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1. Introduction

Given a “generic polynomial" with integer coefficients, we expect that it
is irreducible, and moreover with a large Galois group. A concrete instance
of this principle is a conjecture of Odlyzko and Poonen [13] concerning poly-
nomials with 0, 1 coefficients, recently proved by Breuillard and Varjú [6]
under RH (see also [4] for an unconditional result).

In this article we deal on the contrary with a class of interest of “special"
polynomials, namely irreducible lacunary polynomials (also called fewnomi-
als) and we prove that, under some natural assumptions, the size of their
Galois group grows more than polynomially in the degree.

Theorem 1.1. Let k ≥ 1 be a fixed integer, γ1, . . . , γk non-zero integers and
m0, . . . ,mk coprime integers with d := m0 > · · · > mk = 0. We consider the
k-nomial

Xm0 + γ1X
m1 + · · ·+ γk−1X

mk−1 + γk ∈ Z[X]

of degree d, which we assume irreducible and not cyclotomic. Let Dab be the
degree of its Galois group over Qab. Then there exists a function fk,γ(t),
explicitly depending only on γ1, . . . , γk, and which grows to infinity with t,
such that

Dab ≥ dfk,γ(d) .
Date: July 5, 2023.
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We can even be a little more precise. Let, in the notations of the theorem,
h∗ := k(max(|γ1|, . . . , |γk|) + log k). Then there exists an effective absolute
constant c > 0 such that

Dab ≥ (d/h∗)c log log(d/h
∗)1/3 ,

provided that d ≥ c−1h∗.

Note that the degree d of a cyclotomic k-nomial with coprime exponents
satisfies d ≤ exp(Ck) for some absolute constant C > 1 (see Remark 3.4)
and thus it is bounded (for fixed k).

Remark that the assumptions on the irreducibility of the polynomial and
on the coprimality of m0, . . . ,mk are both needed, as the following two ex-
amples show:

(X − 2)(Xd−1 − 2), Xd − 2 .

In both cases the degree of the Galois closure is ≤ d2.

The main ingredient in our proof is a lower bound (Proposition 2.4) for the
height of an algebraic number α, depending on the size of the Galois group
of the normal closure of Qab(α)/Qab, and under a Kummerian assumption.
To deduce Theorem 1.1 from it, we use the fact that “roots of lacunary
polynomials have small height".

The proof of Proposition 2.4 is an explicit generalisation of a result of [1]
where we gave a positive answer to Lehmer’s problem (see below) when the
degree of the normal closure of Q(α)/Q grows at most polynomially in the
degree of Q(α)/Q. The main new ingredient in the proof of Proposition 2.4
is a lower bound for the height of multiplicatively independent algebraic
numbers of Delsinne [8], valid over abelian extensions. This result has a long
history, as we briefly recall here.

Let α be a non zero algebraic number of degree d, with algebraic conjugates
α1, . . . , αd. Let a be the leading coefficient of a minimal equation of α over
Z. As usual we denote by M(α) its Mahler measure

M(α) = log |a|
∏
i

max{|αi|, 1}

and by h(α) = 1
d logM(α) its absolute logarithmic Weil height. It is well

known (Kronecker) that h(α) = 0 if and only if α is a root of unity, which we
will exclude from now on. In 1933 Lehmer asks whether there is a positive
constant c such that

h(α) ≥ cd−1.
Lehmer’s problem is still unsolved, but a celebrated result of Dobrowolski
[9] implies that for any ε > 0 there is c(ε) > 0 such that h(α) ≥ c(ε)d−1−ε.

In 1999 the authors of the present paper proved in [1] a deep generalisa-
tion of Dobrowolski’s lower bound to multiplicatively independent algebraic
numbers. Soon after, in [2], Dvornicich and the first author discovered that
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the height on abelian extensions (of course outside zero and roots of uni-
ties) can be bounded from below by a positive absolute constant, which is of
course much stronger than what Lehmer’s conjecture predicts. This suggests
to take the field of abelian numbers as the ground field for lower bound for
the height (a so called “relative" result). Dobrowolski’s lower bound was
generalised in this direction in [3] by Zannier and the first author. Finally,
Delsinne in his Ph.D. Thesis succeed, in a veritable tour de force, to merge
together the ideas of these three papers.

The present paper is organised as follows. We first prove, in section 2
a strong lower bound for the height of algebraic numbers in a small Galois
extension (this is done by applying Delsinne’s result to generators of the
Galois module defined by our given algebraic number α) and move in sec-
tion 3 towards our intended goal of tackling the Galois groups of roots of
lacunary polynomials. After an initial preparation (identifying Kummerian
obstruction over the maximal abelian extension), we move on to the proof
of the main result.

Acknowledgment. We sincerely thank the referee of the present article for
significant and precise comments, helping us to improve the exposition in
various aspects.

