

) ]
Bkl

]
+K

(RV, s)
n+1

∣∣∣
poles

= fin. .
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If one substitutes the expression for the K
(RV, s)
n+1

∣∣∣
poles

given in Eq.(A.6) it is evident

that the poles cancel, as announced.





Appendix B

IR limits of sector functions

In this Appendix we explore the properties of the NNLO sector functions defined

in Eqs. (3.146) and (3.147). We begin by establishing which limits, among Sa,

Cab, Sab, Cabc, Cabcd and SCabc, are non-vanishing in the three sector topologies

Wijjk, Wijkj and Wijkl. To this end, we start by analysing the behaviour of the

sector-function denominator σ (see Eq. (3.146)), in these limits. We find

Si σ =
∑
b 6=i

∑
c 6=i

∑
d 6=i,c

Si σibcd =
∑
b6=i

σαib
∑
c 6=i

∑
d 6=i,c

σcd ,

Cij σ =
∑
c6=i

∑
d 6=i,c

σijcd +
∑
c 6=j

∑
d6=j,c

σjicd

=
[
σαij + σαji

] [∑
c 6=i,j

σc[ij] +
∑
d 6=i,j

σ[ij]d +
∑
c 6=i,j

∑
d6=i,j,c

σcd

]
,

Sij σ =
∑
b 6=i

∑
d 6=i,j

σibjd +
∑
b 6=j

∑
d6=j,i

σjbid ,

Cijk σ = σijjk + σijkj + σikkj + σikjk + σjiik + σjiki

+σjkki + σjkik + σkiij + σkiji + σkjji + σkjij ,

Cijkl σ = σijkl + σijlk + σjikl + σjilk + σklij + σklji + σlkij + σlkji ,

SCijk σ =
∑
b 6=i

Si (σibjk + σibkj) +
∑
d6=i,j

σjkid +
∑
d 6=i,k

σkjid

=
∑
b 6=i

σαib (σjk + σkj) + σαjk
∑
d6=i,j

σid + σαkj
∑
d 6=i,k

σid , (B.1)

where [ij] denotes the parent parton of i and j. Now we note that a singular limit

L gives a non-zero result, when applied to the sector functions Wabcd, only if the

numerator of the latter, σabcd, appears as one of the addends of Lσ. Inspection of

Eq. (B.1) then proves that the limits reported in Eq. (3.149) exhaust the surviving

ones in each sector.
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Next, we show that all of the limits in Eq. (3.149) commute when acting on σ.

This is a crucial step for our method, since commutation of limits drastically

reduces the number of independent configurations one needs to explore. Further-

more, one must note that, while commutation can be understood from physical

considerations when limits are taken on squared matrix elements, sector functions

are a crucial but artificial ingredient of our method, and commutation of limits

is non-trivial in this case. We list below all relevant ordered limits, acting on the

denominator function σ, beginning with those involving the single-soft limit Si.

Si Cij σ = Cij Si σ =
∑
c 6=i

∑
d6=i,c

Si σijcd = σαij
∑
c 6=i

∑
d 6=i,c

σcd ,

Si Sij σ = Sij Si σ =
∑
b6=i

∑
d 6=i,j

Si σibjd =
∑
b 6=i

σαib
∑
d6=i,j

σjd ,

Si Cijk σ = Cijk Si σ = Si (σijjk + σijkj + σikkj + σikjk)

=
[
σαij + σαik

] (
σjk + σkj

)
,

Si Cijkl σ = Cijkl Si σ = σijkl + σijlk = σαij (σkl + σlk) ,

Si SCijk σ = SCijk Si σ =
∑
b 6=i

Si (σibjk + σibkj) =
∑
b 6=i

σαib (σjk + σkj) ,

Si SCikl σ = SCikl Si σ =
∑
b 6=i

Si (σiblk + σibkl) =
∑
b 6=i

σαib (σlk + σkl) ,

Si SCkij σ = SCkij Si σ =
∑
d6=i,k

σijkd = σαij

[
σk[ij] +

∑
d6=i,j,k

σkd

]
. (B.2)

Next, we list ordered limits involving the single-collinear limit Cij, and not con-

sidered above.

Cij Sij σ = Sij Cij σ =
∑
d6=i,j

(σijjd + σjiid) =
[
σαij + σαji

] ∑
d6=i,j

σ[ij]d ,

Cij Sik σ = Sik Cij σ =
∑
d6=i,k

σijkd = σαij

[
σk[ij] +

∑
d6=i,j,k

σkd

]
,

Cij Cijk σ = Cijk Cij σ = σijjk + σijkj + σjiik + σjiki

=
[
σαij + σαji

] (
σ[ij]k + σk[ij]

)
,

Cij Cijkl σ = Cijkl Cij σ = σijkl + σijlk + σjikl + σjilk

=
[
σαij + σαji

] (
σkl + σlk

)
,

Cij SCijk σ = SCijk Cij σ = Si (σijjk + σijkj) = σαij
(
σjk + σkj

)
,

Cij SCikl σ = SCikl Cij σ = σijkl + σijlk = σαij
(
σkl + σlk

)
,

Cij SCkij σ = SCkij Cij σ =
∑
d6=i,k

σijkd +
∑
d6=j,k

σjikd

=
(
σαij + σαji

) [
σk[ij] +

∑
d6=i,j,k

σkd

]
. (B.3)
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Moving on to ordered limits involving the double-soft limit Sab, and not considered

above, we find

Sij Cijk σ = Cijk Sij σ = σijjk + σjiik + σikjk + σjkik , (B.4)

