
Numer. Math. (2012) 120:433–464
DOI 10.1007/s00211-011-0417-9

Numerische
Mathematik

Gaussian quadrature rules with exponential weights
on (−1, 1)

M. C. De Bonis · G. Mastroianni · I. Notarangelo

Received: 14 January 2011 / Revised: 5 July 2011 / Published online: 11 September 2011
© Springer-Verlag 2011

Abstract We study the behavior of some “truncated” Gaussian rules based on the
zeros of Pollaczek-type polynomials. These formulas are stable and converge with
the order of the best polynomial approximation in suitable function spaces. Moreover,
we apply these results to the related Lagrange interpolation process and to prove the
stability and the convergence of a Nyström method for Fredholm integral equations
of the second kind. Finally, some numerical examples are shown.
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1 Introduction

Let us denote by em( f )w the error of the Gaussian quadrature rule related to the
Pollaczek-type weight w(x) = e−(1−x2)−α

, α > 0, x ∈ (−1, 1), and to a continuous
function f . The principal aim of this paper is to study the behavior of em( f )w for
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434 M. C. De Bonis et al.

various classes of functions. This topic, despite being of interest in several contexts,
has received no attention in the literature till now.

First of all, we are going to prove that the Gaussian rule has not an optimal behavior
in order to approximate integrals of the form

∫ 1
−1 f w, where f belongs to the Sobo-

lev-type space W 1
1 (w) (see the definition in Sect. 2). This phenomenon appears also

in the case of exponential weights on unbounded intervals and in this regard the reader
can consult, for instance, [3,9,10,12,13,15] and the references therein. On the other
hand, this fact contrasts with what happens on bounded intervals for Jacobi weights.
In fact, in such a case, the error of the Gaussian rule converges to zero with the same
order of the best approximation in L1 for the considered classes of functions (see [8,
p. 338]).

Therefore, also following an idea in [9,10], in Sect. 3, we propose a quadrature
rule that is as simple as the Gaussian rule but requires a lower computational cost and
converges with the order of the best polynomial approximation in L1 if f ∈ W 1

1 (w)

(see Proposition 1 and Theorem 3).
In Sect. 4, as an application of the results in the previous Section, an analogous

problem dealing with the Lagrange interpolation in weighted L2 norm is discussed
and the main result is Theorem 5.

As a further application of the results given in Sects. 3 and 5, we consider Fred-
holm integral equations of the second kind whose kernels and/or right-hand side can
be unbounded at the endpoints ±1 with an exponential behavior. After defining a suit-
able function space equipped with a weighted uniform metric, we introduce a Nyström
method and prove its stability and convergence. Some numerical tests are shown in
Sect. 6.

All the results in this paper are new and the estimates cannot be improved for the
considered classes of functions.

2 Basic facts and preliminary results

In this section we are going to introduce some notation and recall some results, which
will be used in the sequel.

In the following C and c denote positive constants which may have different values
in different formulas. We will write C �= C(a, b, . . .) to say that C is independent of
the parameters a, b, . . . . If A, B > 0 are quantities depending on some parameters,
we write A ∼ B, if there exist constants C1 and C2, independent of the parameters of
A and B, such that

0 < C1 ≤ A

B
≤ C2.

2.1 Weight functions

Let us consider the weight function

w(x) = e−(1−x2)−α

, x ∈ (−1, 1), (1)
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Gaussian quadrature rules with exponential weights on (−1, 1) 435

with α > 0 a fixed real number. This weight violates the Szegő condition

1∫

−1

log(w(x))√
1 − x2

dx > −∞

for α ≥ 1/2 and belongs to a wide class of exponential weights, extensively studied
in [6] and [7].

To the weight w we associate the Mhaskar–Rahmanov–Saff number āτ , 1 ≤ τ ∈ R,
defined as the positive root of

τ = 4α

π

1∫

0

ā2
τ t2

(1 − ā2
τ t2)α+1

dt√
1 − t2

.

The number āτ is an increasing function of τ , with limτ→∞ āτ = 1 and

C1τ
− 1

α+1/2 ≤ 1 − āτ ≤ C2τ
− 1

α+1/2 ,

where C1 and C2 are positive constants independent of τ and α is fixed (see [7, pp.
13,30,31]). Then, denoting by Pm the set of all polynomials of degree at most m, the
following inequalities hold true for any Pm ∈ Pm (see [7, p. 15])

‖Pmw‖p ≤ C‖Pmw‖L p([−ām ,ām ]),

‖Pmw‖L p{|x |≥āsm } ≤ Ce−cmβ ‖Pmw‖p, s > 1, β = 2α

2α + 1
, (2)

where 1 ≤ p ≤ ∞ and C, c are independent of m and Pm .

Let us consider the sequence {pm(w)}m∈N of the polynomials which are orthonor-
mal with respect to the weight w and have positive leading coefficients γm = γm(w).
We denote by xk, k = 1, . . . , �m/2�, the positive zeros of pm(w) and by x−k, k =
1, . . . , �m/2� , the opposite negative zeros (x0 = 0 if m is odd). These zeros are
located as follows (see [7, p. 3])

−am(1 − cδm) < x−�m/2� < · · · < x0 < x1 < · · · < x�m/2� < am(1 − cδm),

with

a2
m − x2�m/2� ∼ a2

m − x2�m/2�−p ∼ δm, (3)

where p is a fixed positive integer (see [7, p. 22–23]) and

δm :=
(

1 − am

m

)2/3

. (4)
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436 M. C. De Bonis et al.

Here c and the constants in “∼” are independent of m. Furthermore, am = am(
√

w) =
ā2m(w) and hence satisfies

1 − am ∼ m− 1
α+1/2 . (5)

Now, let θ ∈ (0, 1) be fixed, aθm = aθm(
√

w) and m be sufficiently large (say
m ≥ m0). Recalling that am −aθm ∼ 1−am , where the constants in “∼” depend only
on θ (see [7, p. 81]), and

am − x�m/2�−p ∼ 1 − am

(1 − am)1/3m2/3 ,

by (5), we have x�m/2�−p > aθm for some p fixed. Then, for m ≥ m0, we define an
index j = j (m) such that

x j = min
1≤k≤�m/2�{xk : xk ≥ aθm}. (6)

Otherwise, if m < m0, we set j = �m/2�.
Concerning the distance between two consecutive zeros, from the formula (see [7,

p. 23])

	xk = xk+1 − xk ∼ 1 − x2
k

m
√

a2
m − x2

k + a2
mδm

, k = −�m/2� , . . . , �m/2� − 1, (7)

it follows that (see [11])

	xk ∼
√

a2
m − x2

k

m
, |k| ≤ j, (8)

where the constants in “∼” depend only on θ . This means that the nodes xk are arcsin
distributed w.r.t. the interval [−am, am] if |k| ≤ j . In general, the formula (8) does
not hold true for |k| > j .

Concerning the Christoffel functions

λm(w, x) =
[

m−1∑

k=0

p2
m(w, x)

]−1

associated to the orthonormal system {pm(w)}m∈N, from the equivalence (see [6, p. 7]
and [7, p. 20])

λm(w, x) ∼ 1 − x2

m
√

a2
m − x2 + a2

mδm
w(x), |x | ≤ am, (9)
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Gaussian quadrature rules with exponential weights on (−1, 1) 437

for a fixed θ ∈ (0, 1), we deduce

λm(w, x) ∼
√

a2
m − x2

m
w(x), |x | ≤ aθm,

and

λm(w, x) ≤ C
√

1 − am

δm

ϕ(x)

m
w(x) ≤ Cmγ ϕ(x)

m
w(x), aθm ≤ |x | ≤ am, (10)

where γ = 2α/(6α+3), ϕ(x) = √
1 − x2, C and the constants in “∼” are independent

of m but depend on θ . Note that by (7) and (9), we have

λk(w) = λm(w, xk) ∼ 	xkw(xk), k = −�m/2� , . . . , �m/2� − 1. (11)

2.2 Function spaces

Now we introduce some function spaces associated to the weight w defined in (1). By
L p

w, 1 ≤ p < +∞, we denote the set of all measurable functions such that

‖ f ‖L p
w

:= ‖ f w‖p =
⎛

⎝
1∫

−1

| f w|p(x)dx

⎞

⎠

1/p

< +∞.

