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Abstract We define virtual immersions, as a generalization of isometric immersions in a
pseudo-Riemannian vector space. We show that virtual immersions possess a second funda-
mental form, which is in general not symmetric. We prove that a manifold admits a virtual
immersion with skew-symmetric second fundamental form, if and only if it is a symmetric
space, and in this case the virtual immersion is essentially unique.
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1 Introduction

Often in Riemannian geometry, one needs to embed a Riemannian manifold into Euclidean
or pseudo-Euclidean space. In this paper, we introduce a generalized and more “intrinsic”
version of such embeddings and utilize them to give a new characterization of symmetric
spaces.

Given a Riemannian manifold M and an isometric immersion φ : M → V into a vector
space (V, 〈, 〉) endowed with a nondegenerate symmetric bilinear form (a pseudo-Euclidean
vector space), then the pullback φ∗T V is a trivial vector bundle over M , the differential φ∗
defines an immersion φ∗ : T M → φ∗T V , and the classical results on isometric immersions
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show that the canonical (flat) connection on φ∗T V induces, by projecting onto T M , the
Levi Civita connection on M . We use these properties to define a virtual immersion of a
Riemannian manifold M , as a flat bundle M × V , with V a pseudo-Euclidean vector space,
together with an isometric embedding T M → M×V such that the flat connection on M×V
induces the Levi Civita connection on M (see Definition 1 for an equivalent definition).

It turns out that, just like the usual isometric immersions, one can define a second fun-
damental form, but unlike the usual setting this is in general not symmetric. As a matter
of fact, it can be easily shown that a virtual immersion is (locally) induced by an isometric
immersion, if and only if the second fundamental form is symmetric.

In [2], we first introduced virtual immersions with V Euclidean (rather than pseudo-
Euclidean) in the context of verifying, for certain compact symmetric spaces, a conjecture of
Marques-Neves-Schoen about the index of closedminimal hypersurfaces. In that same paper,
it was proved that, when V has a Euclidean metric, virtual immersions with skew-symmetric
second fundamental form exist only on compact symmetric spaces (cf. [2], Theorem B).

The main result of this paper is to extend the classification of virtual immersions with
skew-symmetric second fundamental form to the more general case in which the metric on
V is pseudo-Euclidean:

Main Theorem Let (M, g) be a Riemannian manifold. Then, M admits a virtual immersion
� with skew-symmetric second fundamental form if and only if it is a symmetric space. In
this case, � is essentially unique.

Virtual immersions, in other words, provide a bundle-theoretic characterization of sym-
metric spaces, although we expect them to have independent interest on more general spaces.

The paper is organized as follows: in Sect. 2, we define virtual immersions and their
second fundamental form and establish their fundamental equations. In Sect. 3, we prove the
“if” part of the Main Theorem, producing a virtual immersion with skew-symmetric second
fundamental form on any symmetric space. In Sect. 4, we prove the “only if” part of the
Main Theorem, showing that a virtual immersion with skew-symmetric second fundamental
form forces the manifold to be a symmetric space. In this last section, we also glue the pieces
together and prove the Main Theorem.

Convention: We will denote by R the curvature tensor, and follow the sign convention
R(X, Y )Z = ∇Y∇X Z − ∇X∇Y Z + ∇[X,Y ]Z .

2 Virtual immersions

Let (M, g) be a Riemannian manifold, and let (V, 〈, 〉) denote a real vector space endowed
with a nondegenerate, symmetric bilinear form. We call such (V, 〈, 〉) a pseudo-Euclidean
vector space. A V -valued virtual immersion of M is, roughly speaking, an immersion of T M
into the trivial bundle M × V , such that the natural flat connection on M × V induces the
Levi-Civita connection of M . Such objects generalize isometric immersions of Riemannian
manifolds in pseudo-Euclidean space.

Although this is the idea behind virtual immersions, we introduce such structures in a
different way, more convenient for computations. See Proposition 2 for a proof that the two
definitions coincide.