Sik Cijkl σ = Cijkl Sik σ = σijkl + σklij = σαijσkl + σαklσij ,

Sij SCijk σ = SCijk Sij σ =
∑
b6=i

Si σibjk +
∑
d6=i,j

σjkid =
∑
b 6=i

σαib σjk + σαjk
∑
d6=i,j

σid ,

Sik SCijk σ = SCijk Sik σ =
∑
b6=i

Si σibkj +
∑
d6=i,k

σkjid =
∑
b 6=i

σαib σkj + σαkj
∑
d6=i,j

σid ,

Sik SCikl σ = SCikl Sik σ =
∑
b6=i

Si σibkl +
∑
d6=i,k

σklid =
∑
b6=i

σαib σkl + σαkl
∑
d 6=i,l

σid ,

Sik SCkij σ = SCkij Sik σ =
∑
b6=k

Sk σkbij +
∑
d 6=i,k

σijkd =
∑
b6=k

σαkb σij + σαij
∑
d6=j,k

σkd .

Coming to double-collinear limits of type Cijk and Cijkl, we get

Cijk SCijk σ = SCijk Cijk σ = Si
(
σijjk + σijkj + σikjk + σikkj

)
+ σjkik + σkjij

=
[
σαij + σαik

] (
σjk + σkj

)
+ σαjkσik + σαkjσij ,

Cijk SCkij σ = SCkij Cijk σ = Sk
(
σkiij + σkiji + σkjij + σkjji

)
+ σijkj + σjiki

=
[
σαki + σαkj

] (
σij + σji

)
+ σαijσkj + σαjiσji ,

Cijkl SCikl σ = SCikl Cijkl σ = σijkl + σijlk + σklij + σlkij

= σαij
(
σkl + σlk

)
+ [σαkl + σαlk] σij ,

Cijkl SCkij σ = SCkij Cijkl σ = σklij + σklji + σijkl + σjikl

= σαkl
(
σij + σji

)
+
[
σαij + σαji

]
σkl . (B.5)

Finally, the mixed soft-collinear limits satisfy

SCijk SCkij σ = SCkij SCijk σ = σijkj + σkjij = σαij σkj + σαkj σij ,

SCikl SCkij σ = SCkij SCikl σ = σijkl + σklij = σαij σkl + σαkl σij . (B.6)

The relations in Eqs. (B.2)-(B.6), where the limits are applied to the sector-

function denominator σ, are sufficient to prove that all non-vanishing limits in

the different topologies commute when acting on the sector functions. The same

commutation relations hold when applied to the physical double-real matrix ele-

ments.

The next step in our analysis is to prove that the compositions of the limits given

in Eq. (3.149) exhaust all single- and double-unresolved configurations in each

sector. In other words, there are no leftover singular phase-space regions after all

combinations of limits in Eq. (3.149) have been applied. We start by denoting with

Li a generic set of soft and collinear limits, corresponding to configurations where
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some physical quantities λi, which could be collections of energies, or angles, or

similar, approach zero. Compositions of two (or more) such limits can be either

‘uniform’ or ‘ordered’, with the two cases being defined as

[LjLi] = [LiLj] :

{
λi , λj → 0

λi/λj → const.
⇐⇒ uniform composition of Li and Lj ;

LjLi :

{
λi , λj → 0

λi/λj → 0
⇐⇒ ordered composition of Li (first) and Lj .

(B.7)

All single- and double-unresolved configurations in each sector can then be sys-

tematically generated by combining in all possible ways the single-soft and single-

collinear limits selected by the sector functions, namely Sa, Sc, Cab, and Ccd
1 in

sector Wabcd.

Let us first identify the uniform compositions of two soft and/or collinear limits

with the limits given in Eq. (3.149):

[Si Sj] = Sij , [Cij Cjk] = Cijk ,

[Cij Ckl] = Cijkl , [Si Cjk] = SCijk . (B.8)

Then for each sector topology we list all such compositions:

• Sij, Cijk, SCiij, SCijk, SCjij, SCjjk for topology Wijjk ;

• Sik, Cijk, SCiij, SCijk, SCkij, SCkjk for topology Wijkj ;

• Sik, Cijkl, SCiij, SCikl, SCkij, SCkkl for topology Wijkl .

We note that some of these limits coincide with the corresponding ordered com-

positions when applied on both matrix element and sector function:

Wijjk : SCiij = Si Cij = Cij Si , SCjij = Sj Cij = Cij Sj ,

SCjjk = Sj Cjk = Cjk Sj ,

Wijkj : SCiij = Si Cij = Cij Si , SCkjk = Sk Cjk = Cjk Sk ,

Wijkl : SCiij = Si Cij = Cij Si , SCkkl = Sk Ckl = Ckl Sk . (B.9)

1 Note that compositions of limits involving both Cij and Cjk automatically also involve the limit
Cik. Indeed

[CjkCij ] = [CikCjkCij ] , CjkCij = [CikCjk]Cij , Cij Cjk = [CikCij ]Cjk .
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We can therefore conclude that all possible single- and double-unresolved singular

configurations can be obtained as ordered compositions without repetition2

• Topology Wijjk

According to Eqs. (B.2)-(B.6), the Sj limit commutes with all other limits

in the list except Si. Therefore, when appearing in a generic composition of

limits, it can be moved to the right until it encounters Si. At this point one

can use

L′ Sj Si LWijjk = L′ Sij Si LWijjk , (B.10)

valid for generic limits L and L′, to remove Sj. If Si is not present at the right

of Sj, the latter can be moved to the rightmost position, where it vanishes:

L SjWijjk = 0 . (B.11)

Since the action of Sj either gives zero or can be replaced by that of Sij, Sj

can be simply removed from the list.

