Virtual immersions and a characterization of symmetric spaces

Ricardo A. E. Mendes ${ }^{1}$ • Marco Radeschi ${ }^{2}$ (D)

Received: 14 March 2018 / Accepted: 22 May 2018 / Published online: 30 May 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract

We define virtual immersions, as a generalization of isometric immersions in a pseudo-Riemannian vector space. We show that virtual immersions possess a second fundamental form, which is in general not symmetric. We prove that a manifold admits a virtual immersion with skew-symmetric second fundamental form, if and only if it is a symmetric space, and in this case the virtual immersion is essentially unique.

Keywords Symmetric space • Isometric immersion • Pseudo-Euclidean space
Mathematics Subject Classification 49Q05 • 53A10 - 53C35

1 Introduction

Often in Riemannian geometry, one needs to embed a Riemannian manifold into Euclidean or pseudo-Euclidean space. In this paper, we introduce a generalized and more "intrinsic" version of such embeddings and utilize them to give a new characterization of symmetric spaces.

Given a Riemannian manifold M and an isometric immersion $\phi: M \rightarrow V$ into a vector space $(V,\langle\rangle$,$) endowed with a nondegenerate symmetric bilinear form (a pseudo-Euclidean$ vector space), then the pullback $\phi^{*} T V$ is a trivial vector bundle over M, the differential ϕ_{*} defines an immersion $\phi_{*}: T M \rightarrow \phi^{*} T V$, and the classical results on isometric immersions

[^0]show that the canonical (flat) connection on $\phi^{*} T V$ induces, by projecting onto $T M$, the Levi Civita connection on M. We use these properties to define a virtual immersion of a Riemannian manifold M, as a flat bundle $M \times V$, with V a pseudo-Euclidean vector space, together with an isometric embedding $T M \rightarrow M \times V$ such that the flat connection on $M \times V$ induces the Levi Civita connection on M (see Definition 1 for an equivalent definition).

It turns out that, just like the usual isometric immersions, one can define a second fundamental form, but unlike the usual setting this is in general not symmetric. As a matter of fact, it can be easily shown that a virtual immersion is (locally) induced by an isometric immersion, if and only if the second fundamental form is symmetric.

In [2], we first introduced virtual immersions with V Euclidean (rather than pseudoEuclidean) in the context of verifying, for certain compact symmetric spaces, a conjecture of Marques-Neves-Schoen about the index of closed minimal hypersurfaces. In that same paper, it was proved that, when V has a Euclidean metric, virtual immersions with skew-symmetric second fundamental form exist only on compact symmetric spaces (cf. [2], Theorem B).

The main result of this paper is to extend the classification of virtual immersions with skew-symmetric second fundamental form to the more general case in which the metric on V is pseudo-Euclidean:

Main Theorem Let (M, g) be a Riemannian manifold. Then, M admits a virtual immersion Ω with skew-symmetric second fundamental form if and only if it is a symmetric space. In this case, Ω is essentially unique.

Virtual immersions, in other words, provide a bundle-theoretic characterization of symmetric spaces, although we expect them to have independent interest on more general spaces.

The paper is organized as follows: in Sect. 2, we define virtual immersions and their second fundamental form and establish their fundamental equations. In Sect. 3, we prove the "if" part of the Main Theorem, producing a virtual immersion with skew-symmetric second fundamental form on any symmetric space. In Sect. 4, we prove the "only if" part of the Main Theorem, showing that a virtual immersion with skew-symmetric second fundamental form forces the manifold to be a symmetric space. In this last section, we also glue the pieces together and prove the Main Theorem.

Convention: We will denote by R the curvature tensor, and follow the sign convention $R(X, Y) Z=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z$.

2 Virtual immersions

Let (M, g) be a Riemannian manifold, and let $(V,\langle\rangle$,$) denote a real vector space endowed$ with a nondegenerate, symmetric bilinear form. We call such $(V,\langle\rangle$,$) a pseudo-Euclidean$ vector space. A V-valued virtual immersion of M is, roughly speaking, an immersion of $T M$ into the trivial bundle $M \times V$, such that the natural flat connection on $M \times V$ induces the Levi-Civita connection of M. Such objects generalize isometric immersions of Riemannian manifolds in pseudo-Euclidean space.

Although this is the idea behind virtual immersions, we introduce such structures in a different way, more convenient for computations. See Proposition 2 for a proof that the two definitions coincide.

Definition 1 Let (M, g) be a Riemannian manifold, and $(V,\langle\rangle$,$) a finite-dimensional,$ pseudo-Euclidean real vector space. Let Ω be a V-valued one-form on M. We say Ω is a virtual immersion if the following two conditions are satisfied:
a) $\langle\Omega(X), \Omega(Y)\rangle=g(X, Y)$ for every $p \in M$, and every $X, Y \in T_{p} M$.
b) $\langle d \Omega(X, Y), \Omega(Z)\rangle=0$ for every $p \in M$, and every $X, Y, Z \in T_{p} M$.

We say two virtual immersions $\Omega_{i}: T M \rightarrow V_{i}, i=1,2$ are equivalent if there is a linear isometry $\left(V_{1},\langle,\rangle_{1}\right) \rightarrow\left(V_{2},\langle,\rangle_{2}\right)$ making the obvious diagram commute.

Letting $\pi: T M \rightarrow M$ denote the foot-point projection, any virtual immersion $\Omega: T M \rightarrow$ V induces a vector bundle homomorphism $(\pi, \Omega): T M \rightarrow M \times V$. By condition (a) in the definition, this map is an isometric immersion of (pseudo-Euclidean) vector bundles.

Fixing $p \in M$, denote by $\Omega_{p}: T_{p} M \rightarrow V$ the restriction of Ω to $T_{p} M$. Since Ω_{p} is an isometric immersion, the space $T_{p} M$ can be identified with its image, which we will still denote by $T_{p} M$. Moreover, since the metric on $T_{p} M$ is positive definite, its orthogonal complement $v_{p} M:=\left(T_{p} M\right)^{\perp} \subset V$ is transverse to $T_{p} M$ and thus V splits orthogonally as $V=T_{p} M \oplus v_{p} M$. This yields the orthogonal decomposition $M \times V=T M \oplus \nu M$. Given $(p, X) \in M \times V$, we shall write $X=X^{T}+X^{\perp}$ for the decomposition into the tangent and normal parts.