Definition 1 Let (M, g) be a Riemannian manifold, and (V, 〈, 〉) a finite-dimensional,
pseudo-Euclidean real vector space. Let � be a V -valued one-form on M . We say � is
a virtual immersion if the following two conditions are satisfied:
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a) 〈�(X),�(Y )〉 = g(X, Y ) for every p ∈ M , and every X, Y ∈ TpM .
b) 〈d�(X, Y ),�(Z)〉 = 0 for every p ∈ M , and every X, Y, Z ∈ TpM .

We say two virtual immersions �i : T M → Vi , i = 1, 2 are equivalent if there is a linear
isometry (V1, 〈, 〉1) → (V2, 〈, 〉2) making the obvious diagram commute.

Lettingπ : T M → M denote the foot-point projection, any virtual immersion� : T M →
V induces a vector bundle homomorphism (π,�) : T M → M × V . By condition (a) in the
definition, this map is an isometric immersion of (pseudo-Euclidean) vector bundles.

Fixing p ∈ M , denote by �p : TpM → V the restriction of � to TpM . Since �p is
an isometric immersion, the space TpM can be identified with its image, which we will
still denote by TpM . Moreover, since the metric on TpM is positive definite, its orthogonal
complement νpM := (TpM)⊥ ⊂ V is transverse to TpM and thus V splits orthogonally as
V = TpM ⊕ νpM . This yields the orthogonal decomposition M × V = T M ⊕ νM . Given
(p, X) ∈ M × V , we shall write X = XT + X⊥ for the decomposition into the tangent and
normal parts.

The natural flat connection D on M × V induces a connection DT (respectively D⊥) on
T M (resp. νM), given by DT

XY = (DXY )T (resp. D⊥
X η = (DXη)⊥). Here, X, Y are vector

fields on M , while η is a section of the normal bundle.

Proposition 2 Let � be a V -valued one-form on M satisfying condition (a) in Definition
1. Then, � is a virtual immersion if and only if the flat connection D on M × V satisfies
DT = ∇, where ∇ denotes the Levi Civita connection on M.

Proof Since� already satisfies condition (a), it is a virtual immersion if and only if condition
(b) holds as well, that is, d�(X, Y )T = 0 for every point p and every X, Y ∈ TpM . Recall
that

d�(X, Y ) = DXY − DY X − [X, Y ] (1)

so that taking the tangent part yields

d�(X, Y )T = DT
XY − DT

Y X − [X, Y ].
Condition (a) implies that DT is compatible with the metric g, and by the above formula
condition (b) is equivalent to DT being torsion-free. Since these two properties characterize
the Levi Civita connection, the result follows. ��

Given a virtual immersion � : T M → V and a group � of isometries of M , we say that
� is �-invariant if for every γ ∈ �, � ◦ dγ = �, where dγ : T M → T M denotes the
differential of γ . The following result is straightforward:

Lemma 3 Let� : T M → V be a virtual immersion, and letπ : M̃ → M denote a covering.
Then, π∗� = � ◦ dπ : T M̃ → V is a virtual immersion, which is invariant under the deck
group of M̃ → M. Conversely, if � : T M → V is invariant under a group � acting freely
on M by isometries, and π : M → M ′ = M/� denotes the quotient, then � descends to a
virtual immersion �′ : T M ′ → V such that � = π∗�′.

Given a virtual immersion � : T M → V and a linear isometric immersion ι : V → W ,
there is an induced virtual immersion ι ◦ � : T M → W . We want to rule out these trivial
extensions.

Definition 4 A virtual immersion � : T M → V is called full if the image of � spans V .
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For any virtual immersion � : T M → W , defining the subspace V = span(�(T M)) and
letting ι : V → W denote the inclusion, one obtains the following:

Lemma 5 Given any virtual immersion � : T M → W, there exist a full immersion �′ :
T M → V and a linear isometric immersion ι : V → W such that � = ι ◦ �′.

Given a virtual immersion, one can define a second fundamental form and shape operator.