Considering now Cjk, we note that it commutes with Sij, Cijk, SCijk, and

it satisfies

L′Cjk Si LWijjk = L′ SCijk Si LWijjk ,

L′Cjk Cij LWijjk = L′Cijk Cij LWijjk ,

L′CjkWijjk = 0 , (B.12)

so that Cjk can either be moved to the rightmost position, where it gives

zero, or replaced by Cijk or SCijk. Consequently, one can remove Cjk from

the list of limits.

The list of singular limits is thus reduced to the first line of Eq. (3.149),

Wijjk : Si , Cij , Sij , Cijk , SCijk . (B.13)

• Topology Wijkj

2 Repeated limits can in all cases be readily simplified. Given a generic limit L, one has for example

[Li LLi] = [LLi] , Li LLi = LLi .

of the limits

• Si, Sj , Cij , Cjk, Sij , Cijk, SCijk for topology Wijjk ;

• Si, Sk, Cij , Cjk, Sik, Cijk, SCijk, SCkij for topology Wijkj ;

• Si, Sk, Cij , Ckl, Sik, Cijkl, SCikl, SCkij for topology Wijkl .

To conclude, we reduce this list of limits, topology by topology, to that given in Eq. (3.149).
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Besides commuting with Cjk, Sik, Cijk, SCijk, and SCkij, the single-soft

limit Sk satisfies

L′ Sk Si LWijkj = L′ Sik Si LWijkj ,

L′ Sk Cij LWijkj = L′ SCkij Cij LWijkj ,

L′ SkWijkj = 0 . (B.14)

Since Sk can be either moved to the rightmost position, where it gives zero,

or replaced by Sik or SCkij, one can remove it from the list of contributing

limits. A similar statement holds for Cjk, which commutes with Sik, Cijk,

SCijk, SCkij, and satisfies

L′Cjk Si LWijkj = L′ SCijk Si LWijkj ,

L′Cjk Cij LWijkj = L′Cijk Cij LWijkj ,

L′CjkWijkj = 0 . (B.15)

As a consequence, Cjk can either be moved to the rightmost position, where

it gives zero, or replaced by Cijk or SCijk. The list of singular limits in sector

Wijkj can thus be reduced to the second line of Eq. (3.149),

Wijkj : Si , Cij , Sik , Cijk , SCijk , SCkij . (B.16)

• Topology Wijkl

The discussion of the Sk and Ckl limits holds unchanged with respect to the

one relevant for Sk and Ckj in topology Wijkj. These limits can either be

moved to the rightmost position, where they yield zero, or be replaced by

limits that are already present in the list, (Sik or SCkij in the case of Sk,

Cijkl or SCikl in the case of Ckl). The final list of contributing limits thus

coincides with the third line of Eq. (3.149),

Wijkl : Si , Cij , Sik , Cijkl , SCikl , SCkij . (B.17)



Appendix C

Parametrisation of the azimuthal

angle

While in computations with one unresolved parton the integration on the azi-

muthal angle is always trivial, to handle the phase-space with two unresolved

partons, the integration of at least one azimuthal variable has to be treated with

care. First of all, one needs an auxliary four-momentum kd, to fix the plane with

respect to which the azimuthal angle is defined. We take as reference frame the

one where p = ka + kb + kc is at rest and the direction of k̄b as the axis with

respect to which the polar angle θ is defined. The azimuthal plane is then the one

containing k̄b and kd. Using the formulae derived in the second section of [161], in

this reference frame we have:

cosφ = [∆3(p, k̄
(abc)
b , kd)∆3(p, k̄

(abc)
b , ka)]

−1/2G

(
p, k̄

(abc)
b , kd

p, k̄
(abc)
b , ka

)
(C.1)

where

∆n(p1, . . . , pn) = G

(
p1, . . . , pn

p1, . . . , pn

)
,

G

(
p1, . . . , pn

q1, . . . , qn

)
=

∣∣∣∣∣∣∣∣
p1 ·q1 . . . p1 ·qn
. . .
: : :

pn ·q1 . . . pn ·qn

∣∣∣∣∣∣∣∣ (C.2)

Using the expression of the Lorenz invariants in term of CS parameters

sab = y sabc , sac = z(1− y) sabc , sbc = (1− z)(1− y) sabc , (C.3)

261
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we get:

cosφ =
2ka ·k̄(abc)

b 2kd ·k̄(abc)
c + 2ka ·k̄(abc)

c 2kd ·k̄(abc)
b − sabc 2ka ·kd

2
[
2ka ·k̄(abc)

b 2ka ·k̄(abc)
c

(
2k̄

(abc)
b ·kd 2k̄

(abc)
c ·kd − sabck2

d

)]1/2
=

y(1− z) s̄
(abc)
cd + z s̄

(abc)
bd − sad

2 [yz(1− z)]1/2 [sabc s̄
(abc)
bd s̄

(abc)
cd − k2

d]
1/2

From this formula, we get, in the case k2
d = 0:

sin2 φ = 1− cos2 φ = −
Λ
(
y(1− z)(2k̄

(abc)
c ·kd), z(2k̄(abc)

b ·kd), (2ka ·kd)
)