The natural flat connection D on $M \times V$ induces a connection D^{T} (respectively D^{\perp}) on $T M($ resp. $v M)$, given by $D_{X}^{T} Y=\left(D_{X} Y\right)^{T}\left(\right.$ resp. $\left.D_{X}^{\perp} \eta=\left(D_{X} \eta\right)^{\perp}\right)$. Here, X, Y are vector fields on M, while η is a section of the normal bundle.

Proposition 2 Let Ω be a V-valued one-form on M satisfying condition (a) in Definition 1. Then, Ω is a virtual immersion if and only if the flat connection D on $M \times V$ satisfies $D^{T}=\nabla$, where ∇ denotes the Levi Civita connection on M.

Proof Since Ω already satisfies condition (a), it is a virtual immersion if and only if condition (b) holds as well, that is, $d \Omega(X, Y)^{T}=0$ for every point p and every $X, Y \in T_{p} M$. Recall that

$$
\begin{equation*}
d \Omega(X, Y)=D_{X} Y-D_{Y} X-[X, Y] \tag{1}
\end{equation*}
$$

so that taking the tangent part yields

$$
d \Omega(X, Y)^{T}=D_{X}^{T} Y-D_{Y}^{T} X-[X, Y]
$$

Condition (a) implies that D^{T} is compatible with the metric g, and by the above formula condition (b) is equivalent to D^{T} being torsion-free. Since these two properties characterize the Levi Civita connection, the result follows.

Given a virtual immersion $\Omega: T M \rightarrow V$ and a group Γ of isometries of M, we say that Ω is Γ-invariant if for every $\gamma \in \Gamma, \Omega \circ d \gamma=\Omega$, where $d \gamma: T M \rightarrow T M$ denotes the differential of γ. The following result is straightforward:

Lemma 3 Let $\Omega: T M \rightarrow V$ be a virtual immersion, and let $\pi: \tilde{M} \rightarrow M$ denote a covering. Then, $\pi^{*} \Omega=\Omega \circ d \pi: T \tilde{M} \rightarrow V$ is a virtual immersion, which is invariant under the deck group of $\tilde{M} \rightarrow M$. Conversely, if $\Omega: T M \rightarrow V$ is invariant under a group Γ acting freely on M by isometries, and $\pi: M \rightarrow M^{\prime}=M / \Gamma$ denotes the quotient, then Ω descends to a virtual immersion $\Omega^{\prime}: T M^{\prime} \rightarrow V$ such that $\Omega=\pi^{*} \Omega^{\prime}$.

Given a virtual immersion $\Omega: T M \rightarrow V$ and a linear isometric immersion $\iota: V \rightarrow W$, there is an induced virtual immersion $\iota \circ \Omega: T M \rightarrow W$. We want to rule out these trivial extensions.

Definition 4 A virtual immersion $\Omega: T M \rightarrow V$ is called full if the image of Ω spans V.

For any virtual immersion $\Omega: T M \rightarrow W$, defining the subspace $V=\operatorname{span}(\Omega(T M))$ and letting $\iota: V \rightarrow W$ denote the inclusion, one obtains the following:

Lemma 5 Given any virtual immersion $\Omega: T M \rightarrow W$, there exist a full immersion $\Omega^{\prime}:$ $T M \rightarrow V$ and a linear isometric immersion $\iota: V \rightarrow W$ such that $\Omega=\iota \circ \Omega^{\prime}$.

Given a virtual immersion, one can define a second fundamental form and shape operator.
Definition 6 Let Ω be a V-valued virtual immersion, X, Y be smooth vector fields on M, and η a smooth section of νM. Define the second fundamental form of Ω by

$$
I I: T M \times T M \rightarrow v M, \quad I I(X, Y)=\left(D_{X} Y\right)^{\perp}=D_{X}(\Omega(Y))-\Omega\left(\nabla_{X} Y\right)
$$

and the shape operator in the direction of a normal vector η by

$$
S_{\eta}: T M \rightarrow T M, \quad S_{\eta}(X)=-\left(D_{X} \eta\right)^{T} .
$$

Note that the second fundamental form and the shape operator are tensors. In view of Proposition 2 , we may write

$$
\begin{align*}
D_{X} Y & =\nabla_{X} Y+I I(X, Y) \tag{2}\\
D_{X} \eta & =-S_{\eta} X+D_{X}^{\perp} \eta \tag{3}
\end{align*}
$$

Example 7 Given a Riemannian manifold M, let $\phi: M \rightarrow V$ be an isometric immersion into a pseudo-Euclidean vector space (V,\langle,$\rangle). Then, \Omega=d \phi: T M \rightarrow V$ is a virtual immersion, with symmetric second fundamental form. On the other hand, for any virtual immersion Ω, the normal part of $d \Omega(X, Y)$ equals $I I(X, Y)-I I(Y, X)$ and, since the tangent part of $d \Omega$ vanishes, it follows that if II is symmetric, then $d \Omega=0$, which implies that locally $\Omega=d \phi$ for some map $\phi: M \rightarrow V$. By condition (a) in the definition of virtual immersion, this map must be an isometric immersion.

Proposition 8 Let Ω be a virtual immersion of the Riemannian manifold (M, g) with values in V. Then, the following identities hold:
(a) Weingarten's equation

$$
\left\langle S_{\eta}(X), Y\right\rangle=\langle I I(X, Y), \eta\rangle
$$

(b) Gauss' equation

$$
R(X, Y, Z, W)=\langle I I(Y, W), I I(X, Z)\rangle-\langle I I(X, W), I I(Y, Z)\rangle
$$

(c) Ricci's equation

$$
\left\langle R^{\perp}(X, Y) \eta, \zeta\right\rangle=-\left\langle\left(S_{\eta}^{t} S_{\zeta}-S_{\zeta}^{t} S_{\eta}\right) X, Y\right\rangle
$$

(d) Codazzi's equation

$$
\left\langle\left(D_{X} I I\right)(Y, Z), \eta\right\rangle=\left\langle\left(D_{Y} I I\right)(X, Z), \eta\right\rangle .
$$

Proof The proof is the same as in the classical case. For sake of completeness, we recall it here.