Definition 6 Let � be a V -valued virtual immersion, X, Y be smooth vector fields on M ,
and η a smooth section of νM . Define the second fundamental form of � by

II : T M × T M → νM, II (X, Y ) = (DXY )⊥ = DX (�(Y )) − �(∇XY )

and the shape operator in the direction of a normal vector η by

Sη : T M → T M, Sη(X) = −(DXη)T .

Note that the second fundamental form and the shape operator are tensors. In view of Propo-
sition 2, we may write

DXY = ∇XY + II (X, Y ) (2)

DXη = −SηX + D⊥
X η (3)

Example 7 Given a RiemannianmanifoldM , let φ : M → V be an isometric immersion into
a pseudo-Euclidean vector space (V, 〈, 〉). Then,� = dφ : T M → V is a virtual immersion,
with symmetric second fundamental form. On the other hand, for any virtual immersion �,
the normal part of d�(X, Y ) equals II (X, Y ) − II (Y, X) and, since the tangent part of d�

vanishes, it follows that if II is symmetric, then d� = 0, which implies that locally � = dφ

for some map φ : M → V . By condition (a) in the definition of virtual immersion, this map
must be an isometric immersion.

Proposition 8 Let � be a virtual immersion of the Riemannian manifold (M, g) with values
in V . Then, the following identities hold:

(a) Weingarten’s equation
〈
Sη(X), Y

〉 = 〈II (X, Y ), η〉
(b) Gauss’ equation

R(X, Y, Z ,W ) = 〈II (Y,W ), II (X, Z)〉 − 〈II (X,W ), II (Y, Z)〉
(c) Ricci’s equation

〈
R⊥(X, Y )η, ζ

〉
= −

〈
(StηSζ − Stζ Sη)X, Y

〉

(d) Codazzi’s equation

〈(DX II )(Y, Z), η〉 = 〈(DY II )(X, Z), η〉 .

Proof The proof is the same as in the classical case. For sake of completeness, we recall it
here.

Fix a point p and let V = TpM⊕νpM be the orthogonal splitting into tangent and normal
part. Recall that this is possible even though (V, 〈, 〉) is not Euclidean, because the restriction
to TpM is positive definite. Given vectors X, Y, Z ,W ∈ TpM , extend them locally to vector
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fields (denoted with the same letters). Differentiating the equation DY Z = ∇Y Z + II (Y, Z)

with respect to X , one gets

DX DY Z = DX (∇Y Z + II (Y, Z))

= ∇X∇Y Z + II (X,∇Y Z) + DX (II (Y, Z)).

Since the connection D is flat, its curvature vanishes, and one has

0 = D[X,Y ]Z − DX DY Z + DY DX Z

= (∇[X,Y ]Z + II ([X, Y ], Z)
) − (∇X∇Y Z + II (X,∇Y Z) + DX (II (Y, Z))

)

+ (∇Y∇X Z + II (Y,∇X Z) + DY (II (X, Z))
)

= R(X, Y )Z − (DX II )(Y, Z) + (DY II )(X, Z). (4)

Taking the product of both sides of (4) with W ∈ TpM , one gets

0 = 〈R(X, Y )Z ,W 〉 − 〈DX (II (Y, Z)),W 〉 + 〈DY (II (X, Z)),W 〉
= 〈R(X, Y )Z ,W 〉 + 〈II (Y, Z), DXW 〉 − 〈II (X, Z), DYW 〉
= 〈R(X, Y )Z ,W 〉 + 〈II (Y, Z), II (X,W )〉 − 〈II (X, Z), II (Y,W )〉

which recovers the Gauss’ equation.
On the other hand, taking the product of equation (4) with η ∈ νpM , one obtains

0 = 〈−(DX II )(Y, Z) + (DY II )(X, Z), η〉
which is Codazzi’s Equation.