4 yz(1− z)(2k̄
(abc)
b ·kd)(2k̄(abc)

c ·kd)
(C.4)

where Λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca is the Källén λ function. Having

written cosφ in terms of invariants, we introduce a new integration variable:

x =
1− cosφ

2
, cosφ = 1− 2x,

sin2 φ = 4x(1− x), dφ =
dx

[x(1− x)]1/2
. (C.5)

The integration over the azimuthal angle becomes:∫ π

0

dφ sin−2εφ = 2−2ε

∫ 1

0

dx[x(1− x)]−ε−1/2,

giving for the total phase space∫
dΦ

(abc)
rad = 2−2εN(ε) s1−ε

abc

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz [x(1−x)]−ε−
1
2 ×

×
[
y(1− y)2z(1− z)

]−ε
(1− y) . (C.6)

Among the new dot products 2k̄
(abc)
c ·kd, 2k̄

(abc)
b ·kd and 2ka ·kd, just the last one

refers to the unresolved parton. Its relation with the other invariants are then:

2ka ·kd = y(1− z)(2k̄(abc)
c ·kd) + z(2k̄

(abc)
b ·kd)

− 2 (1− 2x)
[
yz(1− z)(2k̄

(abc)
b ·kd)(2k̄(abc)

c ·kd)
]1/2

(C.7)
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Master Integrals

D.1 The master integral Ia,b(A,B)

The master integral Ia,b(A,B) is defined as

Ia,b(A,B) ≡
∫ 1

0

dw
[w(1− w)]

1
2
−b

[A2 +B2 + 2(1− 2w)AB]a
, (D.1)

with A,B ∈ R and A,B ≥ 0. It is evident that Ia,b(A,B) is symmetric for the

exchange A↔ B. Defining

η =
4AB

(A+B)2
, (D.2)

we have

Ia,b(A,B) ≡
∫ 1

0

dw
[w(1− w)]

1
2
−b

[A2 +B2 + 2(1− 2w)AB]a

=
1

(A+B)2a

∫ 1

0

dw
[w(1− w)]

1
2
−b

(1− ηw)a

=
1

(A+B)2a

Γ2(3/2− b)
Γ(3− 2b)

2F1(a, 3/2− b, 3− 2b, η). (D.3)

Using the following property of the hypergeometric function

2F1(α, β, 2β, x) =

(
1 +
√

1− x
2

)−2α

2F1

(
α, α− β +

1

2
, β +

1

2
,

(
1−
√

1− x
1 +
√

1− x

)2
)
,

(D.4)
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we get

Ia,b(A,B) =

[
(1 +

√
ρ)2

(A+B)2

]a
Γ2(3/2− b)
Γ(3− 2b)

2F1(a, a+ b− 1, 2− b, ρ) , (D.5)

where we have defined

ρ =

(
1−√1− η
1 +
√

1− η

)2

=


A2

B2
if A2 ≤ B2

B2

A2
if A2 ≥ B2

, (D.6)

(1 +
√
ρ)2

(A+B)2
=


1

B2
if A2 ≤ B2

1

A2
if A2 ≥ B2

, (D.7)

and used

2

1 +
√

1− η = 1 +
1−√1− η
1 +
√

1− η = 1 +
√
ρ . (D.8)

The final result reads:

Ia,b(A,B) =
Γ2(3/2− b)
Γ(3− 2b)

[
(B2)−a 2F1

(
a, a+ b− 1, 2− b, A

2

B2

)
Θ(B2−A2)

+ (A2)−a 2F1

(
a, a+ b− 1, 2− b, B

2

A2

)
Θ(A2−B2)

]
. (D.9)

For the specific case where a = 1 we have:

Ib(A,B) ≡ I1,b(A,B) =

∫ 1

0

dw
[w(1− w)]

1
2
−b

A2 +B2 + 2(1− 2w)AB

=
Γ2(3/2− b)
Γ(3− 2b)

[
1

B2 2F1

(
1, b, 2− b, A

2

B2

)
Θ(B2−A2)

+
1

A2 2F1

(
1, b, 2− b, B

2

A2

)
Θ(A2−B2)

]
, (D.10)

D.2 The master integral Ia,b,β,γ(C,D)

The master integral Ia,b,β,γ(C,D) is defined as

Ia,b,β,γ(C,D) ≡
∫ 1

0

dv

∫ 1

0

dw
vβ(1− v)γ[w(1− w)]

1
2
−b

[C v +D(1− v) + 2(1− 2w)
√
CDv(1− v)]a

, (D.11)
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with C,D ∈ R and C,D ≥ 0. From the definition it is evident that Ia,b,β,γ(C,D)

is symmetric for the exchange C ↔ D, β ↔ γ:

Ia,b,γ,β(D,C) = Ia,b,β,γ(C,D) (D.12)

The w integration can be performed following the recipe of appendix D.1, with

A2 = Cv,B2 = D(1− v):

Ia,b,β,γ(C,D) =

∫ 1

0

dv vβ(1−v)γ Ia,b

(√
Cv,

√
D(1− v)

)
=

Γ2(3/2− b)
Γ(3− 2b)

∫ 1

0

dv vβ(1−v)γ (D.13)[
[D(1−v)]−a 2F1

(
a, a+ b− 1, 2− b, Cv

D(1−v)

)
Θ

(
1− Cv

D(1−v)

)
+(Cv)−a 2F1

(
a, a+ b− 1, 2− b, D(1−v)

Cv

)
Θ

(
Cv

D(1−v)
− 1

)]
.