Fix a point p and let $V=T_{p} M \oplus \nu_{p} M$ be the orthogonal splitting into tangent and normal part. Recall that this is possible even though $(V,\langle\rangle$,$) is not Euclidean, because the restriction$ to $T_{p} M$ is positive definite. Given vectors $X, Y, Z, W \in T_{p} M$, extend them locally to vector
fields (denoted with the same letters). Differentiating the equation $D_{Y} Z=\nabla_{Y} Z+I I(Y, Z)$ with respect to X, one gets

$$
\begin{aligned}
D_{X} D_{Y} Z & =D_{X}\left(\nabla_{Y} Z+I I(Y, Z)\right) \\
& =\nabla_{X} \nabla_{Y} Z+I I\left(X, \nabla_{Y} Z\right)+D_{X}(I I(Y, Z))
\end{aligned}
$$

Since the connection D is flat, its curvature vanishes, and one has

$$
\begin{align*}
0= & D_{[X, Y]} Z-D_{X} D_{Y} Z+D_{Y} D_{X} Z \\
= & \left(\nabla_{[X, Y]} Z+I I([X, Y], Z)\right)-\left(\nabla_{X} \nabla_{Y} Z+I I\left(X, \nabla_{Y} Z\right)+D_{X}(I I(Y, Z))\right) \\
& +\left(\nabla_{Y} \nabla_{X} Z+I I\left(Y, \nabla_{X} Z\right)+D_{Y}(I I(X, Z))\right) \\
= & R(X, Y) Z-\left(D_{X} I I\right)(Y, Z)+\left(D_{Y} I I\right)(X, Z) . \tag{4}
\end{align*}
$$

Taking the product of both sides of (4) with $W \in T_{p} M$, one gets

$$
\begin{aligned}
0 & =\langle R(X, Y) Z, W\rangle-\left\langle D_{X}(I I(Y, Z)), W\right\rangle+\left\langle D_{Y}(I I(X, Z)), W\right\rangle \\
& =\langle R(X, Y) Z, W\rangle+\left\langle I I(Y, Z), D_{X} W\right\rangle-\left\langle I I(X, Z), D_{Y} W\right\rangle \\
& =\langle R(X, Y) Z, W\rangle+\langle I I(Y, Z), I I(X, W)\rangle-\langle I I(X, Z), I I(Y, W)\rangle
\end{aligned}
$$

which recovers the Gauss' equation.
On the other hand, taking the product of equation (4) with $\eta \in v_{p} M$, one obtains

$$
0=\left\langle-\left(D_{X} I I\right)(Y, Z)+\left(D_{Y} I I\right)(X, Z), \eta\right\rangle
$$

which is Codazzi's Equation.
Ricci's equation is obtained similarly, but starting with equation $D_{X} \eta=-S_{\eta} X+D_{X}^{\perp} \eta$ instead of $D_{X} Y=\nabla_{X} Y+I I(X, Y)$. Weingarten's equation is immediate.

3 Virtual immersions on symmetric spaces

This section is devoted to proving the first part of the main theorem. Namely, given a symmetric space M, we show how to produce a virtual immersion $\Omega: T M \rightarrow V$ with skew-symmetric second fundamental form.

Since the universal cover \tilde{M} of M is a simply connected symmetric space, by the de Rham decomposition theorem it splits isometrically into irreducible factors, $\tilde{M}=\prod_{i=0}^{k} \tilde{M}_{i}$, where $\tilde{M}_{0}=\mathbb{R}^{r}$ and none of the other factors is Euclidean. For each $i=0, \ldots, k$, choose $p_{i} \in \tilde{M}_{i}$, and let G_{i} be the subgroup of the isometry group of M, generated by transvections (i.e., products of two symmetries). Then, G_{i} is connected and, by the standard theory of symmetric spaces, it acts transitively on \tilde{M}_{i}. Moreover, $\left(G_{i}, H_{i}\right)$ is a symmetric pair, where $H_{i}=\left(G_{i}\right)_{p_{i}}$. Notice that $G_{0}=\mathbb{R}^{r}$, and $H_{0}=1$.

Let $\pi_{i}: G_{i} \rightarrow \tilde{M}_{i}=G_{i} / H_{i}$ denote the projection $\pi_{i}(g):=g \cdot p_{i}$. Let $\mathfrak{g}_{i}, \mathfrak{h}_{i}$ denote the Lie algebras of G_{i}, H_{i} respectively, and let $\mathfrak{m}_{i} \subset \mathfrak{g}_{i}$ be a complement of \mathfrak{h}_{i} satisfying $\left[\mathfrak{m}_{i}, \mathfrak{m}_{i}\right] \subseteq \mathfrak{h}_{i},\left[\mathfrak{m}_{i}, \mathfrak{h}_{i}\right] \subseteq \mathfrak{h}_{i}$. Then, the Killing form B_{i} on \mathfrak{g}_{i} restricts to a negativedefinite (resp. positive-definite, zero) symmetric form on \mathfrak{m}_{i} when \tilde{M}_{i} is of compact (resp. noncompact, Euclidean) type. Moreover, \mathfrak{m}_{i} can be canonically identified with $T_{p_{i}} \tilde{M}_{i}$ via $\left(\pi_{i}\right)_{*}$ and, for $i>0$, the restriction $\left.g_{\tilde{M}}\right|_{\tilde{M}_{i}}$ of the metric $g_{\tilde{M}}$ to $T_{p_{i}} \tilde{M}_{i}$ corresponds to $\left.\lambda_{i} B_{i}\right|_{\mathfrak{m}_{i}}$ for some negative (resp. positive) value $\lambda_{i} \in \mathbb{R}$ if \tilde{M}_{i} is of compact (resp. noncompact) type.