For p = +∞, we set

L∞
w := Cw =

{

f ∈ C0((−1, 1)) : lim
x→±1

( f w)(x) = 0

}

and we equip this space with the norm

‖ f ‖L∞
w

:= ‖ f w‖∞ = sup
x∈(−1,1)

|( f w)(x)|.

We define the Sobolev-type spaces, subspaces of L p
w, by

W p
r (w) =

{
f ∈ L p

w : f (r−1) ∈ AC((−1, 1)), ‖ f (r)ϕrw‖p < +∞
}

, r ≥ 1,

where 1 ≤ p ≤ ∞ and AC((−1, 1)) denotes the collection of all functions which are
absolutely continuous on every closed subset of (−1, 1). We equip these spaces with
the norm

‖ f ‖W p
r (w) = ‖ f w‖p + ‖ f (r)ϕrw‖p.
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438 M. C. De Bonis et al.

The r th modulus of smoothness is defined as

ωr
ϕ( f, t)w,p = r

ϕ( f, t)w,p + inf
q∈Pr−1

‖( f − q)w‖L p([−1,−1+t∗])

+ inf
q∈Pr−1

‖( f − q)w‖L p([1−t∗,1]),

where t∗ = bt
1

α+1/2 , b > 1 is a fixed constant and the main part of the modulus of
smoothness is given by

r
ϕ( f, t)w,p = sup

0<h≤t
‖w	r

hϕ f ‖L p(Ih),

with Ih = [−1 + h∗, 1 − h∗] and

	r
hϕ f (x) =

r∑

i=0

(
r
i

)

(−1)i f

(

x + (r − 2i)
hϕ(x)

2

)

.

By means of the main part of the modulus of smoothness, we define the Zygmund
spaces of order s > 0 as

Z p
s (w) =

{

f ∈ L p
w : sup

t>0

r
ϕ( f, t)w,p

ts
< +∞, r > s ∈ R

}

,

with the norm

‖ f ‖Z p
s (w) = ‖ f ‖L p

w
+ sup

t>0

r
ϕ( f, t)w,p

ts
.

Denoting by

Em( f )w,p = inf
Pm∈Pm

‖( f − Pm)w‖p

the error of best polynomial approximation of a function f ∈ L p
w, using this modulus

of smoothness, the following Jackson and Salem–Stechkin inequalities were proved
in [11].

Theorem 1 Let 1 ≤ p ≤ +∞ and w(x) = e−(1−x2)−α
, α > 0. For any f ∈ L p

w we
have

Em( f )w,p ≤ Cωr
ϕ

(

f,
1

m

)

w,p
(12)

and

ωr
ϕ

(

f,
1

m

)

w,p
≤ C

mr

m∑

i=0

(1 + i)r−1 Ei ( f )w,p,

with m > r ≥ 1 and C independent of m and f.
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Gaussian quadrature rules with exponential weights on (−1, 1) 439

Moreover the following weak Jackson inequality holds true (see [11])

Em( f )w,p ≤ C
1
m∫

0

r
ϕ( f, t)w,p

t
dt, r < m, C �= C(m, f ), (13)

for any f ∈ L p
w with r

ϕ( f, t)w,pt−1 ∈ L1([0, 1]).

3 Gaussian formulas

Let us consider the Gaussian rule defined by

1∫

−1

P(x)w(x)dx =
�m/2�∑

k=−�m/2�
λk(w)P(xk), P ∈ P2m−1,

where xk are the zeros of pm(w) and λk(w) are the Christoffel numbers.
For a function f : (−1, 1) → R, we introduce the remainder term

em( f )w =
1∫

−1

f (x)w(x)dx −
�m/2�∑

k=−�m/2�
λk(w) f (xk). (14)

Concerning the behavior of em( f )w, we recall the well known estimate

|em( f )w| ≤ 2‖w‖1 E2m−1( f )∞, ∀ f ∈ C0([−1, 1]). (15)

Moreover, for any function f ∈ Cw, it is easily seen that

|em( f )w| ≤ CE2m−1( f )w,∞, C �= C(m, f ). (16)

Therefore, since (see [11])

lim
m

Em( f )w,∞ = 0,

the error of the Gaussian rule converges to zero with the order of the best approxima-
tion in Cw. Notice that the functions belonging to Cw can increase exponentially at
the endpoints of the interval (−1, 1).

It is well known that (16) holds true with w replaced by a Jacobi weight vγ,δ(x) =
(1 − x)γ (1 + x)δ, γ, δ > 0, but it is false for exponential weights on unbounded
intervals (see [3,9,10,12]).

Now, we want to investigate whether estimates of the form

|em( f )w| ≤ C
m

‖ f ′ϕw‖1, C �= C(m, f ), f ∈ W 1
1 (w), (17)

which are useful in different contexts, are possible.
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We first recall some known results. If w is Jacobi weight vγ,δ, γ, δ > −1, an
inequality of the form (17) holds true and, moreover, we have (see [8, p. 170, 338])

Em( f )vγ,δ,1 ≤ C
m

‖ f ′ϕvγ,δ‖1.

On the contrary, for the weight w this does not happen. In fact, for any function
f ∈ W 1

1 (w), in [11] it has been proved that:

Em( f )w,1 ≤ C
m

‖ f ′ϕw‖1, C �= C(m, f ),

but (17) is false in the sense of the following theorem.

Theorem 2 Let w(x) = e−(1−x2)−α
, α > 0. Then, for any f ∈ W 1

1 (w), we have

|em( f )w| ≤ C mγ

m
‖ f ′ϕw‖1, (18)

where γ = 2α/(6α + 3) and C is independent of m and f . Moreover, for a sufficiently
large m (say m ≥ m0), there exists a function fm, with 0 < ‖ f ′

mϕw‖1 < +∞, and a
constant C �= C(m, fm), such that

|em( fm)w| ≥ C mγ

m
‖ f ′

mϕw‖1. (19)

Proof In order to simplify the notation, here we denote by xk, k = 1, . . . , m, the zeros
of pm(w), located as

−am(1 − cδm) < x1 < x2 < · · · < xm < am(1 − cδm).

By the Peano theorem, we have

em( f )w =
1∫

−1

em(�t )w f ′(t)dt, �t (x) = (x − t)0+ =
{

1 x > t
0 x ≤ t

,

with

em(�t )w =
1∫

−1

�t (x)w(x)dx −
m∑

k=1

λk(w)�t (xk).

123

Author's personal copy



Gaussian quadrature rules with exponential weights on (−1, 1) 441

It is easy to show that

em(�t )w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1∫

t

w(x)dx xm ≤ t ≤ 1

t∫

−1

w(x)dx −1 ≤ t ≤ x1

and (see [5, p. 105])

em(�t )w ≤ λm(w, t), x1 < t < xm .