The content of the Θ functions modify the v integration domain in the following

way:

1− Cv

D(1−v)
> 0 ⇔ v <

D

C +D
or

Cv

D(1−v)
− 1 > 0 ⇔ v >

D

C +D
. (D.14)

Since C,D > 0, then 0 < D
C+D

< 1 and we get:

Ia,b,β,γ(C,D) =
Γ2(3/2−b)
Γ(3− 2b)

× (D.15)[
D−a

∫ D
C+D

0

dv vβ(1−v)γ−a 2F1

(
a, a+ b− 1, 2− b, Cv

D(1−v)

)

+C−a
∫ 1

D
C+D

dv vβ−a(1−v)γ 2F1

(
a, a+ b− 1, 2− b, D(1−v)

Cv

)]
.

Now we restore the [0, 1] integration region with the following two changes of

variables:

v →
D
C
v

1+D
C
v

for the first integral ,

v → 1

1+ C
D
v

for the second one . (D.16)
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The integral then becomes:

Ia,b,β,γ(C,D) =
Γ2(3/2−b)
Γ(3− 2b)

× (D.17)[
D1+β−a

C1+β

∫ 1

0

dv vβ
(

1+
D

C
v

)a−β−γ−2

2F1(a, a+ b− 1, 2− b, v)

+
C1+γ−a

D1+γ

∫ 1

0

dv vγ
(

1+
C

D
v

)a−β−γ−2

2F1(a, a+ b− 1, 2− b, v)

]
.

This master integral deserves a separate analysis for a = 1. We then define the

following integral:

Ib,β,γ(C,D) = I1,b,β,γ(C,D)

≡
∫ 1

0

dv

∫ 1

0

dw
vβ(1− v)γ[w(1− w)]

1
2
−b

C v +D(1− v) + 2(1− 2w)
√
CDv(1− v)

, (D.18)

with C,D ∈ R and C,D ≥ 0. The w integration can be performed using ap-

pendix D.1, with A2 = Cv,B2 = D(1− v) and a = 1 (see Eq. D.10):

Ib,β,γ(C,D) =

∫ 1

0

dv vβ(1−v)γ Ib

(√
Cv,

√
D(1− v)

)
(D.19)

Exploiting the following property of hypergeometric functions,

2F1(1, b, c, x) = − c− 1

b− 1

1

x
2F1

(
1, 2− c, 2− b, 1

x

)
+

Γ(c)Γ(1− b)
Γ(c− b)

(
−1

x

)b(
1− 1

x

)c−b−1

, (D.20)

we obtain

Ib,β,γ(C,D) =
1

C

Γ2(3/2− b)
Γ(3− 2b)

∫ 1

0

dv

{
vβ−1(1−v)γ2F1

(
1, b, 2− b, 1−v

α v

)
− (−α)b

Γ(2− b)Γ(1− b)
Γ(2− 2b)

vβ+b−1(1−v)γ+b−1 ×

×
[
1− v(1+α)

]1−2b

Θ

(
1− α v

1−v

)}
(D.21)
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where we have defined α = C/D. Making the substitution v → v/(1+α) in the

second term, it can be integrated giving another hypergeometric function:

Ib,β,γ(C,D) =
1

C

Γ2(3/2− b)
Γ(3− 2b)

[ ∫ 1

0

dv vβ−1(1−v)γ2F1

(
1, b, 2− b, 1−v

α v

)
− (−α)b

(1+α)β+b

Γ(2− b)Γ(1− b)Γ(β + b)

Γ(β − b+ 2)
×

× 2F1

(
1− γ − b, β + b, β − b+ 2,

1

1+α

) ]
(D.22)

Though the integral Ib,β,γ(C,D) is well defined for real positive C and D, in order

to properly keep track of the imaginary parts we give a small imaginary part to

α, according to

α→ α± iδ, (−α)s →
(
− α∓ iδ

)s
= αs e∓isπ , δ → 0+ . (D.23)

Then we can write the first hypergeometric function using its integral representa-

tion, as

2F1

(
1, b, 2− b, 1−v

α v

)
= −α v Γ(2− b)

Γ(b)Γ(2− 2b)

∫ 1

0

dt tb−2(1−t)1−2b

[
1− t+ α

t
v

]−1

,

and integrate in v, with the result

Ib,β,γ(C,D) =
1

C

Γ2(3/2− b)
Γ(3− 2b)

[
− αΓ(2−b)

Γ(b)Γ(2−2b)

Γ(β+1)Γ(γ+1)

Γ(β+γ+2)
× (D.24)

×
∫ 1

0

dt tb−2(1−t)1−2b
2F1

(
1, β+1, β+γ+2,

t+α

t

)
− αb e∓ibπ

(1+α)β+b

Γ(2−b)Γ(1−b)Γ(β+b)

Γ(β−b+2)
×

×2F1

(
1−γ−b, β+b, β−b+2,

1

1+α

)]
.
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Using simple hypergeometric identities (similar to Eq. (D.20)), we obtain then the

expression

Ib,β,γ(C,D) =
1

C

Γ2(3/2−b)
Γ(3−2b)

{
α

Γ(2− b)
Γ(b)Γ(2− 2b)

Γ(β + 1)Γ(γ + 1)

Γ(β + γ + 2)
× (D.25)

∫ 1

0

dt tb−2(1−t)1−2b

[
t

α

β + γ + 1

β
2F1

(
1, γ + 1, 1− β,− t

α

)

− Γ(β + γ + 2)Γ(−β)

Γ(γ + 1)

(
−α
t

)−β−1
(

1 +
t

α

)−β−γ−1
]

−α−βe∓ibπ Γ(2− b)Γ(1− b)Γ(β + b)

Γ(β − b+ 2)
×

×2F1

(
β + γ + 1, β + b, β − b+ 2,− 1

α

) }
.

