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1 INTRODUCTION  

1.1 THE VEGETATION STRUCTURE ROLE 

Vegetation Structure (VS) is a fundamental feature in environmental and 

agricultural sectors. It describes how the above-ground biomass (AGB) (Laurin 

et al., 2019; Segura and Kanninen, 2005) is distributed over the earth surface (Hao 

et al., 2007; Song et al., 1997; Spies, 1998) and reflects how plants search 

resources to growth. VS is also the most used feature to assess site's productivity, 

not only in ecology research, but also in forest/ agricultural management (Momo 

et al., 2021; Ochal et al., 2017; Skovsgaard et al., 1998). In fact, it is often used 

to define land cover type (Lund, 2002), to assess vegetation quality (Sillett et al., 

2010) and vegetation ecosystem services (Hanewinkel et al., 2011) or to quantify 

biodiversity (Bohn and Huth, 2017; Martins et al., 2017). Moreover, it can be a 

good proxy of vegetation status and it is helpful in forecasting plants development 

and succession (Purves et al., 2008).  

Nowadays, forests and crops have a crucial role in greenhouse gas sequestration 

(Pan et al., 2011) and in carbon market (Tavoni et al., 2007) highlighting the need 

of accurate VS measuring. For example, for forest inventories purposes VS is 

explored by measuring tree height and tree density and jointly adopted to estimate 

actual biomass volume (Neumann et al., 2016; Ter-Mikaelian and Korzukhin, 

1997, p.; Zianis et al., 2005). Thus, a precise VS computation represents a 

necessary step for the estimation of carbon storage at local, national, and global 

scales. Moreover, VS monitoring allows to detect changes both in spatial and 

time domains permitting to analyse vegetation dynamics. Ordinarily, VS is 

classified in two main types (Fig.1):  

(a) Vertical Structure. It describes how the plants colonize the epigean space 

determining different canopy layers. Vertical structure resulted from 

growing stage and disturbance effects. Canopy layers are bounded in 
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ideal planes, these strata regulate light access and therefore the 

competition between plants. Ordinarily, over crops only one canopy layer 

is present while in forest many layers are often present related to different 

cohorts. Vertical structure resulted by species diversity; monoplane 

canopy is often related to monospecific ecosystem while multiplane 

canopy is generated by different species association or different ages. 

Vertical structure also affects local environments factors (i.e., light 

availability, precipitation, wind) conditioning the new vegetation 

growing and succession.  

(b) Horizontal Structure. It describes how the plants cover the ground 

creating more or less homogeneous patterns across the landscape. 

Horizontal structure and its spatial distribution is affected by many 

factors related to the ecological behaviour, microclimate, terrain features 

and species propagation strategy. In the first growing phase, horizontal 

structure depends on dissemination strategy and optimal nursery site. 

Subsequently, horizontal structure changes due to plants relationship 

(competition, species requirements). Homogeneous horizontal structure 

is common in crops due to human management, while is rare in forest 

where random or clustered structures are generally more common and 

are related to a greater size diversity and canopy gap presence. These 

features contribute to differentiate local environments within the same 

ecosystem improving the biodiversity (Piussi, 1994).  
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Figure 1. (a) Vertical structure of a forest; (b) Horizontal structure of a forest. 

 

Both horizontal and vertical structure are characteristic features of a given 

vegetated ecosystem. For example, crops have a very homogeneous horizontal 

structure since they have been sown densely by farmer in order to optimize yield 

and harvesting. Also crop vertical structure is quite homogeneous until local 

anomalies or disturbances change the plants primary growth (e.g., nutrients/water 

deficit, disease or insect attack). Otherwise, natural vegetation (like forests or 

pastures) grows without human management, therefore no direct controls can be 

addressed to optimize benefits provided by these ecosystems. Other factors  

affecting VS are: the disturbance history and seeds dispersion strategy (Piussi, 

1994). The former, changes VS by removing plants or their parts (e.g., crowns, 

branches, leaves) opening gaps in the canopy and differently affecting mortality 

in space (disturbance pattern) and in time according to severity (delayed effects). 

Otherwise, seeds dispersion strategy influences where plant starts to grow. For 

example, pioneer species like Larch colonize mineral soils exposed after soil 

erosion (Da Ronch et al., 2016) determining a patchy colonization (Albert et al., 

2008); while Lodgepole pine tends homogeneously seeding after a fire (Pierce 

and Taylor, 2011). Finally, different environmental constrains like the 

topography (slope, aspect, altitude), competition, climate and soil proprieties 

affect VS spatial distribution (Lauenroth et al., 1993).  

h
 (

m
) 

30 

Easting Easting  

N
o

rt
h

in
g 

 

20 

10 

(a) (b) 



 

4 

 

In this context, the measurement of VS is essential to objectively quantify 

vegetation biomass and dynamics permitting to analyse the actual status and 

forecast future behaviour to maximize benefits from plants.    

In literature many methods were developed to measure VS at different scale of 

analysis, from large scale (high details) to small scale (low details). At large scale, 

the interest is focused on 3D features survey of single trees/crops or small 

vegetated areas (Hu and Li, 2020; Sperlich et al., 2014). Otherwise, small scale 

VS measure is often analysed at landscape level or over large areas (Graham and 

Blake, 2001). Adopted approaches range from traditional ground-based direct 

survey (La Marca, 2017; Piussi, 1994) to new instruments adoption based on 

digital analysis (Dandois and Ellis, 2010). The former approaches are the widely 

adopted ones in forestry and are based on protocols aiming at defining vertical 

and horizontal layers and elements (Assmann, 2013; La Marca, 2017; Laar and 

Akça, 2007; Piussi, 1994). The spatial structure can be quantified in terms of 

spatial distribution, species diversity, and variability of plants dimensions. The 

indices are either distance-independent or distance-dependent. The first group 

assess VS without any spatial reference, the second group assess the 

neighbourhood relations, accounting for small-scale differences in biodiversity. 

An exhaustive review of most adopted metrics and approaches based on ground 

survey were summarized by Pommerening (2002). 

Currently, new technologies have been developed to measure VS mainly based 

on remote sensing. LiDAR (Light Detection And Ranging) (Dubayah and Drake, 

2000), digital photogrammetry (Iglhaut et al., 2019; Tsouros et al., 2019, p.) and 

Spaceborne-sensors were extensively proposed to measure crops (Wójtowicz et 

al., 2016) or forest VS (Vali et al., 2020). 

 

 



 

5 

 

1.2 MONITORING VEGETATION USING SAR DATA 

Especially spaceborne sensors allow a great data availability useful to monitor 

through the time and over large areas vegetation proprieties.  Despite many works 

in literature involving points cloud by LiDAR and photogrammetry were 

developed to explore the 3D features of vegetated areas, these techniques proved 

to fail when large areas must be monitored or if a multitemporal analysis must be 

exploited (Richardson and Moskal, 2011). Conversely, if one has to work under 

such requirements, the only alternative is to adopt satellite remote sensing 

(Shoshany, 2000; Xue and Su, 2017). In this framework, space-borne Earth 

observation missions well-fit vegetation monitoring requirements making 

possible to map and detect wide areas, allowing a near-early change detection and 

a frequent updating of vegetation properties (Hüttich et al., 2014; Shanmugapriya 

et al., 2019). Synthetic aperture radar (SAR) is known to be to be useful for 

estimating vegetation geometric features recording data in all-weather condition 

included equatorial/tropical ones where clouds are almost constantly over (Liu et 

al., 2019; Sivasankar et al., 2018). Radar (radio detection and ranging) signal 

scattering is determined largely by geometric properties, such as shape and 

surface roughness, and by moisture content (Richards, 2009). As a result of all of 

these effects, radar imagery can capture a different set of properties of the region 

being imaged than optical data (Gerstl, 1990). 

Despite optical data are widely used for mapping vegetation, radar still appears 

to be underused, in spite of its favourable peculiarities: independence from cloud 

coverage, haze layers and smoke plumes, sensibility to geometrical features of 

canopy and water content. Precisely in Italy (but also over the Alps), cloud cover 

is higher during spring and autumn making unavailable optical images exactly 

during the two most crucial phenological moments: the starting and ending of 

growing season. At the same time, in equatorial/ tropical areas clouds still persist 

for long time compromising optical data collection. 
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This condition affects the monitorability of vegetation both in Alpine and tropical 

contexts by optical remote sensing, making spaceborne radar proper to fill this 

gap. Moreover, while optical data strictly depend on surface and top of the canopy 

conditions, SAR signal can moderately penetrate tree crowns, making it possible 

to investigate moisture and structural properties of vegetated volumes (Szigarski 

et al., 2018). Changes in VS is one of the key features that allows detection and 

characterization of vegetation by SAR (Tanase et al., 2011). In particular, 

polarization state of SAR backscattered electro-magnetic signal appears to be a 

more sensible tool for analyzing vegetation geometrical properties than optical 

data and, therefore, it can be adopted to detect and monitor disturbance-induced 

effects on vegetation. SAR polarimetry is the technique that allows to analyse the 

polarization state of the electromagnetic signal backscattered by earth surface to 

the sensor. In particular, vegetation canopy determines the so-called volume 

scattering mechanism. The interaction with vegetation canopy generates a 

depolarization of electromagnetic wave. In fact, canopy elements (supposed as 

cylinder-like objects) induce a rotation of the polarization vector depending on 

dipoles orientation (Richards, 2009) (Fig. 2). Depolarization increases with 

canopy density due to random orientation of branches/twigs: the effect is a strong 

backscatter of the cross-polarized band. Differently, a cross-polarized signal 

show lower values while moving to sparse vegetation or bare soil conditions 

(Ulaby et al., 1981).  
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Figure 2. SAR signal depolarization induced by vegetation canopy elements (modified from 

Richards, 2009). 

 

A disturbance (like forest fire, stems breakage, crop lodging by storm or crop 

flooding) could partially, or completely, remove tree canopy leaving stems and 

ground exposed. The disturbance effects on backscattering also depends on 

polarization; cross-polarized signal (HV or VH - horizontal/vertical 

transmitted/received signal) is known to be more sensitive to volume features of 

scatterers. A decrease of cross polarized backscattering might be observed as a 

consequence of canopy volume loss caused by fire (Minchella et al., 2009); 

instead, variations of the co-polarized backscattering generally depends on the 

rate of exposed soil within the pixel (Imperatore et al., 2017). Vertical 

polarization is known to be more sensitive to objects with a prevailing vertical 

V 
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size, e.g. tree stems, that usually are not completely destroyed for example during 

a fire (Bernhard et al., 2012); double bounce and surface scattering effects tend, 

in fact, to become important where signal more easily penetrate tree crowns and 

reach the ground.  

In literature, many approaches were adopted to monitor vegetation disturbances 

based on SAR polarimetry (Lee and Pottier, 2017). For example, the polarimetric 

decomposition (Cloude and Pottier, 1996) derives second-order statistics from 

the covariance matrix, i.e. Entropy - H, anisotropy - A, alpha -  permitting to 

assess changes in backscattered signal. Unfortunately, such an approach is based 

on raw (complex values) SAR data processing, making it difficult to approach 

multitemporal analysis over large areas. A possible more operational alternative 

is the one based on the computation of simple polarimetric indices like Radar 

Vegetation Index (RVI) (Kim et al., 2011) and Cross Ratio (CR) (Paloscia et al. 

1999). The ratio of dual-pol bands, typically one co-polarized and the other cross-

polarized, (e.g. VV and VH) proved to be effective in describing backscattering 

behaviour of vegetation providing a measure of the depolarization level. CR 

showed significant linear correlations with vegetation density, Normalized 

Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Vegetation 

Water Content (VWC) (De Petris et al., 2022; Kim et al., 2011; Vreugdenhil et 

al., 2018). In the multitemporal context, time series of optical-retrieved 

vegetation indices proved to effectively describe the effects of forest disturbances 

like fires (Telesca and Lasaponara, 2006).  In particular, the present availability 

of big and free archives of remotely sensed images like Google Earth Engine 

(GEE) allows to improve this kind of analysis by densifying time series over wide 

areas. Nevertheless, the literature about multitemporal analysis of disturbance 

dynamics trough the SAR imagery adoption is still limited (Belenguer-Plomer et 

al., 2019; Bourgeau-Chavez et al., 2002; Carreiras et al., 2020; Engelbrecht et al., 

2017; Gimeno et al., 2004; Kasischke et al., 1994; Lohberger et al., 2018; 

Verhegghen et al., 2016) and no works focusing on the post-disturbance 
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dynamics monitoring (i.e. severity and recovery processes) were extensively 

explored.   

Among SAR application and methods, SAR interferometry (InSAR) technique 

has been extensively adopted to generate digital elevation models (DEM), that 

are intended to provide a continuous representation of Earth topography, included 

vegetated areas. Theoretically speaking, radar interferometry can generate highly 

precise height estimates related to the difference of path length between scattered 

signals received by two properly positioned antennas (Hanssen, 2001). Therefore, 

InSAR technique is a promising tool to measure vegetation vertical structure as 

deeply reported in literature. In fact, many methods based on SAR interferometry 

were proposed to estimate vegetation height and can be summarized into three 

main categories: (a) Pol-InSAR methodology (Cloude et al., 2013; Garestier et 

al., 2007; Managhebi et al., 2018); (b) Coherence-based methodology (Askne and 

Santoro, 2005; J. I. Askne et al., 1997; Soja et al., 2014) and (c) Interferometric 

phase-based methodology (Romero-Puig and Lopez-Sanchez, 2021; Santoro et 

al., 2005). Unfortunately, many SAR missions (e.g. Sentinel-1, ICEYE-X, PAZ) 

are not suitable for (a) due to their lack of quad-pol channels that would be 

required (Ainsworth et al., 2008; De Petris et al., 2021). Approach (b) is mainly 

applied using tandem acquisition mode that guarantees a higher coherence over 

vegetation. Since the majority of SAR missions do not support tandem 

acquisition, coherence values over vegetation are generally low limiting this 

approach. Consequently, approach (c) appears to be the most promising because 

it is somehow consistent with technical feature of the majority of SAR missions 

acquiring in single- or dual- pole mode.  
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1.3 THE GAP 

SAR sensors allow to explore different vegetation features according to operation 

wavelength (band) designed. For example, long wavelengths like L- or S-band 

(15 cm and 30 cm of wavelength respectively) allow to penetrate the canopy 

acquiring data about vegetation ground level and canopy scattering proprieties, 

while shorter wavelengths like X-band (2.5 cm wavelength) allow to retrieve 

information about upper canopy features. Unfortunately, shorter the wavelengths 

more sensitive is the signal to small variations introducing some uncertainties in 

processed data especially for InSAR techniques (Ferretti et al., 2007). C-band 

sensors allows a moderate penetration constituting a trade-off between different 

approaches and techniques involved during vegetation analysis by SAR data.  

Until 70’s, more than 30 spaceborne SAR missions were lunched recording a lot 

of data (Fig. 3). Despite this great availability of SAR missions some operative 

problems still affect SAR users’ community. The main issues are the following:  

(a) Imagery coverage.   

Few SAR missions, currently, are designed for the continuous earth 

observation. Therefore, available images have usually a small footprint 

compromising the spatial extent recorded by a single acquisition and 

finally negatively affect the temporal resolution and monitoring 

capability (Bovenga et al., 2018). As result, often entire earth zones are 

not surveyed.  

 

(b) Complex processing.  

According to Vollrath (2020) and Reiche (2016), the complexity of SAR 

data pre-processing is one of the main reasons for its slow uptake by a 

wider user community. In fact, SAR data are natively recorded as 

complex values (I/Q components) geocoded in SAR geometry (Range 

and Azimuth), making necessary signal focusing steps to generate a 

ready-to-use image. Moreover, due to SAR intrinsic acquisition 
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geometry many radiometric/geometric distortions are present, and a 

proper masking procedure is needed before any processing in order to 

remove unreliable observations and strengthen related deductions. 

 

(c) Data and Software availability.  

Although more than 30 SAR missions have provided data for different 

applications, their data access is not free to all users. Except commercial 

missions (e.g., ICEYE), the majority of SAR missions provide data after 

a formal request and for only research purposes, restricting the final 

potential users to only researchers. This fact limits the adoption of this 

kind data in operative contexts like the agro-forest ones, where institution 

or practitioners are often called to survey and properly process 

environmental data in order to plan/ manage natural resources.  

Furthermore, due to the complexity of data management, processing 

software were historically not free.  

The importance of open access and data sharing in general, and in 

particular for earth observation data, has been acknowledged by many 

authors (Borowitz, 2017; Turner et al., 2015), however the same attention 

has not yet been put on the importance of code sharing or open source 

software to manage these data. Many commercial software were 

developed to support user in SAR data processing. Some examples are: 

GAMMA (Werner et al., 2000),  ERDAS Imagine (Geosystems, 2004), 

SARscape (Sahraoui et al., 2006), PCI Geomatica (Geomatics, 2005); 

Matlab (Gorham and Moore, 2010). Unfortunately, despite the 

effectiveness of such software, their costs limited their adoption by a 

wider community of not-scientists. In this framework, free software 

could be a suitable choice for processing SAR data from a not-scientists 

due to their more availability, bur currently very few software or 

packages were developed (e.g. Orfeo toolbox by CNES, Python based 

routine, Sentinel Platform by ESA).     



 

12 

 

 

Figure 3. SAR missions timeline. Dotted line is the starting date of Ph.D. period.  

 

All these issues negatively affect the theological transfer into operative agro-

forestry sector of SAR data. In this framework it is clear how there is a gap 

concerning the use of SAR data and the development of standardize procedures 

to answer to operative agro-forest needs.  

Currently (2022), among the existing spaceborne SAR missions, Sentinel-1 (S1) 

stood out since beginning; its data were made openly available to the public via 

the Copernicus Open Access Hub (https://scihub. copernicus.eu/). Although the 

data of historic missions, such as ERS or ENVISAT, become progressively 

released as well, Copernicus Programme provides unrestricted access to every 

citizen throughout the world and to foster science, economic growth, and 

decision-making the European Union (Aschbacher, 2017). Besides the actual 

open availability of S1 data the SNAP software (Veci et al., 2014) is continuously 
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being developed by ESA (European Space Agency) to assist all users in the 

exploitation of the products provided within the Copernicus Programme. More  

than 500’000 downloads at 2019 (Braun, 2021) proved how SNAP is the most 

actively used open-source software in the domain of remote sensing. It not only 

allows basic operations of SAR pre-processing and analysis but also provides all 

necessary tools to properly manage the most adopted SAR data processing 

techniques.  
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2 THESIS AIMS AND FRAMEWORK  

Trying to fill the previous-mentioned gap, the thesis aims were aimed at exploring 

the potentialities and the limitations of S1 imagery for monitoring VS, longing 

for the technological transfer of proposed methodologies to local 

institutions/technicians involved in agro-forest resource management.  

To achieve these tasks, the thesis was structured as reported in figure 4.  

Two main parts according to the main approaches involved generally in remote 

sensing (Gomarasca, 2009) divide this manuscript: one aimed at qualifying the 

VS and its variation in time and space domains;  and the other aimed at 

quantifying VS by mainly measuring vegetation height.  

Four techniques were explored based on SAR signal proprieties:  

(a) Amplitude-based 

(b) Radar indices-based  

(c) Polarimetry-based 

(d) Phase-based 

Concerning (a), VS was explored by monitoring through S1 amplitude imagery 

how flood changes horizontal structure of crops (Section 4.1.1). Subsequently, a 

morphological model based on DTM (Digital Terrain Model), and open data was 

proposed to estimate the flood water depth over the crops and used to assess 

flood-related crops damage.  

Concerning (b), forest VS was explored using a multitemporal stack of radar 

index (i.e., cross-ratio) aiming at measuring VS change after a forest fire and 

measuring the VS recovery process (Section 4.2.1).  

Concerning (c), polarimetry was applied to S1 data to detect and map apple 

orchards damaged after a storm (Section 4.3.1). Scattering matrix was 
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decomposed to derive metrics useful in order to describe the VS variation induced 

by the trees breakage/uprooting.  

Concerning (d), the phase component of complex SAR signal was adopted to 

measure forest height by using the interferometric technique. Preliminary, a work 

(Section 5.2.1.) was proposed to define a method to proper select the 

interferometric pair and objectively set some operational parameters involving 

during the interferogram processing. Subsequently a new phase unwrapping-free 

approach was proposed in order to measure forest height by the jointly used of 

interferometric measures and levelling net adjustment approach (Section 5.2.2).   

Concurrently, two propaedeutic works were also here proposed. The first one 

(Section 3) is aimed at mapping SAR geometric distortions and their stability 

along time to assess which land use is more monitorable by S1 multitemporal 

approach. The second one (Section 5.1.1) gives an idea about the accuracy of 

ordinary ground-based tree height measures in order to proper compare forest 

heights obtained by proposed approach based on InSAR respect to the ones 

usually surveyed in field. 
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Abstract: Operational services based on SAR data from satellite missions are 

showing to have the potentialities of becoming a real scenario; 

nevertheless, the complexity of data pre-processing remains one of the 

main reasons for its slow uptake by a wider user community. Google 

Earth Engine (GEE) web-based platform allows an immediate access to 

SAR imagery (namely, Sentinel-1 – S1) making users able to directly 

focus on the expected application. SAR side-looking acquisition mode 

generates many geometric distortions within recorded images, 

especially in mountain areas, determining a different degree of 

reliability of deductions. Consequently, a mapping of these areas is 

desirable for a correct interpretation of derived information. In this 

work a trigonometry-based method for mapping was implemented in 

GEE. With reference to a time series made of 60 S1 images covering 

the whole Piemonte Region (NW Italy) in 2020, some maps of 

distortions were generated using the 30 m gridded SRTM DTM as 

topographic surface descriptor. S1 images, belonging to the analyzed 

time series, were acquired from both ascending and descending orbits. 

In particular, active/passive shadows, active/passive layover and 

foreshortening masks were computed and mapped. Distortion maps 

were finally intersected with land cover classes to test the correspondent 

degree of analysability by SAR data. The results show that such 

methodology can be proficiently used to mask unreliable observations, 

making possible to a priori be informed about the areas of a given 

territory that can be reasonably and reliably monitored by SAR data. 
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1. Introduction 

Satellite SAR (Synthetic Aperture radar) systems can provide significant 

contribution to land management, especially concerning mapping and 

characterization of surface geometric features. Nowadays, space programs (e.g. 

EU Copernicus) provide a huge amount of data that represent a powerful tool to 

support environmental research and territory management. Unfortunately, 

technological transfer appears to be still limited, but the development of services 

based on these data is moving to be an actual scenario (De Petris, Boccardo, 

Borgogno-Mondino 2019; De Petris et al. 2020; Sarvia, De Petris, and Borgogno-

Mondino 2020; De Petris, Sarvia, and Borgogno-Mondino 2020; Sarvia et al. 

2021). As explained in chapter 1.3 (see page 10), the complexity of SAR data 

pre-processing is one of the main reasons for its slow uptake by a wider user 

community. From this point of view, Google Earth Engine (GEE) web-based 

platform allows an immediate access to SAR imagery (namely, Sentinel-1 – S1) 

making users able to directly focus on the expected information (Gorelick et al. 

2017). However, the peculiar SAR side-looking acquisition determines many 

geometric distortions in the acquired image, especially in mountain areas. 

Therefore, geometric distortions mapping is a fundamental step while working 

with SAR data as required by the Committee on Earth Observation Satellites 

(CEOS) (Committee on Earth Observation Satellites 2020). Unfortunately, in 

spite of its powerful computational capability, GEE is not presently equipped 

with a tool providing these types of maps. Main SAR geometric distortions can 

be summarized in: layover, shadows, foreshortening. In the object space 

layover/shadow regions can be labelled as active and passive. Passive regions 

mapping requires a sequential search along the same across-track line (Kropatsch 

and Strobl 1990). Often, passive shadows are located at the end of the active 

shadow mostly caused by obstacles (e.g. a mountain) hiding the point along the 

sensor Line-Of-Sight (LOS). Another distortion type is the so-called 

foreshortening and occurs when the local terrain slope angle equals the local 

incidence angle causing a dramatically compression of a relief (mountain side) in 



 

24 

 

the image plane. Detection of these areas requires that target visibility from 

satellite is explored. Target visibility depends on the combination of local slope 

orientation with the acquisition geometry and mode of LOS. Non-ideal 

geometrical configurations may result in image geometric distortions that are 

strictly related with radiometric ones. In fact, slope modulates radar signal in a 

complicated way depending on slope steepness, aspect, land cover type, radar 

lighting geometry, wavelength and polarization (Ulaby, Moore, and Fung 1981; 

Richards 2009). In this context, radar-based monitoring applications have to take 

care about slope effects to mitigate, and compensate, for the geometric and 

radiometric distortions. These slope-induced effects majorly affect some land 

cover classes that ordinarily are located in steep slopes as forests or mountain 

bare soils/rocks. If dense time series are needed images from different look 

directions and incidence angles have to be properly combined. In (Hoekman and 

Reiche 2015), concerning biomass mapping from SAR imagery, for example, 

authors prove that an accurate estimate can be obtained only if a proper handling 

of slope effects is achieved. Radiometric distortions induced by SAR lighting 

geometry were explored by many authors. In particular, the majority of them 

analysed slope effects related to land cover classification (Atwood, Small, and 

Gens 2012) and bio-physical parameter estimation (Franklin et al. 1995; Castel 

et al. 2001; Luckman 1998; Beaudoin et al. 1995). Additionally, another 

important application sensible to SAR geometric distortions is radar 

interferometry, with special concerns about Persistent Scatterers Interferometry 

(PSI) or Small baseline subset interferometry (SBAS) techniques ordinarily 

adopted to monitor surface shifts. In layover and shadow areas, the application of 

both interferometric and non-interferometric techniques is difficult (Cigna et al. 

2014). Moreover, phase unwrapping fails in such areas. Consequently, the a-

priori detection of areas where these distortions are present is essential to plan 

SAR-based analyses, especially over hilly or mountainous regions. Moreover, 

assessment of the most suitable LOS geometry ensuring target visibility from 

sensor is strongly suggested when stacking long SAR images, especially when 

big data for small-scale analysis are required. These conditions are the ones that 
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deformations monitoring require, being based on a multitemporal approach. In 

this context, geometric distortions induce significant underestimation of surface 

deformation, or even hamper reflective targets identification over observed areas 

(Cigna et al. 2014; Cigna, Bianchini, and Casagli 2013).  

1.1. Literature Gaps and Study Aims  

Literature reports many methods concerning geometric distortions mapping. All 

of them are based on the adoption of a Digital Elevation Model (DEM) to describe 

local topography. Three main approaches can be recognized: (a) the distortion 

simulation method; (b) the range-ground plain compression factor method; (c) 

the angle-based method. (a) approach considers geometric distortions as an 

intrinsic error of SAR imaging, and distortion simulation is preferred to distortion 

correction; some examples of such an approach is proposed in (Richards 2009; 

Liu, Zhao, and Jezek 2004; Cascini, Fornaro, and Peduto 2010; Pourthie et al. 

2010) and implemented in some common SAR processing data software as SNAP 

(Sentinel Application Platform) vs 8.0 (LUIS Veci 2015). (b) method refers to 

the R topographic index (also known as pixel compression factor) representing 

the ratio between the pixel size in slant and ground range geometry. R-index 

values close to 1 mean a good visibility of the pixel and, consequently, no 

geometric distortion is present. Values lower than 0.4 indicate a compression of 

the pixel in slant range with respect to its actual ground size making it distorted. 

Some applications of this method are proposed in (Cigna et al. 2014; Notti et al. 

2011; Davide 2010). (c) method is a widely used and more formal one that relies 

on the assessment of the geometric conditions related to LOS and local terrain 

slope and aspect. Some applications of this method are reported by Kropatsch and 

Strobl (Kropatsch and Strobl 1990) that propose a layover and shadow mapping 

algorithm. Unfortunately, it suffers from some operational limits mainly related 

to some required parameters, as imaging time and nadir distance, whose 

approximated knowledge could lead to many uncertainties in mapping 

layover/shadow areas. Differently, Rees (Rees 2000) proposed a simpler 
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algorithm based on terrain slope computation from a suitable DEM. Planck 

(Plank et al. 2010) proposed a GIS-routine to accurately predict areas in which 

layover and shadowing will occur while using differential interferometry 

technique. Moreover, Colesanti (Colesanti and Wasowski 2006) proposed a 

method for simulating foreshortening and active layover/shadow, neglecting 

passive distortions. It is worth to remind that radar and map grids have nominally 

equal ground resolutions in flat terrain; this condition is not preserved in steep 

areas. It is known that slopes facing the sensor (fore slopes) can generate a single 

pixel in radar geometry, since all ground points show similar distance (time) from 

sensor. Conversely, in mountain back slopes (especially at their bottom) more 

pixels in radar geometry are placed in a single pixel in map geometry. One-to-

one relationships are called homomorphic, while many-to-one and one-to-many 

relationships are said heteromorphic (Small 2011). All angle-based approaches 

cannot account for heteromorphic relationships between map and radar geometry; 

nevertheless, many authors (Small 2011; Frey et al. 2012; Vollrath, Mullissa, and 

Reiche 2020) proved that angle-based approaches are very accurate if the 

topological relationship between SAR and terrain geometry is considered. This 

approach requires a back-and-forward computation from ground and radar spaces 

determining high computation times; moreover, it requires that the state vector of 

satellite orbit is available. In this theoretical context, the present work was aimed 

at exploring the possibility of obtaining time-series of radar distortions map 

specifically using GEE and its current available routines and dataset. The use of 

GEE instead of traditional SAR data processing software and routines, allows to 

process/map big data over wide areas that are particularly time-expensive while 

working with SAR time-series taking the advantage of the high GEE 

computational capability. With these premises, the above-mentioned angle-based 

approaches could appear not proper, since GEE does not make available the state 

vector of satellite orbit and the accessible S1 dataset is already supplied in ground 

geometry (geocoded). If one intended to, however, operate by GEE some 

simplifying assumptions must be necessarily introduced. It is authors opinion 

that, the availability of a map showing those areas that potentially suffer from 
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distortion can increase the consciousness of where S1 imagery can be effectively 

used and where, deductions, could present a too high degree of uncertainty. The 

geometric assumption about the theoretical stability of mapped areas along time 

can be assumed as true only if no bias is present in the processed data that are at 

the basis of this mapping. The multi-temporal analysis that the authors propose is 

specifically aimed at testing this condition under the hypothesis that the 

underlying landscape did not change. Consequently, the quantification of the 

number of times that the single pixel is recognized as ‘distorted’ has exactly this 

meaning: lower the number of times, lower the robustness of deduction. In other 

words, if the same pixel is sometimes mapped as distorted and some others as 

not-distorted, one can be alerted about the robustness of the data pre-processing 

step and about the declared accuracy of involved parameters (specifically the 

georeferencing ones).” Currently, no works about geometric distortion mapping 

using GEE can be found in literature, especially concerning the multitemporal 

analysis of such distortions. Trying to fill this gap, in this work a multi-temporal 

approach aimed at mapping SAR geometric distortions using GEE is presented. 

The analysis was performed at year-level (2020) considering about 60 S1 images 

acquired in both ascending and descending nodes. In particular, shadows 

(active/passive), layover (active/passive) and foreshortening masks were detected 

and mapped. Obtained maps can, operationally, be used to mask out unreliable 

observations from SAR image time series making possible to have an estimate of 

the local temporal resolution of ‘good’ acquisitions to compare faced applications 

with to determine the degree of analysis feasibility. To exemplify the operational 

potential of this analysis, obtained masks were compared with some land cover 

classes covering the study area (see forward on). This was intended to 

demonstrate that the temporal resolution of ‘good’ S1 acquisitions can drastically 

reduce (or improve) depending on the explored land cover classes (that is often 

related to a specific application). 
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2. Materials and Methods  

2.1. Study Area  

The Piemonte Region (North-West Italy) was selected as area of interest (AOI). 

It sizes about 25000 km2 (Figure 1) and was selected since showing 

heterogeneous conditions from both landscape and geomorphological point of 

view. The latter, in particular, can dramatically affect monitorability of areas by 

SAR data. With reference to AOI, the 43%, the 30% and 27% of the territory 

correspond to mountain (Italian Western Alps), hill and flat areas, respectively.  

2.2. Available Data  

2.2.1. Sentinel-1 Imagery  

Sentinel-1 is one of the current largest space-borne missions providing free and 

open accessible SAR data. S1 mission relies on a constellation of two satellites 

(Sentinel-1A and Sentinel-1B) operating in C-band (5.6 cm wavelength). The 

main acquisition mode over land is Interferometric Wide (IW) swath recording 

approximately 250 km in length at 5 × 20 m spatial resolution in single look. 

Ordinarily, S1 records data in a dual pole mode (VV and VH) where 

electromagnetic waves were polarized vertically (V) for transmission and 

Horizontally/Vertically for reception. Data are recorded as complex values (I/Q 

components) and in SAR geometry (Range and Azimuth). According to Vollrath 

(Vollrath, Mullissa, and Reiche 2020) and Reiche (Reiche et al. 2016), the 

complexity of SAR data pre-processing is one of the main reasons for its slow 

uptake by a wider user community. From this point of view, GEE web-based 

platform could represent a key tool for facilitate this process, making possible an 

immediate access to images and allowing users to directly focus on required 

information (Gorelick et al. 2017). 



 

29 

 

 

Figure 1. (a) Piemonte Region localization; (b) Digital Terrain Model showing altitude 

distribution in the area. Highly varying altitude conditions can be easily recognized (Reference 

frame: WGS84/UTM 32 N). 

In this study, GEE was used with reference to the available S1 GRD (ground range 

detected) IW image collection. S1 GRD products consist of focused, detected and multi- 

looked SAR data projected to ground range according to the WGS84 Earth ellipsoid 

model. GRD product provides an approximately squared pixel with a spatial resolution 

of about 10 m (called GRDH collection). Speckle is reduced thanks to the multilook 

process. Within GEE, GRD product was already pre-processed by Sentinel-1 Toolbox 

(S1TBX) freely available from the European Space Agency’s (ESA) (Luis Veci et al. 

2014, 2). The result is the computation of the backscatter coefficient (σ° [dB]) at each 

pixel location. Pre-processing steps consist of: (1) application of orbit file metadata to 

provide an accurate satellite position and velocity information; (2) border low intensity 

noise and invalid edge data removal; (3) thermal noise removal, removing additive noise 

in sub-swaths; (4) radiometric calibration to compute backscatter intensity according to 

sensor calibration parameters supplied in the GRD metadata; (5) image orthoprojection 

to reproject image into an opportune map reference system; range-doppler terrain 

correction is applied using the 30 m gridded SRTM (Shuttle Radar Topography Mission) 

DEM (Digital Elevation Model). This step requires interpolation of missing data to fill 

occurring image gaps and, necessarily, introduces some radiometric distortions. GRD 
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data contains both VV and VH polarizations together with a layer mapping the nominal 

incidence angle (θi) and some basic metadata (Google Developers 2020a). All layers are 

supplied in terrain geometry; nominal reference system (adopted in GEE) is WGS 

84/Pseudo-Mercator (EPSG: 3857) (Google Developers 2020b). Pixel positional 

accuracy of S1 GRDH data after orthoprojection is estimated in 2.3 m (1σ) (Small and 

Schubert 2019). GEE S1 GRDH collection has a nominal geometric resolution of 10 m. 

In this work, a total of 57 and 60 acquisitions acquired along ascending and descending 

nodes respectively, were used for this work covering the period 1 January 2020– 20 

December 2020. AOI was completely contained in a single orbit swath for both ascending 

(relative orbit n. = 88) and descending (relative orbit n. = 66) nodes. Acquisition dates 

and image footprints are shown in Figure 2. 

2.2.2. SRTM Digital Elevation Model 

Ordinarily, DEM are used to model SAR distortions. In fact, terrain topography 

cannot be derived from the SAR image itself and, consequently, an auxiliary 

external information is required. Adopted DEM should ideally have the same 

resolution (or higher) of SAR images (Vollrath, Mullissa, and Reiche 2020). In 

this work, the gridded SRTM v3 product (Farr et al. 2007), available in GEE was 

used having a GSD (Ground Sampling Distance) of 1” (approximately 30 m). A 

nearest-neighbour method was used, in GEE, to oversample it at the S1 GRDH 

image resolution. It is worth to remind that SRTM was generated by In-SAR 

technique, adopting short wavelengths (C- and X- bands); sequently, it appears 

more similar to a DSM (Digital Surface Model) rather than to a DTM (Digital 

Terrain Model), mapping also height discontinuities related to buildings and tall 

objects (Gamba, Dell Acqua, and Houshmand 2002). These objects represent 

local abrupt changes in elevation and related geometric parameters (i.e. slope and 

aspect). 
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Figure 2. (a) Footprints of collected images; (b) timeline of collected images (Reference frame: 

WGS84/UTM 32 N). 