Now, taking into account that 1 − xm ∼ 1 − am and xm > 1/2 for m ≥ m0 (m0
becomes larger as α increases), for t ∈ [xm, 1] we have

1∫

t

w(x)dx =
1∫

t

(1 − x2)α+1

2αx
dw(x) ≤ (1 − t2)α+1

α
w(t)

≤ C(1 − xm)α+1/2ϕ(t)w(t) ≤ C
m

ϕ(t)w(t),

by (5). A similar estimate holds true for the integral
∫ t

−1
w(x)dx . Then, we get

em( f )w ≤ C
m

∫

[−1,1]\[x1,xm ]
|( f ′ϕw)(t)|dt +

xm∫

x1

λm(w, t)| f ′(t)|dt

and, by (10), inequality (18) follows.

In order to prove (19), setting ym = xm − 1
2

√
1−x2

m
m , we consider the function

fm(x) =

⎧
⎪⎨

⎪⎩

0 −1 ≤ x ≤ ym

x − ym ym ≤ x ≤ xm

1
2

√
1−x2

m
m xm < x ≤ 1.

Of course, ym ∈ (xm−1, xm), fm ∈ W 1
1 (w) and

0 < ‖ f ′
mϕw‖1 =

xm∫

ym

(ϕw)(x)dx < +∞.
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Using the expression of the Peano remainder, we get

em( fm)w =
xm∫

ym

⎡

⎣
1∫

t

w(x)dx − λm(w)

⎤

⎦ f ′
m(t)dt.

Now, by (11) we have

λm(w) ≥ Cw(xm)	xm−1, w(xm) ≥ Cw(t),

sincew(t) ∼ w(xm) for |xm−t | ≤ 1
2

√
1−x2

m
m (see [11]). Moreover, sinceϕ(t) ∼ ϕ(xm),

by (3), (5) and (4), we get

	xm−1 ≥ Cϕ(t)
	xm−1

ϕ(xm)
≥ Cϕ(t)

δm√
1 − a2

m

≥ C ϕ(t)

m
m1+ 4α+6

6α+3 − 1
2α+1 = C ϕ(t)

m
mγ ,

with γ = 2α/(6α + 3). Therefore, we obtain

λm(w) ≥ C mγ

m
w(t)ϕ(t), t ∈ (ym, xm).

On the other hand, we have already proved that

1∫

t

w(x)dx ≤ C
m

w(t)ϕ(t).

Consequently, for a sufficiently large m, we have

|em( f )w| =
xm∫

ym

⎡

⎣λm(x) −
1∫

t

w(x)dx

⎤

⎦ f ′
m(t)dt ≥ C mγ

m
‖ f ′

mwϕ‖1,

i.e. (19). ��
From the proof, it seems to be clear that the extra factor mγ is due to the formula

(3), i.e. the distance between two consecutive zeros of pm(w) close to ±am .
Therefore, the error of the Gaussian formula (14) cannot be estimated by means of

(17). So we introduce a “truncated” Gaussian rule, which satisfies our requirement, as
we will show.

With the integer j = j (m) defined in (6), we introduce the quadrature rule

1∫

−1

f (x)w(x)dx =
∑

|k|≤ j

λk(w) f (xk) + e∗
m( f )w. (20)
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This is the ordinary Gaussian formula, in which we drop the terms related to the zeros
of pm(w), which have not arcsin distribution in general.

As an effect of the truncation, the formula (20) is exact for polynomials P2m−1 ∈
P2m−1 such that P2m−1(xi ) = 0 for j < |i | ≤ �m/2�, but it is not exact for any poly-
nomial belonging to P2m−1. For instance e∗

m(1)w �= 0. Nevertheless, for any P ∈ PM ,

where M =
⌊(

2θ
θ+1

)
m

⌋
, we have

|e∗
m(P)w| ≤ Ce−cMβ ‖Pw‖∞, β = 2α/(2α + 1). (21)

In fact, by (11), we get

e∗
m(P)w =

1∫

−1

P(x)w(x)dx −
∑

|k|≤ j

λk(w)P(xk)

=
∑

|k|> j

λk(w)P(xk) ≤ C max
aθm≤|x |≤1

|P(x)w(x)| .

Using (2), taking into account that aθm = ā2θm(w), inequality (21) follows.
The next proposition shows that, when the function is continuous on [−1, 1] or

belongs to Cw, the error e∗
m( f )w converges to zero with the same order of em( f )w

(see inequalities (15) and (16)).

Proposition 1 Let θ ∈ (0, 1) be fixed and M =
⌊(

2θ
θ+1

)
m

⌋
. For any continuous

function on [−1, 1], we get

|e∗
m( f )w| ≤ C

{
EM ( f )∞ + e−cMβ ‖ f ‖∞

}
. (22)

Moreover, for any f ∈ Cw, we have

|e∗
m( f )w| ≤ C

{
EM ( f )w,∞ + e−cMβ ‖ f w‖∞

}
. (23)

Here β = 2α/(2α + 1) and the constants C, c are independent of f and m.

Proof Let us prove only inequality (23), omitting the proof of (22) which is simpler.
Let P ∈ PM be the polynomial of best approximation of f ∈ Cw, we can write

e∗
m( f )w = e∗

m( f − P)w + e∗
m(P)w.

For the second term at the right-hand side, by using (21), we get

∣
∣e∗

m(P)w
∣
∣ ≤ Ce−cMβ ‖ f w‖∞.
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444 M. C. De Bonis et al.

While, for the first term we obtain

∣
∣e∗

m( f − P)w
∣
∣ ≤

1∫

−1

| f − P|(x)w(x)dx +
∑

|k|≤ j

λk(w)| f − P|(xk)

≤ ‖( f − P) w‖∞

⎧
⎨

⎩
2 +

∑

|k|≤ j

λk(w)

w(xk)

⎫
⎬

⎭

≤ CEM ( f )w,∞,

recalling that λk(w) ∼ 	xkw(xk). ��
For functions f ∈ W 1

1 (w) or f ∈ Z1
s (w), s > 1, the following theorem states the

required estimates.

Theorem 3 With the notation of Proposition 1, for any f ∈ W 1
1 (w), we have

|e∗
m( f )w| ≤ C

M
‖ f ′ϕw‖1 + Ce−cMβ ‖ f w‖1, (24)

where C, c do not depend on m and f. Moreover, for any f ∈ Z1
s (w), with s > 1, we

get

|e∗
m( f )w| ≤ C

M

1/M∫

0

ωr
ϕ( f, t)w,1

t2 dt + Ce−cMβ ‖ f w‖1, r > s. (25)

Proof Let us first prove the inequality

∣
∣
∣
∣
∣
∣

∑

|k|≤ j

λk(w) f (xk)

∣
∣
∣
∣
∣
∣
≤C‖ f w‖L1[−x j ,x j ]+

C
m

‖ f ′ϕw‖L1[−x j ,x j ], f ∈W 1
1 (w). (26)

To this aim we recall that if x, y ∈ [xk, xk+1], |k| ≤ j , i.e., by (8), |x−y| ≤ Cϕ(xk)/m,

then w(x) ∼ w(y) and ϕ(x) ∼ ϕ(y) (see [11]). Hence, for − j ≤ k ≤ j − 1, we get

	xk | f (xk)|w(xk) ≤
xk+1∫

xk

| f (x)|w(x)dx + C
m

xk+1∫

xk

| f ′(x)|ϕ(x)w(x)dx,

and

	x j | f (x j )|w(x j ) ≤
x j∫

x j−1

| f (x)|w(x)dx + C
m

x j∫

x j−1

| f ′(x)|ϕ(x)w(x)dx .