Ricci’s equation is obtained similarly, but starting with equation DXη = −SηX + D⊥
X η

instead of DXY = ∇XY + II (X, Y ). Weingarten’s equation is immediate. ��

3 Virtual immersions on symmetric spaces

This section is devoted to proving the first part of the main theorem. Namely, given a
symmetric space M , we show how to produce a virtual immersion � : T M → V with
skew-symmetric second fundamental form.

Since the universal cover M̃ of M is a simply connected symmetric space, by the de
Rham decomposition theorem it splits isometrically into irreducible factors, M̃ = ∏k

i=0 M̃i ,
where M̃0 = R

r and none of the other factors is Euclidean. For each i = 0, . . . , k, choose
pi ∈ M̃i , and let Gi be the subgroup of the isometry group of M , generated by transvections
(i.e., products of two symmetries). Then, Gi is connected and, by the standard theory of
symmetric spaces, it acts transitively on M̃i . Moreover, (Gi , Hi ) is a symmetric pair, where
Hi = (Gi )pi . Notice that G0 = R

r , and H0 = 1.
Let πi : Gi → M̃i = Gi/Hi denote the projection πi (g) := g · pi . Let gi , hi denote

the Lie algebras of Gi , Hi respectively, and let mi ⊂ gi be a complement of hi satisfying
[mi ,mi ] ⊆ hi , [mi , hi ] ⊆ hi . Then, the Killing form Bi on gi restricts to a negative-
definite (resp. positive-definite, zero) symmetric form on mi when M̃i is of compact (resp.
noncompact, Euclidean) type. Moreover, mi can be canonically identified with Tpi M̃i via
(πi )∗ and, for i > 0, the restriction gM̃ |M̃i

of the metric gM̃ to Tpi M̃i corresponds to λi Bi
∣∣
mi

for some negative (resp. positive) value λi ∈ R if M̃i is of compact (resp. noncompact) type.
Letting G = ∏k

i=0 Gi and H = ∏k
i=0 Hi , then (G, H) is a symmetric pair, with G acting

transitively on M̃ and such that H = Gp , p = (p0, . . . , pk). In particular, M̃ is diffeomorphic
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to G/H , via the map sending �g� = �g0, . . . , gk� ∈ G/H to g · p = (g0 · p0, . . . , gk · pk).
Let

g =
k⊕

i=0

gi , h =
k⊕

i=0

hi , m =
k⊕

i=0

mi ,

so that g = h ⊕ m, [m,m] ⊆ h and [m, h] ⊆ m. Define G ×H m as the quotient of G × m

by the action of H given by h · (g, X) = (gh−1,Adh X), and denote by �g, X� the image of
(g, X) ∈ G × m under the quotient map. There is a natural G-action on G ×H m, defined
by g′ · �g, X� = �g′g, X�. Extend now the isomorphism

m =
k⊕

i=0

mi →
k⊕

i=0

Tpi M̃i = Tp M̃

to the G-equivariant bundle isomorphism G ×H m → T M̃ given by �g, X� �→ dg(X).
We can now define the virtual immersion �̃0 on M̃ . Endow g = R

r ⊕ ⊕k
i=1 gi with the

nondegenerate symmetric bilinear form

〈 , 〉 = gM̃ |Rr ⊕
k⊕

i=1

λi Bi ,

and define

�̃0 : T M̃ � G ×H m −→ g

�g, X� �−→ Adg X (5)

Lemma 9 The g-valued one-form �̃0 defined in Equation (5) is a virtual immersion. At
�g� ∈ M̃, the tangent and normal spaces are Adg m and Adg h, respectively. The second
fundamental form is skew symmetric, given by

II
(
�g, X�, �g, Y �

) = Adg([X, Y ]).
Proof We begin by showing that condition a) in the definition of virtual immersion holds for
�̃0. By G-equivariance it is enough to show that

�̃0|�e�×m : �e� × m → g

is an isometric embedding. The embedding is simply the canonical inclusion, therefore given
X, Y ∈ m � T�e�M̃ , and denoting Xi , Yi the projections of X, Y onto mi � Tpi M̃i , one has