2.2.3. Land Cover Piemonte 

The Land Cover Piemonte dataset level 4 (LCP) map was used to describe land 

use and land cover in AOI. LCP was obtained, for free and in vector format, from 

the regional geoportal (www.geoportale.piemonte.it). It was supplied 

georeferenced in the WGS84/ UTM 32 reference system. Updating is dated 2010 

and nominal scale is 1:25000. LCP results from the integration of different data: 

(a) the regional forest map and other auxiliary information from the so called 

Piemonte Territorial Forest Plans (PFT); (b) cadastral maps; (c) hydrological 

maps; (d) regional technical map; (e) regional transport map. Table 1 reports the 

list of classes and related codes considered in this work. 

2.3. Data Processing 

S1 imagery and DEM were processed directly in GEE and results downloaded 

and reprojected into the WGS84 UTM 32 N reference system. Following 

processing steps were conducted in SAGA GIS vs 7.0 (Conrad et al. 2015) and R 

software vs 3.6.1 (R Development Core Team 2013). 
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Table 1. LCP classes considered in this work. ID 

ID LCP classes ID LCP classes 

C1 Urban C11 Spruces forests 

C2 Infrastructures C12 Scots pine forests 

C3 Agriculture C13 Norway pruce forests 

C4 Mixed forests C14 Larch and stone pine forests 

C5 Maple-tree-ash forests C15 Pastures 

C6 Chestnut forests C16 Bare soil 

C7 Black locust forests C17 Wetlands 

C8 Oak forests C18 Rivers 

C9 Beech forests C19 Water channels 

C10 Riparian forests C20 Water basins 

2.3.1. Mapping Image Distortions  

Only those distortions related to the line of sight of the SAR image that could be 

mapped onto the DEM ground plane were considered. The proposed method is 

based on the angular dependencies between SAR image geometry parameters and 

local terrain conditions as schematically reported in Figure 3. It neglects 

topological relations among neighbour cells that, actually, should be considered 

to fully describe distortion effects. For this reason, and with respect to other 

methods (Kropatsch and Strobl 1990; Shimada 2010; Chen, Sun, and Jun 2018), 

the proposed approach is not able to rigorously map passive layover and shadow 

areas; conversely, it provides an easy approach to directly operate in the map 

geometry. A rough mapping of areas affected by passive distortions was however 

provided. We found a single work in literature (Vollrath, Mullissa, and Reiche 

2020) where a trial was done to implement this approach within GEE.  
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2.3.1.1. Terrain Geometry  

Terrain geometry was modelled by SRTM. It can be summarized by two angles: 

the slope angle and the terrain aspect angle (uphill direction) φs relative to the 

geographic North. SRTM was used to generate the correspondent slope and 

aspect maps. The ee.Terrain functions available in GEE were used for this task. 

Since SRTM also maps altitude variations related to objects overlaying the 

ground (e.g. buildings) some abrupt changes in local slope occur that cannot be 

considered as topographically induced distortions. These local oscillations are 

often related to objects covering an area less than a single DEM pixel resulting in 

bad estimate of buildings height as reported by (Gamba, Dell Acqua, and 

Houshmand 2002). To achieve this problem, a ‘pseudo-normalized DSM’ (p-

nDSM) was generated in order to detect local ‘high’ objects and masking them 

out from subsequent steps. Using morphological filters, the local maxima and 

minima were computed by a circular kernel (50 m radius). p-nDSM was 

calculated as the difference between local maxima and local minima representing 

a rough model of local object height in respect of ground level. All SRTM pixels 

having p-nDSM lower than 30 m were masked out. Finally, aspect (φs) and slope 

(αs) angles were derived from the masked SRTM. 

 

Figure 3. SAR acquisition geometry and related parameters. (a) Terrain and sensor geometries; 

(b) model geometry. The angles αs and φs are the terrain slope and aspect respectively while θi 

is the look angle and φi is the angle, in the horizontal plane, between the orbit track and the 

geographic north; φr is an auxiliary angle that rotates the terrain geometry system into the 

sensorone; αr and αaz are the slope angle components in range and azimuth direction 

respectively. 
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2.3.1.2. SAR Geometry 

Since SAR images are ordinary produced in a zero-doppler geometry, sensor 

attitude can be described by two angles the (nominal) incidence angle θi and orbit 

track angle φi. The look or incidence angle θi is defined as the angle between the 

line of sight and the nadir; it increases with the range distance (for S1 IW mode 

it ranges between 31° and 46°). The angle φi is the angle, in the horizontal plane, 

between the orbit track and the Geographic North. This information is not 

available in S1 metadata supplied by GEE, but can be approximately computed 

as the average aspect value of incidence angle layer (Vollrath, Mullissa, and 

Reiche 2020; Greifeneder 2018).  

2.3.1.3. Model Geometry 

Some simplified relationships were used to relate radar beam geometry to the 

terrain, linking image and terrain domains (Equations 1–4). In particular, the 

angle φr rotates the terrain geometry system into the sensor one (Equations 1). 

Consequently, the slope angle in range direction (αr) and the slope angle in 

azimuth direction (αaz) were computed by Equations 2 and 3, respectively. These 

angles allow, knowing terrain geometry, to analysis the visibility conditions of a 

given pixel in sensor geometry. 

𝜑𝑟 = 𝜑𝑖 − 𝜑𝑠                                                 (1) 

 𝛼𝑟 = 𝑡𝑎𝑛−1(𝑡𝑎𝑛 𝛼𝑠 ∙ 𝑐𝑜𝑠 𝜑𝑟)                                       (2) 
 

 𝛼𝑎𝑧 = tan−1(tan𝛼𝑠  ∙ sin𝜑𝑟)                                       (3) 

The Local Incidence Angle (LIA), defined as the angle between radar ray 

direction and the normal surface direction considering the terrain was finally 

computed according to Equation 4. 

  𝐿𝐼𝐴 =  cos−1[cos𝛼𝑎𝑧  ∙ cos(𝜃𝑖 − 𝛼𝑟)]                           (4) 
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2.3.1.4. Geometric Distortion Masks  

SAR systems record data in slant range plan (image geometry) where 

backscattered signal is recorded with reference to the time lag separating 

transmission and reception of pulses. In an ideal flat terrain, echoes are recorded 

coherently to the expected ground sequence (ground range). In sloped areas, 

topography dramatically changes this sequence resulting into an image composed 

by some geometric distorted pixels (GDPs). GDPs can be subdivided into: 

layover, shadow and foreshortening and occur especially in mountain or hilly 

areas. Active layover occurs when signal scattered by the top of a mountain is 

recorded before the one coming from its foot. It is generated when slope angle in 

range (φr) exceeds look angle (θi) from the slope facing the sensor (fore slope). 

Active layover can be detected testing condition of Equation 5 at pixel-level. 

𝐴𝑐𝑡𝑖𝑣𝑒 𝐿𝑎𝑦𝑜𝑣𝑒𝑟 =  𝛼𝑟 > 𝜃𝑖                                            (5) 
 

Shadows occur when radar beam does not reach the terrain given a local incidence 

angle exceeding 90°. These areas present no signal and appear as dark regions 

(very low signal) within images. Active shadows can be detected at pixel level 

using LIA (Gelautz et al. 1998) assuming that no signal occurs when LIA is 

around 90°. Cautiously this threshold was set equal to 85° and shadowed areas 

detected by Equation 6. 

𝐴𝑐𝑡𝑖𝑣𝑒 𝑆ℎ𝑎𝑑𝑜𝑤 =  𝐿𝐼𝐴 > 85°                                (6) 

With reference to terrain geometry, layover and shadow regions can be divided 

into active and passive sub-regions (Kropatsch and Strobl 1990). Some areas that 

might not receive energy due to some obstacles (i.e. mountains) between sensor 

and ground surface are called passive shadows. Similarly, passive layover areas 

are those that are only affected by distortion induced by an adjacent active 

layover. Some methods have been reported in literature to map passive distortions 

(Rees 2000; Chen, Sun, and Jun 2018; Gelautz et al. 1998). The most of them are 
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based on slant range geometry or tend to model passive- active relationship. 

These methods, unfortunately and presently, cannot be implemented in GEE, 

given its present incapability of recovering slant range geometry and/or perform 

a proximity grid analysis (location-allocation tools). In spite of these limitations, 

passive distortions mapping was however considered in this work, adopting a 

buffering approach. The basic assumption was that passive distorted pixels are 

expected to be located close to active ones. A circular buffer with a 50 m radius 

was, consequently, generated around active shadow/layover areas and all pixels 

falling within the buffer zone were labelled as passive shadow, or layover, 

accordingly. The GEE ee.fastDistanceTransform algorithm was applied (Google 

Developers 2021) for this task. Mountain slopes facing sensor appear as 

shortened in SAR image when the local terrain slope angle is greater than look 

angle. This negatively affects range resolution and is usually addressed as 

foreshortening. It can be detected by Equation 7 (Chen, Sun, and Jun 2018). 

 
𝐹𝑜𝑟𝑒𝑠ℎ𝑜𝑟𝑡𝑒𝑛𝑖𝑛𝑔 =  𝛼𝑠 > 𝜃𝑖                                             (7) 

According to the above-mentioned strategies and equations, the correspondent 

masks mapping active layover (ALM), active shadow (ASM), foreshortening 

(FM), passive shadow (PSM) and passive layover (PLM) were generated. Pixels 

belonging to mask layers were labelled as 0 if not distorted and 1 if distorted. All 

distortion types and occurrences were then summarized by combining the above-

mentioned masks in a single layer: the geometric distorted pixels map (hereinafter 

called GDPs). Pixels showing at least one metric distortion were labelled as 1; 

pixel showing no distortion as 0.  

2.3.2. Multi-Temporal Analysis of Distortions 

Using the iterative function ee.ImageCollection.map of GEE, for each image in 

the considered period (1 year) ALM, ASM, FM, PSM, PLM and GDPs masks 

were computed and stacked as separate collections (DTS, distortion time series). 

Ascending and descending nodes images were stacked separately. These new 
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collections were analysed to describe the temporal behaviour of distortions. A 

synthetic representation of DTSs (NDO, number of distorted observations) was 

generated by computing, at pixel level, the number of times that the same pixel 

was seen as ‘distorted.’ NDO was separately computed for all distortion types 

(i.e. active/passive layover, active/passive shadow, foreshortening or GDPs). A 

total of 12 maps (6 in ascending and 6 in descending nodes) were generated: 

ALM-sum, ASM-sum, FM-sum, PSM-sum, PLM-sum and GDPs-sum, 

respectively for ascending e descending orbits. 

2.3.3. Land Cover Classes vs Image Distortions 

An intersection between the above-mentioned 12 maps and LCP was performed 

to assess the impact of unreliable SAR observations (distorted pixels) onto main 

land cover classes. Results were summarized by computing the frequency 

distribution of the occurrences of ‘distorted’ pixels in ALM-sum, ASM-sum, FM-

sum, PSM-sum, PLM-sum. Differently, GDPs- sum images were used to 

synthetically map the extension of distortion (with no regard about the type) at 

LCP class level. For each class, after translating NDO as recorded in GDPs-sum 

into the correspondent ‘distorted’ area percentage (n. of ‘distorted’ hectares of a 

class in respect of the total hectares of the same class), the correspondent 

cumulative frequency distributions (CFD) were computed. 

3. Results 

3.1. Geometric Distortion Masks 

According to the angle-based method, image geometric distortions were mapped 

for each of the analysed S1 acquisitions, keeping separated results for ascending 

and descending nodes (Figure 4). Maps of Figure 3 show that bright pixels in VV 

image (σ0) are in general located in layover and foreshortened areas. Conversely, 

dark pixels are related to shadowed areas and were correctly detected. It is worth 

to remind that the simplified approach for passive distortions mapping based on 

buffering was not able to completely take into account the actual geometric 
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complexity; this limitation mainly resulted in an over mapping of ‘distorted’ 

pixels. In spite of this fact, presently, this approach appears to be the only one 

implementable in GEE to take care about passive distortions. In fact, currently, 

GEE does not implement proximity analysis tools that would permit to overcome 

this problem, making possible a rigorous assessment of such distortions 

(Kropatsch and Strobl 1990; Chen, Sun, and Jun 2018). GDPs maps are reported 

in Figure 5 for both the orbits. 

 

Figure 4. (a) Backscattering (σ0) in ascending node VV image (17 June 2020); (c) Backscattering 

(σ0) in descending node VV image (16 June 2020); (b-d) Map of distortion types as mapped by 

the angle-based method implemented in GEE for both (a) and (c) images (Reference frame: 

WGS84/UTM 32 N). 
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Figure 5. GDPs maps for (a) ascending node image (17 June 2020) and (b) for descending node 

image (16 June 2020) (Reference frame: WGS84/UTM 32 N). 

3.2. Multi-Temporal Analysis of Distortions 

All the previously mentioned maps were computed in GEE by a self-developed 

function, for all the images belonging to the analysed time series. Finally, ALM-

sum, ASM-sum, FMsum, PSM-sum, PLM-sum maps (for ascending and 

descending nodes) were generated summarizing all distortion types and 

correspondent occurrences along the year. Figure 6 reports a focus area extracted 

from these maps and mapping NDO for the ascending node acquisitions. With 

reference to GDP maps, the correspondent GDP-sum maps were computed for 

the entire AOI for both the orbits (Figure 7). GDPs-sum maps could represent a 

useful tool for assessing the suitability of AOI to be monitored by S1 imagery. 
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Figure 6. NDO map for ascending orbits showing occurrences and location of all analysed 

distortion types (Reference frame: WGS84/UTM 32 N). 

3.3. Land Cover Classes vs Image Distortions  

Each land cover class was assessed in term of NDO using the previously 

mentioned sum-maps. Figure 8 reports NDO frequency distribution as boxplots 

for each considered LCP class. Results showed that, in the reference period, the 

median value of distortion occurrences was lower than 20 for the urban class (C1) 

and lower than 10 for both infrastructures and agricultural classes (C2 and C3). 

Specifically, the favourable conditions related to C3 can be explained with the 

fact that in Piemonte, crops are majorly located in flat and low areas. With 

reference to forests, it can be observed that mixed forests (C4) showed a median 

NDO value higher than 25, being the majority of forested areas located over 

mountain slopes. Maple-lime-ash trees (C5) showed a NDO median value higher 

than 15, while Chestnut stands (C6) do not overcome 10. Many chestnut stands 

in fact, are located in smoothed hilly areas or at the bottom of mountain slopes. 

Black locust forests (C7) showed a particularly low NDO median value (<5). This 

probably depends on its invasive behaviour with respect to abandoned crops, that, 

as already said, in AOI are mostly located in lowlands or foothills. Oak and 
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Riparian forests (C8 and C10) showed median NDO value lower than 10 being 

located in flat areas, too. Conversely, beech stands (C9), fir (C11), pine forests 

(C12), larches and stone pines woods (C14), pastures (C15) and bare soils (C16) 

showed median NDO values even greater than 30, being mainly located in alpine 

valleys. Spruce forests (C13) showed the highest NDO median value, about 45. 

Even if it is not the most abundant forest species in Piedmont, this type of forest 

is mainly located where many forest disturbances as landslides, rockfalls, 

wildfires occurred in the past; spruce stands in fact, prefer steep mountain slopes 

that are known to be majorly affected by disturbances. These are exactly the 

conditions that determine SAR geometric distortions. Finally, water channels 

(C19), wetlands (C17), rivers (C18) and water basins (C20) showed GDP-sum 

NDO median values lower than 10, being majorly located in lowland.  

 

Figure 7. GDPs-sum for ascending (a) and descending (b) orbits considering 2020 observations 

for AOI (Reference frame: WGS84/UTM 32 N). 

Comparing descending and ascending orbits (Figure 8(b,d,f,h,l,n)) a similar 

behaviour can be observed for all distortion types. Only for some forest types, 

namely C11 and C16, passive shadows appear to be more limited for descending 

acquisitions. As far as foreshortening is concerned, descending acquisitions 
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appear to favour class C8, while ascending acquisitions C12. In general results 

showed that ALM and PLM were characterized by low NDO values (Figure 8(a–

d)) while ASM, PSM and FM are more frequent in AOI (Figure 8 (e–i,l)). In 

general, the percentage of distorted areas within classes varies between 10 and 

60% (Figure 9). Ascending orbits seem to generate less distortions than the 

descending ones. In fact, the average class percentage of distorted areas (i.e. NDO 

> 1) in was about 26.5% and 30% for ascending and descending nodes, 

respectively. This difference could be related to the geometric relationship 

between S1 orbit and AOI topography. It is worth to remind that, Italian western 

Alps, where AOI is located, are characterized by a West-Est valleys orientation. 

This makes descending orbits intersecting them with an angle closer to 90° than 

ascending ones, determining more favourable conditions of observation from the 

distortion occurrences point of view. As far as ascending orbit is concerned, LCP 

class C13 (Norway pruce forests) showed the highest percentage of distorted 

areas (almost 50%). C11 – C15 forestry classes also appear to suffer from a too 

high percentage of not monitorable areas by S1 data (NDO > 50%).  
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Figure 8. Boxplots summarizing NDO frequency distributions within considered LCP classes. 

(a-b) ALM-sum; (c-d) PLM-sum; (e-f) ASM-sum; (g-h) PSM-sum; (i-l) FM-sum; (m-n) GDPs-

sum. In the plots, lines are (bottom-up): 5th , 25th , 50th , 75th  and 95th percentiles. 

Some differences can be also recognized within the same LCP depending on the 

orbit type. In fact, the 60% of C16 (mountain bare soils) area was mapped as 

distorted in the descending orbit, while only 30% in the ascending one. Forests 

classes did not show this clear difference between the two acquisition orbits. 

These results suggests that S1 data acquired in ascending node is more proper to 

monitor not vegetated mountain areas that, where, possibly, landslides are more 

frequent. Water channels and water basins classes (C19 and C20, respectively) 

proved to be the less affected ones by distortions (less than 5% of the area); 

similarly, agriculture class (C3) showed a low percentage of distorted areas 

(<10%). 
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Figure 9. Cumulated frequency distributions (from GDP-sum) computed for the considered LCP 

classes (as class area percentages) and for ascending (a, c, e, g) and descending (b, d, f, h) node. 

4. Discussions  

A simple approach to map SAR acquisition-related image distortion was 

proposed in this work based on GEE available routines. Authors are aware that it 

still suffers from many limitations related to the LOS azimuth direction φi 

computation and, possibly, to DEM features like height accuracy and geometric 

resolution. As far as φi is concerned, orbits state vectors would be required for its 

precise determination. Unfortunately, GEE does not provide such information, 

requiring an approximated solution obtained by calculating the average direction 



 

45 

 

of the gradient from the incidence angle layer (Vollrath, Mullissa, and Reiche 

2020; Greifeneder 2018). In spite of this, Cigna (Cigna et al. 2014) proved that 

geometric distortions are poorly sensitive to φi variation. Her study proved that 

for highly varying φi values (obtained from more than 10,500 ERS-1/2 SAR 

images acquired between 1991 and 2001 and covering the whole UK), related 

effects on image distortion were negligible if compared with the ones induced by 

other factors like αs and LIA. As far as DEM-related problems, SRTM height 

accuracy was extensively proved to be low (Gorokhovich and Voustianiouk 

2006; Rodriguez, Morris, and Eric Belz 2006) often > 16 m over vegetation 

(Fissore et al. 2015). This condition together with its coarse resolution, certainly 

influenced the proposed method. The adoption of a higher resolution DEM is 

expected to improve modelling of distortions, thanks to a better description of 

topographic features that are smoothed by lower resolution data (Cigna et al. 

2014). Gelautz (Gelautz et al. 1998) already proved DEM geometric resolution 

importance for SAR image simulation suggesting that detection of distortions, for 

ERS-1/2 and ENVISAT data, should require a DEM with a spatial resolution 

better than 25–30 m. Nevertheless, currently SRTM DEM is the only one 

available in GEE having a semi-world-wide coverage and therefore it can be used 

in many locations well- fitting at-regional-level analysis like the one required for 

distortions affecting wide areas. Additionally, the computation and utilization of 

p-nDSM to mask out abrupt height changes during αs mapping could furtherly 

reduce accuracy of detection. Nevertheless, this is expected to occur only in 

lowland and flat areas. Finally, all deductions presented in this work cannot be 

generalized being strictly related to AOI topography and land cover type and their 

spatial distribution. 

5. Conclusions 

In this work, a multitemporal mapping of SAR geometric distortions were 

performed using GEE and the available S1 imagery over Piemonte Region (NW 

Italy). An angle- based method was adopted and geometric conditions were tested 
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at-pixel-level mapping distortions types (layover, shadow and foreshortening). 

SRTM DEM and look angle maps available from GEE were used to relate radar 

to terrain geometry through formal relationships. To minimize the effects of 

SRTM abrupt height changes due to buildings a p-nDSM was calculated and used 

to mask out local DSM variations. The method is known to be not able to 

rigorously detect layover/shadow passive regions, given the present capabilities 

of GEE that, currently, not provide location- allocation tools needed to map areas 

affected by passive distortions. An operational application of the generated maps 

of distortions was given, concerning the possibility of monitoring different land 

cover classes in AOI. Thanks to this type of approach, it was possible to prove 

that, in AOI, ascending orbit S1 acquisitions perform better, minimizing image 

deformation. This is not a general conclusion since strictly depending on local 

topography. In spite of all the above-mentioned limitations, the proposed 

procedure represents a first trial to easily obtain information concerning SAR 

deformations based on the available GEE procedures. From an operational point 

of view, such an approach would permit to a-priori investigate if S1 data are 

suitable enough to monitor an area of interest.  
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4 VEGETATION STRUCTURE QUALIFICATION   

4.1 AMPLITUDE-BASED TECHNIQUES 

4.1.1 A Simplified Method for Water Depth Mapping Over Crops 

During Flood Based on Copernicus and DTM Open Data 
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Abstract: After an extreme rainy event agricultural fields can be submerged by 

water. Stagnant water can be generated by river’ flooding or by soil 

saturation causing different damage level to crops. In this work, the 

flood event occurred on 3rd October 2020 in NW Italy along the Sesia 

river was assessed with special concern about damages affecting rice 

crop fields. A method was proposed aimed at detecting flooded areas 

and giving an estimate of water depth (WD) based on free available 

Copernicus data (Sentinel-1 and Sentinel-2) and digital terrain model 

(DTM). In particular, Sentinel-1 pre- and post-event images were 

compared by differencing (ΔVV). ΔVV was processed at pixel level to 

detect submerged areas through the thresholding Otsu’s method. A 

simplified morphological analysis was then performed by DTM 

tessellation to map WD. A further step aimed at classifying submerged 

areas was achieved based on DTM and a proximity analysis, making 

possible to separate areas where water was related to soil saturation 

from areas where water was coming from the river.  Corine Land Cover 

2018 level-3 and NDVI from a Sentinel-2 pre-event image were used 

to map crops that were still to be harvested at the time of flood. These 

were the ones that were considered while estimating the potential 

economic loss. A total of 255 ha of rice that still to be harvested were 

submerged but only 211 ha were affected by river overflow. Using local 

rice yield and price the resulting economic loss was about 2200000 €. 

Keywords: SAR; Sentinel-1; Sentinel-2; Watershed Segmentation; Flood 

Mapping, Crops Damage Mapping  
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1. Introduction 

Floods and in general extreme meteorological events occur more frequently due 

to climate change. Their effects are particularly evident on crops and forests 

(Brown et al., 2012; Orusa et al., 2020; Sarvia et al., 2021a). Agricultural damage 

assessment after extreme rainy events is, ordinarily, based on the joint evaluation 

of the local agricultural situation, by mapping land use and soil characteristics, 

and the hydraulic conditions of the event (i.e. duration, velocity, intensity and 

amount transported material quantity). Floods can generate damages at different 

scales of analysis (Boccardo et al., 2007).  At the farm scale, the impacts can 

affect buildings, rural infrastructures (e.g. irrigation channels) and machineries, 

resulting into extra costs for recovery efforts that can certainly condition revenues 

for several years apart (Morris and Brewin, 2014). Within fields, damages mainly 

concern soils, that can be eroded and moved away by water, depauperating top 

soil or accumulating new materials (Wilson, J. A., S. L. Olson, and J. Callan, 

2011); moreover, depending on the time of flood with respect to the growing 

season of local crops, the yearly yield can be totally or partially compromised, 

even depending on water flow strength and debris content (Morris and Brewin, 

2014). Monitoring conditions affecting flooded areas in the very next days after 

the events can certainly support damage assessment (Romali et al., 2018) 

permitting a refinement of estimates and developing a support for the insurance 

companies in quantifying and mapping risks (Borgogno-Mondino et al., 2019; F. 

Sarvia et al., 2020; Sarvia et al., 2019). In particular, one important hydraulic 

parameter to be considered is the above ground level (AGL) water depth (WD). 

Many experiences proved a strict relationship between crops damage degree and 

WD (Molinari et al., 2019; Shrestha et al., 2013; Vozinaki et al., 2015). Negative 

consequences on crops can be: root asphyxiation, soil contamination and disease 

spreading. With these premises, the growing availability of free satellite data 

from Earth Observation missions are enormously increasing the opportunities of 

monitoring floods (Lin et al., 2019, 2016; Rahman et al., 2019) and their effects 

(De Petris et al., 2021a). Different remote sensing techniques and hydrological 
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models have been proposed for these purposes. Tarpanelli et al. (Tarpanelli et al., 

2018) used radar altimetry, while Westra and De Wulf (Westra and De Wulf, 

2009) based their deductions on Moderate-Resolution Image Spectroradiometer 

(MODIS) data. Wang and Xie and Dano et al. (Dano et al., 2011; Wang and Xie, 

2018) reported an exhaustive review of remote sensing-based applications for 

floods assessment. Synthetic aperture radar (SAR) and multispectral data, with 

special concern about those related to the Copernicus program, have been widely 

used to support emergency situations as natural disasters, floods and vegetation-

related problems (Bian et al., 2018; Mason et al., 2021). They are known to 

represent an efficient tool for civil protection purposes especially in rapid 

response, where an immediate (even rough) damage estimate is required (Ajmar 

et al., 2015; De Petris et al., 2020, 2019; Smith, 1997). Ordinarily, flood 

monitoring and risk assessment are achieved by hydrological modelling based on 

flow energy balance equations involving several physical inputs (i.e. 

precipitations, air temperature, physical parameters of soil, topography, 

vegetation) (Puno et al., 2021, 2020). These models allow to simulate superficial 

and groundwater dynamics accounting for different hydrological processes 

(including WD) and can be summarized as it follows:  one-dimensional 1D 

models as ESTRY, HEC-RAS, ISIS, MIKE 11, RUBICON, SOBEK, SWMM 

(Knebl et al., 2005; Kourgialas and Karatzas, 2014; Stoleriu et al., 2020; Vozinaki 

et al., 2012) or 2D models for flood mapping, as TUFLOW, MIKE 21, DELFT-

FLS, RMA, FESWMS, TELEMAC (Banks et al., 2014; Ghimire, 2013; Ligier, 

2016; Robins and Davies, 2011; Syme, 2001). These models are known to require 

many inputs that are often not easily available, especially far away from rivers 

(Devia et al., 2015), making difficult their application in a rapid mapping context. 

Typically, these physical-based models require a detailed geometric description 

of the river bed like flow rate, Manning's values, river sections, bottom slope and 

roughness of the analyzed river trait.  Moreover, the entire river system must be 

schematically represented taking care about all the connected elements 

interacting with the river: stream junctions, bridges and culverts or lateral 

structures (Pistocchi and Mazzoli, 2002). Despite the huge literature concerning 



 

53 

 

SAR data application to monitor flood risk and its effects on urban and human 

activities, SAR imagery were poorly adopted to map flood damages in 

agricultural sector (Manavalan, 2017; Sanyal and Lu, 2004; Shen et al., 2019; 

Tsyganskaya et al., 2018).  In this context, this work presents a new method based 

on free available data (satellite and elevation data) to detect flooded crops and 

estimate WD allowing a near-real time and continuous mapping of these 

variables. The procedure is presented with reference to the flooding event 

occurred on 3rd October 2020 by the Sesia river (NW Italy). Finally, a rough 

economic loss assessment was proposed concerning the rice fields.  

The main issues explored in this work are: (a) a statistical based threshold 

selection criteria for flood delineation using SAR data, based on an adaptive 

method that makes it possible to automatically detect a threshold value 

accordingly to the specific area one is considering; (b) water depth mapping over 

flooded crops avoiding hydrological models; (c) stagnant water classification 

according to its source i.e. by river overflow or by soil saturation for better 

characterizing the effects of the event on crops. All these issues were presented 

and discussed in the following sections. The jointly used of free and near-real-

time updated data allows to define a new procedure that could potentially give a 

rapid assessment of the effects of a flood on the agricultural sector supporting 

local restoration policies. 

2. Material and Methods 

2.1. Study Area 

On 2nd October 2020, according to local meteorological data 

(http://www.arpa.piemonte.it), North-West Italy was affected by an intense 

rainfall (450 mm·d-1). Rainfall caused the flooding of the Sesia river, that 

develops at the border between Piemonte and Lombardia regions. Unfortunately, 

the event occurred on a critical period, close to the harvesting of rice, the main 

crop in the area, resulting in a significant damage to the local agriculture. An area 

of interest (AOI), sizing about 1105 km2 (Fig. 1) was selected including 58 Italian 
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municipalities (the most of them located within the Piemonte region) that the river 

was running through. In particular the flattest trait of the river was considered. 

 

Figure 1. AOI is located close to the Sesia river. It develops between Piemonte and Lombardia 

regions, NW Italy. Reference frame is WGS 84 UTM zone 32N. 

2.2. Available Data 

2.2.1. Sentinel-1 Imagery  

Sentinel-1 (S1) is one of the current largest space-borne missions providing free 

and open accessible SAR data having high temporal resolution from 6 to 2 days 

(combining ascending-descending orbits) well-fitting crop multi-temporal 

monitoring requirements. SAR da-ta processing is very complex and often data 

are not available free of charge as well stressed by Grimaldi et al. (Grimaldi et 

al., 2016). The complexity of SAR data pre-processing appears a key factor for 

SAR data slow uptake by a wider user community (Reiche et al., 2016; Vollrath 

et al., 2020). Conversely, Google Earth Engine (GEE) web-based platform allows 

an immediate access to pre-processed images making users to directly focus on 

their specific ap-plications (Gorelick et al., 2017). In this work, S1 ground range 

detected (GRD) interferometric-wide (IW) swath image collection available in 

GEE, was used. In particular, S1 GRD high resolution (GRDH) collection is 

released with a squared pixel having a geometrical resolution of 10 m, 
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georeferenced into a user defined cartographic reference frame (in this work set 

equal to WGS84 UTM 32N). This collection was already pre-processed by the 

Sentinel-1 Toolbox (S1TBX, (Veci et al., 2014) and the correspondent 

backscattering coefficient (σ° [dB]) for VV and VH polarizations mapped as 

separate raster layers. Ordinarily, water surfaces show very low backscattered 

signal in all polarizations (Manavalan, 2017; Manavalan et al., 2017, p.) but the 

co-polarized VV signal proved to be poorly affected by vegetation presence 

allow-ing a better detection of partially submerged areas (Manjusree et al., 2012). 

Therefore, two VV-polarized images, one pre-event and one post-event, were 

selected and directly processed by GEE. The reference image (pre-event) was 

acquired on 28th September 2020, while the post-event one was acquired on 3rd 

October 2020. The latter was used to explore flooded water distribution in the 

area (Fig. 2). 

 

Figure 2. S1 backscattering (𝜎𝑉𝑉
0 ) maps (a) before the event; (b) after the event. Reference frame 

is WGS84 UTM 32N. 
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2.2.2. Sentinel-2 Imagery  

Sentinel-2 (S2) multispectral imagery was extensively adopted in vegetation 

mapping. In order to map vegetated areas a single S2 image, acquired on 28th 

September 2020, was selected and processed by GEE (collection titled: 

"COPERNICUS/S2_SR"). The image obtained was already calibrated in at-the-

ground reflectance (processing level 2A) and orthoprojected into the WGS84 

UTM 32N reference frame. Red (band 4, =665 nm) and NIR (band 8, =842 

nm) bands were used for Normalized Difference Vegetation Index (NDVI) 

computation having a geometric resolution of 10 m. Some additional layers were 

also obtained mapping pixel quality (Scene Classification Map - SCL) useful to 

masking out unreliable pixels.  

2.2.3.  Digital Terrain Model 

Two gridded DTMs available from Piemonte and Lombardia regional geoportals 

(https://www.geoportale.piemonte.it/cms/; 

http://www.geoportale.regione.lombardia.it/) were used. Piemonte DTM is 

updated at 2011 and has a height precision  of  ± 30 cm (1σ_DTM) (Borgogno 

Mondino et al., 2016). Lombardia DTM is update at 2015 and has a precision  of  

± 30 cm (1σ_DTM) (Biagi et al., 2013). Both were supplied in grid format with 

5 m ground sample distance (GSD). In spite of the different updates, these DTMs 

represent the best resolute and accurate terrain models available for the AOI. 

They were preventively mosaicked (average was applied in overlapping areas) 

and unitarily used for next processing.  

2.2.4.  Sesia River Area 

A polygon vector layer mapping the Sesia river area (SRA) was extracted from 

the Piemonte regional hydrologic network vector layer that was downloaded by 

the regional geoportal (https://www.geoportale.piemonte.it/cms/bdtre/modalita-
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di-pubblicazione-e-fruizione). This layer was updated in 2020 having a nominal 

scale of 1:10000.  

2.2.5. Corine Land Cover Map  

The 2018 Corine Land Cover (CLC2018) dataset level 3 was used to locate and 

map agricultural areas in AOI.  CLC2018 was released, for free, from the Land 

Monitoring Service Copernicus (https://land.copernicus.eu/pan-european/corine-

land-cover) as vector layer having a nominal scale equal to 1:100000. Level 3 of 

CLC2018 is the most detailed level according to the hierarchical classification 

system adopted by the CORINE Land Cover project since it is design with a 

minimum mapping unit of 25 ha and minimum mapping unit of 100 m (Büttner, 

2014). Table 1 shows agricultural classes and correspondent codes of CLC2018 

level 3 classification levels considered in this work. 

Table 1. Classes as encoded by CLC2018 level 3 in the study area. 

Code class CLC2018 

level 3 
Code meaning 

211 Not-irrigated arable land 

213 Rice fields 

231 Pastures 

242 Complex cultivation patterns 

243 
Land principally occupied by agriculture, with significant areas of 

natural vegetation 

2.2.6.  Reference Ground Data 

To validate the proposed methodology, the “Azienda agricola Martinengo Luigi 

Sebastiano”, an important local farm located in the municipality of Langosco 

(province of Pavia), was involved in order to collect reference data (RD) on WD 

after the Sesia river overflow. A field survey campaign was carried out by the 

farm employees. In particular, WD was measured in the accessible fields using a 

graduated pole (Fig. 3).  
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Figure 3. Reference scheme used during the field survey campaign for WD measurement. 

The agricultural field recorded were delineated as polygons vector layer by 

photointer-pretation on true-color orthomosaic, available on the Piemonte 

regional geoportal (www.geoportale.piemonte.it), updated to 2010 and having a 

geometric resolution of 20 cm. Subsequently, the WD data obtained from the field 

survey were associated with the respec-tive polygon. A total of 61 rice plots were 

recorded and labelled as damaged (46) and (15) as undamaged fields. RD are 

located in the municipality of Caresana, Rosasco, Motta de’ Conti and Langosco 

within the AOI (Fig. 4). 

 

Figure 4. Reference fields used for validation. Reference frame is WGS84 UTM 32N. 
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Unfortunately, the size of fields is limited and authors are aware that this dataset 

does not perfectly fit statistical requirements, nevertheless, it represents ordinary 

availability of ground data from farmers when data are not directly managed by 

scientists. In fact, the most data from farmers, generally, rely on their autonomous 

collections and decision of making them public. It should be noted that data 

regarding WD outside river/brook are not ordinary available, especially in the 

absence of an experimental design or moreover after an extreme and unexpected 

event such as a flood. Furthermore, it is a fact that, when dealing with floods, a 

sample design cannot be programmed, being impossible to a-priori know where 

water will be present. Moreover, water persistence above ground is limited in 

time making further difficult to get data about the situation before it is absorbed 

by soil. Nevertheless, the average size of the collected fields was about 1.36 ha. 

The authors found that the sample provided by local farmers including 61 rice 

fields (having a total area about to 83 ha) corresponding to about 3.4% of the 

expected flooded rice fields within the AOI (about 2400 ha). 

2.2.7. Agricultural Economic Loss Assessment 

Rice yield and market price were also considered in this work to complete the 

proce-dure with an estimation step as usually required when quantifying the 

impact of a flood after the event. The average rice yield in this area was set to 7 

t·ha-1 (Tesio et al., 2014), and the local price to 340 €·t-1 (ISMEA, 2021). 