2. Lower bound for the height and Galois groups

As explained in the introduction we shall need the “relative" version of
Delsinne [8]. A simplified version of [8, Theorem 1.6] asserts:

Theorem 2.1. Let α1, . . . , αn be multiplicatively independent algebraic num-
bers. Let Dab = [Qab(α1, . . . , αn) : Qab]. Then

h(α1) · · ·h(αn) ≥ c2(n)−1D−1ab log(16Dab)
−κ2(n)

where
c2(n) =

(
2n2
)n

exp
(
64n2n!

(
2(n+ 1)2(n+ 1)!

)2n)
and

κ2(n) = 3n
(
2(n+ 1)2(n+ 1)!

)n
.

The above value of κ2(n) appears at [8, page 983], just before the state-
ment of Theorem 1.6. The value of c2(n) is at the beginning of page 984.

We shall apply this lower bound for the height taking for α1, . . . , αn to
be some of the conjugates of an algebraic number α, so that h(α1) = · · · =
h(αn) = h(α). This forces, if the height of α is small enough and n is large
enough, Dab to be large, as desired. The explicit nature of the lower bound
in Theorem 2.1 will allow us to let the dimension n of the ambient space
(slowly) grow with the degree.
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We now introduce some notations which we keep in the sequel of this
article.

Notation. Let α be a non zero algebraic number of degree d over Q, and
α1, . . . , αd its conjugates over Q. We denote byMα the multiplicative group
generated by α1, . . . , αd, by r(α) := dimQ(Mα ⊗Z Q) its rank and by e(α)
the exponent of its torsion subgroup.

The following lemma is implicit in the proof of [1, Corollaire 6.1, p.177].

Lemma 2.2. Let α be a non zero algebraic number, and assume r = r(α) ≥
1. Then the degree D′ of the normal closure of Q(αe(α))/Q satisfies D′ ≤ 3r

2.

Proof. Let e = e(α) and G be the Galois group of Q(αe1, . . . , α
e
d)/Q. Note

that as Z-module of finite type, Mα = F ⊕ T , where T is a torsion and F
is free; by definition of e, the kernel of the multiplication [e] :Mα −→ M
x 7−→ xe is T and thus Mαe = [e]Mαe is torsion free. Hence the action
of G over Mαe defines an injective representation G → GLr(Z). Thus G
identifies to a finite subgroup of GLr(Z). To conclude we can now use a
theorem of Minkowski [14, page 197] which asserts that the reduction mod
3 from GLr(Z) to GLr(Z/3Z) is injective on finite subgroups of GLr(Z).

�

Remark 2.3. Even if it is not necessary for our purposes, we note that much
better results hold. Feit∗ ([10]) shows that the group of signed permutation
matrices (the group of r×r matrices with entries in {−1, 0, 1} having exactly
one nonzero entry in each row and each column) has maximal order (= 2rr!)
for r = 1, 3, 5 and for r > 10. For the seven remaining values of r, Feit
characterizes the corresponding maximal groups, showing that the maximal
order is ε(r) ·2rr! with ε(r) explicit. See [11] for more details and for a proof
of the weaker statement n(r) ≤ 2rr! for large r.

We can now state and prove the main result of this section.

Proposition 2.4. Let α be a non zero algebraic number which is not a root
of unity. Let us assume

Qab(αe(α)) = Qab(α) .

Then,

h(α) ≥ (16Dab)
−C log log(16Dab)

−1/3
,

where Dab is the degree of the normal closure of Qab(α)/Qab and C ≥ 1 is
an effective absolute constant.

∗As pointed out by G. Rémond, the table in [10] contains an error which stands cor-
rected in [5], Table 2.
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Proof. The strategy of the proof is the following. Lemma 2.2 forces the
multiplicative rank of the galois modulesMα to be large enough, thus pro-
viding enough multiplicatively independent conjugates of α, say α1, . . . , αr
which all lie by definition in the normal closure of Q(α). One can then make
use of the theorem 2.1. The caveat is that the dependence in the number of
algebraic numbers considered in this result is very weak and thus, one needs
a very slowly growing functions.

We first remark that if Dab is bounded, our result easily follows by any
“relative" lower bound of the shape

h(α) ≥ f([Qab(α) : Qab])

with f : N→ R+ since α is not a root of unity. For instance, the main result
of [3] is largely enough. Thus we freely assume Dab sufficiently large† to
ensure that all the displayed inequalities hold.

Let
x := log log(16Dab)

1/3 and n := [x]− 2.

We claim that:

Fact. n ≤ r := r(α).