Summing on |k| ≤ j , by (11), inequality (26) follows.
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Let us now prove (24), with f ∈ W 1
1 (w). Letting PM ∈ PM be the polynomial of

best approximation of f ∈ L1
w, we can write

e∗
m( f )w = e∗

m( f − PM )w + e∗
m(PM )w. (27)

For the second term at the right-hand side, using (21) and the Nikolskii inequality (see
[7, p. 295] and also [16])

‖PMw‖∞ ≤ CMβ‖PMw‖1, β = 2α

2α + 1
,

we get

∣
∣e∗

m(PM )w
∣
∣ ≤ Ce−cMβ ‖PMw‖∞ ≤ Ce−cMβ ‖PMw‖1

≤ Ce−cMβ ‖ f w‖1. (28)

For the first term in (27), using (26), we obtain

∣
∣e∗

m( f − PM )w
∣
∣ ≤ C ‖( f − PM ) w‖1 + C

m

∥
∥( f − PM )′ ϕw

∥
∥

1 (29)

≤ CEM ( f )w,1 + C
m

∥
∥ f ′ϕw

∥
∥

1 + C
m

∥
∥P ′

Mϕw
∥
∥

1 .

Now, by the Favard theorem (see [11]), we have

EM ( f )w,1 ≤ C
M

EM ( f ′)ϕw,1 ≤ C
M

∥
∥ f ′ϕw

∥
∥

1 .

Moreover, by Theorem 3.7 in [11], we have

C
M

∥
∥P ′

Mϕw
∥
∥

L1[−x j ,x j ] ≤ Cωϕ

(

f,
1

M

)

w,1
≤ C

M

∥
∥ f ′ϕw

∥
∥

1 ,

and then

∣
∣e∗

m( f − PM )w
∣
∣ ≤ C

M

∥
∥ f ′ϕw

∥
∥

1 . (30)

Therefore, combining (27), (28) and (30), for any f ∈ W 1
1 (w), we obtain

∣
∣e∗

m( f )w
∣
∣ ≤ C

M

∥
∥ f ′ϕw

∥
∥

L1[−x j ,x j ] + Ce−cMβ ‖ f w‖1

≤ C
M

‖ f ‖W 1
1 (w),

i.e., (24).
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Let us now assume f ∈ Z1
s (w), s > 1. In this case we can proceed as done in the

first part of this proof, giving a different estimate for
∥
∥( f − PM )′ ϕw

∥
∥

1 appearing in
(29). We note that, if P2k M ∈ P2k M , k ≥ 0, are polynomials of best approximation of
f ∈ L1

w, then the equality

f − PM =
∞∑

k=0

(
P2k+1 M − P2k M

)

holds a.e. in (−1, 1). It follows that

∥
∥( f − PM )′ ϕw

∥
∥

1 ≤
∞∑

k=0

∥
∥
∥
(
P2k+1 M − P2k M

)′
ϕw

∥
∥
∥

1
,

provided that the series at the right-hand side converges.
Using the Bernstein inequality (see [11] or [16])

∥
∥
∥
(
P2k+1 M − P2k M

)′
ϕw

∥
∥
∥

1
≤ C2k+1 M

∥
∥(

P2k+1 M − P2k M

)
w

∥
∥

1 , k ≥ 0,

and the Jackson inequality (12), we get

∥
∥
∥
(
P2k+1 M − P2k M

)′
ϕw

∥
∥
∥

1
≤ C2k+1 Mωr

ϕ

(

f,
1

2k M

)

w,1

≤ Cωr
ϕ

(

f,
1

2k+1 M

)

w,1

1/(2k M)∫

1/(2k+1 M)

dt

t2

≤ C
1/(2k M)∫

1/(2k+1 M)

ωr
ϕ ( f, t)w,1

t2 dt.

Whence, summing on k ≥ 0, we obtain

1

M

∥
∥( f − PM )′ ϕw

∥
∥

1 ≤ C
M

1/M∫

0

ωr
ϕ ( f, t)w,1

t2 dt, r > 1.

and then (25), where the integral at the right-hand side is bounded. ��
In particular, from Theorem 3, we deduce the estimates

∣
∣e∗

m( f )w
∣
∣ ≤ C

mr
‖ f ‖W 1

r (w), ∀ f ∈ W 1
r (w), r ≥ 1, (31)
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and

∣
∣e∗

m( f )w
∣
∣ ≤ C

ms
‖ f ‖Z1

s (w), ∀ f ∈ Z1
s (w), s > 1 (s ∈ R), (32)

where C is independent of m and f in both cases. Therefore, in these function spaces,
e∗

m( f )w converges to 0 with the order of the best polynomial approximation. As a con-
sequence, inequalities (31) and (32), which are not true for the error of the ordinary
Gaussian rule, cannot be improved from the order point of view.

4 Lagrange interpolation in L2√
w

We will give a first application of the results in Sect. 3 to the estimate of the error
of the Lagrange interpolation process based on the zeros of pm(w), with w(x) =
e−(1−x2)−α

, α > 0. If f is a continuous function in (−1, 1), then the Lagrange poly-
nomial interpolating f at the zeros of pm(w) is defined by

Lm(w, f, x) =
∑

|k|≤�m/2�
lk(w, x) f (xk), lk(w, x) = pm(w, x)

p′
m(w, xk)(x − xk)

,

and we are going to study the error f − Lm(w, f ) in some suitable function spaces.
Now, if f is continuous in [−1, 1] then

‖[ f − Lm(w, f )]√w‖2 ≤ 2‖√w‖1 Em−1( f )∞,

that is a theorem due to Erdős and Turan [4].
For functions belonging to C√

w, it is easily seen that the previous estimate can be
generalized as follows

‖[ f − Lm(w, f )]√w‖2 ≤ CEm−1( f )√w,∞, C �= C(m, f ).

However, estimating the Lagrange error for functions belonging to the Sobolev
spaces W 2

r (
√

w), we verify a behavior that is similar to the one showed for the Gauss-
ian formula in Sect. 3, i.e.

Em( f )√w,2 ≤ C
m

‖ f ′ϕ
√

w‖2

is true but

‖[ f − Lm(w, f )]√w‖2 ≤ C
m

‖ f ′ϕ
√

w‖2
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is false. Then, we are going to introduce the following “truncated” Lagrange polyno-
mial

L∗
m(w, f, x) =

∑

|k|≤ j

lk(w, x) f (xk) = Lm(w, f j , x),

where f j = χ j f, with χ j the characteristic function of the interval [−x j , x j ] and j
defined in (6).

As for the “truncated” Gaussian rule (20), this Lagrange polynomial is such that
L∗

m(w, P) �= P for arbitrary polynomials P ∈ Pm−1. But if we consider the subspace
of Pm−1

P∗
m−1 = {P ∈ Pm−1 : P(xk) = 0, |k| > j},

it is easily seen that L∗
m(w, P) = P for any P ∈ P∗

m−1 and L∗
m(w, f ) ∈ P∗

m−1
for any continuous function f in (−1, 1). So the operator L∗

m(w) is a projector from
C0(−1, 1) into P∗

m−1. Moreover, in order to approximate functions belonging to L2√
w

,

the spaces P∗
m−1 can replace Pm−1, namely the union

⋃
m P∗

m−1 is dense in the space
L2√

w
, as the next theorem shows.

Theorem 4 Let θ ∈ (0, 1) and w(x) = e−(1−x2)−α
, α > 0. For any f ∈ L2√

w
we

have

E∗
m−1( f )√w,2 := inf

P∈P∗
m−1

‖( f − P)
√

w‖2 ≤ C
{

EM ( f )√w,2 + e−cMβ ‖ f
√

w‖2

}
,

(33)

where M =
⌊(

θ
θ+1

)
m

⌋
, β = 2α/(2α + 1) and C, c are positive constants indepen-

dent of m and f .