2.3. Data Processing 

In figure 5 is presented the workflow adopted in this work. Datelined information 

and acronyms are reported in the next sections. 

2.3.1.  Flooded Area Mapping  

S1 data have already proved to be an effective tool to detect flooded areas 

(Bioresita et al., 2018; Ezzine et al., 2020; Twele et al., 2016). Flood detection is 
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possible thanks to the strong specular reflection that affects SAR signal lighting 

water surfaces; this peculiar scattering mechanism makes a water pixel poorly 

scattering (low signal) all the polarizations. Based on this fact, many methods 

were developed to map flooded pixels by thresholding (Manavalan, 2017). Many 

of them are based on an automatic selection of a proper threshold value; in this 

context, Sezgin and Sankur (Sezgin and Sankur, 2004) provided an exhaustive 

comparison about the performance of several grey level image thresholding 

techniques. Among these techniques, the Otsu’s method (Otsu, 1979) was cited 

as an effective technique (Kurita et al., 1992; Trier and Jain, 1995) to define 

automatic threshold based on image histo-gram. Such method is a nonparametric 

and unsupervised one based on the separability maximization of the tested classes 

in the image digital number domain. In particular, threshold that dichotomize the 

pixels into two classes (i.e., flooded and not-flooded areas) is defined itera-tively 

covering the entire histogram values range. For each iteration within and between 

classes variances are calculated. Consequently, the problem is reduced to an 

optimization problem searching for a threshold that minimize within-class 

variances and maximize between-class one. 

 

Figure 5. Flowchart of the proposed method. In grey the main outputs: Water Depth Map (i.e. 

WD(x,y)), Flood areas classification (PFAM) and potential rice yield loss. All steps will be 

discussed in the following sections. 
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Given the difficulty of finding a robust threshold value by using only one post-

event acquisition, the authors tried to achieve this problem proposing a 

thresholding method applied to the image difference resulting from the pre- and 

a post-event acquisition. In particular, the Otsu's method was applied directly 

within GEE to generate a binary classification mapping flooded and not-flooded 

areas from the VV images difference (pre- and post-event S1 images). Pre- and 

post-event images were preventively filtered by a circular median filter (50 m 

kernel size) in order to minimize speckle-related noise. The VV image of 28th 

September (RI) and the one of the 3rd October 2020 were used to map the pre- 

and post-event situation, respectively. Comparison was achieved by grid 

differencing to generate a new image (hereinafter called ΔVV) mapping local 

differences. Expectation for flooded pixels was that differences (post- minus pre-

) were negative; consequently, all ΔVV pixels showing a value > 0 were masked 

out. With reference to remaining pixels, ΔVV histogram was analyzed by Otsu’s 

method and an optimal threshold defined. Finally, a classification (hereinafter 

called Flooded Map - FM) mapping flooded (value = 1) and not-flooded (value = 

0) pixels was produced. A further refinement was applied to remove 

small/isolated flooded patches, by counting FM inter-pixel connections using the 

ee.connectedPixelCount() operator available in GEE. Patches having less than 

100 connections (corresponding to a minimum mapping unit of 1 hectare 

approximately) were masked out. 

2.3.2.  Vegetation Masking  

Flooded areas strictly depend on ground morphology, while damage can vary 

according to local land cover and crops phenology. Flood can improve crop 

condition by depositing nutrients or water in the very early phenological stages; 

differently, in late stages it could compromise final yield. Moreover, it also can 

be possible that a given crop was already harvested and therefore no damage 

occurred. Trying to map these different situations, a vegetation mask was 
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generated with reference to the NDVI image mapping the pre-event conditions. 

Not-vegetated pixels were masked out by thresholding the NDVI map (NDVI < 

0.4). The threshold was selected according to several previous studies (Burgan 

and Hartford, 1993; Gao, 1996; Ormsby et al., 1987; Zhang et al., 2003) that 

proved that, ordinarily, vegetated areas show NDVI greater than 0.4. The initial 

assumption was that, in the area the most diffused and valuable crop still to be 

harvested at the time of the flood, was the rice. NDVI was not used to get an 

estimate of the phenological stage of rice, that was a-priori known being the time 

of flood close to the harvest. NDVI was just used to detect vegetated from not-

vegetated areas at the moment of the flood, making possible to separate rice fields 

that had been already harvested (NDVI < 0.4) from the one still hosting rice 

(NDVI > 0.4). The resulting raster mask (Vegetation Mask - VM) was used to 

address successive operations towards the only vegetated pixels (included crops). 

Crops were finally mapped intersecting VM with the available CLC2018. Finally, 

rice mapping was obtained with reference to the CLC2018, but only rice fields 

showing NDVI > 0.4 were assumed as still waiting for harvest and, consequently, 

determining an economical loss. 

2.3.3. Water Depth Mapping  

As already mentioned, crop damage is proportional to the AGL WD (Molinari et 

al., 2019; Shrestha et al., 2013). Rapid mapping and timely damage estimation 

are important requirements while working with catastrophically event (Sarvia, De 

Petris, and Borgogno-Mondino 2020; De Petris et al. 2021) in order to recover 

and restore farmers. In this context, geographical Information Systems (GIS) and 

free geographical data can support such analysis. In particular, this work relies 

on the adoption of a simple morphological analysis of DTM to give an estimate 

of WD within flooded areas (Fig. 6). DTM was properly segmented through the 

watershed algorithm available in System for Automated Geoscientific Analyses 

GIS (SAGA GIS) vs 7.9.0 with the aim of identifying local terrain depressions 

naturally hosting water. Segmentation was performed using the following 

parameters: method = maxima; join segments on saddle difference using a 
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threshold equal to 0.8. Resulting patches (hereinafter called Depression Patches 

- DPs) were mapped as polygons vectors layer. DPs was then intersected with 

FM to refine size patches to fit only flooded areas as detected by SAR. For each 

refined DP the minimum (ℎ𝑚𝑖𝑛
𝑖 ) and maximum (ℎ𝑚𝑎𝑥

𝑖 ) values of height from 

DTM were calculated by zonal statistics. Their difference (∆ℎ𝑖)  defines the 

maximum potential thickness of the water layer that DP can contain. ∆ℎ𝑖 was 

computed by the field calculator tool within SAGA GIS and saved as new field 

in the correspondent attribute table according to eq.1. 

  ∆ℎ𝑖 = ℎ𝑚𝑎𝑥
𝑖 − ℎ𝑚𝑖𝑛

𝑖                              (1) 

Subsequently, WD can be estimated according to eq. 2. 

𝑊𝐷(𝑥,𝑦) = ∆ℎ𝑖 − [𝐷𝑇𝑀(𝑥, 𝑦) − ℎ𝑚𝑖𝑛
𝑖 ]                          (2) 

By taking eq.1 into eq.2, it can be noted that WD is only related to ℎ𝑚𝑎𝑥 
𝑖 and local 

elevation value (DTM (x,y)). Therefore, a new raster layers, ℎ𝑚𝑎𝑥 
𝑖 (𝑥, 𝑦), was 

then generated, aligned to the available DTM, by gridding DP with reference to 

ℎ𝑚𝑎𝑥 
𝑖 fields. Finally, eq. 3 was used to map WD(x,y) in the area.  

𝑊𝐷(𝑥, 𝑦) =  ℎ𝑚𝑎𝑥 
𝑖 (𝑥, 𝑦) − 𝐷𝑇𝑀(𝑥, 𝑦)                                   (3) 

 

Figure 6. Reference scheme used during the morphological analysis to map WD. Computation 

was done for all DPs as defined during DTM tessellation. 

 



 

64 

 

2.4. Validation  

Flooded areas detection accuracy was assessed by using RD. In fact, 61 reference 

fields were used for this purpose and they were labelled as flooded or not flooded 

during ground survey campaign. RD polygons were rasterized into a gridded 

layer having the same resolution of FM. Finally, the confusion matrix and related 

accuracies were computed comparing at the pixel-level RD raster and FM. 

Subsequently, for each RD field zonal statistics were performed in order to 

determine the mode value of WD. Consequently the mean absolute error (MAE) 

between the value of WD derived from the field survey campaign and the 

estimated one was calculated using eq. 4 at field level in order to test the WD 

map accuracy (Will-mott and Matsuura, 2005).   

   𝑀𝐴𝐸 = 
∑ |𝑥𝑖

𝑟−𝑥𝑖
𝑜|𝑛

𝑖=1

𝑛
                                                    (4) 

where n is total number of fields in RD, 𝑥𝑖
𝑟 is reference WD value in the i-th fields 

of RD,  𝑥𝑖
𝑜   is the observed WD resulted by applying the proposed method. 

Authors are conscious that this sample size does not fully fit the ordinary 

statistical requirements. Nevertheless, this situation can frequently appear during 

a common technology transfer operation, especially in the agricultural sector. 

2.5. Potential Loss of Rice Yield 

During extreme rainy events, submerged areas as detectable from satellite, can be 

related to flood or to soil saturation. In soil saturated areas, stagnant water is 

clearer (less sediments) since mainly caused by rain. Conversely, flooded areas 

are characterized by water caused by river dynamics where many sediments and 

debris are present. Additionally, given the high laminar force of water flowing 

across fields, lodged plants can also be present. These phenomena, therefore, 

affect crops in a very different way. In soil saturated areas, stagnant water can 

submerge plants, but after few hours it can be absorbed by soil or flowed away, 

resulting in a minor damage. With these premises, a method to separate potential 

flooded areas from the soil saturated ones, was proposed based again on the 
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available DTM. A mask of potential flooded areas was generated testing, at pixel-

level, if the local DTM(x,y) value was lower than the altitude of the nearest river 

bank. In this case, the pixel was labelled as 1 (flooded); differently, it was labeled 

as 0 (not flooded).  The above mentioned condition was based on the assumption 

that ordinary water flow unlikely spreads along positive slopes gradient but, 

conversely,  it naturally moves along a negative slope gradient (Lighthill and 

Whitham, 1955; Zimmermann and Church, 2001). This assumption could be 

violated during extreme flows where flood mass can even move along positive 

gradients. Nevertheless, some flow approximations are always needed to model 

hydrological processes (Bout and Jetten, 2018). A proximity grid analysis was 

performed considering DTM(x,y) and river banks altitude. The latter was 

obtained by clipping DTM by SRA. The allocation tool available in SAGA GIS 

was used to associate the altitude of the closest river bank to the generic pixel. A 

raster layer hereafter called river banks altitude (RBA) having the same GSD of 

DTM was generated mapping allocation values. A grid difference between RBA 

and DTM(x,y) was then performed and thresholded. All pixels where difference 

value was greater than -0.5 m, i.e. lower bound of uncertainty of DTM differences 

(√2  𝜎𝐷𝑇𝑀  =  ± 0.5 𝑚, were labelled as potentially flooded (code = 1); all the 

other pixels were labelled as not-flooded (code = 0). Resulting classification 

(Potential flooded areas map, PFAM), assumed to map the potentially flooded 

areas, was intersected with VM and FM in order to map vegetated (potentially 

hosting crops) flooded areas, from the submerged ones, where water was detected 

but possibly related to rain and not to river flood. Therefore, from the intersection 

of PFAM, FM and VM, only active crops flooded by river overflow were isolated 

and remaining areas were masked out from subsequently computation. A further 

investigation was then achieved to get an estimate of the potential yield loss and, 

consequently, of the associated economic lost income. 

3. Results  

3.1. Flooded Area Mapping  
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Otsu’s method was applied to ΔVV histogram (Fig. 7a) and the correspondent 

thresh-old values were found. All ΔVV pixel values less than the threshold were 

labelled as flooded (code = 1 in FM) and the others as not-flooded (code = 0 in 

FM) (Fig. 7b). The assumption was that flooded areas should present highly 

negative ΔVV values due to the dominant specular scattering mechanism that 

occurs when a water film covers the surface. The found thresh-old value was 

equal to -6.94 ΔVV. Flooded area, as mapped on 3rd October 2020 by S1, proved 

to be about 4300 ha. 

 

Figure 7. (a) ΔVV histogram. Red line corresponds to the threshold value defined through the 

Otsu’s method; (b) FM. Reference frame: WGS84 UTM 32N. 

 

In terms of land cover classes (CLC2018 level 3), table 2 shows the impact of 

floods in the agricultural context. This analysis proved that rice was the most 

affected crop with more than 2390 flooded hectares (over 72 % of the flooded 

area. Classes 221 and 231 appeared to be not affected by the event. 

Table 2. Amounts of flooded areas divided per CLC 2018 level 3 classes. 

CLC code class 211 213 231 242 243 

Flooded area (ha) 492.68 2396.03 0.00 8.92 390.79 

Flooded area (%) 14.98 72.86 0.00 0.27 11.88 
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3.2. Vegetation Masking   

An NDVI map characterizing vegetation before the event was generated (Fig. 

8a). All values greater than 0.4 were labelled as vegetated (VM code = 1) and 

the other ones were masked out. VM (Fig. 8b) layer covers about 665.8 km2. 

 

Figure 8. (a) NDVI map obtained from the available pre-event S2 multispectral image; (b) VM 

mapping active vegetation before the event. Reference frame: WGS84 UTM 32N. 

 

An intersection between VM and agricultural CLC classes was performed in 

order to map active vegetated crops (Fig. 8b) that probably were affected by 

flood. Whereby, a total of 1151 ha of affected rice crops were found in AOI, 

while the remaining 1244 hectares of rice, from the VM map, appeared to be 

already harvested. Other CLC classes (such as 211) were also affected by the 

event (Tab. 3). Unfortunately, at the CLC level it is not possible to specify these 

crops and consequently estimate the level of damage on this class. 

Table 3. Amount of vegetated and not-vegetated areas (ha) in AOI 

during the 3rd October 2020 flood event. They are supplied 

separately according to the CLC 2018 level 3 classes. 

CLC code class 211 213 242 243 

Vegetated 

(ha) 
255.36 1151.80 6.82 259.32 

Not Vegetated 

(ha) 
237.32 1244.23 0.00 0.00 
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3.3. Water Depth Mapping and Validation   

FM accuracy was assessed by confusion matrix computation involving rasterized 

RD and FM. According to table 4, proposed method results to be an effective tool 

to separate flooded areas from not-flooded ones (overall accuracy was 96%). 

Producer’s and User’s Accuracy were found to be equal to 94% and 100% for 

flooded areas respectively. Moreover, similar accuracies for not-flooded areas 

were found to be high (100% and 89% respectively). 

Table 4. Confusion matrix resulted from FM and RD comparison at the pixel-level.  

Classes  Flooded  Not flooded Total User's Accuracy 

Flooded  20685 0 20685 100% 

Not flooded 1332 11223 12555 89% 

Total 22017 11223 Kappa 91% 

Producer's Accuracy 94% 100% Overall Accuracy 96% 

 

WD map and relative cumulative frequency distribution are reported in figure 9. 

MAE of WD map, calculated accordingly to equation 4, was about 0.42 m. This 

result well fits the theoretical accuracy of DTM differences (0.5 m). Due to the 

high geometric regularity of soil surface in rice plots, MAE value suggests that 

the WD variation within a plot is insignificant and mainly driven by the random 

nature of the DTM accidental error common to all measurements. 
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Figure 9. (a) WD map; (b) WD map focus area; (c) Cumulative frequency distribution of WD 

over the whole AOI. Reference frame is WGS84 UTM 32N. 

 

3.4. Potential Loss of Rice Yield 

According to PFAM (Fig. 10a), potentially floodable areas resulted to be 46245 

ha. With reference to VM and FM possibly flooded active crops (mainly rice) 

were detected. These sized about 930 ha (Fig. 10b).  Additionally, 221 ha were 

recognized as “submerged”, i.e showing water related to soil saturation from rain 

(Tab. 5). Since only in flooded areas (riv-er related) crop damage was retained as 

significant, an assessment was performed to give an estimate of rice yield loss. 

According to the above mentioned (“Agricultural Economic Loss Assessment” 

section) data, potential yield loss resulted in 6510 tons, corresponding to an eco-

nomical income loss of 2214354 €.   
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Figure 10. (a) PFAM representing potential flooded areas as mapped according to DTM 

proximity analysis; (b) Classification of submerged areas that were separated in flood-related 

and rainfall-related (soil saturation) classes; (c-d) two focus areas of submerged areas 

classification. Reference frame is WGS84 UTM 32N. 

 

Table 5. Amount of submerged vegetated areas (ha) on 3rd October 2020. They are 

reported with reference to the CLC 2018 level 3 classes and to the type of submersion. 

Areas 211 213 242 243 

Flooded (ha) 211.60 930.40 6.79 208.74 

Submerged - Soil saturation (ha) 43.75 221.40 0.02 50.58 

 

4. Discussions 

Ordinarily, flooded areas mapping by hydrological models relies on physically-

based simulations involving meteorological data, DTMs, river and soil features. 

These models generate outputs resulting from local assumptions and 

simplifications as deeply discussed by (Devia et al., 2015; Sood and Smakhtin, 

2015). Differently, SAR satellite-based approaches allows to detect actual 

submerged areas based on physical scattering mechanism (i.e. surface scattering). 

This reduces uncertainty related to the definition of the correct empirical 

parameters that hydrological models require. SAR image-based methods are 

strictly dependent on a thresholding processing step whose performance strictly 

relies on the time, after the event, that a proper im-age can be available. In fact it 

is expected that the number of flooded pixels decreases with the passing of days, 
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making weaker statistical deductions concerning ΔVV distribution analysis 

especially related to class separability (De Petris et al., 2021a). It is worth to 

remind that the majority of image thresholding techniques depends on patch size, 

making Otsu’s method an exception since operating regardless of object size and, 

consequently, well-fitting crop detection (i.e. small patches) (Lee et al., 1990). 

As far as obtained results are concerned, FM proved to correctly detect flooded 

fields with the respect to RD. Authors again remark that, given the very small 

size of RD fields, a rigorous validation was actually not possible. This is a 

common condition while dealing with natural hazards related problems, where 

data for validation are often missing due to unfavorable environmental 

conditions, sometimes unsafe, characterizing hit areas after the event. 

Nevertheless, literature confirmed that the joint use of Otsu’s method and SAR 

imagery is effective in flooded areas detection as reported by (Pulvirenti et al., 

2013; Schumann et al., 2010) with respect to study cases exactly concerning areas 

that are very closed to our study area (i.e. Northwestern part of Po Valley). With 

special concerns about new issues that this work dealt with, the problem related 

to the distinction between are-as hosting water coming from rainfall (soil 

saturation) and those actually flooded by the river is certainly the most interesting 

one. These two situations contemporarily occurring after a flooding event, are 

expected to determine different damage levels to crops. To take care about this, 

PFAM was generated based on proximity analysis (allocation tool). PFAM 

proved to be affected by several simplifications: (a) proximity analysis depends 

on DTM and SRA geometric resolution and both altimetric and planimetric 

precision (Awange and Kiema, 2013; Boc-cardo et al., 2003); (b) water flow was 

assumed to only run along a negative slope gradient; (c) since proximity analysis 

only maps the closest RBA to the generic  position, an underestimation of flooded 

areas is expected. In fact, other points can also contribute to supply water to the 

same location; (d) during the flood some obstacles can interrupt water flow from 

river to the generic point and, consequently, not taking care about this can 

generate an overestimation of areas potentially flooded by river. For a complete 

transfer of this method to the operational compart, further investigations are 
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expected to be done. The first one concerns the analysis of the effects of spatial 

connectivity and patchiness affecting both river and crops. From this point of 

view, only few works exist in literature, suggesting that an important knowledge 

gap still persists thus requiring a proper investigation (Alaoui et al., 2018; 

Western et al., 1998). Moreover, the lack of an updated crop type map represents 

a limit for a proper damage assessment over difference crops. Therefore, future 

developments will be expected to involve in the proposed approach a crop type 

detection derived by remotely sensed data (Sarvia et al., 2021b). The second one 

concerns the effect of DTM accuracy in both the segmentation process and 

robustness of WD estimates, specifically looking for the separated contribution 

of DTM absolute and relative accuracies. DTM accuracy and spatial resolution is 

basic while dealing with geometric issues like water level mapping. One 

constraint of the method is in fact that the DTM vertical uncertainty is lower than 

the expected value of the measure one is going to do. It is well known that glob-

al DTMs, like ASTER (Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) DTM v2 and SRTM (Shuttle Radar Topography Mission) show a 

reduced absolute vertical accuracy (about 10 m) coupled with a pixel size of 30 

and 90 m respectively. These features make them not compliant with this type of 

analysis. Nevertheless, the most of countries make available through their 

institutional geoportals, more detailed and site specific DTMs, the most of them 

from LiDAR acquisitions, having accuracies and resolutions consistent with the 

one we adopted for this work. An absolute vertical accuracy of 0.5 m could be 

enough while working at the landscape level and when ground has to be compared 

with a water level that, during a flood, could significantly be over the meter. 

Moreover, when a vertical absolute accuracy of 0.5 m is declared by suppliers, it 

is expected that relative accuracy (concerning height differences between points 

from the same DTM) is higher, making the data more and more proper. As far as 

geometric resolution is concerned, a DTM having a 5 x 5 m pixel size is perfectly 

consistent with a 1:25000 scale map and, consequently proper for at-landscape-

level analysis like the one required for floods affecting wide areas. Some 

refinements would be desirable concerning WD and water persistence effects on 
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crop damage, introducing a preliminary step for crop classification from satellite 

data and its characterization in terms of phenology (Sarvia et al., 2021b).  This 

information will certainly drive to develop a more robust crop damage assessment 

making possible to overcome those approximations related to the adoption of a 

low-resolution crop map like the Corine Land Cover one is. We remind that the 

CLC minimum mapping unit is 25 ha and not all the crops are taken into 

considerations separately, suggesting a more specific classification. As far as 

flooded crops mapping is concerned, the joint use of VM and CLC2018 proved 

to effectively support rice damage assessment. A critical point still persists 

concerning NDVI thresholding since, depending on the adopted threshold value, 

crop detection and related economic loss estimates can greatly vary. Concerning 

WD mapping, accuracy of estimates was found to be 0.42 m (MAE). This result 

is consistent with those other methods can generate. Specifically, results obtained 

by the RAPIDE tool proposed by Scorzini et al. (Scorzini et al., 2018) showed a 

MAE ranging be-tween 0.28 and 0.79 m for the flood event occurred in 

Lombardia region in November 2002. Gatti (Gatti, 2016) found a WD MAE 

varying between 0.42 and 0.73 m for the flood event occurred in Sardegna region 

(Italy) in November 2013. Finally, WD uncertainty from the pre-sent work was 

also consistent with the one from 2D hydrological models like FwDET that was 

applied in Brazos River area (Texas, USA) during the flooding event occurred in 

Septem-ber 2013 where an accuracy of 0.37 m was found (Cohen et al., 2018). 

Concerning agronomic issues, it is worth to remind that water persistence (De 

Petris et al., 2021a) and vegetation stage can significantly affect the damage 

impact of crops (Rahman and Di, 2020). In this regard, several indices were 

proposed in the literature for the evaluation of crop damage following natural 

disasters, such as the Vegetation Condition Index or the Disaster Vegetation 

Damage Index (L. Di et al., 2018; S. Di et al., 2018), however no works aim at 

estimating the WD with Copernicus and DTM open data are currently present. 

The pos-sibility of mapping WD can be therefore useful to locally test, in this 

particular case, if rice was significantly or totally submerged. Since rice average 

height close to the harvest is about 0.80 m (Fogliatto et al., 2012) WD information 



 

74 

 

makes it possible to better quantify potential crop damage. This is strictly related 

to the economic loss that the event possibly determined. From this point of view, 

according to the local price of rice (340 €·t-1) and to the nominal yield (7 t·ha-

1), the potential income loss was found to be equal to 2214354 €. This result can 

probably vary according to local damage level, farmer's recovery effort, rice 

varieties; nevertheless, it represents a first rapid estimate of local economic loss 

that well fits the requirements needed while working with disastrous events (De 

Petris et al. 2021; Sarvia, De Petris, and Borgogno-Mondino 2020). 

5. Conclusions 

In this work, the flood event occurred on 3rd October 2020 in NW Italy along the 

Sesia river was assessed with special concern about damages affecting rice crop 

fields. A method was proposed aimed at detecting flooded areas and giving an 

estimate of WD based on free available Copernicus data (Sentinel-1 and Sentinel-

2) and DTMs. In particular, S1 GRD IW pre- and post-event images were 

compared by differencing (ΔVV). ΔVV was processed at pixel level to detect 

submerged areas through the thresholding Otsu’s method. A ΔVV value of -6.94 

was found able to separate areas with and without stagnant water (about the 4% 

of the AOI). Otsu’s method was adopted to make objective the selection of the 

proper threshold value to map areas with and without water from S1 data. The 

method is adaptive, making possible to automatically detect the threshold value 

accordingly to the specific area one is considering. A simplified morphological 

analysis was then performed by DTM tessellation to map DPs. These were 

interpreted as elementary units to refer WD estimates to. The WD accuracy was 

tested in respect of local ground data resulting in a MAE of 0.42 m.  A further 

step aimed at classifying submerged areas was achieved based on DTM and SRA 

proximity analysis, making possible to separate areas where water was related to 

soil saturation from areas where water was coming from the river.  CLC2018 

level-3 and NDVI from a S2 pre-event image were used to map crops that were 

still to be harvested at the time of flood. These were the ones that were considered 
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while estimating the potential economic loss. About 211 ha of rice were 

submerged by river flooding determine an economic loss of about 2200000 €. 

Concluding, in this work a simplified approach based on GIS and free available 

data was proposed to support flood related damage estimation. Simplicity and 

cheapness of the approach, coupled with the obtained WD uncertainty, are 

certainly interesting if compared with more complex methods based on 

hydrological models. These ordinarily require many inputs that are rarely 

available outside rivers and difficultly available for agricultural areas, especially 

during an unexpected and extreme event such as flood. 
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4.2 RADAR INDICES-BASED TECHNIQUES 

4.2.1 Multitemporal Dual-Pol Sentinel-1 Data to Support Monitoring of 

Forest Post-Fire Dynamics 
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Abstract: Approaches based on multitemporal analysis of optical-retrieved 

vegetation index time series were successfully applied to describe forest 

disturbances like forest fires; conversely, only few works make use of 

multitemporal Synthetic Aperture Radar (SAR) data. In this work, a 

multi-temporal approach based on Sentinel-1 data (S1) is proposed 

based on CR polarimetric index to monitor forest canopy along the 

considered period (2016-2019) preceding and following an important 

fire event occurred in the Piemonte Region (NW Italy) in November 

2017. The Pettitt test, applied to the polarimetric index time series, was 

used for testing fire occurrence date and map burned areas (795 ha) 

resulting in user’s accuracy of burned area equal to 88%. A trend 

analysis was also conducted, on “burned” pixels only, to describe tree 

canopy damage and strength of the consequent recovery process at pixel 

level using linear trend slope values of cross ratio polarimetric index 

time series. Finally, a k-means cluster analysis was applied to define 

classes having the same ecological behavior with respect to two 

different criteria: one aimed at mapping type and intensity of damage 

and a second one aimed at describing the ecological behaviour in terms 

of resistance and resilience of burned patches. In the study area, the 

cluster layer called forest damage map classifies about the 22% of 

burned area as characterized by an early high severity whiled the 

residual by moderate-low severity levels. The second cluster layer 

called ecological response map defined the 61% of the burned area as 

resistant forests, the 20% as resilient forests and the 19% as increasing 

forest zones. All maps were generated with the aim of supporting post-

fire assessment and management with free satellite SAR data.  

Keywords: SAR; Sentinel-1; Google Earth Engine; Forest Fire; Recovery 

process mapping; Fire severity mapping; polarimetric index time series.  
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1. Introduction 

Mapping fire extent and severity is essential to assess ecological effects (Reilly 

et al., 2017) and to plan mitigation measures and restoration activities after the 

fire season (Suresh Babu et al., 2018). Remote sensing is widely used to map 

burned areas and to measure fire severity (Keeley, 2009). It proved to be effective 

especially in those regions that are characterized by low accessibility and 

extensive burned areas (Kato et al., 2020). In particular, Italian forests are 

sensitive to wildfires that represent one of the main natural disturbance in the 

European forests (Carlucci et al., 2019). Wildfires are prevalent in the 

Mediterranean area, but they are also relevant in the Alps where about 4000 

ha yr-1 per fire can occur (Valese et al., 2014). Despite optical data are widely 

used for mapping fire effects, radar (radio detection and ranging) still appears to 

be underused, in spite of its favourable peculiarities: independence from cloud 

coverage, haze layers and smoke plumes frequently present during forest fire, 

sensibility to geometrical features of canopy and water content. Precisely in the 

Alps, winter is the forest fire season (Ascoli et al., 2013), when cloud cover is 

higher. The latter condition affects the monitorability of fires in the Alps by 

optical remote sensing, making spaceborne radar proper to fill the gap. Moreover, 

while optical data strictly depend on surface and top of the canopy conditions, 

radar can moderately penetrate tree crowns, making it possible to investigate 

moisture and structural properties of vegetated volumes (Szigarski et al., 2018). 

Changes in vegetation structure is one of the key features that allows detection 

and characterization of burned forest by SAR (Synthetic Aperture Radar) (Tanase 

et al., 2011). In particular, polarization state of SAR backscattered electro-

magnetic signal appears to be a more sensible tool for analyzing forest 

geometrical properties than optical data and, therefore, it can be adopted to detect 

and monitor fire-induced effects on forest. SAR polarimetry is the technique that 

allows to analyse the polarization state of the electromagnetic signal 

backscattered by earth surface to the sensor. In particular, vegetation canopy 

determines the so-called volume scattering mechanism. The interaction with 
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vegetation canopy generates a depolarization of electromagnetic wave. In fact, 

canopy elements (supposed as cylinder-like objects) induce a rotation of the 

polarization vector depending on dipoles orientation (Richards, 2009). 

Depolarization increases with canopy density due to random orientation of 

branches/twigs: the effect is a strong backscatter of the cross-polarized band. 

Differently, a cross-polarized signal show lower values while moving to sparse 

vegetation or bare soil conditions (Ulaby et al., 1981). A wildfire could partially, 

or completely, remove tree canopy leaving stems and ground exposed. The 

effects of fire on backscattering also depends on polarization; cross-polarized 

signal (HV or VH - horizontal/vertical transmitted/received signal) is known to 

be more sensitive to volume features of scatterers. A decrease of cross polarized 

backscattering might be observed as a consequence of canopy volume loss caused 

by fire (Minchella et al., 2009); instead, variations of the co-polarized 

backscattering generally depends on the rate of exposed soil within the pixel 

(Imperatore et al., 2017). Vertical polarization is known to be more sensitive to 

objects with a prevailing vertical size, e.g. tree stems, that usually are not 

completely destroyed by fire (Bernhard et al., 2012); double bounce and surface 

scattering effects tend, in fact, to become important where signal more easily 

penetrate tree crowns and reach the ground.  

In literature, many approaches were adopted to monitor vegetation disturbances 

based on SAR polarimetry (Lee and Pottier, 2017). For example, the polarimetric 

decomposition (Cloude and Pottier, 1996) derives second-order statistics from 

the covariance matrix, i.e. Entropy - H, anisotropy - A, alpha -  permitting to 

assess changes in backscattered signal (De Petris et al., 2021). Unfortunately, 

such an approach is based on raw (complex values) SAR data processing, making 

difficult to approach multitemporal analysis over large areas. A possible more 

operational alternative is the one based on the computation of simple polarimetric 

indices like Radar Vegetation Index (RVI) (Kim et al., 2011) and Cross Ratio 

(CR) (Paloscia et al. 1999). The ratio of dual-pol bands, typically one co-

polarized and the other cross-polarized, (e.g. Sentinel 1 VV and VH) proved to 
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be effective in describing backscattering behaviour of vegetation providing a 

measure of the depolarization level. CR showed significant linear correlations 

with vegetation density, Normalized Difference Vegetation Index (NDVI), Leaf 

Area Index (LAI) and Vegetation Water Content (VWC) (De Petris et al., 2022; 

Kim et al., 2011; Vreugdenhil et al., 2018). In the multitemporal context, time 

series of optical-retrieved vegetation indices proved to effectively describe the 

effects of forest disturbances like fires (Telesca and Lasaponara, 2006).  In 

particular, the present availability of big and free archives of remotely sensed 

images like Google Earth Engine (GEE) allows to improve this kind of analysis 

by densifying time series over wide areas. Nevertheless, the literature about 

multitemporal analysis of post-fire dynamics trough the SAR imagery adoption 

is still limited (Belenguer-Plomer et al., 2019; Bourgeau-Chavez et al., 2002; 

Carreiras et al., 2020; Engelbrecht et al., 2017; Gimeno et al., 2004; Kasischke et 

al., 1994; Lohberger et al., 2018; Verhegghen et al., 2016) and no works focusing 

on the post-fire dynamics monitoring (i.e. severity and recovery processes) were 

available. The crucial point in ordinary forest fire effects mapping is the one 

related to the a-priori identification of the date when all the induced (direct and 

indirect) effects of the event are assumed to be detectable and concluded. 

According to this arbitrary post-fire date the most of the approaches proceed by 

comparing a “before” and an “after” image to map fire severity, e.g the 

differenced Normalized Burn Ratio - dNBR (Key and Benson, 2006), the 

Relative dNBR - RdNBR, (Miller and Thode, 2007) and the Relativized Burn 

Ratio - RBR (Parks et al., 2014), excluding possible delayed effects affecting the 

whole vegetated ecosystem in the area. In this work, this issue was carefully 

considered and an alternative approach, based on dense time series of SAR-based 

indices exploring a large period preceding and following the date of the fire, was 

investigated. Proposed approach made possible to avoid any a-priori setting of 

the post-fire date to use for deriving differences relatable to severity and obtaining 

true estimate of the actual date when the local ecosystem reached its maximum 

of damage and, consequently, the rate of system decay. Such information was 
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used to derive severity maps that are expected to more properly represent the 

actual after-event situation.  

Moreover, the same approach, made it possible to investigate the reaction of the 

system (recovery) at local (pixel) level providing a spatial representation of forest 

behaviour in terms of both resistance and resilience. Such mapping procedure is 

rare to be found in literature (even considering optical-based approaches). 

Anyway, even if proposed, the adoption of SAR data in place of optical ones is 

expected to provide, during recovery, a more focused representation of those 

forest components related to significant volume changes (i.e. trees and shrubs) 

making other vegetated players, like grass, negligible.  

Trying to fill these lacks, a multi-temporal approach based on Sentinel-1 data 

(S1) is proposed.  In particular, the CR polarimetric index was adopted to monitor 

forest canopy along the considered period (2016-2019) preceding and following 

an important fire event occurred in the Piemonte Region (NW Italy) in November 

2017. A map of burned areas was therefore generated looking for a unique 

significant breakpoint occurring along CR image time series that was additionally 

processed to derive some ecological indices useful for mapping disturbance 

severity and describing the recovery process. A final interpretation of the event 

was then given with reference to a clustering approach aiming at recognizing 

zones showing a different post-disturbance behaviour.  

2. Materials and Methods  

2.1. Study Area   

The area of interest (AOI) sizes about 53 km2 corresponds to that part of the Susa 

Valley (Italian Western Alps) that was affected by a large wildfire at the end of 

October 2017. It covers the municipalities of Bussoleno, Mompantero, Susa, 

Chianocco, Novalesa and Venaus (Fig. 1). AOI is characterized by a dominant 

south slope aspect; altitude ranges from 450 m to 2000 m a.s.l. Climatic 

conditions are particular for the Alps: low annual rainfall, frequent wind, and 

temperature rarely below 0°C, represent good predisposing conditions for wild 
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fire. In addition, October 2017 was characterized by anomalous weather 

conditions with higher temperature and prolonged lack of rainfall. Within AOI, 

about 3378 ha are covered by forests dominated by different species: scots pine 

(20% of forest surface), larch (10%), beech (27%), downy oak (14%) and other 

broadleaves (21%) like chestnut, maple, ash and linden. According to the post-

fire assessment operated by the Piemonte Region (Regione Piemonte, 2019) 

about 50% of the area interested by fire was characterised by medium or high fire 

severity (about 1698 ha), especially in the beech and scots pine stands and, 

secondly, by larch and downy oak (De Petris et al., 2020). Some of these stands 

were already interested by a fire event in the 2003 (Ascoli et al., 2013). 