〈
�̃0(X), �̃0(Y )

〉
= 〈X, Y 〉

= 〈X0, Y0〉 +
k∑

i=1

〈Xi , Yi 〉

= gM̃ (X0, Y0) +
k∑

i=1

λi Bi (Xi , Yi )

= gM̃ (X0, Y0) +
k∑

i=1

gM̃ (Xi , Yi )

= gM̃ (X, Y ).
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It is clear from (5) that the tangent space is Adg m, thus the normal space must be Adg h.
Let X ∈ g. Under the identification of T M̃ with G ×H m that we are using, the action

field X∗ is given by

X∗�g� = �g, (Adg−1 X)m�

Indeed, X∗�g� is a vector of the form �g, v�, with v = dg−1(X∗�g�) ∈ m. One computes

v = dg−1
(

d

dt

∣∣∣∣
t=0

�et X g�

)
= d

dt

∣∣∣∣
t=0

�g−1et X g�

= dπe(Adg−1 X)

= (Adg−1 X)m,

where π denotes the map π : G → G/H . Given X, Y ∈ g, we then have

DX∗�̃0(Y
∗) = d

dt

∣∣∣∣
t=0

�̃0�e
t X g, (Ad(et X g)−1 Y )m�

= d

dt

∣∣∣∣
t=0

Adet X g(Adg−1e−t X Y )m

= Adg
([Adg−1 X, (Adg−1 Y )m] − (Adg−1 [X, Y ])m

)

By G-equivariance, it is enough to show that, for every X, Y ∈ T�e�M̃ � m, we have

d�̃0(X∗, Y ∗)T�e� = 0 and II (X, Y )�e� = [X, Y ]. Plugging g = e in the equation above, and
using the fact that [m,m] ⊂ h, we have

DX∗�̃0(Y
∗) = [X, Y ].

The tangent part of this is zero, so that

d�̃0(X
∗, Y ∗)T�e� = DX∗�̃0(Y

∗)T�e� − DY ∗�̃0(X
∗)T�e� − �̃0([X∗, Y ∗])�e� = 0 − 0 − 0 = 0

which means that �̃0 is a virtual immersion.
Moreover, II (X, Y )�e� = DX∗�̃0(Y ∗)⊥

�e� = [X, Y ]. ��
Using the lemma above, we can prove

Lemma 10 The virtual immersion �̃0 : T M̃ → g is full.

Proof It is enough to prove that �̃0(Tp̃ M̃) ⊕ span{II (X, Y ) | X, Y ∈ T�e�M̃} = g. By
Lemma 9,

�̃0(Tp̃ M̃) = m, span{II (X, Y ) | X, Y ∈ Tp̃ M̃} = [m,m],
therefore this reduces to proving [m,m] = h. If not, then there exists a nonzero H ∈ h such
that B(H, [X, Y ]) = 0 for all X, Y in m. By Ad-invariance of the Killing form, this implies
B([H, Y ], X) = 0 for all X, Y ∈ m. Since [H, Y ] ∈ ⊕t

i=1 mi and B is nondegenerate on⊕r
i=1 gi , it follows that [H, Y ] = 0 for every Y ∈ m. This implies that Ad(exp t H) ∈ H =

G p̃ is the identity on m = Tp̃ M̃ , which implies H = 0 hence the contradiction.

Having defined the virtual immersion �̃0 on M̃ , the goal is now to prove that it descends
to a virtual immersion on M . This is equivalent to proving that �̃0 is invariant under the
group � of deck transformations of M̃ → M .
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Lemma 11 Let � be a discrete subgroup of isometries of M̃ acting freely on M̃. Then, the
virtual immersion �̃0 defined above is invariant under � if and only if M = M̃/� is a
symmetric space.