Proof. Indeed, let D′ and D′ab be respectively the degree of the normal
closure of Q(αe(α))/Q and of Qab(αe(α))/Qab. By assumption D′ab = Dab.
Since D′ ≥ D′ab, by Lemma 2.2 we have Dab ≤ D′ ≤ 3r

2 and

(n+ 2) log(n+ 2) ≤ x log x ≤ log log(27Dab) ≤ log((r2 + 3) log 3) .

An elementary computation shows that log((r2+3) log 3) ≤ (r+2) log(r+2),
thus n ≤ r as required.

�

By the Fact above, there exist at least n multiplicatively independent
conjugates of α, say α1, . . . , αn. Theorem 2.1 shows that h(α) ≥ e−U where

U =
1

n
logDab +

1

n
log(c2(n)) +

κ2(n)

n
log log(16Dab)

and with c2(n) and κ2(n) defined in that theorem. An elementary compu-
tation shows that

(2.1)


1

n
log(c2(n)) = log(2n2) + 64n · n!

(
2(n+ 1)2(n+ 1)!

)2n ≤ cn2n2

κ2(n)

n
= 3

(
2(n+ 1)2(n+ 1)!

)n ≤ cn2n2

†Note that this in particular ensures that α is not a root of unity since otherwise Dab

would be equal to 1.
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for some c ≥ 1 (and indeed we may take c = 1). Thus, taking into account
n ≤ x and n ≥ x− 2 ≥ x

2 ,

U ≤

(
1

n
+

2cn2n
2
log log(16Dab)

log(16Dab)

)
log(16Dab)

≤ 4c

x
max

{
1, x3x

2
log(16Dab)

−1/2
}
log(16Dab) .

We remark that

3x2 log x ≤ log log(16Dab)
2/3 log log log(16Dab) ≤

1

2
log log(16Dab) .

Thus x3x2 ≤ log(16Dab)
1/2 and

U ≤ 4c

x
log(16Dab) = 4c log log(16Dab)

−1/3 log(16Dab) .

�

Remark 2.5.

1. We could replace in the statement of the last proposition C log log(16Dab)
−1/3

by C log log(16Dab)
−1/2+ε and even by C log log(16Dab)

−1/2 log log log(16Dab)
at the cost of more involved computations. Also the values of the various
C can be made explicit, again after several annoying computations.

2. Perhaps more interesting, the reader could remark that the inequality
r ≥ n in the Fact is far from being optimal: we can indeed ensure that
r ≥ nεn for a sufficiently small ε. However having more multiplicatively
independent conjugates does not improve the final result, due to the de-
pendence (2.1) in the dimension of Delsinne’s lower bound.

3. It is worthwile noting that the hypothesis D′ab = Dab (in other words,
that there is no Kummerian obstruction) is a simplifying hypothesis. One
can easily prove, with the same argument, a general result taking into
account the precise value of the exponent of the torsion subgroup of Mα.
Again, this would only come at the cost of elementary but cumbersome
computations.

3. Size of the Galois group of a lacunary polynomial

In this section we prove a general result on the size of the Galois group of
a root of a lacunary polynomial, and we deduce Theorem 1.1 from it.

To start with, we first remark that the assumption Qab(αe(α)) = Qab(α)
of Proposition 2.4 is easily read on the minimal polynomial of α over Q.
Indeed, one has the easy:

Lemma 3.1. Let α be an algebraic number with minimal polynomial P (X)
over Q. Let us consider the following assertion:
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1) P is not a polynomial in Xδ for δ integer > 1
2) For any integer e ≥ 1 we have Qab(αe) = Qab(α).

Then 1) implies 2).‡

Proof. Let e ≥ 1 and E := Qab(αe) ∩ Q(α). We note δ = [Q(α) : E] and
α′ = Norm

Q(α)
E (α) ∈ E. The algebraic conjugate of α over E are multiples

of α by a root of unity. Thus α′ = ζαδ for some root of unity ζ. Since
ζ = α′/αδ ∈ Q(α) we have ζ ∈ Qab ∩Q(α) ⊆ E and thus also αδ ∈ E. Let

Q(X) =
∏

σ : E↪→Q
σ|Q=Id

(Xδ − σαδ) ∈ Q[X] .

Then Q(α) = 0 and degQ = δ× [E : Q] = [Q(α) : Q]. Thus Q = P . Since Q
is a polynomial in Xδ, by assumption we have δ = 1, i. e. Q(α) ⊆ Qab(αe).
This implies Qab(αe) = Qab(α) as claimed.

�

We also need to show that the number of non zero coefficients of a cyclo-
tomic polynomial of square free order grows to infinity. We have not found
a standard reference for this result, thus we reproduce here an answer given
by G. Kós to a question posed on the web site math.stackexchange, see [12].

Lemma 3.2. Let φn be a cyclotomic polynomial of order n and let p be a
prime such that p |n and p2 - n. Then φn has at least p non zero coefficients.