 

2.2. Available Data  

2.2.1. Sentinel-1 Data 

Copernicus S1 is one of the current biggest space missions acquiring SAR data 

that are released to users for free. Their medium-high spatial resolution and high 

revisit time (6 days) make them useful for a wide range of applications. S1 

mission is a constellation of two satellites (Sentinel-1A and Sentinel-1B) 

operating in the microwave C-band (5.6 cm wavelength). Main acquisition mode 

over land is the interferometric wide swath (IW) recording backscattered signal 

in dual pole mode (VV and VH). Data are natively recorded as complex values 

(I/Q components) geocoded in SAR geometry (Range and Azimuth). According 

 

Figure 1. (Left) Area Of Interest (AOI) localization within Piemonte Region; (Right) AOI with 

forest types map. (Reference frame: WGS84 UTM 32N). 
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to Vollrath (2020) and Reiche (2016), the complexity of SAR data pre-processing 

is one of the main reasons for its slow uptake by a wider user community. From 

this point of view, GEE web-based platform allows an immediate access to 

images and allows users to directly focus on the expected information (Gorelick 

et al., 2017). For this work S1 ground range detected (GRD) IW image collection, 

available in GEE, was used. S1 GRD products consist of focused, detected, multi-

looked SAR data projected to ground range. The product has an approximately 

squared pixel with a spatial resolution of about 10 m, and a reduced speckle 

obtained through the multi-look process. In GEE, GRD product pre-processing is 

achieved by the Sentinel-1 Toolbox (S1TBX) supplied by the European Space 

Agency’s (ESA) and the correspondent backscatter coefficient (σ° [dB]) images 

obtained. Pre-processing steps consist of: (1) application of orbit file metadata, 

providing an accurate satellite position and velocity information; (2) border noise 

removal, removing low intensity noise and invalid data on scene edges; (3) 

thermal noise removal,  removing additive noise in sub-swaths; (4) radiometric 

calibration, computing backscatter intensity using sensor calibration parameters 

supplied in the GRD metadata; (5) image orthoprojection, correcting the intrinsic 

image geometric distortions caused by topography whose description is derived 

from the 30 m gridded SRTM (Shuttle Radar Topography Mission) DEM (Digital 

Elevation Model).  GRD dataset is known to have some limitations related to 

radiometric distortions over rugged terrain originated by the side-looking SAR 

imaging geometry within the backscatter products (Vollrath et al., 2020). 

Nevertheless, while working with pixel-based multitemporal approaches, relative 

differences of backscattering are more important that absolute ones. With these 

premises, in this work GEE S1 GRD collection was used covering a sensing 

period between 1st January 2016 to 31st December 2019. Both ascending and 

descending orbits were considered for a total of 215 descending (relative orbit 

number = 139) and 218 ascending (relative orbit number = 161) images. 

Ordinary, pixel positional accuracy of S1 GRD data after the orthoprojection was 

2.3 m (1) (Small and Schubert, 2019). 
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2.2.2. Auxiliary Forest Map  

The forest map (FM) of the Piemonte Region (Camerano et al., 2017), containing 

information about forest types, was used as auxiliary information in this study. 

The map, updated 2016, has a nominal scale of 1:10000 and was freely obtained 

as vector layer (at: https://www.geoportale.piemonte.it/cms). 

2.2.3. Reference Data  

Piemonte Region post-fire map (PRPFM) was used to test and interpret results 

from this study. It was obtained, in vector format, from the “Extraordinary 

regional plan of interventions to restore the territory covered by forest fires of 

autumn 2017” (Regione Piemonte, 2019). It has a 1:100000 nominal scale and 

reports three different fire-severity classes as mapped at the end of the fire event 

by optical remotely sensed data (Copernicus Sentinel-2) supported by field 

measurements. This map was generated adopting the FIREMON (Fire Effects 

Monitoring and Inventory System) protocol and has a nominal cover classes 

uncertainty of about 10% (Lutes et al., 2006). PRPFM thematic accuracies were 

equal to 53% for low severity, 61% for medium severity and 95% for high 

severity. The overall accuracy was 66 % (Regione Piemonte, 2019).  

2.3. Data Processing 

The workflow adopted in this work is reported in figure 2. SAR imagery was 

processed directly in GEE and then downloaded and analysed by self-developed 

routines. Finally, several maps were generated and the spatial distribution of fire 

effects assessed and properly mapped. A detailed explanation of each step is 

provided in the following sections.   
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Figure 2. Workflow adopted in this work. Data were collected and directly processed in Google 

Earth Engine (GEE). Polarimetric Index Maps were stacked along a time series and downloaded. 

Self-routines were developed to analyse fire effects on forests. Finally, maps (rhomb) were 

generated and properly assessed to give a spatial interpretation of performed analyses.  

 

2.3.1. Polarimetric Index Time Series 

Both ascending and descending nodes of S1 data from GEE GRD collection were 

used and the correspondent polarimetric index time series generated in GEE. 

Maps were obtained in the WGS84/ UTM 32N reference frame. In particular, to 

reduce speckle, VV and VH images were monthly averaged (about 5 images per 

month) generating a time series of 48 images. This type of de-speckle technique 

was adopted to preserve image geometric resolution (10 m), thus avoiding local 

smoothing that would have possibly compromised detection of small sized 

disturbance patches (Mermoz and Le Toan, 2016).  In order to minimize radar 

shadows, ascending and descending orbits datasets were combined at pixel level; 

accordingly, the above-mentioned images, from ascending and descending 
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acquisitions, were compared and a new one generated (monthly) by locally 

selecting the correspondent maximum 0 value (at-pixel-level) for the only VH 

images. The correspondent VV image was therefore retained to compute the 

cross-ratio coefficient as described below. This made possible to select, at the 

single month, the most proper acquisition between the available descending and 

ascending ones. In spite of this approach some limitations were known to still 

affect data like radiometric distortion due to layover and/or incidence angle 

effects. Nevertheless, this method was expected to minimize the problem related 

to masked hidden areas that, differently, would remain void. This is, in fact, a 

very common problem while working in mountain areas.A further issue concerns 

the area effects that the combination of ascending and descending acquisitions 

can introduce. The backscatter coefficient is known to depend on the real 

scattering area that is expected to be different if the viewing geometry is different. 

This is one of the reasons that drove us to select the cross-ratio (CR) polarimetric 

index (eq. 1) as privileged parameter able to describe scattering properties of 

surfaces along time. 

𝐶𝑅 =   
𝜎𝑉𝐻

0

𝜎𝑉𝑉
0 = [𝜎𝑉𝐻

0 ]𝑑𝐵 − [𝜎𝑉𝑉
0 ]𝑑𝐵                                           (1) 

Where 𝜎𝑉𝐻
0 , 𝜎𝑉𝑉

0  are the normalized radar cross section in linear scale and 

[𝜎𝑉𝐻
0 ]𝑑𝐵, [𝜎𝑉𝑉

0 ]𝑑𝐵  are the correspondent values in dB. For its definition, CR 

guarantees that area and target-to-sensor distance related issues could be 

neglected making observations consistent. This can be easily demonstrated with 

reference to the fundamental equation of the normalized radar cross section (eq. 

2). 

                     𝜎𝑉𝑉,𝑉𝐻
0 =

𝑃𝑅

𝑃𝑇
∙
(4𝜋)3

𝐺2∙𝜆2 ∙ 𝑅4 ∙
4 sin (𝜃)

𝐿∙𝑐∙𝜏
                                     (2) 

Where 𝑃𝑅 and  𝑃𝑇  are the received and transmitted power respectively; G is 

antenna gain; 𝜆 is the operational wavelength; R is the slant range; L is the real 

antenna length, c is the speed of light,  is the pulse duration,  is the look/ 
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incidence angle.  When computing CR with reference to its linear definition (eq. 

1) constant parameters of eq. 2 can be mathematically eliminated, included the 

scattering area term, i.e. 
4 sin (𝜃)

𝐿∙𝑐∙𝜏
, making values from different viewing geometry 

comparable. CR computation was achieved in GEE as difference between 𝜎𝑉𝐻
0  

and 𝜎𝑉𝑉 
0 for each image generating 48 CR maps. This index represents the ratio 

between backscattered power in H polarization respect to V one. CR values tend 

to 0 for highly depolarizing vegetation (high density of canopy) and decrease with 

canopy reduction. CR is known to coarsely separate volume and surface 

scattering mechanisms. According to Minchella (2009) volume backscattering 

significantly decreases and is replaced by surface backscattering when working 

over burnt areas. A time series of 48 CR maps (hereinafter called CRTS, Cross-

Ratio Time Series) was obtained covering about 4 years (2016-2019) with 

monthly frequency. CRTS was finally downloaded and all subsequent operations 

managed by R vs. 3.6.3 (R. Core Team, 2013) and SAGA GIS vs. 7.7 (Conrad et 

al., 2015). 

2.3.2. Burned Areas Mapping 

CRTS was, initially, clipped by FM in order to focus on forested areas. Mapping 

of forest burned areas was achieved by change detection. In particular, a pixel 

based temporal profile analysis was performed looking for a single breakpoint 

occurrence in the period October-November 2017.  A unique breakpoint analysis 

was performed to detect the moment when disturbance occurrence changed 

CRTS ordinary trend. A significant change is admitted to determine a drastic 

variation of the state of the area from the period preceding the vent and the one 

following it. No changing situations where the initial state is recovered after a 

while can be considered a “significant” change. Consequently, leaves falling from 

deciduous trees, being a yearly recurrent event that separates two similar 

vegetative states, has to be excluded from recognition.  The Pettitt’s test is exactly 

aimed at finding this type of situations; it is a non-parametric test based on Mann-

Whitney two sample test (rank based) (Pettitt, 1979) that look for a single 
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breakpoint at an unknown time t. The null hypothesis is that no change occurs 

along the time series; the alternative hypothesis is that the probability distribution 

function F1(x) built in the range [X1,Xt] is significantly different from the one, 

F2(x), built in the range [Xt+1,XT]. If the correspondent p-value is lower than the 

selected significance level (α = 0.05 in this work), one can reject the null 

hypothesis; consequently, the time series can be divided into two sub-series 

located before and after the breakpoint. Xie (Xie et al., 2014) highlighted that 

Pettitt method is influenced by some properties of the analysed series: sample 

size, magnitude of shift and breakpoint position. Mallakpour (Mallakpour and 

Villarini, 2016) examined the sensitivity of the Pettitt test and highlighted that 

abrupt changes are more easily detected when they occur between one third - half 

of the time series. Nevertheless, this breakpoint detection method was preferred 

in this work because breakpoint was a-priori expected to be located between 

October-November 2017, therefore around the 20th-21th observations out of the 

available 48. The Pettitt’s test was run at pixel level on CRTS; the date of 

breakpoint and the correspondent p-value were mapped in two separate raster 

layers. All pixels having a p-value > 0.05 were masked out. A further refinement 

was performed masking out all those pixels that showed a breakpoint date far 

away from the expected one (October-November 2017). It is worth to remind that 

the role of the Pettitt’s test in this work was not to position a date for an unknown 

fire event. Conversely, it was used to automatically recognize as “significantly 

burnt” a pixel around the date of a known fire event with the aim of locate more 

precisely the borders of the burnt area. This is a required operation that is 

institutionally due according to the Italian regulation.  Moreover, and more 

specifically for this work, the automatic recognition is desirable of burnt pixels, 

internally consistent with the data used to operate the following evaluation 

concerning fire severity mapping and recovering description. The need of 

masking out breakpoints falling in a date far away from the one of the event was 

considered to take care about those similar situations that can come from other 

forest disturbance sources, like harvesting and forest diseases. A raster map 

(hereafter called Burned Map – BM) was finally created showing all those pixels 
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that proved to have significantly changed between October and November 2017. 

Burned and not-burned pixels of BM were codified as 1 and 0, respectively. 

Accuracy of burned pixels mapping was tested with respect to PRPFM, that was 

preventively rasterized at the same resolution of BM. The correspondent 

confusion matrix was computed. 

2.3.3. Severity Index  

Since CRTS was known to be still affected by noise (i.e. speckle remainders or 

CR statistical fluctuations), a time series decomposition was computed to 

separate significant signal (trend component) from noise (Forkel et al., 2013; 

Jonsson and Eklundh, 2002). Trend component was extracted using LOESS 

(Locally Estimated Scatterplot Smoothing) algorithm (Coltuc et al., 2000). 

LOESS hyper-parameters selection was automatically defined by fANCOVA R 

package (Wang, 2010) searching for those that minimized the bias-corrected 

Akaike Informative Criterion (AICc) as proposed by (Basak et al., 2017; Hurvich 

et al., 1998). Cai (2017) and Hird (2009) proved that LOESS is an effective 

technique to denoise vegetation index time series data. Some experiences used 

this approach for multitemporal SAR data analysis (Coltuc et al., 2000). After 

LOESS application a new smoothed CRTS (hereinafter called sCRTS) was 

obtained where the noise (high frequencies in temporal profile) component was 

removed; sCRTS represents trend and seasonal components of CRTS and 

therefore permits a better analysis of actual forest polarimetric behaviour. 

Assessment of forest fire effects is a key concept for addressing post-fire 

management decisions (e.g. reforestation, salvage logging or natural 

development). Fire changes landscape and causes an economical value loss of 

damaged trees. Specifically, fire can damage trunks of trees, the so called “cat 

face” (McBride, 1983), or their crowns. Knowledge about fire-induced damages, 

in particular canopy-related ones, is needed in mountain areas where forests often 

provide protection against natural hazards (i.e. rainfall erosion, landslides, snow 

avalanches, rockfalls, etc.). Both trunk and crown damages by fire can influence 

timber quality (Marschall et al., 2014) and tree mortality (Catry et al., 2010). It’s 
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worth to remind that tree mortality may occur immediately after very severe fires 

or be delayed by several years after low-to-moderate severe fires (Maringer et al., 

2016). Many studies highlighted that forest mortality can occur with a time lag 

after fire occurrence (Keyser et al., 2006; Linder et al., 1998). In particular, Ascoli 

and Maringer (Ascoli et al., 2013; Maringer et al., 2016) observed this 

phenomenon on burned forest stands in Piemonte. Tree mortality or crown 

damages change polarimetric behaviour of forest canopy causing a CR decline 

that stops when, reaching its minimum, forest recovery processes start, inverting 

the trend. Trend analysis was performed with respect to burned pixels of sCRTS 

(Fig. 2).  A linear regression was calibrated (at pixel level) with reference to those 

observations ranging from the date of breakpoint to the one when the minimum 

of sCRTS (tmin) occurred.  The latter was retained as the moment of maximum 

damage for trees. The gain value (Gs) of the locally calibrated linear regression 

was assumed as a decline rate for CR after fire. Only pixels showing negative Gs 

values were consequently considered.  Two new raster maps, tmin(x,y) and Gs (x,y) 

were generated locally mapping tmin and the correspondent Gs value, respectively. 

Being a gain value, Gs is not sensitive to the absolute CR difference occurring 

between the breakpoint date and tmin; consequently, a new raster layer (hereinafter 

called ΔCR(x,y)) was generated computing the local difference between the CR 

value at breakpoint and the correspondent tmin. ΔCR(x,y) was finally normalized 

into the range [0;1] according to eq 3.   

     𝑛𝛥𝐶𝑅𝑖 = 
(𝛥𝐶𝑅𝑖−𝛥𝐶𝑅𝑚𝑖𝑛 )

(𝛥𝐶𝑅𝑚𝑎𝑥−𝛥𝐶𝑅𝑚𝑖𝑛 )
                                            (3) 

where ΔCRi is the ΔCR value of the generic i-th pixel; ΔCRmin and ΔCRmax 

are the minimum and maximum ΔCR values, respectively. nΔCR was adopted as 

weighting factor to compute the proposed forest fire Severity Index (SI, eq.4). 

𝑆𝐼(𝑥, 𝑦) =  𝑛𝛥𝐶𝑅(𝑥, 𝑦) ∙ 𝐺𝑠(x, y)                                    (4) 
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Highly negative values of SI(x,y) denote high fire severity; differently, values 

close to 0 denote low severity. It has to be remarked that this approach was based 

on the joint adoption of two parameters concerning the analysed temporal profile: 

𝑛𝛥𝐶𝑅(𝑥, 𝑦) and 𝐺𝑠(x, y). This was specifically aimed at minimizing possible 

effects on signal related to local conditions (stand fertility). In particular 

𝑛𝛥𝐶𝑅(𝑥, 𝑦) was specifically in charge of summarizing local conditions making 

pixels showing the same slope, possibly different. 

2.3.4. Recovery Index  

Burn severity and forest regrowth are different issues of the post-fire process. 

Burn severity is considered a first-order fire effect (e.g. greenhouse gasses 

emission and plant death);  forest regrowth is a second-order effect that might be 

evident many decades after the fire (Tanase et al., 2011). Consequently, after a 

forest fire, assessment of damage severity and its spatial patterns are important 

issues to address recovery planning (Ryu et al., 2018), especially for those forests 

that provide a direct protection against natural hazards. Post-fire management can 

accelerate forest restoration and enhancing stand structures linked to provision of 

ecosystem services (Moreira et al., 2009). Nevertheless, post-fire rehabilitation 

measures and silvicultural prescriptions are the result of a complex decision-

making process (Barbati et al., 2010) that should consider ecological-related 

problems (Beghin et al., 2010). From the hazard protection point of view, 

recovery planning have to take into account, firstly, canopy cover changes and 

stand structural variations (Shakesby, 2011) in order to focus restoration 

interventions only onto the most critical areas, leaving the other ones under 

natural or partial silviculture-guide recovery. Post-fire vegetation recovery 

assessment is often derived from short-term plot level measurements that attempt 

to infer long-term vegetation recovery trajectories (Jones et al., 2013). Satellite 

remote sensing offers a relatively low-cost, rapid, and repeatable method to 

measure post-fire vegetation recovery over large regions. Remotely-sensed 

vegetation indices have largely been used to analyses post-fire recovery (Di 

Mauro et al., 2014; João et al., 2018). Also SAR data were involved in post-fire 
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recovery monitoring (Zhou et al., 2019). In fact, forests may need decades to 

reach the mature stage and the short period within which optical based vegetation 

indices reach pre-disturbance levels implies limited value for longer-term 

monitoring. SAR data have the potential to significantly extend the monitoring 

period since the backscattered signal is directly influenced by forest structure 

(Tanase et al., 2011). Backscattered signal from forests is the result of complex 

interactions between microwave radiation and ground + vegetation components. 

According to Dobson (1992) radar backscattering increases approximately 

linearly with increasing biomass. Therefore, radar backscattering is expected to 

change after a fire since the most of vegetation is removed leaving soil and tree 

trunks exposed. In order to evaluate sensitivity of radar backscattering to post-

fire vegetation regrowth, it is important to identify the scattering mechanisms that 

act before and after the fire. Before a fire, radar C-band interacting with the 

canopy, generates a backscattering mostly related to a volume scattering 

mechanism operated by the canopy layer (Smith et al., 1996), that prevails on soil 

moisture and roughness. After a fire, radar waves primarily interact with soil 

according to a surface scattering mechanism; in these conditions, backscattering 

is majorly conditioned by roughness and soil moisture. Some years after the fire, 

radar signal turns to interact with the newly regenerated vegetation and, 

consequently, the effects of soil moisture and roughness on backscattering 

gradually diminish. Once vegetation density and structure reach the pre-fire level, 

volume scattering goes again to be the dominant mechanism (Zhou et al., 2019). 

With these premises, polarimetric index time series could provide useful 

information on post-fire recovery process. A trend analysis of sCRTS was, 

therefore, performed on BM pixels to quantify the recovery strength and velocity 

of the local vegetated component in the considered period. tmin, when fire severity 

effects are maxima, was assumed as the starting one for the recovery process that 

was analysed on mid-terms temporal basis. A linear regression relating CR values 

with time was calibrated at pixel level (Fig 3) with reference to the [tmin,tend] time 

range, where tend is the final date of the series (December 2019). The estimated 

gain of regression was assumed as forest recovery rate (hereinafter called 
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Recovery Index, RI). Two years is not a proper time range to appreciate a 

complete forest recovery process, nevertheless, one can exclude any contribution 

from grass component, since it does not participate to a continuous process, 

behaving yearly; conversely, shrubs could somehow contribute to the signal, 

leading to some misunderstandings about forest recovery. In spite of this, the 

main fact that remains is that an area showing a new increasing trend of its 

vegetated component suggests that a canopy recovery, whatever it is, is occurring. 

 

Figure 3. Cross-Ratio Time Series (CRTS) analysis. Dashed line is the breakpoint moment 

related to forest fire occurrence. Red line is the local linear regression used to analyse forest 

decline dynamics, in bold red the Gain (G) used to compute Severity Index (SI). Green line is 

the local linear regression used to analyse forest recovery, in bold green the gain value used to 

compute Recovery Index (RI). 

 

2.3.5. Burned Area Zoning   

BM, SI, RI, tmin are here proposed as new ecological-related indices able to 

measure some post-fire processes based on forest polarimetric behaviour. With 

the aim of exploring and summarizing spatial variability of indices at patch level, 

a vector graticule with 50 m x 50 m cell size was created covering the whole study 

area. The following statistics were computed by zonal statistics for each cell of 

graticule from indices maps: a) the 5th percentile of SI, b) the RI 95th percentile, 
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c) tmin median, d) number of BM pixels falling in each cell. Graticule cells with 

less than 4 BM pixels were deleted assuming 4000 m2 as minimum mapping unit 

in the area. In ecology, resistance is the ability of a forest to remain unchanged 

when a disturbance occurs (DeRose and Long, 2014; Grimm and Wissel, 1997);  

resilience is the capacity of a system to absorb disturbance and reorganize itself 

to still retain essentially the same function, structure, identity, and feedbacks 

(Holling, 1973; Walker et al., 2004). Taking in to account these issues, Chambers 

(2019) highlight the need to implement a resilience-based approach for 

prioritizing areas of intervention after a forest disturbance. Accordingly, two 

different cluster analysis were operated by a k-means approach with reference to 

the above-mentioned graticule by SAGA GIS, looking for peculiar ecological 

behaviours. A first cluster analysis was computed considering tmin(x,y) and 

SI(x,y) layers and resulted in a map made of 4 clusters (hereinafter called C1FDM, 

C2 FDM, C3 FDM, C4 FDM) that was assumed as Forest Damage Map, FDM(x,y). 

FDM(x,y) is expected to locate different damage levels of forest burned areas. 

Clusters showing high SI and low tmin values indicate a high level of disturbance 

impact that spread in a short time and that is probably related to stand replacing 

fire; low SI and medium tmin denote zones where fire has delayed effects 

determining diversified tree mortality. A second cluster analysis was run with 

reference to SI and RI and resulted in a map made of 4 clusters (hereinafter called 

C1ERM, C2 ERM, C3 ERM, C4 ERM) that was assumed as Ecological Response Map 

(ERM(x,y)). ERM(x,y) is intended to locate zones with different fire severity and 

recovery rate permitting to recognize resistant and resilient patches. Patches 

having high SI and RI values represent highly damaged forest patches that 

showed strong regrowth; i.e. the most resilient ones. Conversely, patches with 

low SI and RI values can be interpreted as more resistant. It is worth to remind 

that resilience and resistance are not only related to forest parameters but they 

result from the contribution of several interacting factors like local topography, 

meteorological conditions, land use, firefighters’ interventions. Nevertheless, 

FDM(x,y) and ERM(x,y) could effectively support post-fire management 
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according to ecological criteria. All the obtained classified vector maps were 

rasterized with a pixel size of 50 m.  

3. Results  

3.1. Burned Area Mapping 

As far as burned area mapping is concerned, with reference to the above-

mentioned method, a map reporting the local breakpoint date as recognized by 

Pettitt test was generated together with the correspondent map of p-value (figure 

3). A joint interpretation of the two maps, based on the selection of significant 

breakpoints occurred within the target period (i.e. October - November 2017) lead 

to derive BM (figure 4). 

 

Fig.3 – Area Of Interest (AOI) Pettitt test results. (Left) Map of breakpoint occurrence date 

(expressesd in number of images along time series) as detected by the Pettitt’s test; (Right) Map 

of the correspondent significance level obtained by comparng statistic distributions before and 

after breakpoint. (Reference frame: WGS84 UTM 32N). 

According to BM, in the study area, about 795 ha of forested areas were burned. 

These appear to be majorly concentrated in stands dominated by beech and scots 

pine and, secondly, by larch and downy oak (table 1). 
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Figure 4.  Burned Map (BM) derived by Pettitt’s test (in red). In blue Piemonte Region post-fire 

map (PRPFM) vector map (reference frame: WGS84 UTM 32N). 

 

Table 1 – Percentage distribution of forest types within burned areas as resulting from Burned 

Map (BM) and Piemonte Region post-fire map (PRPFM) (reference). 

Forest type 
BM 

(%) 

PRPFM 

(%) 

Difference 

(%) 

Beech 28 28 0 

Scots pine 27 26 1 

Larch 15 11 4 

Downy oak 14 16 -2 

Secondary woodlands 6 7 -1 

Maple, ash and linden 3 4 -1 

Bushes 2 4 -2 

Reforestation 2 1 1 

Chestnut 2 3 -1 

Silver fir 1 1 0 

 

The accuracy of BM was tested with respect to the available PRPFM, whose fire 

severity classes were preventively dissolved to simply locate burned and not-

burned areas as defined on ground survey basis by Piemonte Region. Confusion 

matrix (table 2) reports classification accuracies. Concerning the Not-Burned area 

PA and UA values were found to be equal to 96% and 66% respectively, while 



 

101 

 

concerning the Burned area accuracies values were found to be equal to 34% and 

88 % PA and UA respectively, resulting in an OA equal to 69%. 

Table 2 - Confusion matrix and accuracies between Burned Map (BM) and Piemonte Region 

post-fire map (PRPFM). Total number of reference pixel used to test the classification was 

537306. 

Classification \ Reference Not-Burned Burned User's accuracy 

Not-Burned 2929.01 ha 1541.02 ha 0.66 

Burned 107.64 ha 795.39 ha 0.88 

Producer's accuracy 0.96 0.34 Overall Accuracy = 0.69 

 

3.1. Severity Index and Recovery Index Maps 

SI(x,y) and RI(x,y) maps are reported in figure 5. SI(x,y) map is intended to 

synthesize the information about fire severity on forest canopy structure (Fig 5-

left); RI(x,y) map (Fig 5-right) is intended to synthesize the information about 

the recovery process that started after fire occurrence and somehow describing 

the increasing rate of canopy structure. The joint use of these maps can improve 

interpretation of the post-fire ecological behavior of burned areas as shown in the 

following paragraph concerning zoning of burnt areas. 

 

Figure 5. (Left) Recovery Index (RI) map; (Right) Severity Index (SI) map of the Area Of 

Interest (AOI) (Reference frame: WGS84 UTM 32N). 
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3.2. Zoning Burned Areas 

Two cluster analysis were performed considering SI(x,y), RI(x,y) and tmin(x,y), 

aggregating burned pixels in 4 groups with respect to two different criteria: one 

was aimed at mapping type and intensity of damage and drove to FDM(x,y) 

generation (C1FDM, C2FDM, C3FDM, C4 FDM); a second one was aimed at describing 

the ecological behaviour in terms of resistance and resilience of burned patches. 

It drove to generate ERM(x,y) map that considered C1ERM, C2ERM, C3ERM, C4 ERM 

classes representing different ecological behaviours. Since these classifications 

are unsupervised, clusters meaning is a-priori unknown. Consequently, to recover 

class meaning a zonal statistics-based approach was applied on SI(x,y), RI(x,y) 

and tmin(x,y) (figure 6). 

 

Fig. 6 – Box plots of Ecological Response Map (ERM-x,y) and (a) Forest Damage Map (FDM-

x,y) (b) clusters used to recover single class meaning. From bottom to up 5th, 25th,50th, 75th 

,95th percentiles. 

 

As far as FDM(x,y) is concerned (figure 7), clusters showed different values of 

both SI(x,y) and tmin(x,y). C1FDM showed the highest and the lowest mean values 

of SI and tmin respectively, suggesting it represents pixels that showed heavy 

damages in a short time after fire occurrence. C2FDM, C3FDM and C4FDM present 

progressively decreasing SI values and progressively increasing tmin values, 
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suggesting that they somehow represent stands poorly affected by fire with low 

tree mortality through time. According to this interpretation, clusters were 

labelled as it follows:  C1FDM = early high severity stands; C2FDM = early moderate 

severity stands; C3FDM = late moderate severity stands; C4FDM = late low severity 

stands. About 543 ha (22%) were characterized by an early high severity; 732 ha 

(29%) by early moderate severity; 336 ha (14%) by late moderate severity and 

877 ha (35%) by late low severity. 

 

Figure 7. Forest Damage Map (FDM) representing damage levels classes related to lagged tree 

mortality within the Area Of Interest (AOI) (Reference frame: WGS84 UTM32N). 

 

As far as ERM(x,y) is concerned (Fig. 8),  clusters presented different values of 

both SI and RI. C1ERM showed the highest and the lowest SI and RI mean value, 

respectively denoting a strong damage level combined with moderate recovery 

rate, suggesting that it could be representative of resilient stands. C2ERM showed 

lower values of both SI and RI mean values, suggesting conditions of 

intermediate resilience. C3ERM showed SI mean values around 0 and very low RI 

mean values suggesting the presence of resistant stands that were poorly affected 
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by fire and post-fire dynamics were consequently poorly influenced. C4ERM 

showed very high RI mean values and SI mean value around 0. ERM(x,y) clusters 

were labelled as it follows: C1ERM = high resilient stands; C2ERM = moderate 

resilient stands; C3ERM = resistant stands; C4ERM = increasing stands.  About 1346 

ha (61%) were classified as resistant stands; 427 ha (19%) by increasing stands; 

385 ha (17%) as moderate resilient stands and 53 ha (3%) as high resilient stands. 

 

3.3. Accuracy Assessment 

Testing the accuracy of BM in respect to PRPFM, a moderate balanced accuracy 

(BA) and high user’s accuracy (UA) were found. Conversely, producer’s 

accuracy (PA) was very low. Regarding low PA value, it has to be considered 

that PRPFM is known to overestimate burned areas. Specifically, PRPFM overall 

accuracy was 66 % while user’s accuracy was equal to 53% for low severity, 61% 

for medium severity and 95% for high severity (Regione Piemonte, 2019). 

Similar accuracies were found by Engelbrecht that used multi-polarisation C-

 

Figure 8. Ecological Response Map (ERM-x,y) map representing ecological post-fire recovering 

dynamics within the Area Of Interest (AOI) (reference frame: WGS84 UTM32N). 
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Band SAR to detect burned area in the South Africa achieving a PA and UA equal 

to 71% and 62% respectively (Engelbrecht et al., 2017). Similar accuracies were 

found by De Luca (De Luca et al., 2021; De Luca et al., 2022) using an object-

based geographic analysis (GEOBIA) process combined to random forest (RF) 

classifier, involving optical and SAR composite images as input layers. 

Nevertheless, they proved that the accuracy of results indicate that the integrated 

use of optical and SAR datasets reduces commission errors, correcting the 

erroneous identification of burned areas that could occur using individual types 

of sensors. While, Belenguer-Plomer using the S1 backscatter coefficient and 

thermal anomalies in the Amazon basin and Iberian Penisula achieving a PA and 

UA in the burned area detection equal to 63% and 61% respectively (Belenguer-

Plomer et al., 2019). In this situation, an approach based on an immediate (after 

minus before) change detection relying on optical data, cannot distinguish 

between a natural change related to leaves falling and the one induced by fire, 

especially in a transitional seasonal period like the autumn when leaves fall from 

deciduous trees. Consequently, an overestimation of burnt area is expected. To 

prove such information, some checks operated through photointerpretation with 

reference to an available true color orthoimage (GSD = 0.2 m) acquired on 10th 

November 2017 just after the fire stopped and supplied by Digisky s.r.l., an aerial 

survey company, confirmed this situation (De Petris et al., 2020). Unfortunately, 

the dataset did not cover the whole area and, consequently, it could not be used 

as reference for validation. Nevertheless, it made possible, with reference to two 

focus areas (hereafter called Photo-interpreted Burned Areas – PBA), to get an 

estimate of such overestimation of burnt areas potentially affecting PRPFM and 

refine accuracy measures about the proposed method (Fig. 9). This analysis 

showed that PRPFM tends to overestimate of about 225% the actual burnt areas 

(PBA) and that our method accuracy, with respect to the aerial orthoimage, was 

40%. A further unexpected result was therefore found during this work 

concerning reliability of official maps produced in standard mode. 
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Figure 9. Burnt areas mapping obtained by photointerpretation of the available true color 

orthoimage (PBA). (a) Two representative check areas were selected within the study area; (b-

d) comparison between Piemonte Region post-fire map (PRPFM) and Photo-interpreted Burned 

Areas (PBA); (c-e) comparison between Burned Map (BM) and PBA (reference frame: WGS84 

UTM 32N). It can be noted that PRPFM highly over-estimate actual conditions. The same, but 

highly reduced, for BM.  

 

A further element supporting this limitation of PRPFM is the map itself, where 

the low severity class is the prevailing one in AOI. Since a high commission is 

expected between unburned and low severity classes (Arnett et al., 2015) one can 

assume this as a very probable feature of PRPFM. All these considerations make 

clear that the intention was not having an absolute error estimate of their BM 

map, but comparing it with available “official” data, especially focusing on 

relative correspondences. To give an estimate of burnt areas a relative errors 

assessment was conducted considering total affected areas according to FM and 

PRPFM.  In table 1 was reported the distributions (%) of forest types within 

mapped burned areas and compared with those obtained from the reference, and 

official, map (PRPFM). In spite of low PA, it can be easily noted that BM and 

PRPFM, show similar percentages of forest types affected by fire resulting in 
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percentage differences always lower than 5%. A final comparison between fire 

severity from PRPFM and BM (Fig. 10) showed that 23%, 28% and 37% of BM 

pixels were assigned to the high, low and medium severity PRPFM classes, 

respectively. 

 

Figure 10. Burned Map (BM) and Piemonte Region post-fire map (PRPFM) comparison. BM 

can equally map fire effects under different instantaneous severity conditions (Reference frame: 

WGS84 UTM32N). 

This proves that the proposed method can equally map burnt areas under different 

severity conditions (as detected immediately after the event) with no regard about 

its level. This capability also suggests that SAR multi-temporal data moves 

around different mapping criteria if compared with the present official one. These 

criteria are related to geometrical and dielectrical proprieties of vegetation 

canopy. Especially the polarization of backscattered signal seems to be a good 

proxy of vegetation status before and after a disturbance able to describe a relative 

change in temporal domain. Similar results were found by Lasaponara 

(Lasaponara and Tucci, 2019) who carried out a survey in Metaponto (Southern 

Italy), highlighting the effectiveness of S1 data for fire area detection and fire 

severity characterization. 

4. Discussions 

Concerning FDM(x,y), authors are aware of the scientific weaknesses of 

deductions concerning clusters meaning. Nevertheless, they retain that remote 
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sensing-derived information always require an interpretation based on specific 

skills and knowledge from the field of application that those data have been 

generated for. Cluster analysis in particular requires an a-posteriori interpretation 

to recover a “possible” ecological meaning of evidences that clusters represent. 

Authors strongly believe that interpretation of data still remain a crucial point 

while dealing with the technology transfer, confirming that human being still 

preserves some sparks of knowledge that automatisms of data processing, in spite 

of ongoing AI-based approaches, cannot still fill properly. It is worth to remind 

that a knowledge-based interpretation can be also aimed at overcoming field 

validation, making possible to indirectly recover the “possible” meaning of 

clusters by synthesizing statistical proxies, photointerpretation of both spatial and 

temporal patterns, forest/ecological knowledge of researchers. This appears to be 

more fundamental when a ground validation is not operationally possible, like in 

this work. In fact, if one wanted to validate late mortality of trees, he should be 

able to locate some ground plots exactly in those areas where a future event (late 

mortality) will occur after the fire. Since this type of forecasting is not possible, 

a validation is not, reasonably, possible too and cluster interpretation is 

mandatory. FDM(x,y) (figure 9) can be certainly useful to better address 

restoration policies and, in particular, to focus on early high severity zones where 

fire compromised forest values from an economic, recreative and  natural point 

of view (Poratelli et al., 2020). Concerning ERM(x,y), the majority of the burned 

area (61%) is characterized by the presence of resistant stands while only 20% by 

resilient stands. About 427 ha were classified as increasing stands. Especially in 

the latter cluster, could represent patches where forest canopy increases due to 

the presence of pioneer species as ailanthus or European aspen that were favoured 

by fire occurrence and characterized by agamic regeneration. This peculiar 

dynamic was proved by Ascoli in the same study area (Ascoli and Bovio, 2010). 

This map could be a useful support to focus and assess post-fire restoration 

polices in burned areas according to more ecological-based criteria. For example, 

from a management point of view, post-fire treatments could be not necessarily 

in resistant stands, while in moderate resilient stands local restoration policy are 
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expected where forest structure was compromised by fire and could strongly 

reduce natural hazard protection. 