Letting $G=\prod_{i=0}^{k} G_{i}$ and $H=\prod_{i=0}^{k} H_{i}$, then (G, H) is a symmetric pair, with G acting transitively on \tilde{M} and such that $H=G_{p}, p=\left(p_{0}, \ldots, p_{k}\right)$. In particular, \tilde{M} is diffeomorphic
to G / H, via the map sending $\llbracket g \rrbracket=\llbracket g_{0}, \ldots, g_{k} \rrbracket \in G / H$ to $g \cdot p=\left(g_{0} \cdot p_{0}, \ldots, g_{k} \cdot p_{k}\right)$. Let

$$
\mathfrak{g}=\bigoplus_{i=0}^{k} \mathfrak{g}_{i}, \quad \mathfrak{h}=\bigoplus_{i=0}^{k} \mathfrak{h}_{i}, \quad \mathfrak{m}=\bigoplus_{i=0}^{k} \mathfrak{m}_{i},
$$

so that $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m},[\mathfrak{m}, \mathfrak{m}] \subseteq \mathfrak{h}$ and $[\mathfrak{m}, \mathfrak{h}] \subseteq \mathfrak{m}$. Define $G \times_{H} \mathfrak{m}$ as the quotient of $G \times \mathfrak{m}$ by the action of H given by $h \cdot(g, X)=\left(g h^{-1}, \operatorname{Ad}_{h} X\right)$, and denote by $\llbracket g, X \rrbracket$ the image of $(g, X) \in G \times \mathfrak{m}$ under the quotient map. There is a natural G-action on $G \times_{H} \mathfrak{m}$, defined by $g^{\prime} \cdot \llbracket g, X \rrbracket=\llbracket g^{\prime} g, X \rrbracket$. Extend now the isomorphism

$$
\mathfrak{m}=\bigoplus_{i=0}^{k} \mathfrak{m}_{i} \rightarrow \bigoplus_{i=0}^{k} T_{p_{i}} \tilde{M}_{i}=T_{p} \tilde{M}
$$

We can now define the virtual immersion $\tilde{\Omega}_{0}$ on \tilde{M}. Endow $\mathfrak{g}=\mathbb{R}^{r} \oplus \bigoplus_{i=1}^{k} \mathfrak{g}_{i}$ with the nondegenerate symmetric bilinear form

$$
\langle,\rangle=g_{\tilde{M}} \mid \mathbb{R}^{r} \oplus \bigoplus_{i=1}^{k} \lambda_{i} B_{i},
$$

and define

$$
\begin{align*}
\tilde{\Omega}_{0}: T \tilde{M} \simeq G \times_{H} \mathfrak{m} & \longrightarrow \mathfrak{g} \\
\llbracket g, X \rrbracket & \longmapsto \operatorname{Ad}_{g} X \tag{5}
\end{align*}
$$

Lemma 9 The \mathfrak{g}-valued one-form $\tilde{\Omega}_{0}$ defined in Equation (5) is a virtual immersion. At $\llbracket g \rrbracket \in \tilde{M}$, the tangent and normal spaces are $\operatorname{Ad}_{g} \mathfrak{m}$ and $\operatorname{Ad}_{g} \mathfrak{h}$, respectively. The second fundamental form is skew symmetric, given by

$$
I I(\llbracket g, X \rrbracket, \llbracket g, Y \rrbracket)=\operatorname{Ad}_{g}([X, Y]) .
$$

Proof We begin by showing that condition a) in the definition of virtual immersion holds for $\tilde{\Omega}_{0}$. By G-equivariance it is enough to show that

$$
\left.\tilde{\Omega}_{0}\right|_{\llbracket \ell \rrbracket \times \mathfrak{m}}: \llbracket e \rrbracket \times \mathfrak{m} \rightarrow \mathfrak{g}
$$

is an isometric embedding. The embedding is simply the canonical inclusion, therefore given $X, Y \in \mathfrak{m} \simeq T_{\llbracket e \rrbracket} \tilde{M}$, and denoting X_{i}, Y_{i} the projections of X, Y onto $\mathfrak{m}_{i} \simeq T_{p_{i}} \tilde{M}_{i}$, one has

$$
\begin{aligned}
& \left\langle\tilde{\Omega}_{0}(X), \tilde{\Omega}_{0}(Y)\right\rangle=\langle X, Y\rangle \\
& =\left\langle X_{0}, Y_{0}\right\rangle+\sum_{i=1}^{k}\left\langle X_{i}, Y_{i}\right\rangle \\
& =g_{\tilde{M}}\left(X_{0}, Y_{0}\right)+\sum_{i=1}^{k} \lambda_{i} B_{i}\left(X_{i}, Y_{i}\right) \\
& =g_{\tilde{M}}\left(X_{0}, Y_{0}\right)+\sum_{i=1}^{k} g_{\tilde{M}}\left(X_{i}, Y_{i}\right) \\
& =g_{\tilde{M}}(X, Y) .
\end{aligned}
$$

It is clear from (5) that the tangent space is $\operatorname{Ad}_{g} \mathfrak{m}$, thus the normal space must be $\operatorname{Ad}_{g} \mathfrak{h}$.
Let $X \in \mathfrak{g}$. Under the identification of $T \tilde{M}$ with $G \times_{H} \mathfrak{m}$ that we are using, the action field X^{*} is given by

$$
X^{*} \llbracket g \rrbracket=\llbracket g,\left(\operatorname{Ad}_{g^{-1}} X\right)_{\mathfrak{m}} \rrbracket
$$