Proof Suppose first that M is a symmetric space, and let τ : M̃ → M denote the universal
cover ofM . Then, since the symmetry s p̃ at any p̃ ∈ M̃ is a lift of the corresponding symmetry
sp at p = τ( p̃) ∈ M , it follows that for any γ ∈ �, s p̃γ s p̃ is a lift of the identity or, in other
words, s p̃γ s p̃ ∈ �. Since M = M̃/� is a symmetric space and in particular a homogeneous
space, by the main theorem in [4] it follows that every element γ ∈ � is a Clifford-Wolf
translation, i.e., the displacement function q ∈ M̃ �→ d(q, γ (q)) is constant. In particular,
for any p̃ ∈ M̃ the isometry γ s p̃γ s p̃ = γ · (s p̃γ s p̃) ∈ � is a Clifford-Wolf translation.

We claim that γ s p̃γ s p̃ fixes p̃, which implies that γ s p̃γ s p̃ = id. In fact, since γ is a
Clifford-Wolf translation, then γ −1( p̃), p̃, γ ( p̃) all lie on the same geodesic c(t) (cf. [3,
Theorem 1.6]). Parametrize c(t) so that c(0) = p̃, c(1) = γ ( p̃), c(−1) = γ −1( p̃). Then,
since s p̃( p̃) = p̃ and s p̃(c(t)) = c(−t), it follows that

s p̃γ s p̃( p̃) = s p̃γ ( p̃) = s p̃(c(1)) = c(−1) = γ −1( p̃)

and therefore γ s p̃γ s p̃( p̃) = p̃, thus proving the claim.
If follows that s p̃γ s p̃ = γ −1 and therefore, every γ ∈ � commutes with every transvec-

tion. Since G is generated by transvections, then � commutes with G and thus Adγ acts
trivially on g for every γ ∈ �.

Given�0 : T M̃ = G×Hm → g and fixing γ ∈ �, themap�0◦γ : T M̃ = G×Hm → g

is given by

(�0 ◦ γ )�g, X� =�0�γ g, X� = Adγ g(X) = Adγ (Adg X) = Adg X = �0�g, X�

and therefore �0 is invariant under �.
On the other hand, suppose now that �0 is invariant under �. Then, for every γ ∈ �,

Adγ |g = id, i.e., � commutes with G (recall, G is connected). Since G acts transitively
on M̃ it follows that every γ ∈ � is a Clifford-Wolf translation: in fact, for any p̃, q̃ ∈ M̃ ,
letting g ∈ G be such that g · p̃ = q̃, one has

d( p̃, γ p̃) = d(g p̃, g(γ p̃)) = d(g p̃, γ (g p̃)) = d(q̃, γ q̃).

Moreover, since G is also normalized by the symmetries s p̃ centered at any p̃ ∈ M̃ , it
follows that s p̃γ s p̃ , and thus γ s p̃γ s p̃ , commute with G for any γ ∈ �. In particular γ s p̃γ s p̃
is again a Clifford-Wolf translation. However, just as before it follows that γ s p̃γ s p̃ fixes
p̃, and therefore s p̃γ s p̃ = γ −1. In particular, every symmetry s p̃ satisfies s p̃�s p̃ = �.
Therefore, for any point p = τ [ p̃] ∈ M/�, one can define a symmetry sp : M → M by
sp[q̃] = [s p̃(q̃)]. In particular, M is a symmetric space. ��

4 Rigidity of virtual immersions with skew-symmetric second
fundamental form

In this section we prove the second half of the main theorem. Namely, given aminimal virtual
immersion � : T M → V with skew-symmetric second fundamental form, we prove that
M is a symmetric space and � is equivalent to the virtual immersion defined in the previous
section.
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Lemma 12 Let (M, g) be a Riemannian manifold, and� a V -valued virtual immersion with
skew-symmetric second fundamental form II . Then:

(a) 〈II (X, Y ), II (Z ,W )〉 = 〈R(X, Y )Z ,W 〉.
(b) (DX II )(Y, Z) = −R(Y, Z)X.
(c) ∇R = 0. In particular, (M, g) is a locally symmetric space.