The second term in t of the second line in Eq. D.25 can be now integrated giving

the same hypergeometric function that appears in the third line. Recalling that

Γ(z) Γ(1− z) =
π

sin(πz)
, e−izδπ Γ(z) Γ(1− z) =

π cos(πz)

sin(πz)
− i π , (D.26)

using straightforward trigonometric identities, and inserting back α = C/D, we

obtain:

Ib,β,γ(C,D) =
1

C

Γ2(3/2− b)Γ(2− b)
Γ(3− 2b)Γ(b)

{
Γ(β)Γ(γ + 1)

Γ(2− 2b)Γ(β + γ + 1)
×

×
∫ 1

0

dt tb−1(1−t)1−2b
2F1

(
1, γ + 1, 1− β,−D

C
t

)
−
(
C

D

)−β
Γ(β + b)

Γ(β − b+ 2)

π sin(π(β + b+ 1))

sin(π(β + 1)) sin(πb)
×

× 2F1

(
β + γ + 1, β + b, β − b+ 2,−D

C

)}
. (D.27)

Because of the symmetry Ib,β,γ(C,D) = Ib,γ,β(D,C), an alternative result for this

integral is:

Ib,β,γ(C,D) =
1

D

Γ2(3/2− b)Γ(2− b)
Γ(3− 2b)Γ(b)

{
Γ(β + 1)Γ(γ)

Γ(2− 2b)Γ(β + γ + 1)
×

×
∫ 1

0

dt tb−1(1−t)1−2b
2F1

(
1, β + 1, 1− γ,−C

D
t

)
−
(
D

C

)−γ
Γ(γ + b)

Γ(γ − b+ 2)

π sin(π(γ + b+ 1))

sin(π(γ + 1)) sin(πb)
×

× 2F1

(
β + γ + 1, γ + b, γ − b+ 2,−C

D

)}
(D.28)



Appendix D. Master Integrals 269

In the special case where β = 1 − b, the second hypergeometric of Eq. D.27

disappears, since sin(π(β + b+ 1)) = sin(2π) = 0. We then obtain:

Ib,1−b,γ(C,D) =
1

C

Γ2(3/2− b)Γ(2− b)
Γ(3− 2b)Γ(b)

Γ(1− b)Γ(γ + 1)

Γ(2− 2b)Γ(γ − b+ 2)
×

×
∫ 1

0

dt tb−1(1−t)1−2b
2F1

(
1, γ + 1, b,−D

C
t

)
(D.29)

In this case we can also make use of the following property of the hypergeometric

functions,∫ 1

0

dx xc−1(1− x)d−1
2F1(a, b, c, xσ) =

Γ(c)Γ(d)

Γ(c+ d)
2F1(a, b, c+ d, σ) , (D.30)

to get to a more compact result:

Ib,1−b,γ(C,D) =
1

C

Γ2(3/2− b)
Γ(3− 2b)

Γ(1− b)Γ(γ + 1)

Γ(γ − b+ 2)
2F1

(
1, γ + 1, 2− b,−D

C

)
.(D.31)

In the special case where γ = 1 − b, we have sin(π(γ + b+ 1)) = sin(2π) = 0.

Thus, the second hypergeometric function in eq.(D.28) vanishes. We obtain

Ib,β,1−b(C,D) =
1

D

Γ2(3/2− b)Γ(2− b)
Γ(3− 2b)Γ(b)

Γ(1− b)Γ(β + 1)

Γ(2− 2b)Γ(β − b+ 2)
×

×
∫ 1

0

dt tb−1(1−t)1−2b
2F1

(
1, β + 1, b,−C

D
t

)
(D.32)

that becomes, using again the property in Eq. D.30,

Ib,β,1−b(C,D) =
1

D

Γ2(3/2− b)
Γ(3− 2b)

Γ(1− b)Γ(β + 1)

Γ(β − b+ 2)
2F1

(
1, β + 1, 2− b,−C

D

)
.(D.33)

D.3 The master integral Ia,b,β,γ,δ,σ(P,Q)

The master integral Ia,b,β,γ,δ,σ(P,Q) is defined as the integration of Eq. D.11 over

an additional variable u

Ia,b,β,γ,δ,σ(P,Q) ≡
∫ 1

0

du dv dw
uδ(1− u)σvβ(1− v)γ[w(1− w)]

1
2
−b

[P v +Qu(1− v) + 2(1− 2w)
√
P Quv(1− v)]a

=

∫ 1

0

du uδ(1− u)σIa,b,β,γ

(
P,Qu

)
. (D.34)
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According to the result of Eq. D.17 we can write:

Ia,b,β,γ,δ,σ(P,Q) =
Γ2(3/2−b)
Γ(3− 2b)

Q1+β−a

P 1+β

∫ 1

0

du

∫ 1

0

dv uβ+δ−a+1 ×

×(1− u)σ 2F1(a, a+ b− 1, 2− b, v) ×

×
[
vβ
(

1+
Q

P
u v

)a−β−γ−2

+ va−β−2

(
1+

Q

P

u

v

)a−β−γ−2
]
. (D.35)

The integration over u gives another hypergeometric function:

Ia,b,β,γ,δ,σ(P,Q) =
Γ2(3/2−b)
Γ(3− 2b)

Γ(β + δ − a+ 2)Γ(σ + 1)

Γ(β + δ + σ − a+ 3)

Q1+β−a

P 1+β
×

×
∫ 1

0

dv 2F1(a, a+ b− 1, 2− b, v)

×
[
vβ2F1

(
β + γ − a+ 2, β + δ − a+ 2, β + δ + σ − a+ 3,−Q

P
v

)
+ va−β−2

2F1

(
β + γ − a+ 2, β + δ − a+ 2, β + δ + σ − a+ 3,

−Q
vP

)]
.