Indeed, $X^{*} \llbracket g \rrbracket$ is a vector of the form $\llbracket g, v \rrbracket$, with $v=d g^{-1}\left(X^{*} \llbracket g \rrbracket\right) \in \mathfrak{m}$. One computes

$$
\begin{aligned}
v=d g^{-1}\left(\left.\frac{d}{d t}\right|_{t=0} \llbracket e^{t X} g \rrbracket\right) & =\left.\frac{d}{d t}\right|_{t=0} \llbracket g^{-1} e^{t X} g \rrbracket \\
& =d \pi_{e}\left(\operatorname{Ad}_{g^{-1}} X\right) \\
& =\left(\operatorname{Ad}_{g^{-1}} X\right)_{\mathfrak{m}},
\end{aligned}
$$

where π denotes the map $\pi: G \rightarrow G / H$. Given $X, Y \in \mathfrak{g}$, we then have

$$
\begin{aligned}
D_{X^{*}} \tilde{\Omega}_{0}\left(Y^{*}\right) & =\left.\frac{d}{d t}\right|_{t=0} \tilde{\Omega}_{0} \llbracket e^{t X} g,\left(\operatorname{Ad}_{\left(e^{t X} g\right)^{-1}} Y\right)_{\mathfrak{m}} \rrbracket \\
& =\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}_{e^{t X}}\left(\operatorname{Ad}_{g^{-1} e^{-t X}} Y\right)_{\mathfrak{m}} \\
& =\operatorname{Ad}_{g}\left(\left[\operatorname{Ad}_{g^{-1}} X,\left(\operatorname{Ad}_{g^{-1}} Y\right)_{\mathfrak{m}}\right]-\left(\operatorname{Ad}_{g^{-1}}[X, Y]\right)_{\mathfrak{m}}\right)
\end{aligned}
$$

By G-equivariance, it is enough to show that, for every $X, Y \in T_{\llbracket e \rrbracket} \tilde{M} \simeq \mathfrak{m}$, we have $d \tilde{\Omega}_{0}\left(X^{*}, Y^{*}\right)_{\llbracket e \rrbracket}^{T}=0$ and $I I(X, Y)_{\llbracket e \rrbracket}=[X, Y]$. Plugging $g=e$ in the equation above, and using the fact that $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$, we have

$$
D_{X^{*}} \tilde{\Omega}_{0}\left(Y^{*}\right)=[X, Y] .
$$

The tangent part of this is zero, so that

$$
d \tilde{\Omega}_{0}\left(X^{*}, Y^{*}\right)_{\llbracket \llbracket \rrbracket}^{T}=D_{X^{*}} \tilde{\Omega}_{0}\left(Y^{*}\right)_{\llbracket e \rrbracket}^{T}-D_{Y^{*}} \tilde{\Omega}_{0}\left(X^{*}\right)_{\llbracket e \rrbracket}^{T}-\tilde{\Omega}_{0}\left(\left[X^{*}, Y^{*}\right]\right){ }_{\llbracket e \rrbracket}=0-0-0=0
$$

which means that $\tilde{\Omega}_{0}$ is a virtual immersion.
Moreover, $I I(X, Y)_{\llbracket e \rrbracket}=D_{X^{*}} \tilde{\Omega}_{0}\left(Y^{*}\right) \stackrel{\perp}{\llbracket \rrbracket \rrbracket}=[X, Y]$.
Using the lemma above, we can prove
Lemma 10 The virtual immersion $\tilde{\Omega}_{0}: T \tilde{M} \rightarrow \mathfrak{g}$ is full.
Proof It is enough to prove that $\tilde{\Omega}_{0}\left(T_{\tilde{p}} \tilde{M}\right) \oplus \operatorname{span}\left\{I I(X, Y) \mid X, Y \in T_{\llbracket e \rrbracket} \tilde{M}\right\}=\mathfrak{g}$. By Lemma 9,

$$
\tilde{\Omega}_{0}\left(T_{\tilde{p}} \tilde{M}\right)=\mathfrak{m}, \quad \operatorname{span}\left\{I I(X, Y) \mid X, Y \in T_{\tilde{p}} \tilde{M}\right\}=[\mathfrak{m}, \mathfrak{m}]
$$

therefore this reduces to proving $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$. If not, then there exists a nonzero $H \in \mathfrak{h}$ such that $B(H,[X, Y])=0$ for all X, Y in \mathfrak{m}. By Ad-invariance of the Killing form, this implies $B([H, Y], X)=0$ for all $X, Y \in \mathfrak{m}$. Since $[H, Y] \in \bigoplus_{i=1}^{t} \mathfrak{m}_{i}$ and B is nondegenerate on $\bigoplus_{i=1}^{r} \mathfrak{g}_{i}$, it follows that $[H, Y]=0$ for every $Y \in \mathfrak{m}$. This implies that $\operatorname{Ad}(\exp t H) \in H=$ $G_{\tilde{p}}$ is the identity on $\mathfrak{m}=T_{\tilde{p}} \tilde{M}$, which implies $H=0$ hence the contradiction.

Having defined the virtual immersion $\tilde{\Omega}_{0}$ on \tilde{M}, the goal is now to prove that it descends to a virtual immersion on M. This is equivalent to proving that $\tilde{\Omega}_{0}$ is invariant under the group Γ of deck transformations of $\tilde{M} \rightarrow M$.

Lemma 11 Let Γ be a discrete subgroup of isometries of \tilde{M} acting freely on \tilde{M}. Then, the virtual immersion $\tilde{\Omega}_{0}$ defined above is invariant under Γ if and only if $M=\tilde{M} / \Gamma$ is a symmetric space.