Proof Let q ∈ PM , M =
⌊(

θ
θ+1

)
m

⌋
be the polynomial of best approximation of

f ∈ L2√
w
. Since L∗

m(w, q) ∈ P∗
m−1, we get

inf
P∈P∗

m−1

‖( f − P)
√

w‖2 ≤ ‖[ f − L∗
m(w, q)]√w‖2

≤ ‖( f − q)
√

w‖2 + ‖[q − L∗
m(w, q)]√w‖2

= EM ( f )√w,2 +
⎛

⎝
∑

|k|> j

λk(w)q2(xk)

⎞

⎠

1/2

,
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having used the ordinary Gaussian rule (14). Then, by (2), we have

⎛

⎝
∑

|k|> j

λk(w)q2(xk)

⎞

⎠

1/2

≤ C max
x∈[aθm ,1] |q(x)

√
w(x)|

≤ Ce−cMβ ‖q
√

w‖∞, (34)

where β = 2α/(2α + 1). Finally, by the Nikolskii inequality (see [7, p. 295] and also
[16])

‖q
√

w‖∞ ≤ CM
α+1

2α+1 ‖q
√

w‖2 ≤ CM
α+1

2α+1 ‖ f
√

w‖2,

and inequality (33) follows. ��
The following theorem describes the behavior of the operator L∗

m(w) in different
function spaces.

Theorem 5 For any function f ∈ C0([−1, 1]) we have

‖[ f − L∗
m(w, f )]√w‖2 ≤ C

{
EM ( f )∞ + e−cMβ ‖ f ‖∞

}
(35)

and, for any f ∈ C√
w we get

‖[ f − L∗
m(w, f )]√w‖2 ≤ C

{
EM ( f )√w,∞ + e−cMβ ‖ f

√
w‖∞

}
. (36)

Moreover, if f ∈ L2√
w

with r
ϕ( f, t)√w,2t−3/2 ∈ L1((0, 1)), then

‖[ f − L∗
m(w, f )]√w‖2 ≤ C

⎧
⎪⎨

⎪⎩

1√
M

1/M∫

0

r
ϕ( f, t)√w,2

t3/2 dt + e−cMβ ‖ f
√

w‖2

⎫
⎪⎬

⎪⎭
.

(37)

Here M =
⌊(

θ
θ+1

)
m

⌋
, β = 2α/(2α + 1) and the constants C, c are independent of

m and f .

Proof We are going prove (36), omitting the proof of (35). Let PM be the polynomial
of best approximation of f ∈ C√

w, we have

‖[ f − L∗
m(w, f )]√w‖2 ≤ ‖( f − PM )

√
w‖2 + ‖[PM − L∗

m(w, f )]√w‖2

≤ EM ( f )√w,∞ +
⎛

⎝
∑

|k|≤ j

λk(w)(PM − f )2(xk)

⎞

⎠

1
2

+
⎛

⎝
∑

|k|> j

λk(w)P2
M (xk)

⎞

⎠

1
2
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≤ CEM ( f )√w,∞ + C max|x |>aθm
|(PM

√
w)(x)|

≤ C
{

EM ( f )√w,∞ + e−cMβ ‖ f
√

w‖∞
}

,

where β = 2α/(2α + 1), having used (34). Then we deduce (36).
In order to prove (37), we first note that the assumption on the modulus of smooth-

ness r
ϕ( f, t)√w,2 implies the continuity of the function f in (−1, 1) (see [16]) and

then

‖L∗
m(w, f )

√
w‖2 =

⎛

⎝
∑

|k|≤ j

λk(w) f 2(xk)

⎞

⎠

1/2

≤ C√
M

1/M∫

0

ϕ( f, t)√w,2

t3/2 dt + ‖ f
√

w‖2. (38)

For the proof of the latter inequality, taking into account that the knots xk are arcsin-
distributed, we can use the same argument in [14, p. 282]. Therefore, with P ∈ P∗

m−1
the polynomial of best approximation of f ∈ L2√

w
, by Theorem 4, we have

‖[ f − L∗
m(w, f )]√w‖2 ≤ E∗

m−1( f )√w,2 + ‖L∗
m(w, f − P)

√
w‖2

≤ CEM ( f )√w,2 + Ce−cMβ ‖ f
√

w‖∞ +
⎛

⎝
∑

|k|≤ j

λk(PM − f )2(xk)

⎞

⎠

1/2

,

where β = 2α/(2α + 1). For the third term at the right-hand side, by (38), we get

⎛

⎝
∑

|k|≤ j

λk(w)(PM − f )2(xk)

⎞

⎠

1/2

≤ ‖( f − PM )
√

w‖2

+ C√
M

1/M∫

0

ϕ( f − PM , t)√w,2

t3/2 dt.

Now, since (see [14, p. 280])

1/M∫

0

ϕ( f − PM , t)√w,2

t3/2 dt ≤ C
1/M∫

0

r
ϕ( f, t)√w,2

t3/2 dt
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and, by (13),

‖( f − PM )
√

w‖2 ≤ C√
M

1/M∫

0

r
ϕ( f, t)√w,2

t3/2 dt,

we obtain

⎛

⎝
∑

|k|≤ j

λk(w)(PM − f )2(xk)

⎞

⎠

1/2

≤ C√
M

1/M∫

0

r
ϕ( f, t)√w,2

t3/2 dt.

Then inequality (37) follows. ��
In particular, from Theorem 5, we deduce

‖[ f − L∗
m(w, f )]√w‖2 ≤ C

ms
‖ f ‖Z2

s (
√

w), f ∈ Z2
s (

√
w), s > 1/2,

where C is independent of f and m.
If s ≥ 1 is an integer, the Zygmund norm can be replaced by the Sobolev one.
Namely, in these function spaces, the “truncated” Lagrange process converges with

the order of the best polynomial approximation. This is false for the ordinary interpo-
lating polynomial.

5 Fredholm integral equations of the second kind in C√
w

In this section we are going to show a further application of the results of Section 3.
Let us consider the following Fredholm integral equation of the second kind

f (x) − λ

1∫

−1

k(t, x) f (t)w(t)dt = g(x), x ∈ (−1, 1), (39)

where w(x) = e−(1−x2)−α
, α > 0, λ ∈ R, and k and g are known functions.

With u(x) = √
w(x), we are going to study the Eq. (39) in the space Cu defined

in Sect. 2. Then we assume that g ∈ Cu . While, concerning the kernel k(t, x), letting
Ft (x) = u(t)k(t, x) and Fx (t) = u(x)k(t, x), we assume, essentially, Ft , Fx ∈ Cu

uniformly with respect to t and x , respectively. To be more precise, recalling the
definition of Cu , we assume that, for arbitrary a, b ∈ (−1, 1),

⎧
⎨

⎩

lim|x |→1
sup
|t |≤1

Ft (x)u(x) = 0

lim
h→0

sup
|t |≤1

|Ft (x + h) − Ft (x)| = 0, x ∈ [a, b] ⊂ (−1, 1).
(40)
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We make analogous assumptions for Fx (t), i.e.,

⎧
⎨

⎩

lim|t |→1
sup
|x |≤1

Fx (t)u(t) = 0

lim
h→0

sup
|x |≤1

|Fx (t + h) − Fx (t)| = 0, t ∈ [a, b] ⊂ (−1, 1).
(41)

Hence, under the previous conditions, the kernel k(t, x) and/or the right-hand side
g(x), for |x | → 1, can increase exponentially and, till now, for such cases, numerical
methods based on the polynomial interpolation are unknown in literature. Setting

(K f )(x) = λ

1∫

−1

k(t, x) f (t)w(t)dt, (42)

Equation (39) can be rewritten as

(I − K ) f = g

and it is easy to verify that

‖K‖Cu→Cu ≤ 2|λ| sup
x,t∈[−1,1]

u(t)|k(t, x)|u(x) < C < +∞.