The expansion of these hypergeometric functions is simpler if the integer part of

the first index is 0. Since this quantity is usually ≥ 0, we use the following relations

to lower the first index (taking care that in the generated hypergeometric functions

b > 0, c− b > 0):

2F1(a, b, c, x) = − c− 1

a− 1

1

x

[
2F1(a− 1, b− 1, c− 1, x)− 2F1(a− 1, b, c− 1, x)

]
,

2F1(a, b, c, x) =
b

a− 1
2F1(a− 1, b+ 1, c, x) +

a− b− 1

a− 1
2F1(a− 1, b, c, x) ,

2F1(a, b, c, x) =
1

1− x

[
c− b
a− 1

2F1(a− 1, b− 1, c, x)

+
a− c+ b− 1

a− 1
2F1(a− 1, b, c, x)

]
.

When the integer part of the first index is 0, we can then expand in ε:

2F1(αε, b, c, x) = 1 +
Γ(c)

Γ(b)Γ(c− b)
+∞∑
n=1

(−αε)n
n!

∫ 1

0

dt tb−1(1− t)c−b−1 lnn(1− tx) ,
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and then perform the remaining integrations. To this end it is useful first to make

explicit the ε poles, by using “+”-distributions:∫ 1

0

dx x−1+kε f(x) =
1

kε
f(0) +

∫ 1

0

dx x−1+kε [f(x)− f(0)]

=
1

kε
f(0) +

∫ 1

0

dx xkε
[
f(x)

x

]
+

,∫ 1

0

dx (1− x)−1+kε f(x) =
1

kε
f(1) +

∫ 1

0

dx (1− x)−1+kε [f(x)− f(1)]

=
1

kε
f(1) +

∫ 1

0

dx (1− x)kε
[
f(x)

1− x

]
+

. (D.36)
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Lett. 117 (2016) 152004, [arXiv:1603.08927].

[75] M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam and G. Zanderighi,

Phys. Rev. Lett. 115 (2015) 082002, [arXiv:1506.02660].

[76] G. F. R. Sborlini, F. Driencourt-Mangin and G. Rodrigo, JHEP 10 (2016)

162, [arXiv:1608.01584].

[77] F. Herzog, (2018), [arXiv:1804.07949].

[78] C. Anastasiou, R. Haindl, G. Sterman, Z. Yang and M. Zeng, (2020),

[arXiv:2008.12293].

[79] F. Dulat, B. Mistlberger and A. Pelloni, (2017), [arXiv:1710.03016].

[80] J. Currie, T. Gehrmann, E. W. N. Glover, A. Huss, J. Niehues and A. Vogt,

(2018), [arXiv:1803.09973].

[81] L. Cieri, X. Chen, T. Gehrmann, E. W. N. Glover and A. Huss, (2018),

[arXiv:1807.11501].

[82] F. A. Dreyer and A. Karlberg, Phys. Rev. Lett. 117 (2016) 072001,

[arXiv:1606.00840].

[83] P. Kulish and L. Faddeev, Theor. Math. Phys. 4 (1970) 745, .

[84] G. Giavarini and G. Marchesini, Nucl. Phys. B 296 (1988) 546, .

[85] L. D. Landau, Nucl. Phys. 13 (1959) 181, .

[86] S. Coleman and R. Norton, Nuovo Cim. 38 (1965) 438, .

[87] G. F. Sterman, Phys. Lett. B 73 (1978) 440, .



Appendix D. Master Integrals BIBLIOGRAPHY

[88] R. Ellis, H. Georgi, M. Machacek, H. Politzer and G. G. Ross, Phys. Lett.

B 78 (1978) 281, .

[89] G. F. Sterman: in QCD and beyond. Proceedings, Theoretical Advanced Study

Institute in Elementary Particle Physics, TASI-95, Boulder, USA, June 4-

30, 1995 (1995) pages 327–408arXiv: hep-ph/9606312.

[90] G. F. Sterman, An Introduction to quantum field theory, Cambridge Univer-

sity Press (1993).

[91] D. Bonocore, E. Laenen, L. Magnea, S. Melville, L. Vernazza and C. White,

JHEP 06 (2015) 008, [arXiv:1503.05156].

[92] A. Sen, Phys. Rev. D28 (1983) 860, .

[93] E. Gardi, JHEP 04 (2014) 044, [arXiv:1310.5268].

[94] G. Falcioni, E. Gardi, M. Harley, L. Magnea and C. D. White, JHEP 10

(2014) 10, [arXiv:1407.3477].

[95] A. Mitov, G. Sterman and I. Sung, Phys.Rev. D82 (2010) 096010,

[arXiv:1008.0099].

[96] E. Gardi, J. M. Smillie and C. D. White, JHEP 1109 (2011) 114,

[arXiv:1108.1357].

[97] E. Gardi, J. M. Smillie and C. D. White, JHEP 06 (2013) 088,

[arXiv:1304.7040].

[98] J. Botts and G. F. Sterman, Nucl. Phys. B 325 (1989) 62, .

[99] A. Bassetto, M. Ciafaloni and G. Marchesini, Phys. Rept. 100 (1983) 201, .

[100] L. Magnea and G. F. Sterman, Phys.Rev. D42 (1990) 4222, .