Proof Suppose first that M is a symmetric space, and let $\tau: \tilde{M} \rightarrow M$ denote the universal cover of M. Then, since the symmetry $s_{\tilde{p}}$ at any $\tilde{p} \in \tilde{M}$ is a lift of the corresponding symmetry s_{p} at $p=\tau(\tilde{p}) \in M$, it follows that for any $\gamma \in \Gamma, s_{\tilde{p}} \gamma s_{\tilde{p}}$ is a lift of the identity or, in other words, $s_{\tilde{p}} \gamma s_{\tilde{p}} \in \Gamma$. Since $M=\tilde{M} / \Gamma$ is a symmetric space and in particular a homogeneous space, by the main theorem in [4] it follows that every element $\gamma \in \Gamma$ is a Clifford-Wolf translation, i.e., the displacement function $q \in \tilde{M} \mapsto d(q, \gamma(q))$ is constant. In particular, for any $\tilde{p} \in \tilde{M}$ the isometry $\gamma s_{\tilde{p}} \gamma s_{\tilde{p}}=\gamma \cdot\left(s_{\tilde{p}} \gamma s_{\tilde{p}}\right) \in \Gamma$ is a Clifford-Wolf translation.

We claim that $\gamma s_{\tilde{p}} \gamma s_{\tilde{p}}$ fixes \tilde{p}, which implies that $\gamma s_{\tilde{p}} \gamma s_{\tilde{p}}=\mathrm{id}$. In fact, since γ is a Clifford-Wolf translation, then $\gamma^{-1}(\tilde{p}), \tilde{p}, \gamma(\tilde{p})$ all lie on the same geodesic $c(t)$ (cf. [3, Theorem 1.6]). Parametrize $c(t)$ so that $c(0)=\tilde{p}, c(1)=\gamma(\tilde{p}), c(-1)=\gamma^{-1}(\tilde{p})$. Then, since $s_{\tilde{p}}(\tilde{p})=\tilde{p}$ and $s_{\tilde{p}}(c(t))=c(-t)$, it follows that

$$
s_{\tilde{p}} \gamma s_{\tilde{p}}(\tilde{p})=s_{\tilde{p}} \gamma(\tilde{p})=s_{\tilde{p}}(c(1))=c(-1)=\gamma^{-1}(\tilde{p})
$$

and therefore $\gamma s_{\tilde{p}} \gamma s_{\tilde{p}}(\tilde{p})=\tilde{p}$, thus proving the claim.
If follows that $s_{\tilde{p}} \gamma s_{\tilde{p}}=\gamma^{-1}$ and therefore, every $\gamma \in \Gamma$ commutes with every transvection. Since G is generated by transvections, then Γ commutes with G and thus $\operatorname{Ad}_{\gamma}$ acts trivially on \mathfrak{g} for every $\gamma \in \Gamma$.

Given $\Omega_{0}: T \tilde{M}=G \times_{H} \mathfrak{m} \rightarrow \mathfrak{g}$ and fixing $\gamma \in \Gamma$, the map $\Omega_{0} \circ \gamma: T \tilde{M}=G \times_{H} \mathfrak{m} \rightarrow \mathfrak{g}$ is given by

$$
\left(\Omega_{0} \circ \gamma\right) \llbracket g, X \rrbracket=\Omega_{0} \llbracket \gamma g, X \rrbracket=\operatorname{Ad}_{\gamma g}(X)=\operatorname{Ad}_{\gamma}\left(\operatorname{Ad}_{g} X\right)=\operatorname{Ad}_{g} X=\Omega_{0} \llbracket g, X \rrbracket
$$

and therefore Ω_{0} is invariant under Γ.
On the other hand, suppose now that Ω_{0} is invariant under Γ. Then, for every $\gamma \in \Gamma$, $\left.\operatorname{Ad}_{\gamma}\right|_{\mathfrak{g}}=$ id, i.e., Γ commutes with G (recall, G is connected). Since G acts transitively on \tilde{M} it follows that every $\gamma \in \Gamma$ is a Clifford-Wolf translation: in fact, for any $\tilde{p}, \tilde{q} \in \tilde{M}$, letting $g \in G$ be such that $g \cdot \tilde{p}=\tilde{q}$, one has

$$
d(\tilde{p}, \gamma \tilde{p})=d(g \tilde{p}, g(\gamma \tilde{p}))=d(g \tilde{p}, \gamma(g \tilde{p}))=d(\tilde{q}, \gamma \tilde{q}) .
$$

Moreover, since G is also normalized by the symmetries $s_{\tilde{p}}$ centered at any $\tilde{p} \in \tilde{M}$, it follows that $s_{\tilde{p}} \gamma s_{\tilde{p}}$, and thus $\gamma s_{\tilde{p}} \gamma s_{\tilde{p}}$, commute with G for any $\gamma \in \Gamma$. In particular $\gamma s_{\tilde{p}} \gamma s_{\tilde{p}}$ is again a Clifford-Wolf translation. However, just as before it follows that $\gamma s_{\tilde{p}} \gamma s_{\tilde{p}}$ fixes \tilde{p}, and therefore $s_{\tilde{p}} \gamma s_{\tilde{p}}=\gamma^{-1}$. In particular, every symmetry $s_{\tilde{p}}$ satisfies $s_{\tilde{p}} \Gamma s_{\tilde{p}}=\Gamma$. Therefore, for any point $p=\tau[\tilde{p}] \in M / \Gamma$, one can define a symmetry $s_{p}: M \rightarrow M$ by $s_{p}[\tilde{q}]=\left[s_{\tilde{p}}(\tilde{q})\right]$. In particular, M is a symmetric space.

4 Rigidity of virtual immersions with skew-symmetric second fundamental form

In this section we prove the second half of the main theorem. Namely, given a minimal virtual immersion $\Omega: T M \rightarrow V$ with skew-symmetric second fundamental form, we prove that M is a symmetric space and Ω is equivalent to the virtual immersion defined in the previous section.

Lemma 12 Let (M, g) be a Riemannian manifold, and Ω a V-valued virtual immersion with skew-symmetric second fundamental form II. Then:
(a) $\langle I I(X, Y), I I(Z, W)\rangle=\langle R(X, Y) Z, W\rangle$.
(b) $\left(D_{X} I I\right)(Y, Z)=-R(Y, Z) X$.
(c) $\nabla R=0$. In particular, (M, g) is a locally symmetric space.