5. Conclusions 

In this work S1-retrived polarimetric index time series was adopted in order to 

map and characterized forest burned areas considering a monitoring period of 4 

years (2016-2019). In particular, Pettitt test performed on CRTS has proved to be 

an effective test to detect and map burned moment (UA for burned areas was 

0.88). The time series decomposition in noise and trend components using 

LOESS permits to better minimize SAR data noise. Based on local linear 

regression in sCRTS two new indices SI and RI were computed in order to 

describe forest severity and recovery processes respectively. The k-means cluster 

analysis considering these indices couple with tmin layer resulting in FDM(x,y) 

and ERM(x,y) allowed AOI zoning according to ecological criteria. FDM(x,y) 

layer can tell information about the damage time dynamics aim at describing tree 

mortality lag through the years. According to this layer about the 22% of burned 

area is characterized by an early high severity whiled the residual by moderate-

low severity levels. Otherwise, ERM(x,y) layer can define resistant (61% of the 

burned area), resilient (20%) and increasing forest zones (19%). SAR polarimetry 

data, in particular CR index time series, has proved to be an effective technique 

able to map forest structure changes after a disturbance supporting early- and 

mid-term post-fire forest assessment. 
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Abstract: Climate change increases extreme whether events such as floods, 

hailstorms, or storms, which can affect agriculture, causing damages 

and economic loss within the agro-food sector. Optical remote sensing  

data have been successfully used in damage detections. Cloud con-

ditions limit their potential, especially while monitoring floods or 

storms that are usually related to cloudy situations. Conversely, data 

from the Polarimetric Synthetic Aperture Radar (PolSAR) are 

operational in all-weather conditions and are sensitive to the 

geometrical properties of crops. Apple orchards play a key role in the 

Italian agriculture sector, presenting a cultivation system that is very 

sensitive to high-wind events. In this work, the H-α-A polarimetric 

decomposition tech-nique was adopted to map damaged apple orchards 

with reference to a stormy event that had occurred in the study area 

(NW Italy) on 12 August 2020. The results showed that damaged 

orchards have higher H (entropy) and α (alpha angle) values compared 

with undamaged ones taken as reference (Mann–Whitney one-tailed 

test U = 14,514, p < 0.001; U = 16604, p < 0.001 for H and α, 

respectively). By contrast, A (anisotropy) values were significantly 

lower for damaged orchards (Mann–Whitney one-tailed test U = 8616, 

p < 0.001). Based on this evidence, the authors generated a map of 

potentially storm-damaged orchards, assigning a probability value to 

each of them. This map is intended to support local funding restoration 

policies by insurance companies and local administrations. 
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1. Introduction 

Climate change and related natural disasters affect several sectors [1]. Agriculture 

is one of the most vulnerable [2,3]. Between 2005 and 2015, the impact of natural 

disasters on the agricultural sector was estimated to be 96 billion dollars in 

damaged, or completely lost, crops [4]. Climate change-related effects (e.g., 

temperature and precipitation increasing in terms of level, time, and variability) 

are expected to reduce the yield and quality of many crops, especially cereals and 

fodder cereals [5]. Storms and hail also can cause serious damage to crops [6]. 

Hurricanes can cause much damage, with grass lodging, uprooting of orchards, 

and falling trees [7,8]. These critical events, potentially highly impacting farmers’ 

income, must be carefully accounted for in the context of risk management in 

agriculture. Fruits and vegetables represent (year 2018) about 14% of the total 

value of European (EU) agricultural production [9,10]. These crops are very 

important for many EU   member states, in particular for Mediterranean countries 

such as Spain, Italy, and France. Italy is one of the main European leaders in the 

apple sector [11]. Consequently, the yield loss risks concerning the fruit and 

vegetable sector must be minimized. Major threats concern diseases, insects, and 

natural disasters such as hail, drought, frost, and storms. Apple cultivation is very 

intensive today, with a plant density around 2000 plants per hectare [12]. Such 

density allows a very high yearly production (about 45 tons per hectare) [13], 

which is obtained by a row-based cultivation strategy where young plants begin 

to be productive after the third year. The adoption of low-vigor rootstocks enables 

an increase in planting density and rapid fruiting. Unfortunately, this kind of 

cultivation determines a very underdeveloped root system, not enough to 

guarantee plant stability un-der unfavorable conditions. The situation is more 

critical during extreme weather events, especially when there are many weighty 

fruits, i.e., before harvesting [14,15]. Steel cables anchored to concrete or wooden 

poles are used to improve row stability. Within this context, when a stormy event 
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occurs, it is important to assess the spatial level and extent of damage to start 

remedial actions and minimize crop loss. Farmers are interested in damage 

estimation especially when a refund is due by insurance companies [16,17]. In 

this case, damage is assessed through on-the-spot checks by an expert surveyor 

from the insurance company, who determines the extent, type, and quality of 

damage. Such an approach depends on a high level of subjectivity related to the 

expert’s skill and experience. Moreover, these operations require a lot of time and 

are expensive, especially where large areas have been affected by the event. In 

this operative context concerning crop damage analysis, a more objective 

monitoring could play a key role, providing more robust forecasts about potential 

yield or yield losses. Many agricultural stakeholders, such as farmers, consortia, 

agronomists, insurance companies, and local administrations, require a 

continuous monitoring of crops over large spatial extents. A method based on 

free Earth Observation (EO) data can certainly represent an effective support [18] 

and the consequent technological transfer desirable [19–24].In particular, optical 

remote sensing data have been successfully used in several operational 

frameworks, as proved by many works [25–32]; unfortunately, cloud conditions 

limit the nominal temporal resolution of this type of data, especially while 

monitoring natural disasters (e.g., floods or storms) that ordinarily occur when 

clouds are present. Data from synthetic aperture radar (SAR) systems can operate 

during all-weather conditions, and, while exploring agronomical issues, they can 

be used to analyze the moisture and geometrical conditions of crops [33–35]. In 

particular, dual-polarimetric SAR acquisitions from Copernicus Sentinel-1 

mission (S1) provide unique opportunities to disseminate operational monitoring 

for several application communities [36,37]. Dual-pol acquisition mode has a 

larger swath and a lower data volume compared with full-pol acquisitions, thus 

improving data collection and processing for operational activities [38,39]. 

Polarimetric data can provide information about polarization amplitude and 

phase, allowing scattering mechanism definition (i.e., single-bounce, double-

bounce, or volume scattering) induced by target properties. SAR polarimetry 

(PolSAR) is a technique that analyzes SAR polarization with respect to the vector 
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of polarized electromagnetic waves. When a signal passes through a medium, the 

refraction index changes, or when it strikes an object, it is reflected; the so-called 

backscattering matrix [40] contains information about the reflectivity, shape, and 

orientation of the reflecting target. An important improvement in the extraction 

of physical information from the ordinary coherent backscattering matrix was 

achieved by Cloude and Pottier [41,42], who proposed the composition of system 

vectors. Most studies have assessed the sensitivity of polarimetric indicators de-

rived from the C-band space-borne SAR to derive crop parameters [43]. The 

PolSAR technique was successfully applied to monitor crop growth and give 

estimates of yield. For example, Betberder [44] analyzed temporal trends of 

polarimetric indicators, proving their high potential to detect crop growth 

changes. Valcarce [45] used polarimetric data time series for land-cover 

classification, adopting a decision tree classification algorithm per-forming high 

crop class detection accuracies. Mercier and Qi [46,47] used PolSAR to sup-

port/integrate vegetation phenology monitoring based on optical data. Only few 

works referring to PolSAR application in crop damage analysis are present in the 

literature [48,49], denoting a lack of scientific production about this issue. 

Nevertheless, hailstorms and storms are known to change vegetation structure, 

resulting in lodging or tree uprooting/breaking. Therefore, this peculiar effect 

changes polarimetric response and could be used to detect and characterize tree 

structure [50]. In general, it can be said that decomposition techniques offer a 

new insight into PolSAR data for describing vegetation structural proprieties 

[51]. The polarimetric decomposition technique decomposes the signal into its 

individual scattering components, permitting identification of the dominant 

scattering type [42,52]; this information is related to the target structural 

properties [18,53,54]. Various decomposition techniques have been proposed, 

and Lee and Cloude provided a comprehensive re-view about this topic [42,55]. 

Model-based [56] and eigenvector-based [41] algorithms have been preferred by 

many researchers [51]. According to Ji and his collaborators [57], the Cloude–

Pottier H-α-A decomposition seems to be the most promising approach. It is 

based on second-order statistics extracted by a set of neighbor pixels that are used 
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to calculate the local entropy H and the α angle (related to average scattering 

mechanisms). These are used to define a Cartesian space, H-α, that is linearly 

divided into nine zones describing the main scattering mechanisms. Recently, 

eigenvector decomposition has been widely applied in several applications 

[55,58–61]. The method was originally developed for quad-polarization data. 

Nevertheless, it was also adapted to work with du-al-pol data [57,62,63], and 

consequently, it can be successfully used to retrieve polarimetric information also 

from S1 data that are unable to collect quad-pol data.  

In this work, the applicability of the H-α-A polarimetric decomposition technique 

to the detection and mapping of damages from storms affecting fruit orchards was 

tested. In particular, the proposed case study refers to the stormy event that 

occurred in Northwest Italy on 12 August 2020. Consequently, a map of 

potentially damaged orchards was generated with the aim of supporting insurance 

companies and local administrations to address their funding restoration policies. 

2. Materials and Methods  

2.1. Study Area 

On 12 August 2020, an exceptional storm affected the Northwest of Italy. In 

particular, the storm uprooted many apple orchards in the province of Cuneo 

(Piemonte region, NW Italy). Moreover, it occurred in a critical period of the 

year, when the main fruits (apples, pears, and peaches) were still to be harvested 

(Figure 1). Because in this period the farmers are focused on harvesting, no early 

recovery efforts were performed in the dam-aged fields. Therefore, the majority 

of the uprooted trees were not removed until October. 
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Figure 1. An apple orchard (cultivar “Gala”) with hail nets uprooted by the storm on 12 August 

2020. At the bottom, many mature apples can be noted, suggesting the economic loss caused by 

the storm. 

 

The study area includes four municipalities: Saluzzo, Verzuolo, Manta, and 

Lagnasco (Figure 2). The area of interest (AOI) is sized about 132.23 km2. It 

plays a crucial economic role in Piemonte fruit production. In fact, this zone is 

suitable for this cultivation: the loose soil without water stagnation, sunny and 

dry atmosphere, and strong temperature difference between day and night allow 

the correct ripening and coloring of fruits. Apples rep-resent the primary crop in 

Manta. Since August is a droughty period in the AOI, no significative previous 

precipitations had occurred before the event; 1.2 mm had cumulated in the 

previous week, as reported by the regional environmental agency 

(www.arpa.piemonte.it). Therefore, the authors supposed that moisture-related 

conditions cannot significantly affect the SAR signal. 
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Figure 2. Italian regions (light gray) and the Piemonte region (dark gray). (Red) The AOI 

includes the Saluzzo, Manta, Lagnasco, and Verzuolo municipalities (reference frame: WGS84 

UTM32N). 

 

2.2. Data and Data Collection 

2.2.1. Sentinel-1 Data  

Sentinel-1 is currently one of the largest space-borne missions providing free and 

openly accessible SAR data. The S1 mission relies on a constellation of two 

satellites (Sen-tinel-1A and Sentinel-1B) operating in the C-band (5.54 cm 

wavelength). The main acquisition mode over land is the Interferometric Wide 

(IW) swath, recording approximately 250 km in length at 5 × 20 m spatial 

resolution in a single look. Ordinarily, S1 records data in a dual pole mode (VV 

and VH), where electromagnetic waves are polarized vertically (V) for 

transmission and horizontally/vertically for reception. The data are recorded as 

complex values (I/Q components) and in SAR geometry (range and azimuth). A 

descend-ing single-look complex (SLC) IW image (relative orbit no. 139), 

acquired after the storm (14 August 2020), was obtained from the Copernicus 

Open Access Hub (https://scihub.copernicus.eu/dhus/#/home, accessed: 20 

December 2020).  
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2.2.2. Cadastral Data  

A cadastral map coupled with farmers’ applications for EU Common Agricultural 

Policy (CAP) incentives was used in this work to classify the orchards in the AOI. 

The correspondent map (hereafter called orchard map (OM)) was consequently 

generated. The damaged orchards were analyzed at cadastral parcel level. The 

cadastral map was obtained for free from the regional geoportal in vector format 

georeferenced in the WGS84 UTM zone 32N reference frame and updated in 

2018 (nominal scale was 1:2000). Databases containing farmers’ applications for 

EU CAP incentives of 2019 were used to map orchard types in the AOI (2020 

data are not yet available). Every year, farmers support their activities with CAP 

incentives. These data were obtained for free from the regional public information 

system for agriculture. CAP applications contain the cadastral parcel code and 

the declaration of the most relevant crops as communicated by farmers. In this 

way, it is possible to couple the cadastral map with crop type information at parcel 

level by an ordinary join operation available in the Geographical Information 

System (GIS) software. In this work, 2040 (about 1136 ha) apple orchards were 

selected from the joined data to test the procedure.  

2.2.3. Ground Dataset  

A ground survey was conducted to gather the field data needed to calibrate and 

vali-date the PolSAR-based mapping procedure. In total, 72 apple orchards were 

surveyed (about 3.5% of the apple orchards in the AOI) during a ground 

campaign aimed at labelling damaged (22) and undamaged (50) fields. 

Specifically, the surveyed fields have an average size of about 0.92 ha, fitting 

well with the S1 geometrical resolution. In fact, about 40 S1 pixels can 

characterize each field. In particular, a visual assessment aimed at recognizing 

the following conditions was performed: if the majority of the trees were 

uprooted, the field was labelled as damaged; otherwise, it was labelled 

undamaged, and the related cadastral parcel was selected from the OM layer.  
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The dataset was split in a training (60%) and a test set (40%) by random selection 

from the surveyed parcels. In total, 13 damaged fields (hereafter called DTFs) 

and 28 un-damaged ones (hereafter called UTFs) were assigned to the training 

set. Conversely, 10 damaged fields (hereafter called DVFs) and 21 undamaged 

ones (hereafter called UVFs) were assigned to the test set. The training and test 

set parcels are shown in Figure 3. This dataset was provided by local farmers. 

The authors found that the supplied sample includes 72 fields corresponding to 

about 3.5% of the apple orchards in the AOI. The authors had just the opportunity 

of comparing the sample size with the expected total number of apple orchards 

in the AOI (about 2050). The authors are aware that this sample size does not 

perfectly fit statical requirements. Nevertheless, it well represents ordinary 

availability of ground data from farmers when working with actual data not 

directly managed by scientists. This situation well represents a common 

operational condition when working with technology transfer issues, especially 

in the agronomic sector. In fact, the most of data from farmers, generally, rely on 

their autonomous collections and decision of making them public. Moreover, the 

private property of parcels is an objective limiting factor for all the analyses, since 

free access is not guaranteed. With these premises, we proceed to process the 

data. 
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Figure 3. Parcels belonging to the training and test sets. Colours (see legend) define the state of 

the surveyed parcel (damaged/undamaged). Reference frame is WGS84 UTM 32N. 

 

A preliminary economic assessment was also performed since the storm occurred 

close to the apple harvesting period, determining a significant problem for local 

apple yield in 2020. This was obtained considering, for damaged parcels, a 

potential yield equal to the average one in the Piemonte region (31 t·ha−1) and a 

reference unitary price of 380 €·t−1. These values were obtained from the Italian 

Statistics Institute (ISTAT) [64]. 

2.3. Data Processing 

2.3.1. Polarimetric Decomposition 

The available S1 IW SLC image was processed to compute the polarimetric 

decom-position parameters. The adopted workflow is shown in Figure 4 and 

proposed by [65]. The target polarimetric analysis is ordinarily performed starting 

from the coherency matrix [66,67] or from the 2×2 covariance matrix (C2). 

Preprocessing steps were managed using the ESA SNAP v.  7.0.0 software [68]. 
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Figure 4. The adopted workflow. All steps were managed in SNAP ESA v. 7.0. 

 

First, the precise orbit state vector data were downloaded from the ESA archive 

(https://qc.sentinel1.eo.esa.int/, accessed: 20 December 2020) and applied to 

refine the satellite position. Precise orbit files are delivered within 20 days after 

data acquisition and provide accurate satellite position and velocity information. 

Using the TOPS split module, 1 sub-swath and 2 bursts were selected based on 

AOI coverage. A radiometric calibration was applied and the result saved in a 

complex-valued format needed to compute C2. TOPS deburst was applied by 

merging different bursts into a single SLC image. A spatial subset was then 

generated covering the AOI. The subset was multi-looked by 4 × 1 (range and 

azimuth direction, respectively) to generate squared pixels. The resulting multi-

looked image, with a geometrical resolution equal to 15 m, was used to generate 

the local C2 at pixel level. With respect to quad polarization, dual-polarimetric 

SAR sensors generate a matrix showing the half of the totally occurring scattering 

components involved in fully polarimetric imagery [69]. In particular, the 

covariance matrix for dual polarization (e.g., Sentinel-1) is often calculated with 

reference to a second-order scattering information [18] generated from the spatial 

averaging of the scattering vector k = [VV, VH]T as expressed in Equation (1): 
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  𝑪𝟐 = [
𝐶11 𝐶12

𝐶21 𝐶22
] = [

〈|𝑆𝑉𝑉|〉 〈𝑆𝑉𝐻𝑆𝑉𝑉
∗〉

〈𝑆𝑉𝐻𝑆𝑉𝑉
∗〉 〈|𝑆𝑉𝐻|〉

]                         (1) 

where ∗ denotes the complex conjugate and 〈 〉 the local mean value in a 5×5 

moving window. Each C2 element (C11, C22, ℜ(C12), and ℑ(C12)) is stored 

individually and successively refined by Lee filtering (5 × 5 kernel size) to 

minimize speckle-related noise. H-α-A polarimetric decomposition was obtained 

by eigenvector computation as proposed by different authors [57,62,63]. The 

modified formula for dual-pol data, as proposed by [66], is reported in Equations 

(2a) and (2b). 

〈𝑪𝟐〉 =  [𝑼] [
𝜆1 0
0 𝜆2

] [𝑼]∗𝑇 = 𝜆1𝒖𝟏𝒖𝟏
∗𝑻 + 𝜆2𝒖𝟐𝒖𝟐

∗𝑻             (2a) 

[𝑼] = [
𝑈11 𝑈12

𝑈21 𝑈22
] =  [𝒖𝟏 𝒖𝟐] =  [ cos 𝛼 − sin 𝛼𝑒−𝑗𝛿

sin𝛼𝑒𝑗𝛿 cos 𝛼
]         (2b) 

where λ1 ≥ λ2 ≥ 0 are the local eigenvalues, [U] is the orthogonal unitary matrix, 

* and T represents the complex conjugate and transpose matrices, respectively. 

The angles α and δ define the orientation and size of the polarization ellipse of 

the recorded signal [62]. The eigenvector dual-pol decomposition results in three 

roll-invariant parameters: polarimetric scattering entropy (H), mean scattering 

angle (α), and scattering anisotropy (A). H was calculated from Equation (3) 

𝐻 = −∑ (− 𝑃𝑖  log2 𝑃𝑖)
2
𝑖=1                                         (3) 

Where:  

𝑃𝑖 =
𝜆𝑖

𝜆1 + 𝜆2
 

H defines scatter randomness; it can vary between 0 and 1 and is related to the 

number of dominant scattering mechanisms, being proportional to the degree of 

depolarization [70]. H = 0 means that the coherency matrix shows only one 

eigenvalue and, therefore, the relative orientation of the correspondent pixel 

elements is quite simplified (e.g., single-bounce reflection). Anisotropy A 
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(Equation (4)) provides additional information about H in terms of the difference 

between scattering mechanisms. 

𝐴 =  
𝜆1−𝜆2

𝜆1+𝜆2
                                                    (4) 

The anisotropy quantifies the relative strength between first and second dominant 

scattering mechanisms. It is strictly related to the degree of signal polarization 

[18,71,72]. According to Mandal [18], the state of polarization of an 

electromagnetic (EM) wave is characterized in terms of the degree of polarization 

(0 ≤ A ≤ 1). The latter is defined as the ratio between the average intensity of the 

polarized portion of the signal and its total in-tensity [73]. A = 1 and A = 0 for a 

completely polarized and completely unpolarized wave, respectively. The 

unpolarized part of the received wave, (1 − A), is assumed to represent the volume 

scattering component from the distributed targets [74]. Average scattering 

mechanisms (i.e., surface, double-bounce, and volume scattering) can be 

identified with respect to the α parameter, which is computed according to 

Equation (5):  

  𝛼 =  ∑ 𝑃𝑖  cos−1 (
|𝜆1+𝜆2|

√2√|𝜆1|2+|𝜆2|2
)      2

𝑖=1                          (5) 

The α angles close to 0° denote a diffuse surface scattering, α close to 45° means 

di-pole scattering (caused by volumes), and α close to 90° means double-bounce 

scattering mechanisms. With these premises, the raster layer mapping local H, α, 

and A values was computed from the pre-processed SLC image. It was projected 

onto the WGS84 UTM 32N reference frame, applying the range–Doppler terrain 

correction. The adopted digital terrain model (DTM) needed for this step was the 

one freely obtainable from the Piemonte region geoportal [75]. It is supplied with 

a 5 m grid size and a height accuracy of ±0.30 m and was generated in 2011. The 

nearest-neighbor resampling method was adopted during the range–Doppler 

terrain correction. 
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2.3.2. Testing H-α-A Values After the Storm 

To assess how the storm changed the orchards’ polarimetric behavior, a 

preliminary analysis was performed with reference to the training set. In 

particular, DTF and UTF pixels distributions were compared using the Mann–

Whitney (MW) nonparametric test (one-tailed) [76]. The MW null hypothesis is 

that DTFs and UTFs have an identical distribution. The one-sided alternative 

“greater” was set, assuming that the DTF cumulated frequency distribution was 

expected to have shifted to the right of the UTF one (i.e., DTFs were greater than 

UTFs) [77]. The authors preliminary explored the polarimetric indices’ behavior 

using reference ground data. In particular, the frequency distributions were 

perceptively assessed using boxplots (see section 3.1.). The median value of 

distribution highlights a shift between damaged and undamaged fields. Therefore, 

to test these perceptive differences, the authors performed one tail test since the 

direction of changes is a priori known. Three MW tests were performed to test if 

the DTF distributions of the H-α-A pixels within the parcels were statistically 

different from the UTF ones. All statistical analyses were performed using R 

software v. 3.6.3 [78]; conversely, spatial analysis was done using SAGA GIS 

7.0 [79]. 

2.3.3. Detection of Damaged Orchards 

The main goal of this work was to test the capability of the PolSAR technique to 

recognize damaged orchards. For this task, UTFs were assumed as 

representatives of the state of undamaged orchards. Samples were sized about 23 

ha and represented about 2% of OM. In spite of this small sample size, the UTFs 

preliminarily resulted in a good dataset, whose reliability was confirmed by 

ground surveys. With these premises, the H-α-A distributions within UTFs were 

used to represent the reference distributions of the un-damaged orchards. All H-

α-A distributions from the AOI mapped parcels were tested against undamaged 

ones by the MW test, checking the following conditions: (i) parcel H distribution 

was greater than that of the UTFs; (ii) parcel α distribution was greater than that 
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of the UTFs; (iii) parcel A distribution was lower than that of the UTFs. The 

resulting MW U-statistic and related p-value were then mapped for each orchard 

parcel. Moreover, the compound probability (CP) [80] was also calculated 

according to Equation (6) using R software v. 3.6.3. CP represents the probability 

that the previously mentioned three conditions were simultaneously satisfied. 

𝐶𝑃 = (1 − 𝑝𝐻)(1 − 𝑝𝛼)(1 − 𝑝𝐴)                                (6) 

where pH is the p-value resulting from the MW test under condition (i), pα is the 

p-value resulting from the MW test under condition (ii), and pA is the p-value 

resulting from the MW test under condition (iii). The resulting CP was then 

mapped for all OM parcels, rep-resenting its compound probability to have been 

damaged by the storm. A threshold value of CP able to separate damaged fields 

from undamaged ones has to be necessarily selected by final users, e.g., the 

insurance company or local public administration, according to their specific 

policies and strategies. Nevertheless, a possible solution is proposed here, relying 

on the standard error of the mean (SEM) of the CP distributions of the DTFs and 

UTFs. The estimated threshold value was used to generate the map of damaged 

orchards (DM): parcels showing a CP value lower than the threshold was 

classified as “undam-aged,” otherwise as “damaged.” The DMs were then tested 

against the previously mentioned test set and the correspondent confusion matrix 

calculated to assess the accuracy of detection. 

3. Results 

3.1. H-α-A Analysis 

The statistical distributions of H-α-A were computed with reference to DTFs and 

UTFs (Figure 5). 
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Figure 5. Boxplots of H-α-A distributions for UTFs and DTFs The boxplot values are from 

bottom to top, respectively, 5th, 25th, 50th—cross is mean value—75th, and 95th percentiles. 

(a) Entropy pixel distribution; (b) alpha angle pixel distribution; (c) anisotropy pixel distribution. 

 

The MW test results (Table 1) show that the H and α distributions of DTFs 

presented values significantly greater than UTFs; conversely, the A distribution 

of the DTFs was lower than that of the UTFs. 

Table 1. MW test results obtained by comparing the H-α-A pixel distributions of DTFs and 

UTFs. 

 U p-value 

H 14514 0.000159 

α 16604 3.83×10-10 

A 8616 0.000161 

 

3.2. Damaged Orchards’ Mapping 

Based on the assumption that a storm can change the polarimetric behavior of or-

chards according to previously mentioned dynamics, a map of CP representing 

the parcel probability of being recognized as damaged was generated using the 

UTF dataset as reference (Figure 6). 
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Figure 6. A CP map of apple orchards in the AOI  (Reference frame: WGS84 UTM32N). 

 

With reference to CP, a threshold value was estimated to separate damaged fields 

from undamaged ones based on the SEM of CP statistic distributions of the DTFs 

and UTFs (Figure 7b). The DTFs showed a CP mean and SEM value of 0.715 

and 0.125, respectively; consequently, one can assume that the CP mean value of 

all damaged orchards reasonably falls in the range 0.715 ± 0.125, about 0.6 being 

the lower boundary. A thresh-old equal to 0.6 was therefore selected to generate 

the DM binary classification (Figure 7a). 
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Figure 7. (a) DM binary classification of the OM  in the AOI (reference frame is WGS84 UTM 

32N); (b) bar chart representing mean and 1 SEM of the CP for DTFs and UTFs. 

 

A total of 217 ha (430 orchards) of potentially damaged apple orchards were 

detected in the AOI. According to the OM layer, 19% of the apple orchards were 

damaged after the event. The DM was validated with respect to the test set, and 

the correspondent confusion matrix computed (Table 2). Classification accuracy 

is defined here as the one for binary classification of imbalanced data [81–83] 

since, in the test set, the number of undamaged fields was significantly greater 

than that of damaged fields. The resulting precision and specificity were pretty 

high (0.80 and 0.71, respectively), while balanced accuracy was found to be 0.75. 

Overall accuracy was 0.74, while F1 score (harmonic mean of the precision and 

recall) and G-mean (geometric mean of sensitivity and precision) were both about 

0.67. 
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Table 2. Metrics derived from the confusion matrix of the DM with respect to the test set. True 

positives (TPs): number of damaged elements predicted as damaged; false positives (FPs): 

number of undamaged elements predicted as damaged; false negatives (FNs): number of 

damaged elements predicted as undamaged; true negatives (TNs): number of undamaged 

elements predicted as undamaged. 

 
Classification 

Damaged Undamaged 

Reference 
Damaged 8 2 

Undamaged 6 15 

Accuracies 

Measure Value Formula 

Sensitivity 0.80 
TPR = TP/ (TP + 

FN) 

Specificity 0.71 
SPC = TN/ (FP + 

TN) 

Precision 0.57 
PPV = TP/ (TP + 

FP) 

Negative Predictive Value 0.88 
NPV = TN/ (TN + 

FN) 

False Positive Rate 0.28 
FPR = FP/ (FP + 

TN) 

False Discovery Rate 0.42 
FDR = FP/ (FP + 

TP) 

False Negative Rate 0.20 
FNR = FN/ (FN + 

TP) 

Overall Accuracy 0.74 

OA = (TP + TN) / 

(TP + TN + FP + 

FN) 

F1 Score 0.66 
F1 = 2TP/ (2TP + 

FP + FN) 

Balanced Accuracy 0.75 BA = TPR + TNR/2 

G-Mean 0.67 
G-mean= sqrt (TPR 

*PPV) 

 

Furthermore, it is worth stressing that the storm occurred close to the harvesting 

period, determining a significant problem for local apple yield in 2020. With 

reference to the AOI, a preliminary estimate of economic loss was computed to 

be about €2,500,000. Re-ported estimates could certainly vary according to the 

apple orchards’ age, apple variety, plant density, agronomic management, and 

local soil properties. Nevertheless, these estimates constituted a preliminary 

assessment of storm damage that occurred on 12 Au-gust 2020. Future validation 

is expected to test these economic deductions. 
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4. Discussions 

Concerning the damaged orchards’ H-α-A distributions (Figure 5 and Table 1), 

high-er values of H and α in the damaged parcels could be attributed to the 

changes in vegetation structure (Figure 8). In fact, the inter-row spaces of the 

damaged orchards, after the storm, were completely covered with the crowns of 

the broken or uprooted plants, which determined a different scattering geometry. 

Pre-event plant row geometry was characterized by a regular pattern, which 

drastically changed to a more disordered one, where the fallen crown elements 

increased the H values. Since the pre-event scattering mechanism was determined 

by regularly aligned and spaced plants (rows) alternating with bare soil/grass 

(inter-rows), it determined intermediate α values. After the storm, it can be 

assumed that the scattering mechanism was strongly influenced by crown 

volume, inducing an increase in the α values. Conversely, A appeared to reduce 

after the event. This could be possibly related to a reduction in the eigenvalue 

difference λ1 − λ2 related to the slightly different scattering mechanism after the 

storm. The volumetric mechanism appeared to be the prevailing one in the 

damaged parcels, as proved by the H increase. Since the canopy causes a strong 

depolarization of the SAR signal, the degree of depolarization (i.e., 1-A) tends to 

increase with crown closure [18]. Given these interpretation keys, the results 

obtained seem to support the idea that, after a relevant event able to significantly 

change vegetation structure, the orchards’ polarimetric behavior significantly 

changes. Based on the collected reference data, damaged orchards tend to show 

(i) higher values of H and α due to the increased contribution of the volume 

scattering mechanism, and (ii) lower A values, possibly due to the inter-row 

closure generated by broken/fallen trees, which increase signal depolarization. 
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Figure 8. A sketch representing orchard condition before (a) and after (b) the storm. In (a) the 

pattern row/inter-row is well defined; (b) after the storm, apple tree uprooting occurred, altering 

the row/inter-row pattern, and crowns covering the ground increased volumetric scattering. 

 

Concerning the mapping of damaged orchards, the results reported in Table 2 

suggest that polarimetric decomposition of S1 data is an effective approach to 

map orchards affected by a storm, especially during cloudy weather situations. 

Nevertheless, it is worth stressing that some limitations still persist while working 

with dual-pol decomposition. In comparison to quad polarization, dual-pol SAR 

sensors collect half of the scattering matrix components involved in fully 

polarimetric imagery. Therefore, dual-pol derived products may vary from the 

classical Wishart distribution. In fact, [57] highlighted that entropy/alpha 

decomposition using one co-polarization and one cross-polarization does not 

adequately extract scattering mechanisms in the H-α plane. Nevertheless, Cloude 

[62] proved how these differences result similarly to the conventional quad-pol 

one while working with vegetation. In spite of these differences, many operative 

frameworks were proposed proving how information lost during the dual-pol 

acquisition can be compensated for enhancing image swath and satellite revisit 

frequency. Moreover, often quad-pol SAR data are not available free of charge 

and not readily available for operative purposes. S1 is currently one of the largest 

space-borne missions providing free and open-access SAR data having high 

temporal resolution, fitting well with vegetation dynamics monitoring 

requirement. Future developments are expected to test if pre- and post-H-α-A 

differences can be used to semi-automatically detect significance changes. It is 

worth highlighting that the majority of apple orchards in the study area are 
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covered by plastic nets to protect the trees against hail. Probably, plastic nets can 

influence the complex permittivity of the analyzed volume and therefore affect 

the polarimetric response of the observed uprooted trees. Since in the study area, 

a few fields do not have hail nets, the authors did not survey such or-chards, and 

therefore no assessment looking for the effects of nets on polarimetric response 

was performed. A specific research should be addressed to assess how plastic hail 

nets can affect backscattered signal. 

5. Conclusions 

In this work, a preliminary assessment about the polarimetric behavior of 

orchards after a storm was performed. The analysis was aimed at proposing a first 

methodological approach to detect orchard damage by a storm based on the 

PolSAR decomposition technique using S1 data. The joint adoption of free 

accessible S1 data, institutional free auxiliary data (a cadastral map and farmers’ 

CAP application database), and open software (SNAP) constituted a peculiar trait 

of the proposed approach. It moves in the direction of technological transfer, 

aiming at making SAR data/techniques an operational tool for agronomic 

applications, with special concern about weather-related damages to crops, which 

could be of interest to insurance companies or public administrations. The results 

proved that storm damages significantly increase the H and α parameters. By 

contrast, the A parameter tends to be lower in the damaged orchards. This 

phenomenon is possibly related to the changes affecting vegetation structure in 

the damaged fields, where the crowns and branches of fallen/broken plants fill 

the inter-row space, changing the regular pattern ordinarily characterizing apple 

orchards. Based on this evidence, the authors proposed a methodology to map 

possibly damaged orchards that relies on the knowledge about the behavior of 

witness (and neighboring) undamaged orchards. The method permitted the 

mapping of the probability that an orchard is damaged or not, constituting a new 

free tool able to improve orchard monitoring after a calamitous event by regional 

agencies and insurance companies. It is worth reminding that only apple orchards 

were considered for this case study. Future developments are expected to test the 
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effectiveness of this method in other orchard types, as pear or peach, which are 

very diffuse in the AOI. 
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Abstract: Forest height is a fundamental parameter in forestry. Tree height is 

widely used to assess site's productivity both in forest ecology research 

and forest management. Thus, a precise height measure represents a 

necessary step for the estimation of carbon storage at local, national, 

and global scales. In this context, error in height measurement 

necessarily affects the accuracy of related estimates. Ordinarily, forest 

height is surveyed by ground sampling adopting hypsometers. The 

latter suffers from many errors mainly related to the correct tree apex 

identification (not always well visible in dense stands) and to the 

measurement process itself. In this work, a statistically based operative 

method for estimating height measurement uncertainty ( 𝜎𝐻 ) was 

proposed using the variance propagation law. Some simulations were 

performed involving several combinations of terrain slope, tree height 

and survey distances by modelling the 𝜎𝐻 behaviour and its sensitivity 

to such parameters. Results proved that 𝜎𝐻 could vary between 0.5 m 

up to 20 m (worst case). Sensitivity analysis shows that terrain slopes 

and distance poorly affect 𝜎𝐻 , while angles are the main drivers of 

height uncertainty. Finally, to give a practical example of such 

deductions, tree height uncertainty was mapped at the global scale using 

Google Earth Engine and summarized per forest biomes. Results 

proved that tropical biomes have higher uncertainty (from 1 m to 4 m) 

while shrublands and tundra the lowest (under 1 m). 

Keywords: Tree Height Uncertainty; Hypsometer; Forest Biomes; Variance 

Propagation Law; Google Earth Engine.  
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1.  Introduction 

Tree height (H) is a fundamental measure in forestry. It is strictly related to above-

ground biomass [1,2] and canopy vertical structure [3–5]. H is also the most used 

parameters to assess site's productivity, not only in forest ecology research, but 

also in forest management [6–8]. In fact, it is often used to define forest cover 

[9], to assess timber quality [10] and forest ecosystem services like forest 

protection against natural hazard [11] or biodiversity [12,13]. Moreover, it can be 

a good proxy of forest status and it is helpful in forecasting stand development 

and succession [14]. Nowadays, forests have a crucial role in greenhouse gas 

sequestration [15] and in carbon market [16] highlighting the need of accurate 

tree measuring. For example, for forest inventories purposes height measurement 

is the most important factor, along with diameter at breast height, in estimating 

stand volume [17–19]. Thus, a precise forest volume computation represents a 

necessary step for the estimation of carbon storage at local, national, and global 

scales. In this context, error in height measurement necessarily affects the 

accuracy of related estimates. Moreover, tree height surveyed at the ground are 

usually assumed as reference data to evaluate the accuracy of the remote 

deductions like the ones derived by geomatics techniques like: satellite remote 

sensing, light detection and ranging (LiDAR) and photogrammetry [20–22]. 