In order to approximate the solution of (39) (when it exists), we are going to use a
Nyström method. To this end, we introduce the sequence of operators {Km}m ,

(Km f )(x) = λ
∑

|k|≤ j

λk(w)k(xk, x) f (xk) (43)

which is obtained by applying the truncated Gaussian rule (20) to (K f )(x) given by
(42). Then we are going to solve in Cu the equations

fm(x) − (Km fm)(x) = g(x), m = 1, 2, . . . . (44)

Multiplying both sides of (44) by u(x), collocating at the quadrature knots and letting
ak = ( fmu)(xk), bk = (gu)(xk), |k| ≤ j, we obtain the linear systems

ai − λ
∑

|k|≤ j

u(xi )

u(xk)
λk(w)k(xk, xi )ak = bi , |i | ≤ j, m = 1, 2, . . . , (45)

in the unknowns ai . If (45) is unisolvent and (a1, . . . , a j )
T is its solution, then (44)

together with (43) define the Nyström interpolant

fm(x) = λ
∑

|k|≤ j

λk(w)

u(xk)
k(xk, x)ak + g(x) (46)
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that we will compare with the solution of the system (39) (when it exists) in the norm
of Cu . Notice that the matrix of coefficients of system (45) has dimension 2 j instead
of m (if we had used the Gaussian rule (14)) and this produces a reduction of the
computational cost.

In order to show the stability and the convergence of the method we need the
following lemma.

Lemma 1 If the kernel k satisfies assumptions (40) and (41), then the sequence of
operators {Km}m strongly converges to K and is collectively compact.

Proof In order to prove the strong convergence of {Km}m to K in Cu we use (23).

Then, for every f ∈ Cu , with M =
⌊(

θ
θ+1

)
m

⌋
and β = 2α

2α+1 , we have

|[(K f )(x) − (Km f )(x)]u(x)|
≤ Cu(x)EM ( f k(·, x))w,∞ + Cu(x)e−cMβ ‖ f k(·, x)w‖∞, (47)

where C �= C(m, f, k) and c �= c(m, f, k).
Letting Gx (t) := f (t)u(x)k(t, x) = f (t)Fx (t), if we prove that Gx ∈ Cw uni-

formly with respect to x , i.e.,

⎧
⎨

⎩

lim|t |→1
sup
|x |≤1

Gx (t)w(t) = 0

lim
h→0

sup
|x |≤1

|Gx (t + h) − Gx (t)| = 0, t ∈ [a, b] ⊂ (−1, 1),

then the right-hand side of (47) will tend to zero as m → ∞. Now, we have

|Gx (t)w(t)| = | f (t)u(t)Fx (t)u(t)| ≤ ‖ f u‖∞ sup
|x |≤1

Fx (t)u(t)

and, by virtue of the assumption (41), we deduce

lim|t |→1
sup
|x |≤1

Gx (t)w(t) = 0.

Moreover, letting −1 < a′ < a < b < b′ < 1 and t ∈ [a, b], we can choose h such
that t + h ∈ [a′, b′] and we obtain

|Gx (t + h) − Gx (t)| ≤ | f (t + h)||Fx (t + h) − Fx (t)| + |Fx (t)|| f (t + h) − f (t)|

and

sup
|x |≤1

|Gx (t + h) − Gx (t)| ≤ ‖ f ‖L∞([a′,b′]) sup
|x |≤1

|Fx (t + h) − Fx (t)|
+ sup

|x |≤1
‖Fx‖L∞([a,b])| f (t + h) − f (t)|.
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Therefore we get

lim
h→0

sup
|x |≤1

|Gx (t + h) − Gx (t)| = 0, t ∈ [a, b] ⊂ (−1, 1),

taking into account the assumptions on Fx (see (41)) and since f ∈ Cu .

Now we prove the collective compactness of the set {Km}m , i.e., the relative com-
pactness of the set

S = {Km f ∈ Cu : m ≥ 1 and ‖ f u‖∞ ≤ 1}

in Cu that is a complete space. This is equivalent to the limit condition

lim
N

sup
m

sup
f ∈Cu

EN (Km f )u,∞ = 0. (48)

On the other hand, as a consequence of Theorem 1 with r = 1, w = u and p = +∞,

condition (48) is equivalent to say that the function (Km f )(x) belongs to Cu uniformly
with respect to the function f ∈ Cu and to the parameter m = 1, 2, . . . , i.e.,

⎧
⎨

⎩

lim|x |→1
u(x)(Km f )(x) = 0

lim
h→0

|(Km f )(x + h) − (Km f )(x)| = 0, x ∈ [a, b] ⊂ (−1, 1)
(49)

hold true uniformly with respect to f and m. But these last conditions are conse-
quence of the chosen quadrature rule and of the assumptions on Ft . In fact, recalling
that λk(w) ∼ 	xkw(xk) (see (11)), where the constants in “∼” are independent of m
and k, we have

|u(x)(Km f )(x)| =
∣
∣
∣
∣
∣
∣

∑

|k|≤ j

u(x)k(xk, x) f (xk)λk(w)

∣
∣
∣
∣
∣
∣

≤ C
∑

|k|≤ j

	xk |( f u)(xk)||u(xk)k(xk, x)|u(x)

≤ C‖u f ‖∞

⎛

⎝
∑

|k|≤ j

	xk

⎞

⎠ u(x) sup
|t |≤1

|Ft (x)|, (50)

where C �= C(m, f ). Therefore, using (40), we have

lim|x |→1
sup

m
sup

‖ f u‖∞=1
|u(x)(Km f )(x)| ≤ C lim|x |→1

u(x) sup
|t |≤1

|Ft (x)| = 0

and then the first limit condition in (49) is fulfilled.
Moreover, in every interval [a, b] ⊂ (−1, 1), we have
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|(Km f )(x + h) − (Km f )(x)|
≤ C

∑

|k|≤ j

	xk |(u f )(xk)|u(xk)|k(xk, x + h) − k(xk, x)|

≤ C‖u f ‖∞ sup
|t |≤1

|Ft (x + h) − Ft (x)|,

where C �= C(m, f ) and h is “small”. Hence, using again (40), we obtain

lim
h→0

sup
m

sup
‖ f u‖∞=1

‖(Km f )(· + h) − (Km f )‖L∞[a,b]

≤ C lim
h→0

sup
|t |≤1

‖Ft (· + h) − Ft‖L∞[a,b] = 0

and also the second limit condition in (49) is verified. ��
Now we can prove the stability and the convergence of the method.

Theorem 6 Let us assume that g ∈ Cu and the functions Ft (x) and Fx (t) satisfy (40)
and (41), respectively. Then, if K er(I − K ) = {0} in Cu, for a sufficiently large m
(say m ≥ m0), the systems (45) are unisolvent and the condition numbers of their
matrices A2 j , j = j (m), are independent of the dimension 2 j . Moreover, the Nyström
interpolants fm converge to the exact solution f , i.e.,

lim
m

‖( f − fm)u‖∞ = 0. (51)

In particular, if, for some 0 < s ∈ R, g ∈ Z∞
s (u),

sup
|x |≤1

‖Fx‖Z∞
s (u) ≤ C < +∞ and sup

|t |≤1
‖Ft‖Z∞

s (u) ≤ C < +∞, (52)

then the estimate

‖( f − fm)u‖∞ ≤ C
ms

(

‖ f u‖∞ sup
|x |≤1

‖Fx‖Z∞
s (u) + ‖ f ‖Z∞

s (u) sup
|x |≤1

‖Fx‖∞

)

, (53)

holds true, where C �= C(m, f ).