Proof (a) Start with Gauss' equation (see Proposition 8(b)),

$$
\langle R(X, Y) Z, W\rangle=\langle I I(Y, W), I I(X, Z)\rangle-\langle I I(X, W), I I(Y, Z)\rangle
$$

Applying the first Bianchi identity yields

$$
0=-2(\langle I I(X, Y), I I(Z, W)\rangle+\langle I I(Y, Z), I I(X, W)\rangle+\langle I I(Z, X), I I(Y, W)\rangle)
$$

so that using Gauss' equation one more time we arrive at

$$
\langle R(X, Y) Z, W\rangle=\langle I I(X, Y), I I(Z, W)\rangle .
$$

(b) First we argue that $\left(D_{X} I I\right)(Y, Z)$ is tangent. Indeed, for any normal vector η, Codazzi's equation (Proposition 8(d)) says that

$$
\left\langle\left(D_{X} I I\right)(Y, Z), \eta\right\rangle=\left\langle\left(D_{Y} I I\right)(X, Z), \eta\right\rangle .
$$

Thus the trilinear map $(X, Y, Z) \mapsto\left\langle\left(D_{X} I I\right)(Y, Z), \eta\right\rangle$ is symmetric in the first two entries and skew-symmetric in the last two entries, which forces it to vanish. Next we let W be any tangent vector and compute

$$
\begin{aligned}
\left\langle\left(D_{X} I I\right)(Y, Z), W\right\rangle & =\left\langle D_{X}(I I(Y, Z)), W\right\rangle=-\left\langle I I(Y, Z), D_{X} W\right\rangle \\
& =-\langle I I(Y, Z), I I(X, W)\rangle=-\langle R(Y, Z) X, W\rangle
\end{aligned}
$$

where in the last equality follows we have used part (a).
(c) Since the natural connection D on $M \times V$ is flat, it follows that for any vector fields X, Y, Z, W, we have

$$
0=D_{X}\left(D_{Y}(I I(Z, W))\right)-D_{Y}\left(D_{X}(I I(Z, W))\right)-D_{[X, Y]}(I I(Z, W)) .
$$

Fix $p \in M$, and take vector fields such that $[X, Y]=0$ and $\nabla Z=\nabla W=0$ at $p \in M$. Then, evaluating the equation above at $p \in M$, we have

$$
\begin{aligned}
0= & D_{X}\left(\left(D_{Y} I I\right)(Z, W)+I I\left(\nabla_{Y} Z, W\right)+I I\left(Z, \nabla_{Y} W\right)\right) \\
& -D_{Y}\left(\left(D_{X} I I\right)(Z, W)+I I\left(\nabla_{X} Z, W\right)+I I\left(Z, \nabla_{X} W\right)\right) \\
= & D_{X}(-R(Z, W) Y)+I I\left(\nabla_{X} \nabla_{Y} Z, W\right)+I I\left(Z, \nabla_{X} \nabla_{Y} W\right) \\
& -D_{Y}(-R(Z, W) X)-I I\left(\nabla_{Y} \nabla_{X} Z, W\right)-I I\left(Z, \nabla_{Y} \nabla_{X} W\right) \\
= & -\left(D_{X} R\right)(Z, W) Y+\left(D_{Y} R\right)(Z, W) X-I I(R(X, Y) Z, W) \\
& -I I(Z, R(X, Y) W)
\end{aligned}
$$

Taking the tangent part yields $\left(\nabla_{X} R\right)(Z, W) Y=\left(\nabla_{Y} R\right)(Z, W) X$. Taking inner product with $T \in T_{p} M$ we have

$$
(\nabla R)(Z, W, Y, T, X)=(\nabla R)(Z, W, X, T, Y),
$$

that is, ∇R is symmetric in the third and fifth entries. But ∇R is also skew-symmetric in the third and fourth entries, so that $\nabla R=0$.

The virtual immersion Ω on M lifts to a virtual immersion with skew-symmetric second fundamental form $\tilde{\Omega}$ on the universal cover \tilde{M} of M. In the following Proposition, we prove that $\tilde{\Omega}$ is equivalent to $\tilde{\Omega}_{0}$.

Proposition 13 Let $\left(\tilde{M}, g_{\tilde{M}}\right)$ be a symmetric space, and let $\Omega_{j}: T \tilde{M} \rightarrow V_{j}$, for $j=1,2$ be virtual immersions with skew-symmetric second fundamental forms $I I_{j}$. Assume V_{1}, V_{2} are full. Then, Ω_{1}, Ω_{2} are equivalent.

Proof Define a connection \hat{D} on the vector bundle $T \tilde{M} \oplus \wedge^{2} T \tilde{M}$ by

$$
\hat{D}_{W}(Z, \alpha)=\left(\nabla_{W} Z-R(\alpha) W, \quad W \wedge Z+\nabla_{W} \alpha\right)
$$

Here, for $\alpha=\sum_{u} X_{u} \wedge Y_{u}$, we define $R(\alpha):=\sum_{u} R\left(X_{u}, Y_{u}\right)$. Define bundle homomorphisms $\hat{\Omega}_{j}: T \tilde{M} \oplus \wedge^{2} T \tilde{M} \rightarrow \tilde{M} \times V_{j}$, for $j=1,2$, by

$$
\hat{\Omega}_{j}(Z, \alpha)=\left(p, \Omega_{j}(Z)+I I_{j}(\alpha)\right)
$$

for $Z \in T_{\tilde{p}} \tilde{M}, \alpha=\sum_{u} X_{u} \wedge Y_{u} \in \wedge^{2} T_{\tilde{p}} \tilde{M}$, and $I I(\alpha)=\sum_{u} I I\left(X_{u}, Y_{u}\right)$. By Lemma 12(b), given vector fields Z, W and a section α of $\wedge^{2} T \tilde{M}$, we have

$$
\begin{equation*}
\left(D_{j}\right)_{W}\left(\hat{\Omega}_{j}(Z, \alpha)\right)=\hat{\Omega}_{j}\left(\hat{D}_{W}(Z, \alpha)\right) \tag{6}
\end{equation*}
$$

where D_{j} denotes the natural flat connection on $\tilde{M} \times V_{j}$. This implies that the image of $\hat{\Omega}_{j}$ is D_{j}-parallel, and hence, by minimality of V_{j}, that $\hat{\Omega}_{j}$ is onto $\tilde{M} \times V_{j}$. In particular, for $j=1,2$ the normal space in V_{j} is spanned by $I I_{j}(X, Y)$, for $X, Y \in T_{\tilde{p}} \tilde{M}$.