Ordinarily, forest height is surveyed by ground sampling adopting hypsometers 

[23]. The latter are lightweight instruments that can perform angular and distance 

measurements from which, by applying trigonometric principles, tree height is 

computed [24,25]. This method suffers from many errors mainly related to the 

correct tree apex identification (not always well visible in dense stands) and to 

the measurement process itself [26]. For operative reasons, in fact, hypsometric 

measurement is carried out without fixed supports. The hand motion during 

treetop/bottom collimation affects the accuracy of the angular measurement and 

consequently the height one [26]. In addition, operational conditions such as: 

measuring distances, terrain slope, stem curvature, crown shape, can further 

affect the hypsometric measurements introducing errors hardly to detect and fix. 
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Nevertheless, hypsometers constitute the standard instrument for dendrometric 

surveys especially for forest and urban inventory purposes [27,28].  

In this framework, tree height uncertainty is not ordinarily considered by users 

raising some doubts about the accuracy of related forest estimates [29]. A 

quantification of the potential uncertainty of tree height is, therefore, essential to 

assess the reliability of deductions alerting the user about the significance of 

difference that one could test between forest stands (or single tree) or between 

the same stand at different time. The uncertainty knowledge is desirable 

especially if tree height is adopted as reference data to estimate timber volume, 

above-ground biomass or carbon sink in the plant. Unfortunately, literature about 

the accuracy of tree height estimates by hypsometer is very limited. Although 

many works compared tree height derived by different instruments [6,30–33], no 

work can be currently found in literature about how hypsometer-based procedure 

affects the final estimates. In fact, for a great number of applications there is no 

possibility to obtain low-cost validations concerning tree heights. This could be 

probably due to the fact that, while measuring tree height no reference data exists 

for a-posteriori validation, that can be only achieved by comparing more 

instruments suppose showing higher accuracy. Unfortunately, this procedure 

requires that height survey is made contemporarily using different instruments or 

by cutting the tree or climbing by expensive experimental campaigns. Literature 

is not so exhaustive concerning this issue [26,34,35]. However, no specific work 

can be found concerning a comprehensive study of theoretical uncertainty 

affecting tree height by indirect measurements (like the ones obtained by 

hypsometers). A validation based on reference datasets would be required, for 

example for very accurate and reliable measurements the use of height 

poles/sticks with climbing is mostly used method by re-searchers and arborists 

[32,36]. Although this was possible (albeit expensive) for research purposes, it 

would be no longer applicable for operative purposes. The only alternative is 

therefore to model the expected theoretical uncertainty.  
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In the proposed study, a statistically based operative method for estimating height 

measurement uncertainty was proposed using the variance propagation law 

(VPL) [37]. VPL uses the accuracies of direct measurements (in this work angles 

and distances), assumed to be known, to estimate the theoretical variance of the 

indirect measurement (in this work the tree height). Some simulations were 

performed involving several combinations of terrain slope, tree height and 

distances by modelling the behaviour of height un-certainty and its sensitivity to 

such parameters. The results have been summarized in graphs that constitute an 

operational tool giving an estimate of the uncertainty of tree height and assess its 

goodness compared to the expected application avoiding tree cut or climbing on. 

Finally, to give a practical example of such deductions tree height uncertain-ty 

was mapped at the global scale using Google Earth Engine (GEE) and 

summarized per forest biomes. 

2. Materials and Methods 

The workflow adopted in this work is reported in figure 1. Using field surveys, 

the angular error of hypsometer was modelled. Subsequently, tree height 

uncertainty was modelled by VPL and a sensitivity analysis of this model 

performed. Some theoretical scenarios were given to explore tree uncertainty 

behaviour under different environmental and operative conditions. Finally, to 

give a practical interpretation of theoretical deductions, using Google Earth 

Engine (GEE) platform the height uncertainty at the global scale was mapped and 

summarized according to forest biomes. 
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Figure 1. Workflow adopted. Starting from field surveys, the hypsometer accuracy was 

modelled. Theoretical evaluations were performed concerning the formalization of tree height 

uncertainty model. Subsequently a sensitivity analysis and theoretical scenarios were provided. 

Finally, globally available data in GEE was used to explore real tree height uncertainty for each 

forest ecoregion. 

 

2.1. Available Data 

2.1.1. Experimental Design of Field Surveys 

Hypsometric measures are ordinarily performed with no fixed support thus 

introducing a variability due to operator’s hand motion in collimation that affects 

angle measures. The controlled laboratory environment provided an important 

test for bias, but could not provide a realistic evaluation of instrument 

performance under field conditions [6]. The latter is affected by three kinds of 

uncertainty: instrumental, environmental and operative uncertainty. The first one, 

is related to instrumental feature/quality and can be estimated in laboratory. The 

second one, is related to environmental conditions like: terrain slope, air moisture, 

temperature, tree apex visibility, tree stem shape and inclination. Unfortunately, 
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these conditions cannot be directly controlled by user during the survey. 

Otherwise, operative conditions like slant range (SR) between tree and instrument 

can be managed by operator and properly set to optimize final accuracy. 

Nevertheless, due to terrain asperity or cost/time-related limitations, operative 

conditions are often not properly considered and addressed. All these issues 

deeply affect the angular measures of hypsometer reflecting into not neglectable 

errors in tree height computation. Currently, very few works about angular 

accuracy of forest hypsometers are present in literature. Trying to fill this lack, in 

this work, a reference light pole was used to test the precision of the hypsometer 

angle measures under operative conditions. The choice of adopting a static and 

invariant object like a light pole, moves deductions from a particular context to 

general one. This is mainly related to the well-known and objective operational 

difficulty of selecting the proper apex of a tree (especially from different users). 

For this reason, we repeated our experiment with reference to a pole located in a 

flat and open area. It is worth to remind that repetition from different users was 

differently aimed at providing a more robust estimate of actual instrument 

uncertainty completing the one supplied by producer with the one related to the 

user (that has to be intended as part of the instrument). It is obvious that provided 

estimates will be “optimistic” since, operationally speaking, one has, for example, 

to consider that the apex of the tree is not so unique to be defined as the apex of 

a pole.  A light pole, having a height of 15 m, placed in the Campus of Department 

of Agriculture, Forest and Food Sciences of Torino University (NW Italy, 45° 

3'55.38"N - 7°35'30.61"E) was selected. It is isolated and therefore its apex well 

visible from the ground. The pole is not inclined and terrain slope around is lower 

than 5°. The TruPulse 200/B laser rangefinder was used. It operates through a 

laser (near infrared pulse) coupled to a tilt sensor. TruPulse has nominal slant 

range accuracy (𝜎𝑆𝑅) equal to 1 m and angular accuracy (𝜎𝑎𝑛𝑔) equal to 0.25° 

[38]. Before the survey, tilt sensor was calibrated according to manual 

requirements.  Four expert operators performed pole height surveys according to 

the follows experimental design (Fig. 2). Angle measures (respectively pointing 

at pole top and pole bottom) were surveyed three times per operator moving 
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around the pole along 3 geographical directions (N, SW, SE) placed at 120° to 

each other. For each direction, SR changes from 10 m to 40 m with 10 m steps. 

It is worth to highlight that, additional measurements were operated by 

positioning the instrument in open field and pointing the laser of the TruPulse 

towards a reflecting signal placed closed to the pole (at 1.6 m from ground) in 

order to measure and compensate for the terrain slope contribution. Then, angles 

collimating top (θ) and bottom (α) were surveyed. A total of 144 height surveys 

and 288 angle measures were performed over the same pole. 

 

Figure 2. Experimental design adopted in this work involving 4 operators. Three geographic al 

direction placed at 120° apart were used pointing to the: North, South-Est and South-West. For 

each position 3 replica were measured. Red rhombus is the pole top collimated during the height 

survey placed at 10 m, 20 m ,30 m, 40 m distance respectively. 

 

2.1.2. Geographical Data   

The Global Forest Canopy Height (GFCH) represents global tree heights based 

on a fusion of spaceborne-lidar data from the Geoscience Laser Altimeter System 

(GLAS) and ancillary geospatial data [39]. GFCH is provided in GEE as raster 

layer having a geometric resolution of 1 km and updated in 2005. The accuracy 

in forest height estimation ranges between 3.8 m to 6 m according to forest types 

[39,40]. The Global 30 Arc-Second Elevation (GTOPO30) is a global digital 

elevation model (DEM) with geometric resolution of about 1 km. The DEM was 

derived from several raster and vector sources of topographic information and 
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was updated in 1996 [41]. Currently, it represents the only available DEM in GEE 

covering the entire globe including high latitude zones (i.e. Boreal, Artic and 

Antarctic zones). In order to explore and summarize tree height uncertainty over 

the world, the RE-SOLVE Ecoregions map (REM) was adopted in GEE. REM is 

a vector layer representing about 476 forested ecoregions grouped in 14 forests 

biomes. It is updated in 2017 and is the most update dataset on remaining habitat 

in each terrestrial ecoregion [42]. Table 1 reports the REM biomes and the code 

adopted in this work. 

Table 1. Forest biomes present in the RESOLVE Ecoregions map. 

Biomes Code (ID) 

Tropical and Subtropical Moist broadleaf Forests B1 

Montane Grassland and Shrublands B10 

Tundra B11 

Mediterranean Forests, Woodlands, and Scrub B12 

Deserts and Xeric Shrublands B13 

Mangroves B14 

Tropical and Subtropical Dry broadleaf Forests B2 

Tropical and Subtropical Coniferous Forests B3 

Temperate Broadleaf and Mixed Forests B4 

Temperate Conifer Forests B5 

Boreal Forests or Taiga B6 

Tropical and Subtropical Grassland, Savannas, and Shrublands B7 

Temperate Grassland, Savannas, and Shrublands B8 

Flooded Grassland and Savannas B9 

 

2.2. Data Processing 

2.2.1. Uncertainty Modelling 

Tree height measurement by hypsometer is effective and widely used in forestry 

being the standard and reference procedure to validate measures from remote 

sensing. Tree height uncertainty is not ordinarily considered by users [43]; 

conversely, it could proficiently support deductions, especially to assess 

significant differences in both spatial and time domain. A quantification of the 

potential uncertainty of tree height is, therefore, essential to support the reliability 

of deductions especially if tree height is adopted as reference data to estimate 

wood volume, above-ground biomass or carbon stocked. Although a precise 

reference value can be obtained for research purposes, it would be no longer 

applicable for operative purposes. The only alternative is therefore to model the 
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expected theoretical uncertainty. The variance propagation law (VPL - eq.1) is 

the statistical tool that ordinarily can be used for this task [37]. It models the effect 

of variance (ordinarily assumed as indicator of squared precision) of direct 

measures (i.e. angular and distance measures) onto the variance of the derived 

measures (i.e. tree height) 

𝜎𝑦
2 = (

𝜕𝑦

𝜕𝑥1
)

2

∙ 𝜎𝑥1

2 + (
𝜕𝑦

𝜕𝑥2
)

2

∙ 𝜎𝑥2

2 + ⋯+ (
𝜕𝑦

𝜕𝑥𝑛
)

2

∙ 𝜎𝑥𝑛

2 + 2∑ ∑ (
𝜕𝑦

𝜕𝑥𝑖
) (

𝜕𝑦

𝜕𝑥𝑗
)  𝐶𝑂𝑉(𝑖, 𝑗)𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1       (1) 

where y= f (x1, x2, …, xn) is the dependent variable, xi the independent ones and 

𝜎𝑥𝑖 
2 their variance (supposed known); 𝐶𝑂𝑉(𝑖, 𝑗) is the covariance between the i-

th and j-th independent variables. The starting point to successfully operate with 

VPL is to define the model formula it has to be applied to. Ordinarily, tree height 

is computed by hypsometer according to eq. 2 following the procedure 

summarized in figure 3.  

𝐻 = (𝑆𝑅 ∙ cos𝜑) ∙ (tan 𝜃 + tan𝛼)                             (2) 

Where SR is the slant range between tree stem and operator; 𝜑 is the terrain slope 

measured by pointing the reflecting pole near trunk at operator eye level (here set 

1.6 m); 𝜃 and 𝛼 are the angles derived by the collimation of tree top and tree 

bottom respectively.  
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Figure 3. Reference framework involved during hypsometer survey. H is the tree height above-

ground; φ is the terrain slope measured by pointing the rangefinder to the reflecting pole near 

the trunk (red rhomb); SR is the slant range (tree-operator distance) and HR is the horizontal 

distance; θ and α are the angles measured by tilt sensor (digital clinometer) collimating tree top 

and tree bottom respectively. For this work, operator height is fixed at 1.6 m. 

 

Direct measures involved in H computation are the angles and distance measures 

(i.e. 𝜑, 𝜃 , 𝛼 and SR); consequently H uncertainty (𝜎𝐻 - eq. 3) can be computed 

applying eq. 1 to eq.2 considering that trigonometric relationships exist between 

variables. 

  𝜎𝐻 =  √
(

𝜕𝐻

𝜕𝑆𝑅
)
2
𝜎𝑆𝑅

2 + (
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𝜕𝜑
)
2
𝜎𝜑

2 + (
𝜕𝐻

𝜕𝛼
)
2
𝜎𝛼

2 + (
𝜕𝐻

𝜕𝜃
)
2
𝜎𝜃

2

+2(
𝜕𝐻

𝜕𝑆𝑅
) (

𝜕𝐻

𝜕𝛼
)  𝐶𝑂𝑉(𝑆𝑅, 𝛼) + 2 (

𝜕𝐻

𝜕𝑆𝑅
) (

𝜕𝐻

𝜕𝜃
)  𝐶𝑂𝑉(𝑆𝑅, 𝜃)  

  (3) 

Where partial derivatives involved in eq. 3 are reported in table 2. Precision 

values are: 𝜎𝑆𝑅 the uncertainty of laser rangefinder assumed equal to the nominal 

one (i.e. 1 m); 𝜎𝜑, 𝜎𝜃 and 𝜎𝛼 are the uncertainties of hypsometer angles. Despite 

the same instrument was used, angles measured are affected by different factors. 

For this reason, in this work, above-mentioned precision and covariance values 

were explored and estimated separately.  
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Table 2. Partial derivatives involved in equation 3. 

Partial derivatives 
𝜕𝐻

𝜕𝑆𝑅
=  cos 𝜑 (tan 𝜃 + tan 𝛼) 

𝜕𝐻

𝜕𝜑
=  − (𝑆𝑅 sin𝜑)(tan 𝜃 + tan𝛼) 

𝜕𝐻

𝜕𝛼
= (𝑆𝑅 cos 𝜑) (tan2 𝛼 + 1) 

𝜕𝐻

𝜕𝜃
= (𝑆𝑅 cos 𝜑) (tan2 𝜃 + 1) 

 

 

In fact, hypsometer angles uncertainty is affected by two main components and 

can be linearly modelled similarly to other topographic instruments [44,45]. The 

first is a constant term (intercept - 𝛽0) related to the instrument accuracy itself 

and assumed equal for 𝜑, 𝜃 and 𝛼. While the second one is related to operator 

collimation accuracy (gain - 𝛽𝑖) mainly dependent from SR and hand stability. 

Since 𝛽0 can be estimate in laboratory, it is ordinarily provided by the producer. 

In this work, using TruPulse 200B, 𝛽0 it was assumed equal to 𝜎𝑎𝑛𝑔, while 𝛽𝑖 

was properly calibrated using ordinary least squares involving angular measure 

derived from field surveys. According to previous mentioned experimental 

design, at each position three replica were acquired and related standard deviation 

computed and assumed as precision of angular measure probably related to hand 

operator stability. Then, precision values were fitted against the SR. Finally, 

𝛽𝑖 concerning 𝜃 and 𝛼 were modelled by a power model (𝛽𝑖 =  𝑎𝑆𝑅𝑏 ) and 𝜎𝜃 

and 𝜎𝛼 computed (eq. 4 and eq. 5). Furthermore, the Mean Absolute Percentage 

Error (MAPE) was computed involving the residuals of regressions (power 

models part in eq. 4 and eq. 5). Since MAPE values are computed by removing 

the SR dependence from angle precision models, the remaining error component 

could be probably due to operator variability (i.e. hand motion and collimation 

accuracy). Concerning 𝜑 , it is ordinary measured without the operator 

collimation process but simply by pointing laser to reflecting pole. Therefore, 𝜎𝜑 

can be assumed equal to 𝛽0. 
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𝜎𝜃 = 𝛽0 + 𝑎𝑆𝑅𝑏                                              (4) 

𝜎𝛼 = 𝛽0 + 𝑐𝑆𝑅𝑑                                                     (5) 
 

Where a, b, c and d are the model coefficients. Moreover, the covariance between 

𝜃  and SR, 𝑐𝑜𝑣(𝜃, 𝑆𝑅), and covariance between 𝛼  and SR, 𝑐𝑜𝑣(𝛼, 𝑆𝑅), were 

computed using filed surveys involving a total of 288 angle measures. A 

sensitivity analysis was then performed to explore how different variables mainly 

affect 𝜎𝐻. Some scenarios were run varying H values from 5 m to 40 m, changing 

𝜑  values from 5° to 45° and SR from 10 m to 50 m using eq. 3. Then, 

𝜎𝐻 behaviour was explored by plotting 𝜑 and SR trends parametrizing resulting 

functions by H values. A final scenario was computed using eq. 3, setting 𝜑 = 

15° and all possible combination of H and SR in 𝜎𝐻 computation. The analysis 

requires that the above-mentioned formulas are computed using the expected 

angular values corresponding to a certain tree height. This can be obtained once 

tree height, SR, operator’s height, terrain slope are known. It is worth to noting 

that precision values involved in eq. 3, once propagated by VPL, contribute 

differently to final H variance. Therefore, we measured the relative weight 

(importance) of each factor variance on H variance according to formula reported 

in table 2 and changing SR from 5 m to 50 m.   

 

 

 

 

 

 

 

 



 

155 

 

Table 3. Relative weights affecting variance of H. 

Factor Formula 

Sum of weights 
 = (

𝜕𝐻

𝜕𝑆𝑅
)
2

+ (
𝜕𝐻

𝜕𝜑
)
2

+ (
𝜕𝐻

𝜕𝛼
)
2

+ (
𝜕𝐻

𝜕𝜃
)
2

+ 2(
𝜕𝐻

𝜕𝑆𝑅
) (

𝜕𝐻

𝜕𝛼
)  𝐶𝑂𝑉(𝑆𝑅, 𝛼)

+ 2 (
𝜕𝐻

𝜕𝑆𝑅
) (

𝜕𝐻

𝜕𝜃
)  𝐶𝑂𝑉(𝑆𝑅, 𝜃) 

Slant Range 

 

𝑤𝑆𝑅 = 
(

𝜕𝐻
𝜕𝑆𝑅

)
2


 

Terrain slope 
𝑤𝜑 =  

(
𝜕𝐻
𝜕𝜑

)
2


 

Angle pointing 

tree bottom 𝑤𝛼 = 
(
𝜕𝐻
𝜕𝛼

)
2


 

Angle pointing 

tree apex 𝑤𝜃 = 
(
𝜕𝐻
𝜕𝜃

)
2


 

Mixed term 

considering 𝑆𝑅 

and 𝛼 correlation 
𝑤𝑐𝑜𝑟𝑟(𝑆𝑅,𝛼) = 

2 (
𝜕𝐻
𝜕𝑆𝑅

)(
𝜕𝐻
𝜕𝛼

)  𝐶𝑂𝑉(𝑆𝑅, 𝛼)


 

Mixed term 

considering 𝑆𝑅 

and 𝜃 correlation 
𝑤𝑐𝑜𝑟𝑟(𝑆𝑅,𝜃) = 

2 (
𝜕𝐻
𝜕𝑆𝑅

) (
𝜕𝐻
𝜕𝜃

)  𝐶𝑂𝑉(𝑆𝑅, 𝜃)


 

 

 

2.2.2. Mapping Tree Height Uncertainty at the Global Scale 

Scenarios were run to explore 𝜎𝐻 theoretical behaviour and which factor mainly 

affect it. Despite theoretical scenarios, to give a practical example aimed at 

proposing an operational scenario, the above-mentioned concerns were applied 

at the global scale using Google Earth Engine (GEE) and developing an 

appropriate routine. GEE is an web-based platform that allows an immediate 

access to geographical data and performing wide areas analysis [46]. GEE 

consists of a multi-petabyte analysis-ready data catalogue and its parallel 

computation service allows to process large geospatial datasets at the global scale. 

For this reason, GEE was used in this work to map 𝜎𝐻  at the global level 

implementing eq. 3. To perform such task, the following pre-processing steps 

were involved. GTOPO30 layer was used to compute local terrain slope, 𝜑(𝑥, 𝑦), 

while the GFCH was assumed a reliable dataset that provides a continuous 

estimate of forest height, 𝐻(𝑥, 𝑦) , around the world. Involving 𝐻(𝑥, 𝑦)  and 
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𝜑(𝑥, 𝑦), eq. 3 was applied directly in GEE to estimate height uncertainty at the 

pixel-level. Four maps of H uncertainty, 𝜎𝐻(𝑥, 𝑦), were computed setting SR 

equal to 10 m, 20 m, 30 m and 40 m respectively, in order to compute 𝜎𝐻 value 

one can expect if placed at given distance to the tree. Finally, REM biomes 

polygons were used as spatial basis to compute the 5th, 25th, 50th, 75th and 95th 

percentiles of 𝜎𝐻(𝑥, 𝑦), providing information about the density function over 

world forest biomes. These maps, coupled to density function, allow operator to 

plan forest surveys and properly manage the tree height uncertainty during his/her 

surveys alerting about the significance difference existing if comparing the height 

measures over time or in space.  

3. Results 

3.1. Uncertainty Modelling 

Uncertainty of angular measures from hypsometer is related to both instrument 

accuracy and operator skills. The former is the one provided by the producer; the 

latter has to be somehow estimated. Angular accuracy of hypsometer proved to 

follow a power model (eq. 4 and eq. 5) that was opportunely calibrated by least 

square-based regression (Fig. 4) involving 𝜃 and 𝛼 values from field surveys. 

Model coefficients were reported in table 4. They showed to be significantly 

different from 0.  

 

Figure 4. (left) 𝛽𝜃  vs SR model calibrated from field data (radians values); (right) 𝛽𝛼  vs SR 

model calibrated from field data. Grey bounds are the 95% confidence intervals, red lines are 

the calibrated models.  
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Table 4. Hypsometer accuracy models coefficients (eq. 4 and eq. 5). 

Coefficient Value Standard Error t p-value 

a 0.1871 0.0031 3.25 0.0051 

b -1.0841 0.0874 3.92 0.0064 

c 0.0178 0.0035 3.22 0.0094 

d -0.4156 0.1232 3.65 0.0053 

 

Figure 4a shows that, generally, 𝛽𝜃 decreases as SR increases. In particular an 

increase of SR from 10 m to 20 m determines a 𝛽𝜃 reduction by half of its value, 

going from a value of 0.015 radians to one of 0.007 radians respectively. 

Subsequently, for SR equal to 30 m up to 40 m, 𝛽𝜃 decreases by 0.002-0.003 rad 

respectively. A similar behaviour can be observed in figure 4b. However, in this 

case the 𝛽𝛼 variation appears to be milder and general a flat behaviour 

characterizes 𝛽𝛼. Nevertheless, when SR is equal to 10m, 𝛽𝛼  is two times lower 

than 𝛽𝜃 (0.007 rad and 0.015 rad respectively); while for SR greater than 30 m 

𝛽𝛼 results to be similar 𝛽𝜃 (0.005 rad).  

Based on results, it appears that for low SR values, uncertainty of angular 

measurements results to be higher in 𝜃 than in 𝛼, whereas with high SR values 

the two uncertainties turn out to be similar. In fact, fixing tree height, if SR 

increase both 𝜃 and 𝛼 angles should decrease. Therefore, for higher angles (i.e. 

the ones generated by treetop collimation), higher their uncertainty. Similarly, 

also angles generated by bottom collimation follow this trend, however since they 

are smaller their uncertainty result lower. Concerning this issue, Bragg [47] 

highlighted that moving away from the target, angles measurements can be more 

accurate decreasing the errors related to the tree height determination. MAPE 

concerning 𝛽𝜃 is 15% while 14% for 𝛽𝛼 . Since these MAPE values represent 

angle accuracy component not dependent from SR, both values suggest that about 

the 15% of the error is not due to operative condition (SR) but by operator-related 

ones. The latter could probably be due to higher/lower operator hand motion 

accuracy during the surveys, suggesting how a fixed support could improve 

hypsometer survey accuracy [6]. Using filed data 𝑐𝑜𝑣(𝜃, 𝑆𝑅) and 𝑐𝑜𝑣(𝛼, 𝑆𝑅) 
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were found equal to -0.95 and 0.27 respectively. These values suggest that 𝜃 is 

more correlated to SR than 𝛼 as also proved by the determination coefficients of 

calibrated models (R2 = 0.97 and R2 = 0.56 for 𝛽𝜃 and 𝛽𝛼 respectively). To assess 

the effects of angle accuracy and other operative conditions on tree height 

uncertainty, VPL was adopted, and some theoretical scenarios were proposed 

involved the hypsometer angle precision models previously calibrated. In 

particular, two scenarios were explored, the first one by applying VPL changing 

φ and parameterizing eq. 3 by H (Figure 5a). The second one was obtained by 

applying VPL changing SR and parameterizing eq. 3 by H (Figure 5b). 

 

Figure 5. (a) 𝜎𝐻 scenarios derived by applying VPL changing 𝜑 and parameterizing eq. 3 by H; 

(b) 𝜎𝐻 scenarios derived by applying VPL changing 𝑆𝑅 and parameterizing eq. 3 by H. 

 

Generally, Figure 5a shows that 𝜎𝐻  does not significantly change even if φ 

increases. Moreover, the 𝜎𝐻 value results to be very high (𝜎𝐻 > 3.5 m) with H 

values equal to 40 m, while are lower (𝜎𝐻 = 0.5 m) for H values equal to 5 m. 

Furthermore, it can be highlighted that with φ values greater than 35-40°, 𝜎𝐻 

values increase slightly. For example, considering H = 40 m and φ = 25°, the 𝜎𝐻 

value results to be equal to 3.5 m, while at 45° it turns out to be equal to 3.8 m, 

showing an increase of 𝜎𝐻 equal of about 9%. Consequently, it would appear that 

𝜎𝐻 would only be affected by high levels of slope (φ > 30°). This result was 

supported by Stereńczak et al., [48] who found that slope, especially when height 

measurement is made below the tree base, can increase height errors. Conversely, 

considering Figure 5b, the 𝜎𝐻  value appears to be strongly affected by SR. 
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Specifically, 𝜎𝐻  tends to decrease as SR increases. For example, assuming H 

equal to 40 m, the 𝜎𝐻 value results to be 5 m, 3 m, 2.5 m, 2.2 m and 1.8 m for the 

respective SR values of 10 m, 20 m, 30 m, 40 m and 50 m. Whereas, if H is 5 m, 

𝜎𝐻 remains constant around 0.80 m despite SR variations. Considering taller trees 

(between 20 m and 40 m), 𝜎𝐻 results to be very high especially for SR low values 

(between 10 m and 20 m); moving away from the tree (SR between 30 m and 40 

m) 𝜎𝐻 decreases until it stops with values of SR > 40 m. However, this behaviour 

does not appear with smaller trees (H < 10 m). Similar results were reported by 

Skovsgaard [49] who shown that higher SR positively affect the estimation of 

tree height. Based on these results, it appears that the parameters H and SR 

significantly affect 𝜎𝐻 value. Therefore, by combining these two parameters, it 

was possible to report several 𝜎𝐻 scenarios that might normally occur during field 

surveys (Figure 6).  

 

Figure 6. 𝜎𝐻  scenarios (𝜑 = 15°) obtained by all possible combination between H and SR. 

Isolines represent line having same 𝜎𝐻 .   

 

In particular figure 6 shows that 𝜎𝐻 values increase when H increases and SR 

decreases. Nevertheless, fixing H, 𝜎𝐻 could greatly vary depending on SR. For 

example, having SR and H equal to 60 m and 30 m respectively, a 𝜎𝐻 can be 

found equal to 1 m. Otherwise, having SR and H equal to 6 m and 30 m 
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respectively, a 𝜎𝐻 can be found equal to 9 m (i.e. about one order of magnitude 

than SR = 60 m). From an operational point of view during height survey, the 

proper combinations of H and SR that can be proposed based on scenarios in 

figure 6. Three main operative conditions can be defined: (i) distance from the 

target half to the tree height (SR = 0.5 H); (ii) distance from the target equal to 

the tree height (SR = H); (iii) distance from the target twice to the tree height (SR 

= 2 H). In the first case, having the H - SR ratio equal to 2:1, the 𝜎𝐻 value, and 

consequently the errors in tree height estimation, would increase considerably. 

For example, with H equal to 20 m and SR equal to 10 m, the 𝜎𝐻 values would 

be equal to 2.5 m resulting in an error range between 12.5% compared to the tree 

height. Concerning the second case, having the H - SR ratio equal to 1:1, for 

example a tree of 20 m and placed at 20 m, 𝜎𝐻 will be about 1.5 m, i.e. 7.5% error 

compared to H. Considering the ratio 1:2, the 𝜎𝐻 would decrease considerably. 

For example, with H = 20 m and SR = 40 m, 𝜎𝐻 values result to be equal to 0.8 

m i.e. 3.5% error compared to H. However, it is worth to remind that the last 

condition is not always allowed during field surveys. In fact, several works 

[48,50,51] proved that moving away from the target, treetop visibility can be 

masked by others tree crown. Therefore, based on our results, a simple rule of 

thumb can be proposed: a H-SR ratio equal to 1:2 (environmental conditions 

permitting) would be the most reasonable operative choice to minimize relative 

tree height uncertainty under the 5%. In order to better assess the effect of the 

different parameter uncertainty involved in 𝜎𝐻 computation, a sensitivity analysis 

of 𝜎𝐻 was performed. In Figure 7 are reported the weights of tree height variance 

computed applying table 3 formulas.    
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Figure 7. Relative weights (importance) of factors involved in the sensitivity analysis of 𝜎𝐻
2. 

Sensitivity analysis was iteratively performed by computing wi changing H and SR.  

 

It can be noted that, generally, the parameters that most affect 𝜎𝐻
2 result to be wα 

and wθ. Indeed, their sum reaches about 95% of tree height variance in all 

scenarios. Conversely, wcorr (SR,α), wcorr(SR,θ), wφ and wSR poorly affect 𝜎𝐻
2 (under 

2% on average). Concerning this issue, wθ and wα appear to be strongly affected 

by SR and H. In fact, for smaller tree (e.g., H = 5 m), the values of wθ and wα are 

constant as SR increase; while for H > 10 m, the weight of wα increases as SR 

increases, while wθ decreases. Considering weights from same SR, it can be 

observed wα and wθ significantly vary according to H values, while other weights 

remain low. In particular, at low SR values, wθ tends to increase according to H 

increase. Conversely, at high SR values, wθ increase little as H increases. For 

example, with SR equal to 10 m, wθ result to be about 47% and 90% with H equal 

to 5 m and 40 m respectively. Whereas with SR equal to 40 m, wθ results to be 

again 47% with H equal to 5 m but about to 60% with H equal to 40 m. Therefore, 

the treetop angle ( 𝜃 ) uncertainty participates for the most of tree height 

uncertainty for H > 5 m. For the same H, increasing the SR value the angle θ and 

the corresponding wθ in the 𝜎𝐻 computation decreases and as a consequence the 

wα increases. Another interesting conclusion concerns the importance of terrain 
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slope and SR accuracy. In fact, in all scenarios the wφ and wSR are lower than 1% 

suggesting that a coarse estimate of such parameters does not significantly affect 

tree height uncertainty. Therefore, more accurate rangefinder does not directly 

reflect in better tree height estimates suggesting that similar tree height accuracy 

can be obtained by using laser, ultrasound or optical telemeter. Similar results 

were found by [49,52] where different forest rangefinder where compared.            

3.2. Mapping Forest Height Uncertainty at the Global Scale 

To give a practical example of the theoretical scenarios, an appropriate GEE 

routine was developed in order to map tree height uncertainty at global scale. 

Since the distance between tree and the operator was found to greatly affect the 

height uncertainty, four different scenarios with SR equal to 10, 20, 30 and 40 m 

were proposed (Fig. 8). Mapping was achieved according to the same approach 

used for generating the graph of figure 6. In this case the local tree height estimate 

was obtained from GFCH and the local slope value from GTOPO30; an 

operator’s height of 1.60 m was used for all computations. It worth to stress that 

GFCH was simply used to derive an estimate of local tree height in order to 

generate an estimate of the associated uncertainty if obtained by ground surveys 

operated as modelled in this work. In other words, we did not model the 

uncertainty of GFCH, but we used GFCH to inform users that are going to operate 

ground surveys in those areas about the expected theoretical accuracy of their 

measurements. 
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Figure 8. 𝜎𝐻(𝑥, 𝑦)  maps at global scale computed in GEE. Four operative scenarios were 

proposed by assuming SR at 10 m, 20 m, 30 m, 40 m respectively. 

 

Generally, 𝜎𝐻 tends to decrease when SR increases confirmed the previous-

mentioned role of tree-operator distance. For example, considering the Amazon 

zone, 𝜎𝐻 results to be greater than 5 m at SR = 10 m; while at SR = 40m, 𝜎𝐻 

result about 1.5 m, thus about 75% more accurate. It is worth to remind that a 

coarse DEM was involved in these simulations. Therefore, slope values are 

affected by this low resolution probably providing underestimated slopes 

especially in those areas characterized by high topographic variability (e.g. 

mountain). To summarize 𝜎𝐻(𝑥, 𝑦)  differences at global level, 𝜎𝐻(𝑥, 𝑦) 

percentiles per forest biomes were computed and reported in boxplots (Fig. 9). 
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Figure 9. 𝜎𝐻(𝑥, 𝑦) values distribution for forest biomes according to four operative scenarios. 

 

In general, as already observed globally in figure 8, 𝜎𝐻 decreases as SR increases 

in all investigated biomes. The highest 𝜎𝐻 are also observed at SR = 10m, while 

the lowest values at SR = 40 m. In particular, the average value of 𝜎𝐻 result to be 

equal to 1.83 m, 1.05 m, 0.83 m and 0.73 m for SR equal to 10, 20, 30 and 40 m 

respectively. Specifically, 𝜎𝐻  for different biomes included in this work the 

following observations can be carried out: i) Tundra (B11), desert-xeric 

shrublands (B13) and tropical-subtropical-savannas and shrublands (B7) are the 

biomes with the lowest 𝜎𝐻 (all scenarios average was found equal to 0.60, 0.85, 

0.92 m respectively); ii) Tropical and subtropical moist broadleaf forest (B1), 

Tropical and subtropical coniferous (B3) and temperate conifer forests (B5) are 

the biomes with the highest 𝜎𝐻 (all scenarios average was found equal to 1.50, 

1.52, 1.54 m respectively). In this context, the results obtained are consistent with 

the theoretical assessment proposed in this work and recent literature. In 

particular, is well know that different vegetation, and consequently different 

biomes, can certainly affect tree height estimation. However, the main factors that 

can affect 𝜎𝐻  can be traced back to: forest structure, tree height, terrain 

topography, tree species, tree lean [26,43]. For example, regarding biome B11, 

represented by Tundra and therefore characterized by small vegetation, low 

values of 𝜎𝐻  were found. Conversely, considering biome B1, represented by 
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tropical and subtropical broadleaf forests and therefore characterized by very tall 

trees, high values of 𝜎𝐻 were found. These results are consistent to the ones 

reported by Hyyppa [53], Hush [50] and Korning [51]. The first one investigated 

forest height estimation and pointed out that the accuracy of tree height 

measurement decreases as vegetation height increases (especially with trees > 25 

m). The second and third one highlight that deciduous trees show lower tree 

height accuracy.  

A further consideration that can be deduced in Figure 9 is the dispersion of 𝜎𝐻 in 

the different SR classes. 𝜎𝐻 distribution result to be more heterogenous in the 

class of SR = 10 m (𝜎𝐻  ranges between 2 m to 4 m), while it results to be 

homogenous when SR increases (around one meter). Consequently, it can be 

defined that within the same biome the measurement of vegetation height is 

affected by SR. This result is supported by Skovsgaard [6], who confirms that 

distance from the measured trees can affected the tree high estimation. Indeed, 

for some biomes the variation of SR has a considerable impact on 𝜎𝐻 values. For 

example, concerning Taiga (B6) at SR = 10 m, the 𝜎𝐻 values are very different 

from those at SR = 20 m. This behaviour generally occurs between SR equal to 

10 and 20 m and takes place in other biomes as B13, B14, B3, B5, B8 and B9. 

Conversely, in other biomes this phenomenon is less present. For example, in B1, 

B11 and B4, boxplots at SR = 10 m and 20 m are similar only for 50-60% of the 

time, therefore in this cases SR variation seems to less affect the final 𝜎𝐻value. 