Note that, if s is a positive integer the Zygmund norm can be replaced by the Sobolev
norm.

Proof Under the assumptions (40) and (41), by virtue of Lemma 1, the sequence
{Km f }m is collectively compact and strongly convergent to K . Then K is compact
and the Fredholm alternative holds true. Therefore, the assumption K er(I − K ) = {0}
implies that the Eq. (39) admits a unique solution in Cu . Moreover, by Lemma 1 and
inequality (50), we have

sup
m

‖Km‖Cu→Cu ≤ C < ∞ (54)
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and

lim
m

‖(K − Km)Km‖Cu→Cu = 0.

Hence, using [1, Theorem 4.1.1] or [17, Theorem 2.1], for m ≥ m0, the operators
(I − Km)−1 exist and

‖(I − Km)−1‖Cu→Cu ≤ 1 + ‖(I − K )−1‖Cu→Cu ‖Km‖Cu→Cu

1 − ‖(I − K )−1‖Cu→Cu ‖(K − Km)Km‖Cu→Cu

≤ C < +∞. (55)

Consequently, for m ≥ m0, both the equations (44) and the systems (45) are uni-
solvent. Moreover, proceeding as in [1, pp. 112–113], by (54) and (55), we deduce
that

cond(A2 j ) ≤ cond(I − Km) ≤ C < +∞, C �= C(m).

Now, using again Lemma 1, we deduce also (51), being (see [1, p. 108])

‖( f − fm)u‖∞ ∼ ‖(K f − Km f )u‖∞.

In order to prove (53), we note that the assumptions on g and Fx imply f ∈ Z∞
s (u).

Then, starting from (47), we use the inequality

u(x)EM ( f k(·, x))w,∞ ≤ EN (Fx )u,∞‖ f u‖∞ + 2‖Fx u‖∞EN ( f )u,∞,

where N = �M/2� ∼ m and Fx (t) = u(x)k(t, x). Finally, recalling that for any
G ∈ Zs(u), by Theorem 1, we have

‖G‖Zs (u) ∼ ‖Gu‖∞ + sup
k≥1

ks Ek(G)u,∞,

making easy computations, we deduce (53). ��

6 Numerical examples

In this section we show some numerical tests concerning the Gaussian rule and the
Nyström method for some special Fredholm integral equations. All the computations
have been performed in the Mathematica system, using double machine precision.

We note that w(x) = e−(1−x2)−α
, α > 0, is not a classical weight and the coeffi-

cients of the three-term recurrence relation of the corresponding orthonormal polyno-
mials are unknown. Then, we have built a suitable algorithm for the computation of
the zeros of the polynomials pm(w) and of the Christoffel numbers. Essentially, such
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an algorithm consists in computing the moments

μk =
1∫

−1

xkw(x)dx, k = 0, 1, . . . ,

in extended arithmetic with high accuracy and, subsequently, in using the func-
tionsaChebyshevAlgorithm andaGaussianNodesWeights of the software
package OrthogonalPolynomials (see [2]).

We want to emphasize that the Gaussian rule in Sect. 3 can be used to compute
integrals of the form

1∫

−1

f (x)w(x) dx ,

where f w is a Riemann integrable function, which means that f can increase expo-
nentially at the endpoints ±1. But, as one of the referees has observed, if the function
f is bounded, the rule is useful in order to approximate integrals of functions decaying
exponentially at ±1. Since this case has some interest in the applications, we will give
some examples in this regard.

At this point a brief discussion about the quantities am and j = j (m) is useful. The
Mhaskar–Rahmanov–Saff number am = am(

√
w) is implicitly defined as the positive

root of

m = 2α

π

1∫

0

a2
mt2

(1 − a2
mt2)α+1

dt√
1 − t2

= α

2
a2

m 2 F1

(

α + 1,
3

2
, 2, a2

m

)

,

where 2 F1 denotes the hypergeometric function and, at the moment, a simple analytic
expression for am is not available. Then, for α > 0 fixed and for different values of
m, we use approximate values of am , obtained by the bisection method. Some of them
are shown in Table 1.

Moreover, as already mentioned in Sect. 2, the relation

C1m− 1
α+1/2 ≤ 1 − am ∼ C2m− 1

α+1/2

holds with α > 0 fixed, m sufficiently large and C1, C2 positive constants independent
of m. Accordingly, if we fix m the number am decreases as α increases, and viceversa
if we fix α we need to choose m sufficiently large to obtain a numerically appreciable

interval [−am, am]. For instance, if m > Ce
α+1/2

p we have am > 1/p with p > 1 a
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Table 1 Different values of the
number am = am (

√
w)

α m = 16 m = 128 m = 512

1 0.9523 0.9877 0.9950

5 0.6547 0.7702 0.8241

50 0.2376 0.2992 0.3346

100 0.1694 0.2142 0.2403

500 0.0762 0.0968 0.1088

1000 0.0539 0.0685 0.0771

fixed integer number. Furthermore, we recall that the Mhaskar–Rahmanov–Saff num-

ber am(σ ), related to the weight σ(x) = e−e(1−x2)−α

satisfies (see [7, p. 33])

1 − am(σ ) ∼ (log m)−1/α.

On the other hand, for any fixed α, the interval [−am, am], am = am(
√

w) contains
the m zeros of pm(w), which are not all arcsin distributed. While every subinterval
[−aθm, aθm], 0 < θ < 1 fixed, contains only the zeros of pm(w), which are arcsin

distributed w.r.t. the interval [−am, am], i.e. xk+1 − xk ∼
√

a2
m−x2

k

m .
Thus, the “truncation” consists essentially in omitting the terms related to the zeros

which are not arcsin distributed w.r.t. [−am, am].
In conclusion, from the numerical point of view, the interval [−am, am] cannot be

too small. Then the parameter α has to be fixed such that m is not too large.
Concerning the truncation index j = j (m) defined in (6), we give here another

definition, equivalent to (6) but more suitable from the numerical point of view.
Since the Christoffel numbers λk(w), satisfy the equivalence λk(w) = λm,k(w) ∼
w(xk)(xk+1 − xk), for every fixed m, we define the index j as follows:

j = min
0<k≤�m/2�{k : λm,k(w) < toll}, (56)

being toll the precision to be achieved in the computations. Obviously, we can have
j = �m/2� if m is small. But, if m is sufficiently large, this definition is equivalent to
(6) in the sense that there exists a θ ∈ (0, 1) such that x j−1 < aθm ≤ x j .

Now, we want to observe that the Gauss–Legendre quadrature rule is not very
efficient for computing integrals of the form

1∫

−1

f (x)w(x)dx .

The Gaussian rule proposed in Sect. 3 converges faster, as the following numerical
example shows.
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Table 2 The integral (57) with
α = 1/2 approximated by the
rules I P

m and I L
m

m I P
m I L

m

4 0.129 0.1

8 0.1299289624 0.1

16 0.129928962481226 0.1299

32 − 0.12992

64 − 0.12992896

128 − 0.12992896248

256 − 0.129928962481226

Table 3 The integral (57) with
α = 50 approximated by the
rules I P

m and I L
m

m I P
m I L

m

4 0.07236909 0.0

8 0.072369091024665 0.0

16 − 0.07

32 − 0.07

64 − 0.07236

128 − 0.07236909

256 − 0.07236909102466

512 − 0.072369091024665

Example 1 We consider the following integral

1∫

−1

cos(πx)e−(1−x2)−α

dx . (57)

Denoting by I L
m and I P

m the Gauss–Legendre formula and the Gauss–Pollaczeck-
type rule defined in Sect. 3, respectively, we obtain, for α = 1/2 and α = 50, the
results in Tables 2 and 3, respectively (the symbol “–” means that the machine precision
has been achieved). In particular we have chosen toll = 2.22e − 16 because all the
computations have been performed in double arithmetic. Since f (x) = cos(πx) is a
very smooth function, we obtain the machine precision with small values of m, and
then the truncation is not made.