Now, we claim that

$$
\operatorname{ker} \hat{\Omega}_{1}=\operatorname{ker} \hat{\Omega}_{2}=\left\{(0, \alpha) \mid \alpha \in \wedge^{2} T_{\tilde{p}} \tilde{M}, R(\alpha)=0\right\} .
$$

Indeed, on the one hand if $R(\alpha)=0$, then for every $\beta \in \wedge^{2} T_{\tilde{p}} \tilde{M}$ one obtains that $\left\langle I I_{j}(\alpha), I I_{j}(\beta)\right\rangle=\langle R(\alpha), \beta\rangle=0$ by Lemma 12(a). Since the inner product on $v_{\tilde{p}} \tilde{M} \subset V_{j}$ is nondegenerate and the normal space in V_{j} consists of the elements $I I_{j}(\beta)$ by the conclusion above, it follows that $I I(\alpha)=0$ and thus $\hat{\Omega}_{j}(0, \alpha)=0+I I_{j}(\alpha)$ is zero.

On the other hand, if $\hat{\Omega}_{j}(Z, \alpha)=0$, then $\Omega_{j}(Z)=0$ and $I I_{j}(\alpha)=0$, which implies $Z=0$ and, for every $\beta \in \wedge^{2} T_{\tilde{p}} \tilde{M}, 0=\left\langle I I_{j}(\alpha), I I_{j}(\beta)\right\rangle=\langle R(\alpha), \beta\rangle$ by Lemma 12(a). Since the inner product on $\wedge^{2} T_{\tilde{p}} \tilde{M}$ is nondegenerate, it follows that $R(\alpha)=0$ in $\wedge^{2} T_{\tilde{p}} \tilde{M}$, and this ends the proof of the claim.

Since $\hat{\Omega}_{i}, i=1,2$ are both surjective with the same kernel, there is a well-defined bundle isomorphism $L: M \times V_{1} \rightarrow M \times V_{2}$ by

$$
L\left(\hat{\Omega}_{1}(Z, \alpha)\right)=\hat{\Omega}_{2}(Z, \alpha)
$$

for $Z \in T_{p} M, \alpha \in \wedge^{2} T_{p} M$.
We claim that the linear map $L_{p}=\left.L\right|_{\{p\} \times V_{1}}:\{p\} \times V_{1} \rightarrow\{p\} \times V_{2}$ is independent of $p \in M$. Indeed, given two points $p, q \in M$, choose a curve $\gamma(t)$ in M joining p to q. Choose \hat{D}_{1}-parallel vector fields Z, X_{i}, Y_{i} along $\gamma(t)$ such that $\hat{\Omega}_{1}\left(Z, \sum X_{i} \wedge Y_{i}\right)$ is constant equal to $v \in V_{1}$. Then, by (6), $\hat{D}_{\dot{\gamma}}\left(Z, \sum X_{i} \wedge Y_{i}\right) \subset \operatorname{ker} \hat{\Omega}_{1}$. But by Lemma 12(a), ker $\hat{\Omega}_{1}=\operatorname{ker} \hat{\Omega}_{2}$. Therefore, again by (6), we see that $L(v)$ is constant along γ, so that $L_{p}=L_{q}$. Calling this linear map L, we have $\hat{\Omega}_{2}=L \circ \hat{\Omega}_{1}$ by construction. In particular, $\Omega_{2}=L \circ \Omega_{1}$, finishing the proof that Ω_{1} and Ω_{2} are equivalent.

Piecing all together, we can prove the main Theorem:

Proof of the Main Theorem Suppose first that M is a symmetric space, and let \tilde{M} be its universal cover. From Lemma 9, there exists a skew-symmetric virtual immersion $\tilde{\Omega}_{0}$: $T \tilde{M} \rightarrow V$ with $V \underset{\tilde{\Omega}}{=}$. By Lemma 11, since M is symmetric, $\tilde{\Omega}_{0}$ is invariant under $\pi_{1}(M)$ and therefore $\tilde{\Omega}_{0}$ descends to a skew-symmetric virtual immersion $\Omega: T M \rightarrow V$. Suppose now, on the other hand, that M admits a full, skew-symmetric virtual immersion $\Omega: T M \rightarrow V$. By Lemma $12, M$ is locally symmetric, and thus the universal cover \tilde{M} is a symmetric space and Ω lifts to a skew-symmetric virtual immersion $\tilde{\Omega}: T \tilde{M} \rightarrow V$ invariant under the action of $\Gamma=\pi_{1}(M)$. Since \tilde{M} also admits the virtual immersion $\tilde{\Omega}_{0}$, which is full by Lemma 10, it follows from the rigidity Proposition 13 that $\tilde{\Omega}=\tilde{\Omega}_{0}$, and in particular $\tilde{\Omega}_{0}$ is invariant under the action of Γ. By Lemma 11, it follows that M is a symmetric space.

References

1. Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)
2. Mendes,R., and Radeschi, M.:Generalized immersions and minimal hypersurfaces in compact symmetric spaces, preprint arXiv:1708.05881 (2017)
3. Ozols, V.: Clifford translations of symmetric spaces. Proc. Am. Math. Soc. 44(1), 169-175 (1974)
4. Wolf, J.A.: Locally symmetric homogeneous spaces. Commun. Math. Helv. 37(1), 65-101 (1962)

[^0]: received support from DFG ME 4801/1-1.
 Marco Radeschi
 mradesch@nd.edu
 Ricardo A. E. Mendes
 rmendes@gmail.com
 1 Universitat zu Koln, Cologne, Germany
 2 University of Notre Dame, Notre Dame, IN, USA