Regarding the transition of SR between 30 m and 40 m, the differences in terms 

of 𝜎𝐻 seem to disappear or even become irrelevant in many cases. This finding 

can be interpreted as an absence of 𝜎𝐻 decrease as SR increases in some contexts 

for specific biomes. Consequently, from an operational point of view these 

findings could be extremely useful for increasing the speed of surveys (avoiding 

too be far away from the target) and simultaneously maintaining precise tree 

height estimates. For example, in Tundra and Shrublands biomes low 𝜎𝐻 values 

were found for all SR scenarios. Another interesting outcome concerning these 

biomes is the follows: comparing these accuracies to the expected vegetation 
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height in such biomes, they highlight how hypsometer is not the proper 

instrument for height surveys in shrublands and Tundra since the uncertainty is 

higher than expected vegetation height. In such biomes other instruments like 

graduated pole or tape measure can guarantee a rapid and more accurate measure 

of small vegetation height than the ones retrieved by hypsometer.  

Finally, it is worth to remind that provided world-wide estimates of height 

uncertainty are “optimistic” since they are based on theoretical conditions. In real 

operative conditions other unpredictable factors like apex visibility/identification 

and stem curvature (e.g. in coppices) could negatively affects the height accuracy.   

4. Conclusions 

In this work, a statistically based operative method for estimating tree height 

measurement uncertainty (𝜎𝐻) was proposed using the variance propagation law. 

The aim was to model the behaviour of 𝜎𝐻  in different operative context. 

Therefore, several simulations were performed involving factors like: tree height, 

survey distances and terrain slope. Regarding the terrain slope, results shown that 

this parameter poorly affect 𝜎𝐻 . Concerning the first two parameters, results 

proved that 𝜎𝐻 could greatly be affected by H and SR resulting in a tree height 

error between 0.5 m up to 20 m (worst case). Moreover, in this work a simple 

rule of thumb was proposed (H-SR ratio equal to 1:2) to minimize height 

uncertainty under 5% of H. Concerning the sensitivity analysis of all parameters 

involved in the 𝜎𝐻, results shows that the wα and wθ were the more relevant (their 

sum is about 95%). While wcorr (SR,α), wcorr(SR,θ), wφ and wSR contribution result to 

be very low in 𝜎𝐻 determination (under 1%). Finally, to give a practical example 

of such deductions tree height uncertainty was mapped at the global scale using 

Google Earth Engine and summarized per forest biomes. Results proved that 

tropical biomes have higher uncertainty (from 1 m to 4 m) while shrublands and 

tundra the lowest (under 1 m). Proposed approach proved to be an operative tool 

useful both in forest research and forest management context. It allows to better 

consider the uncertainty of forest estimates alerting the user about the 
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significance of difference that one could test between forest stands or between 

the same stand at different time.   
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5.2 PHASE-BASED TECHNIQUES 

5.2.1 Uncertainties and Perspectives on Forest Height Estimates by 

Sentinel-1 Interferometry 
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Abstract: Forest height is a key parameter in forestry. SAR interferometry 

(InSAR) techniques have been extensively adopted to retrieve digital 

elevation models (DEM) giving a representation of the continuous 

variation of Earth’ topography, including forests. Unfortunately, InSAR 

has been proven to fail over vegetation due to low coherence values; 

therefore, all phase unwrapping algorithms tend to avoid these areas, 

making InSAR-derived DEM over vegetation unreliable. In this work, 

a sensitivity analysis was performed with the aim of properly 

initializing the relevant operational parameters (baseline and 

multilooking factor) to maximize the theoretical accuracy of the height 

difference between the forest and reference point. Some scenarios were 

proposed to test the resulting “optimal values” as estimated at the 

previous step. A simple model was, additionally, proposed and 

calibrated aimed at predicting the optimal baseline value (and therefore 

image pair selection) for height uncertainty minimization. All our 

analyses were conducted using free available data from the Copernicus 

Sentinel-1 mission to support the operational transfer into forest sector. 

Finally, potential uncertainty affecting resulting height measures was 

quantified showing that a value lower than 5 m can be expected once 

all user-dependent parameters (i.e. baseline, multilooking factor, 

temporal baseline) are properly tuned.  

Keywords: Sentinel-1; SAR; Interferometry; Phase Unwrapping Avoiding; 

Forest Height; Uncertainty Assessment; Topographic Levelling 

Approach.  
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1. Introduction 

Forest height is a key parameter in forestry since it is adopted to retrieve AGB 

[1,2] and characterized canopy vertical structure [3–5]. It is often used to detect 

forest [6], to assess forest ecosystem services (e.g. timber production [7], forest 

protection capabilities against natural hazards [8], biodiversity [9,10]). Forest 

height is ordinarily measured through ground campaigns by means of 

hypsometers, whose precision ranges between 1 and 3 m [11,12]. Unfortunately, 

ground surveys are time and cost consuming, making them poorly dense over 

forested areas. Conversely, remote sensing can fill this gap providing continuous 

forest height measures over wide areas showing accuracy comparable to ground 

surveys [13]. Space-borne Earth Observation missions well-fit forest 

requirements making possible to map and monitor wide areas, allowing a near-

early change detection and a frequent updating of forest properties [14]. Synthetic 

aperture radar (SAR) is known to be to be useful for estimating forest geometric 

features recording data in all-weather condition included equatorial/tropical ones 

where clouds are almost constantly over. Among SAR application and methods, 

SAR interferometry (InSAR) technique has been extensively adopted to generate 

digital elevation models (DEM), that are intended to provide a continuous 

representation of Earth topography, included forest areas. Theoretically speaking, 

radar interferometry can generate highly precise height estimates related to the 

difference of path length between scattered signals received by two properly 

positioned antennas. The ordinary InSAR processing workflow relies on a phase 

unwrapping step aimed at unambiguously recovering the local topography, which 

is generally achieved by unitarily processing the entire scene. Ordinary these 

algorithms tend to avoid these areas during unwrapping [15,16], so the approach 

has proven to consistently fail where signal coherence values are low. This makes 

InSAR-derived DEM over vegetation highly unreliable [17]. An alternative 

existing approach, not widely explored in literature [18–20], is considered in this 

work for obtaining more reliable and accurate estimates of forest height from 

InSAR data by avoiding phase unwrapping. This method changes the working 
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paradigm from a mapping problem involving the entire scene, to a local paradigm 

based on the comparison between a forest pixel interferogram and a reference one 

closely located outside the forest. Specifically, potentialities and limitations of 

such an approach were explored and discussed.  

In this work, with reference to the above-mentioned approach, a sensitivity 

analysis was also performed with the aim of properly initializing the relevant 

operational parameters (i.e. baseline and multilooking factor) to maximize the 

theoretical accuracy of height measures. To support the technological transfer all 

the analyses were made with reference to SAR open data (guaranteeing a cost-

effective data access) with specific focus on the Copernicus Sentinel-1 (S1) 

mission.  

2. Materials and Methods 

Given the above-mentioned goals of this work, the analysis was performed 

according to the workflow of figure 1. A first step was aimed at developing a 

reasonable model to estimate forest height and defining the conditions that it can 

be adopted (see section 2.2. Interferometric Phase Modelling). A second step was 

aimed at modelling theoretical uncertainty of estimates (see section 2.3. 

Modelling dh Uncertainty). A third step was aimed at tuning involved parameters 

to optimize operational conditions for minimizing uncertainty of forest height 

estimates (see section 2.4. Minimizing 𝜎𝑑ℎ  through simulated scenarios). All 

simulations were performed according to Sentinel-1 data. 
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Figure 1. Workflow adopted in this work. B is the baseline; NL is the interferogram multilooking 

factor; hv is the expected average forest height; dh is the estimated forest height according to 

proposed model;  ∆𝜑𝐹𝑃 and ∆𝜑𝑅𝑃 are the interferometric phases of a forest point and a reference 

(ground) point respectively; ω is the gain factor that allows to convert an interferometric phase 

difference (𝑑∆𝜑) into the height difference. 

 

2.1. Sentinel 1 Data 

Satellite missions, such as the European Union (EU) Copernicus Sentinels, 

generate a significant volume of data that may be proficiently used to aid support 

environmental studies and land management. Nevertheless, technological 

transfer, presently, appears to be limited even if web-based services based on 

these data are becoming to be operational [21–23]. In the general context of 

satellite open data, SAR imagery shows a further weakness in entering the 

operational services mainly due to the complexity of data processing [24,25] and 

data availability. S1 is one of the current largest space-borne missions providing 

free and open accessible SAR data. Furthermore, the European Space Agency 

(ESA) made available for users  the free software SNAP (Sentinel Application 

Platform) enabling an easier and focused exploitation of products from the 

Copernicus Programme [17,26]. S1 mission is a two satellites constellation 

(Sentinel-1A and Sentinel-1B) acquiring in the microwave C-band (5.6 cm 

wavelength). Main acquisition mode over land is the interferometric wide swath 
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(IW) recording backscattered signal in dual pole mode (VV and VH). Data are 

natively recorded as complex values (I/Q components) and in-SAR geometry 

(Range and Azimuth). In particular, its medium-high spatial resolution and high 

revisit time (6 days) make S1 mission useful for a wide range of applications 

including forest mapping. In literature many methods based on SAR 

interferometry were proposed to estimate forest height and can be summarized 

into three main categories: (a) Pol-InSAR methodology [27–29]; (b) Coherence-

based methodology [30–32] and (c) Interferometric phase-based methodology 

[19,20]. Unfortunately, S1 data are not suitable for (a) due to its lack of quad-pol 

channels that would be required [21,33]. Approach (b) is mainly applied using 

tandem acquisition mode that guarantees a higher coherence over vegetation. 

Since S1 does not support tandem acquisition, coherence values over forest are 

generally low limiting this approach. Consequently, approach (c) appears to be 

the most promising because it is somehow consistent with technical feature of S1 

data. S1 main technical features [34–37] are reported in Table 1 and used for the 

following simulations. 

Table 1. S1 mission nominal features. 

Feature Values Units 

Frequency (λ) 5.54 cm 

Nominal Satellite Altitude (H) 693 km 

Look Angle (θ) 30- 45 ° 

Attitude accuracy (𝜎𝜃) 0.01 ° 

Maximum Noise Equivalent Sigma Zero (NESZ) -22 dB 

Spatial resolution range (𝛿𝑟𝑔) 5 m 

Spatial resolution azimuth (𝛿𝑎𝑧) 20 m 

Satellite position accuracy POD  5 cm 

Bandwidth (Bw) 42-56 MHz 

Antenna real length (L) 12 m 
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2.2. Interferometric Phase Modelling  

SAR interferometry relies on image pairs processing acquired from different 

positions separated by a proper distance known as a baseline (B). This condition 

makes possible to recover “stable” objects height through a simple geometric 

transformation [38–40]. Unfortunately, this technique is known to suffer from 

many limitations in vegetated areas, mainly due to noise induced by canopy 

volume and interferometric signal decorrelation. Assuming a flattened 

interferogram with no significant ground shifts affecting the area, the contribution 

to the interferometric phase (∆𝜑) given by local topography can be defined 

according to eq.1. 

𝑑∆𝜑

𝑑ℎ
= 

4𝜋 𝐵

𝜆 𝑅 tan𝜃 
 = 𝑘𝑧 = 

1

𝜔
                                            (1) 

where ∆𝜑 is the interferometric phase; h is the target point elevation; λ is the 

wavelength of the radar signal; R is the sensor-target slant range; θ is the antenna 

off-nadiral angle (look angle) and B is the baseline; ω is the gain factor needed to 

convert back a phase difference into the correspondent height difference. 

Inverting eq.1, the height difference (dh) between the two compared points can 

be obtained by eq. 2. This approach appears to be similar to an ordinary 

topographic levelling problem [41]. Subsequently, forest point absolute elevation 

can be obtained by adding dh to, at least, one reference point (representing the 

ground) having known elevation. 

𝑑ℎ = ℎ𝐹𝑃 − ℎ𝑅𝑃 =  𝜔 (∆𝜑𝐹𝑃 − ∆𝜑𝑅𝑃)                     (2) 

where ℎ𝐹𝑃 and ∆𝜑𝐹𝑃 are elevation and interferometric phase of the forest point, 

respectively; ℎ𝑅𝑃  and ∆𝜑𝑅𝑃 are elevation and interferometric phase of the 

reference point, respectively. It is worth to note that eq. 2 can be retained phase 

unwrapping independent if the expected forest height is maintained lower than 

the so called height of ambiguity (HOA) [19,30]. This condition is satisfied if no 

significant elevation difference exists between forest and reference ground levels. 

This condition can be a-priori verified using an external DEM (e.g. global SRTM 
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or ASTER DEMs). The condition must be tested for each interferogram pixel to 

mask out inadequate ones. Being HOA can be obtained multiplying 2π to ω, it is 

possible to model the relationship between HOA and B. 

2.3. Modelling dh Uncertainty 

Once the above-mentioned condition has been satisfied, one can proceed to 

estimate the expected uncertainty of ℎ𝐹𝑃 taking care of the contribution of the 

involved parameters. ℎ𝐹𝑃  uncertainty (𝜎𝑑ℎ) can be estimated by eq. 3 and 4, 

assuming ℎ𝑅𝑃 uncertainty as a-priori known. Equation 3 is the one commonly 

adopted in literature to estimate 𝜎𝑑ℎ [42]. 

𝜎𝑑ℎ =  𝜔 ∙ 𝜎𝑑∆𝜑                                                   (3) 

where 𝜎𝑑ℎ  is dh uncertainty and 𝜎𝑑∆𝜑  is the interferometric phase difference 

uncertainty. It is worth highlighting that this formula does not take care about ω 

uncertainty that has to be further considered to properly model error propagation 

that can be proficiently estimated by the Variance Propagation Law (VPL - [43]). 

VPL is a statistical tool (eq. 4) useful to estimate the a-priori variance of a 

statistical variable (y) depending on some other independent ones (xi). 

𝜎𝑦
2 = (

𝜕𝑦

𝜕𝑥1
)
2
∙ 𝜎𝑥1

2 + (
𝜕𝑦

𝜕𝑥2
)
2
∙ 𝜎𝑥2

2 + ⋯+ (
𝜕𝑦

𝜕𝑥𝑛
)
2
∙ 𝜎𝑥𝑛

2                          (4) 

where y= f (𝑥1, 𝑥2, …, 𝑥𝑛) is the dependent variable, 𝑥𝑖 the independent ones and 

𝜎𝑥𝑛
2  their variance (supposed to be known). Application of VPL to eq. 3 results in 

eq. 5.  

𝜎𝑑ℎ = √(
𝜕𝑑ℎ

𝜕𝜔
𝜎𝜔)

2
+ (

𝜕𝑑ℎ

𝜕𝑑∆𝜑
𝜎𝑑∆𝜑)

2
                                         (5) 

where 𝜎𝜔 and 𝜎𝑑∆𝜑 are the expected uncertainties for 𝜔 and 𝑑∆𝜑, respectively. 

 

 



 

178 

 

2.3.1. Theoretical Uncertainty of ω 

 ω uncertainty (𝜎𝜔 ) depends on the parameters involved in its computation. 

Again, the variance propagation law can be used to get the estimate of the 

theoretical value of 𝜎𝜔 (eq. 6). 

𝜎𝜔 = √(
𝜕𝜔

𝜕𝐵
)
2
∙ 𝜎𝐵

2 + (
𝜕𝜔

𝜕𝑅
)
2
∙ 𝜎𝑅

2 + (
𝜕𝜔

𝜕𝜃
)
2
∙ 𝜎𝜃

2 + (
𝜕𝜔

𝜕𝑅

𝜕𝜔

𝜕𝜃
) 𝜌(𝑅,𝜃)𝜎𝑅𝜎𝜃             (6) 

where R is the slant range (here computed as 𝑅 = 
𝐻

cos𝜃
); 𝜎𝐵  is the baseline 

uncertainty; 𝜎𝑅  and 𝜎𝜃  are the slant and look angle uncertainty, respectively; 

𝜌(𝑅,𝜃) is the Pearson’s correlation coefficient between R and 𝜃. These are known 

to be geometrically related (thus correlated) and, consequently 𝜌(𝑅,𝜃) must be set 

to +1. Concerning 𝜎𝐵, the S1 declared positional accuracy of the ESA provided 

precise orbit state vectors (Precise Orbit Determination - POD) is 5 cm [35,36]. 

This determines a 𝜎𝐵 value of 12 cm. 𝜎𝜃 was assumed equal to 0.01° that is the 

nominal antenna attitude accuracy.  𝜎𝑅  can be estimated by eq. 7, assuming 

factors contribution as additive. 

𝜎𝑅 = √𝜎𝑡𝑟𝑜𝑝𝑜
2 + 𝜎𝑖𝑜𝑛𝑜

2 + 𝜎𝑝𝑟𝑜𝑐
2 + 𝜎𝑇𝑂𝐹

2                                  (7) 

where 𝜎𝑡𝑟𝑜𝑝𝑜  and 𝜎𝑖𝑜𝑛𝑜 are the uncertainty of atmospheric delay induced by 

troposphere and ionosphere; 𝜎𝑝𝑟𝑜𝑐  is the estimated contribution of SAR data 

processing effects in the S1 IW products; 𝜎𝑇𝑂𝐹 is the uncertainty of slant range 

signal time, i.e. the minimum detectable slant range distance between two 

scatterers. In order to evaluate the relative contribution of factors to the final 

estimate of 𝜎𝜔, “weights” of Table 2 (𝑤𝑖) were computed with reference to 𝜎𝜔
2  

according to eq. 6. 
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Table 2. “Weights” defining the relative importance of factors to determine 𝝈𝝎
𝟐 . 

Parameter 𝒘𝒊 formula 

Baseline (B) 
𝑤𝐵 =  

(
𝜕𝜔
𝜕𝐵

)
2

∙ 𝜎𝐵
2

𝜎𝜔
2  

Slant range (R) 
𝑤𝑅 = 

(
𝜕𝜔
𝜕𝑅

)
2

∙ 𝜎𝑅
2

𝜎𝜔
2  

Look angle ( ) 
𝑤𝜃 = 

(
𝜕𝜔
𝜕𝜃

)
2

∙ 𝜎𝜃
2

𝜎𝜔
2  

Mixed term (R, ) 𝑤𝑐𝑜𝑟𝑟(𝑅,𝜃) = 
(
𝜕𝜔
𝜕𝑅

𝜕𝜔
𝜕𝜃

) ∙ 𝜌(𝑅,𝜃)𝜎𝑅𝜎𝜃

𝜎𝜔
2  

 

2.3.2. Theoretical Uncertainty of 𝒅∆𝝋 

 The theoretical uncertainty of d∆φ (𝜎𝑑∆𝜑) can be computed by eq.8.  

𝜎𝑑∆𝜑 = √𝜎∆𝜑𝐹𝑃
2 + 𝜎∆𝜑𝑅𝑃

2                                        (8) 

where interferometric phase uncertainties, 𝜎∆𝜑𝐹𝑃 , and 𝜎∆𝜑𝑅𝑃  were proved 

[18,44,45] to be strictly correlated to the local coherence magnitude, 

|𝛾|, according to eq. 9.  

𝜎∆𝜑 = 
1

√2𝑁𝐿
 
√1−|𝛾|2

|𝛾|
                                                 (9) 

where 𝑁𝐿 is the multilooking factor (i.e. number of pixels used to compute the 

complex multilooked interferogram). These considerations drive to admit that 

𝜎𝑑ℎ = 𝑓(𝜔, 𝜎∆𝜑) and, consequently, they depend on the operational parameters 

B and NL. Eq. 3 and eq. 1 show that 𝑑ℎ accuracy is higher for long baselines. 

This is what is ordinarily reported in literature. Nevertheless, this condition 

appears to fail over vegetation. In fact, longer baselines make coherence 

decreasing, thus negatively affecting 𝜎∆𝜑 and, consequently, 𝜎𝑑∆𝜑. This effect is 

more evident while analysing the decorrelation model of eq. 10 as proposed by 
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[44,46]. This model defines the coherence magnitude as the product of several 

contributions related to decorrelation agents. 

𝛾𝑜𝑏𝑠 = 𝛾𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ∙ 𝛾𝐷𝑜𝑝𝑝𝑙𝑒𝑟 ∙ 𝛾𝑡𝑒𝑚𝑝 ∙ 𝛾𝑔𝑒𝑜𝑚 ∙ 𝛾𝑣𝑜𝑙                         (10) 

where 𝛾𝑜𝑏𝑠  is the observed coherence magnitude, 𝛾𝑡ℎ𝑒𝑟𝑚𝑎𝑙  is the signal 

decorrelation due to additive thermal noise [47];  𝛾𝐷𝑜𝑝𝑝𝑙𝑒𝑟  accounts for non-

perfect overlap of the azimuth spectra for the master and slave SAR acquisitions 

and misregistration error [48]; 𝛾𝑡𝑒𝑚𝑝 is associated to changes in the dielectric and 

structural proprieties of the target [49]; 𝛾𝑔𝑒𝑜𝑚 depends on geometric relationships 

between the two compared SAR acquisitions; 𝛾𝑣𝑜𝑙  is the decorrelation 

component due to canopy scattering from multiple heights within each scattering 

cells. Because 𝛾𝑡ℎ𝑒𝑟𝑚𝑎𝑙 , 𝛾𝐷𝑜𝑝𝑝𝑙𝑒𝑟 , 𝛾𝑡𝑒𝑚𝑝  are independent from any operational 

parameter that can be controlled by user, these were not taken into consideration 

in the optimization process authors are addressed to [50]. Differently, 𝛾𝑔𝑒𝑜𝑚 is 

dependent from baseline according to eq. 11. 

𝛾𝑔𝑒𝑜𝑚 = 1 − 
2 𝐵 cos2 𝜃 𝛿𝑟𝑔

𝜆𝑅
                                       (11) 

where 𝛿𝑟𝑔is the range resolution of the radar. Similarly, 𝛾𝑣𝑜𝑙   has to be taken into 

consideration since caused by the volumetric decorrelation related to the 

vegetation canopy volume (distributed scatters). Assuming a uniform volume 

showing an exponential extinction of absorption and scattering, 𝛾𝑣𝑜𝑙   can be 

modelled by eq. 12 ([18,49,50]). It states that SAR signal decorrelation depends 

on vegetation volume depth ℎ𝑣 (i.e. tree height) and from the system parameter 

𝑘𝑧 (see eq.1). 

𝛾𝑣𝑜𝑙 = 
2 sin(𝑘𝑧

ℎ𝑣
2

)

𝑘𝑧ℎ𝑣
                                                  (12) 

Eq. 12 assumes a uniform radar backscatter cross section from canopy volume 

and no significant scattering from the background. By inverting eq.12, it would 

be possible to estimate forest height if decorrelation was caused entirely by 
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volumetric effects. Unfortunately, this is unrealistic due to: canopy signal 

attenuation, scatters movements and proportion of area filled by trees. These 

issues determine significant observational errors [50] making this approach with 

S1 data a poor choice. Within this framework and according to the above-

mentioned simplifications, a new synthetic variable  𝛾𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝛾𝑔𝑒𝑜𝑚 ∙ 𝛾𝑣𝑜𝑙 

can be considered as directly related to the baseline value. 

2.4. Minimizing 𝝈𝒅𝒉 Through Simulated Scenarios 

As demonstrated in the previous sections, 𝜎𝑑ℎ depends on both 𝜔 and 𝜎∆𝜑. While 

trying to minimize it, the only parameters a user can manage are image pair 

selection (spatial and temporal baseline) and the multilooking factor (NL). These 

can be optimized to guarantee the lowest 𝜎𝑑ℎ.  For how to concern the temporal 

baseline selection, since forests are continuously changing, longer the temporal 

baseline, lower the associated coherence (temporal decorrelation) [51], [17]. 

Therefore, short temporal baseline and winter acquisitions are more suitable for 

forest height retrieval as discussed by [19,31,51], but, currently, no formalized 

model exists to support this evidence. As far as baseline optimization (i.e. B value 

minimizing 𝜎𝑑ℎ) is concerned, this must be managed going back to eq. 3, eq.11 

and eq.12. These make possible to generate different scenarios depending on 

varying baseline and hv values (i.e. expected average forest height). With 

reference to the scenarios the optimal B value can be retrieved once an expected 

forest hv is set. To make the estimate more immediate a power model (eq. 13) 

was calibrated directly relating hv with the optimal B value. 

𝐵𝑜𝑝𝑡 = 𝑎 ∙ (ℎ𝑣)
𝑏                                                                 (13) 

 

where a and b are model parameters. Concerning NL value optimization, one has 

to consider eq. 5 that relates NL with 𝜎∆𝜑: higher NL, lower the interferometric 

phase uncertainty. NL can be therefore optimized by fixing an expected value for 

𝜎𝑑ℎ once 𝜔 and local coherence are known (eq. 14). 
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𝑁𝐿 = 0.5 (
1

𝛾2 − 1) (
𝜎𝑑ℎ

𝜔
)
2
                                         (14) 

According to eq. 14, once set an expected 𝜎𝑑ℎ the correspondent NL value can be 

obtained. To make this information more operational, NL can be easily translated 

into the correspondent squared pixel size (SGRP) by eq. 15. This work under the 

condition that the ratio between azimuth and range pixel size is the one of S1, i.e. 

1:4 (see Table 1).   

𝑆𝐺𝑅𝑃 (𝑚) =
𝛿𝑎𝑧∙√𝑁𝐿

2
                                             (15) 

Considering that the accuracy of forest height by ground survey is lower than 3 

m, in this work some simulations retrieving SGRP at 𝜎𝑑ℎ = 3 m were performed 

by changing  value between 0.1 and 1 in eq. 14-15. This makes it possible to 

find an optimal value of NL suitable to guarantee the expected accuracy of forest 

estimates. Once optimal B and NL (or SGRP) values corresponding to an 

expected hv were found, that part of 𝜎𝑑ℎ  , depending on settable operational 

parameters, can be finally minimized.  Unfortunately, a significant part of 𝜎𝑑ℎ 

additionally depends on systematic errors like orbital-related ones, flattening 

residuals and atmospheric delays. These cannot be directly accounted for, 

because they are difficult to model. Nevertheless, one can try to remove/minimize 

them by considering height differences between neighbour targets in place of 

absolute height measures. Measure differencing is expected to reasonably remove 

these errors assuming that they occur similarly for close points [42]. 

Conversely, remaining error components depending on targets attributes, i.e. 

temporal decorrelation and random noise, cannot be further removed or 

minimized.  Their joint effect on final uncertainty of dh, described in eq. 5, can 

be evaluated through simulations based on a sensitivity analysis approach. These 

were achieved by differencing a reference ground point, external to the forest, 

and showing a very high coherence value (≥ 0.8) with one representing the forest 

itself. The analysis proceeded by progressively varying the coherence value of 
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the forest point (𝛾𝐹𝑃) from 0.05 to 1 and assuming different dh values as expected 

tree height ranging between 1 m and HOA.  

3. Results and Discussions 

To verify if dh values associated with tree heights could be reasonably estimated 

independently from phase unwrapping, HOA was related to B according to the 

above-mentioned equations, namely HOA=2𝜋 ∙ 𝜔  and eq. 1. B values were 

progressively changed to generate graphs of figure 2. 

 

Figure 2. Maximum detectable dh (HOA), avoiding phase unwrapping, versus B and  

(simulation performed with reference to S1 nominal features). 

 

With reference to figure 2, one can deduce that a baseline value lower than about 

120 m can be used to ensure that forest height estimates can be given. In fact, 

rarely forests around the world show tree height higher than 100 m. If focusing 

on temperate forests where maximum tree height is 65 m, baseline values lower 

than about 270 m can be used ensuring to remain within HOA. 

3.1. Theoretical Uncertainty of 𝝎  

𝜔 is the parameter that converts the interferometric phase difference (radians) 

into the correspondent height difference (meters, dh). 𝜔  uncertainty ( 𝜎𝜔) 
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depends both on the B, R,  factors value and on their accuracy (eq. 6).  

Concerning 𝜎𝐵, it was obtained considering the S1 declared positional accuracy 

of the ESA provided POD, i.e. 5 cm [35,36]. A reference value for 𝜎𝐵 was found 

to be equal to 12 cm. 𝜎𝜃  was assumed equal to 0.01°, corresponding to the 

nominal antenna attitude accuracy for S1. 𝜎𝑅 was determined according to eq. 7. 

𝜎𝑡𝑟𝑜𝑝𝑜 and 𝜎𝑖𝑜𝑛𝑜 were set to 4 m and 1 m, respectively according to [52]. This is 

obviously an approximation since atmospheric conditions can locally change. 

The same paper [52] reports 0.4 m as reference value for 𝜎𝑝𝑟𝑜𝑐. 𝜎𝑇𝑂𝐹  was set 

equal to 3.3 m assuming that S1 Bw (see Table 1) is 46 MHz. According to the 

above-mentioned values 𝜎𝑅 was finally computed (eq. 7) resulting in 5.3 m. To 

investigate 𝜎𝜔 dependency from involved parameters, one has to take care that R 

and  change along the scene, while B and H could be assumed constant. 

Measuring errors affecting these system parameters (eq. 1) necessarily affect 𝜎𝜔. 

VPL can be used to explore how B and  affects the theoretical value of 𝜎𝜔 (eq. 

6). Figure 3a shows that for B values greater than 50 m, 𝜎𝜔 is lower than 10 m 

and increases while  values increase (i.e. tending to the swath far range). These 

findings raise some doubts about eq. 3 that does not take into account error 

contribution of system parameters. Additionally, 𝜎𝜔  appears to be highly 

significant. A more proper estimate of  𝜎𝑑ℎ  could come from eq. 4 where, 

differently from eq. 3,  𝜎𝜔 is considered.  

In order to explore the importance of system parameters on 𝜎𝜔, correspondent 

weights (𝑤𝑖) were computed according to equations reported in Table 2. Results 

are reported in figure 3b where it can be noted that 64%, 11% and 24% of the 

total variance (𝜎𝜔
2) are due to the look angle, R and the mixed term accounting 

for R and  correlation, respectively. B uncertainty participates for less than 1%. 

From an operational point of view, a rough sensitivity analysis can help to 

interpret results. For example, a look angle difference of 1° determines a ∆𝜔 of 

about +3.7%; a satellite altitude difference of 10 km determines a ∆𝜔 of about 

+1.4%; a slant range difference of 10 km determines a ∆𝜔 of about +1.2 %.  
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appears to be the most conditioning factor for 𝜔 computation. Given these values, 

𝜔 can be reasonably computed directly using the coarse estimates of , R, H, B 

as reported in the SAR metadata information or satellite approximated state 

vectors. While using S1 nominal features in eq. 6, it can be easily derived that 𝜎𝜔 

varies between 1 m to 10 m, thus demonstrating to significantly contribute to the 

interferometric-derived dh.   

 

Figure 3. (a) 𝜎𝜔 versus B and . (b) relative weights affecting 𝜔 variance involved in VPL. Note 

that wB is exaggerated by a factor 200. 

 

3.2. Theoretical Uncertainty of 𝒅∆𝝋 

According to eq. 11 and eq. 12, some simulations were done to explore the 

relationship between the baseline and 𝛾𝑔𝑒𝑜𝑚  and 𝛾𝑣𝑜𝑙 using S1 nominal values of 

table 1 (figure 4a and 4b). Figure 4a shows that expected forest height (i.e. the 

thickness of forest volume) does not significantly affects 𝛾𝑣𝑜𝑙 if B is maintained 

lower than 50 m. Differently, for B values > 50 m, hv participates to reduce 𝛾𝑣𝑜𝑙. 

Figure 3b shows a perfect negative linear correlation between B and 𝛾𝑔𝑒𝑜𝑚 

having a steeper decreasing rate for lower look angles. Because  𝛾𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =

𝛾𝑔𝑒𝑜𝑚  ∙  𝛾𝑣𝑜𝑙, according to eq. 9 one can admit that higher the baseline, lower 

𝛾𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒   and higher 𝜎∆𝜑. 
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Figure 4. (a) 𝛾𝑣𝑜𝑙 versus B and hv ( = 35°). (b) 𝛾𝑔𝑒𝑜𝑚 versus  B and .  

 

3.3. Minimizing 𝝈𝒅𝒉 Through Simulated Scenarios 

According to eq. 12, 𝜎𝑑∆𝜑 depends on B and hv. To explore its dependency, B 

and hv were changed progressively from 5 m to 1000 m and from 5 m to 50 m, 

respectively, testing their effects on 𝜎𝑑ℎ (figure 5a).  

 

Figure 5. (a) Several scenarios of dh uncertainty according to hv and B. (b) Power model relating 

hv and B at dh uncertainty is minimized.   

 

Simulations in figure 5a show that hv value > 15 m (i.e. the majority of the 

forests), 𝜎𝑑ℎ presents a minimum with respect to B. It is worth noting that 𝜎𝑑ℎ 

values are certainly underestimated. In fact, 𝛾𝑡ℎ𝑒𝑟𝑚𝑎𝑙 , 𝛾𝐷𝑜𝑝𝑝𝑙𝑒𝑟 , 𝛾𝑡𝑒𝑚𝑝 are factors 

that cannot be properly modelled being independent from the features of 

interferometer. Considering B values minimize 𝜎𝑑ℎ for the different hv values, a 

model directly relating the “optimal” B value with the expected hv was defined 

(eq. 13 and figure 5b). A simple power model can be calibrated (eq.13) as 
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reported in figure 5b (see figure for model a, b and R2 coefficients). It is worth 

noting that the optimal B value occurs within the critical baseline (for S1, about 

5 km) supporting the hypothesis that over vegetation the accuracy of 

interferometric-derived heights does not increase by using large baselines. The 

operational utility of this model can be easily exemplified using a case study. 

Suppose to investigate tree heights in a forest having an expected value of 25 m. 

The model of figure 5b makes possible to get an optimal baseline value of 150 

m. Similarly, it can be said that the optimal B value in forests with tree heights 

ranging between 15 m and 30 m (the majority of forest in temperate zones) should 

range between 250 m and 100 m, respectively.  

Since pixel size (NL/SGRP) has been proved to significantly impact 𝜎∆𝜑, and 

consequently 𝜎𝑑∆𝜑 (eq. 9) some simulations were performed to describe SGRP 

dependency from 𝛾 (Fig. 6).  Eq. 14 and eq. 15 were applied repeatedly assuming 

a reference 𝜎𝑑ℎ = 3 m, and setting the following values for the involved 

parameters: H = 693 km,  = 35°, 𝛿𝑎𝑧= 20 m. This made it possible to describe 

SGRP variation against  and B. Figure 6 shows that SGRP is inversely 

proportional to . 

 

Figure 6. SGRP (squared pixel size) vs coherence. A 𝜎𝑑ℎ equal to 3 m was used during 

simulations obtained by varying  and B. 
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Since vegetation usually presents medium-low coherence values expected in the 

range 0.2 <  < 0.6 [17], correspondent expected SGRP falls in the range 50-300m 

if B > 50 m. This SGRP (geometric resolution) is certainly not appropriate for a 

fine scale height retrieval; nevertheless, it appears to be proper for small scale 

analysis (wide areas) generating a granularity that is consistent with the ones from 

traditional forest surveys. These are, in fact characterized by a low-density of 

ground sampling (plots) [53]. 

Once the optimal B values was found and, consequently, the correspondent SGRP 

found, 𝜎𝑑ℎ  can be estimated as a function of 𝛾𝐹𝑃 and expected dh. To investigate 

these dependencies, a simulation was run assuming baseline values in the range 

50-200 m using eq. 5 (Fig. 7). During simulations the following operational 

parameters were used NL = 100,  = 35°, H = 693 km. Figure 7 shows that dh 

values consistent with forest height in the range 10-65 m generate 𝜎𝑑ℎ values 

varying between 1 m down to 70 m depending on 𝛾𝐹𝑃 (coherence of the forest 

area) and B values. The most favourable conditions occur for high 𝛾𝐹𝑃 and larger 

baselines. A focus point is that 𝜎𝑑ℎ remains at low values while 𝛾 is higher than 

about 0.2, to suddenly and significantly increase once this threshold is overcome. 

This suggests that a 𝛾   value of 0.2 can be somehow used to define 

significant/reliable measures.  In general, when dh tends to HOA 𝜎𝑑ℎ is higher, 

suggesting that small dh values are more accurate than large ones. Operationally 

speaking, since authors approach is based on height difference computation, 

expected dh values (10-65 m) are always lower and lower than HOA and result 

in a 𝜎𝑑ℎ < 5m. Some examples are reported in Table 3.  
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Table 3. Best cases from simulations in a typical Italian forest context (tree height in the range 

10-30 m). 