Unlike the previous example, the next one deals with the case of less smooth func-
tions.

Example 2 Let us consider the following integral

1∫

−1

| sin(πx)|5/2e−(1−x2)−50
dx . (58)
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Table 4 The integral (58)
approximated by the rule I P

m
m I P

m

5 (2 j = 5) 0.19e − 2

10 (2 j = 10) 0.194e − 2

25 (2 j = 25) 0.1946e − 2

50 (2 j = 46) 0.1946e − 2

100 (2 j = 82) 0.194642e − 2

200 (2 j = 146) 0.1946424e − 2

300 (2 j = 204) 0.1946424e − 2

400 (2 j = 262) 0.19464245e − 2

In Table 4 we show the approximate values of the integral obtained using the Gaussian
rule truncated at the index j as in (56) with toll = 2.22e − 16. We note that, since
the function | sin(πx)|5/2 belongs to Z∞

5/2 ⊂ C0([−1, 1]), by (15) and the unweighted

Jackson theorem, the theoretical order of convergence of the rule is m−5/2.

It is interesting to show an effect of the “truncation” on the Lagrange interpolation.

Example 3 Let w(x) = e−(1−x2)−5
and denote by

�m(w, x) = √
w(x)

∑

|k|≤�m/2�

|lk(w, x)|√
w(xk)

, x ∈ (−1, 1) ,

and

� j (w, x) = √
w(x)

∑

|k|≤ j

|lk(w, x)|√
w(xk)

, x ∈ (−1, 1) ,

with m ∈ N, the Lebesgue functions related to the Lagrange interpolation processes
{Lm(w, f, x)}m and {L∗

m(w, f, x)}m , respectively. The process {L∗
m(w, f, x)}m is

truncated at the index j as in (56) with toll = 10−3. In Fig. 1 we show the graphs
of � j (w, x) and �m(w, x) for m = 40 and x ∈ (−1, 1). As one can see, the func-
tion � j (w, x), unlike the function �m(w, x), drastically decays for |x | > 0.5, since
� j (w, xk) = 0 for |k| > j .

Let us now show some examples concerning Fredholm integral equations. First, we
consider the case in which the known function g has exponential singularities at ±1.

Example 4 Let the following Fredholm integral equation of the second kind

f (x) −
1∫

−1

(
x5 − t3 + 1

x2 + t2 + 1

)

f (t)e−(1−t2)−50
dt = e(1−x2)−1/4

(59)
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1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 1 The Lebesgue functions � j (w), truncated with j = 11 (toll = 10−3) (left), and �m (w) without
truncation (right)

Table 5 Weighted Nyström
interpolants ( fmu)(x) at the
points x = −0.2 and x = 0.1

m ( fmu)(−0.2) ( fmu)(0.1)

4 (2j = 4) 0.0629433335 1.286396841

8 (2j = 8) 0.062943333593031 1.286396841945846

1.0 0.5 0.5 1.0

0.5

1.0

1.5

1.0 0.5 0.5 1.0

3.5

4.0

4.5

5.0

Fig. 2 The weighted Nyström interpolant fmu (left) and the unweighted Nyström interpolant fm (right)
for m = 4

be given. Since ‖K‖Cu→Cu < 1, with u(t) = e− 1
2 (1−t2)−50

, the equation (59) admits a

unique solution in Cu, but it is unknown. The kernel g(x) = e(1−x2)−1/4
is unbounded

for |x | → 1, but the conditions (52) of Theorem 6 are fulfilled for an arbitrary large
s. Applying the numerical method (45)-(46) to the integral equation (59), we get an
approximation of the weighted solution in machine precision by solving a linear sys-
tem of order 8 (see Table 5). We have chosen toll = 2.22e − 16 and then j = �m/2�,
since m is small.

In Fig. 2 we show the graph of the Nyström interpolant obtained for m = 4.
The condition numbers in infinity norm of the matrices of the linear systems (45)

are less than 1.2.

Let us consider the case of Fredholm integral equations having a kernel with expo-
nential singularities at ±1.
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Table 6 Weighted Nyström
interpolants ( fmu)(x) at the
points x = −0.9 and x = 0.5

m ( fmu)(−0.9) ( fmu)(0.5)

5 (2j = 5) 0.02448 0.0417

10 (2j = 10) 0.024480 0.0417

25 (2j = 25) 0.02448075 0.041700

50 (2j = 50) 0.024480756 0.04170018

100 (2j = 100) 0.024480756 0.041700182

200 (2j = 192) 0.02448075680 0.04170018227

1.0 0.5 0.5 1.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1.0 0.5 0.5 1.0

0.1

0.2

0.3

0.4

Fig. 3 The weighted Nyström interpolant fmu (left) and the unweighted Nyström interpolant fm (right)
for m = 5

Example 5 Let the following Fredholm integral equation of the second kind

f (x) − 1

5

1∫

−1

e
1

4
√

1−x2 ex+t f (t)e−(1−t2)−1
dt = | arctan x |7/2 (60)

be given. Since ‖K‖Cu→Cu < 1, with u(t) = e− 1
2 (1−t2)−1

, the Eq. (60) admits a unique

solution in Cu, but it is unknown. The kernel k(x, t) = e
1

4
√

1−x2 ex+t is unbounded for
|x | → 1, but the conditions (52) of Theorem 6 are fulfilled for an arbitrary large s.
While the function at the right-hand side side of the equation belongs to Z∞

7/2(u). Then,
according to the theoretical expectation, we take m = 200 (2 j = 192) to achieve an
approximation of the solution with 11 exact decimal digits (see Table 6). As one can
see, the truncation is less evident for small values of α (in this case α = 1), having
chosen toll = 2.22e − 16.

In Fig. 3 we show the graph of the Nyström interpolant obtained for m = 5.

Let us consider the case in which the given functions are less smooth.

Example 6 The exact solution of the integral equation

f (x) − 1

2

1∫

−1

(|x | + |t |)3 f (t)e−(1−t2)−5
dt = |x |3
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Table 7 Weighted Nyström
interpolants ( fmu)(x) at the
points x = −0.4 and x = 0.5

m ( fmu)(−0.4) ( fmu)(0.5)

5 (2j = 5) 0.01936230 0.01520048

10 (2j = 10) 0.019362304 0.015200486

25 (2j = 25) 0.019362304 0.015200486

50 (2j = 42) 0.0193623047 0.0152004865

100 (2j = 70) 0.0193623047 0.01520048655

200 (2j = 118) 0.019362304780 0.015200486558

300 (2j = 164) 0.019362304780 0.0152004865582

1.0 0.5 0.5 1.0

0.005

0.010

0.015

0.020

1.0 0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 4 The weighted Nyström interpolant fmu (left) and the unweighted Nyström interpolant fm (right)
for m = 5

exists in Cu, with u = e
− 1

2(1−t2)5 , since ‖K‖Cu→Cu < 1, but is unknown. Since both
the kernel and the right-hand side are not very smooth functions, in fact they belong
to Z∞

3 (u), according to the theoretical expectation, we take m = 300 (2 j = 164) to
achieve an approximate solution with 12 exact decimal digits (see Table 7). The index
j is given by (56) with toll = 2.22e − 16.

In Fig. 4 we show the graph of the Nyström interpolant obtained for m = 5.
In this case the condition numbers of the matrices of the solved linear systems are

less than 1.003.

Finally, we remark that in all our numerical examples we have already obtained
several correct decimal digits for small values of m.
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