Proof. We argue by contradiction, assuming φn(x) =
∑p−1

i=1 aix
mi for some

integers ai, mi with mi ≥ 0. Using the box principle, we select an integer
u such that none of m1 + u, . . . ,mp−1 + u is divisible by p. Let r = n/p,
ω = e2πi/n and consider the sum

S :=

p∑
j=1

ωjruφn(ω
jr+1).

Since p - r, among the numbers ωr+1, . . . , ωpr+1 there are precisely p − 1
primitive nth root of unity and a root of unity of order r. Thus S 6= 0. On
the other hand

S =

p∑
j=1

ωjru
p−1∑
i=1

aiω
(jr+1)mi =

p−1∑
i=1

aiω
mi

p∑
j=1

ωjr(mi+u).

Now ωr is a primitive pth root of unity, thus
∑p

j=1 ω
jrk = 0 for any integer

k not divisible by p. Since, by our choice of u, none of the mi+u is divisible
by p, we conclude that S = 0, a contradiction.

‡Note that 2) does not imply 1), as we can see taking α =
√
2 ∈ Qab.
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�

We can now state and prove our result on the size of the Galois group of
a root of a lacunary polynomial.

Proposition 3.3. Let γ0, γ1, . . . γk ∈ Q∗ and m0, . . . ,mk ∈ Z with 0 = mk <
mk−1 < · · · < m1 < m0 =: d. We set h∗ := k(h(γ) + log k), where h(γ) is
the Weil height of the projective point (γ0 : · · · : γk). Let α be a root of

γ0X
m0 + γ1X

m1 + · · ·+ γk−1X
mk−1 + γk = 0 .

We assume:

1. there is no l < k such that the subsum γ0α
m0 + · · ·+ γlα

ml
l vanishes,

2. α is not a root of unity,
3. Qab(α) = Qab(αe(α)).

Then there exists an effective absolute constant c > 0 such that, if d ≥ c−1h∗,
the degree Dab of the Galois closure of Qab(α)/Qab satisfies

Dab ≥ (d/h∗)c log log(d/h
∗)1/3 .

Proof. By the assumption 1. on non-vanishing subsums, we can apply [7,
Lemma 2.2] to get

(ml −ml+1)h(α) ≤ h(γ) + logmax{l + 1, k − l}

for l = 0, . . . , k−1. Summing over l we obtain dh(α) ≤ k(h(γ)+log k) = h∗.
Thus we have the upper bound

h(α) ≤ exp(− log(d/h∗)) .

By assumptions 2. and 3., we can apply Proposition 2.4 to get the lower
bound

h(α) ≥ (16Dab)
−C log log(16Dab)

−1/3
,

Comparing the two bounds, we get

log(d/h∗) ≤ C log log(16Dab)
−1/3 log(16Dab)

which easily implies

log(Dab) ≥ c log log(d/h∗)1/3 log(d/h∗)

for some c > 0, provided that d/h∗ ≥ c−1.

�
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Proof of Theorem 1.1. We fix a positive integer k and non zero integers
γ1, . . . , γk ∈ Z. Let m0, . . . ,mk ∈ Z coprime with 0 = mk < · · · < m0 and
with d := m0 sufficiently large with respect to k and γ1, . . . , γk. We consider
the polynomial

Pm = Xm0 + γ1X
m1 + · · ·+ γk−1X

mk−1 + γk ∈ Z[X]

which we assume irreducible and not cyclotomic. Let α be a root of Pm.
Since Pm is irreducible, there is no vanishing subsum of the form αm0 +
γ1α

m1 + · · ·+ γlα
ml
l with l < k.

Since our polynomial is not cyclotomic, α is not a root of unity. Moreover,
since m0, . . . ,mk are coprime, Pm is not a polynomial in Xδ for δ > 1. By
Lemma 3.1, Qab(α) = Qab(αe(α)). All the assumptions of Proposition 3.3
are now satisfied and we get

Dab ≥ (d/h∗)c log log(d/h
∗)1/3

provided that d/h∗ ≥ c−1.

�

Remark 3.4. Let, as in the theorem, k ≥ 1 be a fixed integer, γ1, . . . , γk non-
zero integers, and m0, . . . ,mk coprime integers with d := m0 > · · · > mk =
0. If Pm := Xm0+γ1X

m1+· · ·+γk−1Xmk−1+γk is cyclotomic of order, say,
n, then n is squarefree since the exponents are coprime by assumption§. Let
p be the largest prime divisor of n; using a standard upper bound for the first
Čebyšëv function θ(x) =

∑
p≤x log(p), one derives log d ≤ log n ≤ Cp for

some absolute constant C > 1. By Lemma 3.2, k ≥ p. Thus d ≤ exp(Ck).
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