Baseline (m) Expected dh (m) 𝝈𝒅𝒉 (m) 

50 10-30 2 

100 10-30 2 

150 10-30 1 

200 10-30 0.5 

 

Similar results were found in [32,54] by using ERS-1 data where phase 

unwrapping was adopted. Otherwise, in the proposed approach similar accuracy 

was found avoiding phase unwrapping, resulting into a more robust and 

controllable forest height uncertainty estimation. Moreover, values of Table 3 

prove that forest height estimates from S1 InSAR data can generate results having 

an accuracy comparable to the one from traditional surveys, making this 

technique an effective tool for forest structural monitoring. 

 

Figure 7. Several scenarios of dh uncertainty according to expected 𝛾𝐹𝑃 and dh at different B 

values. Isolines refer to the same 𝜎𝑑ℎvalues.  
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Once more, these evidences highlight that an InSAR technique operated 

according to the above mentioned optimization criteria can drive to forest height 

estimates consistent with the ones from ground survey. Nevertheless, some 

limitations still persist concerning low coherence targets where InSAR fails to 

retrieve reliable forest height estimates (J. Askne et al., 1997). It is worth to stress, 

that all these findings are based on simulations, therefore, future developments 

will be expected to sustain these deductions using real data and quantifying the 

actual (not the expected) errors in forest height retrieval. 

4. Conclusions 

This work proved that S1 interferometric data can be effectively adopted to 

retrieve forest height. In particular, adopting the topographic levelling approach 

based on local differencing between interferogram from a forest pixel and a 

neighbour bare soil one permits to operate with no phase unwrapping driving to 

an unambiguous height estimate. Authors proved that tuning of an optimal 

baseline and multilooking factor can improve the accuracy of forest height 

retrieval. In particular, forest heights in the range 10-30 m requires optimal 

baseline between 250 and 100 m. Furthermore, contrarily to the general rule that 

suggests large B values to improve InSAR-derived DEM accuracy, this work 

demonstrates that, in forest areas, the same rule fails. In fact, by increasing B, 

forest coherence decreases reducing interferometric phase accuracy. A simple 

model was, additionally, proposed and calibrated aimed at predicting the optimal 

B value (and therefore image pair selection) for  𝜎𝑑ℎ minimization. Regarding 

spatial density of forest height estimates, it was found that SGRP values between 

50-100 m can guarantee a 𝜎𝑑ℎ < 3 m. This resolution is certainly not appropriate 

for fine scale analysis, suggesting the adoption of this method when small scale 

(wide areas) mapping of forest heights is required. Finally, in this paper authors 

proved that S1 InSAR data processed focusing on height differencing 

computation (see eq. 2) is more effective in retrieving forest heights with 
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medium-high accuracy. This has necessarily to be achieved opportunely tuning 

user-dependent parameters (B, NL, 𝐵𝑡𝑒𝑚𝑝) according to the above-mentioned 

maximization criteria. 
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Abstract: Forest height is a fundamental parameter in forestry. SAR interferome-

try (InSAR) has been widely used to retrieve digital elevation models 

(DEM), which are designed to provide a continuous representation of 

Earth topography, including forests. The ordinary InSAR framework 

requires a further phase un-wrapping step in order to recover 

unambiguously the actual topography over the entire scene. The latter 

was proved to fail over vegetation due to low coherence values and 

therefore all algorithms tend to avoid these areas during the unwrap-

ping, making InSAR-derived DEM over vegetation very unreliable. In 

this work, an alternate technique was coupled to least squares 

adjustment (LSA) with the aim of retrieving accurate forest heights 

avoiding phase unwrapping. It was com-puted entirely using free 

available Sentinel-1 data and SNAP ESA software. A mean absolute 

error equal to 2.6 m was found and it is consistent to the one esti-mated 

by LSA  theoretical uncertainty. Preliminary outcomes suggest that 

proposed approach could be a valid alternative to retrieve forest height 

based on free data/software constituting an  example of technological 

transfer of SAR technology into forest operative sector.   

Keywords: Forest height, SAR, Interferometry, Least Squares Adjustment. 

 

 

 

 

mailto:samuele.depetris@unito.it


 

196 

 

1. Introduction 

Forest height is a fundamental parameter in forestry. It is related to AGB, timber 

volume [1] and canopy vertical structure [2]. Forest height is often measured 

using hypsometers with a precision of 1 m to 3 m during ground operations [3, 4] 

. Unfortunately, ground surveys take a long time and are expensive, so they are 

sparse across forested areas. Remote sensing, on the other hand, may cover this 

gap by giving continuous forest height estimates over large regions that are even 

more precise than ground measurements [5] . Space-based earth observation 

missions are well-suitable for forest needs, allowing a mapping and monitoring 

of large regions, as well as the early detection of changes and regular updating of 

forest attributes [6–9]. Synthetic aperture radar (SAR) is known to be sensitive to 

forest geometry characteristics, allowing data to be recorded in any weather state, 

even over equatorial/tropical ones where clouds are usually always present. SAR 

interferometry (InSAR) methodology has been widely used to retrieve digital 

elevation models (DEM), which are designed to provide a continuous 

representation of Earth topography, including forests.  

In this context, satellite missions, such as the European Union's (EU) Copernicus 

Sentinels, are known to provide large amounts of data that may be used to support 

environmental research and land management. However, even if web-based 

services based on this data are becoming operational, technical transfer appears 

to be restrict-ed at the moment [10–12]. SAR imaging, in the broader context of 

satellite open data, exhibits a significant limitation in terms of accessing 

operational services, due to the complex nature of data processing and data 

availability  [13, 14]. The typical InSAR processing methodology includes a 

phase unwrapping step intended at unambiguously reconstructing the local 

topography, which is usually accomplished by processing the entire scene 

unitarily. This method has proven to be particularly ineffective over vegetation 

due to low coherence values; as a result, ordinary algorithms avoid these areas 

(or failed) during unwrapping [15, 16], making InSAR-derived DEMs 

exceedingly unreliable over vegetation [17]. Furtherly, ordinary un-wrapping 
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processing that InSAR software accomplishes, in the most of cases, hides the 

consciousness and an easy interpretability of results, making derived measures 

unreliable.  In this paper, an alternative technique not been extensively explored 

in the literature [18–20], is discussed for generating more trustworthy and precise 

estimations of forest height using InSAR without phase unwrapping. This method 

changes the working paradigms moving from a mapping problem to a retrieval 

one based on the comparison between a forest pixel interferogram and a reference 

one closely located outside the forest.  

In this work, the previous-mentioned approach was combined to least squares 

adjustment with the aim of retrieving accurate forest heights avoiding phase 

unwrap-ping. In order to facilitate the operational transfer of our deductions, 

proposed approach relays entirely on free available and accessible SAR open data 

and software (guaranteed cost-effective) with a special focus on the Copernicus 

Sentinel-1 (S1) mission. 

2. Materials and Methods  

2.1. Study Area 

The area of interest (AOI) is called “Staffarda forest” and is located in the lowland 

part of Cuneo province (NW- Italy). AOI sizes about 4 km2 (Fig. 1) and is 

characterized by the presence of Pedunculate oak‑hornbeam forest [21]. In Italy, 

this type of forests has an high naturalistic values since it is one of the last 

remaining mixed floodplain forests in northern Italy and one of the most 

endangered ecosystems in Europe [22]. 



 

198 

 

 

Figure 1. AOI location and forest units (FUs). Google Satellite base map was adopted (WGS84 

UTM32N reference frame). 

 

2.2. Reference Data 

The digital surface model (DSM) derived by an aerial photogrammetric survey 

(rDSM) was adopted to test the accuracy of proposed approach (Fig. 2). The aerial 

survey was performed in December 2019 by Digisky s.r.l. company. After the 

image block bundle adjustment [23], the photogrammetric point cloud was 

filtered and regularized into a gridded DSM with a ground sample distance (GSD) 

of 0.3 m having a plano-altimetric accuracy of 0.2 m. Moreover, a global 

navigation satellite system (GNSS) ground survey was performed to define forest 

units (FUs). FUs are forest are-as having homogeneous vertical/horizontal 

structure and same expected silvicultural treatments adopted in forest planning 

[24]. A total of 7 FUs was acquired having a mean extension of about 15 ha. 



 

199 

 

 

Figure 2. rDSM (GSD = 0.3 m) over AOI. Google Satellite base map was adopted (WGS84 

UTM32N reference frame). 

 

2.3. Digital Elevation Model Data 

In this work, the Piemonte region Digital Terrain Model (DTM) was used to 

geocode SAR-derived products and obtain elevation information for AOI. DTM 

was downloaded for free from Piemonte Geoportal 

(https://www.geoportale.piemonte.it/cms/). DTM has an elevation accuracy of 

about 0.6 m [25, 26] and was updated in 2009. It is provided already 

orthoprojected into WGS84 UTM 32N reference system with a GSD of 0.5 m.  

2.4. Sentinel-1 Imagery 

Currently, S1 is one of the largest space-borne mission giving free and open 

access to SAR data. The S1 mission is a two-satellite constellation that records 

C-band data (5.6 cm wavelength). Over land, the interferometric wide swath (IW) 

acquiring backscattered signal in dual pole (VV and VH) is the main acquisition 

mode. Images are natively recorded in SAR geometry (Range and Azimuth) and 

complex values (I/Q components). S1 mission is particularly suitable for a wide 

range of applications, including forest mapping, due to its medium-high spatial 

resolution and short revisit time (6 days). Furthermore, the European Space 

Agency (ESA) makes the free soft-ware SNAP (Sentinel Application Platform) 
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available to users, allowing an easier and efficient use of Copernicus Program 

products [17, 27]. To preliminary test the pro-posed approach a single 

interferometric pair was selected and downloaded from Alaska Satellite Facility 

online tool [28]. Ordinarily, InSAR-derived DEM accuracy is higher for long 

baselines [29], nevertheless, this condition appears to fail over vegetation. In fact, 

longer baselines make coherence decreasing, thus negatively affecting forest 

height accuracy. Moreover, also temporal baseline could significantly affect 

interferogram reliability. Since forests are continuously changing, longer the 

temporal baseline, lower the associated coherence (temporal decorrelation) [17, 

30]. Therefore, short temporal baseline and winter acquisitions are more suitable 

for forest height retrieval in temperate zone [31]. To take care about these issues, 

two S1 single look complex (SCL) IW images in ascending mode acquired on 

20th and 26th December 2019 were collected. The selected interferometric pair 

has a perpendicular baseline of about 90 m guaranteeing the shorter temporal 

baseline available from S1 mission (i.e. 6 days) during the 2019 winter season 

over AOI.  To avoid decorrelation errors due to rainfall events, no precipitation 

events were found from the meteorological data (https://www.arpa.piemonte.it/) 

in observed period.  

2.5. Methodology and Data Processing  

Interferogram computation. The interferometric pair was pre-processed using the 

free software SNAP vs 8.0 provided by ESA and according to common used pro-

cessing chain [32]. The basic steps include TOPS Split, which reduces the SLC 

data to selected number of bursts within a sub-swath. Then, enhanced spectral 

diversity [33] were applied to refine the azimuth offset estimation and exploit a 

better fine coregistration provided by back geocoding. Subsequently, coherence 

estimates were mapped using 10x2 window (range and azimuth pixels 

respectively) and the interferogram was computed including flat-earth phase 

removal. The latter was computed by fitting a 5-degree polynomial involving 501 

points distributed over interferogram. Using data from orbits state vectors and 

images metadata the flat-earth phase was then subtracted from the complex 
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interferogram. After deburst, Goldstein filter was applied [34] using a window 

size of 3x3. Multilooking was also applied to the interferogram and coherence 

complex values [35] generating images having squared pixels sizing of about 

30x30m. Finally, the multilooked interferogram and coherence data were 

projected into WGS84/UTM 32N reference frame using DTM and Range 

Doppler terrain correction [36]. 

2.5.1. Interferometric Phase Modelling.  

The SAR interferometry technique is based on the image pairs processing 

acquired from multiple locations separated by distance known as a baseline (B). 

This criterion allows to recover topography via a simple geometric relationship 

[37]. The contribution to the interferometric phase provided by local topography 

is determined according to eq.1. 

𝜕∆𝜑

𝜕ℎ
= 

4𝜋 𝐵𝑛

𝜆 𝑅 sin𝜃 
                                             (1) 

 

where ∆φ is the interferometric phase; h is the target point elevation; λ is the radar 

wavelength; R is the sensor-target slant range; θ is the antenna off-nadiral angle 

(look angle) and Bn is the normal baseline length. Based on this relationship, the 

ordinary InSAR framework requires a further phase unwrapping step in order to 

recover unambiguously the actual topography over the entire scene. The latter 

was proved to fail over vegetation due to low coherence values and therefore all 

algorithms tend to avoid these areas during the unwrapping [15, 16] making 

InSAR-derived DEM over vegetation very unreliable [17]. An alternative 

approach, not widely explored in literature, to avoid phase unwrapping was 

proposed by [18–20]. This method changes the working paradigms moving from 

a mapping problem to a retrieval one involving, at least, one interferogram pixel 

from flat terrain close to forest and other over forest canopy. In principle, from 

eq.1, the elevation difference of a given point, dh(x,y), corresponding to the 

interferometric phase difference at that point is given by eq. 2. This approach is 
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similar to a topographic levelling problem [38] where the surveyed variable is the 

heigh difference (dh) between two points (eq. 2). 

𝑑ℎ(𝑥, 𝑦) =  𝜔 [∆𝜑(𝑥, 𝑦) − ∆𝜑𝑅𝑃]                              (2) 

 

Where ∆𝜑(𝑥, 𝑦) and ∆𝜑𝑅𝑃 are the target point (in this work a forest point) and 

reference point interferometric phases respectively; ω is the sensitivity of the 

topography to an interferometric phase variation and it is computed as the inverse 

of eq.1 as proposed by [37]. Subsequently, forest point absolute elevation, 

ℎ(𝑥, 𝑦)), can be obtained by adding dh to, at least, one reference point having 

known elevation (ℎ𝑅𝑃- eq. 3). 

ℎ(𝑥, 𝑦) =  𝑑ℎ(𝑥, 𝑦) + ℎ𝑅𝑃                                    (3) 

 

It is worth to highlight that eq. 2 not requires phase unwrapping (phase ambiguity 

term) only if the expected height difference is lower than height of ambiguity 

(HOA) of the interferometer [19, 39]. Since in this work HOA (deduced by SNAP 

metadata) is equal to 161.2 m, phase ambiguity term can be neglected because 

temperate forest heights do not commonly exceed 60 m [2] and no significant 

terrain variation exists in AOI.  

Forest height retrieval using least squares adjustment. In this work, the paradigm 

in eq. 3 was applied to flattened interferogram-derived measures and solved by a 

least squares adjustment (LSA) approach. LSA is a statistical tool commonly 

adopted to contemporarily solve levelling network and estimate the corrections 

to be given to the height difference measurements in order to make them all 

congruent to each other and satisfy the geometrical relations existing between 

them. In levelling network problem dh differences should be theoretically equal 

to 0. Unfortunately, in real levelling loop it does not happen due to measurement 

errors. Especially in interferometry, phase measures over vegetation are affected 

by many limitations mainly due to noise induced by canopy volume and signal 

decorrelation. This unneglectable noise deeply affects dh resulting from eq. 2 
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application. All systematic errors like orbital-related ones, flattening residuals 

and atmospheric delays can be mathematically removed by considering height 

differences between neighboring interferogram pixels. In fact, measure 

differencing is expected to reasonably remove these errors assuming that they 

occur similarly for close points [40] (in this work interferogram pixels are at most 

2 km apart). Nevertheless, LSA can mitigates the accidental observational errors 

component [41, 42] by share it according to defined weights across the system of 

equations of eq. 4. 

𝜷̂ =  (𝑨𝑻 𝑾 𝑨)
−1

∙ (𝑨𝑻 𝑾 𝑳)                                 (4) 

 

Where 𝜷̂ is a column vector containing the elevations of the target points, ℎ(𝑥, 𝑦) 

(in m a.s.l.); A is the design matrix; W is the weights matrix; L is the observations 

vector. Starting from flattened interferogram, the average interferometric phase 

value (𝜇∆𝜑) was computed for each FU and its uncertainty estimated by applying 

the variance propagation law to the average operator assuming pixels having 

different uncertainty (eq. 5). 

𝜎𝜇∆𝜑
= √

∑ 𝜎∆𝜑(𝑥,𝑦)
2𝑛

𝑖=1

𝑛2                                            (5) 

 

Where n is the number of interferogram pixels for each FU; 𝜎∆𝜑(𝑥,𝑦) is the 

uncertainty of interferometric phase pixel. 𝜎∆𝜑(𝑥,𝑦) was deeply proved [18, 29, 

43] to be related to local coherence magnitude and can be properly computed 

using eq. 6. 

𝜎∆𝜑(𝑥,𝑦) = 
1

√2𝑁𝐿
 
√1−|𝛾(𝑥,𝑦)|2

|𝛾(𝑥,𝑦)|
                                     (6) 

 

Where NL is the multilooking factor i.e. the number of pixels used to compute 

the complex multilooked interferogram (in this work set = 20); |γ(x,y)| is the local 

coherence magnitude. To fix the datum above so that 𝜷̂ an be computed, 
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observations having known elevation are required in the LSA system. These were 

derived by photointerpreting some ground flat areas (GFAs) on coherence map. 

GFA was delineated as polygon layer searching for highly coherence patches (γ 

> 0.8) representing ground level having no significant vegetation cover. Built-up 

areas were excluded from GFA delineation by simultaneously checking their 

presence on the available Google Earth true colour orthophoto updated in 2019. 

The mean DTM and interferometric phase values were computed and assigned to 

GFA centroids (hereafter called reference points - RPs). A total of 7 GFA (and 

RP) were selected in AOI. Concerning LSA, L was defined as vector containing 

n∙(n-1)/2 height differences computed by eq. 2 and involving 𝜇∆𝜑, RP phases and 

ω. The latter was computed as HOA/2π, where HOA was obtained by image pair 

metadata available in SNAP. Additionally, RP elevations were added to L to fix 

the datum. To take in to account the uncertainty of each observation in the LSA 

system, W elements were defined as the inverse of 𝜎𝜇∆𝜑
 containing 𝜇∆𝜑 (eq. 7), 

while a value of 100 was assigned for constraining observations involving RP. 

The latter value was preventively set to 100 to give a high weight to RP elevations 

observations constraints. 

𝑾 = 

[
 
 
 
 
 
 

100 0 ⋯    0 0 ⋯    ⋯ ⋯ 0
0 100 0    0 0 ⋯    ⋯ ⋯ 0
⋮  ⋱ ⋱      ⋮  0 ⋯    ⋯ ⋯   0
  0 ⋯ 0    100 0 ⋯    ⋯ ⋯ 0
 0 ⋯ ⋯    ⋯ 𝛿𝑖,𝑗 0    ⋯ ⋯ 0
0   ⋯ ⋯    ⋯ 0    ⋮    ⋱ ⋮ ⋮

  0 ⋯ ⋯    ⋯ 0 ⋯    ⋯ ⋯ 𝛿𝑖,𝑗]
 
 
 
 
 
 

                            (7) 

 

Where 𝛿𝑖,𝑗 = 
1

𝜎𝜇∆𝜑

 . Once 𝜷̂ was estimated, the uncertainty of each ℎ(𝑥, 𝑦), 𝜎𝛽𝑖̂, 

can be estimated according to eq. 8.  

𝜎𝛽𝑖̂ = √𝐂𝛃𝛃𝑖𝑖                                               (8) 

Where 𝐂𝛃𝛃𝑖𝑖  are the diagonal elements of 𝐂𝛃𝛃 .The latter is the variance-

covariance matrix of the parameters computed according to eq. 9 
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𝐂𝛃𝛃 = 
𝜺𝒕𝑾𝜺

𝑚−𝑛
∙ (𝑨𝑻 𝑾 𝑨)

−1
                                   (9) 

Where 𝜀 is the LSA residuals vector; m is the number of equations in LSA (in 

this work 91, i.e. 14x13/2) and n is the number of unknowns (in this work equal 

to 14 ℎ(𝑥, 𝑦)).  

2.5.2. Validation 

To test the accuracy of elevation estimates over forest, a validation set based on 

rDSM was generated. In particular, the mean (𝑟𝐷𝑆𝑀̅̅ ̅̅ ̅̅ ̅̅ ) and standard deviation 

(𝜎𝑟𝐷𝑆𝑀) values were computed for each FUs. Finally, the mean absolute error 

(MAE) [44] was computed comparing only forest ℎ(𝑥, 𝑦) estimates of  𝜷̂ and 

𝑟𝐷𝑆𝑀̅̅ ̅̅ ̅̅ ̅̅ . To test the presence of a significant bias in the proposed approach, 

normality of errors was assessed by Shapiro-Wilk test [45] and the t-test was used 

to assess zero-mean condition of errors [46]. 

3. Results and Discussions  

3.1. Interferogram Computation 

After the pre-processing in SNAP, the multilooked flattened interferogram and 

coherence maps were generated (Figure 3) and subsequently managed by 

ordinary GIS tool. 

 

Figure 3. (a) Multilooked flattened Interferogram; (b) multilooked coherence map (WGS84 

UTM32N reference frame). 
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3.2. Forest Height Retrieval Using Least Squares Adjustment  

Staring from coherence map, GFAs and RPs were generated (Figure 4). Using a 

self-developed routine in R software vs 3.0.0, the LSA approach was 

implemented and performed involving 𝜇∆𝜑 , RP interferometric phases and ω. 

The latter was used as gain factor that allows to convert the interferometric phase 

difference into height difference (eq. 2). It was computed as HOA/2π and found 

equal to 25.65. To fix the datum RP elevation values were also included in the 

LSA. 

 

Figure 4. Coherence map, GFAs and RPs location in AOI (WGS84 UTM32N reference frame). 

 

3.3. Validation 

FU heights, ℎ(𝑥, 𝑦), were finally estimated by LSA and compared to 𝑟𝐷𝑆𝑀̅̅ ̅̅ ̅̅ ̅̅ . 

Results were reported in figure 5. A MAE of 2.63 m was found. It is worth to 

remind that such accuracy is consistent with the one obtainable from ordinary 

ground survey based on hypsometers (Bragg, 2014; De Petris et al., 2020) 

highlighting how such an approach is an effective tool that allows to give an 

height estimate with a density greater and greater than ordinary one based on 

ground surveys.  It can be noted that in general, errors seldom exceed 3 m. 
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Shapiro-Wilk test proved that errors are normally distributed (W = 0.90, p-value 

= 0.33). No significant bias was detected by t-test (t = 0.87, p-value = 0.41). These 

results suggest that the proposed approach is not affected by systematic errors; 

conversely a white noise like error component is present. Moreover,  𝜎𝛽̂ average 

value was 2.19 m proving that LSA theoretical uncertainty was consistent to the 

MAE found by comparing results to an external validation set. Finally, 

considering the FU 𝜎𝑟𝐷𝑆𝑀, no significant differences exist between rDSM and 

InSAR-LSA estimates.  

 

Figure 5. Comparison between reference FU forest heights and estimated ones. Error bars are 

for rDSM are 𝜎𝑟𝐷𝑆𝑀 , while error bars of InSAR LSA derived heights are 𝜎𝛽̂. 

 

4. Conclusions 

In this work, LSA was applied to S1 InSAR data to retrieve forest height over 

AOI. Results proved that LSA using a weights matrix involving theoretical 

uncertainties of interferometric phases generates estimates having a MAE of 2.6 

m. No significant bias was found and the uncertainty of estimates was consistent 

with MAE, suggesting that no need of validation set should be necessary to test 

the accuracy. Unfortunately, these preliminary results were explored over a single 

study area and using a single winter interferometric pair. Future developments 

will be expected to test the robust-ness of such approach over different forests 
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and involving many image pairs. Nevertheless, preliminary outcomes suggest 

that proposed approach could be a valid alter-native to retrieve forest height based 

on free SAR data and open software. These features make this method a first 

prototype of technological transfer of SAR technology into forest operative sector 

for supporting in cheaper way forest management.   
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6 CONCLUSIONS 

This thesis was aimed at exploring the potentialities and the limitations of S1 

imagery for monitoring VS, longing for the technological transfer of proposed 

methodologies to local institutions/technicians involved in agro-forest resource 

management.  

To achieve these tasks, two main approaches were provided, and four techniques 

were explored involving S1 and free software.  

Preliminarily, geometric distortions of S1 images were detected and mapped in 

order to masking out unreliable observations and providing a more conscious use 

of SAR data. In fact, a mapping of these areas is desirable for a correct 

interpretation of derived information. In the first work (Section 3), a 

multitemporal mapping of SAR geometric distortions were performed using GEE 

and the available S1 imagery over Piemonte Region (NW Italy). An angle-based 

method was adopted and geometric conditions were tested at-pixel-level mapping 

distortion types (layover, shadow and foreshortening). The results show that 

proposed methodology can be proficiently used to mask unreliable observations, 

making possible to a priori be informed about the areas of a given territory that 

can be reasonably and reliably monitored by SAR data. 

An operational application of the generated maps of distortions was given, 

concerning the possibility of monitoring different land cover classes in Piemonte. 

Thanks to this type of approach, it was possible to prove that, in Piemonte region, 

ascending orbit S1 acquisitions perform better, minimizing image deformation. 

Agricultural and urban areas present low distortions along the considered time 

series, while some forest types or bare soils show generally a low monitorability 

by S1. This is not a general conclusion since strictly depending on local 

topography. From an operational point of view, such an approach would permit 

to a-priori investigate if S1 data are suitable enough to monitor an area of interest. 
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After this propaedeutic work, the thesis was divided into two main parts.  

The first part was aimed at qualifying the VS and its variation in time and space 

domains by using 3 different techniques: (i) amplitude-based; (ii) radar indices-

based; (iii) polarimetry-based.  

(i) The amplitude information was explored using S1 data and a method was 

proposed aimed at detecting flooded areas and giving an estimate of 

water depth (WD) based on free available (Section 4.1.1). The analysed 

flood event occurred on 3rd October 2020 in NW Italy along the Sesia 

river was assessed with special concern about damages affecting rice 

crop fields. In particular, Sentinel-1 pre- and post-event amplitude 

images were compared by differencing (ΔVV). ΔVV was processed at-

pixel-level to detect submerged areas through the thresholding Otsu’s 

method. The latter was adopted to make objective the selection of the 

proper threshold value to map areas with and without water from S1 data. 

The method is adaptive, making possible to automatically detect the 

threshold value accordingly to the specific area one is considering. A 

simplified morphological analysis was then performed by DTM 

tessellation to map WD. The simplified approach based on GIS and free 

available data was proposed to support flood related damage estimation. 

Simplicity and cheapness of the approach, coupled with the obtained WD 

uncertainty, are certainly interesting if compared with more complex 

methods based on hydrological models. These ordinarily require many 

inputs that are rarely available outside rivers and difficultly available for 

agricultural areas, especially during an unexpected and extreme event 

such as flood. Finally, in this work the amplitude information was proved 

to be effective in the detection of horizontal VS changes caused by flood. 
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(ii) Radar indices potentiality in the operative agro-forest sector was 

explored in section 4.2.1. In this work, authors highlighted that many 

approaches based on multitemporal analysis of optical-retrieved 

vegetation index time series were successfully applied to describe 

forest disturbances like forest fires. Conversely, only few works 

make use of multitemporal Synthetic Aperture Radar (SAR) data. 

Nevertheless, the literature about multitemporal analysis of post-fire 

dynamics trough the SAR imagery adoption is still limited and no 

works focusing on the post-fire dynamics monitoring (i.e. severity 

and recovery processes) were available. Moreover, forest fire effects 

mapping is the one related to the a-priori identification of the date 

when all the induced (direct and indirect) effects of the event are 

assumed to be detectable and concluded. Most of the approaches in 

literature proceed by comparing a “before” and an “after” image to 

map fire severity, excluding possible delayed effects affecting the 

whole vegetated ecosystem in the area. In the work reported in 

section 4.2.1, these issues were carefully considered and an 

alternative approach, based on dense time series of SAR-based 

indices exploring a large period preceding and following the date of 

the fire, was investigated. Proposed approach made possible to avoid 

any a-priori setting of the post-fire date to use for deriving 

differences relatable to severity and obtaining true estimate of the 

actual date when the local ecosystem reached its maximum of 

damage and, consequently, the rate of system decay. Such 

information was used to derive severity maps that are expected to 

more properly represent the actual after-event situation. Moreover, 

the same approach, made it possible to investigate the reaction of the 

system (recovery) at local (pixel) level providing a spatial 

representation of forest behaviour in terms of both resistance and 

resilience. Such mapping procedure is rare to be found in literature 

(even considering optical-based approaches). Anyway, even if 



 

214 

 

proposed, the adoption of SAR data in place of optical ones is 

expected to provide, during recovery, a more focused representation 

of those forest components related to significant volume changes (i.e. 

trees and shrubs) making other vegetated players, like grass, 

negligible.  

(iii) Polarimetry technique was explored to detect and map both 

horizontal and vertical VS variations. Therefore, in the work 

proposed in section 4.3.1 a preliminary assessment about the 

polarimetric behavior of orchards after a storm was performed. The 

analysis was aimed at proposing a first methodological approach to 

detect orchard damage by a storm based on the PolSAR 

decomposition technique using S1 data. The joint adoption of free 

accessible S1 data, institutional free auxiliary data (a cadastral map 

and farmers’ CAP application database), and open software (SNAP) 

constituted a peculiar trait of the proposed approach. It moves in the 

direction of technological transfer, aiming at making SAR 

data/techniques an operational tool for agronomic applications, with 

special concern about weather-related damages to crops, which could 

be of interest to insurance companies or public administrations. The 

results proved that storm damages significantly increase the H and α 

parameters. By contrast, the A parameter tends to be lower in the 

damaged orchards. This phenomenon is possibly related to the 

changes affecting VS in the damaged fields, where the crowns and 

branches of fallen/broken plants fill the inter-row space, changing the 

regular pattern ordinarily characterizing apple orchards. Based on 

this evidence, the authors proposed a methodology to map possibly 

damaged orchards that relies on the knowledge about the behavior of 

witness (and neighboring) undamaged orchards. The method 

permitted the mapping of the probability that an orchard is damaged 

or not, constituting a new free tool able to improve orchard 
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monitoring after a calamitous event by regional agencies and 

insurance companies. The proposed procedure is entirely based on 

S1 and free software making more easy the technological transfer of 

SAR data to the local technicians and institutions.  

The second part of the thesis was aimed at quantifying VS by mainly measuring 

vegetation height. In particular, the InSAR techniques was explored by involving 

the phase component of complex SAR signal in order to measure forest height.  

In this framework, InSAR techniques have been extensively adopted to retrieve 

digital elevation models (DEM) giving a representation of the continuous 

variation of Earth’ topography, including forests and crops. The ordinary InSAR 

framework requires a further phase unwrapping step in order to recover 

unambiguously the actual topography over the entire scene. The latter was proved 

to fail over vegetation due to low coherence values and therefore all algorithms 

tend to avoid these areas during the unwrapping, making InSAR-derived DEM 

over vegetation very unreliable. In section 5.2, an alternate technique, not widely 

explored in literature, is considered for obtaining more reliable and accurate 

estimates of forest height from InSAR data by avoiding phase unwrapping. This 

method changes the working paradigm from a mapping problem involving the 

entire scene, to a local paradigm based on the comparison between a forest pixel 

interferogram and a reference one closely located outside the forest. Specifically, 

potentialities and limitations of such an approach were explored and discussed 

using simulated scenarios and subsequently applied to real forest area. 

Theoretical scenarios were performed in the work reported in section 5.2.1, where 

a sensitivity analysis approach was adopted with the aim of properly initializing 

the relevant operational parameters (baseline and multilooking factor) to 

maximize the theoretical accuracy of the height difference between the forest and 

reference point. Some scenarios were proposed to test the resulting “optimal 

values” as estimated at the previous step. A simple model was, additionally, 

proposed and calibrated aimed at predicting the optimal baseline value (and 
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therefore image pair selection) for height uncertainty minimization. All our 

analyses were conducted using free available data from the Copernicus Sentinel-

1 mission to support the operational transfer into forest sector. Finally, potential 

uncertainty affecting resulting height measures was quantified showing that a 

value lower than 5 m can be expected once all user-dependent parameters (i.e. 

baseline, multilooking factor, temporal baseline) are properly tuned. 

To test and quantify the accuracy of proposed approach, the method proposed in 

section 5.2.1 was coupled to least squares adjustment (LSA) with the aim of 

retrieving accurate forest heights avoiding phase unwrapping. It was computed 

entirely using free available Sentinel-1 data and SNAP ESA software. Results 

presented in section 5.2.2 proved that LSA using a weights matrix involving 

theoretical uncertainties of interferometric phases generates estimates having a 

MAE of 2.6 m. No significant bias was found, and the uncertainty of estimates 

was consistent with MAE, suggesting that no need of validation set should be 

necessary to test the accuracy. Unfortunately, these preliminary results were 

explored over a single study area and using a single winter interferometric pair. 

Future developments will be expected to test the robustness of such approach 

over different forests and involving many image pairs. Nevertheless, preliminary 

outcomes suggest that proposed approach could be a valid alternative to retrieve 

forest height based on free SAR data and open software. These features make this 

method a first prototype of technological transfer of InSAR technology into forest 

operative sector for supporting in cheaper way forest management.   

In section 5.1.1, the InSAR estimates accuracy was compared to the one obtained 

by ordinary ground-based forest height surveys operated through hypsometers. 

In fact, ordinarily, forest height is surveyed by ground sampling adopting 

hypsometers. The latter suffers from many errors mainly related to the correct 

tree apex identification (not always well visible in dense stands) and to the 

measurement process itself. Therefore, in section 5.1.1 an operative method for 

estimating height measurement uncertainty (σH) was proposed using the variance 

propagation law. Results proved that σH could vary between 0.5 m up to 20 m 
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(worst case). Sensitivity analysis shows that terrain slopes and distance poorly 

affect σH, while angles are the main drivers of height uncertainty. Finally, to give 

a practical example of such deductions tree height uncertainty was mapped at the 

global scale using Google Earth Engine and summarized per forest biomes. 

Results proved that in temperate zone, forest height uncertainty ranges from 0.5 

m to 4 m. These results proved how the accuracy founded in section 5.2.2 using 

InSAR and LSA levelling net approach is consistent to the one obtained by using 

hypsometer. Nevertheless, the former technique allows to obtain forest height 

estimates over large areas and possibly with higher sampling density than the 

ordinary one, proving how the InSAR and LSA approach can effectively measure 

vertical VS longing for a technological transfer in forestry operative context like 

forest inventory.   

Unfortunately, despite proposed works in this thesis were developed trying to fill 

the technological transfer gap, a real adoption of proposed procedures by local 

vegetation managers (i.e., farmers, local institutions, technicians) was not 

currently performed. Indeed, during Ph.D. period the pandemic spread of 

COVID-19 limited the interaction with local vegetation-related players. Despite 

this limitation, all presented works were developed in order to follow all the 

technological transfer requirements like:  

(a) Imagery coverage. 

The adoption of S1 imagery (in particular the Interferometric wide swath 

data) allows to acquire information about large areas with medium-high 

temporal resolution (6 days) improving the monitorability capability of 

such SAR data all over the world.  

 

(b) Complex processing. 

Many SAR processing techniques (like the InSAR unwrapping) 

computed by ordinary software, in the most of cases, hides the 

consciousness and an easy interpretability of results, making derived 

measures unreliable. The jointly adoption of SNAP and open-source 
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software (i.e., R and GEE) allows a more rapid access to pre-processed 

images allowing users to directly focus on their specific applications. 

Moreover, the open-source codes generated are prototypes that can be 

assumed as first standardized algorithms permitting a replication of 

proposed methodology in other study areas thanks to their designed 

adaptivity, making possible to automatically perform analysis 

accordingly to the specific area features one is considering.  

 

(c) Data and Software availability.  

All proposed procedures are based on free accessible data, easily 

downloadable from institutional repository. Moreover, the adoption of 

free processing software allows to explore new scenarios where SAR and 

Geographic data, properly managed, improved the analysis and 

spatialization of VS features making easier their use in a standardized 

and replicable way by a users’ community different from that of 

researchers.  

Future developments will be expected to implement proposed procedures into 

operative routines.  For example, the work proposed in section 4.1.1 could be 

adopted by regional institution to rapidly provide local refund to farmer after 

flood. The work proposed in section 4.2.1, could be adopted by forest institutions 

to plan new silvicultural treatments to prevent new forest fires. The work 

proposed in section 4.3.1 could be adopted by agricultural insurances to focus 

their ground controls. Finally, the works in section 5.2.2 could be used to obtain 

a spatial estimates of forest height useful for inventory purposes.  

The entire Ph.D. experience was developed by author with the opinion that agro-

forest sector is very pragmatic and therefore to improve it, researchers should 

design their works longing for a real application of found outcomes.  
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