Proof (a) Start with Gauss’ equation (see Proposition 8(b)),

〈R(X, Y )Z ,W 〉 = 〈II (Y,W ), II (X, Z)〉 − 〈II (X,W ), II (Y, Z)〉
Applying the first Bianchi identity yields

0 = −2
( 〈II (X, Y ), II (Z ,W )〉 + 〈II (Y, Z), II (X,W )〉 + 〈II (Z , X), II (Y,W )〉 )

so that using Gauss’ equation one more time we arrive at

〈R(X, Y )Z ,W 〉 = 〈II (X, Y ), II (Z ,W )〉 .

(b) First we argue that (DX II )(Y, Z) is tangent. Indeed, for any normal vector η, Codazzi’s
equation (Proposition 8(d)) says that

〈(DX II )(Y, Z), η〉 = 〈(DY II )(X, Z), η〉 .

Thus the trilinear map (X, Y, Z) �→ 〈(DX II )(Y, Z), η〉 is symmetric in the first two
entries and skew-symmetric in the last two entries, which forces it to vanish. Next we
let W be any tangent vector and compute

〈(DX II )(Y, Z),W 〉 = 〈DX (II (Y, Z)),W 〉 = − 〈II (Y, Z), DXW 〉
= − 〈II (Y, Z), II (X,W )〉 = − 〈R(Y, Z)X,W 〉

where in the last equality follows we have used part (a).
(c) Since the natural connection D on M × V is flat, it follows that for any vector fields

X, Y, Z ,W , we have

0 = DX (DY (II (Z ,W ))) − DY (DX (II (Z ,W ))) − D[X,Y ](II (Z ,W )).

Fix p ∈ M , and take vector fields such that [X, Y ] = 0 and ∇Z = ∇W = 0 at p ∈ M .
Then, evaluating the equation above at p ∈ M , we have

0 = DX
(
(DY II )(Z ,W ) + II (∇Y Z ,W ) + II (Z ,∇YW )

)

− DY
(
(DX II )(Z ,W ) + II (∇X Z ,W ) + II (Z ,∇XW )

)

= DX (−R(Z ,W )Y ) + II (∇X∇Y Z ,W ) + II (Z ,∇X∇YW )

− DY (−R(Z ,W )X) − II (∇Y∇X Z ,W ) − II (Z ,∇Y∇XW )

= −(DX R)(Z ,W )Y + (DY R)(Z ,W )X − II (R(X, Y )Z ,W )

− II (Z , R(X, Y )W )

Taking the tangent part yields (∇X R)(Z ,W )Y = (∇Y R)(Z ,W )X . Taking inner product
with T ∈ TpM we have

(∇R)(Z ,W, Y, T, X) = (∇R)(Z ,W, X, T, Y ),

that is, ∇R is symmetric in the third and fifth entries. But ∇R is also skew-symmetric
in the third and fourth entries, so that ∇R = 0. ��
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The virtual immersion � on M lifts to a virtual immersion with skew-symmetric second
fundamental form �̃ on the universal cover M̃ of M . In the following Proposition, we prove
that �̃ is equivalent to �̃0.

Proposition 13 Let (M̃, gM̃ ) be a symmetric space, and let � j : T M̃ → Vj , for j = 1, 2
be virtual immersions with skew-symmetric second fundamental forms II j . Assume V1, V2
are full. Then, �1,�2 are equivalent.