[101] L. Magnea, Nucl. Phys. B 593 (2001) 269, [arXiv:hep-ph/0006255].

[102] S. Moch, J. Vermaseren and A. Vogt, JHEP 08 (2005) 049, [arXiv:hep-

ph/0507039].

[103] S. Moch, J. Vermaseren and A. Vogt, Phys. Lett. B 625 (2005) 245,

[arXiv:hep-ph/0508055].

[104] S. Moch, J. Vermaseren and A. Vogt, Nucl. Phys. B 688 (2004) 101,

[arXiv:hep-ph/0403192].

[105] A. Vogt, S. Moch and J. Vermaseren, Nucl. Phys. B 691 (2004) 129,

[arXiv:hep-ph/0404111].



Appendix D. Master Integrals 279

[106] G. Korchemsky and A. Radyushkin, Nucl. Phys. B 283 (1987) 342, .

[107] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, JHEP 10

(2017) 041, [arXiv:1707.08315].

[108] R. H. Boels, T. Huber and G. Yang, JHEP 01 (2018) 153, [arXiv:1711.08449].

[109] S. Aybat, L. J. Dixon and G. F. Sterman, Phys. Rev. Lett. 97 (2006) 072001,

[arXiv:hep-ph/0606254].

[110] L. J. Dixon, E. Gardi and L. Magnea, JHEP 1002 (2010) 081,

[arXiv:0910.3653].

[111] V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C. D. White, Phys. Rev. D

85 (2012) 071104, [arXiv:1108.5947].

[112] V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C. D. White, JHEP 1112

(2011) 021, [arXiv:1109.3581].

[113] S. Caron-Huot, JHEP 05 (2015) 093, [arXiv:1309.6521].

[114] V. Ahrens, M. Neubert and L. Vernazza, JHEP 09 (2012) 138,

[arXiv:1208.4847].

[115] G. F. Sterman and S. Weinberg, Phys. Rev. Lett. 39 (1977) 1436, .

[116] E. Farhi, Phys. Rev. Lett. 39 (1977) 1587, .

[117] Z. Kunszt and D. E. Soper, Phys. Rev. D 46 (1992) 192, .

[118] H. Baer, J. Ohnemus and J. Owens, Phys. Rev. D 40 (1989) 2844, .

[119] F. Aversa, M. Greco, P. Chiappetta and J. Guillet, Phys. Rev. Lett. 65

(1990) 401, .

[120] W. Giele, E. Glover and D. A. Kosower, Phys. Rev. Lett. 73 (1994) 2019,

[arXiv:hep-ph/9403347].

[121] R. Ellis, D. Ross and A. Terrano, Nucl. Phys. B 178 (1981) 421, .

[122] G. Altarelli, R. Kleiss and C. Verzegnassi, editors: Z PHYSICS AT LEP-1.

PROCEEDINGS, WORKSHOP, GENEVA, SWITZERLAND, SEPTEM-

BER 4-5, 1989. VOL. 1: STANDARD PHYSICS CERN Yellow Reports:

Conference Proceedings (1989).

[123] M. L. Mangano, P. Nason and G. Ridolfi, Nucl. Phys. B 373 (1992) 295, .

[124] Y. L. Dokshitzer, V. A. Khoze, A. H. Mueller and S. Troian, Basics of

perturbative QCD, (1991).



Appendix D. Master Integrals BIBLIOGRAPHY

[125] G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298, .

[126] T. Becher and M. D. Schwartz, JHEP 02 (2010) 040, [arXiv:0911.0681].

[127] T. Becher and G. Bell, Phys. Lett. B695 (2011) 252, [arXiv:1008.1936].

[128] E. Laenen, G. F. Sterman and W. Vogelsang, Phys. Rev. D63 (2001) 114018,

[arXiv:hep-ph/0010080].

[129] S. D. Badger and E. W. N. Glover, JHEP 07 (2004) 040, [arXiv:hep-

ph/0405236].

[130] D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C. White, JHEP 12

(2016) 121, [arXiv:1610.06842].

[131] J. C. Collins and D. E. Soper, Nucl. Phys. B193 (1981) 381, [Erratum: Nucl.

Phys.B213,545(1983)].

[132] G. Sterman, Nucl. Phys. B281 (1987) 310, .

[133] V. Del Duca, N. Deutschmann and S. Lionetti, JHEP 12 (2019) 129,

[arXiv:1910.01024].

[134] S. Catani, D. Colferai and A. Torrini, JHEP 01 (2020) 118,

[arXiv:1908.01616].

[135] S. Frixione and M. Grazzini, JHEP 06 (2005) 010, [arXiv:hep-ph/0411399].

[136] V. Del Duca, C. Duhr, R. Haindl, A. Lazopoulos and M. Michel, JHEP 02

(2020) 189, [arXiv:1912.06425].

[137] L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and

S. Uccirati, (2018), [arXiv:1809.05444].

[138] M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, JHEP 05 (2017)

139, [arXiv:1703.09065].

[139] D. de Florian, M. Grazzini, C. Hanga, S. Kallweit, J. M. Lindert, P. Maier-

hofer, J. Mazzitelli and D. Rathlev, JHEP 09 (2016) 151, [arXiv:1606.09519].

[140] Z. Tulipánt, A. Kardos and G. Somogyi, Eur. Phys. J. C 77 (2017) 749,

[arXiv:1708.04093].

[141] V. Del Duca, C. Duhr, A. Kardos, G. Somogyi, Z. Ször, Z. Trócsányi and
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