Proof Define a connection D̂ on the vector bundle T M̃ ⊕ ∧2T M̃ by

D̂W (Z , α) = (∇W Z − R(α)W, W ∧ Z + ∇Wα
)

Here, for α = ∑
u Xu ∧ Yu , we define R(α) := ∑

u R(Xu, Yu). Define bundle homomor-
phisms �̂ j : T M̃ ⊕ ∧2T M̃ → M̃ × Vj , for j = 1, 2, by

�̂ j (Z , α) =
(
p,� j (Z) + II j (α)

)

for Z ∈ Tp̃ M̃, α = ∑
u Xu ∧Yu ∈ ∧2Tp̃ M̃ , and II (α) = ∑

u II (Xu, Yu). By Lemma 12(b),
given vector fields Z ,W and a section α of ∧2T M̃ , we have

(Dj )W
(
�̂ j (Z , α)

) = �̂ j
(
D̂W (Z , α)

)
(6)

where Dj denotes the natural flat connection on M̃ × Vj . This implies that the image of �̂ j

is Dj -parallel, and hence, by minimality of Vj , that �̂ j is onto M̃ × Vj . In particular, for
j = 1, 2 the normal space in Vj is spanned by II j (X, Y ), for X, Y ∈ Tp̃ M̃ .

Now, we claim that

ker �̂1 = ker �̂2 =
{
(0, α) | α ∈ ∧2Tp̃ M̃, R(α) = 0

}
.

Indeed, on the one hand if R(α) = 0, then for every β ∈ ∧2Tp̃ M̃ one obtains that〈
II j (α), II j (β)

〉 = 〈R(α), β〉 = 0 by Lemma 12(a). Since the inner product on ν p̃ M̃ ⊂ Vj is
nondegenerate and the normal space in Vj consists of the elements II j (β) by the conclusion
above, it follows that II (α) = 0 and thus �̂ j (0, α) = 0 + II j (α) is zero.

On the other hand, if �̂ j (Z , α) = 0, then � j (Z) = 0 and II j (α) = 0, which implies
Z = 0 and, for every β ∈ ∧2Tp̃ M̃ , 0 = 〈

II j (α), II j (β)
〉 = 〈R(α), β〉 by Lemma 12(a).

Since the inner product on ∧2Tp̃ M̃ is nondegenerate, it follows that R(α) = 0 in ∧2Tp̃ M̃ ,
and this ends the proof of the claim.

Since �̂i , i = 1, 2 are both surjective with the same kernel, there is a well-defined bundle
isomorphism L : M × V1 → M × V2 by

L
(
�̂1(Z , α)

) = �̂2(Z , α)

for Z ∈ TpM , α ∈ ∧2TpM .
We claim that the linear map L p = L|{p}×V1 : {p} × V1 → {p} × V2 is independent of

p ∈ M . Indeed, given two points p, q ∈ M , choose a curve γ (t) in M joining p to q . Choose
D̂1-parallel vector fields Z , Xi , Yi along γ (t) such that �̂1(Z ,

∑
Xi ∧Yi ) is constant equal to

v ∈ V1. Then, by (6), D̂γ̇ (Z ,
∑

Xi ∧ Yi ) ⊂ ker �̂1. But by Lemma 12(a), ker �̂1 = ker �̂2.
Therefore, again by (6), we see that L(v) is constant along γ , so that L p = Lq . Calling this
linear map L , we have �̂2 = L ◦ �̂1 by construction. In particular, �2 = L ◦ �1, finishing
the proof that �1 and �2 are equivalent. ��

Piecing all together, we can prove the main Theorem:
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Proof of the Main Theorem Suppose first that M is a symmetric space, and let M̃ be its
universal cover. From Lemma 9, there exists a skew-symmetric virtual immersion �̃0 :
T M̃ → V with V = g. By Lemma 11, since M is symmetric, �̃0 is invariant under
π1(M) and therefore �̃0 descends to a skew-symmetric virtual immersion � : T M → V .
Suppose now, on the other hand, that M admits a full, skew-symmetric virtual immersion
� : T M → V . By Lemma 12, M is locally symmetric, and thus the universal cover M̃ is a
symmetric space and � lifts to a skew-symmetric virtual immersion �̃ : T M̃ → V invariant
under the action of � = π1(M). Since M̃ also admits the virtual immersion �̃0, which is full
by Lemma 10, it follows from the rigidity Proposition 13 that �̃ = �̃0, and in particular �̃0

is invariant under the action of �. By Lemma 11, it follows that M is a symmetric space. ��
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